Sample records for extreme temperature events

  1. Increased Stream Temperature in Response to Extreme Precipitation Events (United States)

    Wilson, C. E.; Gooseff, M. N.


    Aquatic ecosystem temperature regulation is essential to the survival of riverine fish species restricted to limited water temperature ranges. Dissolved oxygen levels, similarly necessary to fish health, are decreased by rising temperatures, as warmer waters can hold less oxygen than colder waters. Climate change projections forecast increased precipitation intensities, a trend that has already been observed in the past decade. Though extreme events are becoming more common, the stream temperature response to high-intensity rainfall is not yet completely understood. Precipitation and stream temperature records from gages in the Upper Midwestern United States were analyzed to determine whether there exists a positive relationship between high-intensity rainfall and stream temperature response. This region was chosen for its already observed trends in increasing precipitation intensity, and rural gages were used in order to minimize the effect of impervious surfaces on runoff amounts and temperature. Days with recorded precipitation were divided by an intensity threshold and classified as either high-intensity or low-intensity days. While the effects of rain events on temperature are variable, increases in stream temperature in response to high-intensity rainfall were observed. For some basins, daily maximum rates of stream temperature increase were, on average, greater for higher intensity events. Similarly, the average daily stream temperature range was higher in streams on days of high-intensity precipitation, compared to days of low-intensity events. Understanding the effect of increasing precipitation intensity in conjunction with rising air temperatures will provide insight into the future of aquatic ecosystems and their adaptation to climate change.

  2. Representing Extreme Temperature Events and Resolving Their Implications for Yield (United States)

    Huybers, P. J.; Mueller, N. D.; Butler, E. E.; Tingley, M.; McKinnon, K. A.; Rhines, A. N.


    Although it is well recognized that extreme temperatures occurring at particular growth stages are destructive to yield, there appears substantial scope for improved empirical assessment and simulation of the relationship between temperature and yield. Several anecdotes are discussed. First, a statistical analysis of historical U.S. extreme temperatures is provided. It is demonstrated that both reanalysis and model simulations significantly differ from near-surface temperature observations in the frequency and magnitude of extremes. This finding supports empirical assessment using near-surface instrumental records and underscores present difficulties in simulating past and predicting future changes. Second, an analysis of the implications of extreme temperatures on U.S. maize yield is provided where the response is resolved regionally and according to growth stage. Sensitivity to extreme temperatures during silking is found to be uniformly high across the U.S., but the response during grain filling varies spatially, with higher sensitivity in the North. This regional and growth-stage dependent sensitivity implies the importance of representing cultivar, planting times, and development rates, and is also indicative of the potential for future changes according to the combined effects of climate and technology. Finally, interaction between extreme temperatures and agriculture is indicated by analysis showing that historical extreme temperatures in the U.S. Midwest have cooled in relation to changes in regional productivity, possibly because of greater potential for cooling through evapotranspiration. This interpretation is consistent with changes in crop physiology and management, though also noteworthy is that the moderating influence of increased evapotranspiration on extreme temperatures appears to be lost during severe drought. Together, these findings indicate that a more accurate assessment of the historical relationship between extreme temperatures and yield

  3. Evaluation of extreme temperature events in northern Spain based on process control charts (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.


    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  4. The effect of myostatin genotype on body temperature during extreme temperature events. (United States)

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L


    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P 0.05). The current study illustrated that a genotype × environment interaction exists for MG and 1-copy animals were more robust to environmental extremes in comparison with 0- or 2-copy animals.

  5. Assessment of climate variations in temperature and precipitation extreme events over Iran (United States)

    Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M. M.; Molanejad, M.; Sabziparvar, A. A.; Ranjbar SaadatAbadi, A.; Ranjbar, F.; Rousta, I.; Zawar-Reza, P.; Khoshakhlagh, F.; Soltanzadeh, I.; Babu, C. A.; Azizi, G. H.; Martin, M. V.


    In this study, changes in the spatial and temporal patterns of climate extreme indices were analyzed. Daily maximum and minimum air temperature, precipitation, and their association with climate change were used as the basis for tracking changes at 50 meteorological stations in Iran over the period 1975-2010. Sixteen indices of extreme temperature and 11 indices of extreme precipitation, which have been quality controlled and tested for homogeneity and missing data, are examined. Temperature extremes show a warming trend, with a large proportion of stations having statistically significant trends for all temperature indices. Over the last 15 years (1995-2010), the annual frequency of warm days and nights has increased by 12 and 14 days/decade, respectively. The number of cold days and nights has decreased by 4 and 3 days/decade, respectively. The annual mean maximum and minimum temperatures averaged across Iran both increased by 0.031 and 0.059 °C/decade. The probability of cold nights has gradually decreased from more than 20 % in 1975-1986 to less than 15 % in 1999-2010, whereas the mean frequency of warm days has increased abruptly between the first 12-year period (1975-1986) and the recent 12-year period (1999-2010) from 18 to 40 %, respectively. There are no systematic regional trends over the study period in total precipitation or in the frequency and duration of extreme precipitation events. Statistically significant trends in extreme precipitation events are observed at less than 15 % of all weather stations, with no spatially coherent pattern of change, whereas statistically significant changes in extreme temperature events have occurred at more than 85 % of all weather stations, forming strongly coherent spatial patterns.

  6. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    Institute of Scientific and Technical Information of China (English)

    封泰晨; 张珂铨; 苏海晶; 王晓娟; 龚志强; 张文煜


    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak;the number of lasted days has decreased;and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter.

  7. Characteristics of the spatiotemporal distribution of daily extreme temperature events in China: Minimum temperature records in different climate states against the background of the most probable temperature

    Institute of Scientific and Technical Information of China (English)

    Qian Zhong-Hua; Hu Jing-Guo; Feng Guo-Lin; Cao Yong-Zhong


    Based on the skewed function,the most probable temperature is defined and the spatiotemporal distributions of the frequencies and strengths of extreme temperature events in different climate states over China are investigated,where the climate states are referred to as State Ⅰ,State Ⅱ and State Ⅲ,i.e.,the daily minimum temperature records of 1961-1990,1971-2000,and 1981-2009.The results show that in space the frequency of high temperature events in summer decreases clearly in the lower and middle reaches of the Yellow River in State Ⅰ and that low temperature events decrease in northern China in State Ⅱ.In the present state,the frequency of high temperature events increases significantly in most areas over China except the north east,while the frequency of low temperature events decreases mainly in north China and the regions between the Yangtze River and the Yellow River.The distributions of frequencies and strengths of extreme temperature events are consistent in space.The analysis of time evolution of extreme events shows that the occurrence of high temperature events become higher with the change in state,while that of low temperature events decreases.High temperature events are becoming stronger as well and deserve to be paid special attention.

  8. Multidecadal changes in the relationship between extreme temperature events in Uruguay and the general atmospheric circulation

    Energy Technology Data Exchange (ETDEWEB)

    Renom, Madeleine; Barreiro, Marcelo [Universidad de la Republica, Unidad de Ciencias de la Atmosfera, Instituto de Fisica, Facultad de Ciencias, Montevideo (Uruguay); Rusticucci, Matilde [Universidad de Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)


    We analyze changes in the relationship between extreme temperature events and the large scale atmospheric circulation before and after the 1976 climate shift. To do so we first constructed a set of two temperature indices that describe the occurrence of warm nights (TN90) and cold nights (TN10) based on a long daily observed minimum temperature database that spans the period 1946-2005, and then divided the period into two subperiods of 30 years each (1946-1975 and 1976-2005). We focus on summer (TN10) and winter (TN90) seasons. During austral summer before 1976 the interannual variability of cold nights was characterized by a negative phase of the Southern Annular Mode (SAM) with a cyclonic anomaly centered off Uruguay that favoured the entrance of cold air from the south. After 1976 cold nights are associated not with the SAM, but with an isolated vortex at upper levels over South Eastern South America. During austral winter before 1976, the El Nino phenomenon dominated the interannual variability of warm nights through an increase in the northerly warm flow into Uruguay. However, after 1976 the El Nino connection weakened and the variability of warm nights is dominated by a barotropic anticyclonic anomaly located in the South Atlantic and a low pressure center over South America. This configuration also strengthens the northward flow of warm air into Uruguay. Our results suggest that changes in El Nino evolution after 1976 may have played a role in altering the relationship between temperature extreme events in Uruguay and the atmospheric circulation. (orig.)

  9. Associating emergency room visits with first and prolonged extreme temperature event in Taiwan: A population-based cohort study. (United States)

    Wang, Yu-Chun; Lin, Yu-Kai; Chuang, Chun-Yu; Li, Ming-Hsu; Chou, Chang-Hung; Liao, Chun-Hui; Sung, Fung-Chang


    The present study evaluated emergency room visit (ERV) risks for all causes and cardiopulmonary diseases associated with temperature and long-lasting extreme temperatures from 2000 to 2009 in four major cities in Taiwan. The city-specific daily average temperatures at the high 95th, 97th, and 99th percentiles, and the low 10th, 5th, and 1st percentiles were defined as extreme heat and cold. A distributed lag non-linear model was used to estimate the cumulative relative risk (RR) of ERV for morbidities associated with temperatures (0 to 3-day lags), extreme heat and cold lasting for 2 to 9 days or longer, and with the annual first extreme heat or cold event after controlling for covariates. Low temperatures were associated with slightly higher ERV risks than high temperatures for circulatory diseases. After accounting for 4-day cumulative temperature effect, the ERV risks for all causes and respiratory diseases were found to be associated with extreme cold at the 5th percentile lasting for >8 days and 1st percentile lasting for >3 days. The annual first extreme cold event of 5th percentile or lower temperatures was also significantly associated with ERV, with RRs ranging from 1.09 to 1.12 for all causes and from 1.15 to 1.26 for respiratory diseases. The annual first extreme heat event of 99th percentile temperature was associated with higher ERV for all causes and circulatory diseases. Annual first extreme temperature event and intensified prolonged extreme cold events are associated with increased ERVs in Taiwan.

  10. Analysis of extreme events

    CSIR Research Space (South Africa)

    Khuluse, S


    Full Text Available ) determination of the distribution of the damage and (iii) preparation of products that enable prediction of future risk events. The methodology provided by extreme value theory can also be a powerful tool in risk analysis...

  11. Short-term cropland responses to temperature extreme events during late winter

    Directory of Open Access Journals (Sweden)

    G. De Simon


    Full Text Available In recent years, several studies have focused on terrestrial ecosystem response to extreme events. Most of this research has been conducted in natural ecosystems, but few have considered agro-ecosystems. In this study, we investigated the impact of a manipulated warmer or cooler late winter-early spring on the carbon budget and final harvest of a soybean crop (Glycine max (L. Merr.. Soil temperature was altered by manipulating soil albedo by covering the soil surface with a layer of inert silica gravel. We tested three treatments: cooling (Co, warming (W, mix (M and control (C. An automated system continuously measured soil heterotrophic respiration (Rh, soil temperature profiles, and soil water content across the entire year in each plot. Phenological phases were periodically assessed and final harvest was measured in each plot. Results showed that treatments had only a transient effect on daily Rh rates which did not result in a total annual carbon budget significantly different from control, even though cooling showed a significant reduction in final harvest. We also observed anticipation in seed germination in both W and M treatments and a delay in germination for Co. Moreover, plant density and growth increased in W and M and decreased in Co.

  12. Evolution of extreme temperature events in short term climate projection for Iberian Peninsula. (United States)

    Rodriguez, Alfredo; Tarquis, Ana M.; Sanchez, Enrique; Dosio, Alessandro; Ruiz-Ramos, Margarita


    Extreme events of maximum and minimum temperatures are a main hazard for agricultural production in Iberian Peninsula. For this purpose, in this study we analyze projections of their evolution that could be valid for the next decade, represented in this study by the 30-year period 2004-2034 (target period). For this purpose two kinds of data were used in this study: 1) observations from the station network of AEMET (Spanish National Meteorological Agency) for five Spanish locations, and 2) simulated data at a resolution of 50 ×50 km horizontal grid derived from the outputs of twelve Regional Climate Models (RCMs) taken from project ENSEMBLES (van der Linden and Mitchell, 2009), with a bias correction (Dosio and Paruolo, 2011; Dosio et al., 2012) regarding the observational dataset Spain02 (Herrera et al., 2012). To validate the simulated climate, the available period of observations was compared to a baseline period (1964-1994) of simulated climate for all locations. Then, to analyze the changes for the present/very next future, probability of extreme temperature events for 2004-2034 were compared to that of the baseline period. Although only minor changes are expected, small variations in variability may have a significant impact in crop performance. The objective of the work is to evaluate the utility of these short term projections for potential users, as for instance insurance companies. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116,D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research,Volume 117, D17, doi: 0.1029/2012JD017968 Herrera et. al. (2012) Development and Analysis of a 50 year high

  13. Effects of temperature and copper pollution on soil community--extreme temperature events can lead to community extinction. (United States)

    Menezes-Oliveira, Vanessa B; Scott-Fordsmand, Janeck J; Soares, Amadeu M V M; Amorim, Monica J B


    Global warming affects ecosystems and species' diversity. The physiology of individual species is highly influenced by changes in temperature. The effects on species communities are less studied; they are virtually unknown when combining effects of pollution and temperature. To assess the effects of temperature and pollution in the soil community, a 2-factorial soil mesocosms multispecies experiment was performed. Three exposure periods (28 d, 61 d, and 84 d) and 4 temperatures (19 °C, 23 °C, 26 °C, and 29 °C) were tested, resembling the mean annual values for southern Europe countries and extreme events. The soil used was from a field site, clean, or spiked with Cu (100 mg Cu/kg). Results showed clear differences between 29 °C treatment and all other temperature treatments, with a decrease in overall abundance of organisms, further potentiated by the increase in exposure time. Folsomia candida was the most abundant species and Enchytraeus crypticus was the most sensitive to Cu toxicity. Differences in species optimum temperatures were adequately covered: 19 °C for Hypoaspis aculeifer or 26 °C for E. crypticus. The temperature effects were more pronounced the longer the exposure time. Feeding activity decreased with higher temperature and exposure time, following the decrease in invertebrate abundance, whereas for the same conditions the organic matter turnover increased. Hence, negative impacts on ecosystem services because of temperature increase can be expected by changes on soil function and as consequence of biodiversity loss. © 2013 SETAC.

  14. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants

    Directory of Open Access Journals (Sweden)

    Urs eFeller


    Full Text Available Climate models predict more frequent and more severe extreme events (e.g. heat waves, extended drought periods, flooding in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase - a key enzyme in keeping the Calvin cycle functional – is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g. dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g. anticipated, accelerated or delayed senescence are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

  15. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960-2013 under global warming (United States)

    Sun, Wenyi; Mu, Xingmin; Song, Xiaoyan; Wu, Dan; Cheng, Aifang; Qiu, Bing


    In recent decades, extreme climatic events have been a major issue worldwide. Regional assessments on various climates and geographic regions are needed for understanding uncertainties in extreme events' responses to global warming. The objective of this study was to assess the annual and decadal trends in 12 extreme temperature and 10 extreme precipitation indices in terms of intensity, frequency, and duration over the Loess Plateau during 1960-2013. The results indicated that the regionally averaged trends in temperature extremes were consistent with global warming. The occurrence of warm extremes, including summer days (SU), tropical nights (TR), warm days (TX90), and nights (TN90) and a warm spell duration indicator (WSDI), increased by 2.76 (P spell duration indicator (CSDI) exhibited decreases of - 3.22 (P wet-day and extremely wet-day precipitation were not significant. Large-scale atmospheric circulation indices, such as the Western Pacific Subtropical High Intensity Index (WPSHII) and Arctic Oscillation (AO), strongly influences warm/cold extremes and contributes significantly to climate changes in the Loess Plateau. The enhanced geopotential height over the Eurasian continent and increase in water vapor divergence in the rainy season have contributed to the changes of the rapid warming and consecutive drying in the Loess Plateau.

  16. Simulations of The Extreme Precipitation Event Enhanced by Sea Surface Temperature Anomaly over the Black Sea (United States)

    Hakan Doǧan, Onur; Önol, Barış


    Istanbul Technical University, Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul, Turkey In this study, we examined the extreme precipitation case over the Eastern Black Sea region of Turkey by using regional climate model, RegCM4. The flood caused by excessive rain in August 26, 2010 killed 12 people and the landslides in Rize province have damaged many buildings. The station based two days total precipitation exceeds 200 mm. One of the usual suspects for this extreme event is positive anomaly of sea surface temperature (SST) over the Black Sea where the significant warming trend is clear in the last three decades. In August 2010, the monthly mean SST is higher than 3 °C with respect to the period of 1981-2010. We designed three sensitivity simulations with RegCM4 to define the effects of the Black Sea as a moisture source. The simulation domain with 10-km horizontal resolution covers all the countries bordering the Black Sea and simulation period is defined for entire August 2010. It is also noted that the spatial variability of the precipitation produced by the reference simulation (Sim-0) is consistent with the TRMM data. In terms of analysis of the sensitivity to SST, we forced the simulations by subtracting 1 °C (Sim-1), 2 °C (Sim-2) and 3 °C (Sim-3) from the ERA-Interim 6-hourly SST data (considering only the Black Sea). The sensitivity simulations indicate that daily total precipitation for all these simulations gradually decreased based on the reference simulation (Sim-0). 3-hourly maximum precipitation rates for Sim-0, Sim-1, Sim-2 and Sim-3 are 32, 25, 13 and 10.5 mm respectively over the hotspot region. Despite the fact that the simulations signal points out the same direction, degradation of the precipitation intensity does not indicate the same magnitude for all simulations. It is revealed that 2 °C (Sim-2) threshold is critical for SST sensitivity. We also calculated the humidity differences from the simulation and these

  17. Extreme maximum temperature events and their relationships with large-scale modes: potential hazard on the Iberian Peninsula (United States)

    Merino, Andrés; Martín, M. L.; Fernández-González, S.; Sánchez, J. L.; Valero, F.


    The aim of this paper is to analyze spatiotemporal distribution of maximum temperatures in the Iberian Peninsula (IP) by using various extreme maximum temperature indices. Thresholds for determining temperature extreme event (TEE) severity are defined using 99th percentiles of daily temperature time series for the period 1948 to 2009. The synoptic-scale fields of such events were analyzed in order to better understand the related atmospheric processes. The results indicate that the regions with a higher risk of maximum temperatures are located in the river valleys of southwest and northeast of the IP, while the Cantabrian coast and mountain ranges are characterized by lower risk. The TEEs were classified, by means of several synoptic fields (sea level pressure, temperature, and geopotential height at 850 and 500 hPa), in four clusters that largely explain their spatiotemporal distribution on the IP. The results of this study show that TEEs mainly occur associated with a ridge elongated from Subtropical areas. The relationships of TEEs with teleconnection patterns, such as the North Atlantic Oscillation (NAO), Western Mediterranean Oscillation (WeMO), and Mediterranean Oscillation (MO), showed that the interannual variability of extreme maximum temperatures is largely controlled by the dominant phase of WeMO in all seasons except wintertime where NAO is prevailing. Results related to MO pattern show less relevance in the maximum temperatures variability. The correct identification of synoptic patterns linked with the most extreme temperature event associated with each cluster will assist the prediction of events that can pose a natural hazard, thereby providing useful information for decision making and warning systems.

  18. Solar extreme events

    CERN Document Server

    Hudson, Hugh S


    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of "extreme events," defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than $S^{-2}$, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial $^{14}$C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observation...


    Directory of Open Access Journals (Sweden)



    Full Text Available Recent summer heat waves (2003, 2010 had a strong socio-economic impact in different parts of the continent by means of crop shortfalls and forest fires. Sustained hot days became more frequent in the recent decades in many European regions, affecting human health and leading to additional deaths. This signal has been outlined in many studies conducted in Romania, suggesting that the southern region of Romania is particularly subject to large temperature increase. This work investigates the changing annual and seasonal heat waves at regional scale of the Romanian Plain, over period 1961-2014. Daily maximum temperature recorded at six weather stations available from the ECA&D project (European Climate Assessment and Datasets were analyzed. The changes in the seasonal frequency, duration and intensity of heat waves were studied using the Mann-Kendall nonparametric trend test, as recommended by the scientific expert team on climate change detection. The likelyhood of higher maximum temperatures rise, particularly after the mid 1980s, and the changes in the upper tail of the probability density functions of these temperatures, within the extreme domain (beyond the 95% percentile level, explain the persistence and intensity of heat waves. The upward trends are dominant most of the year, and many of the calculated decadal slopes were found statistically significant (relative to the 5% level, proving an ongoing and strong warming all over the region. Our findings are in good agreement with several recent studies carried out at European and national scale and pledge for further scientific analyses i.e. heat stress impact on public health and agriculture.

  20. Assessing Extreme Events for Anthropogenic Influence: Examples of Recent Cases for Australian Temperatures, U.S. Precipitation, and Hurricane Sandy (United States)

    Knutson, T. R.; Zeng, F. J.; Wittenberg, A. T.; Duffy, P.; Arnold, J. R.; Massey, C.; Wehner, M. F.; Stone, D. A.; Bender, M.; Morin, M.


    The degree to which particular extreme weather and climate events are assessed as being attributable to anthropogenic climate change (e.g., that anthropogenic forcing influenced their probability of occurrence or other characteristics) can vary dramatically from case to case. One example assessed at GFDL is the record or near-record annual mean temperature over a large region of Australia in 2013. According to this analysis of the CMIP5 models, the event was largely attributable to anthropogenic forcing of the climate system. Another 2013 case was the extreme positive annual mean precipitation anomalies in 5x5 degree gridded (GHCN) precipitation data that were observed along the U.S./Canadian border region. This is a region with a detectable long-term increase of precipitation since 1900. Nonetheless, the 2013 event is assessed as primarily attributable to internal (unforced) climate variability and only partly attributable to external forcing (natural and anthropogenic combined). There are many outstanding challenges to these studies. Among these are the limitations to historical data length, data quality, model ensemble size, and model control run length. Furthermore, there is room for improvement in addressing model biases, station/gridcell scale mismatches, modeling the extreme ends of the distributions e.g. with Generalized Extreme Value methods, etc. Another project assesses anthropogenic influences on the track and evolution (but not the likelihood) of Sandy-like storms. Assuming the existence of a Sandy-like storm under non-industrial conditions, we use CMIP5 model simulations, a global atmospheric model time slice experiment, and regional hurricane model idealized simulations to suggest that the unusual left turn the storm took may have been made more likely by anthropogenic climate forcing. This does not imply that Sandy-like events are less likely in the non-industrial climate, because we assumed the existence of such a storm to begin with.

  1. Effect of extreme sea surface temperature events on the demography of an age-structured albatross population. (United States)

    Pardo, Deborah; Jenouvrier, Stéphanie; Weimerskirch, Henri; Barbraud, Christophe


    Climate changes include concurrent changes in environmental mean, variance and extremes, and it is challenging to understand their respective impact on wild populations, especially when contrasted age-dependent responses to climate occur. We assessed how changes in mean and standard deviation of sea surface temperature (SST), frequency and magnitude of warm SST extreme climatic events (ECE) influenced the stochastic population growth rate log(λs) and age structure of a black-browed albatross population. For changes in SST around historical levels observed since 1982, changes in standard deviation had a larger (threefold) and negative impact on log(λs) compared to changes in mean. By contrast, the mean had a positive impact on log(λs). The historical SST mean was lower than the optimal SST value for which log(λs) was maximized. Thus, a larger environmental mean increased the occurrence of SST close to this optimum that buffered the negative effect of ECE. This 'climate safety margin' (i.e. difference between optimal and historical climatic conditions) and the specific shape of the population growth rate response to climate for a species determine how ECE affect the population. For a wider range in SST, both the mean and standard deviation had negative impact on log(λs), with changes in the mean having a greater effect than the standard deviation. Furthermore, around SST historical levels increases in either mean or standard deviation of the SST distribution led to a younger population, with potentially important conservation implications for black-browed albatrosses.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  2. Extreme Energy Events Monitoring report

    CERN Document Server

    Baimukhamedova, Nigina


    Following paper reflects the progress I made on Summer Student Program within Extreme Energy Events Monitor project I was working on. During 8 week period I managed to build a simple detector system that is capable of triggering events similar to explosions (sudden change in sound levels) and measuring approximate location of the event. Source codes are available upon request and settings described further.

  3. Understanding of extreme temperature events by environmental health stakeholders in South Africa

    CSIR Research Space (South Africa)

    John, J


    Full Text Available -level Likert scale, 60 ranking responses from strongly agree, agree, neither agree nor disagree, disagree to strongly disagree. Table 1 61 gives an overview of the types of questions and key variables, including the explored traits related to the 62... impacts not projected to be problem into the future1 Knowing likelihood of above average temperatures occurring 1 wk-3 months ahead would aid to plan for preventing negative health impacts. Binary (yes/no) Likert scale Current use of heat...

  4. The Dynamic Response of Marine Life to Extreme Temperature and Low Oxygen Events Following the End-Permian Mass Extinction. (United States)

    Pietsch, C.; Bottjer, D. J.


    The end-Permian mass extinction was the most devastating taxonomic and ecological crisis in the history of life on Earth. The recovery lasted 5 My making it the longest in geologic history, although the cause of the delay is still heavily debated. We find that additional environmental changes during the recovery interval reset the attempts that marine communities made toward ecological complexity, resulting in the overall appearance of a stagnant recovery. The extinction mechanisms during the end-Permian include extreme temperature change and low oxygen environments resulting from the volcanic emission of carbon dioxide and other toxic gasses to the atmosphere. The biotic response to ancient environmental change is a direct analog for the ecological impacts of modern anthropogenic climate change. We applied an ecological recovery rubric to benthic, sea floor dwelling, communities throughout the Early Triassic recovery in two major ocean basins. Newly collected bulk fossil data from the Moenkopi and Thaynes Formations from the Southwest US and the Werfen Formation in Italy were analyzed along with literature data. In Italy, directly following the extinction, low oxygen environments prevented an ecological rebound. Once low oxygen conditions receded, 600 kyr after the extinction, taxonomic diversity, fossil body size, and trace fossil complexity rebounded. A little more than 1 My into the Early Triassic, an extreme temperature event resulted in a reset of community complexity in both Italy and the Southwest US. The body size of gastropods and the repopulation of echinoderms were significantly inhibited as was trace fossil complexity. Low oxygen conditions that developed in the last ~2My of the Early Triassic limited diversity and body size in the Southwest United States. The stagnant recovery is re-interpreted as dynamic resets and rapid rebounds driven by environmental perturbations throughout the Early Triassic.

  5. The Influence of green areas and roof albedos on air temperatures during Extreme Heat Events in Berlin, Germany

    Directory of Open Access Journals (Sweden)

    Sebastian Schubert


    Full Text Available The mesoscale atmospheric model COSMO-CLM (CCLM with the Double Canyon Effect Parametrization Scheme (DCEP is applied to investigate possible adaption measures to extreme heat events (EHEs for the city of Berlin, Germany. The emphasis is on the effects of a modified urban vegetation cover and roof albedo on near-surface air temperatures. Five EHEs with a duration of 5 days or more are identified for the period 2000 to 2009. A reference simulation is carried out for each EHE with current vegetation cover, roof albedo and urban canopy parameters (UCPs, and is evaluated with temperature observations from weather stations in Berlin and its surroundings. The derivation of the UCPs from an impervious surface map and a 3-D building data set is detailed. Characteristics of the simulated urban heat island for each EHE are analysed in terms of these UCPs. In addition, six sensitivity runs are examined with a modified vegetation cover of each urban grid cell by -25%, 5% and 15%, with a roof albedo increased to 0.40 and 0.65, and with a combination of the largest vegetation cover and roof albedo, respectively. At the weather stations' grid cells, the results show a maximum of the average diurnal change in air temperature during each EHE of 0.82 K and -0.48 K for the -25% and 15% vegetation covers, -0.50 K for the roof albedos of 0.65, and -0.63 K for the combined vegetation and albedo case. The largest effects on the air temperature are detected during midday.

  6. Cropland responses to extreme winter temperature events: results from a manipulation experiment in north-eastern Italy (United States)

    De Simon, G.; Alberti, G.; Delle Vedove, G.; Peressotti, A.; Zaldei, A.; Miglietta, F.


    In the last years, several studies has focused on terrestrial ecosystem response to climate warming. Most of them have been conducted on natural ecosystems (forests or grasslands), but few have considered intensively managed ecosystems such as croplands despite of their global extension. In particular, extreme events, such as temperature changes outside the growing season (winter) when soil is not covered by plants, can have a strong impact on soil respiration, residues decomposition, yield and overall net biome production (NBP). In this study, we investigated the response of soil respiration (total and heterotrophic), aboveground NPP, yield and NBP on a soybean crop (Glycine max (L.) Merr.) due to a manipulated warmer or cooler winter. The experiment was carried out in Beano (46°00' N 13°01'E, Italy). Soil albedo and soil temperature were manipulated by covering soil surface during late winter with a layer of inert ceramized silica gravel. We tested three treatments with three replicates each: cooling (Co; white gravel), warming (W; black gravel), mix (M; black and white 4:1 gravel) and control (C; bare soil). An automated soil respiration system measured continuously total soil CO2 efflux across all the year and heterotrophic respiration after sowing in root exclusion subplots. Additionally, soil temperature profiles (0, 2.5, 5 and 10 cm depth), soil water content (between 5 and 10 cm depth) were monitored in each plot. After sowing, soybean phenological phases were periodically assessed and final yield was measured in each plot. Results showed a significant change in upper soil temperature between gravel application and canopy closure (maximum of + 5.8 °C and - 6.8 °C in the warming and cooling treatments, respectively). However, warming had only a transient effect on soil respiration (increase) before sowing. Thereafter, as soon as fresh organic matter availability decreased, soil respiration rate decreased and annual budget was not significantly different

  7. Extreme Weather Events and Climate Change Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Katherine [National Academy of Sciences, Washington, DC (United States)


    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  8. Overview of the biology of extreme events (United States)

    Gutschick, V. P.; Bassirirad, H.


    Extreme events have, variously, meteorological origins as in heat waves or precipitation extremes, or biological origins as in pest and disease eruptions (or tectonic, earth-orbital, or impact-body origins). Despite growing recognition that these events are changing in frequency and intensity, a universal model of ecological responses to these events is slow to emerge. Extreme events, negative and positive, contrast with normal events in terms of their effects on the physiology, ecology, and evolution of organisms, hence also on water, carbon, and nutrient cycles. They structure biogeographic ranges and biomes, almost surely more than mean values often used to define biogeography. They are challenging to study for obvious reasons of field-readiness but also because they are defined by sequences of driving variables such as temperature, not point events. As sequences, their statistics (return times, for example) are challenging to develop, as also from the involvement of multiple environmental variables. These statistics are not captured well by climate models. They are expected to change with climate and land-use change but our predictive capacity is currently limited. A number of tools for description and analysis of extreme events are available, if not widely applied to date. Extremes for organisms are defined by their fitness effects on those organisms, and are specific to genotypes, making them major agents of natural selection. There is evidence that effects of extreme events may be concentrated in an extended recovery phase. We review selected events covering ranges of time and magnitude, from Snowball Earth to leaf functional loss in weather events. A number of events, such as the 2003 European heat wave, evidence effects on water and carbon cycles over large regions. Rising CO2 is the recent extreme of note, for its climatic effects and consequences for growing seasons, transpiration, etc., but also directly in its action as a substrate of photosynthesis

  9. On causality of extreme events

    CERN Document Server

    Zanin, Massimiliano


    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect both linear and non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task.

  10. On causality of extreme events

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin


    Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.

  11. On causality of extreme events (United States)


    Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available. PMID:27330866

  12. Interpretation of Extreme Scattering Events

    CERN Document Server

    Walker, M A


    Extreme Scattering Events are sometimes manifest in the light-curves of compact radio-quasars at frequencies of a few GHz. These events are not understood. The model which appears to offer the best explanation requires a new population of AU-sized, neutral gas clouds; these clouds would then make up a large fraction of the Galaxy's dark matter. Independent of the question of which theoretical model is correct, if we extrapolate the observed behaviour to low radio-frequencies, we expect that the sky should be criss-crossed by a network of narrow caustics, at frequencies below about 700 MHz. Consequently at these frequencies sources should typically manifest additional, faint images which are substantially delayed with respect to the primary image. Although some examples of this type of behaviour are already known, it is expected that these are just the tip of the iceberg, with strong selection biases having been imposed by the instrumentation employed to date.

  13. Biological Extreme Events - Past, Present, and Future (United States)

    Gutschick, V. P.


    Biological extreme events span wide ranges temporally and spatially and in type - population dieoffs, extinctions, ecological reorganizations, changes in biogeochemical fluxes, and more. Driving variables consist in meteorology, tectonics, orbital changes, anthropogenic changes (land-use change, species introductions, reactive N injection into the biosphere), and evolution (esp. of diseases). However, the mapping of extremes in the drivers onto biological extremes as organismal responses is complex, as laid out originally in the theoretical framework of Gutschick and BassiriRad (New Phytologist [2003] 100:21-42). Responses are nonlinear and dependent on (mostly unknown and) complex temporal sequences - often of multiple environmental variables. The responses are species- and genotype specific. I review extreme events over from past to present over wide temporal scales, while noting that they are not wholly informative of responses to the current and near-future drivers for at least two reasons: 1) the current combination of numerous environmental extremes - changes in CO2, temperature, precipitation, reactive N, land fragmentation, O3, etc. -is unprecedented in scope, and 2) adaptive genetic variation for organismal responses is constrained by poorly-characterized genetic structures (in organisms and populations) and by loss of genetic variation by genetic drift over long periods. We may expect radical reorganizations of ecosystem and biogeochemical functions. These changes include many ecosystem services in flood control, crop pollination and insect/disease control, C-water-mineral cycling, and more, as well as direct effects on human health. Predictions of such changes will necessarily be very weak in the critical next few decades, given the great deal of observation, experimentation, and theory construction that will be necessary, on both organisms and drivers. To make the research efforts most effective will require extensive, insightful planning, beginning

  14. Future changes in extreme temperature events using the statistical downscaling model (SDSM in the trans-boundary region of the Jhelum river basin

    Directory of Open Access Journals (Sweden)

    Rashid Mahmood


    On the whole in the Jhelum basin, the intensity and frequency of warm temperature extremes are likely to be higher and the intensity and frequency of cold temperature extremes to be lower in the future.

  15. Characteristics of the Extreme Low Temperature Events in Winter Half Year in China and Its Relationship to East Asian Winter Monsoon (United States)

    Han, Yongqiu; Zhou, Lian-Tong


    Based on daily minimum temperature dataset from 553 stations from 1961 to 2012 in China, extreme low temperature (ELT) thresholds are determined for different stations and occurrence frequency of ELT events in winter half year for each station is estimated and analyzed. And then several partitions in China are divided by empirical orthogonal function and it is verified to be credible by correlation analysis. Meanwhile, the spatial and temporal distribution of ELT events in each sub-region is diagnosed. Finally, the relationship between ELT events and East Asian winter monsoon (EAWM) circulation is studied by doing some correlation analysis. The results suggest that: the ELT events in winter half year in China are remarkably decreased in recent 51 years, but there are some differences between southern and northern areas. From 1964 to 1980, the ELT events in northeast, north and northwest of China are more than average and that are less than average in south, east and southwest of China, while it is just the reverse from 1981 to 1996. Moreover, the distribution of ELT events also shows a longitudinal oscillation. The correlation analysis between the frequency of ELT events in winter half year and EAWM index indicates that the two has good correlation with each other. And meanwhile, the correlation analysis between the frequency of ELT events in winter half year and sea level pressure shows that the former has a good positive correlation with Siberian High. Besides, the distribution of the difference between two period mean sea level pressure, from 1961 to 1979 and from 1980 to 2011, shows that Siberian High has an obviously southwardly movement and a trend of weakening after 1980, which go against the outbreak of the cold, that is why the ELT events in winter half year in most areas of China have an abrupt decrease.

  16. Extreme Events in Nature and Society

    CERN Document Server

    Albeverio, Sergio; Kantz, Holger


    Significant, and usually unwelcome, surprises, such as floods, financial crisis, epileptic seizures, or material rupture, are the topics of Extreme Events in Nature and Society. The book, authored by foremost experts in these fields, reveals unifying and distinguishing features of extreme events, including problems of understanding and modelling their origin, spatial and temporal extension, and potential impact. The chapters converge towards the difficult problem of anticipation: forecasting the event and proposing measures to moderate or prevent it. Extreme Events in Nature and Society will interest not only specialists, but also the general reader eager to learn how the multifaceted field of extreme events can be viewed as a coherent whole.

  17. Detecting Extreme Events in Gridded Climate Data

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, Bharathkumar [North Carolina State University (NCSU), Raleigh; Gadiraju, Krishna [North Carolina State University (NCSU), Raleigh; Vatsavai, Raju [North Carolina State University (NCSU), Raleigh; Kaiser, Dale Patrick [ORNL; Karnowski, Thomas Paul [ORNL


    Detecting and tracking extreme events in gridded climatological data is a challenging problem on several fronts: algorithms, scalability, and I/O. Successful detection of these events will give climate scientists an alternate view of the behavior of different climatological variables, leading to enhanced scientific understanding of the impacts of events such as heat and cold waves, and on a larger scale, the El Nin o Southern Oscillation. Recent advances in computing power and research in data sciences enabled us to look at this problem with a different perspective from what was previously possible. In this paper we present our computationally efficient algorithms for anomalous cluster detection on climate change big data. We provide results on detection and tracking of surface temperature and geopotential height anomalies, a trend analysis, and a study of relationships between the variables. We also identify the limitations of our approaches, future directions for research and alternate approaches.

  18. Extreme weather events and infectious disease outbreaks


    McMichael, Anthony J.


    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental c...

  19. Extreme weather events and infectious disease outbreaks. (United States)

    McMichael, Anthony J


    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  20. Characteristics of Extreme Auroral Charging Events (United States)

    Minow, Joseph I.; Willis, Emily; Parker, Linda Neergaard


    Today’s presentation describes preliminary results from a study of extreme auroral charging in low Earth orbit. Goal of study is to document characteristics of auroral charging events of importance to spacecraft design, operations, and anomaly investigations.

  1. A 414-year tree-ring-based April-July minimum temperature reconstruction and its implications for the extreme climate events, northeast China (United States)

    Lyu, Shanna; Li, Zongshan; Zhang, Yuandong; Wang, Xiaochun


    A ring-width series was used as a proxy to reconstruct the past 414-year record of April-July minimum temperature at Laobai Mountain, northeast China. The chronology was built using standard tree-ring procedures for providing comparable information in this area while preserving low-frequency signals. By analyzing the relationship between the tree-ring chronology of Korean pine (Pinus koraiensis) and meteorological data, we found that the standard chronology was significantly correlated with the April-July minimum temperature (r = 0.757, p century were consistent with the Little Ice Age (LIA) in the Northern Hemisphere, and the rate of warming in the 19th century was significantly slower than that in the late 20th century. In addition, the reconstructed series was fairly consistent with the historical and natural disaster records of extreme climate events (e.g., cold damage and frost disaster) in this area. This temperature record provides new evidence of past climate variability, and can be used to predict the climate trend in the future in northeast China.

  2. Extreme events monitoring from space (United States)

    Kerr, Yann; Bitar, Ahmad Al; Mahmoodi, Ali; Richaume, Philippe; Al-Yaari, Amen; Wigneron, Jean-Pierre


    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3), vegetation water content over land, and ocean salinity. These geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches, and in particular in improving model forecasts. The Soil Moisture and Ocean Salinity mission has now been collecting data for 6 years. The whole data set has just been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS). After 6 years it seems important to start using data for having a look at anomalies and see how they can relate to large scale events The purpose of this communication is to present the mission results after more than six years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously, vegetation water content, but also dielectric constant, are carrying a wealth

  3. SMOS data and extreme events (United States)

    Kerr, Yann; Wigneron, Jean-Pierre; Ferrazzoli, Paolo; Mahmoodi, Ali; Al-Yaari, Amen; Parrens, Marie; Bitar, Ahmad Al; Rodriguez-Fernandez, Nemesio; Bircher, Simone; Molero-rodenas, Beatriz; Drusch, Matthias; Mecklenburg, Susanne


    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3), vegetation water content over land, and ocean salinity. These geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches, and in particular in improving model forecasts. The Soil Moisture and Ocean Salinity mission has now been collecting data for over 7 years. The whole data set has been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS) while operational near real time soil moisture data is now available and assimilation of SMOS data in NWP has proved successful. After 7 years it seems important to start using data for having a look at anomalies and see how they can relate to large scale events. We have also produced a 15 year soil moisture data set by merging SMOS and AMSR using a neural network approach. The purpose of this communication is to present the mission results after more than seven years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets

  4. Measuring the effects of extreme weather events on yields

    Directory of Open Access Journals (Sweden)

    J.P. Powell


    Full Text Available Extreme weather events are expected to increase worldwide, therefore, anticipating and calculating their effects on crop yields is important for topics ranging from food security to the economic viability of biomass products. Given the local nature of weather, particularly precipitation, effects are best measured at a local level. This paper analyzes weather events at the level of the farm for a specific crop, winter wheat. Once it has been established that extreme events are expected to continue occurring at historically high levels for farming locations throughout the Netherlands, the effects of those events on wheat yields are estimated while controlling for the other major input factors affecting yields. Econometric techniques are applied to an unbalanced panel data set of 334 farms for a period of up to 12 years. Analyzes show that the number of days with extreme high temperatures in Dutch wheat growing regions has significantly increased since the early 1900s, while the number of extreme low temperature events has fallen over that same period. The effects of weather events on wheat yields were found to be time specific in that the week in which an event occurred determined its effect on yields. High temperature events and precipitation events were found to significantly decrease yields.

  5. Probability distribution analysis of observational extreme events and model evaluation (United States)

    Yu, Q.; Lau, A. K. H.; Fung, J. C. H.; Tsang, K. T.


    Earth's surface temperatures were the warmest in 2015 since modern record-keeping began in 1880, according to the latest study. In contrast, a cold weather occurred in many regions of China in January 2016, and brought the first snowfall to Guangzhou, the capital city of Guangdong province in 67 years. To understand the changes of extreme weather events as well as project its future scenarios, this study use statistical models to analyze on multiple climate data. We first use Granger-causality test to identify the attribution of global mean temperature rise and extreme temperature events with CO2 concentration. The four statistical moments (mean, variance, skewness, kurtosis) of daily maximum temperature distribution is investigated on global climate observational, reanalysis (1961-2010) and model data (1961-2100). Furthermore, we introduce a new tail index based on the four moments, which is a more robust index to measure extreme temperatures. Our results show that the CO2 concentration can provide information to the time series of mean and extreme temperature, but not vice versa. Based on our new tail index, we find that other than mean and variance, skewness is an important indicator should be considered to estimate extreme temperature changes and model evaluation. Among the 12 climate model data we investigate, the fourth version of Community Climate System Model (CCSM4) from National Center for Atmospheric Research performs well on the new index we introduce, which indicate the model have a substantial capability to project the future changes of extreme temperature in the 21st century. The method also shows its ability to measure extreme precipitation/ drought events. In the future we will introduce a new diagram to systematically evaluate the performance of the four statistical moments in climate model output, moreover, the human and economic impacts of extreme weather events will also be conducted.

  6. Predictability of extreme events in social media

    CERN Document Server

    Miotto, José M


    It is part of our daily social-media experience that seemingly ordinary items (videos, news, publications, etc.) unexpectedly gain an enormous amount of attention. Here we investigate how unexpected these events are. We propose a method that, given some information on the items, quantifies the predictability of events, i.e., the potential of identifying in advance the most successful items defined as the upper bound for the quality of any prediction based on the same information. Applying this method to different data, ranging from views in YouTube videos to posts in Usenet discussion groups, we invariantly find that the predictability increases for the most extreme events. This indicates that, despite the inherently stochastic collective dynamics of users, efficient prediction is possible for the most extreme events.

  7. A Fourier analysis of extreme events

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Zhao, Yuwei


    The extremogram is an asymptotic correlogram for extreme events constructed from a regularly varying stationary sequence. In this paper, we define a frequency domain analog of the correlogram: a periodogram generated from a suitable sequence of indicator functions of rare events. We derive basic ...... properties of the periodogram such as the asymptotic independence at the Fourier frequencies and use this property to show that weighted versions of the periodogram are consistent estimators of a spectral density derived from the extremogram....

  8. Public perceptions of climate change and extreme weather events (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.


    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  9. On Extreme Events in Banking and Finance

    NARCIS (Netherlands)

    M.R.C. Oordt (Maarten)


    textabstractUncertainty and new developments spread at an astonishing speed across the globe in financial markets. The recent extreme events in banking and finance triggered many new questions among academics, policy makers and the general public. Is global diversification at financial institutions

  10. The Extreme Climate Index: a novel and multi-hazard index for extreme weather events. (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro


    suitable threshold above which the events can be held as extremes. In this presentation, after describing the methodology we used for the construction of the ECI, we present results obtained on different African regions, using NCEP Reanalysis dataset for air temperature at sig995 level and CHIRP dataset for precipitations. Particular attention will be devoted to 2015/2016 Malawi drought, which received some media attention due to the failure of the risk assessment model used to trigger due payouts: it will be shown how, on the contrary, combination of hydrological and temperature data used in ECI succeed in evaluating the extremeness of this event.

  11. Extreme inflow events and synoptic forcing in Sydney catchments

    Energy Technology Data Exchange (ETDEWEB)

    Pepler, Acacia S; Rakich, Clinton S, E-mail: [NSW Climate Services Section, Bureau of Meteorology PO Box 413, Darlinghurst, NSW 1300 (Australia)


    The Sydney catchment region encompasses over 16,000km{sup 2}, supplying water to over 4 million inhabitants. However, few studies have investigated the synoptic and climatic influences on inflow in this region, which are crucial for understanding the vulnerability of water supply in a changing climate. This study identifies extremely high and low inflow events between 1960 and 2008 based on catchment averages. The focus of the study is an analysis of the synoptic cause/s of each extreme inflow event. The events are evaluated to identify any trends and also to determine the concurrent significant climatic influences on rainfall over the catchments. Relationships between catchment inflow, rainfall, tropical SST indices, and other influencing factors such as observed wind and temperatures are investigated. Our results show that East Coast Lows and anomalously easterly flow are the drivers of high inflow events, with low inflow events dominated by westerly wind patterns and the El Nino-Southern Oscillation.

  12. Energy Infrastructure and Extreme Events (Invited) (United States)

    Wakimoto, R. M.


    The country's energy infrastructure is sensitive to the environment, especially extreme events. Increasing global temperatures, intense storms, and space weather have the potential to disrupt energy production and transport. It can also provide new opportunities as illustrated by the opening of the Northwest Passage. The following provides an overview of some of the high impacts of major geophysical events on energy production and transport. Future predictions of hurricanes suggest that we can expect fewer storms but they will be associated with stronger winds and more precipitation. The winds and storm surge accompanying hurricane landfall along the Gulf States has had a major impact on the coastal energy infrastructure and the oil/natural gas platforms. The impact of these surges will increase with predicted sea level rise. Hurricane Katrina caused damage to crude oil pipelines and refineries that reduced oil production by 19% for the year. The disruption that can occur is not necessarily linked with the maximum winds of the tropical storm as recently shown by Hurricane Sandy which was classified as a ';post-tropical cyclone' during landfall. Another intense circulation, the tornado, can also cause power outages and network breaks from high winds that can topple power poles or damage power lines from fallen trees. Fortunately, the Moore tornado, rated EF5, did not have a major impact on the oil and gas infrastructure in Oklahoma. The impact of earthquakes and tsunamis on energy was illustrated in Japan in 2011 with the shutdown of the Fukushima Daiichi plant. Other studies have suggested that there are areas in the United States where the energy services are highly vulnerable to major earthquakes that would disrupt electrical and gas networks for extended periods of time. Seismic upgrades to the energy infrastructure would help mitigate the impact. In 1859, a coronal mass ejection triggered a geomagnetic storm that disrupted communication wires around the world

  13. Climate change and extreme events in weather

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    monsoon and b) tropical cyclones. Basically the climate of India is domi- nated by the south west monsoon season which accounts for about 75% of the annual rainfall. The extreme weather events occur over India are: Floods, Droughts, Tropical Cyclones..., Heat Waves and Cold Waves, Storms Surges, Hail Storms, Thunderstorms, Dust Storms. Floods, droughts and tropical cyclones have specific significance a far as India is concerned. Floods and droughts are the two sides of the weather phenomena...

  14. Are extreme events (statistically) special? (Invited) (United States)

    Main, I. G.; Naylor, M.; Greenhough, J.; Touati, S.; Bell, A. F.; McCloskey, J.


    We address the generic problem of testing for scale-invariance in extreme events, i.e. are the biggest events in a population simply a scaled model of those of smaller size, or are they in some way different? Are large earthquakes for example ‘characteristic’, do they ‘know’ how big they will be before the event nucleates, or is the size of the event determined only in the avalanche-like process of rupture? In either case what are the implications for estimates of time-dependent seismic hazard? One way of testing for departures from scale invariance is to examine the frequency-size statistics, commonly used as a bench mark in a number of applications in Earth and Environmental sciences. Using frequency data however introduces a number of problems in data analysis. The inevitably small number of data points for extreme events and more generally the non-Gaussian statistical properties strongly affect the validity of prior assumptions about the nature of uncertainties in the data. The simple use of traditional least squares (still common in the literature) introduces an inherent bias to the best fit result. We show first that the sampled frequency in finite real and synthetic data sets (the latter based on the Epidemic-Type Aftershock Sequence model) converge to a central limit only very slowly due to temporal correlations in the data. A specific correction for temporal correlations enables an estimate of convergence properties to be mapped non-linearly on to a Gaussian one. Uncertainties closely follow a Poisson distribution of errors across the whole range of seismic moment for typical catalogue sizes. In this sense the confidence limits are scale-invariant. A systematic sample bias effect due to counting whole numbers in a finite catalogue makes a ‘characteristic’-looking type extreme event distribution a likely outcome of an underlying scale-invariant probability distribution. This highlights the tendency of ‘eyeball’ fits to unconsciously (but

  15. Extreme events in gross primary production: a characterization across continents

    Directory of Open Access Journals (Sweden)

    J. Zscheischler


    Full Text Available Climate extremes can affect the functioning of terrestrial ecosystems, for instance via a reduction of the photosynthetic capacity or alterations of respiratory processes. Yet the dominant regional and seasonal effects of hydrometeorological extremes are still not well documented. Here we quantify and characterize the role of large spatiotemporal extreme events in gross primary production (GPP as triggers of continental anomalies. We also investigate seasonal dynamics of extreme impacts on continental GPP anomalies. We find that the 50 largest positive (increase in uptake and negative extremes (decrease in uptake on each continent can explain most of the continental variation in GPP, which is in line with previous results obtained at the global scale. We show that negative extremes are larger than positive ones and demonstrate that this asymmetry is particularly strong in South America and Europe. Most extremes in GPP start in early summer. Our analysis indicates that the overall impacts and the spatial extents of GPP extremes are power law distributed with exponents that vary little across continents. Moreover, we show that on all continents and for all data sets the spatial extents play a more important role than durations or maximal GPP anomaly when it comes to the overall impact of GPP extremes. An analysis of possible causes implies that across continents most extremes in GPP can best be explained by water scarcity rather than by extreme temperatures. However, for Europe, South America and Oceania we identify also fire as an important driver. Our findings are consistent with remote sensing products. An independent validation against a literature survey on specific extreme events supports our results to a large extent.

  16. Extreme weather and climate events with ecological relevance: a review. (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A


    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  17. Extreme cyclone events in the Arctic: Wintertime variability and trends (United States)

    Rinke, A.; Maturilli, M.; Graham, R. M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S. R.; Moore, J. C.


    Typically 20-40 extreme cyclone events (sometimes called ‘weather bombs’) occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade over 1979-2015, according to 6 hourly station data from Ny-Ålesund. This increased frequency of extreme cyclones is consistent with observed significant winter warming, indicating that the meridional heat and moisture transport they bring is a factor in rising temperatures in the region. The winter trend in extreme cyclones is dominated by a positive monthly trend of about 3-4 events/decade in November-December, due mainly to an increasing persistence of extreme cyclone events. A negative trend in January opposes this, while there is no significant trend in February. We relate the regional patterns of the trend in extreme cyclones to anomalously low sea-ice conditions in recent years, together with associated large-scale atmospheric circulation changes such as ‘blockinglike’ circulation patterns (e.g. Scandinavian blocking in December and Ural blocking during January-February).

  18. Extreme temperatures in summer time. Health implications

    Directory of Open Access Journals (Sweden)

    Julio Díaz Jiménez


    Full Text Available The increment that has been detected in summer temperatures in the last years joined to the trends expected to climate for the next century provide an increase in frequency and intensity of the extreme climate events, basically in heat waves. The undoubted relationship between temperature and mortality makes necessary a quantifying in order to characterize the expected effects of temperature over mortality particularly in heat waves.This study show a state-of-the-art review this problem, with a special emphasis in the heat wave that Europe suffered in summer of 2003 and how the heat waves has been characterized until now. Lastly, which are the characteristics that should have the preventive measures designed to minimized the effects of heat waves over population ́s health.

  19. Forecasting extreme temperature health hazards in Europe (United States)

    Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L.


    Extreme hot temperatures, such as those experienced during a heat wave, represent a dangerous meteorological hazard to human health. Heat disorders such as sunstroke are harmful to people of all ages and responsible for excess mortality in the affected areas. In 2003 more than 50,000 people died in western and southern Europe because of a severe and sustained episode of summer heat [1]. Furthermore, according to the Intergovernmental Panel on Climate Change heat waves are expected to get more frequent in the future thus posing an increasing threat to human lives. Developing appropriate tools for extreme hot temperatures prediction is therefore mandatory to increase public preparedness and mitigate heat-induced impacts. A recent study has shown that forecasts of the Universal Thermal Climate Index (UTCI) provide a valid overview of extreme temperature health hazards on a global scale [2]. UTCI is a parameter related to the temperature of the human body and its regulatory responses to the surrounding atmospheric environment. UTCI is calculated using an advanced thermo-physiological model that includes the human heat budget, physiology and clothing. To forecast UTCI the model uses meteorological inputs, such as 2m air temperature, 2m water vapour pressure and wind velocity at body height derived from 10m wind speed, from NWP models. Here we examine the potential of UTCI as an extreme hot temperature prediction tool for the European area. UTCI forecasts calculated using above-mentioned parameters from ECMWF models are presented. The skill in predicting UTCI for medium lead times is also analysed and discussed for implementation to international health-hazard warning systems. This research is supported by the ANYWHERE project (EnhANcing emergencY management and response to extreme WeatHER and climate Events) which is funded by the European Commission's HORIZON2020 programme. [1] Koppe C. et al., Heat waves: risks and responses. World Health Organization. Health and

  20. Statistics of Extreme Events with Application to Climate (United States)


    costs associated with global warming will be measured in terms of changes in the frequency and intensity of extreme events such as droughts, climate studies or in discussions of greenhouse warming despite the obvious importance of large deviations from 1 the mean. The theory and...examining 33 7.60 Globa Averaged Temerture Range for Gaussian Distributi, Dew oin Tepertur 6.40 r5-0Sea Surface Temperature - 5.20 4.60 4,00

  1. New algorithm for extreme temperature measurements

    NARCIS (Netherlands)

    Damean, N.


    A new algorithm for measurement of extreme temperature is presented. This algorithm reduces the measurement of the unknown temperature to the solving of an optimal control problem, using a numerical computer. Based on this method, a new device for extreme temperature measurements is projected. It co

  2. Predicting Indoor Heat Exposure Risk during Extreme Heat Events (United States)

    Quinn, Ashlinn; Tamerius, James D.; Perzanowski, Matthew; Jacobson, Judith S.; Goldstein, Inge; Acosta, Luis; Shaman, Jeffrey


    Increased heat-related morbidity and mortality are expected direct consequences of global warming. In the developed world, most fatal heat exposures occur in the indoor home environment, yet little is known of the correspondence between outdoor and indoor heat. Here we show how summertime indoor heat and humidity measurements from 285 low- and middle-income New York City homes vary as a function of concurrent local outdoor conditions. Indoor temperatures and heat index levels were both found to have strong positive linear associations with their outdoor counterparts; however, among the sampled homes a broad range of indoor conditions manifested for the same outdoor conditions. Using these models, we simulated indoor conditions for two extreme events: the 10-day 2006 NYC heat wave and a 9-day event analogous to the more extreme 2003 Paris heat wave. These simulations indicate that many homes in New York City would experience dangerously high indoor heat index levels during extreme heat events. These findings also suggest that increasing numbers of NYC low- and middle-income households will be exposed to heat index conditions above important thresholds should the severity of heat waves increase with global climate change. The study highlights the urgent need for improved indoor temperature and humidity management. PMID:24893319

  3. Uncertainty analysis in statistical modeling of extreme hydrological events

    NARCIS (Netherlands)

    Xu, Yue-Ping; Booij, Martijn J.; Tong, Yang-Bin


    With the increase of both magnitude and frequency of hydrological extreme events such as drought and flooding, the significance of adequately modeling hydrological extreme events is fully recognized. Estimation of extreme rainfall/flood for various return periods is of prime importance for hydrologi

  4. Pulsar Observations of Extreme Scattering Events

    CERN Document Server

    Coles, W A; Shannon, R M; Hobbs, G; Manchester, R N; You, X P; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Levin, Y; Oslowski, S; Ravi, V; Reardon, D; Toomey, L; van Straten, W; Wang, J B; Wen, L; Zhu, X J


    Extreme scattering events (ESEs) in the interstellar medium (ISM) were first observed in regular flux measurements of compact extragalactic sources. They are characterized by a flux variation over a period of weeks, suggesting the passage of a "diverging plasma lens" across the line of sight. Modeling the refraction of such a lens indicates that the structure size must be of order AU and the electron density of order 10s of cm^{-3}. Similar structures have been observed in measurements of pulsar intensity scintillation and group delay. Here we report observations of two ESEs showing increases in both intensity scintillation and dispersion made with the Parkes Pulsar Timing Array (PPTA). These allow us to make more complete models of the ESE, including an estimate of the "outer-scale" of the turbulence in the plasma lens. These observations show clearly that the ESE structure is fully turbulent on an AU scale. They provide some support for the idea that the structures are extended along the line of sight, such...

  5. Exploring the causes of rare extreme precipitation events (United States)

    Schroeer, Katharina; Kirchengast, Gottfried


    Whereas trends of precipitation changes in general are disparate, an increase of extreme intensities of short precipitation events (daily to sub-hourly scale) with increasing temperatures seems unambiguous (e.g. Trenberth et al., Clim. Res. 47, 123-138, 2011; Berg et al., Nat. Clim. Change 13, 181-185, 2013; Kendon et al., Nat. Clim. Change 4, 570-576, 2014). In probability density functions (PDFs) of observed precipitation intensities that are frequently used in science and practice, high magnitude ("extreme") low frequency ("rare") precipitation events naturally appear at the tails of PDFs. Due to the factual data scarcity, rare extreme events ("REEs") are difficult to come by with statistical analyses. Amongst studies of extreme precipitation, statistical work nevertheless makes a major contribution to the research field. Usually as a first step, a threshold is defined to classify extreme events out of a sample (statistical extreme events, "SEEs"), where methods are affected by the sample size. Such thresholds can be described user-defined or constructed. Subsequently, a PDF is sought, fit and applied (e.g. Yilmaz et al., Hydrol. Earth Syst. Sci. 18, 4065-4076, 2014;, Papalexiou et al., Hydrol. Earth Syst. Sci. 17, 851-862, 2013). While these studies respond to the needs of engeneering practice in e.g. infrastructure design, or trend analysis of precipitation in climate studies, they a) have to ignore REEs because of practical or statistical/data limitations (i.e. left out as "residual risk") and b) tell us little about the underlying processes of the climate and weather system causing REEs. We define REEs in contrast to SEEs as to be of such occurrence that they cannot be sufficiently described nor predicted by means of a regular or fat-tailed PDF. We introduce a working hypothesis assuming that REEs are conditioned and caused by a conjunction of specific circumstances on different scales. We differentiate spatio-temporal circumstances of large

  6. Financial market response to extreme events indicating climatic change (United States)

    Anttila-Hughes, J. K.


    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  7. Analogues of atmospheric circulation to probe extreme and rare events (United States)

    Yiou, P.


    Analogues of atmospheric circulation have had many applications, from weather prediction to the downscaling of climate variables. The main assumptions behind this methodology are that climate variables (such as temperature or precipitation) are linked a large-scale atmospheric predictand, which is usually taken as sea-level pressure, and that such predictands recur through time. They offer a possibility to estimate probability distributions of a climate variable, conditional to patterns of atmospheric circulation. In addition, this methodology allows the quantification of unusual weather patterns that have been observed. I will represent a way to use analogues of circulation for the detection/attribution of extreme events of precipitation and temperature. This approach will be illustrated on test cases, including the warm European winter of 2006/2007, the extremes of precipitation over Southern UK and northwestern France in January 2014, and the European summer of 2015. I will show how this analysis provides a low-cost estimate of the fraction of attributable risk (FAR) for extreme events that verify the above mentioned hypotheses. Such an analysis can be performed in continuous time with reanalysis data and meteorological observations.

  8. Extreme sport participation as serious leisure : athletes' overall satisfaction with the event extreme sports week


    Rumba, Maira


    This study is concentrating on the extreme sport athletes who have participated in the spectacular event Extreme Sport Week (Mykletun, 2009; Ekstremsportveko, 2012) in Voss, Norway 2011. In particular, it addresses the extreme sport athletes’ involvement with the sport, their career development, and their experiences during the event. The aim is to investigate extreme sport athletes satisfaction with the event based on Pine and Gilmore’s (1999) experience four-realm model and Getz’s and Ander...

  9. Understanding extreme rainfall events in Australia through historical data (United States)

    Ashcroft, Linden; Karoly, David John


    Historical climate data recovery is still an emerging field in the Australian region. The majority of Australia's instrumental climate analyses begin in 1900 for rainfall and 1910 for temperature, particularly those focussed on extreme event analysis. This data sparsity for the past in turn limits our understanding of long-term climate variability, constraining efforts to predict the impact of future climate change. To address this need for improved historical data in Australia, a new network of recovered climate observations has recently been developed, centred on the highly populated southeastern Australian region (Ashcroft et al., 2014a, 2014b). The dataset includes observations from more than 39 published and unpublished sources and extends from British settlement in 1788 to the formation of the Australian Bureau of Meteorology in 1908. Many of these historical sources provide daily temperature and rainfall information, providing an opportunity to improve understanding of the multidecadal variability of Australia's extreme events. In this study we combine the historical data for three major Australian cities - Melbourne, Sydney and Adelaide - with modern observations to examine extreme rainfall variability over the past 174 years (1839-2013). We first explore two case studies, combining instrumental and documentary evidence to support the occurrence of severe storms in Sydney in 1841 and 1844. These events appear to be at least as extreme as Sydney's modern 24-hour rainfall record. Next we use a suite of rainfall indices to assess the long-term variability of rainfall in southeastern Australia. In particular, we focus on the stationarity of the teleconnection between the El Niño-Southern Oscillation (ENSO) phenomenon and extreme rainfall events. Using ENSO reconstructions derived from both palaeoclimatic and documentary sources, we determine the historical relationship between extreme rainfall in southeastern Australia and ENSO, and examine whether or not this

  10. Trends in rainfall and temperature extremes in Morocco

    Directory of Open Access Journals (Sweden)

    K. Khomsi


    Full Text Available In Morocco, socioeconomic fields are vulnerable to weather extreme events. This work aims to analyze the frequency and the trends of temperature and rainfall extreme events in two contrasted Moroccan regions (the Tensift in the semi-arid South, and the Bouregreg in the sub-humid North, during the second half of the 20th century. This study considers long time series of daily extreme temperatures and rainfall, recorded in the stations of Marrakech and Safi for the Tensift region, and Kasba-Tadla and Rabat-Sale for the Bouregreg region, data from four other stations (Tanger, Fes, Agadir and Ouarzazate from outside the regions were added. Extremes are defined by using as thresholds the 1st, 5th, 90th, 95th, and 99th percentiles. Results show upward trends in maximum and minimum temperatures of both regions and no generalized trends in rainfall amounts. Changes in cold events are larger than those for warm events, and the number of very cold events decrease significantly in the whole studied area. The southern region is the most affected with the changes of the temperature regime. Most of the trends found in rainfall heavy events are positive with weak magnitudes even though no statistically significant generalized trends could be identified during both seasons.

  11. Possible future changes in extreme events over Northern Eurasia (United States)

    Monier, Erwan; Sokolov, Andrei; Scott, Jeffery


    forcing used in the simulations within the IGSM-CAM framework provide a good approximation for the median, and the lower and upper bound of 90% probability distribution of 21st century climate change. Five member ensembles were carried out for each choice of parameters using different initial conditions. With these simulations, we investigate the role of emissions scenarios (climate policies), the global climate response (climate sensitivity) and natural variability (initial conditions) on the uncertainty in future climate changes over Northern Eurasia. A particular emphasis is made on future changes in extreme events, including frost days, extreme summer temperature and extreme summer and winter precipitation.

  12. Understanding Extreme Spanish Coastal Flood Events (United States)

    Diez, J. Javier; Esteban, M. Dolores; Silvestre, J. Manuel


    The Santa Irene flood event, at the end of October 1982, is one of the most dramatically widely reported flood events in Spain. Its renown is mainly due to the collapse of the Tous dam, but its main message is to be the paradigm of the incidence of the maritime/littoral weather and its temporal sea level rise by storm surge accompanying rain process on the coastal plains inland floods. Looking at damages the presentation analyzes the adapted measures from the point of view of the aims of the FP7 SMARTeST Project related to the Flood Resilience improvement in urban areas through looking for Technologies, Systems and Tools an appropriate "road to de market". The event was due to the meteorological phenomenon known as "gota fría" (cold drop), a relatively frequent and intense rainy phenomenon affecting one or more basins on the Iberian Peninsula, particularly on the Spanish east to southeast inlands and coasts. There are some circumstances that can easily come together to unleash the cold drop there: cold and dry polar air masses coming onto the whole Iberian Peninsula and the north of Africa, high sea water temperatures, and low atmospheric pressure (cyclone) areas in the western Mediterranean basin; these circumstances are quite common during the autumn season there, and, as it happens, in other places around the world (East/Southeast Africa). Their occurrence, however shows a great space-temporal variability (in a similar way to hurricanes, on Caribbean and western North-Atlantic areas, or to typhoons do). As a matter of fact, all of these equivalent though different phenomena may have different magnitude each time. An overview of the very main events since 11th century in the East to Southeast areas in Spain is shown in the presentation, looking for relation with climatic conditions and Climate changes on one hand, and with geomorphologic and geotechnical conditions on the other It also describes the results of a detailed analysis and reflection about this cold

  13. Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser (United States)

    Selmi, F.; Coulibaly, S.; Loghmari, Z.; Sagnes, I.; Beaudoin, G.; Clerc, M. G.; Barbay, S.


    Extreme events such as rogue waves in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme event appearance in a spatially extended semiconductor microcavity laser with an intracavity saturable absorber. This system can display deterministic irregular dynamics only, thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor.

  14. Betavoltaic performance under extreme temperatures

    Directory of Open Access Journals (Sweden)

    Adams Tom


    Full Text Available Longevity of sensors and portable devices is severely limited by temperature, chemical instability, and electrolyte leakage issues associated with conventional electrochemical batteries. Betavoltaics, which operate similar to photo voltaics, can operate in a wide temperature range safely without permanent degradation. Though not a new concept, which began in the 1950's and peaked in the mid 1970's, research has been minimal and sporadic until recent advancements in ultra-low power electronics and materialization of low power applications. The technology is rapidly maturing, generating research, and development in increasing the beta emitting source and semiconductor efficiencies. This study presents an update on betavoltaic technology, results from temperature evaluation on commercially available General Licensed betavoltaic cells, development of a hybrid system for latent and burst power, modeling and simulation techniques and results, and current and proposed research and development. Betavoltaic performance was successfully demonstrated for a wide temperature range (-30°C to 70°C. Short circuit current and open circuit voltage were used to compare electrical performance. Results indicate that the open-circuit voltage and maximum power decreased as temperature increased due to increases in the semiconductor's intrinsic carrier concentration.

  15. 基于改进的EMD的运城市持续极端气温的初步分析%Preliminary Analysis of Sustained Extreme Temperature Events in Yuncheng Using Improved EMD

    Institute of Scientific and Technical Information of China (English)

    秦旭; 张讲社; 延晓冬


    In recent years, extreme weather events have caused the widespread concern of the Whole world,but sustained extreme temperature events have been seldom researched up to now.The extreme threshold of temperature is defined in this paper by the percentile value of time series of daily maximum or minimum temperature,and the annual frequency of sustained(greater than two successive days)ex-treme high(FSEHT)and low temperature(FSELT)events during 1971-2005 in Yuncheng are alia.1yzed with the improved Empirical Mode Decomposition(EMD)method presented by Deering.The re-suits show that during the 35 years,the FSEHT and FSELT series both exhibit a linear decreasing trend in Yuncheng;the negative linear correlation between the FSELT series and the annual mean temperature series is statistically significant at the 0.05 confidence level, while changes in FSEHT are almost not af-fected by the annual mean temperature. Besides there are also oscillations of different periods in the two frequency series;and in view of principle periods,the oscillations of the two series are consistent with those of El Nino events.%采用每日最高(最低)气温的历史同期序列的分位数作为该日的极端阈值,运用改进的经验模态分解(empirical mode decomposition,EMD)方法对山西省运城市1971-2005年每年发生的持续(3 d及3 d以上)极端气温频数进行了初步分析.结果表明,1971-2005年运城市每年的持续极端高温频数(frequency of sustained extreme-high temperature,FSEHT)和持续极端低温频数(fre-quency of sustained extreme-low temperature,FSELT)序列均存在线性下降趋势;在0.05的水平下, 运城市的FSEHT序列与该地区的年平均气温序列的线性相关性不显著,而该地区的FSELT序列与年平均气温序列的负线性相关关系是显著的;此外,这两个频数序列分别存在不同的周期振荡.从主要周期看,运城市的FSEHT和FSELT序列与厄尔尼诺现象的周期相一致.

  16. A Fourier analysis of extremal events

    DEFF Research Database (Denmark)

    Zhao, Yuwei

    is the extremal periodogram. The extremal periodogram shares numerous asymptotic properties with the periodogram of a linear process in classical time series analysis: the asymptotic distribution of the periodogram ordinates at the Fourier frequencies have a similar form and smoothed versions of the periodogram...

  17. Extreme Environment High Temperature Communication Systems Project (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  18. Flexible diaphragm-extreme temperature usage (United States)

    Lerma, Guillermo (Inventor)


    A diaphragm suitable for extreme temperature usage, such as encountered in critical aerospace applications, is fabricated by a unique method, and of a unique combination of materials. The materials include multilayered lay-ups of diaphragm materials sandwiched between layers of bleeder fabrics. After being formed in the desired shape on a mold, they are vacuum sealed and then cured under pressure, in a heated autoclave. A bond capable of withstanding extreme temperatures are produced.

  19. Mangrove species' responses to winter air temperature extremes in China (United States)

    Chen, Luzhen; Wang, Wenqing; Li, Qingshun Q.; Zhang, Yihui; Yang, Shengchang; Osland, Michael J.; Huang, Jinliang; Peng, Congjiao


    The global distribution and diversity of mangrove forests is greatly influenced by the frequency and intensity of winter air temperature extremes. However, our understanding of how different mangrove species respond to winter temperature extremes has been lacking because extreme freezing and chilling events are, by definition, relatively uncommon and also difficult to replicate experimentally. In this study, we investigated species-specific variation in mangrove responses to winter temperature extremes in China. In 10 sites that span a latitudinal gradient, we quantified species-specific damage and recovery following a chilling event, for mangrove species within and outside of their natural range (i.e., native and non-native species, respectively). To characterize plant stress, we measured tree defoliation and chlorophyll fluorescence approximately one month following the chilling event. To quantify recovery, we measured chlorophyll fluorescence approximately nine months after the chilling event. Our results show high variation in the geographic- and species-specific responses of mangroves to winter temperature extremes. While many species were sensitive to the chilling temperatures (e.g., Bruguiera sexangula and species in the Sonneratia and Rhizophora genera), the temperatures during this event were not cold enough to affect certain species (e.g., Kandelia obovata, Aegiceras corniculatum, Avicennia marina, and Bruguiera gymnorrhiza). As expected, non-native species were less tolerant of winter temperature extremes than native species. Interestingly, tidal inundation modulated the effects of chilling. In comparison with other temperature-controlled mangrove range limits across the world, the mangrove range limit in China is unique due to the combination of the following three factors: (1) Mangrove species diversity is comparatively high; (2) winter air temperature extremes, rather than means, are particularly intense and play an important ecological

  20. Extreme seawater compositions during Oceanic Anoxic Events (United States)

    Cohen, A.; Bottini, C.; Dickson, A. J.; Izon, G. J.; Coe, A. L.


    For almost the entire duration of the Phanerozoic, the oceans have remained well oxygenated and highly conducive to the development of animal and plant life. However, there have been relatively brief intervals, known as Oceanic Anoxic Events (OAEs), when a very significant expansion of low-oxygen regions occurred throughout the world's oceans. OAEs were characterised by highly atypical seawater chemistry, as reflected in the chemical and isotopic compositions of contemporaneous sediments and fossil remains. These oxygen-deficient intervals also exerted profound pressures on many marine species as indicated by major changes in species populations and distributions. High-resolution chemical and isotopic data recovered from marine sediments and sedimentary rocks, together with biotic information, provide us with the best means of understanding the significance of OAEs and their place in the evolution of the Earth system. We present new Mo- and Os-isotope and geochemical data from OAE 1a (early Cretaceous), which help define how this event evolved in relation to the other major environmental parameters - including global warming, continental weathering and Ontong-Java volcanism - of that time. We compare these new observations with published results from other Mesozoic OAEs and the PETM. Recently published Os-isotope data from DSDP site 463 (mid-Pacific) [1] and northern Italy [1, 2] show that the Os budget of the oceans was dominated for a period of c. 880 ka during OAE 1a by the hydrothermal flux of unradiogenic Os from the Ontong-Java province. The observation of identical Os-isotope compositions at these two very distant sites indicates that seawater was well mixed at that time. Over the same interval, the seawater Mo-isotope composition, based upon well-preserved samples from Italy, was persistently atypical, with δ98/95Mo ranging between -0.7 and +0.7 permil [3]. All the samples analysed here accumulated under highly anoxic conditions and contain highly abundant

  1. Impacts of extreme weather events on transport infrastructure in Norway (United States)

    Frauenfelder, Regula; Solheim, Anders; Isaksen, Ketil; Romstad, Bård; Dyrrdal, Anita V.; Ekseth, Kristine H. H.; Gangstø Skaland, Reidun; Harbitz, Alf; Harbitz, Carl B.; Haugen, Jan E.; Hygen, Hans O.; Haakenstad, Hilde; Jaedicke, Christian; Jónsson, Árni; Klæboe, Ronny; Ludvigsen, Johanna; Meyer, Nele K.; Rauken, Trude; Sverdrup-Thygeson, Kjetil


    With the latest results on expected future increase in air temperature and precipitation changes reported by the Intergovernmental Panel on Climate Change (IPCC), the climate robustness of important infrastructure is of raising concern in Norway, as well as in the rest of Europe. Economic consequences of natural disasters have increased considerably since 1950. In addition to the effect of demographic changes such as population growth, urbanization and more and more concentration of valuable assets, this increase is also related to an augmenting frequency of extreme events, such as storms, flooding, drought, and landslides. This change is also observable in Norway, where the increased frequency of strong precipitation has led to frequent flooding and landslide events during the last 20 years. A number of studies show that climate change causes an increase in both frequency and intensity of several types of extreme weather, especially when it comes to precipitation. Such extreme weather events greatly affect the transport infrastructure, with numerous and long closures of roads and railroads, in addition to damage and repair costs. Frequent closures of railroad and roads lead to delay or failure in delivery of goods, which again may lead to a loss of customers and/or - eventually - markets. Much of the Norwegian transport infrastructure is more than 50 years old and therefore not adequately dimensioned, even for present climatic conditions. In order to assess these problems and challenges posed to the Norwegian transport infrastructure from present-day and future extreme weather events, the project "Impacts of extreme weather events on infrastructure in Norway (InfraRisk)" was performed under the research Council of Norway program 'NORKLIMA', between 2009 and 2013. The main results of the project are: - Moderate to strong precipitation events have become more frequent and more intense in Norway over the last 50 years, and this trend continues throughout the 21st

  2. Extreme temperature days and potential impacts in Southern Europe

    Directory of Open Access Journals (Sweden)

    A. Cardil


    Full Text Available Extreme temperature events have consequences for human health and mortality, forest disturbance patterns, agricultural productivity, and the economic repercussions of these consequences combined. To gain insight into whether extreme temperature events are changing in light of global climate dynamics, the annual numbers of high temperature days (those with temperatures higher than 20, 22.5 and 25 °C at 850 hPa were analyzed across Southern Europe from years 1978–2012. A significant increase in the frequency of these days was found in many areas over the time period analyzed, and patterns in the spatial distribution of these changes were identified. We discuss the potential consequences of the increases in high temperature days with regards to forest fire risk, human health, agriculture, energy demands, and some potential economic repercussions.

  3. The differential effects of increasing frequency and magnitude of extreme events on coral populations


    Fabina, NS; Baskett, ML; K. Gross


    © 2015 by the Ecological Society of America. Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additional...

  4. Extreme warm temperatures alter forest phenology and productivity in Europe. (United States)

    Crabbe, Richard A; Dash, Jadu; Rodriguez-Galiano, Victor F; Janous, Dalibor; Pavelka, Marian; Marek, Michal V


    Recent climate warming has shifted the timing of spring and autumn vegetation phenological events in the temperate and boreal forest ecosystems of Europe. In many areas spring phenological events start earlier and autumn events switch between earlier and later onset. Consequently, the length of growing season in mid and high latitudes of European forest is extended. However, the lagged effects (i.e. the impact of a warm spring or autumn on the subsequent phenological events) on vegetation phenology and productivity are less explored. In this study, we have (1) characterised extreme warm spring and extreme warm autumn events in Europe during 2003-2011, and (2) investigated if direct impact on forest phenology and productivity due to a specific warm event translated to a lagged effect in subsequent phenological events. We found that warmer events in spring occurred extensively in high latitude Europe producing a significant earlier onset of greening (OG) in broadleaf deciduous forest (BLDF) and mixed forest (MF). However, this earlier OG did not show any significant lagged effects on autumnal senescence. Needleleaf evergreen forest (NLEF), BLDF and MF showed a significantly delayed end of senescence (EOS) as a result of extreme warm autumn events; and in the following year's spring phenological events, OG started significantly earlier. Extreme warm spring events directly led to significant (p=0.0189) increases in the productivity of BLDF. In order to have a complete understanding of ecosystems response to warm temperature during key phenological events, particularly autumn events, the lagged effect on the next growing season should be considered.

  5. Coping with extreme climate events: Institutional flocking

    NARCIS (Netherlands)

    Koppen, van C.S.A.; Mol, A.P.J.; Tatenhove, van J.P.M.


    The article explores the governance structures that would be needed to cope with extreme and unpredictable climate change. The impacts on the Netherlands of a Gulf Stream collapse in the Northern Atlantic are taken as a case. This hypothetical situation of serious risks and high uncertainties requir

  6. Coping with extreme climate events: Institutional flocking

    NARCIS (Netherlands)

    Koppen, van C.S.A.; Mol, A.P.J.; Tatenhove, van J.P.M.


    The article explores the governance structures that would be needed to cope with extreme and unpredictable climate change. The impacts on the Netherlands of a Gulf Stream collapse in the Northern Atlantic are taken as a case. This hypothetical situation of serious risks and high uncertainties

  7. Trends in mean and extreme temperatures over Ibadan, Southwest Nigeria (United States)

    Abatan, Abayomi A.; Osayomi, Tolulope; Akande, Samuel O.; Abiodun, Babatunde J.; Gutowski, William J.


    In recent times, Ibadan has been experiencing an increase in mean temperature which appears to be linked to anthropogenic global warming. Previous studies have indicated that the warming may be accompanied by changes in extreme events. This study examined trends in mean and extreme temperatures over Ibadan during 1971-2012 at annual and seasonal scales using the high-resolution atmospheric reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth-century dataset (ERA-20C) at 15 grid points. Magnitudes of linear trends in mean and extreme temperatures and their statistical significance were calculated using ordinary least squares and Mann-Kendall rank statistic tests. The results show that Ibadan has witnessed an increase in annual and seasonal mean minimum temperatures. The annual mean maximum temperature exhibited a non-significant decline in most parts of Ibadan. While trends in cold extremes at annual scale show warming, trends in coldest night show greater warming than in coldest day. At the seasonal scale, we found that Ibadan experienced a mix of positive and negative trends in absolute extreme temperature indices. However, cold extremes show the largest trend magnitudes, with trends in coldest night showing the greatest warming. The results compare well with those obtained from a limited number of stations. This study should inform decision-makers and urban planners about the ongoing warming in Ibadan.

  8. Evolution Characteristics of the Extreme High Temperature Event in Northwest China from 1961 to 2009%中国西北地区1961—2009年极端高温事件的演变特征

    Institute of Scientific and Technical Information of China (English)

    陈少勇; 王劲松; 郭俊庭; 芦旭东


    . The threshold values of the extreme high temperature in these areas are above 30 ℃ ; but in most part of southern Xinjiang and local areas of southern Shaanxi (Xi'an, Ankang) , the threshold values are above 35 ℃, the max-value is 41.5 ℃ in Turpan. The annual extreme high temperature is generally low in Qinghai Plateau, and high in Qaidam Basin(25 -30 ℃ ) , the other areas are between 15 ℃ and 20 ℃ , the min-value is 14. 4 ℃ in Wudaoliang; the frequency of annual extreme high temperature has obviously increased at a rate of approximately 1.8 d/10 a. The high temperature days changed from less to more in the metaphase of the 1970s, especially the increasing rate is 5.4 d/10 a from the end of the 1980s, and there is an abrupt change phenomenon in 1994. The high temperature frequency has the re- markable periods of 3 to 5 years in recent 49 years. At present, it is still in the frequent phase of high temperature oceurence; the annual extreme h[gh temperature becomes more and more fre- quent in the majority areas of Northwest China. The main significant areas with SE-NW trend are distributed in two banded regions. One is from the Qinghai Plateau to West Tianshan, another from northern Shaanxi, southeastern Gansu - Gansu Corridor to Xinjiang' s Altay. These areas tendency rate is above 2 d/10 a. The high value zone which reached above 5 d/10 a at west Hexi and the Xinjiang - Qinghai' s southern border area. This shows that in the background of global warming, extreme high temperature event occurrence is more frequent in Northwest China; the values of the extreme high temperature are between 22. 5 and 47.8 ℃, the maximum value ap- pears in the Turpan Basin, and minimum value appears in Qinshui River of Qinghai Plateau, the high temperature that above 35 ℃ appears in addition to the Yili Valley of most part of Xinjiang, Qaidam Basin, Hexi Corridor, central-northern of Gansu, southeastern Gansu, Ningxia, Shaanxi, and in southern Xinjiang, the

  9. Changes in Climate Extremes and Catastrophic Events in the Mongolian Plateau from 1951 to 2012

    DEFF Research Database (Denmark)

    Wang, Lei; Yao, Zhi-Jun; Jiang, Liguang;


    The spatiotemporal changes in 21 indices of extreme temperature and precipitation for the Mongolian Plateau from 1951 to 2012 were investigated on the basis of daily temperature and precipitation data from 70 meteorological stations. Changes in catastrophic events, such as droughts, floods...... in the daytime. The spatial changes in significant trends showed a good homogeneity and consistency in Inner Mongolia. Changes in the precipitation extremes were not as obvious as those in the temperature extremes. The spatial distributions in changes of precipitation extremes were complex. Adecreasing trend...

  10. Extreme events in multilayer, interdependent complex networks and control (United States)

    Chen, Yu-Zhong; Huang, Zi-Gang; Zhang, Hai-Feng; Eisenberg, Daniel; Seager, Thomas P.; Lai, Ying-Cheng


    We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.

  11. Recent Changes of Some Observed Climate Extreme Events in Kano

    Directory of Open Access Journals (Sweden)

    Imole Ezekiel Gbode


    Full Text Available Observed rainfall and temperature data for the period 1960–2007 were used to examine recent changes of extreme climate over Kano, located in the Sahelian region of Nigeria. The RClimDex software package was employed to generate nine important climate indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI. For the entire period, the results show a warming trend, an increased number of cool nights, more warm days, and a strong increase in the number of warm spells. The rainfall indices show a slight increase in annual total rainfall, a decrease in the maximum number of consecutive wet days, and a significant increase in the number of extremely wet days. Such changes in climate may result in an increasing demand for domestic energy for cooling and a higher evaporation rate from water bodies and irrigated crop. These findings may give some guidance to politicians and planners in how to best cope with these extreme weather and climate events.

  12. Extreme events in excitable systems and mechanisms of their generation. (United States)

    Ansmann, Gerrit; Karnatak, Rajat; Lehnertz, Klaus; Feudel, Ulrike


    We study deterministic systems, composed of excitable units of FitzHugh-Nagumo type, that are capable of self-generating and self-terminating strong deviations from their regular dynamics without the influence of noise or parameter change. These deviations are rare, short-lasting, and recurrent and can therefore be regarded as extreme events. Employing a range of methods we analyze dynamical properties of the systems, identifying features in the systems' dynamics that may qualify as precursors to extreme events. We investigate these features and elucidate mechanisms that may be responsible for the generation of the extreme events.

  13. General Resilience to Cope with Extreme Events

    Directory of Open Access Journals (Sweden)

    Brian Walker


    Full Text Available Resilience to specified kinds of disasters is an active area of research and practice. However, rare or unprecedented disturbances that are unusually intense or extensive require a more broad-spectrum type of resilience. General resilience is the capacity of social-ecological systems to adapt or transform in response to unfamiliar, unexpected and extreme shocks. Conditions that enable general resilience include diversity, modularity, openness, reserves, feedbacks, nestedness, monitoring, leadership, and trust. Processes for building general resilience are an emerging and crucially important area of research.

  14. 1961-2010年新疆极端气温时空演变特征研究%Spatiotemporal Variations of Extreme Temperature Events over Xinjiang during 1961 -2010

    Institute of Scientific and Technical Information of China (English)

    慈晖; 张强; 张江辉; 白云岗


    Spatiotemporal variations of extreme temperature events in Xinjiang have been analyzed based on daily average temperature,daily maximum temperature and daily minimum temperature data from 50 meteorological stations covering the period from 1961 to 2010 using statistical methods and 22 extreme temperature indices commonly used in extreme climate events researches.Daily temperature and mean annual temperature in Xinjiang increased significantly after 1996,minimum temperature in winter and summer rose significantly,and the warming magnitude in winter was greater than in summer.Except for GTmax,GTavg,DTR and TXx,TNx,TXn,TNn,all cold and warm indices are characterized by signifi-cant downward and upward trends respectively in the late 1990s.Overall,the magnitudes of warming tendency of cold indices,low temperature indices,night indices are obviously greater than those of warm indices,high temperature indices and day indices,and they are greater in basins than in mountains.The mutation of trend analysis of extreme cold indices occurred in the mid-and-late 1980s,and that of extreme warm indices occurred in the late 1990s.The warming tendency can be checked obviously no matter with average temperature indicators or changes of extreme temperature indices.Average temperature (GTavg) and maximum temperature (GTmax)during growing season are characterized by an upward trend.The increase of daily average temperature will enhance the intensity of heat wave days (HWDI)and lengthen the growing season.Growing season length is longer in southern Xinjiang than in the northern and eastern Xinjiang,and it is longer in basins than in mountains.%根据1961-2010年新疆50个气象测站逐日均温、日最高温、日最低温资料,选取国际上常用的22个极端气温指数,运用多种统计方法全面、系统地分析新疆地区极端气温事件时空变化特征。研究结果表明:①全疆日均温、年均温1996年后均呈显著上升变化,冬季、夏季


    Directory of Open Access Journals (Sweden)

    Ionela-Daniela GĂITAN


    Full Text Available In this paper I wanted to highlight the impact of extreme risk events on the economy. The issue that I will approach in this paper is one of great importance, taking into account that extreme risk events that occur are  different  and are becoming more frequent  and harder to  control.  The quickly  development  of  these eventsrequires the implementation of a suitable risk management system. The complexity of this issue involves different approaches that can be interrelated in: computer science, mathematics, risk management, crisis management, andmodeling and simulation of extreme risk events. Natural disasters are rare events, but when they occur are causing a huge damage and an adequate management is necessary to return to a state of normality in a short time. To achieve our goal, in the first part of the paper, we presented the problems that an extreme risk event causes in a country when they occur. In the last part of the paper I presented analytical, statistical and econometric methods used in analysis of the impact on the economy of extreme risk events. Natural  disasters,  which  are  extreme  risk  events,  rarely  produce,  but  when  they  occur  causing  hugedamage and an adequate management is necessary to return to a state of normality in a short time.

  16. Crop Diversiifcation in Coping with Extreme Weather Events in China

    Institute of Scientific and Technical Information of China (English)

    HUANG Ji-kun; JIANG Jing; WANG Jin-xia; HOU Ling-ling


    Apart from the long-term effects of climate change, the frequency and severity of extreme weather events have been increasing. Given the risks posed by climate change, particularly the changes in extreme weather events, the question of how to adapt to these changes and mitigate their negative impacts has received great attention from policy makers. The overall goals of this study are to examine whether farmers adapt to extreme weather events through crop diversiifcation and which factors inlfuence farmers’ decisions on crop diversiifcation against extreme weather events in China. To limit the scope of this study, we focus on drought and lfood events only. Based on a unique large-scale household survey in nine provinces, this study ifnds that farmers respond to extreme weather events by increasing crop diversiifcation. Their decision to diversify crops is significantly influenced by their experiences of extreme weather events in the previous year. Such results are understandable because farmers’ behaviors are normally based on their expectations. Moreover, household characteristics also affect farmers’ decisions on crop diversiifcation strategy, and their effects differ by farmers’ age and gender. This paper concludes with several policy implications.

  17. Extreme water-related weather events and waterborne disease. (United States)

    Cann, K F; Thomas, D Rh; Salmon, R L; Wyn-Jones, A P; Kay, D


    Global climate change is expected to affect the frequency, intensity and duration of extreme water-related weather events such as excessive precipitation, floods, and drought. We conducted a systematic review to examine waterborne outbreaks following such events and explored their distribution between the different types of extreme water-related weather events. Four medical and meteorological databases (Medline, Embase, GeoRef, PubMed) and a global electronic reporting system (ProMED) were searched, from 1910 to 2010. Eighty-seven waterborne outbreaks involving extreme water-related weather events were identified and included, alongside 235 ProMED reports. Heavy rainfall and flooding were the most common events preceding outbreaks associated with extreme weather and were reported in 55·2% and 52·9% of accounts, respectively. The most common pathogens reported in these outbreaks were Vibrio spp. (21·6%) and Leptospira spp. (12·7%). Outbreaks following extreme water-related weather events were often the result of contamination of the drinking-water supply (53·7%). Differences in reporting of outbreaks were seen between the scientific literature and ProMED. Extreme water-related weather events represent a risk to public health in both developed and developing countries, but impact will be disproportionate and likely to compound existing health disparities.

  18. Sovereign Default Analysis through Extreme Events Identification

    Directory of Open Access Journals (Sweden)

    Vasile George MARICA


    Full Text Available This paper investigates contagion in international credit markets through the use of a novel jump detection technique proposed by Chan and Maheuin (2002. This econometrical methodology is preferred because it is non-linear by definition and not a subject to volatility bias. Also, the identified jumps in CDS premiums are considered as outliers positioned beyond any stochastic movement that can and is already modelled through well-known linear analysis. Though contagion is hard to define, we show that extreme discrete movements in default probabilities inferred from CDS premiums can lead to sound economic conclusions about the risk profile of sovereign nations in international bond markets. We find evidence of investor sentiment clustering for countries with unstable political regimes or that are engaged in armed conflict. Countries that have in their recent history faced currency or financial crises are less vulnerable to external unexpected shocks. First we present a brief history of sovereign defaults with an emphasis on their increased frequency and geographical reach, as financial markets become more and more integrated. We then pass to a literature review of the most important definitions for contagion, and discuss what quantitative methods are available to detect the presence of contagion. The paper continues with the details for the methodology of jump detection through non-linear modelling and its use in the field of contagion identification. In the last sections we present the estimation results for simultaneous jumps between emerging markets CDS and draw conclusions on the difference of behavior in times of extreme movement versus tranquil periods.

  19. Changes in Climate Extremes and Catastrophic Events in the Mongolian Plateau from 1951 to 2012

    DEFF Research Database (Denmark)

    Wang, Lei; Yao, Zhi-Jun; Jiang, Liguang;


    The spatiotemporal changes in 21 indices of extreme temperature and precipitation for the Mongolian Plateau from 1951 to 2012 were investigated on the basis of daily temperature and precipitation data from 70 meteorological stations. Changes in catastrophic events, such as droughts, floods...... was shown for total precipitation from west to east as based on the spatial distribution of decadal trends. Drought was the most serious extreme disaster, and prolonged drought for longer than 3 yr occurred about every 7-11 yr. An increasing trend in the disaster area was apparent for flood events from 1951......, and snowstorms, were also investigated for the same period. The correlations between catastrophic events and the extreme indices were examined. The results show that the Mongolian Plateau experienced an asymmetric warming trend. Both the cold extremes and warm extremes showed greater warming at night than...

  20. Extreme weather events in Iran under a changing climate (United States)

    Alizadeh-Choobari, Omid; Najafi, M. S.


    Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3° C during the period 1951-2013 (+0.2° per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.

  1. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S


    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  2. 最概然温度背景下不同气候态中国夏冬季极端温度事件时空分布特征%Characteristics of spatiotemporal distribution of extreme temperature events over China mainland in different climate states against the backdrop of most probable temperature

    Institute of Scientific and Technical Information of China (English)

    钱忠华; 侯威; 杨萍; 封国林


    mainland are divided into three climate states of 1961—1990,1971—2000,1981—2009(just called StateⅠ,StateⅡ,State Ⅲ respectively).Most probable temperature(MPT) and extreme temperature events are defined according to the skewed function.The spatiotemporal distribution characteristics of frequency and strength of extreme temperature events over China mainland in different climate sates against the backdrop of MPT are analyzed.Spatially,frequency and strength of extremly high temperature in summer decrease significantly in the Yangtze-Huaihe river valley and the Yellow river and Huaihe River valley in StateⅠ and increase significantly in the arid-semiarid region and the econormically developed Yangtze River delta in State Ⅲ.The frequency of extremely low temperature in winter reduces remarkably in the north part and the Yangtze River delta in StateⅡ and in the Qinghai-Tibet Plateau,the southeast part of northeast China,the Yangtze River delta in State Ⅲ.The strength of extremely low temperature in winter reduces on the whole and provincial characteristics are not obvious.The frequency and the strength of extreme temperature events are consistont spatially.Temporally,the frequency and the strength of extremely high temperature in summer increase obviously both in StateⅡ and State Ⅲ.The frequency and the strength of extremely low temperature in winter reduce obviously in StateⅡ and the reducing trend slows down in State Ⅲ.Extremely high temperature in summer occurs frequently and extremely low temperature in winter remains stable.Extremity of high temperature in summer is stronger while in winter is stable relatively.The frequency and the strength of extreme temperature events are consistent temporally.During the common time period of States Ⅰ,Ⅱ and Ⅲ,the frequency of extremely high temperature events in the last state was always less than the former while the low temperature events are more,which is in accordance with the fact that the

  3. Extreme event statistics in a drifting Markov chain (United States)

    Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur


    We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.

  4. On the Probability of Occurrence of Extreme Space Weather Events (United States)

    Riley, Pete


    By virtue of their rarity, extreme space weather events, such as the Carrington event of 1859, are difficult to study, their rates of occurrence are difficult to estimate, and prediction of a specific future event is virtually impossible. Additionally, events may be extreme relative to one parameter but normal relative to others. In this study, we analyze several measures of the severity of space weather events (flare intensity, coronal mass ejection speeds, Dst, and greater than 30 MeV proton fluences as inferred from nitrate records) to estimate the probability of occurrence of extreme events. By showing that the frequency of occurrence scales as an inverse power of the severity of the event, and assuming that this relationship holds at higher magnitudes, we are able to estimate the probability that an event larger than some criteria will occur within a certain interval of time in the future. For example, the probability of another Carrington event (based on Dst less than - 850 nT) occurring within the next decade is approximately 12%. We also identify and address several limitations with this approach. In particular, we assume time stationarity, and thus, the effects of long-term space climate change are not considered. While this technique cannot be used to predict specific events, it may ultimately be useful for probabilistic forecasting.

  5. On the Probability of Occurrence of Extreme Space Weather Events (United States)

    Riley, Pete


    By virtue of their rarity, extreme space weather events, such as the Carrington event of 1859, are difficult to study, their rates of occurrence are difficult to estimate, and prediction of a specific future event is virtually impossible. Additionally, events may be extreme relative to one parameter but normal relative to others. In this study, we analyze several measures of the severity of space weather events (flare intensity, coronal mass ejection speeds, Dst, and greater than 30 MeV proton fluences as inferred from nitrate records) to estimate the probability of occurrence of extreme events. By showing that the frequency of occurrence scales as an inverse power of the severity of the event, and assuming that this relationship holds at higher magnitudes, we are able to estimate the probability that an event larger than some criteria will occur within a certain interval of time in the future. For example, the probability of another Carrington event (based on Dst less than - 850 nT) occurring within the next decade is approximately 12%. We also identify and address several limitations with this approach. In particular, we assume time stationarity, and thus, the effects of long-term space climate change are not considered. While this technique cannot be used to predict specific events, it may ultimately be useful for probabilistic forecasting.

  6. Extreme sea-level events in coastal regions

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    Simulation, Belur Campus, Bangalore 560 037, India e-mail: Extreme sea-level events in coastal regions A recently published report1 by the Intergovernmental Panel on Climate Change (IPCC) has made an assessment... of the extreme climate events. Their past trends, future projections and vulnerabi- lity and adaptation to such events are discussed in the report. The report was based on the efforts of both the working groups of the IPCC, WG I, which deals with the science...

  7. The National Extreme Events Data and Research Center (NEED) (United States)

    Gulledge, J.; Kaiser, D. P.; Wilbanks, T. J.; Boden, T.; Devarakonda, R.


    The Climate Change Science Institute at Oak Ridge National Laboratory (ORNL) is establishing the National Extreme Events Data and Research Center (NEED), with the goal of transforming how the United States studies and prepares for extreme weather events in the context of a changing climate. NEED will encourage the myriad, distributed extreme events research communities to move toward the adoption of common practices and will develop a new database compiling global historical data on weather- and climate-related extreme events (e.g., heat waves, droughts, hurricanes, etc.) and related information about impacts, costs, recovery, and available research. Currently, extreme event information is not easy to access and is largely incompatible and inconsistent across web sites. NEED's database development will take into account differences in time frames, spatial scales, treatments of uncertainty, and other parameters and variables, and leverage informatics tools developed at ORNL (i.e., the Metadata Editor [1] and Mercury [2]) to generate standardized, robust documentation for each database along with a web-searchable catalog. In addition, NEED will facilitate convergence on commonly accepted definitions and standards for extreme events data and will enable integrated analyses of coupled threats, such as hurricanes/sea-level rise/flooding and droughts/wildfires. Our goal and vision is that NEED will become the premiere integrated resource for the general study of extreme events. References: [1] Devarakonda, Ranjeet, et al. "OME: Tool for generating and managing metadata to handle BigData." Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 2014. [2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.

  8. Extreme low temperature tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    George Richard Strimbeck


    Full Text Available Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40˚C and minimum temperatures below -60˚C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196˚C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature. Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at extreme low temperature: 1. Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to 30˚C, preventing phase changes that result in irreversible injury. 2. High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. 3. Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.

  9. Geophysical Hazards and Preventive Disaster Management of Extreme Natural Events (United States)

    Ismail-Zadeh, A.; Takeuchi, K.


    Geophysical hazard is potentially damaging natural event and/or phenomenon, which may cause the loss of life or injury, property damage, social and economic disruption, or environmental degradation. Extreme natural hazards are a key manifestation of the complex hierarchical nonlinear Earth system. An understanding, accurate modeling and forecasting of the extreme hazards are most important scientific challenges. Several recent extreme natural events (e.g., 2004 Great Indian Ocean Earthquake and Tsunami and the 2005 violent Katrina hurricane) demonstrated strong coupling between solid Earth and ocean, and ocean and atmosphere. These events resulted in great humanitarian tragedies because of a weak preventive disaster management. The less often natural events occur (and the extreme events are rare by definition), the more often the disaster managers postpone the preparedness to the events. The tendency to reduce the funding for preventive disaster management of natural catastrophes is seldom follows the rules of responsible stewardship for future generations neither in developing countries nor in highly developed economies where it must be considered next to malfeasance. Protecting human life and property against earthquake disasters requires an uninterrupted chain of tasks: from (i) understanding of physics of the events, analysis and monitoring, through (ii) interpretation, modeling, hazard assessment, and prediction, to (iii) public awareness, preparedness, and preventive disaster management.

  10. Data Converters Performance at Extreme Temperatures (United States)

    Rejeshuni, Rarnesham; Kumar, Nikil; Mao, James; Keymeulen, Didier; Zebulum, Ricardo S.; Stoica, Adrian


    Space missions often require radiation and extreme-temperature hardened electronics to survive the harsh environments beyond earth's atmosphere. Traditional approaches to preserve electronics incorporate shielding, insulation and redundancy at the expense of power and weight. However, a novel way of bypassing these problems is the concept of evolutionary hardware. A reconfgurable device, consisting of several switches interconnected with analog/digital parts, is controlled by an evolutionary processor (EP). When the EP detects degradation in the circuit it sends signals to reconfgure the switches, thus forming a new circuit with the desired output. This concept has been developed since the mid-90s, but one problem remains - the EP cannot degrade substantially. For this reason, extensive testing at extreme temperatures (-180' to 120(deg)C) has been done on devices found on FPGA boards (taking the role of the EP) such as the Analog to Digital and the Digital to Analog Converter. Analysis of the results has shown that FPGA boards implementing EP with some compensation may be a practical solution to evolving circuits. This paper describes results on the tests of data converters at extreme temperatures.

  11. Evaluation of dynamically downscaled extreme temperature using a spatially-aggregated generalized extreme value (GEV) model (United States)

    Wang, Jiali; Han, Yuefeng; Stein, Michael L.; Kotamarthi, Veerabhadra R.; Huang, Whitney K.


    The weather research and forecast (WRF) model downscaling skill in extreme maximum daily temperature is evaluated by using the generalized extreme value (GEV) distribution. While the GEV distribution has been used extensively in climatology and meteorology for estimating probabilities of extreme events, accurately estimating GEV parameters based on data from a single pixel can be difficult, even with fairly long data records. This work proposes a simple method assuming that the shape parameter, the most difficult of the three parameters to estimate, does not vary over a relatively large region. This approach is applied to evaluate 31-year WRF-downscaled extreme maximum temperature through comparison with North American regional reanalysis (NARR) data. Uncertainty in GEV parameter estimates and the statistical significance in the differences of estimates between WRF and NARR are accounted for by conducting a novel bootstrap procedure that makes no assumption of temporal or spatial independence within a year, which is especially important for climate data. Despite certain biases over parts of the United States, overall, WRF shows good agreement with NARR in the spatial pattern and magnitudes of GEV parameter estimates. Both WRF and NARR show a significant increase in extreme maximum temperature over the southern Great Plains and southeastern United States in January and over the western United States in July. The GEV model shows clear benefits from the regionally constant shape parameter assumption, for example, leading to estimates of the location and scale parameters of the model that show coherent spatial patterns.

  12. Laws of small numbers extremes and rare events

    CERN Document Server

    Falk, Michael; Hüsler, Jürg


    Since the publication of the first edition of this seminar book in 1994, the theory and applications of extremes and rare events have enjoyed an enormous and still increasing interest. The intention of the book is to give a mathematically oriented development of the theory of rare events underlying various applications. This characteristic of the book was strengthened in the second edition by incorporating various new results on about 130 additional pages. Part II, which has been added in the second edition, discusses recent developments in multivariate extreme value theory. Particularly notable is a new spectral decomposition of multivariate distributions in univariate ones which makes multivariate questions more accessible in theory and practice. One of the most innovative and fruitful topics during the last decades was the introduction of generalized Pareto distributions in the univariate extreme value theory. Such a statistical modelling of extremes is now systematically developed in the multivariate fram...

  13. Extreme precipitation and temperature responses to circulation patterns in current climate: statistical approaches

    NARCIS (Netherlands)

    Photiadou, C.


    Climate change is likely to influence the frequency of extreme extremes - temperature, precipitation and hydrological extremes, which implies increasing risks for flood and drought events in Europe. In current climate, European countries were often not sufficiently prepared to deal with the great so

  14. Analyses of Observed and Anticipated Changes in Extreme Climate Events in the Northwest Himalaya

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh


    Full Text Available In this study, past (1970-2005 as well as future long term (2011-2099 trends in various extreme events of temperature and precipitation have been investigated over selected hydro-meteorological stations in the Sutlej river basin. The ensembles of two Coupled Model Intercomparison Project (CMIP3 models: third generation Canadian Coupled Global Climate Model and Hadley Centre Coupled Model have been used for simulation of future daily time series of temperature (maximum and minimum and precipitation under A2 emission scenario. Large scale atmospheric variables of both models and National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis data sets have been downscaled using statistical downscaling technique at individual stations. A total number of 25 extreme indices of temperature (14 and precipitation (11 as specified by the Expert Team of the World Meteorological Organization and Climate Variability and Predictability are derived for the past and future periods. Trends in extreme indices are detected over time using the modified Mann-Kendall test method. The stations which have shown either decrease or no change in hot extreme events (i.e., maximum TMax, warm days, warm nights, maximum TMin, tropical nights, summer days and warm spell duration indicators for 1970–2005 and increase in cold extreme events (cool days, cool nights, frost days and cold spell duration indicators are predicted to increase and decrease respectively in the future. In addition, an increase in frequency and intensity of extreme precipitation events is also predicted.

  15. A Review of Recent Advances in Research on Extreme Heat Events (United States)

    Horton, Radley M.; Mankin, Justin S.; Lesk, Corey; Coffel, Ethan; Raymond, Colin


    Reviewing recent literature, we report that changes in extreme heat event characteristics such as magnitude, frequency, and duration are highly sensitive to changes in mean global-scale warming. Numerous studies have detected significant changes in the observed occurrence of extreme heat events, irrespective of how such events are defined. Further, a number of these studies have attributed present-day changes in the risk of individual heat events and the documented global-scale increase in such events to anthropogenic-driven warming. Advances in process-based studies of heat events have focused on the proximate land-atmosphere interactions through soil moisture anomalies, and changes in occurrence of the underlying atmospheric circulation associated with heat events in the mid-latitudes. While evidence for a number of hypotheses remains limited, climate change nevertheless points to tail risks of possible changes in heat extremes that could exceed estimates generated from model outputs of mean temperature. We also explore risks associated with compound extreme events and nonlinear impacts associated with extreme heat.

  16. Extreme events statistics in a two-layer quasi-geostrophic atmospheric model (United States)

    Galfi, Vera Melinda; Bodai, Tamas; Lucarini, Valerio


    Extreme events statistics provides a theoretical framework to analyze and predict extreme events based on the convergence of the distribution of the extremes to some limiting distribution. In this work we analyze the convergence of the distribution of extreme events to the Generalized Extreme Value (GEV) distribution and to the Generalized Pareto Distribution (GPD), using a two-layer quasi-geostrophic atmospheric model, and compare our results with theoretical findings from the field of extreme value theory for dynamical systems. We study the behavior of the GEV shape parameter by increasing the block size and of the GPD shape parameter by increasing the threshold, and compare the inferred parameters with a theoretical shape parameter that depends only on the geometrical properties of the attractor. The main objective is to find out whether this theoretical shape parameter can be used to evaluate extreme event analysis based on model output. For this, we perform very long simulations. We run our system with two different levels of forcing determined by two different meridional temperature gradients, one inducing a medium level of chaos and the other one a high level of chaos. We analyze in both cases extremes of energy variables.

  17. Attribution of Extreme Heat Event Using a Seasonal Forecast Framework (United States)

    Wang, Guomin; Hope, Pandora; Lim, Eun-Pa; Hendon, Harry; Arblaster, Julie


    Here we present a method for the attribution of extreme climate events using an initialised climate prediction system to attribute the degree of influence from increasing levels of atmospheric carbon dioxide (CO2) on an extreme event. The initial-value nature of our method allows little time for the growth of model-driven biases, while allowing the full coupled response of the ocean-atmosphere-land system. To illustrate the use of this method, we attribute the causes of two recent month long record heat events that occurred in October 2014 and 2015 over Australia. The events were forecast twice, one initialised with real world analysed ocean-land-atmosphere states and current CO2 concentration and another with altered ocean-land-atmosphere states corresponding to a counterfactual world with low CO2. We find that relative to the climatology with CO2 level of 1960, at least half of the heat anomaly forecasted across Australia in the two events can be attributed to global warming associated with increased CO2. Additional sensitivity experiments were conducted to assess the impact of the internal climate drivers on the events. The sensitivity experiment results suggest that the atmospheric circulation anomalies played a more important role than the direct impact from the ocean in promoting extreme heat across Australia.

  18. Impacts of Extreme Events on Human Health. Chapter 4 (United States)

    Bell, Jesse E.; Herring, Stephanie C.; Jantarasami, Lesley; Adrianopoli, Carl; Benedict, Kaitlin; Conlon, Kathryn; Escobar, Vanessa; Hess, Jeremy; Luvall, Jeffrey; Garcia-Pando, Carlos Perez; Quattrochi, Dale; Runkle, Jennifer; Schreck, Carl J., III


    Increased Exposure to Extreme Events Key Finding 1: Health impacts associated with climate-related changes in exposure to extreme events include death, injury, or illness; exacerbation of underlying medical conditions; and adverse effects on mental health[High Confidence]. Climate change will increase exposure risk in some regions of the United States due to projected increases in the frequency and/or intensity of drought, wildfires, and flooding related to extreme precipitation and hurricanes [Medium Confidence].Disruption of Essential Infrastructure Key Finding 2: Many types of extreme events related to climate change cause disruption of infrastructure, including power, water, transportation, and communication systems, that are essential to maintaining access to health care and emergency response services and safeguarding human health [High Confidence].Vulnerability to Coastal Flooding Key Finding 3: Coastal populations with greater vulnerability to health impacts from coastal flooding include persons with disabilities or other access and functional needs, certain populations of color, older adults, pregnant women and children, low-income populations, and some occupational groups [High Confidence].Climate change will increase exposure risk to coastal flooding due to increases in extreme precipitation and in hurricane intensity and rainfall rates, as well as sea level rise and the resulting increases in storm surge.

  19. The Integrated periodogram of a dependent extremal event sequence

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Zhao, Yuwei


    We investigate the asymptotic properties of the integrated periodogram calculated from a sequence of indicator functions of dependent extremal events. An event in Euclidean space is extreme if it occurs far away from the origin. We use a regular variation condition on the underlying stationary.......i.d. case a Brownian bridge appears. In the general case, we propose a stationary bootstrap procedure for approximating the distribution of the limiting process. The developed theory can be used to construct classical goodness-of-fit tests such as the Grenander–Rosenblatt and Cramér–von Mises tests which...... are based only on the extremes in the sample. We apply the test statistics to simulated and real-life data....

  20. What is the right way to talk about extreme events? (United States)

    Sobel, A. H.


    Extreme weather events draw the attention of the public. By demonstrating the vulnerability of human society to climate, extreme events can cause nonscientists -government leaders as well as the broader population - to take the danger posed by anthropogenic global warming more seriously than they otherwise might. An extreme event that draws media attention can become a 'teachable moment'. But extreme events are difficult to talk about in a way that honors both the strengths and weaknesses of the underlying science. No single event can be attributed to climate change, and some types of events are not even clearly influenced by it (or not in any ways our science can yet demonstrate). Strong, media-friendly statements that closely connect specific events to climate - designed to make best use of the moment's teachability - can easily overstate the case. This will raise the hackles of one's colleagues, at a minimum, and at worst, may damage the credibility of the field more broadly. Yet talking too much about the uncertainties runs the risk of understating the basic truth that global warming is real and dangerous, and may lend inadvertent support to anti-scientific denialism. I will discuss this tension in the context of my own experiences in the media after 'Superstorm' Sandy. I will address arguments I have heard, from social scientists and media consultants, to the effect that climate scientists should adopt communications strategies that lead to stronger, more media-friendly statements, and learn to suppress the tendency, bred into us during our scientific training, to emphasize the uncertainties.

  1. Representation of extreme precipitation events in Nepal in CMIP5 models (United States)

    Jung, Woosung; Ryu, Byeong; Yun, Myong


    Nepal is highly vulnerable to of extreme climate events due in part to its mountainous terrain and lack of infrastructure. Climate change is projected to increase the frequency and magnitude of extreme temperature and precipitation events worldwide, with particularly severe impacts likely in Nepal. In this study we analyze the performance of general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) at simulating temperature and precipitation in Nepal relative to the NCEP Reanalysis II and observational data, and we project how extreme events may change during the 21st century. We analyze the uncertainty in our projections, and compare the current generation of models in CMIP5 to prior results in this region using older climate models. Finally, we consider the impact of our projections on Nepal's society and economy.

  2. Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions (United States)

    Huang, Whitney K.; Stein, Michael L.; McInerney, David J.; Sun, Shanshan; Moyer, Elisabeth J.


    Changes in extreme weather may produce some of the largest societal impacts of anthropogenic climate change. However, it is intrinsically difficult to estimate changes in extreme events from the short observational record. In this work we use millennial runs from the Community Climate System Model version 3 (CCSM3) in equilibrated pre-industrial and possible future (700 and 1400 ppm CO2) conditions to examine both how extremes change in this model and how well these changes can be estimated as a function of run length. We estimate changes to distributions of future temperature extremes (annual minima and annual maxima) in the contiguous United States by fitting generalized extreme value (GEV) distributions. Using 1000-year pre-industrial and future time series, we show that warm extremes largely change in accordance with mean shifts in the distribution of summertime temperatures. Cold extremes warm more than mean shifts in the distribution of wintertime temperatures, but changes in GEV location parameters are generally well explained by the combination of mean shifts and reduced wintertime temperature variability. For cold extremes at inland locations, return levels at long recurrence intervals show additional effects related to changes in the spread and shape of GEV distributions. We then examine uncertainties that result from using shorter model runs. In theory, the GEV distribution can allow prediction of infrequent events using time series shorter than the recurrence interval of those events. To investigate how well this approach works in practice, we estimate 20-, 50-, and 100-year extreme events using segments of varying lengths. We find that even using GEV distributions, time series of comparable or shorter length than the return period of interest can lead to very poor estimates. These results suggest caution when attempting to use short observational time series or model runs to infer infrequent extremes.

  3. Simulation of extreme temperature over Odisha during May 2015

    Directory of Open Access Journals (Sweden)

    K.C. Gouda


    Full Text Available An extreme temperature event (heat wave over the state of Odisha was unique as it lasted for about 2 weeks in the 3rd and 4th weeks of May 2015. There was a similar severe heat wave in western and central Odisha in the month of April 1998. The interesting feature of the recent episodic heat wave is that it prevailed in the late pre-monsoon season with wider spread in the state of Odisha. Around 12–15 cities experienced a daily maximum temperature of over 45 °C during the strong heat wave period, and 25th −27th May was declared as the red box zone. In this study, we first analysed the intense summer temperature of 2015 May using India Meteorological Department observations of daily maximum temperature. The observed heat wave phenomenon was then simulated using the Weather Research and Forecast Model (WRFV3 at 2-km horizontal resolution to assess its ability to forecast such a rare event. The observational analysis clearly indicated that this episodic event was unique both in terms of intensity, geographical spread and duration. An optimized configuration of the WRF model is proposed and implemented for the simulation of the episodic heat wave phenomenon (daily maximum temperature over the state of Odisha. The time-ensemble simulation of the temperature is shown to be in close agreement with the station-scale observations.

  4. Research on Trends in Extreme Weather Events and their Effects on Grapevine in Romanian Viticulture


    Georgeta Mihaela Bucur; Anca Cristina Babes


    The aim of this work was to investigate the frequency and intensity of extreme weather events in various centers from Romania’s viticultural regions: winter frost, extreme temperatures during the growing season and summer droughts. Winter frost damaging the vine is a significant risk to grape production, mainly in the plains and lowlands to the foothills. The frequency of winter frost damaging the vine has increased during the last decades, in the context of climate change. Also, there has be...

  5. Projected changes in precipitation extremes linked to temperature over Japan (United States)

    Nayak, S.; Dairaku, K.; Takayabu, I.; Suzuki-Parker, A.


    Recent studies have argued that the extreme precipitation intensities are increasing in many regions across the globe due to atmospheric warming. This argument is based on the principle of Clausius-Clapeyron relationship which states that the atmosphere can hold more moisture in warmer air temperature (~7%/°C). In our study, we have investigated the precipitation extremes linked to temperature in current climate (1981-2000) and their projected changes in late 21st century (2081-2100, RCP4.5) over Japan from multi-model ensemble downscaling experiments by three RCMs (NHRCM, NRAMS, WRF) forced by JRA25 as well as three GCMs (CCSM4, MIROC5, MRI-GCM3). To do this, the precipitation intensities of wet days (defined as ≥ 0.05 mm/d) are stratified to different bins with 1°C temperature interval. We have also identified the occurrences of precipitation extremes in different spell durations and associated peak intensities exceeding various thresholds in two climate periods. We found that extreme precipitation intensities are increased by 5 mm/d in future climate for temperatures above 21°C (Fig. 1). Precipitation extremes of higher percentiles are projected to have larger increase rates in future climate scenarios (3-5%/°C in the current climate and 4-6%/°C in the future climate scenarios). The joint probability distribution of wet hours (≥1mm/h) with various peak intensities under future climate scenarios (RCP4.5) of the late 21st century suggests an increase of long-lived (>10hr) and short-lived (1-2hr) events. On the other hand, a relatively decrease of medium-lived events (3-10hr) are noticed in future climate scenario. The increase of extreme precipitation intensities in future climate is due to the increase in temperature under RCP4.5 (~2°C). Increase in temperature causes more evapotranspiration and subsequently increases the water vapor in the atmosphere.

  6. Spatiotemporal variability of extreme temperature frequency and amplitude in China (United States)

    Zhang, Yuanjie; Gao, Zhiqiu; Pan, Zaitao; Li, Dan; Huang, Xinhui


    Temperature extremes in China are examined based on daily maximum and minimum temperatures from station observations and multiple global climate models. The magnitude and frequency of extremes are expressed in terms of return values and periods, respectively, estimated by the fitted Generalized Extreme Value (GEV) distribution of annual extreme temperatures. The observations suggest that changes in temperature extremes considerably exceed changes in the respective climatological means during the past five decades, with greater amplitude of increases in cold extremes than in warm extremes. The frequency of warm (cold) extremes increases (decreases) over most areas, with an increasingly faster rate as the extremity level rises. Changes in warm extremes are more dependent on the varying shape of GEV distribution than the location shift, whereas changes in cold extremes are more closely associated with the location shift. The models simulate the overall pattern of temperature extremes during 1961-1981 reasonably well in China, but they show a smaller asymmetry between changes in warm and cold extremes primarily due to their underestimation of increases in cold extremes especially over southern China. Projections from a high emission scenario show the multi-model median change in warm and cold extremes by 2040 relative to 1971 will be 2.6 °C and 2.8 °C, respectively, with the strongest changes in cold extremes shifting southward. By 2040, warm extremes at the 1971 20-year return values would occur about every three years, while the 1971 cold extremes would occur once in > 500 years.

  7. The Relation between Extreme Weather Events and the Solar Activity (United States)

    Battinelli, P.; di Fazio, A.; Torelli, M.

    The oscillating part of the solar irradiance drives the cyclic component of the variations of the terrestrial atmosphere's thermodynamic state. In particular, the average temperature, and thus the turbulent atmospheric fuxes, are influenced. Reliable temperature data exist from ~220,000 years, while accurate solar irradiance space measurements (not affected by the atmosphere's absorption) are available only since 1979. Actually, there is a rather long data-set regarding solar activity, indicated by the Wolf number, which is found to be well correlated with the total solar flux. Thus, we use the Wolf number as a quantitative proxy of the incident flux, even in the interval before the space-based measurements. The fraction of solar energy trapped in the atmosphere due to the re-absorption of the infrared radiation by the greenhouse gases is an increasing function of time (in the latter 150-160 years). Over this interval, we spectrally analyzed the time series of both the Wolf number and the frequencies of extreme meteorological events, isolating and removing in the latter the cyclic components due to the periodic part of the radiative forcing exherted by the Sun. We were thus able to determine the time trend in the data regarding the observed frequencies of the U.S. continental tornadoes (National Center for Atmospheric Research) and of the global cyclones (hurricanes and tropical storms on all ocean basins, National Ocean and Atmospheric Administration). We find, for both the data sets an exponential behaviour, with e-folding times: for the cyclones tau ~= 110 years, and for the tornadoes tau ~= 70 years. We are happy to have given --through this work-- a contribution to the interdisciplinary scientific process coordinated by the IPCC (Intergovernmental Panel on Climate Change) through the ICSU (International Council of Scientific Unions) which takes place a latere of the international negotiations under the United Nations Framework Convention on Climate Change.

  8. Methodology for assessing probability of extreme hydrologic events coincidence

    Directory of Open Access Journals (Sweden)

    Prohaska Stevan


    Full Text Available The aim of the presented research is improvement of methodology for probability calculation of coinciding occurrence of historic floods and droughts in the same year. The original procedure was developed in order to determine the occurrence probability of such an extreme historic event. There are two phases in calculation procedure for assessment of both extreme drought and flood occurrence probability in the same year. In the first phase outliers are detected as indicators of extreme events, their return periods are calculated and series' statistics adjusted. In the second phase conditional probabilities are calculated: empirical points are plotted, and both extreme drought and flood occurrence probability in the same year is assessed based on the plot. Outlier detection is performed for the territory of Serbia. Results are shown as maps of regions (basins prone to floods, hydrologic drought, or both. Step-by-step numeric example is given for assessing conditional probability of occurrence of flood and drought for GS Raska on the river Raska. Results of assessment of conditional probability in two more cases are given for combination of extreme flood and 30 day minimum flow.

  9. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan


    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  10. Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review. (United States)

    Schmitt, Laetitia H M; Graham, Hilary M; White, Piran C L


    The frequency and severity of extreme events is expected to increase under climate change. There is a need to understand the economic consequences of human exposure to these extreme events, to underpin decisions on risk reduction. We undertook a scoping review of economic evaluations of the adverse health effects from exposure to weather-related extreme events. We searched PubMed, Embase and Web of Science databases with no restrictions to the type of evaluations. Twenty studies were included, most of which were recently published. Most studies have been undertaken in the U.S. (nine studies) or Asia (seven studies), whereas we found no studies in Africa, Central and Latin America nor the Middle East. Extreme temperatures accounted for more than a third of the pool of studies (seven studies), closely followed by flooding (six studies). No economic study was found on drought. Whilst studies were heterogeneous in terms of objectives and methodology, they clearly indicate that extreme events will become a pressing public health issue with strong welfare and distributional implications. The current body of evidence, however, provides little information to support decisions on the allocation of scarce resources between risk reduction options. In particular, the review highlights a significant lack of research attention to the potential cost-effectiveness of interventions that exploit the capacity of natural ecosystems to reduce our exposure to, or ameliorate the consequences of, extreme events.

  11. Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review

    Directory of Open Access Journals (Sweden)

    Laetitia H. M. Schmitt


    Full Text Available The frequency and severity of extreme events is expected to increase under climate change. There is a need to understand the economic consequences of human exposure to these extreme events, to underpin decisions on risk reduction. We undertook a scoping review of economic evaluations of the adverse health effects from exposure to weather-related extreme events. We searched PubMed, Embase and Web of Science databases with no restrictions to the type of evaluations. Twenty studies were included, most of which were recently published. Most studies have been undertaken in the U.S. (nine studies or Asia (seven studies, whereas we found no studies in Africa, Central and Latin America nor the Middle East. Extreme temperatures accounted for more than a third of the pool of studies (seven studies, closely followed by flooding (six studies. No economic study was found on drought. Whilst studies were heterogeneous in terms of objectives and methodology, they clearly indicate that extreme events will become a pressing public health issue with strong welfare and distributional implications. The current body of evidence, however, provides little information to support decisions on the allocation of scarce resources between risk reduction options. In particular, the review highlights a significant lack of research attention to the potential cost-effectiveness of interventions that exploit the capacity of natural ecosystems to reduce our exposure to, or ameliorate the consequences of, extreme events.

  12. Reproducing an extreme flood with uncertain post-event information (United States)

    Fuentes-Andino, Diana; Beven, Keith; Halldin, Sven; Xu, Chong-Yu; Reynolds, José Eduardo; Di Baldassarre, Giuliano


    Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Post-event data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum-Cunge-Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE) uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90 % of the observed high-water marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e.g. from radar data or a denser rain-gauge network. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events can be added into the analysis as

  13. Advanced Flip Chips in Extreme Temperature Environments (United States)

    Ramesham, Rajeshuni


    The use of underfill materials is necessary with flip-chip interconnect technology to redistribute stresses due to mismatching coefficients of thermal expansion (CTEs) between dissimilar materials in the overall assembly. Underfills are formulated using organic polymers and possibly inorganic filler materials. There are a few ways to apply the underfills with flip-chip technology. Traditional capillary-flow underfill materials now possess high flow speed and reduced time to cure, but they still require additional processing steps beyond the typical surface-mount technology (SMT) assembly process. Studies were conducted using underfills in a temperature range of -190 to 85 C, which resulted in an increase of reliability by one to two orders of magnitude. Thermal shock of the flip-chip test articles was designed to induce failures at the interconnect sites (-40 to 100 C). The study on the reliability of flip chips using underfills in the extreme temperature region is of significant value for space applications. This technology is considered as an enabling technology for future space missions. Flip-chip interconnect technology is an advanced electrical interconnection approach where the silicon die or chip is electrically connected, face down, to the substrate by reflowing solder bumps on area-array metallized terminals on the die to matching footprints of solder-wettable pads on the chosen substrate. This advanced flip-chip interconnect technology will significantly improve the performance of high-speed systems, productivity enhancement over manual wire bonding, self-alignment during die joining, low lead inductances, and reduced need for attachment of precious metals. The use of commercially developed no-flow fluxing underfills provides a means of reducing the processing steps employed in the traditional capillary flow methods to enhance SMT compatibility. Reliability of flip chips may be significantly increased by matching/tailoring the CTEs of the substrate

  14. Extreme flood events in the Dead Sea basin (United States)

    Ahlborn, Marieke; Ben Dor, Yoav; Schwab, Markus J.; Neugebauer, Ina; Plessen, Birgit; Tjallingii, Rik; Erel, Yigal; Enzel, Yehouda; Brauer, Achim


    The Dead Sea is a hypersaline, terminal lake located within the Dead Sea basin at the lowest continental elevation on Earth (~425 m below mean sea level). Extreme hydro-meteorological events in terms of flash floods occur regularly during the wet season in the Dead Sea basin and adjacent mountain ranges. However, little is known about the impact of these extreme floods on the sedimentary dynamics in the Dead Sea and possible links to long-term climate changes. The trilateral research project PALEX (Paleoclimate in the Eastern Mediterranean Region - Levante: Paleohydrology and Extreme Flood Events) was recently initiated within the framework of the DFG priority program 1006 ICDP (International Continental Scientific Drilling Program) to investigate extreme flood events in the Dead Sea basin during the Late Pleistocene and Holocene. Within the ICDP Dead Sea Deep Drilling Project (DSDDP) the ~455 m long sediment core 5017-1 was recovered from the northern Dead Sea basin. Previously published results (Neugebauer et al., 2014, 2015) have demonstrated the occurrence of extreme flood events represented in the sediments as thick graded detrital layers during Late Holocene dry phases. Based on these results we will apply a comprehensive analytical approach including microfacies analyses, μXRF element scanning, and stable isotope geochemistry to different time intervals of core 5017-1. Particularly, we aim to investigate the structure and composition of detrital layers in order to decipher sediment transport mechanisms and the provenance of the flood-triggered sediments. The overarching goal is to establish a high-resolution extreme flood time series for the Dead Sea basin on the basis of a previously established radiocarbon and U-Th chronology (Torfstein et al., 2015; Neugebauer et al., 2014) and to study a possible link between the frequency and magnitude of extreme flood events and the long-term climate trend. Neugebauer I, Brauer A, Schwab MJ, et al. (2014) Lithology of

  15. Investigation on rainfall extremes events trough a geoadditive model (United States)

    Bocci, C.; Caporali, E.; Petrucci, A.; Rossi, G.


    Rainfall can be considered a very important variable, and rainfall extreme events analysis of great concern for the enormous impacts that they may have on everyday life particularly when related to intense rainfalls and floods, and hydraulic risk management. On the catchment area of Arno River in Tuscany, Central Italy, a geoadditive mixed model of rainfall extremes is developed. Most of the territory of Arno River has suffered in the past of many severe hydro-geological events, with high levels of risk due to the vulnerability of a unique artistic and cultural heritage. The area has a complex topography that greatly influences the precipitation regime. The dataset is composed by the time series of the annual maxima of daily rainfall recorded in about 400 rain gauges, spatially distributed over the catchment area of about 8.800 km2. The record period covers mainly the second half of 20th century. The rainfall observations are assumed to follow generalized extreme value distributions whose locations are spatially dependent and where the dependence is captured using a geoadditive model. In particular, since rainfall has a natural spatial domain and a significant spatial variability, a spatial hierarchical model for extremes is used. The spatial hierarchical models, in fact, take into account data from all locations, borrowing strength from neighbouring locations when they estimate parameters and are of great interest when small set of data is available, as in the case of rainfall extreme values. Together with rain gauges location variables further physiographic variables are investigated as explanation variables. The implemented geoadditive mixed model of spatially referenced time series of rainfall extreme values, is able to capture the spatial dynamics of the rainfall extreme phenomenon. Since the model shows evidence of a spatial trend in the rainfall extreme dynamic, the temporal dynamic and the time influence can be also taken into account. The implemented

  16. Temporal variation of extreme precipitation events in Lithuania

    Directory of Open Access Journals (Sweden)

    Egidijus Rimkus


    Full Text Available Heavy precipitation events in Lithuania for the period 1961-2008 were analysed. The spatial distribution and dynamics of precipitation extremes were investigated. Positive tendencies and in some cases statistically significant trends were determined for the whole of Lithuania. Atmospheric circulation processes were derived using Hess & Brezowski's classification of macrocirculation forms. More than one third of heavy precipitation events (37% were observed when the atmospheric circulation was zonal. The location of the central part of a cyclone (WZ weather condition subtype over Lithuania is the most common synoptic situation (27% during heavy precipitation events. Climatic projections according to outputs of the CCLM model are also presented in this research. The analysis shows that the recurrence of heavy precipitation events in the 21st century will increase significantly (by up to 22% in Lithuania.

  17. [Sports and extreme conditions. Cardiovascular incidence in long term exertion and extreme temperatures (heat, cold)]. (United States)

    Melin, B; Savourey, G


    During ultra-endurance exercise, both increase in body temperature and dehydration due to sweat losses, lead to a decrease in central blood volume. The heart rate drift allows maintaining appropriate cardiac output, in order to satisfy both muscle perfusion and heat transfer requirements by increasing skin blood flow. The resulting dehydration can impair thermal regulation and increase the risks of serious accidents as heat stroke. Endurance events, lasting more than 8 hours, result in large sweat sodium chloride losses. Thus, ingestion of large amounts of water with poor salt intake can induce symptomatic hyponatremia (plasma sodium extreme condition.

  18. High resolution modelling of extreme precipitation events in urban areas (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave


    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  19. Extreme Events and Energy Providers: Science and Innovation (United States)

    Yiou, P.; Vautard, R.


    Most socio-economic regulations related to the resilience to climate extremes, from infrastructure or network design to insurance premiums, are based on a present-day climate with an assumption of stationarity. Climate extremes (heat waves, cold spells, droughts, storms and wind stilling) affect in particular energy production, supply, demand and security in several ways. While national, European or international projects have generated vast amounts of climate projections for the 21st century, their practical use in long-term planning remains limited. Estimating probabilistic diagnostics of energy user relevant variables from those multi-model projections will help the energy sector to elaborate medium to long-term plans, and will allow the assessment of climate risks associated to those plans. The project "Extreme Events for Energy Providers" (E3P) aims at filling a gap between climate science and its practical use in the energy sector and creating in turn favourable conditions for new business opportunities. The value chain ranges from addressing research questions directly related to energy-significant climate extremes to providing innovative tools of information and decision making (including methodologies, best practices and software) and climate science training for the energy sector, with a focus on extreme events. Those tools will integrate the scientific knowledge that is developed by scientific communities, and translate it into a usable probabilistic framework. The project will deliver projection tools assessing the probabilities of future energy-relevant climate extremes at a range of spatial scales varying from pan-European to local scales. The E3P project is funded by the Knowledge and Innovation Community (KIC Climate). We will present the mechanisms of interactions between academic partners, SMEs and industrial partners for this project. Those mechanisms are elementary bricks of a climate service.

  20. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes (United States)

    Harrington, Luke J.; Frame, David J.; Fischer, Erich M.; Hawkins, Ed; Joshi, Manoj; Jones, Chris D.


    Understanding how the emergence of the anthropogenic warming signal from the noise of internal variability translates to changes in extreme event occurrence is of crucial societal importance. By utilising simulations of cumulative carbon dioxide (CO2) emissions and temperature changes from eleven earth system models, we demonstrate that the inherently lower internal variability found at tropical latitudes results in large increases in the frequency of extreme daily temperatures (exceedances of the 99.9th percentile derived from pre-industrial climate simulations) occurring much earlier than for mid-to-high latitude regions. Most of the world’s poorest people live at low latitudes, when considering 2010 GDP-PPP per capita; conversely the wealthiest population quintile disproportionately inhabit more variable mid-latitude climates. Consequently, the fraction of the global population in the lowest socio-economic quintile is exposed to substantially more frequent daily temperature extremes after much lower increases in both mean global warming and cumulative CO2 emissions.

  1. Distributing urban resilience to extreme precipitation events with green infrastructure (United States)

    Montalto, F. A.; Catalano De Sousa, M.; Yu, Z.


    New urban green spaces are being designed to manage stormwater, but their performance in a changing climate is untested. Key questions pertain to the ability of these systems to mitigate flood and sewer overflow concerns during impact of extreme events on, and to withstand (biologically and physically) increased frequency and intensity of drought and flood conditions. In this presentation, we present field data characterizing performance of a bioretention area, a stormwater treatment wetland, and a green roof under Hurricane Irene (2011), Superstorm Sandy (2012), and a variety of extreme precipitation events during the summer of 2013. Specifically, we characterize the fate and volume of incident runon and/or precipitation to the facilities during these extreme events, and compare them to long term monitored performance metrics. We also present laboratory test results documenting how vegetation in these facilities stands up to simulated flood and drought conditions. The results are discussed in the context of predicted climate change, specifically associated with the amount and timing of precipitation.

  2. Extreme Rainfall Events Over Southern Africa: Assessment of a Climate Model to Reproduce Daily Extremes (United States)

    Williams, C.; Kniveton, D.; Layberry, R.


    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.

  3. Recent trends of extreme temperature indices for the Iberian Peninsula (United States)

    Fonseca, D.; Carvalho, M. J.; Marta-Almeida, M.; Melo-Gonçalves, P.; Rocha, A.


    Climate change and extreme climate events have a significant impact on societies and ecosystems. As a result, climate change projections, especially related with extreme temperature events, have gained increasing importance due to their impacts on the well-being of the population and ecosystems. However, most studies in the field are based on coarse global climate models (GCMs). In this study, we perform a high resolution downscaling simulation to evaluate recent trends of extreme temperature indices. The model used was Weather Research and Forecast (WRF) forced by MPI-ESM-LR, which has been shown to be one of the more robust models to simulate European climate. The domain used in the simulations includes the Iberian Peninsula and the simulation covers the 1986-2005 period (i.e. recent past). In order to study extreme temperature events, trends were computed using the Theil-Sen method for a set of temperature indexes defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). For this, daily values of minimum and maximum temperatures were used. The trends of the indexes were computed for annual and seasonal values and the Mann-Kendall Trend test was used to evaluate their statistical significance. In order to validate the results, a second simulation, in which WRF was forced by ERA-Interim, was performed. The results suggest an increase in the number of warm days and warm nights, especially during summer and negative trends for cold nights and cold days for the summer and spring. For the winter, contrary to the expected, the results suggest an increase in cold days and cold nights (warming hiatus). This behavior is supported by the WRF simulation forced by ERA-Interim for the autumn days, pointing to an extension of the warming hiatus phenomenon to the remaining seasons. These results should be used with caution since the period used to calculate the trends may not be long enough for this purpose. However, the general sign of trends are similar for

  4. Atmospheric rivers and cool season extreme precipitation events in Arizona (United States)

    Rivera Fernandez, Erick Reinaldo

    Atmospheric rivers (ARs) are important contributors to cool season precipitation in the Southwestern US, and in some cases can lead to extreme hydrometeorological events in the region. We performed a climatological analysis and identified two predominant types of ARs that affect the central mountainous region in Arizona: Type 1 ARs originate in the tropics near Hawaii (central Pacific) and enhance their moisture in the midlatitudes, with maximum moisture transport over the ocean at low-levels of the troposphere. On the other hand, moisture in Type 2 ARs has a more direct tropical origin and meridional orientation with maximum moisture transfer at mid-levels. We then analyze future projections of Southwest ARs in a suite of global and regional climate models used in the North American Regional Climate Change Assessment Program (NARCCAP), to evaluate projected future changes in the frequency and intensity of ARs under warmer global climate conditions. We find a consistent and clear intensification of the water vapor transport associated with the ARs that impinge upon Arizona and adjacent regions, however, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no robust variations are projected either by the global or the regional NARCCAP models. To evaluate the effect of horizontal resolution and improve our physical understanding of these results, we numerically simulated a historical AR event using the Weather Research and Forecasting (WRF) model at a 3-km resolution. We then performed a pseudo-global warming experiment by modifying the lateral and lower boundary conditions to reflect possible changes in future ARs (as projected by the ensemble of global model simulations used for NARCCAP). Interestingly we find that despite higher specific humidity, some regions still receive less rainfall in the warming climate experiments - partially due to changes in thermodynamics, but primarily due to AR

  5. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability. (United States)

    Jiang, Chengsheng; Shaw, Kristi S; Upperman, Crystal R; Blythe, David; Mitchell, Clifford; Murtugudde, Raghu; Sapkota, Amy R; Sapkota, Amir


    Salmonella is a leading cause of acute gastroenteritis worldwide. Patterns of salmonellosis have been linked to weather events. However, there is a dearth of data regarding the association between extreme events and risk of salmonellosis, and how this risk may disproportionately impact coastal communities. We obtained Salmonella case data from the Maryland Foodborne Diseases Active Surveillance Network (2002-2012), and weather data from the National Climatic Data Center (1960-2012). We developed exposure metrics related to extreme temperature and precipitation events using a 30 year baseline (1960-1989) and linked them with county-level salmonellosis data. Data were analyzed using negative binomial Generalized Estimating Equations. We observed a 4.1% increase in salmonellosis risk associated with a 1 unit increase in extreme temperature events (incidence rate ratio (IRR):1.041; 95% confidence interval (CI):1.013-1.069). This increase in risk was more pronounced in coastal versus non-coastal areas (5.1% vs 1.5%). Likewise, we observed a 5.6% increase in salmonellosis risk (IRR:1.056; CI:1.035-1.078) associated with a 1 unit increase in extreme precipitation events, with the impact disproportionately felt in coastal areas (7.1% vs 3.6%). To our knowledge, this is the first empirical evidence showing that extreme temperature/precipitation events-that are expected to be more frequent and intense in coming decades-are disproportionately impacting coastal communities with regard to salmonellosis. Adaptation strategies need to account for this differential burden, particularly in light of ever increasing coastal populations. Copyright © 2015. Published by Elsevier Ltd.

  6. Reliability of structural systems subjected to extreme forcing events

    CERN Document Server

    Joo, Han-Kyul; Sapsis, Themistoklis P


    We characterize the complex, heavy-tailed probability distribution functions (pdf) describing the response and its local extrema for structural systems subjected to random forcing that includes extreme events. Our approach is based on the recent probabilistic decomposition-synthesis technique in, where we decouple rare events regimes from the background fluctuations. The result of the analysis has the form of a semi-analytical approximation formula for the pdf of the response (displacement, velocity, and acceleration) and the pdf of the local extrema. For special limiting cases (lightly damped or heavily damped systems) our analysis provides fully analytical approximations. We also demonstrate how the method can be applied to high dimensional structural systems through a two-degrees-of-freedom structural system undergoing rare events due to intermittent forcing. The derived formulas can be evaluated with very small computational cost and are shown to accurately capture the complicated heavy-tailed and asymmet...

  7. Extreme climate events over northern China during the last 50 years

    Institute of Scientific and Technical Information of China (English)

    HANHui; GONGDaoyi


    Climate extremes for agriculture-pasture transitional zone, northem China, are analyzed on the basis of daily mean temperature and precipitation observations for 31 stations in the period 1956-2001. Analysis season for precipitation is May-September, i.e., the rainy season. For temperature is the hottest three months, i.e., June through August. Heavy rain events, defined as those with daily precipitation equal to or larger than 50 mm, show no significant secular trend. A jump-like change, however, is found occurring in about 1980. For the period 1980-1993, the frequency of heavy rain events is significantly lower than the previous periods. Simultaneously, the occurring time of heavy rains expanded, commencing about one month early and ending one month later. Long dry spells are defined as those with longer than 10 days without rainfall. The frequency of long dry spells displays a significant (at the 99% confidence level) trend at the value of +8.3% /10a. That may be one of the major causes of the frequent droughts emerging over northern China during the last decades. Extremely hot and low temperature events are defined as the uppermost 10% daily temperatures and the lowest 10% daily temperatures, respectively. There is a weak and non-significant upward trend in frequency of extremely high temperatures from the 1950s to the mid-1990s. But the number of hot events increases as much as twice since 1997. That coincides well with the sudden rise in mean summer temperature for the same period. Contrary to that, the fiequency of low temperature events have been decreasing steadily since the 1950s, with a significant linear trend of-15%/10a.

  8. Finite Temperature Field Theory of "Extreme Black Holes"


    Degura, Yoshitaka; Shiraishi, Kiyoshi


    We treat the model which describes "extreme black holes" moving slowly. We derive an effective lagrangian in the low energy for this model and then investigate a statistical behavior of "extreme black holes" in the finite temperature.

  9. Reproducing an extreme flood with uncertain post-event information

    Directory of Open Access Journals (Sweden)

    D. Fuentes-Andino


    Full Text Available Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Post-event data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum–Cunge–Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90 % of the observed high-water marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e.g. from radar data or a denser rain-gauge network. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events

  10. Coaxial Cables for Martian Extreme Temperature Environments (United States)

    Ramesham, Rajeshuni; Harvey, Wayne L.; Valas, Sam; Tsai, Michael C.


    Work was conducted to validate the use of the rover external flexible coaxial cabling for space under the extreme environments to be encountered during the Mars Science Laboratory (MSL) mission. The antennas must survive all ground operations plus the nominal 670-Martian-day mission that includes summer and winter seasons of the Mars environment. Successful development of processes established coaxial cable hardware fatigue limits, which were well beyond the expected in-flight exposures. In keeping with traditional qualification philosophy, this was accomplished by subjecting flight-representative coaxial cables to temperature cycling of the same depth as expected in-flight, but for three times the expected number of in-flight thermal cycles. Insertion loss and return loss tests were performed on the coaxial cables during the thermal chamber breaks. A vector network analyzer was calibrated and operated over the operational frequency range 7.145 to 8.450 GHz. Even though some of the exposed cables function only at UHF frequencies (approximately 400 MHz), the testing was more sensitive, and extending the test range down to 400 MHz would have cost frequency resolution. The Gore flexible coaxial cables, which were the subject of these tests, proved to be robust and displayed no sign of degradation due to the 3X exposure to the punishing Mars surface operations cycles.

  11. The Estimation of Probability of Extreme Events for Small Samples (United States)

    Pisarenko, V. F.; Rodkin, M. V.


    The most general approach to the study of rare extreme events is based on the extreme value theory. The fundamental General Extreme Value Distribution lies in the basis of this theory serving as the limit distribution for normalized maxima. It depends on three parameters. Usually the method of maximum likelihood (ML) is used for the estimation that possesses well-known optimal asymptotic properties. However, this method works efficiently only when sample size is large enough ( 200-500), whereas in many applications the sample size does not exceed 50-100. For such sizes, the advantage of the ML method in efficiency is not guaranteed. We have found that for this situation the method of statistical moments (SM) works more efficiently over other methods. The details of the estimation for small samples are studied. The SM is applied to the study of extreme earthquakes in three large virtual seismic zones, representing the regime of seismicity in subduction zones, intracontinental regime of seismicity, and the regime in mid-ocean ridge zones. The 68%-confidence domains for pairs of parameter (ξ, σ) and (σ, μ) are derived.

  12. Ensemble reconstruction of spatio-temporal extreme low-flow events in France since 1871 (United States)

    Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Devers, Alexandre; Graff, Benjamin


    The length of streamflow observations is generally limited to the last 50 years even in data-rich countries like France. It therefore offers too small a sample of extreme low-flow events to properly explore the long-term evolution of their characteristics and associated impacts. To overcome this limit, this work first presents a daily 140-year ensemble reconstructed streamflow dataset for a reference network of near-natural catchments in France. This dataset, called SCOPE Hydro (Spatially COherent Probabilistic Extended Hydrological dataset), is based on (1) a probabilistic precipitation, temperature, and reference evapotranspiration downscaling of the Twentieth Century Reanalysis over France, called SCOPE Climate, and (2) continuous hydrological modelling using SCOPE Climate as forcings over the whole period. This work then introduces tools for defining spatio-temporal extreme low-flow events. Extreme low-flow events are first locally defined through the sequent peak algorithm using a novel combination of a fixed threshold and a daily variable threshold. A dedicated spatial matching procedure is then established to identify spatio-temporal events across France. This procedure is furthermore adapted to the SCOPE Hydro 25-member ensemble to characterize in a probabilistic way unrecorded historical events at the national scale. Extreme low-flow events are described and compared in a spatially and temporally homogeneous way over 140 years on a large set of catchments. Results highlight well-known recent events like 1976 or 1989-1990, but also older and relatively forgotten ones like the 1878 and 1893 events. These results contribute to improving our knowledge of historical events and provide a selection of benchmark events for climate change adaptation purposes. Moreover, this study allows for further detailed analyses of the effect of climate variability and anthropogenic climate change on low-flow hydrology at the scale of France.

  13. Can reanalysis datasets describe the persistent temperature and precipitation extremes over China? (United States)

    Zhu, Jian; Huang, Dan-Qing; Yan, Pei-Wen; Huang, Ying; Kuang, Xue-Yuan


    The persistent temperature and precipitation extremes may bring damage to the economy and human due to their intensity, duration and areal coverage. Understanding the quality of reanalysis datasets in descripting these extreme events is important for detection, attribution and model evaluation. In this study, the performances of two reanalysis datasets [the twentieth century reanalysis (20CR) and Interim ECMWF reanalysis (ERA-Interim)] in reproducing the persistent temperature and precipitation extremes in China are evaluated. For the persistent temperature extremes, the two datasets can better capture the intensity indices than the frequency indices. The increasing/decreasing trend of persistent warm/cold extremes has been reasonably detected by the two datasets, particularly in the northern part of China. The ERA-Interim better reproduces the climatology and tendency of persistent warm extremes, while the 20CR has better skill to depict the persistent cold extremes. For the persistent precipitation extremes, the two datasets have the ability to reproduce the maximum consecutive 5-day precipitation. The two datasets largely underestimate the maximum consecutive dry days over the northern part of China, while overestimate the maximum consecutive wet days over the southern part of China. For the response of the precipitation extremes against the temperature variations, the ERA-Interim has good ability to depict the relationship among persistent precipitation extremes, local persistent temperature extremes, and global temperature variations over specific regions.

  14. Extreme climatic events in relation to global change and their impact on life histories

    Institute of Scientific and Technical Information of China (English)

    Juan MORENO; Anders Pape Mφller


    Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history.

  15. Extreme climatic events in relation to global change and their impact on life histories

    Directory of Open Access Journals (Sweden)

    Juan MORENO, Anders Pape Møller


    Full Text Available Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history [Current Zoology 57 (3: 375–389, 2011].

  16. Using Atmospheric Circulation Patterns to Detect and Attribute Changes in the Risk of Extreme Climate Events (United States)

    Diffenbaugh, N. S.; Horton, D. E.; Singh, D.; Swain, D. L.; Touma, D. E.; Mankin, J. S.


    Because of the high cost of extreme events and the growing evidence that global warming is likely to alter the statistical distribution of climate variables, detection and attribution of changes in the probability of extreme climate events has become a pressing topic for the scientific community, elected officials, and the public. While most of the emphasis has thus far focused on analyzing the climate variable of interest (most often temperature or precipitation, but also flooding and drought), there is an emerging emphasis on applying detection and attribution analysis techniques to the underlying physical causes of individual extreme events. This approach is promising in part because the underlying physical causes (such as atmospheric circulation patterns) can in some cases be more accurately represented in climate models than the more proximal climate variable (such as precipitation). In addition, and more scientifically critical, is the fact that the most extreme events result from a rare combination of interacting causes, often referred to as "ingredients". Rare events will therefore always have a strong influence of "natural" variability. Analyzing the underlying physical mechanisms can therefore help to test whether there have been changes in the probability of the constituent conditions of an individual event, or whether the co-occurrence of causal conditions cannot be distinguished from random chance. This presentation will review approaches to applying detection/attribution analysis to the underlying physical causes of extreme events (including both "thermodynamic" and "dynamic" causes), and provide a number of case studies, including the role of frequency of atmospheric circulation patterns in the probability of hot, cold, wet and dry events.

  17. Expected impacts of climate change on extreme climate events; Impacts du changement climatique sur les evenements climatiques extremes

    Energy Technology Data Exchange (ETDEWEB)

    Planton, S.; Deque, M.; Chauvin, F. [Meteo-France, Centre National de Recherches Meteorologiques/groupe d' Etude de l' Atmosphere Meteorologique (CNRM/GAME), 31 - Toulouse (France); Terray, L. [Centre Europeen de Recherches Avancees en Calcul Scientifique, 31 - Toulouse (France)


    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  18. On extreme rainfall intensity increases with air temperature (United States)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo


    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  19. Reanalysis Data Evaluation to Study Temperature Extremes in Siberia (United States)

    Shulgina, T. M.; Gordov, E. P.


    Ongoing global climate changes are strongly pronounced in Siberia by significant warming in the 2nd half of 20th century and recent extreme events such as 2010 heat wave and 2013 flood in Russia's Far East. To improve our understanding of observed climate extremes and to provide to regional decision makers the reliable scientifically based information with high special and temporal resolution on climate state, we need to operate with accurate meteorological data in our study. However, from available 231 stations across Siberia only 130 of them present the homogeneous daily temperature time series. Sparse, station network, especially in high latitudes, force us to use simulated reanalysis data. However those might differ from observations. To obtain reliable information on temperature extreme "hot spots" in Siberia we have compared daily temperatures form ERA-40, ERA Interim, JRA-25, JRA-55, NCEP/DOE, MERRA Reanalysis, HadEX2 and GHCNDEX gridded datasets with observations from RIHMI-WDC/CDIAC dataset for overlap period 1981-2000. Data agreement was estimated at station coordinates to which reanalysis data were interpolated using modified Shepard method. Comparison of averaged over 20 year annual mean temperatures shows general agreement for Siberia excepting Baikal region, where reanalyses significantly underestimate observed temperature behavior. The annual temperatures closest to observed one were obtained from ERA-40 and ERA Interim. Furthermore, t-test results show homogeneity of these datasets, which allows one to combine them for long term time series analysis. In particular, we compared the combined data with observations for percentile-based extreme indices. In Western Siberia reanalysis and gridded data accurately reproduce observed daily max/min temperatures. For East Siberia, Lake Baikal area, ERA Interim data slightly underestimates TN90p and TX90p values. Results obtained allows regional decision-makers to get required high spatial resolution (0,25°×0

  20. Probabilistic forecast of daily areal precipitation focusing on extreme events (United States)

    Bliefernicht, J.; Bárdossy, A.


    A dynamical downscaling scheme is usually used to provide a short range flood forecasting system with high-resolved precipitation fields. Unfortunately, a single forecast of this scheme has a high uncertainty concerning intensity and location especially during extreme events. Alternatively, statistical downscaling techniques like the analogue method can be used which can supply a probabilistic forecasts. However, the performance of the analogue method is affected by the similarity criterion, which is used to identify similar weather situations. To investigate this issue in this work, three different similarity measures are tested: the euclidean distance (1), the Pearson correlation (2) and a combination of both measures (3). The predictor variables are geopotential height at 1000 and 700 hPa-level and specific humidity fluxes at 700 hPa-level derived from the NCEP/NCAR-reanalysis project. The study is performed for three mesoscale catchments located in the Rhine basin in Germany. It is validated by a jackknife method for a period of 44 years (1958-2001). The ranked probability skill score, the Brier Skill score, the Heidke skill score and the confidence interval of the Cramer association coefficient are calculated to evaluate the system for extreme events. The results show that the combined similarity measure yields the best results in predicting extreme events. However, the confidence interval of the Cramer coefficient indicates that this improvement is only significant compared to the Pearson correlation but not for the euclidean distance. Furthermore, the performance of the presented forecasting system is very low during the summer and new predictors have to be tested to overcome this problem.

  1. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein


    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  2. PRACE resources to study extreme natural events: the SCENE project (United States)

    Fiori, Elisabetta; Galizia, Antonella; Danovaro, Emanuele; Clematis, Andrea; Bedrina, Tatiana; Parodi, Antonio


    Forecasting severe storms and floods is one of the main challenges of 21th century. Floods are the most dangerous meteorological hazard in the Mediterranean basins due to both the number of people affected and to the relatively high frequency by which human activities and goods suffer damages and losses. The numerical simulations of extreme events which happen over small basins as the Mediterranean ones are need a very fine-resolution in space and time and as a consequence considerable memory and computational power are required. Since the resources provided by the PRACE project represent the solution for satisfying such requirements, the Super Computing of Extreme Natural Events (SCENE) project has been proposed. SCENE aims to provide an advanced understanding of the intrinsic predictability of severe precipitation processes and the associated predictive ability of high-resolution meteorological models with a special focus on flash flood-producing storms in regions of complex orography (e.g. Mediterranean area) through the assessment of the role of both the convective and microphysical processes. The meteorological model considered in the project is the Weather Research and Forecasting (WRF) model, a state of the art mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. Thus, among all the parameterizations available in the WRF model, the WRF Single-Moment 6-Class Scheme and the Thompson microphysics scheme will be adopted for the numerical simulations in combination with three different approaches for the treatment of the convective processes, that is the use of explicit method, Betts-Miller-Janjic Scheme and Kain-Fritsch. As for flash-flood producing storms, the project considers the recent sequence of extreme events occurred in the north-western portion of the Mediterranean sea; some of these events are the so-called critical cases of the DRIHM project (, i.e. selected severe

  3. High resolution simulations of extreme weather event in south Sardinia (United States)

    Dessy, C.


    In the last decade, like most region of Mediterranean Europe, Sardinia has experienced severe precipitation events generating flash floods resulting in loss of lives and large economic damage. A numerical meteorological operational set-up is applied in the local weather service with the aim to improve the operational short range weather forecast of the Service with particular attention to intense, mostly rare and potentially severe, events. On the early hours of 22 October 2008 an intense and almost stationary mesoscale convective system interested particularly the south of Sardinia, heavy precipitation caused a flash flood with fatalities and numerous property damages. The event was particularly intense: about 400 mm of rain in 12 hours (a peak of 150 mm in an hour) were misured by the regional network of weather stations and these values appear extremely meaningfulls since those are about seven times the climatological monthly rainfall for that area and nearly the climatological annual rainfall. With the aim to improve significantly quantitative precipitation forecasting, it was evaluated a different set-up of a high resolution convection resolving model (MM5) initialised with different initial and boundary conditions (ECMWF and NCAR). In this paper it is discussed the meteorological system related to the mentioned event by using different numerical weather models (GCM and LAM) combined with conventional data, radar Doppler and Meteosat images. Preliminary results say that a different set-up of a non hydrostatic model can forecast severe convection events in advance of about one day and produce more realistic rainfall than that current operational and also improve the weather forecasts to respect the ECMWF-GCM. So it could drive an operational alert system in order to limit the risks associated with heavy precipitation events.

  4. Assessing Hydrological Extreme Events with Geospatial Data and Models (United States)

    Vivoni, Enrique R.; Grimaldi, Salvatore; Nardi, Fernando; Ivanov, Valeriy Y.; Castelli, Fabio; Bras, Rafael L.; Ubertini, Lucio


    Prediction of river basin hydrological response to extreme meteorological events is a primary concern in areas with frequent flooding, landslides, and debris flows. Natural hydrogeological disasters in many regions lead to extensive property damage, impact on societal activities, and loss of life. Hydrologists have a long history of assessing and predicting hydrologic hazards through the combined use of field observations, monitoring networks, remote sensing, and numerical modeling. Nevertheless, the integration of field data and computer models has yet to result in prediction systems that capture space-time interactions between meteorological forcing, land surface characteristics, and the internal hydrological response in river basins. Capabilities for assessing hydrologic extreme events are greatly enhanced via the use of geospatial data sets describing watershed properties such as topography, channel structure, soils, vegetation, and geological features. Recent advances in managing, processing, and visualizing cartographic data with geographic information systems (GIS) have enabled their direct use in spatially distributed hydrological models. In a distributed model application, geospatial data sets can be used to establish the model domain, specify boundary and initial conditions, determine the spatial variation of parameter values, and provide the spatial model forcing. By representing a watershed through a set of discrete elements, distributed models simulate water, energy, and mass transport in a landscape and provide estimates of the spatial pattern of hydrologic states, fluxes, and pathways.

  5. The Climatology of Taiwan extreme rainfall events and the attributions (United States)

    Su, S. H.; Kuo, H. C.; Chen, Y. H.; Chu, J. L.; Lin, L. Y.


    Taiwan is located in the East-Asian monsoon region with average 2,500mm annual precipitation. Most significant Meteorological disasters are related to extreme precipitation which is associated with a complex terrain. Therefore, the long-term trends or climate variations in precipitation due to climate change are our major concern. We studied the climatology of extreme rainfall (ER, 95thpercentile) events in Taiwan using hourly precipitation data form 21 surface stations during 1960-2014. ER contributes about 40% of the total rain amount. It was found that approximately 68% of ER is related to typhoon (TY) and 22% associated with the Mei-Yu (MY) frontal system. The total ER amount annual variation is strongly related to TY, with correlation coefficient of 0.89 for rainfall amount and 0.86 for frequency. There is a significant increasing trend of TY-ER in past 55 years, but also has large variations over the annual and decadal time scales. The inter-annual variation of astounding extreme rainfall (AER, 99.9thpercentile) is increased significantly, especially in the past 15 years. It implies that the increasing of AER rainfall amount majorly caused by the increasing of frequency instead of average rain intensity of TY-AER. The MY-ER events are also highly correlated with the frontal system. The correlation is 0.84 for the rainfall amount and 0.83 of the frequency with the frontal days. There are also strong inter-annual variations of MY-ER, but the long-term trends are not as significant as TY-ER. The variation of frontal system number is another parameter may impact the MY-ER. The observational frontal system numbers had positive correlation with the MY-ER. The attribution of Taiwan TY-ER changes was debated in the research community. In general, the public acceptance of Taiwan extreme precipitation events is affected by multi-scale systems. According to observational data, the increasing of TY-ER amount is 37 % (48% )in Taiwan and some resent studies (Wang et al

  6. Distribution of extreme rainfall events over Ebro River basin (United States)

    Saa, Antonio; Tarquis, Ana Maria; Valencia, Jose Luis; Gascó, Jose Maria


    The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X > x) ∞ x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section. The evolution of the distribution in the second XXth century and the impact on the extreme values model. After realized the analyses it does not appreciate difference in the distribution throughout the time which suggests that this region does not appreciate increase of the extreme values both for the number of dry consecutive days and for the value of the rainfall References: Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values,. Springer-Verlag Krishnamoorthy K. (2006), Handbook of Statistical Distributions with Applications, Chapman & Hall/CRC. Bodini A., Cossu A. (2010). Vulnerability assessment

  7. Climate change and the impact of extreme temperatures on aviation (United States)

    Coffel, E.; Horton, R.


    Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.

  8. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project (United States)

    Menz, Christoph


    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  9. The Definition and Classification of Extensive and Persistent Extreme Cold Events in China

    Institute of Scientific and Technical Information of China (English)

    PENG Jing-Bei; BUEH Cholaw


    Using the observed daily temperatures from 756 stations in China during the period from 1951 to 2009, extensive and persistent extreme cold events (EPECEs) were defined according to the following three steps: 1) a station was defined as an extreme cold station (ECS) if the observed temperature was lower than its 10th percentile threshold; 2) an extensive extreme cold event was determined to be present if the approximated area occupied by the ECSs was more than 10% of the total area of China (83rd percentile) on its starting day and the maximum area occupied by the ECSs was at least 20% of the total area of China (96th percentile); and 3) an EPECE was determined to be present if the extensive extreme cold event lasted for at least for eight days. 52 EPECEs were identified in this manner, and these identification results were also verified using other reliable data. On the basis of cluster analysis, five types of EPECEs were classified according to the spatial distribution of ECSs at their most extensive time over the course of the EPECE.

  10. Impacts of Climate Change On The Occurrence of Extreme Events: The Mice Project (United States)

    Palutikof, J. P.; Mice Team

    It is widely accepted that climate change due to global warming will have substan- tial impacts on the natural environment, and on human activities. Furthermore, it is increasingly recognized that changes in the severity and frequency of extreme events, such as windstorm and flood, are likely to be more important than changes in the average climate. The EU-funded project MICE (Modelling the Impacts of Climate Extremes) commenced in January 2002. It seeks to identify the likely changes in the occurrence of extremes of rainfall, temperature and windstorm due to global warm- ing, using information from climate models as a basis, and to study the impacts of these changes in selected European environments. The objectives are: a) to evaluate, by comparison with gridded and station observations, the ability of climate models to successfully reproduce the occurrence of extremes at the required spatial and temporal scales. b) to analyse model output with respect to future changes in the occurrence of extremes. Statistical analyses will determine changes in (i) the return periods of ex- tremes, (ii) the joint probability of extremes (combinations of damaging events such as windstorm followed by heavy rain), (iii) the sequential behaviour of extremes (whether events are well-separated or clustered) and (iv) the spatial patterns of extreme event occurrence across Europe. The range of uncertainty in model predictions will be ex- plored by analysing changes in model experiments with different spatial resolutions and forcing scenarios. c) to determine the impacts of the predicted changes in extremes occurrence on selected activity sectors: agriculture (Mediterranean drought), commer- cial forestry and natural forest ecosystems (windstorm and flood in northern Europe, fire in the Mediterranean), energy use (temperature extremes), tourism (heat stress and Mediterranean beach holidays, changes in the snow pack and winter sports ) and civil protection/insurance (windstorm and flood

  11. Changes in Extreme Events: from GCM Output to Social, Economic and Ecological Impacts (United States)

    Tebaldi, C.; Meehl, G. A.


    Extreme events can deeply affect social and natural systems. The current generation of global climate model is producing information that can be directly used to characterize future changes in extreme events, and through a further step their impacts, despite their still relatively coarse resolution. It is important to define extreme indicators consistently with what we expect GCM to be able to represent reliably. We use two examples from our work, heat waves and frost days, that well describe different aspects of the analysis of extremes from GCM output. Frost days are "mild extremes" and their definition and computation is straightforward. GCMs can represent them accurately and display a strong consistent signal of change. The impacts of these changes will be extremely relevant for ecosystems and agriculture. Heat waves do not have a standard definition. On the basis of historical episodes we isolate characteristics that were responsible for the worst effects on human health, for example, and analyze these characteristics in model simulations, validating the model's historical simulations. The changes in these characteristics can then be easily translated in expected differential impacts on public health. Work in progress goes in the direction of better characterization of "heat waves" taking into account jointly a set of variables like maximum and minimum temperatures and humidity, better addressing the biological vulnerabilities of the populations at risk.

  12. The association of extreme temperatures and the incidence of tuberculosis in Japan (United States)

    Onozuka, Daisuke; Hagihara, Akihito


    Seasonal variation in the incidence of tuberculosis (TB) has been widely assumed. However, few studies have investigated the association between extreme temperatures and the incidence of TB. We collected data on cases of TB and mean temperature in Fukuoka, Japan for 2008-2012 and used time-series analyses to assess the possible relationship of extreme temperatures with TB incident cases, adjusting for seasonal and interannual variation. Our analysis revealed that the occurrence of extreme heat temperature events resulted in a significant increase in the number of TB cases (relative risk (RR) 1.20, 95 % confidence interval (CI) 1.01-1.43). We also found that the occurrence of extreme cold temperature events resulted in a significant increase in the number of TB cases (RR 1.23, 95 % CI 1.05-1.45). Sex and age did not modify the effect of either heat or cold extremes. Our study provides quantitative evidence that the number of TB cases increased significantly with extreme heat and cold temperatures. The results may help public health officials predict extreme temperature-related TB incidence and prepare for the implementation of preventive public health interventions.

  13. Modelling extreme climatic events in Guadalquivir Estuary ( Spain) (United States)

    Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo


    Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.

  14. Modern sedimentation and extreme event in the South China Sea (United States)

    Chen, Yu-Huang; Su, Chih-Chieh


    The South China Sea is the largest marginal sea of the northwest Pacific. It is situated at the plate boundary of the Eurasian, Philippine Sea, and Indian plates and also on the North Western Pacific corridor of typhoons. The unique tectonic and climatic environment makes it has to face the potential of seafloor destructions, like submarine landslides and slumps, and high sediment discharges which induced by typhoon from Philippine. In this study, we analysis the sediment properties of modern extreme event records in cores and attempt to evaluate the history of extreme events in the South China Sea. Twelve gravity cores were collected in the central South China Sea basin and around Taiping island by using R/V Ocean Research 1 from 2014 to 2015 and a series of analysis including multi-sensor core logger, XRF core scanner (Itrax), core surface images, X-radiographs, bulk density, grain size, Pb-210 chronology and X-ray diffractometer were conducted in this study. On core surface images, an obvious brownish oxidized layer exist in core top with higher Pb-210 activity beneath this oxidized layer, and we speculate this layer is caused by nature hazard. According to the sampling time, we conjecture the oxidized layer might formed by typhoon Haiyan in 2013. In addition, the Itrax data shows high manganese content only exist in this layer which might related to the modern industrial pollution delivered by typhoon induced flooding from Philippine. The sedimentation rate of the non-event years in these cores which derived from Pb-210 chronology method is about 0.02 ~0.03 cm/yr. On contrary, the event layer caused by Haiyan with a recorded maximum 87cm deposits in the South China Sea. This study aims to characterize the typhoon induced deposits in the turbidite layer and use it to identify whether the other event layers recorded in these cores were related to typhoon activities and to reconstruct the strong tropical cyclone history in the western Pacific.

  15. Extreme fog events in Poland with respect to circulation conditions (United States)

    Ustrnul, Z.; Czekierda, D.; Wypych, A.


    Fog is a phenomenon which belongs to a group of so-called hydrometeorites and, according to the different dictionaries, it is a suspension of water droplets or ice crystals in the ground layer of the air that impairs visibility in the horizontal direction below 1 km. The phenomenon of fog, although much less dynamic or violent than other extreme phenomena, such as thunderstorms or hail, is equally dangerous and brings about huge social and economic complications. Land and air transportation suffer and fog may sometimes leads to a complete crippling of the whole economy in an area where fog occurs. The main objective of the study is determination of the circulation types bringing extreme fog events in Poland. The duration of fog at each meteorological station was considered as the main input data originated from 54 synoptic stations located across the country. The mentioned data series cover the period of 56 years (1951-2006). The occurrence of fog depends on meteorological conditions caused to a large extent by a given synoptic situation and local terrain conditions. In this study, according to its objectives, only circulation conditions are taken into consideration. These have been described by 5 different circulation classifications (Grosswetterlagen, Litynski, Osuchowska-Klein, Niedzwiedz and Ustrnul). Situations when this phenomenon occurred across a large part of the country were taken into detailed consideration. Special attention was paid to fog coverage during 24-hour periods. In this work, in light of certain doubts about the homogeneity of the observation material available, the intensity of fog was not included, as it requires additional and very tedious analysis. In the first step all cases of fog during the 1966-2006 study period which lasted 24 hours at more than 10 of the considered weather stations, i.e: at least 5 stations have been considered. As expected, in most cases, either a centre of a classical high pressure system or a high pressure wedge

  16. Crop insurance evaluation in response to extreme events (United States)

    Moriondo, Marco; Ferrise, Roberto; Bindi, Marco


    Crop yield insurance has been indicated as a tool to manage the uncertainties of crop yields (Sherrick et al., 2004) but the changes in crop yield variability as expected in the near future should be carefully considered for a better quantitative assessment of farmer's revenue risk and insurance values in a climatic change regime (Moriondo et al., 2011). Under this point of view, mechanistic crop growth models coupled to the output of General/Regional Circulation Models (GCMs, RCMs) offer a valuable tool to evaluate crop responses to climatic change and this approach has been extensively used to describe crop yield distribution in response to climatic change considering changes in both mean climate and variability. In this work, we studied the effect of a warmer climate on crop yield distribution of durum wheat (Triticum turgidum L. subsp durum) in order to assess the economic significance of climatic change in a risk decision context. Specifically, the outputs of 6 RCMs (Tmin, Tmax, Rainfall, Global Radiation) (van der Linden and Mitchell 2009) have been statistically downscaled by a stochastic weather generator over eight sites across the Mediterranean basin and used to feed the crop growth model Sirius Quality. Three time slices were considered i) the present period PP (average of the period 1975-1990, [CO2]=350 ppm), 2020 (average of the period 2010-2030, SRES scenario A1b, [CO2]=415 ppm) and 2040 (average of the period 2030-2050, SRES scenario A1b, [CO2]=480 ppm). The effect of extreme climate events (i.e. heat stress at anthesis stage) was also considered. The outputs of these simulations were used to estimate the expected payout per hectare from insurance triggered when yields fall below a specific threshold defined as "the insured yield". For each site, the threshold was calculated as a fraction (70%) of the median of yield distribution under PP that represents the percentage of median yield above which indemnity payments are triggered. The results

  17. Management of the Extreme Events: Countering International Terrorism

    Directory of Open Access Journals (Sweden)

    Dr. Cristian Barna


    Full Text Available After the terrorism attacks of September 11, 2001, there is recognition by both the public and private sectors that one needs to rethink our strategy for dealing with these low probability but extreme consequence events. September 11, 2001 attacks against the United States raised numerous questions related to counter-terrorism, foreign policy, as well as national security in the United States and abroad. They also raised the fundamental question of who should pay for losses due to terrorism.The question of who should pay for terrorism risk prevention and sustainable coverage within a country is likely to be seen first as a matter of collective responsibility that each country has to consider – a societal choice

  18. Large Scale Influences on Drought and Extreme Precipitation Events in the United States (United States)

    Collow, A.; Bosilovich, M. G.; Koster, R. D.; Eichmann, A.


    Observations indicate that extreme weather events are increasing and it is likely that this trend will continue through the 21st century. However, there is uncertainty and disagreement in recent literature regarding the mechanisms by which extreme temperature and precipitation events are increasing, including the suggestion that enhanced Arctic warming has resulted in an increase in blocking events and a more meridional flow. A steady gradual increase in heavy precipitation events has been observed in the Midwestern and Northeastern United States, while the Southwestern United States, particularly California, has experienced suppressed precipitation and an increase in consecutive dry days over the past few years. The frequency, intensity, and duration of heavy precipitation events in the Midwestern United States and Northeastern United States, as well as drought in the Southwestern United States are examined using the Modern Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2). Indices developed by the Expert Team on Climate Change Detection and Indices representing drought and heavy precipitation events have been calculated using the MERRA-2 dataset for the period of 1980 through 2014. Trends in these indices are analyzed and the indices are compared to large scale circulations and climate modes using a composite and statistical linkages approach. Statistically significant correlations are present in the summer months between heavy precipitation events and meridional flow despite the lack of enhanced Arctic warming, contradicting the suggested mechanisms. Weaker, though still significant, correlations are observed in the winter months when the Arctic is warming more rapidly than the Midlatitudes.

  19. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. (United States)

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K


    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  20. Changes of extreme drought and flood events in Iran (United States)

    Modarres, Reza; Sarhadi, Ali; Burn, Donald H.


    Located in an arid and semi-arid region of the world, Iran has experienced many extreme flood and drought events in the last and current century. The present study aims to assess the changes in Iran's flood magnitude and drought severity for 1950-2010, with some time span variation in some stations. The Mann-Kendall test for monotonic trend was first applied to assess changes in flood and drought severity data. In addition, to consider the effect of serial correlation, two Pre-Whitening Trend (PWT) tests were also applied. It was observed that the number of stations with statistically significant trends has increased after applying PWT tests. Both increasing and decreasing trends were observed for drought severity and flood magnitude in different climate regions and major basins of Iran using these tests. The increase in flood magnitude and drought severity can be attributed partly to land use changes, an annual rainfall negative trend, a maximum rainfall increasing trend, and inappropriate water resources management policies. The paper indicates a critical situation related to extreme climate change in Iran and the increasing risk of environmental changes in the 21st century.

  1. Transformation of soil organics under extreme climate events: a project description (United States)

    Blagodatskaya, Evgenia


    Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation with unusual regional dynamics. Weather anomalies at European territory of Russia are currently revealed as long-term drought and strong showers in summer and as an increased frequency of soil freezing-thawing cycles. Climate extremes totally change biogeochemical processes and elements cycling both at the ecosystem level and at the level of soil profile mainly affecting soil biota. Misbalance in these processes can cause a reduction of soil carbon stock and an increase of greenhouse gases emission. Our project aims to reveal the transformation mechanisms of soil organic matter caused by extreme weather events taking into consideration the role of biotic-abiotic interactions in regulation of formation, maintenance and turnover of soil carbon stock. Our research strategy is based on the novel concept considering extreme climatic events (showers after long-term droughts, soil flooding, freezing-thawing) as abiotic factors initiating a microbial succession. Study on stoichiometric flexibility of plants under climate extremes as well as on resulting response of soil heterotrophs on stoichiometric changes in substrate will be used for experimental prove and further development of the theory of ecological stoichiometry. The results enable us to reveal the mechanisms of biotic - abiotic interactions responsible for the balance between mobilization and stabilization of soil organic matter. Identified mechanisms will form the basis of an ecosystem model enabled to predict the effects of extreme climatic events on biogenic carbon cycle in the biosphere.

  2. Analysis of the Impact of Climate Change on Extreme Hydrological Events in California (United States)

    Ashraf Vaghefi, Saeid; Abbaspour, Karim C.


    Estimating magnitude and occurrence frequency of extreme hydrological events is required for taking preventive remedial actions against the impact of climate change on the management of water resources. Examples include: characterization of extreme rainfall events to predict urban runoff, determination of river flows, and the likely severity of drought events during the design life of a water project. In recent years California has experienced its most severe drought in recorded history, causing water stress, economic loss, and an increase in wildfires. In this paper we describe development of a Climate Change Toolkit (CCT) and demonstrate its use in the analysis of dry and wet periods in California for the years 2020-2050 and compare the results with the historic period 1975-2005. CCT provides four modules to: i) manage big databases such as those of Global Climate Models (GCMs), ii) make bias correction using observed local climate data , iii) interpolate gridded climate data to finer resolution, and iv) calculate continuous dry- and wet-day periods based on rainfall, temperature, and soil moisture for analysis of drought and flooding risks. We used bias-corrected meteorological data of five GCMs for extreme CO2 emission scenario rcp8.5 for California to analyze the trend of extreme hydrological events. The findings indicate that frequency of dry period will increase in center and southern parts of California. The assessment of the number of wet days and the frequency of wet periods suggests an increased risk of flooding in north and north-western part of California, especially in the coastal strip. Keywords: Climate Change Toolkit (CCT), Extreme Hydrological Events, California

  3. Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations (United States)

    Donat, Markus G.; Alexander, Lisa V.; Herold, Nicholas; Dittus, Andrea J.


    Knowledge about long-term changes in climate extremes is vital to better understand multidecadal climate variability and long-term changes and to place today's extreme events in a historical context. While global changes in temperature and precipitation extremes since the midtwentieth century are well studied, knowledge about century-scale changes is limited. This paper analyses a range of largely independent observations-based data sets covering 1901-2010 for long-term changes and interannual variability in daily scale temperature and precipitation extremes. We compare across data sets for consistency to ascertain our confidence in century-scale changes in extremes. We find consistent warming trends in temperature extremes globally and in most land areas over the past century. For precipitation extremes we find global tendencies toward more intense rainfall throughout much of the twentieth century; however, local changes are spatially more variable. While global time series of the different data sets agree well after about 1950, they often show different changes during the first half of the twentieth century. In regions with good observational coverage, gridded observations and reanalyses agree well throughout the entire past century. Simulations with an atmospheric model suggest that ocean temperatures and sea ice may explain up to about 50% of interannual variability in the global average of temperature extremes, and about 15% in the global average of moderate precipitation extremes, but local correlations are mostly significant only in low latitudes.

  4. Urban-Induced Mechanisms for an Extreme Rainfall Event in Beijing China: A Satellite Perspective

    Directory of Open Access Journals (Sweden)

    Menglin S. Jin


    Full Text Available Using 1 km satellite remote sensing observations, this paper examines the clouds, aerosols, water vapor and surface skin temperature over Beijing to understand the possible urban system contributions to the extreme rainfall event on 21 July 2012 (i.e., 721 event. Remote sensing measurements, with the advantage of high spatial resolution and coverage, reveal three key urban-related mechanisms: (a the urban heat island effect (UHI resulted in strong surface convection and high level cloud cover over Beijing; (b urban aerosol amount peaked before the rainfall, which “seeded” the clouds and invigorated precipitation; and (c urban tall buildings provided additional lift for the air mass and provided heat at the underlying boundary to keep the rainfall system alive for a long duration precipitation (>10 hours. With the existing rainfall system moving from the northwest and abundant water vapor was transported from the southeast into Beijing, the urban canyon-lifting, aerosol, and UHI effects all enhanced this extreme rainfall event. This work proves that urban system is responsible, at least partly, for urban rainfall extremes and thus should be considered for urban extreme rainfall prediction in the future.

  5. Extreme Technicolor & The Walking Critical Temperature

    DEFF Research Database (Denmark)

    Sannino, Francesco; Järvinen, Matti


    We map the phase diagram of gauge theories of fundamental interactions in the flavor- temperature plane using chiral perturbation theory to estimate the relation between the pion decaying constant and the critical temperature above which chiral symmetry is restored. We then investigate the impact...

  6. Extreme Technicolor & The Walking Critical Temperature

    DEFF Research Database (Denmark)

    Sannino, Francesco; Järvinen, Matti


    We map the phase diagram of gauge theories of fundamental interactions in the flavor- temperature plane using chiral perturbation theory to estimate the relation between the pion decaying constant and the critical temperature above which chiral symmetry is restored. We then investigate the impact...

  7. Variability of extreme climate events in the territory and water area of Russia (United States)

    Serykh, Ilya; Kostianoy, Andrey


    The Fourth (2007) and Fifth (2014) Assessment Reports on Climate Change of the Intergovernmental Panel on Climate Change (IPCC) state that in the XXI century, climate change will be accompanied by an increase in the frequency, intensity and duration of extreme nature events such as: extreme precipitation and extreme high and low air temperatures. All these will lead to floods, droughts, fires, shallowing of rivers, lakes and water reservoirs, desertification, dust storms, melting of glaciers and permafrost, algal bloom events in the seas, lakes and water reservoirs. In its turn, these events will lead to chemical and biological contamination of water, land and air. These events will result in a deterioration of quality of life, significant financial loss due to damage to the houses, businesses, roads, agriculture, forestry, tourism, and in many cases they end in loss of life. These predictions are confirmed by the results of the studies presented in the RosHydromet First (2008) and Second (2014) Assessment Reports on Climate Change and its Consequences in Russian Federation. Scientists predictions have been repeatedly confirmed in the last 15 years - floods in Novorossiysk (2002), Krymsk and Gelendzhik (2012), the Far East (2013), heat waves in 2010, unusually cold winter (February) of 2012 and unusually warm winter of 2013/2014 in the European territory of Russia. In this regard, analysis and forecasting of extreme climate events associated with climate change in the territory of Russia are an extremely important task. This task is complicated by the fact that modern atmospheric models used by IPCC and RosHydromet badly reproduce and predict the intensity of precipitation. We are analyzing meteorological reanalysis data (NCEP/NCAR, 20th Century Reanalysis, ERA-20C, JRA-55) and satellite data (NASA and AVISO) on air, water and land temperature, rainfall, wind speed and cloud cover, water levels in seas and lakes, index of vegetation over the past 30-60 years

  8. Extreme drought events in Germany during the last 60 yrs (United States)

    Samaniego, L. E.; Kumar, R.; Zink, M.


    Droughts are among the most costly natural disasters because they heavily impact on the economy of a region as well as on its social and cultural activities. Droughts do not only occur in arid or semiarid regions but also in humid ones. The year 2007, for example, was the sunniest, hottest and driest in Germany in the last two centuries. In this case, it was too dry too early. As a result, the harvest was cut by half leading to enormous losses in the primary sector. Consumer prices of some agricultural products went up 26 percent. The purpose of this study is to identify the major agricultural and hydrological droughts in Germany since 1950 based on their severity, duration and areal extend. To achieve this goal, a 60-yr retrospective hydrological simulation of the land surface water budget over Germany was carried out with the process-based distributed hydrological model mHM. The model was forced with grided daily precipitation and temperature data at 4x4 km, and the model simulations were carried out at same spatial resolutions. Point measurement data from more than 5600 raingauges and about 1120 meteorological stations (DWD) were interpolated with EDK. Land cover change was also considered during this period. Drought indices were derived as monthly quantiles of the simulated fluxes which include root zone soil moisture and total runoff. A Gaussian kernel smoother was used to estimate these quantiles at each grid cell. A spatio-temporal cluster algorithm was used to consolidate all significant drought events. Main statistics such as magnitude, areal extend, duration, and severity were estimated only on those selected clusters. The mHM model was calibrated in major river basins giving Nash-Sutcliffe efficiencies for daily discharge simulations greater than 0.8 in the evaluation period. Plausibility tests between the simulated mHM soil moisture and land surface temperature from MODIS and regional climate model reanalysis data compared well. Results indicated that

  9. 'The plunger hypothesis' - predicting the tropospheric impact of extreme stratospheric events (United States)

    Clark, Simon; Baldwin, Mark; Stephenson, David


    The coupling of events in the polar stratosphere to those in the polar troposphere is not currently understood. Extreme events in the stratosphere have been identified to have a lasting influence on the tropospheric circulation below for a period of up to 60 days. As such understanding the downward propagation of stratospheric circulation anomalies would be beneficial to surface forecasting. In this work we use the new 'plunger hypothesis', that mass fluxes into and out of the polar region compress the polar column of air - in a manner similar to a plunger - and cause pressure and temperature anomalies. We demonstrate how a quasigeostrophic assumption within this hypothesis allows for the prediction of mass fluxes across the boundary to the polar region given the pressure distribution at the boundary. This then allows for a prediction of how a given stratospheric event such as a sudden stratospheric warming (SSW) or a strong vortex event influences the polar troposphere. The performance of this hypothesis is tested; its usefulness in improving surface forecasts, its accuracy in response to stratospheric events, and its ability to predict downward propagation of Arctic Oscillation (AO) index in the aftermath of extreme stratospheric events. The link between this work and the PV inversion formulation of stratosphere-troposphere coupling is discussed. This work forms part of a three and a half year PhD project.

  10. Extreme event return times in long-term memory processes near 1/f (United States)

    Blender, R.; Fraedrich, K.; Sienz, F.


    The distribution of extreme event return times and their correlations are analyzed in observed and simulated long-term memory (LTM) time series with 1/f power spectra. The analysis is based on tropical temperature and mixing ratio (specific humidity) time series from TOGA COARE with 1 min resolution and an approximate 1/f power spectrum. Extreme events are determined by Peak-Over-Threshold (POT) crossing. The Weibull distribution represents a reasonable fit to the return time distributions while the power-law predicted by the stretched exponential for 1/f deviates considerably. For a comparison and an analysis of the return time predictability, a very long simulated time series with an approximate 1/f spectrum is produced by a fractionally differenced (FD) process. This simulated data confirms the Weibull distribution (a power law can be excluded). The return time sequences show distinctly weaker long-term correlations than the original time series (correlation exponent γ≍0.56).

  11. Extreme temperature packaging: challenges and opportunities (United States)

    Johnson, R. Wayne


    Consumer electronics account for the majority of electronics manufactured today. Given the temperature limits of humans, consumer electronics are typically rated for operation from -40°C to +85°C. Military applications extend the range to -65°C to +125°C while underhood automotive electronics may see +150°C. With the proliferation of the Internet of Things (IoT), the goal of instrumenting (sensing, computation, transmission) to improve safety and performance in high temperature environments such as geothermal wells, nuclear reactors, combustion chambers, industrial processes, etc. requires sensors, electronics and packaging compatible with these environments. Advances in wide bandgap semiconductors (SiC and GaN) allow the fabrication of high temperature compatible sensors and electronics. Integration and packaging of these devices is required for implementation into actual applications. The basic elements of packaging are die attach, electrical interconnection and the package or housing. Consumer electronics typically use conductive adhesives or low melting point solders for die attach, wire bonds or low melting solder for electrical interconnection and epoxy for the package. These materials melt or decompose in high temperature environments. This paper examines materials and processes for high temperature packaging including liquid transient phase and sintered nanoparticle die attach, high melting point wires for wire bonding and metal and ceramic packages. The limitations of currently available solutions will also be discussed.

  12. Extreme weather event in spring 2013 delayed breeding time of Great Tit and Blue Tit. (United States)

    Glądalski, Michał; Bańbura, Mirosława; Kaliński, Adam; Markowski, Marcin; Skwarska, Joanna; Wawrzyniak, Jarosław; Zieliński, Piotr; Bańbura, Jerzy


    The impact of climatic changes on life cycles by re-scheduling the timing of reproduction is an important topic in studies of biodiversity. Global warming causes and will probably cause in the future not only raising temperatures but also an increasing frequency of extreme weather events. In 2013, the winter in central and north Europe ended late, with low temperatures and long-retained snow cover--this extreme weather phenomenon acted in opposition to the increasing temperature trend. In 2013, thermal conditions measured by the warmth sum in the period 15 March–15 April, a critical time for early breeding passerines, went far beyond the range of the warmth sums for at least 40 preceding years. Regardless of what was the reason for the extreme early spring 2013 and assuming that there is a potential for more atypical years because of climate change, we should look closely at every extreme phenomenon and its consequences for the phenology of organisms. In this paper, we report that the prolonged occurrence of winter conditions during the time that is crucial for Blue Tit (Cyanistes caeruleus) and Great Tit (Parus major) reproduction caused a substantial delay in the onset of egg laying in comparison with typical springs.

  13. Electronic Modeling and Design for Extreme Temperatures Project (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with focus on very low temperatures...

  14. Daily temperature extremes play an important role in predicting thermal effects. (United States)

    Ma, Gang; Hoffmann, Ary A; Ma, Chun-Sen


    Organisms in natural environments experience diel temperature fluctuations, including sporadic extreme conditions, rather than constant temperatures. Studies based mainly on model organisms have tended to focus on responses to average temperatures or short-term heat stress, which overlooks the potential impact of daily fluctuations, including stressful daytime periods and milder night-time periods. Here, we focus on daily maximum temperatures, while holding night-time temperatures constant, to specifically investigate the effects of high temperature on demographic parameters and fitness in the English grain aphid Sitobion avenae. We then compared the observed effects of different daily maximum temperatures with predictions from constant temperature-performance expectations. Moderate daily maximum temperatures depressed aphid performance while extreme conditions had dramatic effects, even when mean temperatures were below the critical maximum. Predictions based on daily average temperature underestimated negative effects of temperature on performance by ignoring daily maximum temperature, while predictions based on daytime maximum temperatures overestimated detrimental impacts by ignoring recovery under mild night-time temperatures. Our findings suggest that daily maximum temperature will play an important role in regulating natural population dynamics and should be considered in predictions. These findings have implications for natural population dynamics, particularly when considering the expected increase in extreme temperature events under climate change.

  15. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis (United States)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi


    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  16. Temperature extremes in Western Europe and associated atmospheric anomalies (United States)

    Carvalho, V. A.; Santos, J. A.


    This worḱs focal point is the analysis of temperature extremes over Western Europe in the period 1957-2007 and their relationship to large-scale anomalies in the atmospheric circulation patterns. The study is based on temperature daily time series recorded at a set of meteorological stations covering the target area. The large-scale anomalies are analyzed using data from the National Centers for Environmental Prediction reanalysis project. Firstly, a preliminary statistical analysis was undertaken in order to identify data gaps and erroneous values and to check the homogeneity of the time series, using not only elementary statistical approaches (e.g., chronograms, box-plots, scatter-plots), but also a set of non-parametric statistical tests particularly suitable for the analysis of monthly and seasonal mean temperature time series (e.g., Wald-Wolfowitz serial correlation test, Spearman and Mann-Kendall trend tests). Secondly, based on previous results, a selection of the highest quality time series was carried out. Aiming at identifying temperature extremes, we then proceed to the isolation of months with temperature values above or below pre-selected thresholds based on the empirical distribution of each time series. In particular, thresholds are based on percentiles specifically computed for each individual temperature record (data adaptive) and not on fixed values. As a result, a calendar of extremely high and extremely low monthly mean temperatures is obtained and the large-scale atmospheric conditions during each extreme are analyzed. Several atmospheric fields are considered in this study (e.g., 2-m maximum and minimum air temperature, sea level pressure, geopotential height, zonal and meridional wind components, vorticity, relative humidity) at different isobaric levels. Results show remarkably different synoptic conditions for temperature extremes in different parts of Western Europe, highlighting the different dynamical mechanisms underlying their

  17. Observations and Impact Assessments of Extreme Space Weather Events (United States)

    Baker, D. N.


    "Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.

  18. Precipitation and temperatures extremes in East Africa in past and future climate


    Kuya, Elinah Khasandi


    Climate change has increased extreme weather events over the planet. The most robust changes in East Africa (EA) are for daily temperature and precipitation, where high-impact extreme values have become more common. The overall magnitude, seasonal distribution of precipitation and its inter-annual variability have been altered. East Africa experiences some of the most severe convective storms in the world. They can come without warning and are becoming more frequent. These changes present sig...

  19. Probabilistic models for assessment of extreme temperatures and relative humidity in Lithuania (United States)

    Alzbutas, Robertas; Šeputytė, Ilona


    Extreme temperatures are fairly common natural phenomenon in Lithuania. They have mainly negative effects both on the environment and humans. Thus there are important to perform probabilistic and statistical analyzes of possibly extreme temperature values and their time-dependant changes. This is especially important in areas where technical objects (sensitive to the extreme temperatures) are foreseen to be constructed. In order to estimate the frequencies and consequences of possible extreme temperatures, the probabilistic analysis of the event occurrence and its uncertainty has been performed: statistical data have been collected and analyzed. The probabilistic analysis of extreme temperatures in Lithuanian territory is based on historical data taken from Lithuanian Hydrometeorology Service, Dūkštas Meteorological Station, Lithuanian Energy Institute and Ignalina NNP Environmental Protection Department of Environmental Monitoring Service. The main objective of performed work was the probabilistic assessment of occurrence and impact of extreme temperature and relative humidity occurring in whole Lithuania and specifically in Dūkštas region where Ignalina Nuclear Power Plant is closed for decommissioning. In addition, the other purpose of this work was to analyze the changes of extreme temperatures. The probabilistic analysis of extreme temperatures increase in Lithuanian territory was based on more than 50 years historical data. The probabilistic assessment was focused on the application and comparison of Gumbel, Weibull and Generalized Value (GEV) distributions, enabling to select a distribution, which has the best fit for data of extreme temperatures. In order to assess the likelihood of extreme temperatures different probabilistic models were applied to evaluate the probability of exeedance of different extreme temperatures. According to the statistics and the relationship between return period and probabilities of temperatures the return period for 30

  20. Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective

    Directory of Open Access Journals (Sweden)

    João A. Santos


    Full Text Available The mechanisms underlying the occurrence of temperature extremes in Iberia are analysed considering a Lagrangian perspective of the atmospheric flow, using 6-hourly ERA-Interim reanalysis data for the years 1979–2012. Daily 2-m minimum temperatures below the 1st percentile and 2-m maximum temperatures above the 99th percentile at each grid point over Iberia are selected separately for winter and summer. Four categories of extremes are analysed using 10-d backward trajectories initialized at the extreme temperature grid points close to the surface: winter cold (WCE and warm extremes (WWE, and summer cold (SCE and warm extremes (SWE. Air masses leading to temperature extremes are first transported from the North Atlantic towards Europe for all categories. While there is a clear relation to large-scale circulation patterns in winter, the Iberian thermal low is important in summer. Along the trajectories, air mass characteristics are significantly modified through adiabatic warming (air parcel descent, upper-air radiative cooling and near-surface warming (surface heat fluxes and radiation. High residence times over continental areas, such as over northern-central Europe for WCE and, to a lesser extent, over Iberia for SWE, significantly enhance these air mass modifications. Near-surface diabatic warming is particularly striking for SWE. WCE and SWE are responsible for the most extreme conditions in a given year. For WWE and SCE, strong temperature advection associated with important meridional air mass transports are the main driving mechanisms, accompanied by comparatively minor changes in the air mass properties. These results permit a better understanding of mechanisms leading to temperature extremes in Iberia.

  1. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China (United States)

    Yang, Xuchao; Ruby Leung, L.; Zhao, Naizhuo; Zhao, Chun; Qian, Yun; Hu, Kejia; Liu, Xiaoping; Chen, Baode


    The urban agglomeration of Yangtze River Delta (YRD) is emblematic of China's rapid urbanization during the past decades. Based on homogenized daily maximum and minimum temperature data, the contributions of urbanization to trends of summer extreme temperature indices (ETIs) in YRD are evaluated. Dynamically classifying the observational stations into urban and rural, this study presents unexplored changes in temperature extremes during the past four decades in YRD and quantifies the amplification of the positive trends in ETIs by the urban heat island effect. Overall, urbanization contributes to more than one third of the increase of intensity of extreme heat events in the region, which is comparable to the contribution of greenhouse gases. Compared to rural stations, more notable shifts to the right in the probability distribution of temperature and ETIs are found in urban stations. The rapid urbanization in YRD has resulted in large increases in the risk of heat extremes.

  2. Extreme climatic events constrain space use and survival of a ground-nesting bird. (United States)

    Tanner, Evan P; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A; Dahlgren, David K; Orange, Jeremy P


    Two fundamental issues in ecology are understanding what influences the distribution and abundance of organisms through space and time. While it is well established that broad-scale patterns of abiotic and biotic conditions affect organisms' distributions and population fluctuations, discrete events may be important drivers of space use, survival, and persistence. These discrete extreme climatic events can constrain populations and space use at fine scales beyond that which is typically measured in ecological studies. Recently, a growing body of literature has identified thermal stress as a potential mechanism in determining space use and survival. We sought to determine how ambient temperature at fine temporal scales affected survival and space use for a ground-nesting quail species (Colinus virginianus; northern bobwhite). We modeled space use across an ambient temperature gradient (ranging from -20 to 38 °C) through a maxent algorithm. We also used Andersen-Gill proportional hazard models to assess the influence of ambient temperature-related variables on survival through time. Estimated available useable space ranged from 18.6% to 57.1% of the landscape depending on ambient temperature. The lowest and highest ambient temperature categories (35 °C, respectively) were associated with the least amount of estimated useable space (18.6% and 24.6%, respectively). Range overlap analysis indicated dissimilarity in areas where Colinus virginianus were restricted during times of thermal extremes (range overlap = 0.38). This suggests that habitat under a given condition is not necessarily a habitat under alternative conditions. Further, we found survival was most influenced by weekly minimum ambient temperatures. Our results demonstrate that ecological constraints can occur along a thermal gradient and that understanding the effects of these discrete events and how they change over time may be more important to conservation of organisms than are average and broad

  3. Modelling the extreme precipitation event over Madeira Island on 20 February 2010

    Directory of Open Access Journals (Sweden)

    T. Luna


    Full Text Available In the morning of the 20 February of 2010 an extreme precipitation event occurred over Madeira Island. This event triggered several flash floods and mudslides in the southern parts of the island, resulting in 42 confirmed deaths, 100 injured, and at least 8 people still missing. These extreme weather conditions were associated to a weather frontal system moving northeastwards embedded in a low pressure area centered in the Azores archipelago. This storm was one in a series of such storms that affected Portugal, Spain, Morocco and the Canary islands causing flooding and strong winds. These storms were bolstered by an unusually strong sea surface temperature gradient across the Atlantic Ocean.

    In this study, the WRF model is used to evaluate the intensity and predictability of this precipitation extreme event over the island. The synoptic/orographic nature of the precipitation is also evaluated, as well as the sensitivity of the model to horizontal resolution and cumulus parameterization. Orography was found to be the main factor explaining the occurrence, amplitude and phase of precipitation over the Island.

  4. Investigation of Meteorological Extreme Events in the North-East of Iran

    Directory of Open Access Journals (Sweden)

    S. Kouzegaran


    Full Text Available Introduction: Over the past hundred years, human activity has significantly altered the atmosphere and increase of concentration of greenhouse gases lead to warm the earth's surface. This global warming leads to change of climatic extreme index and increases the intensity and frequency of occurrence of extreme climate events. Investigation of extreme values for planning and policy for the agricultural sector and water resource management is important.In this study, a comprehensive review of extreme indices of temperature and precipitation are discussed. This paper aims to investigate extreme temperature and precipitation indices defined in accordance with CCL, and the study of other climatic parameters in the North East of Iran. Materials and Methods: In this research, statistics and data of some stations in the North East of Iran during the period 1992-2012 were used. To evaluate the extreme climate indices trend, 27 indices of rainfall and temperature, were defined by the ETCCDMI. They were calculated by RClimdex software. In this software, prior to the index calculation, data by quality control software became quantitative and incorrect data were controlled and outlier data were examined. The indices were calculated by daily data. 11 rainfall and 16 temperature indices were calculated by this software.The target of the ETCCDMI process is to delineate a standardized set of indices allowing for comparison across regions. These extreme indices were classified in five categories which included the percentile-based extreme indices, the absolute extreme indices, the threshold extreme indices, the periodic extreme indices, and the other indices. They were estimated at the 0.05 significant levels. The Mann-Kendall test was used to investigate the climatic parameters, maximum relative humidity, sunshine duration and maximum wind speed. Results and Discussion: Thermal analysis results are consistent with warming patterns, and they have showed that hot

  5. Return Levels of Temperature Extremes in Southern Pakistan (United States)

    Zahid, Maida; Lucarini, Valerio; Blender, Richard; Caterina Bramati, Maria


    Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to temperature extremes. In order to improve rural and urban planning, information about the recurrence of temperature extremes is required. In this work, return levels of the daily maximum temperature Tmax are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. The method used is the Peak Over Threshold (POT) and it represents a novelty among the approaches previously used for similar studies in this region. Two main datasets are analyzed: temperatures observed in nine meteorological stations in southern Pakistan from 1980 to 2013, and the ERA Interim data for the nearest corresponding locations. The analysis provides the 2, 5, 10, 25, 50 and 100-year Return Levels (RLs) of temperature extremes. The 90% quantile is found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50°C in northern stations, and above 45°C in the southern stations. The RLs of the observed TWmax exceed 35°C in the region, which is considered as a limit of survivability. The RLs estimated from the ERA Interim data are lower by 3°C to 5°C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the risk assessment of extreme temperatures in Sindh.

  6. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe (United States)

    Volosciuk, Claudia; Maraun, Douglas; Semenov, Vladimir A.; Tilinina, Natalia; Gulev, Sergey K.; Latif, Mojib


    The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970-1999 and 2000-2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000-2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970-1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.

  7. Tambora and the mackerel year: Phenology and fisheries during an extreme climate event (United States)

    Alexander, Karen E.; Leavenworth, William B.; Willis, Theodore V.; Hall, Carolyn; Mattocks, Steven; Bittner, Steven M.; Klein, Emily; Staudinger, Michelle; Bryan, Alexander; Rosset, Julianne; Carr, Benjamin H.; Jordaan, Adrian


    Global warming has increased the frequency of extreme climate events, yet responses of biological and human communities are poorly understood, particularly for aquatic ecosystems and fisheries. Retrospective analysis of known outcomes may provide insights into the nature of adaptations and trajectory of subsequent conditions. We consider the 1815 eruption of the Indonesian volcano Tambora and its impact on Gulf of Maine (GoM) coastal and riparian fisheries in 1816. Applying complex adaptive systems theory with historical methods, we analyzed fish export data and contemporary climate records to disclose human and piscine responses to Tambora’s extreme weather at different spatial and temporal scales while also considering sociopolitical influences. Results identified a tipping point in GoM fisheries induced by concatenating social and biological responses to extreme weather. Abnormal daily temperatures selectively affected targeted fish species—alewives, shad, herring, and mackerel—according to their migration and spawning phenologies and temperature tolerances. First to arrive, alewives suffered the worst. Crop failure and incipient famine intensified fishing pressure, especially in heavily settled regions where dams already compromised watersheds. Insufficient alewife runs led fishers to target mackerel, the next species appearing in abundance along the coast; thus, 1816 became the “mackerel year.” Critically, the shift from riparian to marine fisheries persisted and expanded after temperatures moderated and alewives recovered. We conclude that contingent human adaptations to extraordinary weather permanently altered this complex system. Understanding how adaptive responses to extreme events can trigger unintended consequences may advance long-term planning for resilience in an uncertain future. PMID:28116356

  8. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species (United States)

    Siegmund, Jonatan F.; Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.


    Ongoing climate change is known to cause an increase in the frequency and amplitude of local temperature and precipitation extremes in many regions of the Earth. While gradual changes in the climatological conditions have already been shown to strongly influence plant flowering dates, the question arises if and how extremes specifically impact the timing of this important phenological phase. Studying this question calls for the application of statistical methods that are tailored to the specific properties of event time series. Here, we employ event coincidence analysis, a novel statistical tool that allows assessing whether or not two types of events exhibit similar sequences of occurrences in order to systematically quantify simultaneities between meteorological extremes and the timing of the flowering of four shrub species across Germany. Our study confirms previous findings of experimental studies by highlighting the impact of early spring temperatures on the flowering of the investigated plants. However, previous studies solely based on correlation analysis do not allow deriving explicit estimates of the strength of such interdependencies without further assumptions, a gap that is closed by our analysis. In addition to direct impacts of extremely warm and cold spring temperatures, our analysis reveals statistically significant indications of an influence of temperature extremes in the autumn preceding the flowering.

  9. The XIV Global Warming International Conference & Expo (GWXIV)——Global extreme events

    Institute of Scientific and Technical Information of China (English)



    The focus of this year's conference is Global Extreme Events, characterized as large-scale climatic effects that have been increasing in magnitude and frequency. Prof. Sinyan Shen, Chairman of the GW International Program Committee, has been leading the world on Global Extreme Events and Emergency Response. In the long term climate change will cause the Earth to transit to another equilibrium state through many oscillations in climatic pattern. Global warming causes extreme events and bad weather in the near term. The immediate

  10. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events


    Angelo Rita; Marco Borghetti; Luigi Todaro; Antonio Saracino


    In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condit...

  11. The differential effects of increasing frequency and magnitude of extreme events on coral populations. (United States)

    Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin


    Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity.

  12. Towards constraining extreme temperature projections of the CMIP5 ensemble (United States)

    Vogel, Martha-Marie; Orth, René; Isabelle Seneviratne, Sonia


    The frequency and intensity of heat waves is expected to change in future in response to global warming. Given the severe impacts of heat waves on ecosystems and society it is important to understand how and where they will intensify. Projections of extreme hot temperatures in the IPCC AR5 model ensemble show large uncertainties for projected changes of extreme temperatures in particular in Central Europe. In this region land-atmosphere coupling can contribute substantially to the development of heat waves. This coupling is also subject to change in future, while model projections display considerable spread. In this work we link projections of changes in extreme temperatures and of changes in land-atmosphere interactions with a particular focus on Central Europe. Uncertainties in projected extreme temperatures can be partly explained by different projected changes of the interplay between latent heat and temperature as well as soil moisture. Given the considerable uncertainty in land-atmosphere coupling representation already in the current climate, we furthermore employ observational data sets to constrain the model ensemble, and consequently the extreme temperature projections.

  13. Attribution analyses of temperature extremes using a set of 16 indices

    Directory of Open Access Journals (Sweden)

    Nikolaos Christidis


    Full Text Available Detection and attribution studies have demonstrated that anthropogenic forcings have been driving significant changes in temperature extremes since the middle of the 20th century. Moreover, new methodologies have been developed for the attribution of extreme events that assess how human influence may have changed their characteristics. Here we combine formal statistical analyses based on optimal fingerprinting to attribute observed long term changes in temperature extremes with an ensemble-based approach for event attribution. Our analyses are applied to 16 indices constructed with daily temperature data that focus on different characteristics of extremes and together build up a more complete representation of historical changes in warm and cold extremes than previous studies. For each index we compute an annual value for all years of the post-1960 period using data from observations and experiments with a coupled Earth System model for the analysis of multi-decadal changes and a high-resolution atmospheric model for event attribution. The models indicate that anthropogenic forcings have influenced almost all indices in recent decades and led to more prominent changes in the frequency of extremes. The optimal fingerprinting analyses show that for most indices the anthropogenic signal is detectable in changes during 1961–2010 both in Europe and on a quasi-global scale. The weaker natural effect, resulting mainly from volcanic eruptions, is in most cases not detectable, with the exception of large scale changes in indices linked to the frequency of cold night-time extremes. Our event analyses estimate how anthropogenic forcings alter the chances of getting new record index values in Europe and find that such extremes would be markedly rare if human influence were not accounted for, whereas in the current climate their return times range from a few years to a few decades.

  14. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. (United States)

    McKechnie, Andrew E; Wolf, Blair O


    Severe heat waves have occasionally led to catastrophic avian mortality in hot desert environments. Climate change models predict increases in the intensity, frequency and duration of heat waves. A model of avian evaporative water requirements and survival times during the hottest part of day reveals that the predicted increases in maximum air temperatures will result in large fractional increases in water requirements (in small birds, equivalent to 150-200 % of current values), which will severely reduce survival times during extremely hot weather. By the 2080s, desert birds will experience reduced survival times much more frequently during mid-summer, increasing the frequency of catastrophic mortality events.

  15. Climate change impacts on extreme events in the United States: an uncertainty analysis (United States)

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  16. Synoptic conditions leading to extremely high temperatures in Madrid

    Directory of Open Access Journals (Sweden)

    R. García

    Full Text Available Extremely hot days (EHD in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955–1998. An EHD is defined as a day with maximum temperature higher than 36.5°C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high.

    Key words. Meteorology and atmospheric dynamics (Climatology; synoptic-scale meteorology; general or miscellaneous

  17. Synoptic conditions leading to extremely high temperatures in Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Prieto, L.; Hernandez, E.; Teso, T. del [Dept. Fisica de la Tierra II, Fac. CC. Fisicas, Univ. Camplutense de Madrid (Spain); Diaz, J. [Centro Universitario de Salud Publica, Univ. Autonoma de Madrid (Spain)


    Extremely hot days (EHD) in Madrid have been analysed to determine the synoptic patterns that produce EHDs during the period of 1955-1998. An EHD is defined as a day with maximum temperature higher than 36.5 C, a value which is the threshold for the intense effects on mortatility and it coincides with the 95 percentile of the series. Two different situations have been detected as being responsible for an EHD occurrence, one more dynamical, produced by southern fluxes, and another associated with a stagnation situation over Iberia of a longer duration. Both account for 92% of the total number of days, thus providing an efficient classification framework. A circulation index has been derived to characterise and forecast an EHD occurrence. This paper shows that EHD occur in Madrid during short duration events, and no long heat waves, like those recorded in other cities, are present. Additionally, no clear pattern can be detected in the EHD frequency; the occurrence is tied to changes in the summer location of the Azores high. (orig.)

  18. An Urban Resilience to Extreme Weather Events Framework for Development of Post Event Learning and Transformative Adaptation in Cities (United States)

    Solecki, W. D.; Friedman, E. S.; Breitzer, R.


    Increasingly frequent extreme weather events are becoming an immediate priority for urban coastal practitioners and stakeholders, adding complexity to decisions concerning risk management for short-term action and long-term needs of city climate stakeholders. The conflict between the prioritization of short versus long-term events by decision-makers creates disconnect between climate science and its applications. The Consortium for Climate Risk in the Urban Northeast (CCRUN), a NOAA RISA team, is developing a set of mechanisms to help bridge this gap. The mechanisms are designed to promote the application of climate science on extreme weather events and their aftermath. It is in the post event policy window where significant opportunities for science-policy linkages exist. In particular, CCRUN is interested in producing actionable and useful information for city managers to use in decision-making processes surrounding extreme weather events and climate change. These processes include a sector specific needs assessment survey instrument and two tools for urban coastal practitioners and stakeholders. The tools focus on post event learning and connections between resilience and transformative adaptation. Elements of the two tools are presented. Post extreme event learning supports urban coastal practitioners and decision-makers concerned about maximizing opportunities for knowledge transfer and assimilation, and policy initiation and development following an extreme weather event. For the urban U.S. Northeast, post event learning helps coastal stakeholders build the capacity to adapt to extreme weather events, and inform and develop their planning capacity through analysis of past actions and steps taken in response to Hurricane Sandy. Connecting resilience with transformative adaptation is intended to promote resilience in urban Northeast coastal settings to the long-term negative consequences of extreme weather events. This is done through a knowledge co

  19. Climate projections of future extreme events accounting for modelling uncertainties and historical simulation biases (United States)

    Brown, Simon J.; Murphy, James M.; Sexton, David M. H.; Harris, Glen R.


    A methodology is presented for providing projections of absolute future values of extreme weather events that takes into account key uncertainties in predicting future climate. This is achieved by characterising both observed and modelled extremes with a single form of non-stationary extreme value (EV) distribution that depends on global mean temperature and which includes terms that account for model bias. Such a distribution allows the prediction of future "observed" extremes for any period in the twenty-first century. Uncertainty in modelling future climate, arising from a wide range of atmospheric, oceanic, sulphur cycle and carbon cycle processes, is accounted for by using probabilistic distributions of future global temperature and EV parameters. These distributions are generated by Bayesian sampling of emulators with samples weighted by their likelihood with respect to a set of observational constraints. The emulators are trained on a large perturbed parameter ensemble of global simulations of the recent past, and the equilibrium response to doubled CO2. Emulated global EV parameters are converted to the relevant regional scale through downscaling relationships derived from a smaller perturbed parameter regional climate model ensemble. The simultaneous fitting of the EV model to regional model data and observations allows the characterisation of how observed extremes may change in the future irrespective of biases that may be present in the regional models simulation of the recent past climate. The clearest impact of a parameter perturbation in this ensemble was found to be the depth to which plants can access water. Members with shallow soils tend to be biased hot and dry in summer for the observational period. These biases also appear to have an impact on the potential future response for summer temperatures with some members with shallow soils having increases for extremes that reduce with extreme severity. We apply this methodology for London, using the

  20. Corresponding Relation between Warm Season Precipitation Extremes and Surface Air Temperature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; LI; Jian; YU; Ru-Cong


    Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.

  1. Data-driven prediction and prevention of extreme events in a spatially extended excitable system. (United States)

    Bialonski, Stephan; Ansmann, Gerrit; Kantz, Holger


    Extreme events occur in many spatially extended dynamical systems, often devastatingly affecting human life, which makes their reliable prediction and efficient prevention highly desirable. We study the prediction and prevention of extreme events in a spatially extended system, a system of coupled FitzHugh-Nagumo units, in which extreme events occur in a spatially and temporally irregular way. Mimicking typical constraints faced in field studies, we assume not to know the governing equations of motion and to be able to observe only a subset of all phase-space variables for a limited period of time. Based on reconstructing the local dynamics from data and despite being challenged by the rareness of events, we are able to predict extreme events remarkably well. With small, rare, and spatiotemporally localized perturbations which are guided by our predictions, we are able to completely suppress extreme events in this system.

  2. Generating extreme weather event sets from very large ensembles of regional climate models (United States)

    Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim


    Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a

  3. Need for Caution in Interpreting Daily Temperature Extremes (United States)

    Sardeshmukh, P. D.; Compo, G. P.; Penland, C.


    Given the substantial anthropogenic contribution to global warming, it is tempting to seek an anthropogenic component in any unusual recent weather event, or more generally in any recent change in extreme weather statistics. We caution that such detection and attribution efforts may, however, lead to wrong conclusions if the distinctively skewed and heavy-tailed features of the probability distributions of daily weather variations are not properly accounted for. Large deviations from the mean are far more common in such a non-Gaussian world than they are in a Gaussian world. In such a world, a mean climate shift is also generally accompanied by changes in the width and shape of the probability distribution. Consequently, even the sign of the changes in tail probabilities cannot be inferred unequivocally from the mean shift. These realities further complicate the establishment of significant changes in tail probabilities from historical records of limited length and accuracy. A possible solution is to exploit the fact that the salient non-Gaussian features of the observed distributions are captured in a general class of probability distributions introduced in the meteorological literature by Sardeshmukh and Sura (2009). These distributions, called Stochastically Generated Skewed (SGS) distributions (of which Gaussian distributions are special cases), are associated with modified forms of stochastically perturbed damped linear processes, and as such represent perhaps the simplest physically based non-Gaussian prototypes of the observed distributions. Importantly, the distribution of an SGS variable remains an SGS distribution under a mean climate shift. We show further that fitting SGS distributions to all daily values in limited climate records yields extreme value distributions of block maxima with smaller sampling uncertainties than GEV distributions fitted to only the block maxima. Extreme value analysis based on SGS distributions thus provides an attractive

  4. The non-Gaussianity and spatial asymmetry of temperature extremes relative to the jet: the role of horizontal advection (United States)

    Harnik, Nili; Garfinkel, Chaim


    Global warming is expected raise the number of warm spells and lower the number of cold spells, by simply shifting of the near-surface temperature probability distribution to warmer temperatures. However, changes in the shape of distribution strongly affect how the occurrence of temperature extremes will change. Hence, understanding the processes shaping the spatial and statistical distribution of temperature variations and extremes in the present climate is central to understanding how temperature extremes might vary in the future. Using meteorological reanalyses data we show that the distribution of near-surface temperature variability is non-Gaussian, and consistent with this, extreme warm anomalies occur preferentially poleward of the location of extreme cold anomalies. The non-Guassianity evident in reanalysis data is also found in a set of dry General Circulation Model runs in which the jet is forced at different latitudes, and the location of extremes is influenced by the location of the jet stream. Using a simple model of Lagrangian temperature advection, we investigate the role of synoptic dynamics in causing this non Gaussianity. The meridional shifting between cold and warm extremes, and the related non-Gaussianity are traced back to the synoptic evolution leading up to cold and warm extreme events. We find that the meridional movement of synotpic systems, as well as nonlinear temperature advection are both of crucial importance for the warm/cold asymmetry in the latitudinal distribution of the temperature extremes. The possible implications for future changes in extremes will be briefly discussed.

  5. Daily extreme temperature multifractals in Catalonia (NE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Burgueño, A. [Departament d' Astronomia i Meteorologia, Universitat de Barcelona, Barcelona (Spain); Lana, X., E-mail: [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Barcelona (Spain); Serra, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Barcelona (Spain); Martínez, M.D. [Departament de Física Aplicada, Universitat Politècnica de Catalunya, Barcelona (Spain)


    The multifractal character of the daily extreme temperatures in Catalonia (NE Spain) is analyzed by means of the multifractal detrended fluctuation analysis (MF-DFA) applied to 65 thermometric records covering years 1950–2004. Although no clear spatial patterns of the multifractal spectrum parameters appear, factor scores deduced from Principal Component analysis indicate some signs of spatial gradients. Additionally, the daily extreme temperature series are classified depending on their complex time behavior, through four multifractal parameters (Hurst exponent, Hölder exponent with maximum spectrum, spectrum asymmetry and spectrum width). As a synthesis of the three last parameters, a basic measure of complexity is proposed through a normalized Complexity Index. Its regional behavior is found to be free of geographical dependences. This index represents a new step towards the description of the daily extreme temperatures complexity.

  6. Can a regional climate model reproduce observed extreme temperatures?

    Directory of Open Access Journals (Sweden)

    Peter F. Craigmile


    Full Text Available Using output from a regional Swedish climate model and observations from the Swedish synoptic observational network, we compare seasonal minimum temperatures from model output and observations using marginal extreme value modeling techniques. We make seasonal comparisons using generalized extreme value models and empirically estimate the shift in the distribution as a function of the regional climate model values, using the Doksum shift function. Spatial and temporal comparisons over south central Sweden are made by building hierarchical Bayesian generalized extreme value models for the observed minima and regional climate model output. Generally speaking the regional model is surprisingly well calibrated for minimum temperatures. We do detect a problem in the regional model to produce minimum temperatures close to 0◦C. The seasonal spatial effects are quite similar between data and regional model. The observations indicate relatively strong warming, especially in the northern region. This signal is present in the regional model, but is not as strong.

  7. Quantifying the effect of trend, fluctuation, and extreme event of climate change on ecosystem productivity. (United States)

    Liu, Yupeng; Yu, Deyong; Su, Yun; Hao, Ruifang


    Climate change comprises three fractions of trend, fluctuation, and extreme event. Assessing the effect of climate change on terrestrial ecosystem requires an understanding of the action mechanism of these fractions, respectively. This study examined 11 years of remotely sensed-derived net primary productivity (NPP) to identify the impacts of the trend and fluctuation of climate change as well as extremely low temperatures caused by a freezing disaster on ecosystem productivity in Hunan province, China. The partial least squares regression model was used to evaluate the contributions of temperature, precipitation, and photosynthetically active radiation (PAR) to NPP variation. A climatic signal decomposition and contribution assessment model was proposed to decompose climate factors into trend and fluctuation components. Then, we quantitatively evaluated the contributions of each component of climatic factors to NPP variation. The results indicated that the total contribution of the temperature, precipitation, and PAR to NPP variation from 2001 to 2011 in Hunan province is 85 %, and individual contributions of the temperature, precipitation, and PAR to NPP variation are 44 % (including 34 % trend contribution and 10 % fluctuation contribution), 5 % (including 4 % trend contribution and 1 % fluctuation contribution), and 36 % (including 30 % trend contribution and 6 % fluctuation contribution), respectively. The contributions of temperature fluctuation-driven NPP were higher in the north and lower in the south, and the contributions of precipitation trend-driven NPP and PAR fluctuation-driven NPP are higher in the west and lower in the east. As an instance of occasionally triggered disturbance in 2008, extremely low temperatures and a freezing disaster produced an abrupt decrease of NPP in forest and grass ecosystems. These results prove that the climatic trend change brought about great impacts on ecosystem productivity and that climatic fluctuations and

  8. Tree-ring responses to extreme climate events as benchmarks for terrestrial dynamic vegetation models

    Directory of Open Access Journals (Sweden)

    A. Rammig


    Full Text Available Climate extremes can trigger exceptional responses in terrestrial ecosystems, for instance by altering growth or mortality rates. Effects of this kind are often manifested in reductions of the local net primary production (NPP. Investigating a set of European long-term data on annual radial tree growth confirms this pattern: we find that 53% of tree ring width (TRW indices are below one standard deviation, and up to 16% of the TRW values are below two standard deviations in years with extremely high temperatures and low precipitation. Based on these findings we investigate if climate driven patterns in long-term tree growth data may serve as benchmarks for state-of-the-art dynamic vegetation models such as LPJmL. The model simulates NPP but not explicitly the radial tree ring growth, hence requiring a generic method to ensure an objective comparison. Here we propose an analysis scheme that quantifies the coincidence rate of climate extremes with some biotic responses (here TRW or simulated NPP. We find that the reduction in tree-ring width during drought extremes is lower than the corresponding reduction of simulated NPP. We identify ten extreme years during the 20th century in which both, model and measurements indicate high coincidence rates across Europe. However, we detect substantial regional differences in simulated and observed responses to extreme events. One explanation for this discrepancy could be that the tree-ring data have preferentially been sampled at more climatically stressed sites. The model-data difference is amplified by the fact that dynamic vegetation models are designed to simulate mean ecosystem responses at landscape or regional scale. However, we find that both model-data and measurements display carry-over effects from the previous year. We conclude that using radial tree growth is a good basis for generic model-benchmarks if the data are analyzed by scale-free measures such as coincidence analysis. Our study shows

  9. The December 2008 flood event in Rome: Was it really an extreme event? (United States)

    Lastoria, B.; Mariani, S.; Casaioli, M.; Bussettini, M.


    In mid December 2008, Italy suffered bad weather with heavy snowfall blanketing the north and strong winds and downpours pelting the centre-south. In particular, during the period between 10th and 12th December, intense precipitation struck the Tyrrhenian Sea side of the peninsula, inducing a flood event, which captured the attention of the national and international media, on the Tiber river and on its tributary, the Aniene. The relevance of the event was caused by the actual damages occurred in several zones over Rome area, in particular due to the downpours and to damages which would have occurred if Tiber river had overflowed its banks. The event, which was initially considered as extreme, was indeed severe but not so exceptional as shown by the meteo-hydrological post-event analysis. The peak water level of 12.55 m, recorded on 13th December at 1:30 a.m. (local time) at the Ripetta station, which is situated along the Tiber river in the centre of Rome, was higher than those observed during the last ten years (which to the utmost reached 11.41 m in December 2005). However, it did not reach the historical maximum of 16.90 m observed in 1937. Moreover, on the basis of the Ripetta historical series, such a level is associated to an ordinary flood event. Even if the flood was ordinary, a state of emergency was declared by the Rome's Mayor, since the event caused severe damages by disrupting flight and train services, blocking off major roads leading into Rome, flooding underpasses and sealing off industrial activities sited in the flooded areas, in particular nearby the confluence of the Aniene river with the Tiber river. In addition, hundreds of people were evacuated and a woman died in a her car which was submerged by a wave of water and mud in an underpass. Given these premises, the present work examines the relation between a severe, but not extraordinary, event and the considerable damages that occurred as a consequence. First, the meteorological evolution of

  10. Projected Changes in Temperature Extremes in China Using PRECIS

    Directory of Open Access Journals (Sweden)

    Yujing Zhang


    Full Text Available Temperature extremes can cause disastrous impacts on ecological and social economic systems. China is very sensitive to climate change, as its warming rate exceeds that of the global mean level. This paper focused on the spatial and temporal changes of the temperature extremes characterized by the 95th percentile of maximum temperature (TX95, the 5th percentile of the minimum temperature (TN5, high-temperature days (HTD and low-temperature days (LTD. The daily maximum and minimum temperatures generated by PRECIS under different Representative Concentration Pathways (RCPs are used in the research. The results show that: (1 Model simulation data can reproduce the spatial distribution features of the maximum temperature (Tmax and minimum temperature (Tmin as well as that of the extreme temperature indices; (2 By the end of the 21st century (2070–2099, both the Tmax and Tmin are warmer than the baseline level (1961–1990 in China and the eight sub-regions. However, there are regional differences in the asymmetrical warming features, as the Tmin warms more than the Tmax in the northern part of China and the Tibetan Plateau, while the Tmax warms more than the Tmin in the southern part of China; (3 The frequency of the warm extremes would become more usual, as the HTD characterized by the present-day threshold would increase by 106%, 196% and 346%, under RCP2.6, RCP4.5 and RCP8.5, respectively, while the cold extremes characterized by the LTD would become less frequent by the end of the 21st century, decreasing by 75%, 90% and 98% under RCP2.6, RCP4.5 and RCP8.5, respectively. The southern and eastern parts of the Tibetan Plateau respond sensitively to changes in both the hot and cold extremes, suggesting its higher likelihood to suffer from climate warming; (4 The intensity of the warm (cold extremes would increase (decrease significantly, characterized by the changes in the TX95 (TN5 by the end of the 21st century, and the magnitude of the

  11. Impacts of the Future Changes in Extreme Events on the Regional Crop Yield in Turkey (United States)

    An, Nazan; Turp, M. Tufan; Ozturk, Tugba; Kurnaz, M. Levent


    The changes in extreme events caused by climate change have the greatest impact on agricultural sector specifically crop yield. Therefore, it requires a clear understanding of how extreme events affect the crop yield and how it causes high economic losses. In this research, we cover the relationship between extreme events and the crop yield in Turkey for the period of 2020 - 2045 with respect to 1980 - 2005. We focus on the role of those extreme event causing natural disasters on the regional crop yield. This research comprises 2 parts. In the first part, the projection is performed according to the business as usual scenario of IPCC, RCP8.5, via the RegCM4.4 in order to obtain extreme event indices required for the crop assessment. In the second part, the crop yield and the extreme event indices are combined by applying the econometric analysis in order to see the relationship between natural disasters and crop yield. The risks for crop yield caused by the extreme events are estimated and interpreted. This study aims to assess the effect of frequency of expected extreme events on the crop yield at the cropland of Turkey. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  12. Anticipating Future Extreme Climate Events for Alaska Using Dynamical Downscaling and Quantile Mapping (United States)

    Lader, R.; Walsh, J. E.


    Alaska is projected to experience major changes in extreme climate during the 21st century, due to greenhouse warming and exacerbated by polar amplification, wherein the Arctic is warming at twice the rate compared to the Northern Hemisphere. Given its complex topography, Alaska displays extreme gradients of temperature and precipitation. However, global climate models (GCMs), which typically have a spatial resolution on the order of 100km, struggle to replicate these extremes. To help resolve this issue, this study employs dynamically downscaled regional climate simulations and quantile-mapping methodologies to provide a full suite of daily model variables at 20 km spatial resolution for Alaska, from 1970 to 2100. These data include downscaled products of the: ERA-Interim reanalysis from 1979 to 2015, GFDL-CM3 historical from 1970 to 2005, and GFDL-CM3 RCP 8.5 from 2006 to 2100. Due to the limited nature of long-term observations and high-resolution modeling in Alaska, these data enable a broad expansion of extremes analysis. This study uses these data to highlight a subset of the 27 climate extremes indices, previously defined by the Expert Team on Climate Change Detection and Indices, as they pertain to climate change in Alaska. These indices are based on the statistical distributions of daily surface temperature and precipitation and focus on threshold exceedance, and percentiles. For example, the annual number of days with a daily maximum temperature greater than 25°C is anticipated to triple in many locations in Alaska by the end of the century. Climate extremes can also refer to long duration events, such as the record-setting warmth that defined the 2015-16 cold season in Alaska. The downscaled climate model simulations indicate that this past winter will be considered normal by as early as the mid-2040s, if we continue to warm according to the business-as-usual RCP 8.5 emissions scenario. This represents an accelerated warming as compared to projections

  13. Climate extremes in the Pacific: improving seasonal prediction of tropical cyclones and extreme ocean temperatures to improve resilience (United States)

    Kuleshov, Y.; Jones, D.; Spillman, C. M.


    Climate change and climate extremes have a major impact on Australia and Pacific Island countries. Of particular concern are tropical cyclones and extreme ocean temperatures, the first being the most destructive events for terrestrial systems, while the latter has the potential to devastate ocean ecosystems through coral bleaching. As a practical response to climate change, under the Pacific-Australia Climate Change Science and Adaptation Planning program (PACCSAP), we are developing enhanced web-based information tools for providing seasonal forecasts for climatic extremes in the Western Pacific. Tropical cyclones are the most destructive weather systems that impact on coastal areas. Interannual variability in the intensity and distribution of tropical cyclones is large, and presently greater than any trends that are ascribable to climate change. In the warming environment, predicting tropical cyclone occurrence based on historical relationships, with predictors such as sea surface temperatures (SSTs) now frequently lying outside of the range of past variability meaning that it is not possible to find historical analogues for the seasonal conditions often faced by Pacific countries. Elevated SSTs are the primary trigger for mass coral bleaching events, which can lead to widespread damage and mortality on reef systems. Degraded coral reefs present many problems, including long-term loss of tourism and potential loss or degradation of fisheries. The monitoring and prediction of thermal stress events enables the support of a range of adaptive and management activities that could improve reef resilience to extreme conditions. Using the climate model POAMA (Predictive Ocean-Atmosphere Model for Australia), we aim to improve accuracy of seasonal forecasts of tropical cyclone activity and extreme SSTs for the regions of Western Pacific. Improved knowledge of extreme climatic events, with the assistance of tailored forecast tools, will help enhance the resilience and

  14. Extreme temperatures and precipitation in Poland. An evaluation attempt

    Energy Technology Data Exchange (ETDEWEB)

    Ustrnul, Zbigniew [Institute of Meteorology and Water Management, Krakow (Poland); Wypych, Agnieszka; Kosowski, Marek [Jagiellonian Univ., Krakow (Poland)


    Summer (JJA) and winter (DJF) temperature extremes and summer (JJA) precipitation extremes in Poland that occurred in the years 1951-2006 are analyzed in this paper. Diurnal extreme values of air temperature (Tmax, Tmin) and diurnal precipitation totals (P) are considered. The data was obtained from 54 meteorological stations. Extreme values were identified based on different methodological approaches. Advantages and disadvantages of selected methods are shown with respect to both temporal and spatial variability of the data. The differences obtained as a result of the applied criteria confirm that the method of percentiles seems to be the most suitable one to be used in spatial analysis. This is especially relevant in areas with a relatively high variability of absolute values. When it comes to analyses of multi-annual trends, the criterion used plays a less significant role. Regardless of the method, there is a certain direction of changes that is maintained, although their magnitudes may be different. It may be concluded from the conducted analyses that for the full evaluation of both spatial variability and temporal variability of weather extremes, a variety of methods and criteria for identifying extreme values, should be considered. They may significantly influence the final results. (orig.)

  15. National vulnerability to extreme climatic events: the cases of electricity disruption in China and Japan


    Jing-Li Fan; Qiao-Mei Liang; Xiao-Jie Liang; Hirokazu Tatano; Yoshio Kajitani; Yi-Ming Wei


    Extreme climatic events are likely to adversely affect many countries throughout the world, but the degrees among countries may be different. China and Japan are the countries with high incidences of extreme weather/disaster, both facing with the urgent task of addressing climate change. This study seeks to quantitatively compare the impacts of extreme climatic events on socio-economic systems (defined as vulnerability) of the two countries by simulating the consequences of hypothetical the s...

  16. Statistical Downscaling of Summer Temperature Extremes in Northern China

    Institute of Scientific and Technical Information of China (English)

    FAN Lijun; Deliang CHEN; FU Congbin; YAN Zhongwei


    Two approaches of statistical downscaling were applied to indices of temperature extremes based on percentiles of daily maximum and minimum temperature observations at Beijing station in summer during 1960-2008.One was to downscale daily maximum and minimum temperatures by using EOF analysis and stepwise linear regression at first,then to calculate the indices of extremes; the other was to directly downscale the percentile-based indices by using seasonal large-scale temperature and geo-potential height records.The cross-validation results showed that the latter approach has a better performance than the former.Then,the latter approach was applied to 48 meteorological stations in northern China.The crossvalidation results for all 48 stations showed close correlation between the percentile-based indices and the seasonal large-scale variables.Finally,future scenarios of indices of temperature extremes in northern China were projected by applying the statistical downscaling to Hadley Centre Coupled Model Version 3 (HadCM3) simulations under the Representative Concentration Pathways 4.5 (RCP 4.5) scenario of the Fifth Coupled Model Inter-comparison Project (CMIP5).The results showed that the 90th percentile of daily maximum temperatures will increase by about 1.5℃,and the 10th of daily minimum temperatures will increase by about 2℃ during the period 2011-35 relative to 1980-99.

  17. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers. (United States)

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele


    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800-2011 at monthly resolution and for 1926-2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0-34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees

  18. Spatio-temporal extreme events in a laser with a saturable absorber

    CERN Document Server

    Rimoldi, Cristina; Prati, Franco; Tissoni, Giovanna


    We study extreme events occurring in the transverse $(x,y)$ section of the field emitted by a broad-area semiconductor laser with a saturable absorber. The spatio-temporal events on which we perform the statistical analysis are identified as maxima of the field intensity in the 3D space $(x,y,t)$. We identify regions in the parameter space where extreme events are more likely to occur and we study the connection of those extreme events with the cavity solitons that are known to exist in the same system, both stationary and self-pulsing.

  19. Extreme total column ozone events and effects on UV solar radiation at Thessaloniki, Greece (United States)

    Fragkos, K.; Bais, A. F.; Fountoulakis, I.; Balis, D.; Tourpali, K.; Meleti, C.; Zanis, P.


    Thirty years of total ozone column (TOC) measurements conducted by a Brewer spectrophotometer, operating in Thessaloniki (40.6°) since March 1982, have been analyzed using the statistical extreme value theory for the identification of extreme TOC events. About 12 % of the total number of days with TOC measurements were identified as extreme-low and ˜15 % as extreme-high events. The influence of the extreme-low events on the annual mean TOC values is up to ˜18 DU, while the extreme-high events show lower impact (up to 12 DU). Removing the extreme events from the time series results in smoother year-to-year variability and reduction of the small long-term linear trend (-0.08 %/year) by a factor of 2. Furthermore, we examined the impact of the extreme events on the noon erythemal irradiance under clear skies, and we provide evidence that even under extreme-low TOC conditions, the UV radiation levels are determined to a great extent by the aerosol optical depth. Although the influence of aerosols is evident during all seasons, for spring and summer, the sensitivity of UV radiation is larger, probably due to the different nature of the aerosols over Thessaloniki during these seasons.

  20. Soliciting Feedback from Resource Managers to Inform Response to Extreme Event Impact (United States)

    Bedsworth, L. W.


    To date, extreme events have been defined by scientists through a top-down approach, relying on observations for current extremes and climate model projections based on future scenarios for their expected changes. These abstract definitions of extreme events are based on a corresponding characterization of what is "normal" and perhaps the choice of a threshold (e.g., a percentile of a historical distribution for a given climate variable), beyond which would represent an extreme event. However, there are not necessarily direct connections between these definitions and what is considered "extreme" in terms of impacts that challenge resource management. Several researchers have suggested that extreme event definitions would also be informed by input from on-the-ground resource managers who are familiar with the systems being impacted, the climate conditions that pose risks to those systems, and their resilience and adaptive capacity. This research will present preliminary survey work designed to solicit input from air and water quality managers in terms of what is considered an extreme event, how these events have been weathered in the past, and planned for in the future. The survey is based on literature review, interviews with air and water quality managers in California, and outreach to the scientific community. This work is the first step of a multistage research effort to link input from resource managers with scientific information to better inform air and water quality management and impacts of extreme events under a changing climate.

  1. Detecting impacts of extreme events with ecological in situ monitoring networks

    Directory of Open Access Journals (Sweden)

    M. D. Mahecha


    Full Text Available Extreme hydrometeorological conditions typically impact ecophysiological processes on land. Satellite-based observations of the terrestrial biosphere provide an important reference for detecting and describing the spatiotemporal development of such events. However, in-depth investigations of ecological processes during extreme events require additional in situ observations. The question is whether the density of existing ecological in situ networks is sufficient for analysing the impact of extreme events, and what are expected event detection rates of ecological in situ networks of a given size. To assess these issues, we build a baseline of extreme reductions in the fraction of absorbed photosynthetically active radiation (FAPAR, identified by a new event detection method tailored to identify extremes of regional relevance. We then investigate the event detection success rates of hypothetical networks of varying sizes. Our results show that large extremes can be reliably detected with relatively small networks, but also reveal a linear decay of detection probabilities towards smaller extreme events in log–log space. For instance, networks with  ≈  100 randomly placed sites in Europe yield a  ≥  90 % chance of detecting the eight largest (typically very large extreme events; but only a  ≥  50 % chance of capturing the 39 largest events. These findings are consistent with probability-theoretic considerations, but the slopes of the decay rates deviate due to temporal autocorrelation and the exact implementation of the extreme event detection algorithm. Using the examples of AmeriFlux and NEON, we then investigate to what degree ecological in situ networks can capture extreme events of a given size. Consistent with our theoretical considerations, we find that today's systematically designed networks (i.e. NEON reliably detect the largest extremes, but that the extreme event detection rates are not higher than would

  2. The spatial distribution of extreme climate events, another climate inequity for the world’s most vulnerable people (United States)

    Green, Donna


    Does the climate change signal emerge equally from internal climate variability across the globe? If not, are there particular locations where temperature extremes might disproportionately affect specific populations? The letter by Harrington et al (2016 Environ. Res. Lett. 11 055007) argues that people living in low latitude countries, which contain the majority of the world’s poorest people, are—and will continue to be—disproportionately affected by increases in temperature extremes. Due to differences in expertise of climate scientists, and climate impact and adaptation scientists, few climate extreme event analyses are spatially disaggregated and linked to local populations’ socio-economic characteristics. The research presented in this letter begins to bridge this gap by providing evidence of inequitable spatial impacts from climate extremes on the world’s poorest people.

  3. Effects of extreme spring temperatures on phenology: a case study from Munich and Ingolstadt (United States)

    Jochner, Susanne; Menzel, Annette


    Extreme events - e.g. warm spells or heavy precipitation events - are likely to increase in the future both in frequency and intensity. Therefore, research on extreme events gains new importance; also in terms of plant development which is mostly triggered by temperatures. An arising question is how plants respond to an extreme warm spell when following an extreme cold winter season. This situation could be studied in spring 2009 in the greater area of Munich and Ingolstadt by phenological observations of flowering and leaf unfolding of birch (Betula pendula L.) and flowering of horse chestnut (Aesculus hippocastanum L.). The long chilling period of winter 2008 and spring 2009 was followed by an immediate strong forcing of flowering and leaf unfolding, especially for birch. This extreme weather situation diminished the difference between urban and rural dates of onset. Another important fact that could be observed in the proceeding period of December 2008 to April 2009 was the reduced temperature difference among urban and rural sites (urban heat island effect). Long-term observations (1951-2008) of the phenological network of the German Meteorological Service (DWD) were used to identify years with reduced urban-rural differences between onset times in the greater area of Munich in the past. Statistical analyses were conducted in order to answer the question whether the sequence of extreme warm and cold events leads to a decreased difference in phenological onset times or if this behaviour can be attributed to extreme warm springs themselves or to the decreased urban heat island effect which is mostly affected by general atmospheric circulation patterns.

  4. Observed and projected urban extreme rainfall events in India (United States)

    Ali, Haider; Mishra, Vimal; Pai, D. S.


    We examine changes in extreme rainfall indices over 57 major urban areas in India under the observed (1901-2010) and projected future climate (2010-2060). Between 1901 and 2010, only four out of the total 57 urban areas showed a significant (p-value urban areas experienced significant increases in the extreme rainfall indices for the different periods. Moreover, rainfall maxima for 1-10 day durations and at 100 year return period did not change significantly over the majority of urban areas in the post-1955 period. Results do not indicate any significant change (p > 0.05) in the pooled mean and distribution of the extreme rainfall indices for the pre- and post-1983 periods revealing an insignificant role of urbanization on rainfall extremes in the major urban areas in India. We find that at the majority of urban areas changes in the extreme rainfall indices are driven by large scale climate variability. Regional Climate Models (RCMs) that participated in the CORDEX-South Asia program showed a significant bias in the monsoon maximum rainfall and rainfall maxima at 100 year return period for the majority of urban areas. For instance, most of the models fail to simulate rainfall maxima within ±10% bias, which can be considered appropriate for a storm water design at many urban areas. Rainfall maxima at 1-3 day durations and 100 year return period is projected to increase significantly under the projected future climate at the majority of urban areas in India. The number of urban areas with significant increases in rainfall maxima under the projected future climate is far larger than the number of areas that experienced significant changes in the historic climate (1901-2010), which warrants a careful attention for urban storm water infrastructure planning and management.

  5. Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China (United States)

    Dong, Siyan; Xu, Ying; Zhou, Botao; Shi, Ying


    Given that climate extremes in China might have serious regional and global consequences, an increasing number of studies are examining temperature extremes in China using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. This paper investigates recent changes in temperature extremes in China using 25 state-of-the-art global climate models participating in CMIP5. Thirteen indices that represent extreme temperature events were chosen and derived by daily maximum and minimum temperatures, including those representing the intensity (absolute indices and threshold indices), duration (duration indices), and frequency (percentile indices) of extreme temperature. The overall performance of each model is summarized by a "portrait" diagram based on relative root-mean-square error, which is the RMSE relative to the median RMSE of all models, revealing the multi-model ensemble simulation to be better than individual model for most indices. Compared with observations, the models are able to capture the main features of the spatial distribution of extreme temperature during 1986-2005. Overall, the CMIP5 models are able to depict the observed indices well, and the spatial structure of the ensemble result is better for threshold indices than frequency indices. The spread amongst the CMIP5 models in different subregions for intensity indices is small and the median CMIP5 is close to observations; however, for the duration and frequency indices there can be wide disagreement regarding the change between models and observations in some regions. The model ensemble also performs well in reproducing the observational trend of temperature extremes. All absolute indices increase over China during 1961-2005.

  6. Recurring features of extreme rainfall events close to Veneto coast during autumn (United States)

    Monai, M.; Barbi, A.; Racca, R.


    warm air coming from Adriatic sea, that is still warm (sea surface temperature above 20°C) in September; - previous weather conditions (7-10 days) with anticyclonic situation (frequently a ridge from north-Africa) with temperatures higher than usual. During most intense phases, recurring features were evidenced: - convective rains with significant thunderstorm activity; such systems are often associated to regeneration of cells, in the same coastal area; - convergence lines at low levels associated with winds coming from SE (from the sea) on the coast, and from NE (from the plane) immediately inland. It is particularly important to underline that rainfall values on short periods were extremely high if compared with mean annual amount: during last four episodes , rainfall amounts between 130 and 320 mm were recorded in 12 hours, i.e. during half a day something like 1/8 and 1/3 of total mean annual amount has fallen. Remarkable also intensity of rainfall : values like 90 mm in half an hour, or 125 mm in 1 hour were recorded. The final goal of this study was to better understand meteorological conditions associated with such events to improve forecasting and nowcasting skill. This is a crucial benefit for a Regional Met Service that must alert and support civil defence system properly, as is the case for Meteorological Centre of ARPAV in Veneto. Furthermore it is important to underline the fact that coastal area of Veneto is densely populated and it is one of the most important areas of Italian tourism, including the city of Venice and several seaside resorts with more than twenty millions of presences per year.

  7. Assessing the impacts of changing precipitation and temperature extremes on the current and future ecohydrology of grassland ecosystems (United States)

    Brunsell, N. A.; Nippert, J. B.; Ocheltree, T.


    Extreme weather events have profound impacts on water and carbon cycling. However, events of similar magnitude may have very different impacts depending upon the timing of the event in the phenological cycle. We assess these impacts of extreme daily weather events including precipitation, maximum and minimum temperature using data collected from the Konza Prairie Long Term Ecological Research site in the central U.S. We utilize the long term weather and biomass collection data at the LTER site to examine the historical variability of extreme events and the impacts on annual carbon dynamics. Timescales of interactions between daily weather and fluxes are quantified through a multiscale information theoretic approach. In addition, we quantify the impacts of the timing and magnitude of extreme events through a Critical Climate Period (CCP) analysis. Results indicate a strong sensitivity to spring precipitation and summer temperature. Using six years of eddy covariance data, we can isolate more of the biophysical mechanisms governing the responses to extreme weather events. Of particular interest is the heat wave of July, 2011, where daily maximum temperatures were over 38 C for 24 consecutive days and resulted in drastically reduced above ground carbon allocation than in previous years. In addition, we employ the Agro-BGC model to assess the biophysical processes responsible for determining the response of water and carbon dynamics to extreme weather events. This is done by employing a stochastic weather generator with prescribed changes in annual precipitation and temperature conistent with GCM projections. Developing a more thorough understanding of extreme events and the differential responses due to the timing and magnitude of the events will potentially assist in the mitigation of future climate change.

  8. Nerve conduction studies in upper extremities: skin temperature corrections. (United States)

    Halar, E M; DeLisa, J A; Soine, T L


    The relationship of skin to near nerve (NN) temperature and to nerve conduction velocity (NCV) and distal latency (DL) was studied in 34 normal adult subjects before and after cooling both upper extremities. Median and ulnar motor and sensory NCV, DL, and NN temperature were determined at ambient temperature (mean X skin temp = 33 C) and after cooling, at approximately 26, 28, and 30 C of forearm skin temperature. Skin temperatures on the volar side of the forearm, wrist, palm, and fingers and NN temperature at the forearm, midpalm, and thenar or hypothenar eminence were compared with respective NCV and DL. Results showed a significant linear correlation between skin temperature and NN temperature at corresponding sites (r2 range, 0.4-0.84; p less than 0.005). Furthermore, both skin and NN temperatures correlated significantly with respective NCV and DL. Midline wrist skin temperature showed the best correlation to NCV and DL. Median motor and sensory NCV were altered 1.5 and 1.4m/sec/C degree and their DL 0.2 msec/C degree of wrist skin temperature change, respectively. Ulnar motor and sensory NCV were changed 2.1 and 1.6m/sec/C degree respectively, and 0.2 msec/C degree wrist temperature for motor and sensory DL. Average ambient skin temperature at the wrist (33 C) was used as a standard skin temperature in the temperature correction formula: NCV or DL(temp corrected) = CF(Tst degree - Tm degree) + obtained NCV or DL, where Tst = 33 C for wrist, Tm = the measured skin temperature, and CF = correction factor of tested nerve. Use of temperature correction formula for NCV and DL is suggested in patients with changed wrist skin temperature outside 29.6-36.4C temperature range.

  9. Trend of monthly temperature and daily extreme temperature during 1951-2012 in New Zealand (United States)

    Caloiero, Tommaso


    Among several variables affecting climate change and climate variability, temperature plays a crucial role in the process because its variations in monthly and extreme values can impact on the global hydrologic cycle and energy balance through thermal forcing. In this study, an analysis of temperature data has been performed over 22 series observed in New Zealand. In particular, to detect possible trends in the time series, the Mann-Kendall non-parametric test was first applied at monthly scale and then to several indices of extreme daily temperatures computed since 1951. The results showed a positive trend in both the maximum and the minimum temperatures, in particular, in the autumn-winter period. This increase has been evaluated faster in maximum temperature than in minimum one. The trend analysis of the temperature indices suggests that there has been an increase in the frequency and intensity of hot extremes, while most of the cold extremes showed a downward tendency.

  10. Seasonal and regional variations in extreme precipitation event frequency using CMIP5 (United States)

    Janssen, E.; Sriver, R. L.; Wuebbles, D. J.; Kunkel, K. E.


    Understanding how the frequency and intensity of extreme precipitation events are changing is important for regional risk assessments and adaptation planning. Here we use observational data and an ensemble of climate change model experiments (from the Coupled Model Intercomparison Project Phase 5 (CMIP5)) to examine past and potential future seasonal changes in extreme precipitation event frequency over the United States. Using the extreme precipitation index as a metric for extreme precipitation change, we find key differences between models and observations. In particular, the CMIP5 models tend to overestimate the number of spring events and underestimate the number of summer events. This seasonal shift in the models is amplified in projections. These results provide a basis for evaluating climate model skill in simulating observed seasonality and changes in regional extreme precipitation. Additionally, we highlight key sources of variability and uncertainty that can potentially inform regional impact analyses and adaptation planning.

  11. Intensity changes in future extreme precipitation: A statistical event-based approach. (United States)

    Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen


    Short-lived precipitation extremes are often responsible for hazards in urban and rural environments with economic and environmental consequences. The precipitation intensity is expected to increase about 7% per degree of warming, according to the Clausius-Clapeyron (CC) relation. However, the observations often show a much stronger increase in the sub-daily values. In particular, the behavior of the hourly summer precipitation from radar observations with the dew point temperature (the Pi-Td relation) for the Netherlands suggests that for moderate to warm days the intensification of the precipitation can be even higher than 21% per degree of warming, that is 3 times higher than the expected CC relation. The rate of change depends on the initial precipitation intensity, as low percentiles increase with a rate below CC, the medium percentiles with 2CC and the moderate-high and high percentiles with 3CC. This non-linear statistical Pi-Td relation is suggested to be used as a delta-transformation to project how a historic extreme precipitation event would intensify under future, warmer conditions. Here, the Pi-Td relation is applied over a selected historic extreme precipitation event to 'up-scale' its intensity to warmer conditions. Additionally, the selected historic event is simulated in the high-resolution, convective-permitting weather model Harmonie. The initial and boundary conditions are alternated to represent future conditions. The comparison between the statistical and the numerical method of projecting the historic event to future conditions showed comparable intensity changes, which depending on the initial percentile intensity, range from below CC to a 3CC rate of change per degree of warming. The model tends to overestimate the future intensities for the low- and the very high percentiles and the clouds are somewhat displaced, due to small wind and convection changes. The total spatial cloud coverage in the model remains, as also in the statistical

  12. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region. (United States)

    Hashim, Jamal Hisham; Hashim, Zailina


    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity.

  13. Interpreting Climate Model Projections of Extreme Weather Events for Decision Makers (United States)

    Vavrus, S. J.; Notaro, M.


    The proliferation of output from climate model ensembles, such as CMIP3 and CMIP5, has greatly expanded access to future projections, but there is no accepted blueprint for how this data should be interpreted. Decision makers are thus faced with difficult questions when trying to utilize such information: How reliable are the multi-model mean projections? How should the changes simulated by outlier models be treated? How can raw projections of temperature and precipitation be translated into probabilities? The multi-model average is often regarded as the most accurate single estimate of future conditions, but higher-order moments representing the variance and skewness of the distribution of projections provide important information about uncertainty. We have analyzed a set of statistically downscaled climate model projections from the CMIP3 archive to conduct an assessment of extreme weather events at a level designed to be relevant for decision makers. Our analysis uses the distribution of 13 GCM projections to derive the inter-model standard deviation (and coefficient of variation, COV), skewness, and percentile ranges for simulated changes in extreme heat, cold, and precipitation during the middle and late 21st century for the A1B emissions scenario. These metrics help to establish the overall confidence level across the entire range of projections (via the inter-model COV), relative confidence in the simulated high-end versus low-end changes (via skewness), and probabilistic uncertainty bounds derived from a bootstrapping technique. Over our analysis domain centered on the United States Midwest, some primary findings include: (1) Greater confidence in projections of less extreme cold than more extreme heat and intense precipitation, (2) Greater confidence in the low-end than high-end projections of extreme heat, and (3) Higher spatial and temporal variability in the confidence of projected increases of heavy precipitation. In addition, our bootstrapping

  14. Two centuries of extreme events over the Baltic Sea and North Sea regions (United States)

    Stendel, Martin; den Besselaar Else, van; Abdel, Hannachi; Jaak, Jaagus; Elizabeth, Kent; Christiana, Lefebvre; Gudrun, Rosenhagen; Anna, Rutgersson; Frederik, Schenk; der Schrier Gerard, van; Tim, Woolings


    Two centuries of extreme events over the Baltic Sea and North Sea regions In the framework of the BACC 2 (for the Baltic Sea) and NOSCCA projects (for the North Sea region), studies of past and present variability and changes in atmospheric variables within the North Sea region over the instrumental period (roughly the past 200 years) have been investigated. Findings on trends in temperature and precipitation have already been presented. Here we focus on data homogeneity issues and examine how reliable reanalyses are in this context. Unlike most other regions in the world, there is a wealth of old observations available for the Baltic and North Sea regions, most of it in handwritten form in meteorological journals and other publications. These datasets need to be carefully digitised and homogenized. For this, a thorough quality control must be applied; otherwise the digitised datasets may prove useless or even counterproductive. We present evidence that this step cannot be conducted without human interference and thus cannot be fully automated. Furthermore, inhomogeneities due to e.g. instrumentation and station relocations need to be addressed. A wealth of reanalysis products is available, which can help detect such inhomogeneities in observed time series, but at the same time are prone to biases and/or spurious trends themselves e.g. introduced by changes in the availability and quality of the underlying assimilated data. It therefore in general remains unclear in how far we can simulate the pre-satellite era with respect to homogeneity with reanalyses based only on parts of the observing system. Extreme events and changes in extreme situations are more important and of greater (societal) significance than changes in mean climate. However, changes in extreme weather events are difficult to assess not only because they are, per definition, rare events, but also due to the homogeneity issues outlined above. Taking these into account, we present evidence for changes

  15. The Effects of Model Resolution on the Simulation of Regional Climate Extreme Events

    Institute of Scientific and Technical Information of China (English)


    The fifth-generation Pennsylvania State University/NCAR Mesoscale Model Version 3 (MM5V3) was used to simulate extreme heavy rainfall events over the Yangtze River Basin in June 1999. The effects of model's horizontal and vertical resolution on the extreme climate events were investigated in detail. In principle, the model was able to characterize the spatial distribution of monthly heavy precipitation. The results indicated that the increase in horizontal resolution could reduce the bias of the modeled heavy rain and reasonably simulate the change of daily precipitation during the study period. A finer vertical resolution led to obviously improve rainfall simulations with smaller biases, and hence, better resolve heavy rainfall events. The increase in both horizontal and vertical resolution could produce better predictions of heavy rainfall events. Not only the rainfall simulation altered in the cases of different horizontal and vertical grid spacing, but also other meteorological fields demonstrated diverse variations in terms of resolution change in the model. An evident improvement in the simulated sea level pressure resulted from the increase of horizontal resolution, but the simulation was insensitive to vertical grid spacing. The increase in vertical resolution could enhance the simulation of surface temperature as well as atmospheric circulation at low levels, while the simulation of circulation at middle and upper levels were found to be much less dependent on changing resolution. In addition, cumulus parameterization schemes showed high sensitivity to horizontal resolution. Different convective schemes exhibited large discrepancies in rainfall simulations with regards to changing resolution. The percentage of convective precipitation in the Grell scheme increased with increasing horizontal resolution. In contrast, the Kain-Fritsch scheme caused a reduced ratio of convective precipitation to total rainfall accumulations corresponding to increasing

  16. Crossing historical and sedimentary archives to reconstruct an extreme flood event calendar in high alpine areas (United States)

    Wilhelm, B.; Giguet-Covex, C.; Arnaud, F.; Allignol, F.; Legaz, A.; Melo, A.


    to reconstruct a high-resolution flood calendar to assess a reliable frequency of extreme flood events which can be compared with precise climatic parameters as the instrumental and reconstructed temperature. Finally it was equally possible to compare the recorded intensity of flood events between the both archives and thus estimate the hazard perception and vulnerability of local people throughout the last three centuries.

  17. Large-scale Agroecosytem's Resiliency to Extreme Hydrometeorological and Climate Extreme Events in the Missouri River Basin (United States)

    Munoz-Arriola, F.; Smith, K.; Corzo, G.; Chacon, J.; Carrillo-Cruz, C.


    A major challenge for water, energy and food security relies on the capability of agroecosyststems and ecosystems to adapt to a changing climate and land use changes. The interdependency of these forcings, understood through our ability to monitor and model processes across scales, indicate the "depth" of their impact on agroecosystems and ecosystems, and consequently our ability to predict the system's ability to return to a "normal" state. We are particularly interested in explore two questions: (1) how hydrometeorological and climate extreme events (HCEs) affect sub-seasonal to interannual changes in evapotranspiration and soil moisture? And (2) how agroecosystems recover from the effect of such events. To address those questions we use the land surface hydrologic Variable Infiltration Capacity (VIC) model and the Moderate Resolution Imaging Spectrometer-Leaf Area Index (MODIS-LAI) over two time spans (1950-2013 using a seasonal fixed LAI cycle) and 2001-2013 (an 8-day MODIS-LAI). VIC is forced by daily/16th degree resolution precipitation, minimum and maximum temperature, and wind speed. In this large-scale experiment, resiliency is defined by the capacity of a particular agroecosystem, represented by a grid cell's ET, SM, and LAI to return to a historical average. This broad, yet simplistic definition will contribute to identify the possible components and their scales involved in agroecosystems and ecosystems capacity to adapt to the incidence of HCEs and technologies used to intensify agriculture and diversify their use for food and energy production. Preliminary results show that dynamical changes in land use, tracked by MODIS data, require larger time spans to address properly the influence of technologic improvements in crop production as well as the competition for land for biofuel vs. food production. On the other hand, fixed seasonal changes in land use allow us just to identify hydrologic changes mainly due to climate variability.

  18. Forecasting extreme wave events in moderate and high sea states (United States)

    Magnusson, Anne Karin; Reistad, Magnar; Bitner-Gregersen, Elzbieta Maria


    Empirical studies on measurements have not yet come to conclusive relations between occurrence of rogue waves and - parameters which could be forecasted . Theoretical and tank experiments have demonstrated that high spectral peakedness and low spectral width combined (high Benjamin-Feir instability index, Onorato et al., 2006) give higher probability of rogue wave occurrence. Directional spread seems to reduce the probability of occurrence of rogue waves in these studies. Many years of experience with forecasting and discussions with people working in ocean environment indicate that rogue waves may as well occur in crossing seas. This was also indicated in a study in the Maxwave project (Toffoli et al., 2003) and the EXTREME SEAS project (Toffoli et al., 2011). We have here experimented with some indexes describing both high BFI and crossing seas and run the WAM model for some North Sea storm cases. Wave distributions measured at Ekofisk are analysed in the different cases. References • Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., and Stansberg, C.: Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves,Europ. J. Mech. B/Fluids, 25, 586-601, 2006. • Toffoli, A., Lefevre, J.M., Monbaliu, J., Savina, H., and Bitner-Gregersen, E., "Freak Waves:Clues for Prediction in Ship Accidents?", Proc. ISOPE'2003 Conf. Hawai, USA, 2003. • Toffoli A., Bitner-Gregersen E. M., Osborne A. R., Serio M. Monbaliu J., Onorato M. (2011) Extreme Waves in Random Crossing Seas: Laboratory Experiments and Numerical Simulations. Geophys. Res. Lett., Vol. 38, L06605, 5 pp. doi: 10.1029/2011.

  19. Widespread extreme drought events in Iberia and their relationship with North Atlantic moisture flux deficit (United States)

    Liberato, Margarida L. R.; Montero, Irene; Russo, Ana; Gouveia, Célia; Ramos, Alexandre M.; Trigo, Ricardo M.


    Droughts represent one of the most frequent climatic extreme events on the Iberian Peninsula, often with widespread negative ecological and environmental impacts, resulting in major socio-economic damages such as large decreases in hydroelectricity and agricultural productions or increasing forest fire risk. Unlike other weather driven extreme events, droughts duration could be from few months to several years. Here we employ a recently developed climatic drought index, the Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al. 2010a), based on the simultaneous use of precipitation and temperature fields. This index holds the advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought assessment (Vicente-Serrano et al., 2010a). In this study the SPEI was computed using the Climatic Research Unit (CRU) TS3.21 High Resolution Gridded Data (0.5°) for the period 1901-2012. At this resolution the study region of Iberian Peninsula corresponds to a square of 30x30 grid pixels. The CRU Potential Evapotranspiration (PET) was used, through the Penmann-Monteith equation and the log-logistic probability distribution. This formulation allows a very good fit to the series of differences between precipitation and PET (Vicente-Serrano et al., 2010b), using monthly averages of daily maximum and minimum temperature data and also monthly precipitation records. The parameters were estimated by means of the L-moment method. The application of multi-scalar indices to the high-resolution datasets allows identifying whether the Iberian Peninsula is in hydric stress and also whether drought is installed. Based on the gridded SPEI datasets, spanning from 1901 to 2012, obtained for timescales 6, 12, 18 and 24 months, an objective method is applied for ranking the most extensive extreme drought events that occurred on the Iberian Peninsula. This objective method is based on the evaluation of the

  20. Predicting the extreme 2015/16 El Nino event

    CSIR Research Space (South Africa)

    Mpheshea, LE


    Full Text Available state-of-the-art coupled ocean-atmosphere model’s Niño3.4 SST forecast for January 2016 is presented, followed by an evaluation of the model’s ability to have predicted events of similar magnitude in the past. The January forecast, initialized in July...

  1. The relationship between extreme weather events and crop losses in central Taiwan (United States)

    Lai, Li-Wei


    The frequency of extreme weather events, which cause severe crop losses, is increasing. This study investigates the relationship between crop losses and extreme weather events in central Taiwan from 2003 to 2015 and determines the main factors influencing crop losses. Data regarding the crop loss area and meteorological information were obtained from government agencies. The crops were categorised into the following five groups: `grains', `vegetables', `fruits', `flowers' and `other crops'. The extreme weather events and their synoptic weather patterns were categorised into six and five groups, respectively. The data were analysed using the z score, correlation coefficient and stepwise regression model. The results show that typhoons had the highest frequency of all extreme weather events (58.3%). The largest crop loss area (4.09%) was caused by two typhoons and foehn wind in succession. Extreme wind speed coupled with heavy rainfall is an important factor affecting the losses in the grain and vegetable groups. Extreme wind speed is a common variable that affects the loss of `grains', `vegetables', `fruits' and `flowers'. Consecutive extreme weather events caused greater crop losses than individual events. Crops with long production times suffered greater losses than those with short production times. This suggests that crops with physical structures that can be easily damaged and long production times would benefit from protected cultivation to maintain food security.

  2. Recent trends in pre-monsoon daily temperature extremes over India

    Indian Academy of Sciences (India)

    D R Kothawale; J V Revadekar; K Rupa Kumar


    Extreme climate and weather events are increasingly being recognized as key aspects of climate change. Pre-monsoon season (March–May) is the hottest part of the year over almost the entire South Asian region, in which hot weather extremes including heat waves are recurring natural hazards having serious societal impacts, particularly on human health. In the present paper, recent trends in extreme temperature events for the pre-monsoon season have been studied using daily data on maximum and minimum temperatures over a well-distributed network of 121 stations for the period 1970–2005. For this purpose, time series of extreme temperature events have been constructed for India as a whole and seven homogeneous regions, viz., Western Himalaya (WH), Northwest (NW), Northeast (NE), North Central (NC), East coast (EC), West coast (WC) and Interior Peninsula (IP). In general, the frequency of occurrence of hot days and hot nights showed widespread increasing trend, while that of cold days and cold nights has shown widespread decreasing trend. The frequency of the occurrence of hot days is found to have significantly increased over EC, WC and IP, while that of cold days showed significant decreasing trend over WH and WC. The three regions EC, WC and NW showed significant increasing trend in the frequency of hot nights. For India as whole, the frequency of hot days and nights showed increasing trend while cold days and nights showed decreasing trends. Day-to-day fluctuations of pre-monsoon daily maximum and minimum temperatures have also been studied for the above regions. The results show that there is no significant change in day-to-day magnitude of fluctuations of pre-monsoon maximum and minimum temperatures. However, the results generally indicate that the daily maximum and minimum temperatures are becoming less variable within the season.

  3. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data (United States)

    Munasinghe, L.; Jun, T.; Rind, D. H.


    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  4. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. (United States)

    Swain, Daniel L; Horton, Daniel E; Singh, Deepti; Diffenbaugh, Noah S


    Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949-2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949-2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012-2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California's most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years.

  5. Trends in Extremes of Surface Humidity, Temperature, and Summertime Heat Stress in China

    Institute of Scientific and Technical Information of China (English)


    In the past half century, the mean summertime temperature in China has increased, with nights warm ing more than days. Using surface station observations, we show that the frequency of extreme heat-stress events in China, caused by extremely hot and humid days as well as by heatwaves lasting for a few days, has increased over the period from 1951 to 1994. When humidity is high, hot weather can cause heat stress in humans. The increased heat-stress trend may pose a public health problem.

  6. An Ensemble Approach to Extreme Space Weather Event Probability -- A First Look (United States)

    Jonas, S.; Fronczyk, K.; McCarron, E.; Pratt, L. M.


    An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social wellbeing. Space weather events occur regularly, but extreme events occur less frequently with only several historical examples over the last 160 years. During the past decade, published works have (1) forensically examined the physical characteristics of the extreme historical events; and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present an analysis of several of these studies. We created a unified statistical framework to visualize previous analyses, and developed a model from an ensemble using statistical methods. We look at geomagnetic disturbance probability across multiple return periods. We discuss what the most likely 100-year extreme event (a parameter of interest to policy makers and planners) and the return period for other extreme historical events. We discuss the current state of these analyses, their utility to policy makers and planners, the current limitations (in data and understanding) when compared to other hazards, and the gaps that need to be filled to enhance space weather risk assessments.

  7. Research on Trends in Extreme Weather Events and their Effects on Grapevine in Romanian Viticulture

    Directory of Open Access Journals (Sweden)

    Georgeta Mihaela Bucur


    Full Text Available The aim of this work was to investigate the frequency and intensity of extreme weather events in various centers from Romania’s viticultural regions: winter frost, extreme temperatures during the growing season and summer droughts. Winter frost damaging the vine is a significant risk to grape production, mainly in the plains and lowlands to the foothills. The frequency of winter frost damaging the vine has increased during the last decades, in the context of climate change. Also, there has been found a significant increase in the number of hot days (Tmax > 30°C and very hot days (Tmax > 35°C. The evolution of these extreme events was followed in Craiova, Constanta, Bucharest, Timisoara, Cluj-Napoca, Oradea and Iasi, between 1977 and 2015. The long term study (18 years conducted in the experimental plantation of the University of Agronomic Sciences and Veterinary Medicine Bucharest revealed their influence on vine. During the last two decades, there has been registered a trend of increasing the frequency and intensity of winter frost, damaging vine (Tmin 30°C and > 35°C and droughts that adversely affect viticulture, production and quality of grapes and wine. The highest warming trends were observed for northern viticultural regions (Transylvania and Moldavia and for the seaside. Although the intensification of heat waves increases sugar accumulation in the berries, they trigger a significant reduction in grape production and in titrable acidity, requiring corrections and resulting in unbalanced wines. Meanwhile, droughts trigger production decrease. To avoid negative effects on vine, it is necessary to take measures, both on a short, medium and long term.

  8. NAO influence on extreme winter temperatures in Madrid (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, L.; Garcia, R.; Hernandez, E.; Teso, T. del [Dept. Fisica de la Tierra II, Fac. CC. Fisicas, Univ. Complutense de Madrid (Spain); Diaz, J. [Centro Universitario de Salud Publica, Univ. Autonoma de Madrid (Spain)


    Extremely cold days (ECDs), with minimum temperatures lower than -4.6 C, have been analysed for Madrid. This threshold corresponds to the 5th percentile of the period 1963-1999. Adopting a case analysis approach, five synoptic patterns have been identified that produce these extremely low temperatures. Three of them are associated with cold air flows over the Iberian Peninsula, and the other two with a lack of significant circulation over the region. A non-linear association with the North Atlantic oscillation (NAO) has been identified using log-linear models. The NAO positive phase leads to an increase in the winter frequency of those synoptic patterns associated with stagnant air flow over Iberia, while those characterised by cold, northern flows do not appear to be similarly influenced. (orig.)

  9. Extreme events of 2012, 2013 and 2014 linked to planetary wave resonance (United States)

    Petoukhov, Vladimir; Coumou, Dim; Rahmstorf, Stefan; Stadtherr, Lisa; Kornhuber, Kai; Petri, Stefan; Schellnhuber, Hans Joachim


    Quasi-stationary planetary waves of large-amplitude have been linked to the occurrence of many of the most extreme weather events of the past decades in the Northern Hemisphere. This includes the European heat waves of 2003 and 2010 as well as the catastrophic Elbe flooding 2002. A resonance mechanism was proposed to explain the occurrence of large-amplitude planetary waves (Petoukhov et al. 2013) and a recent increase in the frequency of resonance events has been identified (Coumou et al. 2014). We extend the analysis to more recent extreme weather events. 2012 marked the warmest spring on record in the USA, accompanied by wettest spring in 100 years in the UK and national heat records for the warmest temperature in spring in 13 other European countries; torrential rains and demolishing floods in central and eastern China together with an oppressive heat wave in the USA in June; hottest July on record in the USA simultaneously with the worst flooding in 60 years in eastern China and Japan; unparalleled heat in the USA and destructive floods in China and the Philippines in August; and widespread floods in the UK in September. 2013 saw Central European Flooding in May-early June; trains of persistent heat waves in the USA and China in mid-June; and in the USA, central Europe, and western and eastern China end of June/July; strong floods in central China and Japan in late July/early August; and in north-eastern China and eastern Russia in mid-and late August; a sweltering heat wave in eastern China and Japan in early September; the worst flood in central China in late September/early October. The obtained results confirm a recent tendency to an increase in the frequency of occurrence of quasi-resonant conditions, favoring the emergence of persistent regional extremes in the NH mid-latitudes (Petoukhov et al, submitted). In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia and

  10. Coherent structures and extreme events in rotating multiphase turbulent flows

    CERN Document Server

    Biferale, Luca; Mazzitelli, Irene M; van Hinsberg, Michel A T; Lanotte, Alessandra S; Musacchio, Stefano; Perlekar, Prasad; Toschi, Federico


    By using direct numerical simulations (DNS) at unprecedented resolution we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify -for the first time- the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force and centripetal forces along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light ...

  11. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

    Directory of Open Access Journals (Sweden)

    L. Biferale


    Full Text Available By using direct numerical simulations (DNS at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

  12. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows (United States)

    Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.


    By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

  13. How to apply the dependence structure analysis to extreme temperature and precipitation for disaster risk assessment (United States)

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi


    IPCC reports that a changing climate can affect the frequency and the intensity of extreme events. However, the extremes appear in the tail of the probability distribution. In order to know the relationship between extreme events in the tail of temperature and precipitation, an important but previously unobserved dependence structure is analyzed in this paper. Here, we examine the dependence structure by building a bivariate joint of Gumbel copula model for temperature and precipitation using monthly average temperature (T) and monthly precipitation (P) data from Beijing station in China covering a period of 1951-2015 and find the dependence structure can be divided into two sections, they are the middle part and the upper tail. We show that T and P have a strong positive correlation in the high tail section (T > 25.85 °C and P > 171.1 mm) (=0.66, p < 0.01) while they do not demonstrate the same relation in the other section, which suggests that the identification of a strong influence of T on extreme P needs help from the dependence structure analysis. We also find that in the high tail section, every 1 °C increase in T is associated with 73.45 mm increase in P. Our results suggested that extreme precipitation fluctuations by changes in temperature will allow the data dependence structure to be included in extreme affect for the disaster risk assessment under future climate change scenarios. Copula bivariate jointed probability distribution is useful to the dependence structure analysis.

  14. Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser (United States)

    Coulibaly, S.; Clerc, M. G.; Selmi, F.; Barbay, S.


    The occurrence of extreme events in a spatially extended microcavity laser has been recently reported [Selmi et al., Phys. Rev. Lett. 116, 013901 (2016), 10.1103/PhysRevLett.116.013901] to be correlated to emergence of spatiotemporal chaos. In this dissipative system, the role of spatial coupling through diffraction is essential to observe the onset of spatiotemporal complexity. We investigate further the formation mechanism of extreme events by comparing the statistical and dynamical analyses. Experimental measurements together with numerical simulations allow us to assign the quasiperiodicity mechanism as the route to spatiotemporal chaos in this system. Moreover, by investigating the fine structure of the maximum Lyapunov exponent, of the Lyapunov spectrum, and of the Kaplan-Yorke dimension of the chaotic attractor, we are able to deduce that intermittency plays a key role in the proportion of extreme events measured. We assign the observed mechanism of generation of extreme events to quasiperiodic extended spatiotemporal intermittency.

  15. Reconstructing extreme AMOC events through nudging of the ocean surface: a perfect model approach (United States)

    Ortega, Pablo; Guilyardi, Eric; Swingedouw, Didier; Mignot, Juliette; Nguyen, Sébastien


    While the Atlantic Meridional Overturning Circulation (AMOC) is thought to be a crucial component of the North Atlantic climate, past changes in its strength are challenging to quantify, and only limited information is available. In this study, we use a perfect model approach with the IPSL-CM5A-LR model to assess the performance of several surface nudging techniques in reconstructing the variability of the AMOC. Special attention is given to the reproducibility of an extreme positive AMOC peak from a preindustrial control simulation. Nudging includes standard relaxation techniques towards the sea surface temperature and salinity anomalies of this target control simulation, and/or the prescription of the wind-stress fields. Surface nudging approaches using standard fixed restoring terms succeed in reproducing most of the target AMOC variability, including the timing of the extreme event, but systematically underestimate its amplitude. A detailed analysis of the AMOC variability mechanisms reveals that the underestimation of the extreme AMOC maximum comes from a deficit in the formation of the dense water masses in the main convection region, located south of Iceland in the model. This issue is largely corrected after introducing a novel surface nudging approach, which uses a varying restoring coefficient that is proportional to the simulated mixed layer depth, which, in essence, keeps the restoring time scale constant. This new technique substantially improves water mass transformation in the regions of convection, and in particular, the formation of the densest waters, which are key for the representation of the AMOC extreme. It is therefore a promising strategy that may help to better constrain the AMOC variability and other ocean features in the models. As this restoring technique only uses surface data, for which better and longer observations are available, it opens up opportunities for improved reconstructions of the AMOC over the last few decades.

  16. A twenty-first century California observing network for monitoring extreme weather events (United States)

    White, A.B.; Anderson, M.L.; Dettinger, M.D.; Ralph, F.M.; Hinojosa, A.; Cayan, D.R.; Hartman, R.K.; Reynolds, D.W.; Johnson, L.E.; Schneider, T.L.; Cifelli, R.; Toth, Z.; Gutman, S.I.; King, C.W.; Gehrke, F.; Johnston, P.E.; Walls, C.; Mann, Dorte; Gottas, D.J.; Coleman, T.


    During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. In order to improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, is required. Here we describe how California is addressing their most important and costliest environmental issue – water management – in part, by installing a state-of-the-art observing system to better track the area’s most severe wintertime storms.

  17. Attribution of extreme events in the western US to human activities (United States)

    Mera, R. J.


    A project to investigate the role of human activities on the changing nature of extreme events in the western US began as part of a CLIVAR-sponsored Postdocs Applying Climate Expertise (PACE) project. The climate institution was the Oregon State University and the application partner was the Oregon Department of Land Conservation and Development (DLCD). DLCD was interested in the changes in weather extremes in the Pacific Northwest, specifically extreme rainfall, flooding, and droughts. The project employs very large ensembles of regional model simulations through volunteer computing resources and allows for probabilistic event attribution (PEA), an important climate research technique. The model was found to have good representation of atmospheric rivers, a major source of extreme precipitation in the Pacific Northwest. The model domain also encompasses California and Nevada. One of the studies focused on attribution of extreme heat in relation to vulnerable populations in California's Central Valley, where heat waves have become progressively more severe due to increasing nighttime temperatures. Specifically, we found that that (1) simulations of the hottest summer days during the 2000s were twice as likely to occur using observed levels of greenhouse gases than in a counterfactual world without major human activities, (2) detrimental impacts of heat on public health-relevant variables, such as the number of days above 40°C, can be quantified and attributed to human activities using PEA, and (3) PEA can serve as a tool for addressing climate justice concerns of populations within developed nations. The research conducted through the PACE program has also provided a framework for a pioneering climate attribution study at the Union of Concerned Scientists (UCS). The UCS project takes advantage of new research that shows that nearly two-thirds of carbon pollution released into the atmosphere, reported as carbon dioxide equivalent with hundred-year global warming

  18. Power System Extreme Event Detection: The Vulnerability Frontier


    Lesieutre, Bernard C.; Pinar, Ali; Roy, Sandip


    In this work we apply graph theoretic tools to provide a close bound on a frontier relating the number of line outages in a grid to the power disrupted by the outages. This frontier describes the boundary of a space relating the possible severity of a disturbance in terms of power disruption, from zero to some maximum on the boundary, to the number line outages involved in the event. We present the usefulness of this analysis with a complete analysis of a 30 bus system, and present resul...

  19. Not ready for prime time: transitional events in the extremely preterm infant. (United States)

    Armentrout, Debra


    Successful transition from intrauterine to extrauterine life involves significant physiologic changes. The majority of these changes occur relatively quickly during those first moments following delivery; however, transition for the extremely preterm infant occurs over a longer period of time. Careful assessment and perceptive interventions on the part of neonatal care providers is essential as the extremely preterm infant adjusts to life outside the womb. This article will focus on respiratory, cardiovascular, gastrointestinal, and neurologic transitional events experienced by the extremely premature infant.

  20. Spectrophotometry of extreme helium stars - Ultraviolet fluxes and effective temperatures (United States)

    Heber, U.; Drilling, J. S.; Schoenberner, D.; Lynas-Gray, A. E.


    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broadband photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broadband photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K. Previously announced in STAR as N83-24433

  1. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? (United States)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.


    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  2. Soil biotic legacy effects of extreme weather events influence plant invasiveness

    NARCIS (Netherlands)

    Meisner, A.; De Deyn, G.B.; De Boer, W.; Van der Putten, W.H.


    Climate change is expected to increase future abiotic stresses on ecosystems through extreme weather events leading to more extreme drought and rainfall incidences [Jentsch A, et al. (2007) Front Ecol Environ 5(7):365–374]. These fluctuations in precipitation may affect soil biota, soil processes [E

  3. How are the wetlands over tropical basins impacted by the extreme hydrological events? (United States)

    Al-Bitar, A.; Parrens, M.; Frappart, F.; Papa, F.; Kerr, Y. H.; Cretaux, J. F.; Wigneron, J. P.


    Wetlands play a crucial role in tropical basins and still many questions remain unanswered on how extreme events (like El-Nino) impacts them. Answering these questions is challenging as monitoring of inland water surfaces via remote sensing over tropical areas is a difficult task because of impact of vegetation and cloud cover. Several microwave based products have been elaborated to monitor these surfaces (Papa et al. 2010). In this study we combine the use of L-band microwave brightness temperatures and altimetric data from SARAL/ALTIKA to derive water storage maps at relatively high (7days) temporal frequency. The area of interest concerns the Amazon, Congo and GBH basins A first order radiative model is used to derive surface water over land from the brightness temperature measured by ESA SMOS mission at coarse resolution (25 km x 25 km) and 7-days frequency. An initial investigation of the use of the SMAP mission for the same purpose will be also presented. The product is compared to the static land cover map such as ESA CCI and the International Geosphere-Biosphere Program (IGBP) and also dynamic maps from SWAPS. It is then combined to the altimetric data to derive water storage maps. The water surfaces and water storage products are then compared to precipitation data from GPM TRMM datasets, ground water storage change from GRACE and river discharge data from field data. The amplitudes and time shifts of the signals is compared based on the sub-basin definition from Hydroshed database. The dataset is then divided into years of strong and weak El-Nino signal and the anomaly is between the two dataset is compared. The results show a strong influence of EL-Nino on the time shift of the different components showing that the hydrological regime of wetlands is highly impacted by these extreme events. This can have dramatic impacts on the ecosystem as the wetlands are vulnerable with a high biodiversity.

  4. Triggering extreme events at the nanoscale in photonic seas

    KAUST Repository

    Liu, Changxu


    Hurricanes, tsunamis, rogue waves and tornadoes are rare natural phenomena that embed an exceptionally large amount of energy, which appears and quickly disappears in a probabilistic fashion. This makes them difficult to predict and hard to generate on demand. Here we demonstrate that we can trigger the onset of rare events akin to rogue waves controllably, and systematically use their generation to break the diffraction limit of light propagation. We illustrate this phenomenon in the case of a random field, where energy oscillates among incoherent degrees of freedom. Despite the low energy carried by each wave, we illustrate how to control a mechanism of spontaneous synchronization, which constructively builds up the spectral energy available in the whole bandwidth of the field into giant structures, whose statistics is predictable. The larger the frequency bandwidth of the random field, the larger the amplitude of rare events that are built up by this mechanism. Our system is composed of an integrated optical resonator, realized on a photonic crystal chip. Through near-field imaging experiments, we record confined rogue waves characterized by a spatial localization of 206 nm and with an ultrashort duration of 163 fs at a wavelength of 1.55 μm. Such localized energy patterns are formed in a deterministic dielectric structure that does not require nonlinear properties.

  5. Power outages, extreme events and health: a systematic review of the literature from 2011-2012. (United States)

    Klinger, Chaamala; Landeg, Owen; Murray, Virginia


    Background Extreme events (e.g. flooding) threaten critical infrastructure including power supplies. Many interlinked systems in the modern world depend on a reliable power supply to function effectively. The health sector is no exception, but the impact of power outages on health is poorly understood. Greater understanding is essential so that adverse health impacts can be prevented and/or mitigated. Methods We searched Medline, CINAHL and Scopus for papers about the health impacts of power outages during extreme events published in 2011-2012. A thematic analysis was undertaken on the extracted information. The Public Health England Extreme Events Bulletins between 01/01/2013 - 31/03/2013 were used to identify extreme events that led to power outages during this three-month period. Results We identified 20 relevant articles. Power outages were found to impact health at many levels within diverse settings. Recurrent themes included the difficulties of accessing healthcare, maintaining frontline services and the challenges of community healthcare. We identified 52 power outages in 19 countries that were the direct consequence of extreme events during the first three months of 2013. Conclusions To our knowledge, this is the first review of the health impacts of power outages. We found the current evidence and knowledge base to be poor. With scientific consensus predicting an increase in the frequency and magnitude of extreme events due to climate change, the gaps in knowledge need to be addressed in order to mitigate the impact of power outages on global health.

  6. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia (United States)

    Hu, Zengyun; Li, Qingxiang; Chen, Xi; Teng, Zhidong; Chen, Changchun; Yin, Gang; Zhang, Yuqing


    The natural ecosystem in Central Asia is sensitive and vulnerable to the arid and semiarid climate variations, especially the climate extreme events. However, the climate extreme events in this area are still unclear. Therefore, this study analyzed the climate variability in the temperature and precipitation extreme events in an alpine grassland (Bayanbuluk) of Central Asia based on the daily minimum temperature, daily maximum temperature, and daily precipitation from 1958 to 2012. Statistically significant ( p < 0.01) increasing trends were found in the minimum temperature, maximum temperature at annual, and seasonal time scales except the winter maximum temperature. In the seasonal changes, the winter temperature had the largest contribution to the annual warming. Further, there appeared increasing trends for the warm nights and the warm days and decreasing trends for the cool nights and the cool days at a 99 % confidence level. These trends directly resulted in an increasing trend for the growing season length (GSL) which could have positively influence on the vegetation productivity. For the precipitation, it displayed an increasing trend for the annual precipitation although it was not significant. And the summer precipitation had the same variations as the annual precipitation which indicated that the precipitation in summer made the biggest contribution to the annual precipitation than the other three seasons. The winter precipitation had a significant increasing trend (1.49 mm/10a) and a decreasing trend was found in spring. We also found that the precipitation of the very wet days mainly contributes to the annual precipitation with the trend of 4.5 mm/10a. The maximum 1-day precipitation and the heavy precipitation days only had slight increasing trend. A sharp decreasing trend was found before the early 1980s, and then becoming increase for the above three precipitation indexes. The climate experienced a warm-wet abrupt climate change in the 1980s

  7. Temporal energy partitions of Florida extreme sea level events as a function of Atlantic multidecadal oscillation

    Directory of Open Access Journals (Sweden)

    J. Park


    Full Text Available An energy-conservative metric based on the discrete wavelet transform is applied to assess the relative energy distribution of extreme sea level events across different temporal scales. The metric is applied to coastal events at Key West and Pensacola Florida as a function of two Atlantic Multidecadal Oscillation (AMO regimes. Under AMO warm conditions there is a small but significant redistribution of event energy from nearly static into more dynamic (shorter duration timescales at Key West, while at Pensacola the AMO-dependent changes in temporal event behaviour are less pronounced. Extreme events with increased temporal dynamics might be consistent with an increase in total energy of event forcings which may be a reflection of more energetic storm events during AMO warm phases. As dynamical models mature to the point of providing regional climate index predictability, coastal planners may be able to consider such temporal change metrics in planning scenarios.

  8. Temporal energy partitions of Florida extreme sea level events as a function of Atlantic multidecadal oscillation

    Directory of Open Access Journals (Sweden)

    J. Park


    Full Text Available An energy-conservative metric based on the discrete wavelet transform is applied to assess the relative energy distribution of non-stationary extreme sea level events across different temporal scales. The metric is applied to coastal events at Key West and Pensacola Florida as a function of two Atlantic Multidecadal Oscillation (AMO regimes. Under AMO warm conditions there is a small but significant redistribution of event energy from nearly static into more dynamic timescales at Key West, while at Pensacola the AMO-dependent changes in temporal event behaviour are less pronounced. Extreme events with increased temporal dynamics are consistent with an increase in total energy of event forcings which may be a reflection of more energetic storm events during AMO warm phases. As dynamical models mature to the point of providing regional climate index predictability, coastal planners may be able to consider such temporal change metrics in planning scenarios.

  9. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. (United States)

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani


    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone (Haliotis roei) and major reductions in recruitment of scallops (Amusium balloti), king (Penaeus latisulcatus) and tiger (P. esculentus) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  10. The magnitude and effects of extreme solar particle events

    Directory of Open Access Journals (Sweden)

    Jiggens Piers


    Full Text Available The solar energetic particle (SEP radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm−2 as a function of particle energy (in MeV. This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads, non-ionising energy loss (MeV g−1, single event upsets (upsets/bit and the dose in humans compared to established limits for stochastic (or cancer-causing effects and tissue reactions (such as acute radiation sickness in humans given in grey-equivalent and sieverts respectively.

  11. Super-extreme event's influence on a Weierstrass-Mandelbrot Continuous-Time Random Walk

    CERN Document Server

    Gubiec, Tomasz; Kutner, Ryszard; Sornette, Didier


    Two utmost cases of super-extreme event's influence on the velocity autocorrelation function (VAF) were considered. The VAF itself was derived within the hierarchical Weierstrass-Mandelbrot Continuous-Time Random Walk (WM-CTRW) formalism, which is able to cover a broad spectrum of continuous-time random walks. Firstly, we studied a super-extreme event in a form of a sustained drift, whose duration time is much longer than that of any other event. Secondly, we considered a super-extreme event in the form of a shock with the size and velocity much larger than those corresponding to any other event. We found that the appearance of these super-extreme events substantially changes the results determined by extreme events (the so called "black swans") that are endogenous to the WM-CTRW process. For example, changes of the VAF in the latter case are in the form of some instability and distinctly differ from those caused in the former case. In each case these changes are quite different compared to the situation with...

  12. Recent advances on reconstruction of climate and extreme events in China for the past 2000 year (United States)

    Zheng, Jingyun; Hao, Zhixin; Ge, Quansheng; Liu, Yang


    The study of regional climate changes for past 2000 year could present spatial pattern of climate variation and various historical analogues for the sensitivity and operation of the climate system (e.g., the modulations of internal variability, feedbacks and teleconnections, abrupt changes and regional extreme events, etc.) from inter-annual to centennial scales and provide the knowledge to predict and project climate in the near future. China is distinguished by a prominent monsoon climate in east, continental arid climate in northwest and high land cold climate in Qinghai-Tibetan Plateau located at southwest. The long history of civilization and the variety of climate in China provides an abundant and well-dated documentary records and a wide range of natural archives (e.g., tree-ring, ice core, stalagmite, varved lake sediment, etc.) for high-resolution paleoclimate reconstruction. This paper presented a review of recent advances on reconstruction of climate and extreme events in China for the past 2000 years. In recent 10 years, there were many new high-resolution paleoclimatic reconstructions reported in China, e.g., the annual and decadal resolution series of temperature and precipitation in eastern China derived from historical documents, in western China derived from tree-ring and other natural archives. These new reconstructions provided more proxies and better spatial coverage to understand the characteristics of climate change over China and the uncertainty of regional reconstructions, as well as to reconstruct the high-resolution temperature series and the spatial pattern of precipitation change for whole China in the past millenniums by synthesizing the multi-proxy together. The updated results show that, in China, the warm intervals for the past 2000 years were in AD 1-200, AD 551-760, AD 951-1320, and after AD 1921; as well as the cold intervals were in AD 201-350, AD 441-530, AD 781-950, and AD 1321-1920. The extreme cold winters occurred in periods

  13. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China (United States)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi


    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide

  14. Climate Change Extreme Events: Meeting the Information Needs of Water Resource Managers (United States)

    Quay, R.; Garfin, G. M.; Dominguez, F.; Hirschboeck, K. K.; Woodhouse, C. A.; Guido, Z.; White, D. D.


    Information about climate has long been used by water managers to develop short term and long term plans and strategies for regional and local water resources. Inherent within longer term forecasts is an element of uncertainty, which is particularly evident in Global Climate model results for precipitation. For example in the southwest estimates in the flow of the Colorado River based on GCM results indicate changes from 120% or current flow to 60%. Many water resource managers are now using global climate model down scaled estimates results as indications of potential climate change as part of that planning. They are addressing the uncertainty within these estimates by using an anticipatory planning approach looking at a range of possible futures. One aspect of climate that is important for such planning are estimates of future extreme storm (short term) and drought (long term) events. However, the climate science of future possible changes in extreme events is less mature than general climate change science. At a recent workshop among climate scientists and water managers in the southwest, it was concluded the science of climate change extreme events is at least a decade away from being robust enough to be useful for water managers in their water resource management activities. However, it was proposed that there are existing estimates and records of past flooding and drought events that could be combined with general climate change science to create possible future events. These derived events could be of sufficient detail to be used by water resource managers until such time that the science of extreme events is able to provide more detailed estimates. Based on the results of this workshop and other work being done by the Decision Center for a Desert City at Arizona State University and the Climate Assessment for the Southwest center at University of Arizona., this article will 1) review what are the extreme event data needs of Water Resource Managers in the

  15. Climate change and the effects of temperature extremes on Australian flying-foxes. (United States)

    Welbergen, Justin A; Klose, Stefan M; Markus, Nicola; Eby, Peggy


    Little is known about the effects of temperature extremes on natural systems. This is of increasing concern now that climate models predict dramatic increases in the intensity, duration and frequency of such extremes. Here we examine the effects of temperature extremes on behaviour and demography of vulnerable wild flying-foxes (Pteropus spp.). On 12 January 2002 in New South Wales, Australia, temperatures exceeding 42 degrees C killed over 3500 individuals in nine mixed-species colonies. In one colony, we recorded a predictable sequence of thermoregulatory behaviours (wing-fanning, shade-seeking, panting and saliva-spreading, respectively) and witnessed how 5-6% of bats died from hyperthermia. Mortality was greater among the tropical black flying-fox, Pteropus alecto (10-13%) than the temperate grey-headed flying-fox, Pteropus poliocephalus (less than 1%), and young and adult females were more affected than adult males (young, 23-49%; females, 10-15%; males, less than 3%). Since 1994, over 30000 flying-foxes (including at least 24500 P. poliocephalus) were killed during 19 similar events. Although P. alecto was relatively less affected, it is currently expanding its range into the more variable temperature envelope of P. poliocephalus, which increases the likelihood of die-offs occurring in this species. Temperature extremes are important additional threats to Australian flying-foxes and the ecosystem services they provide, and we recommend close monitoring of colonies where temperatures exceeding 42.0 degrees C are predicted. The effects of temperature extremes on flying-foxes highlight the complex implications of climate change for behaviour, demography and species survival.

  16. Detection of Spatio-temporal variations of rainfall and temperature extremes over India (United States)

    Hari, V.; Karmakar, S.; Ghosh, S.


    implemented. The results from this study exhibit the observable changes in the rainfall extreme events that occurred over India in past century. The country experienced large spatial heterogeneity of all the four rainfall variables, even in the meteorologically homogeneous regions. The correlation analyses show that the maximum grids are having positive correlation, however for the duration-frequency, a significant correlation is observed in few grids, with most of the grids showing no correlation. The spatial variation of RL shows spatial heterogeneity and trend analyses exhibit lack of uniformity throughout India. The change in RL shows significant positive change in mainly during past 50 years. The possible reason could be urbanization and change in climate variables. Hence for further investigation, this analysis will be associated with the temperature extremes data throughout India.

  17. Transport Coefficients at Zero Temperature from Extremal Black Holes

    CERN Document Server

    Edalati, Mohammad; Leigh, Robert G


    Using the AdS/CFT correspondence we study transport coefficients of a strongly-coupled (2 +1)-dimensional boundary field theory at zero temperature and finite charge density. The boundary field theory under consideration is dual to the extremal Reissner-Nordstrom AdS(4) black hole in the bulk. We show that, like the cases of scalar and spinor operators studied in arXiv:0907.2694 [hep-th], the correlators of charge (vector) current and energy-momentum (tensor) operators exhibit scaling behavior at low frequency. The existence of such low frequency behavior is related to the fact that the near-horizon geometry of the extremal black hole background has an AdS(2) factor. We carefully calculate the shear viscosity (at zero temperature) and show that the ratio of the shear viscosity to the entropy density takes the value of 1/4\\pi. Because of the AdS(2) factor, we argue that this result stays the same for all d-dimensional boundary field theories dual to the extremal Reissner-Nordstrom AdS(d+1) black holes. Also, w...

  18. Synthesis and microdiffraction at extreme pressures and temperatures. (United States)

    Lavina, Barbara; Dera, Przemyslaw; Meng, Yue


    High pressure compounds and polymorphs are investigated for a broad range of purposes such as determine structures and processes of deep planetary interiors, design materials with novel properties, understand the mechanical behavior of materials exposed to very high stresses as in explosions or impacts. Synthesis and structural analysis of materials at extreme conditions of pressure and temperature entails remarkable technical challenges. In the laser heated diamond anvil cell (LH-DAC), very high pressure is generated between the tips of two opposing diamond anvils forced against each other; focused infrared laser beams, shined through the diamonds, allow to reach very high temperatures on samples absorbing the laser radiation. When the LH-DAC is installed in a synchrotron beamline that provides extremely brilliant x-ray radiation, the structure of materials under extreme conditions can be probed in situ. LH-DAC samples, although very small, can show highly variable grain size, phase and chemical composition. In order to obtain the high resolution structural analysis and the most comprehensive characterization of a sample, we collect diffraction data in 2D grids and combine powder, single crystal and multigrain diffraction techniques. Representative results obtained in the synthesis of a new iron oxide, Fe4O5 (1) will be shown.

  19. Risky Adaptation: The Effect of Temperature Extremes on HIV Prevalence (United States)

    Baker, R.


    Previous work has linked rainfall shock to an increase in HIV prevalence in Sub-Saharan Africa. In this paper we take advantage of repeated waves of the Demographic and Health Survey (DHS) and a new high resolution climate dataset for the African continent to test the non-linear relationship between temperature and HIV. We find a strong and significant relationship between recent high temperatures and increases in HIV prevalence in a region. We then test the effect of temperature on risk factors that may contribute to this increase. High temperatures are linked to an increase in sexual violence, number of partners and a decrease in condom usage - all of which may contribute to the uptake in HIV rate. This paper contributes to the literature on adaptation from two standpoints. First, we suggest that some behavioral changes that are classed as adaptations, in the sense that they allow for consumption smoothing in the face of extreme temperatures, may carry unexpected risks to the individuals involved. Second, we find preliminary evidence that the relationship between temperature and these risky behaviors is diminished in regions prone to higher temperatures, suggesting some adaptation is possible in the long run.

  20. Fast temperature spectrometer for samples under extreme conditions. (United States)

    Zhang, Dongzhou; Jackson, Jennifer M; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E Ercan; Toellner, Thomas S; Hu, Michael Y


    We have developed a multi-wavelength Fast Temperature Readout (FasTeR) spectrometer to capture a sample's transient temperature fluctuations, and reduce uncertainties in melting temperature determination. Without sacrificing accuracy, FasTeR features a fast readout rate (about 100 Hz), high sensitivity, large dynamic range, and a well-constrained focus. Complimenting a charge-coupled device spectrometer, FasTeR consists of an array of photomultiplier tubes and optical dichroic filters. The temperatures determined by FasTeR outside of the vicinity of melting are, generally, in good agreement with results from the charge-coupled device spectrometer. Near melting, FasTeR is capable of capturing transient temperature fluctuations, at least on the order of 300 K/s. A software tool, SIMFaster, is described and has been developed to simulate FasTeR and assess design configurations. FasTeR is especially suitable for temperature determinations that utilize ultra-fast techniques under extreme conditions. Working in parallel with the laser-heated diamond-anvil cell, synchrotron Mössbauer spectroscopy, and X-ray diffraction, we have applied the FasTeR spectrometer to measure the melting temperature of (57)Fe0.9Ni0.1 at high pressure.

  1. "Extreme events" in STT-MRAM speed retention and reliability (Conference Presentation) (United States)

    Wang, Xiaobin; Zhang, Jing; Wang, Zihui; Hao, Xiaojie; Zhou, Yuchen; Gan, Huadong; Jun, Dongha; Satoh, Kimihiro; Yen, Bing K.; Huai, Yiming


    Fast operation speed, high retention and high reliability are the most attractive features of the spin transfer torque magnetic random access memory (STT-MRAM) based upon perpendicular magnetic tunneling junction (pMTJ). For state-of-the-art pMTJ STT-MRAM, its device performance is fundamentally determined by material "extreme events" physics. For example, nanosecond write bit error rate is determined by extremely high probability (>(1-10^(-7))) stochastic magnetization switching events, retention is determined by magnetization configurations with extremely low switching probability, reliability is determined by extremely low probability (MRAM write, read, retention and reliability. Specifically, we will present our model that accurately calculates extremely low write BER for various magnetization configurations. We will review our study of thermal magnetization switching through the dynamic optimal reversal path approach, capable of characterizing extreme thermal magnetization switching events under both low frequency (e.g. static retention) and high frequency (e.g. fast read) excitations. We will also discuss a new MTJ breakdown reliability model that quantifies extreme events uniformly at different failure mode regions.

  2. Impact of climate change on extreme rainfall events and flood risk in India

    Indian Academy of Sciences (India)

    P Guhathakurta; O P Sreejith; P A Menon


    The occurrence of exceptionally heavy rainfall events and associated flash floods in many areas during recent years motivate us to study long-term changes in extreme rainfall over India. The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts of central and north India while they are increasing in peninsular, east and north east India. The study tries to bring out some of the interesting findings which are very useful for hydrological planning and disaster managements. Extreme rainfall and flood risk are increasing significantly in the country except some parts of central India.

  3. Roadmap on optical rogue waves and extreme events (United States)

    Akhmediev, Nail; Kibler, Bertrand; Baronio, Fabio; Belić, Milivoj; Zhong, Wei-Ping; Zhang, Yiqi; Chang, Wonkeun; Soto-Crespo, Jose M.; Vouzas, Peter; Grelu, Philippe; Lecaplain, Caroline; Hammani, K.; Rica, S.; Picozzi, A.; Tlidi, Mustapha; Panajotov, Krassimir; Mussot, Arnaud; Bendahmane, Abdelkrim; Szriftgiser, Pascal; Genty, Goery; Dudley, John; Kudlinski, Alexandre; Demircan, Ayhan; Morgner, Uwe; Amiraranashvili, Shalva; Bree, Carsten; Steinmeyer, Günter; Masoller, C.; Broderick, Neil G. R.; Runge, Antoine F. J.; Erkintalo, Miro; Residori, S.; Bortolozzo, U.; Arecchi, F. T.; Wabnitz, Stefan; Tiofack, C. G.; Coulibaly, S.; Taki, M.


    The pioneering paper ‘Optical rogue waves’ by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older results and new discoveries has been undertaken, stimulated by the concept of ‘optical rogue waves’. Presently, there may not by a unique view on how this new scientific term should be used and developed. There is nothing surprising when the opinion of the experts diverge in any new field of research. After all, rogue waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not only in the process of supercontinuum generation. We know by now that rogue waves may be generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical systems. Theorists, in turn, have suggested many other situations when rogue waves may be observed. The strict definition of a rogue wave is still an open question. For example, it has been suggested that it is defined as ‘an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses’. This definition (as suggested by a peer reviewer) is clear at the intuitive level and can be easily extended to the case of spatial beams although additional clarifications are still needed. An extended definition has been presented earlier by N Akhmediev and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1-4). Discussions along these lines are always useful and all new approaches stimulate research and encourage discoveries of new phenomena. Despite the potentially existing disagreements, the scientific terms ‘optical rogue waves’ and ‘extreme events’ do exist. Therefore coordination of our efforts in either unifying the concept or in introducing alternative definitions must be continued. From

  4. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population. (United States)

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr


    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  5. Extremes temperatures and enthalpy in Finland and Sweden in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Venaelaeinen, A.; Saku, S.; Jylhae, K. (Finnish Meteorological Institute (Finland)); Nikulin, G.; Kjellstroem, E.; Baerring, L. (Swedish Meteorological Institute (Sweden))


    Though risks caused by harsh weather conditions are taken into account in the planning of nuclear power plants, some exceptional weather events or combination of different events may prevent normal power operation and simultaneously endanger safe shutdown of the plant. Extreme weather events could influence, for example, the external power grid connection, emergency diesel generators (blockage of air intakes), ventilation and cooling of electric and electronics equipment rooms and the seawater intake. Due to the influence of an intensified greenhouse effect the climate is changing rapidly during the coming decades and this change is expected to have an influence also on the occurrence of extreme weather events. In this report we have examined extreme temperatures. Enthalpy is a parameter that combines air temperature and air humidity and it is used in the design of air conditioning systems. Therefore, we have included also return levels of enthalpy in our analysis. The influence of climate change on extreme temperatures is analysed based on regional climate model simulations. The reoccurrence times of high temperatures combined with high air humidity was analysed based on measurements made at five Finnish and three Swedish meteorological stations. Based on the observational records we find the 10 year return level of daily maximum temperature to be around 32 deg. C and the 100 year return level around 35 deg. C. If we look the return levels of warm and humid conditions then for example in Helsinki the 10 year return level of one week mean temperature in case mean air humidity is above 80% is 20.1 deg. C. The 10 year return level of daily maximum enthalpy is around 60 kJ/kg and the 100 year return level almost 70 kJ/kg. According to the climate model simulations the largest increase of 50-year return level of daily maximum temperature is found in southern Sweden and south-western Finland. By the end of this century the increase can be 3-5 deg. C. The largest change

  6. Comparing regional precipitation and temperature extremes in climate model and reanalysis products

    Directory of Open Access Journals (Sweden)

    Oliver Angélil


    Full Text Available A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies.

  7. Comparing regional precipitation and temperature extremes in climate model and reanalysis products. (United States)

    Angélil, Oliver; Perkins-Kirkpatrick, Sarah; Alexander, Lisa V; Stone, Dáithí; Donat, Markus G; Wehner, Michael; Shiogama, Hideo; Ciavarella, Andrew; Christidis, Nikolaos


    A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies.

  8. Seasonal trends in precipitation and surface air temperature extremes in mainland Portugal, 1941-2007 (United States)

    de Lima, M. I. P.; Santo, F. E.; Ramos, A. M.


    Several climate models predict, on a global scale, modifications in climate variables that are expected to have impact on society and the environment. The concern is on changes in the variability of processes, the mean and extreme events (maximum and minimum). To explore recent changes in precipitation and near surface air temperature extremes in mainland Portugal, we have inspected trends in time series of specific indices defined for daily data. These indices were recommended by the Commission for Climatology/Climate Variability and Predictability (CCl/CLIVAR) Working Group on Climate Change Detection, and include threshold indices, probability indices, duration indices and other indices. The precipitation and air temperature data used in this study are from, respectively, 57 and 23 measuring stations scattered across mainland Portugal, and cover the periods 1941-2007, for precipitation, and 1941-2006, for temperature. The study focuses on changes at the seasonal scale. Strong seasonality is one of the main features of climate in mainland Portugal. Intensification of the seasonality signal across the territory, particularly in the more sensitive regions, might contribute to endanger already fragile soil and water resources and ecosystems, and the local environmental and economic sustainability. Thus, the understanding of variations in the intensity, frequency and duration of extreme precipitation and air temperature events at the intra-annual scale is particularly important in this geographical area. Trend analyses were conducted over the full period of the records and for sub-periods, exploring patterns of change. Results show, on the one hand, regional differences in the tendency observed in the time series analysed; and, on the other hand, that although trends in annual indices are in general not statistically significant, there are sometimes significant changes over time in the data at the seasonal scale that point out to an increase in the already existing

  9. webXTREME: R-based web tool for calculating agroclimatic indices of extreme events

    NARCIS (Netherlands)

    Klein, Tommy; Samourkasidis, Argyrios; Athanasiadis, I.N.; Bellocchi, Gianni; Calanca, Pierluigi


    We document the release of webXTREME, a new online tool for the evaluation of indices of climatic extremes (extreme temperatures and aridity) having impact on agricultural production. The tool is globally available and can be operated with either observed weather data or time series representing

  10. Evaluation of last extreme drought events in Amazon basin using remotely sensing data (United States)

    Panisset, Jéssica S.; Gouveia, Célia M.; Libonati, Renata; Peres, Leonardo; Machado-Silva, Fausto; França, Daniela A.; França, José R. A.


    Amazon basin has experienced several intense droughts among which were highlighted last recent ones in 2005 and 2010. Climate models suggest these events will be even more frequent due to higher concentration of greenhouse gases that are also driven forward by alteration in forest dynamics. Environmental and social impacts demand to identify these intense droughts and the behavior of climate parameters that affect vegetation. This present study also identifies a recent intense drought in Amazon basin during 2015. Meteorological parameters and vegetation indices suggest this event was the most severe already registered in the region. We have used land surface temperature (LST), vegetation indices, rainfall and shortwave radiation from 2000 to 2015 to analyze and compare droughts of 2005, 2010 and 2015. Our results show singularities among the three climate extreme events. The austral winter was the most affected season in 2005 and 2010, but not in 2015 when austral summer presented extreme conditions. Precipitation indicates epicenter of 2005 in west Amazon corroborating with previous studies. In 2010, the west region was strongly affected again together with the northwest and the southeast areas. However, 2015 epicenters were concentrated in the east of the basin. In 2015, shortwave radiation has exceeded the maximum values of 2005 and temperature the maximum value of 2010. Vegetation indices have shown positive and negative anomalies. Despite of heterogenous response of Amazon forest to drought, hybrid vegetation indices using NDVI (Normalized Difference Vegetation Index) and LST highlights the exceptionality of 2015 drought episode that exhibits higher vegetation water stress than the cases of 2010 and 2005. Finally, this work has shown how meteorological parameters influence droughts and the effects on vegetation in Amazon basin. Complexity of climate, ecosystem heterogeneity and high diversity of Amazon forest are response by idiosyncrasies of each drought. All

  11. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events (United States)

    Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio


    In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting

  12. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events

    Directory of Open Access Journals (Sweden)

    Angelo Rita


    Full Text Available In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale and Shape (GAMLSS technique and Bayesian modeling procedures to xylem traits data set, with the aim of i detecting non-linear long-term responses to climate and ii exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks rises at extreme values of Standardized Precipitation Index (SPI. Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport

  13. Evaluating aerosol impacts on Numerical Weather Prediction in two extreme dust and biomass-burning events (United States)

    Remy, Samuel; Benedetti, Angela; Jones, Luke; Razinger, Miha; Haiden, Thomas


    The WMO-sponsored Working Group on Numerical Experimentation (WGNE) set up a project aimed at understanding the importance of aerosols for numerical weather prediction (NWP). Three cases are being investigated by several NWP centres with aerosol capabilities: a severe dust case that affected Southern Europe in April 2012, a biomass burning case in South America in September 2012, and an extreme pollution event in Beijing (China) which took place in January 2013. At ECMWF these cases are being studied using the MACC-II system with radiatively interactive aerosols. Some preliminary results related to the dust and the fire event will be presented here. A preliminary verification of the impact of the aerosol-radiation direct interaction on surface meteorological parameters such as 2m Temperature and surface winds over the region of interest will be presented. Aerosol optical depth (AOD) verification using AERONET data will also be discussed. For the biomass burning case, the impact of using injection heights estimated by a Plume Rise Model (PRM) for the biomass burning emissions will be presented.

  14. Spatial distribution of temperature extremes changes in Poland in 21st century (United States)

    Jędruszkiewicz, Joanna


    There is a general agreement that changes in the frequency or intensity of extreme weather and climate events have profound impacts on both human society and the economy. In the recent years a numerous weather events have affected human health and caused enormous economic losses. A long-lasting heat waves influence society far more than rare occurred extreme high temperature. On the other hand a winter warming and frequent exceedance of 0°C during winter will be disruptive i.e. for the wheel transport and roads condition in Poland. This work is focused on the study of the spatial diversity of minimum and maximum temperature in 21st century in Poland. Firstly the shift in distribution (PDF) and cumulative distribution (CDF) of the daily maximum temperature in summer and minimum temperature in winter between control and scenario periods was compared among different part of the country. Secondly the changes in the characteristic percentiles of the temperature extremes were analyzed. Furthermore the spatial changes in the duration and frequency of the heat waves in Poland were studied. Moreover the future prediction of changes in characteristic days as hot days (Tmax≥30°C), summer days (Tmax≥25°C), tropical nights (Tmin≥20°C), frost days (Tmin<0°C), etc. were spatially compared. The diurnal temperature range (DTR) is expected to change remarkably in 21st century depending on the area of Poland. The daily minimum and maximum 2-meter temperature date have been obtained from seven different regional climate models and corrected by quintile mapping method afterwards. The Polish station data for the control period have been gained from the Institute of Meteorology and Water Management, National Research Institute.

  15. Combined effects of extreme climatic events and elevation on nutritional quality and herbivory of Alpine plants.

    Directory of Open Access Journals (Sweden)

    Annette Leingärtner

    Full Text Available Climatic extreme events can cause the shift or disruption of plant-insect interactions due to altered plant quality, e.g. leaf carbon to nitrogen ratios, and phenology. However, the response of plant-herbivore interactions to extreme events and climatic gradients has been rarely studied, although climatic extremes will increase in frequency and intensity in the future and insect herbivores represent a highly diverse and functionally important group. We set up a replicated climate change experiment along elevational gradients in the German Alps to study the responses of three plant guilds and their herbivory by insects to extreme events (extreme drought, advanced and delayed snowmelt versus control plots under different climatic conditions on 15 grassland sites. Our results indicate that elevational shifts in CN (carbon to nitrogen ratios and herbivory depend on plant guild and season. CN ratios increased with altitude for grasses, but decreased for legumes and other forbs. In contrast to our hypotheses, extreme climatic events did not significantly affect CN ratios and herbivory. Thus, our study indicates that nutritional quality of plants and antagonistic interactions with insect herbivores are robust against seasonal climatic extremes. Across the three functional plant guilds, herbivory increased with nitrogen concentrations. Further, increased CN ratios indicate a reduction in nutritional plant quality with advancing season. Although our results revealed no direct effects of extreme climatic events, the opposing responses of plant guilds along elevation imply that competitive interactions within plant communities might change under future climates, with unknown consequences for plant-herbivore interactions and plant community composition.

  16. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.


    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  17. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T


    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  18. Climate Change and Fetal Health: The Impacts of Exposure to Extreme Temperatures in New York City (United States)

    Ngo, Nicole S.; Horton, Radley M.


    Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves while reducing cold extremes, yet few studies have examined the relationship between temperature and fetal health. Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES). Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in Manhattan for the same time period. We then generate 33 downscaled climate model time series to project impacts on fetal health. Results: We find exposure to an extra day where average temperature 25 F and 85 F during pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no meaningful, significant effect on gestational age. Using projections of temperature from these climate models, we project average net reductions in birth weight in the 2070- 2099 period of 4.6 g in the business-as-usual scenario. Conclusions: Results suggest that increasing heat events from climate change could adversely impact birth weight and vary by SES.

  19. Climate Change and Fetal Health: The Impacts of Exposure to Extreme Temperatures in New York City (United States)

    Ngo, Nicole S.; Horton, Radley M.


    Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves while reducing cold extremes, yet few studies have examined the relationship between temperature and fetal health. Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES). Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in Manhattan for the same time period. We then generate 33 downscaled climate model time series to project impacts on fetal health. Results: We find exposure to an extra day where average temperature 25 F and 85 F during pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no meaningful, significant effect on gestational age. Using projections of temperature from these climate models, we project average net reductions in birth weight in the 2070- 2099 period of 4.6 g in the business-as-usual scenario. Conclusions: Results suggest that increasing heat events from climate change could adversely impact birth weight and vary by SES.

  20. Eventos extremos de precipitação no estado do Ceará e suas relações com a temperatura dos oceanos tropicais Extreme rainfall events in Ceará state and its relationship with tropical oceans temperature

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Costa dos Santos


    Full Text Available O principal objetivo deste trabalho é prover informações sobre as tendências recentes dos eventos extremos de precipitação sobre o Estado do Ceará, associando esses eventos extremos às anomalias de Temperatura da Superfície do Mar (TSM nos Oceanos Pacífico e Atlântico. Foram utilizados dados pluviométricos de 18 postos de 1971 a 2006 e o método de Mann-Kendall foi utilizado na obtenção das tendências. Os resultados mostram que existem características de aumento nas intensidades das secas e diminuição dos eventos de precipitação forte, e que o aumento nas anomalias de TSM no Pacífico e ao norte do equador, no Oceano Atlântico, acarreta em um aumento do número de dias consecutivos secos no norte do Ceará. Os índices extremos de precipitação mostraram correlações negativas com as anomalias de TSM nas regiões do Pacífico do Atlântico Tropical Norte e positivas com a região do Atlântico Tropical Sul. Entretanto, para a região sul do Ceará, o comportamento dos dias consecutivos chuvosos indica que o período chuvoso é governado por outros sistemas atmosféricos, necessitando assim, ser melhor estudado para o entendimento desse comportamento.The main objective of this study is to provide information about recent trends of extreme rainfall over Ceará State, associating these extreme events with Sea Surface Temperature (SST anomalies in the Pacific and Atlantic Oceans. Mann-Kendall method is applied to rainfall data of 18 rain gauges from 1971 to 2006 to obtain the trends. The results show that the drought intensity is increasing and the heavy precipitation events are decreasing and that the increase in the Pacific and north of equator Atlantic Ocean SST anomalies lead to an increase in the number of consecutive dry days in northern Ceará. Rainfall extreme indices have shown negative correlations with SST anomalies on Pacific and Tropical North Atlantic regions and positive with Tropical South Atlantic region

  1. Climate change and health in Israel: adaptation policies for extreme weather events. (United States)

    Green, Manfred S; Pri-Or, Noemie Groag; Capeluto, Guedi; Epstein, Yoram; Paz, Shlomit


    Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority.

  2. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? (United States)

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David


    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents.

  3. Recent changes in extreme rainfall events in Peninsular Malaysia: 1971-2005 (United States)

    Wan Zin, Wan Zawiah; Jamaludin, Suhaila; Deni, Sayang Mohd; Jemain, Abdul Aziz


    This paper assesses recent changes in extremes of annual rainfall in Peninsular Malaysia based on daily rainfall data for ten rain-gauged stations over the period 1971-2005. Eight indices that represent the extreme events are defined and analyzed. Maps of trends for these indices, which are extreme dry spell (XDS), extreme rain sum (XRS), extreme wet day intensities at 95% and 99% percentiles (I95 and I99), proportion of extreme wet day to the total wet day (R95 and R99), and frequency of extreme wet day at 95% and 99% percentiles (N95 and N99), were analyzed based on annual data and seasons. When the indices are evaluated annually, the Mann-Kendall and linear regression trend tests showed increasing trends in the extreme intensity indices (I95 and I99) at two stations. A significant decrease in N99, associated with the frequency of extremely wet days, was observed at 60% of the stations. The change points for these indices are found to occur in the period of the 1980s. There is no significant trend detected for XDS, XRS, and proportion of extreme rainfall over total rainfall amount indices during the period considered in this study. Descriptive analysis of indices during the monsoon period showed that the annual spatial pattern for the peninsula is very much influenced by the northeast monsoon where the highest mean values for majority of the indices occur during this time period.

  4. Uncertainties Related to Extreme Event Statistics of Sewer System Surcharge and Overflow

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Johansen, C.; Thorndahl, Søren Liedtke


    by performing long term simulations - using a sewer flow simulation model - and draw up extreme event statistics from the model simulations. In this context it is important to realize that uncertainties related to the input parameters of rainfall runoff models will give rise to uncertainties related...... to draw up extreme event statistics covering return periods of as much as 33 years. By comparing these two different extreme event statistics it is evident that these to a great extent depend on the uncertainties related to the input parameters of the rainfall runoff model....... proceeding in an acceptable manner, if flooding of these levels is having an average return period bigger than a predefined value. This practice is also often used in functional analysis of existing sewer systems. If a sewer system can fulfil recommended flooding frequencies or not, can only be verified...

  5. Extreme events induced by self-action of laser beams in dynamic nonlinear liquid crystal cells (United States)

    Bugaychuk, S.; Iljin, A.; Chunikhina, K.


    Optical extreme events represent a feature of nonlinear systems where there may emerge individual pulses possessing very high (or very low) intensity hardly probable statistically. Such property is being connected with the generation of solitons in the nonlinear systems. We carry out the first experiments for detection of extreme events during two-wave mixing with nonlinear dynamical liquid crystal (LC) cells. We investigate the statistics of the extreme events in dependence on relation between the duration of a laser pulse and the time characteristic of dynamic grating relaxation in LC cell. Our research shows that the self-diffraction of laser beams with a dynamical grating support the generation of envelope solitons in this system.

  6. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia (United States)

    Villafuerte, Marcelino, II; Matsumoto, Jun


    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  7. Army Corps of Engineers: Efforts to Assess the Impact of Extreme Weather Events (United States)


    southern California dam, which allowed the Corps to retain rainwater to help respond to the state’s extreme drought conditions . The Corps has assessed...anticipate, prepare for, respond to, and adapt to changing conditions and to withstand and recover rapidly from disruptions with minimal damage. As directed... Extreme Weather Events in the Planning Process Page 16 GAO-15-660 Army Corps of Engineers adapting projects to this projected change.27

  8. Trend in frequency of extreme precipitation events over Ontario from ensembles of multiple GCMs (United States)

    Deng, Ziwang; Qiu, Xin; Liu, Jinliang; Madras, Neal; Wang, Xiaogang; Zhu, Huaiping


    As one of the most important extreme weather event types, extreme precipitation events have significant impacts on human and natural environment. This study assesses the projected long term trends in frequency of occurrence of extreme precipitation events represented by heavy precipitation days, very heavy precipitation days, very wet days and extreme wet days over Ontario, based on results of 21 CMIP3 GCM runs. To achieve this goal, first, all model data are linearly interpolated onto 682 grid points (0.45° × 0.45°) in Ontario; Next, biases in model daily precipitation amount are corrected with a local intensity scaling method to make the total wet days and total wet day precipitation from each of the GCMs are consistent with that from the climate forecast system reanalysis data, and then the four indices are estimated for each of the 21 GCM runs for 1968-2000, 2046-2065 and 2081-2100. After that, with the assumption that the rate parameter of the Poisson process for the occurrence of extreme precipitation events may vary with time as climate changes, the Poisson regression model which expresses the log rate as a linear function of time is used to detect the trend in frequency of extreme events in the GCMs simulations; Finally, the trends and their uncertainty are estimated. The result shows that in the twenty-first century annual heavy precipitation days, very heavy precipitation days and very wet days and extreme wet days are likely to significantly increase over major parts of Ontario and particularly heavy precipitation days, very wet days are very likely to significantly increase in some sub-regions in eastern Ontario. However, trends of seasonal indices are not significant.

  9. Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative (United States)

    Frank, Dorothea; Reichstein, Markus


    The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society ( Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.

  10. Extreme events: being prepared for the pitfalls with progressing sustainable urban water management. (United States)

    Keath, N A; Brown, R R


    It is widely accepted that new, more sustainable approaches to urban water management are required if cities and ecosystems are to become resilient to the effects of growing urban populations and global warming. Climate change predictions show that it is likely that cities around the world will be subject to an increasing number of extreme and less predictable events including flooding and drought. Historical transition studies have shown that major events such as extremes can expedite the adoption of new practices by destabilising existing management regimes and opening up new windows of opportunity for change. Yet, they can also act to reinforce and further entrench old practices. This case study of two Australian cities responding to extreme water scarcity reveals that being unprepared for extremes can undermine progress towards sustainable outcomes. The results showed that despite evidence of significant progress towards sustainable urban water management in Brisbane and Melbourne, the extreme water scarcity acted to reinforce traditional practices at the expense of emerging sustainability niches. Drawing upon empirical research and transitions literature, recommendations are provided for developing institutional mechanisms that are able to respond proactively to extreme events and be a catalyst for SUWM when such opportunities for change arise.

  11. Estimating return periods for daily precipitation extreme events over the Brazilian Amazon (United States)

    Santos, Eliane Barbosa; Lucio, Paulo Sérgio; Santos e Silva, Cláudio Moisés


    This paper aims to model the occurrence of daily precipitation extreme events and to estimate the return period of these events through the extreme value theory (generalized extreme value distribution (GEV) and the generalized Pareto distribution (GPD)). The GEV and GPD were applied in precipitation series of homogeneous regions of the Brazilian Amazon. The GEV and GPD goodness of fit were evaluated by quantile-quantile (Q-Q) plot and by the application of the Kolmogorov-Smirnov (KS) test, which compares the cumulated empirical distributions with the theoretical ones. The Q-Q plot suggests that the probability distributions of the studied series are appropriated, and these results were confirmed by the KS test, which demonstrates that the tested distributions have a good fit in all sub-regions of Amazon, thus adequate to study the daily precipitation extreme event. For all return levels studied, more intense precipitation extremes is expected to occur within the South sub-regions and the coastal area of the Brazilian Amazon. The results possibly will have some practical application in local extreme weather forecast.

  12. Extreme Events in China under Climate Change: Uncertainty and related impacts (CSSP-FOREX) (United States)

    Leckebusch, Gregor C.; Befort, Daniel J.; Hodges, Kevin I.


    Suitable adaptation strategies or the timely initiation of related mitigation efforts in East Asia will strongly depend on robust and comprehensive information about future near-term as well as long-term potential changes in the climate system. Therefore, understanding the driving mechanisms associated with the East Asian climate is of major importance. The FOREX project (Fostering Regional Decision Making by the Assessment of Uncertainties of Future Regional Extremes and their Linkage to Global Climate System Variability for China and East Asia) focuses on the investigation of extreme wind and rainfall related events over Eastern Asia and their possible future changes. Here, analyses focus on the link between local extreme events and their driving weather systems. This includes the coupling between local rainfall extremes and tropical cyclones, the Meiyu frontal system, extra-tropical teleconnections and monsoonal activity. Furthermore, the relation between these driving weather systems and large-scale variability modes, e.g. NAO, PDO, ENSO is analysed. Thus, beside analysing future changes of local extreme events, the temporal variability of their driving weather systems and related large-scale variability modes will be assessed in current CMIP5 global model simulations to obtain more robust results. Beyond an overview of FOREX itself, first results regarding the link between local extremes and their steering weather systems based on observational and reanalysis data are shown. Special focus is laid on the contribution of monsoonal activity, tropical cyclones and the Meiyu frontal system on the inter-annual variability of the East Asian summer rainfall.

  13. Defining extreme GIC event scenarios: why and how to meet the power engineering needs? (United States)

    Pulkkinen, A. A.


    The latest developments in terms of the US Federal Energy Regulatory Commission standards process and National Space Weather Action Plan have increased the pressure on the scientific community to develop reasonable extreme GIC event benchmarks and scenarios. At the same time, scientists and power engineerings have established robust communications that now allow passage of actionable information between the two communities. Consequently, it is now possible to describe and tailor the extreme event scenarios to meet the power engineering analysis requirements. Tailoring of the scenarios is critically important for the power engineers to be able to use the information provided by the scientific community. In this presentation, by reviewing the power transmission system impact mechanisms and engineering analyses flow, we present our current understanding of what actually is needed from the power engineering perspective to carry out extreme storm assessments. We hope that this information will help the scientific community to develop extreme event information that is directly actionable on the end-user side. We also review some of our recent work to develop extreme event information that meets the engineering needs. Some of this work was carried out in support of the FERC/NERC GMD standards development process.

  14. A Novel Web Application to Analyze and Visualize Extreme Heat Events (United States)

    Li, G.; Jones, H.; Trtanj, J.


    Extreme heat is the leading cause of weather-related deaths in the United States annually and is expected to increase with our warming climate. However, most of these deaths are preventable with proper tools and services to inform the public about heat waves. In this project, we have investigated the key indicators of a heat wave, the vulnerable populations, and the data visualization strategies of how those populations most effectively absorb heat wave data. A map-based web app has been created that allows users to search and visualize historical heat waves in the United States incorporating these strategies. This app utilizes daily maximum temperature data from NOAA Global Historical Climatology Network which contains about 2.7 million data points from over 7,000 stations per year. The point data are spatially aggregated into county-level data using county geometry from US Census Bureau and stored in Postgres database with PostGIS spatial capability. GeoServer, a powerful map server, is used to serve the image and data layers (WMS and WFS). The JavaScript-based web-mapping platform Leaflet is used to display the temperature layers. A number of functions have been implemented for the search and display. Users can search for extreme heat events by county or by date. The "by date" option allows a user to select a date and a Tmax threshold which then highlights all of the areas on the map that meet those date and temperature parameters. The "by county" option allows the user to select a county on the map which then retrieves a list of heat wave dates and daily Tmax measurements. This visualization is clean, user-friendly, and novel because while this sort of time, space, and temperature measurements can be found by querying meteorological datasets, there does not exist a tool that neatly packages this information together in an easily accessible and non-technical manner, especially in a time where climate change urges a better understanding of heat waves.

  15. Possible effect of extreme solar energetic particle events of September–October 1989 on polar stratospheric aerosols: a case study

    Directory of Open Access Journals (Sweden)

    I. A. Mironova


    Full Text Available The main ionization source of the middle and low Earth's atmosphere is related to energetic particles coming from outer space. Usually it is ionization from cosmic rays that is always present in the atmosphere. But in a case of a very strong solar eruption, some solar energetic particles (SEPs can reach middle/low atmosphere increasing the ionization rate up to some orders of magnitude at polar latitudes. We continue investigating such a special class of solar events and their possible applications for natural variations of the aerosol content. After the case study of the extreme SEP event of January 2005 and its possible effect upon polar stratospheric aerosols, here we analyze atmospheric applications of the sequence of several events that took place over autumn 1989. Using aerosol data obtained over polar regions from two satellites with space-borne optical instruments SAGE II and SAM II that were operating during September–October 1989, we found that an extreme major SEP event might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, the effect of the additional ambient air ionization on the aerosol formation is minor, in comparison with temperature effect, and can take place only in the cold polar atmospheric conditions. The extra aerosol mass formed under the temperature effect allows attributing most of the changes to the "ion–aerosol clear sky mechanism".

  16. Probability assessment for the incidence of extreme events due to the climatic change. Focus Germany; Berechnung der Wahrscheinlichkeiten fuer das Eintreten von Extremereignissen durch Klimaaenderungen. Schwerpunkt Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Jonas, Martin; Staeger, Tim; Schoenwiese, Christian-Dietrich [Frankfurt Univ. (Germany). Inst. fuer Atmosphaere und Umwelt, Arbeitsgruppe Klimaforschung


    The study on the probability of occurrence of extreme weather events in Germany is based on compiled data covering ground-level temperature, precipitation and wind during the time period 1901 to 2000. The data processing approach is based on two methodologies: a time-gliding extreme value analysis and a structure-oriented time-series analysis. The results show a significant increase of very hot months and at the same time a decrease of extreme cold months within the 20th century. In the time period after 1951 the probability of very high daily maximum temperatures increased for all seasons. Concerning the precipitation the increase of extreme values and higher variabilities are observed for the winter period. The results concerning the wind are not so clear. Summarizing the extreme behavior of temperature and precipitation has shown strong variations during the last century.

  17. Impact of Extreme Heat Events on Emergency Department Visits in North Carolina (2007-2011). (United States)

    Fuhrmann, Christopher M; Sugg, Margaret M; Konrad, Charles E; Waller, Anna


    Extreme heat is the leading cause of weather-related mortality in the U.S. Extreme heat also affects human health through heat stress and can exacerbate underlying medical conditions that lead to increased morbidity and mortality. In this study, data on emergency department (ED) visits for heat-related illness (HRI) and other selected diseases were analyzed during three heat events across North Carolina from 2007 to 2011. These heat events were identified based on the issuance and verification of heat products from local National Weather Service forecast offices (i.e. Heat Advisory, Heat Watch, and Excessive Heat Warning). The observed number of ED visits during these events were compared to the expected number of ED visits during several control periods to determine excess morbidity resulting from extreme heat. All recorded diagnoses were analyzed for each ED visit, thereby providing insight into the specific pathophysiological mechanisms and underlying health conditions associated with exposure to extreme heat. The most common form of HRI was heat exhaustion, while the percentage of visits with heat stroke was relatively low (65 years of age) were at greatest risk for HRI during the early summer heat event (8.9 visits per 100,000), while young and middle age adults (18-44 years of age) were at greatest risk during the mid-summer event (6.3 visits per 100,000). Many of these visits were likely due to work-related exposure. The most vulnerable demographic during the late summer heat event was adolescents (15-17 years of age), which may relate to the timing of organized sports. This demographic also exhibited the highest visit rate for HRI among all three heat events (10.5 visits per 100,000). Significant increases (p events (3-8%). The greatest increases were found in visits with hypotension during the late summer event (23%) and sequelae during the early summer event (30%), while decreases were noted for visits with hemorrhagic stroke during the middle and late

  18. Towards a unified study of extreme events using universality concepts and transdisciplinary analysis methods (United States)

    Balasis, George; Donner, Reik V.; Donges, Jonathan F.; Radebach, Alexander; Eftaxias, Konstantinos; Kurths, Jürgen


    The dynamics of many complex systems is characterized by the same universal principles. In particular, systems which are otherwise quite different in nature show striking similarities in their behavior near tipping points (bifurcations, phase transitions, sudden regime shifts) and associated extreme events. Such critical phenomena are frequently found in diverse fields such as climate, seismology, or financial markets. Notably, the observed similarities include a high degree of organization, persistent behavior, and accelerated energy release, which are common to (among others) phenomena related to geomagnetic variability of the terrestrial magnetosphere (intense magnetic storms), seismic activity (electromagnetic emissions prior to earthquakes), solar-terrestrial physics (solar flares), neurophysiology (epileptic seizures), and socioeconomic systems (stock market crashes). It is an open question whether the spatial and temporal complexity associated with extreme events arises from the system's structural organization (geometry) or from the chaotic behavior inherent to the nonlinear equations governing the dynamics of these phenomena. On the one hand, the presence of scaling laws associated with earthquakes and geomagnetic disturbances suggests understanding these events as generalized phase transitions similar to nucleation and critical phenomena in thermal and magnetic systems. On the other hand, because of the structural organization of the systems (e.g., as complex networks) the associated spatial geometry and/or topology of interactions plays a fundamental role in the emergence of extreme events. Here, a few aspects of the interplay between geometry and dynamics (critical phase transitions) that could result in the emergence of extreme events, which is an open problem, will be discussed.

  19. On Predictive Understanding of Extreme Events: Pattern Recognition Approach; Prediction Algorithms; Applications to Disaster Preparedness (United States)

    Keilis-Borok, V. I.; Soloviev, A.; Gabrielov, A.


    We describe a uniform approach to predicting different extreme events, also known as critical phenomena, disasters, or crises. The following types of such events are considered: strong earthquakes; economic recessions (their onset and termination); surges of unemployment; surges of crime; and electoral changes of the governing party. A uniform approach is possible due to the common feature of these events: each of them is generated by a certain hierarchical dissipative complex system. After a coarse-graining, such systems exhibit regular behavior patterns; we look among them for "premonitory patterns" that signal the approach of an extreme event. We introduce methodology, based on the optimal control theory, assisting disaster management in choosing optimal set of disaster preparedness measures undertaken in response to a prediction. Predictions with their currently realistic (limited) accuracy do allow preventing a considerable part of the damage by a hierarchy of preparedness measures. Accuracy of prediction should be known, but not necessarily high.

  20. A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events

    DEFF Research Database (Denmark)

    Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei


    The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid...... numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS....../E enabling hybrid simulation of icing event and power system disturbance is developed, based on which a hybrid simulation platform is established. Numerical studies show that the functionality of power system simulation is greatly extended by taking into account the icing weather events....

  1. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow (United States)

    Saw, E.-W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.


    The three-dimensional incompressible Navier-Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier-Stokes equation.

  2. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments (United States)

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.


    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  3. The effects of climatic fluctuations and extreme events on running water ecosystems


    Woodward, Guy; Bonada, Nuria; Brown, Lee E; Death, Russell G.; Durance, Isabelle; Gray, Clare; Hladyz, Sally; Mark E. Ledger; Milner, Alexander; Ormerod, Stephen; Thomson, Ross M.; Pawar, Samraat


    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods, or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity, and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanis...

  4. Ensuring Resilience of Natural Resources under Exposure to Extreme Climate Events


    Brent Jacobs; Louise Boronyak-Vasco; Kristy Moyle; Peat Leith


    Natural resources directly support rural livelihoods and underpin much of the wealth of rural and regional Australia. Climate change manifesting as increasing frequency and or severity of extreme weather events poses a threat to sustainable management of natural resources because the recurrence of events may exceed the resilience of natural systems or the coping capacity of social systems. We report the findings of a series of participatory workshops with communities in eight discrete landsca...

  5. BOLIVAR-tool for analysis and simulation of metocean extreme events (United States)

    Lopatoukhin, Leonid; Boukhanovsky, Alexander


    Metocean extreme events are caused by the combination of multivariate and multiscale processes which depend from each other in different scales (due to short-term, synoptic, annual, year-to-year variability). There is no simple method for their estimation with controllable tolerance. Thus, the extreme analysis in practice is sometimes reduced to the exploration of various methods and models in respect to decreasing the uncertainty of estimates. Therefore, a researcher needs the multifaceted computational tools which cover the various branches of extreme analysis. BOLIVAR is the multi-functional computational software for the researches and engineers who explore the extreme environmental conditions to design and build offshore structures and floating objects. It contains a set of computational modules of various methods for extreme analysis, and a set of modules for the stochastic and hydrodynamic simulation of metocean processes. In this sense BOLIVAR is a Problem Solving Environment (PSE). The BOLIVAR is designed for extreme events analysis and contains a set of computational modules of IDM, AMS, POT, MENU, and SINTEF methods, and a set of modules for stochastic simulation of metocean processes in various scales. The BOLIVAR is the tool to simplify the resource-consuming computational experiments to explore the metocean extremes in univariate and multivariate cases. There are field ARMA models for short-term variability, spatial-temporal random pulse model for synoptic variability (storms and calms alteration), cyclostationare model of annual and year-to-year variability. The combination of above mentioned modules and data sources allows to estimate: omnidirectional and directional extremes (with T-years return periods); multivariate extremes (the set of parameters) and evaluation of their impacts to marine structures and floating objects; extremes of spatial-temporal fields (including the trajectory of T-years storms). An employment of concurrent methods for

  6. Time series requirements and trends of temperature and precipitation extremes over Italy (United States)

    Fioravanti, Guido; Desiato, Franco; Fraschetti, Piero; Perconti, Walter; Piervitali, Emanuela


    Extreme climate events have strong impacts on society and economy; accordingly,the knowledge of their trends on long period is crucial for the definition and implementation of a national adaptation strategy to climate change. The Research Programme on Climate Variability and Predictability (CLIVAR) identified a set of temperature and precipitation indices suited to investigate variability and trends of climate extremes. It is well known that extreme indices calculation is more demanding than first and second order statistics are: daily temperature and precipitation data are required and strict constrains in terms of continuity and completeness must be met. In addition, possible dishomogeneities affecting time series must be identified and adjusted before indices calculation. When metadata are not available, statistical methods can provide scientist a relevant support for homogeneity check; however, ad-hoc decision criteria (sometimes subjective) must be applied whenever contradictory results characterize different statistical homogeneity tests. In this work, a set of daily (minimum and maximum) temperature and precipitation time series for the period 1961-2011 were selected in order to guarantee a quite uniform spatial distribution of the stations over the Italian territory and according to the afore-said continuity and completeness criteria. Following the method described by Vincent, the homogeneity check of temperature time series was run at annual level. Two well-documented tests were employed (F-test and T-test), both implemented in the free R-package RHtestV3. The Vincent method was also used for a further investigation of time series homogeneity. Temperature dishomogeneous series were discarded. For precipitation series, no homogeneity check was run. The selected series were employed at daily level to calculate a reliable set of extreme indices. For each station, a linear model was employed for indices trend estimation. Finally, single station results were


    Directory of Open Access Journals (Sweden)



    Full Text Available Method to assess the extreme hydrological events in Danube fluvial Delta. In this paper the subject is about of testing a method for Romania to assess the extreme hydrological events. In this paper through hydrological extreme events it should be understood as the extreme droughts and the extreme flooding. The place to be tested this method for Romania is the Danube Delta, fluvial delta to be more precisely. The importance of the area consists in the fact that is the third Delta of the Europe (after the Volga’s and Kuban’s. The method that is supposed to be tested on a specific part of the delta is aiming to rise the knowledge about the extreme hydrological events (drought and flooding and to be able to respond in an appropriate way to these. For this paper it will be taken into account the hydrological events occurred in 2003 (the exceptional drought and in 2006 (the exceptional flood. To do the analysis there were used satellite images (LANDSAT from the period that was taken into account and additional there were used the hypsometrical model of the Danube Delta for the specific area. The first two datasets (2003 and 2006 satellite images give information about were the border of the water (in drought period and respective in flooding one reached. The second dataset (the delta’s hypsometry give information about the altitude of the terrain in order to establish which areas, at a certain water level, are flooded. The result of these datasets combination is the calibration of the hypsometrical model of the Danube Delta, in that region, regarding the hydrological events in the sense of building-up the hydrograds as isolines. The new approach of this matter can be more concrete and makes easier to see on the cartographic support the hydrologic events. The information obtained from these datasets makes the awareness regarding the extreme hydrological events to be higher and respective the measures taken to mitigate these will be more efficient.

  8. Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland. (United States)

    Baynes, Edwin R C; Attal, Mikaël; Niedermann, Samuel; Kirstein, Linda A; Dugmore, Andrew J; Naylor, Mark


    Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (10(0) to 10(3) h). However, their impacts are rarely considered in studies of long-term landscape evolution (>10(3) y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic (3)He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m(3)/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene.

  9. Local instability driving extreme events in a pair of coupled chaotic electronic circuits (United States)

    de Oliveira, Gilson F.; Di Lorenzo, Orlando; de Silans, Thierry Passerat; Chevrollier, Martine; Oriá, Marcos; Cavalcante, Hugo L. D. de Souza


    For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space.

  10. Extreme sea events during the last millennium in the northeast of Morocco (United States)

    Raji, O.; Dezileau, L.; Von Grafenstein, U.; Niazi, S.; Snoussi, M.; Martinez, P.


    The Moroccan Mediterranean coast is located in one of the area's most vulnerable to extreme weather events or tsunami hazards. The objective of this research is to reconstruct the historical extreme submersion-event record using sea-induced deposits preserved in coastal lagoon. The Nador lagoon is the largest Moroccan lagoon (115 km2). It is located along the western Mediterranean, which has a high cyclogenetic character and is exposed to tsunamis from the Alboran Sea. The sandy barrier which separates the lagoon from the Mediterranean Sea is marked by much overwash, which indicate how intensely it has been exposed to the adverse sea events through history. Using the UWITEC© gravity coring platform, an undisturbed MC4.5 core (1.15 m long) was successfully sampled in the studied lagoon. To identify extreme sea events, a multi-proxy approach was applied combining sedimentological and geochemical data. Three paleoevents were identified; all of them are concentrated over the last 500 years, and the most recent event corresponds to the 1889 storm. For the others deposits, it is difficult to determine exactly their origin; however, the high frequency of storm events over the relevant period and the absence of historical tsunamis evidence is more in favor of the meteorological origin.

  11. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir. (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E


    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir (United States)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.


    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run

  13. High Resolution Simulation of a Colorado Rockies Extreme Snow and Rain Event in both a Current and Future Climate (United States)

    Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David


    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.

  14. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. (United States)

    Thomson, Jordan A; Burkholder, Derek A; Heithaus, Michael R; Fourqurean, James W; Fraser, Matthew W; Statton, John; Kendrick, Gary A


    Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat-forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia--a relatively pristine subtropical embayment whose dominant, canopy-forming seagrass, Amphibolis antarctica, is a temperate species growing near its low-latitude range limit--as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal-borne video footage taken from the perspective of resident, seagrass-associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long-term, community-level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal-borne video and data-logging systems, can make an important contribution to this framework.

  15. Multi-decadal Surface Temperature Trends and Extremes at Arctic Stations (United States)

    Uttal, T.; Makshtas, A.


    The Arctic region is considered to be one where global temperatures are changing the most quickly; a number of factors make it the region where an accurate determination of surface temperature is the most difficult to measure or estimate. In developing a pan-Arctic perspective on Arctic in-situ temperature variability, several issues must be addressed including accounting for the different lengths of temperature records at different locations when comparing trends, accounting for the steep latitudinal controls on 'seasonal' trends, considering the often significant variability between different (sometimes a multitude) of temperature measurements made in the vicinity of a single station, and loss of detail information when data is ingested in a global archives or interpolated into gridded data sets. The International Arctic Systems for Observing the Atmosphere ( is an internationally networked consortium of facilities that measure a wide range of meteorological and climate relevant parameters; temperature is the most fundamental of these parameters. Many of the observatories have the longest temperature records in the Arctic region including Barrow, Alaska (114 years), Tiksi, Russia (83 years), and Eureka, Canada (67 years). Using the IASOA data sets a detailed analysis is presented of temperature trends presented as a function of the beginning date from which the trend is calculated, seasonal trends considered in the context of the extreme Arctic solar ephemeris, and the variability in occurrence of annual extreme temperature events. At the Tiksi observatory, a complete record is available of 3-hourly temperatures 1932 to present that was constructed through digitization of decades of written records. This data set is used to investigate if calculated trends and variabilities are consistent with those calculated from daily minimum and maximum values archived by the NOAA National Centers for Environmental Information Global Historical Climatology

  16. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians--A review (United States)

    M.A. Eisenbies; W.M. Aust; J.A. Burger; M.B. Adams


    The connection between forests and water resources is well established, but the relationships among controlling factors are only partly understood. Concern over the effects of forestry operations, particularly harvesting, on extreme flooding events is a recurrent issue in forest and watershed management. Due to the complexity of the system, and the cost of installing...

  17. Ultimate design load analysis of planetary gearbox bearings under extreme events

    DEFF Research Database (Denmark)

    Gallego Calderon, Juan Felipe; Natarajan, Anand; Cutululis, Nicolaos Antonio


    This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped-parameter approach...

  18. Magnetic storms and solar flares: can be analysed within similar mathematical framework with other extreme events? (United States)

    Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos


    The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.

  19. A spatial and nonstationary model for the frequency of extreme rainfall events

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan;


    Changes in the properties of extreme rainfall events have been observed worldwide. In relation to the discussion of ongoing climatic changes, it is of high importance to attribute these changes to known sources of climate variability. Focusing on spatial and temporal changes in the frequency...... of extreme rainfall events, a statistical model is tested for this purpose. The model is built on the theory of generalized linear models and uses Poisson regression solved by generalized estimation equations. Spatial and temporal explanatory variables can be included simultaneously, and their relative...... importance can be assessed. Additionally, the model allows for a spatial correlation between the measurements. Data from a Danish rain gauge network are used as a case study for model evaluation. Focusing on 10 min and 24 h rainfall extremes, it was found that regional variation in the mean annual...

  20. Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm

    CERN Document Server

    Zhu, Bei; Luhmann, Janet G; Hu, Huidong; Wang, Rui; Yang, Zhongwei


    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which STEREO and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 AU at STEREO A, was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as ACE and SOHO, suggestive of a wide longitudinal spread of the particles at 1 AU. Combining the SEP observations with in situ plasma and magnetic field measurements we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. The examinations of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity and spectra also g...

  1. The Challenges from Extreme Climate Events for Sustainable Development in Amazonia: the Acre State Experience (United States)

    Araújo, M. D. N. M.


    In the past ten years Acre State, located in Brazil´s southwestern Amazonia, has confronted sequential and severe extreme events in the form of droughts and floods. In particular, the droughts and forest fires of 2005 and 2010, the 2012 flood within Acre, the 2014 flood of the Madeira River which isolated Acre for two months from southern Brazil, and the most severe flooding throughout the state in 2015 shook the resilience of Acrean society. The accumulated costs of these events since 2005 have exceeded 300 million dollars. For the last 17 years, successive state administrations have been implementing a socio-environmental model of development that strives to link sustainable economic production with environmental conservation, particularly for small communities. In this context, extreme climate events have interfered significantly with this model, increasing the risks of failure. The impacts caused by these events on development in the state have been exacerbated by: a) limitations in monitoring; b) extreme events outside of Acre territory (Madeira River Flood) affecting transportation systems; c) absence of reliable information for decision-making; and d) bureaucratic and judicial impediments. Our experience in these events have led to the following needs for scientific input to reduce the risk of disasters: 1) better monitoring and forecasting of deforestation, fires, and hydro-meteorological variables; 2) ways to increase risk perception in communities; 3) approaches to involve more effectively local and regional populations in the response to disasters; 4) more accurate measurements of the economic and social damages caused by these disasters. We must improve adaptation to and mitigation of current and future extreme climate events and implement a robust civil defense, adequate to these new challenges.

  2. Food Security and Extreme Events: Evidence from Smallholder Farmers in Central America (United States)

    Saborio-Rodriguez, M.; Alpizar, F.; Harvey, C.; Martinez, R.; Vignola, R.; Viguera, B.; Capitan, T.


    Extreme weather events, which are expected to increase in magnitude and frequency due to climate change, are one of the main threats for smallholder farmers in Central America. Using a rich dataset from carefully selected subsistence farm households, we explore the determinants and severity of food insecurity resulting from extreme hydrometeorological hazards. In addition, we analyze farmerś coping strategies. Our analysis sheds light over food insecurity as an expression of vulnerability in a region that is expected to be increasingly exposed to extreme events and in a population already stressed by poverty and lack of opportunities. Regarding food insecurity, multivariate analyses indicate that education, having at least one migrant in the household, labor allocation, number of plots, and producing coffee are determinants of the probability of experiencing lack of food after an extreme weather event. Once the household is lacking food, the duration of the episode is related to access to credit, number of plots, producing coffee, ownership of land and gender of the head of the household. This results are in line with previous literature on the determinants of food insecurity in particular, and vulnerability, in general. Our dataset also allows us to analyze coping strategies. Households experiencing lack of food after an extreme weather event report mainly changes in their habits, as decreasing the amount of food consumed (54%) and modifying their diet (35%). A low proportion of household (between 10% and 15%, depending on the nature of the event) use their assets, by redirecting their savings, migrating, and selling items from the house. Asking money or food from family and friends or from an organization is reported for 4% of the households. This general results are connected to the specific coping strategies related to damages in crops, which are explored in detail. Our results indicate that there are patterns among the household experiencing lack of food

  3. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK. (United States)

    Haigh, Ivan D; Wadey, Matthew P; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J; Brown, Jennifer M; Horsburgh, Kevin; Gouldby, Ben


    In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915-2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4-8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective.

  4. Decision-support tools for Extreme Weather and Climate Events in the Northeast United States (United States)

    Kumar, S.; Lowery, M.; Whelchel, A.


    Decision-support tools were assessed for the 2013 National Climate Assessment technical input document, "Climate Change in the Northeast, A Sourcebook". The assessment included tools designed to generate and deliver actionable information to assist states and highly populated urban and other communities in assessment of climate change vulnerability and risk, quantification of effects, and identification of adaptive strategies in the context of adaptation planning across inter-annual, seasonal and multi-decadal time scales. State-level adaptation planning in the Northeast has generally relied on qualitative vulnerability assessments by expert panels and stakeholders, although some states have undertaken initiatives to develop statewide databases to support vulnerability assessments by urban and local governments, and state agencies. The devastation caused by Superstorm Sandy in October 2012 has raised awareness of the potential for extreme weather events to unprecedented levels and created urgency for action, especially in coastal urban and suburban communities that experienced pronounced impacts - especially in New Jersey, New York and Connecticut. Planning approaches vary, but any adaptation and resiliency planning process must include the following: - Knowledge of the probable change in a climate variable (e.g., precipitation, temperature, sea-level rise) over time or that the climate variable will attain a certain threshold deemed to be significant; - Knowledge of intensity and frequency of climate hazards (past, current or future events or conditions with potential to cause harm) and their relationship with climate variables; - Assessment of climate vulnerabilities (sensitive resources, infrastructure or populations exposed to climate-related hazards); - Assessment of relative risks to vulnerable resources; - Identification and prioritization of adaptive strategies to address risks. Many organizations are developing decision-support tools to assist in the urban

  5. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks (United States)

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.


    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  6. Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza


    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

  7. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics (United States)

    Leckebusch, G. C.; Ulbrich, U.


    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  8. Vulnerability assessment of Central-East Sardinia (Italy to extreme rainfall events

    Directory of Open Access Journals (Sweden)

    A. Bodini


    Full Text Available In Sardinia (Italy, the highest frequency of extreme events is recorded in the Central-East area (3–4 events per year. The presence of high and steep mountains near the sea on the central and south-eastern coast, causes an East-West precipitation gradient in autumn especially, due to hot and moist currents coming from Africa. Soil structure and utilization make this area highly vulnerable to flash flooding and landslides. The specific purpose of this work is to provide a description of the heavy rainfall phenomenon on a statistical basis. The analysis mainly focuses on i the existence of trends in heavy rainfall and ii the characterization of the distribution of extreme events. First, to study possible trends in extreme events a few indices have been analyzed by the linear regression test. The analysis has been carried out at annual and seasonal scales. Then, extreme values analysis has been carried out by fitting a Generalized Pareto Distribution (GPD to the data. As far as trends are concerned, different results are obtained at the two temporal scales: significant trends are obtained at the seasonal scale which are masked at the annual scale. By combining trend analysis and GPD analysis, the vulnerability of the study area to the occurrence of heavy rainfall has been characterized. Therefore, this work might support the improvement of land use planning and the application of suitable prevention systems. Future work will consider the extension of the analysis to all Sardinia and the application of statistical methods taking into account the spatial correlation of extreme events.

  9. Vulnerability assessment of Central-East Sardinia (Italy) to extreme rainfall events (United States)

    Bodini, A.; Cossu, Q. A.


    In Sardinia (Italy), the highest frequency of extreme events is recorded in the Central-East area (3-4 events per year). The presence of high and steep mountains near the sea on the central and south-eastern coast, causes an East-West precipitation gradient in autumn especially, due to hot and moist currents coming from Africa. Soil structure and utilization make this area highly vulnerable to flash flooding and landslides. The specific purpose of this work is to provide a description of the heavy rainfall phenomenon on a statistical basis. The analysis mainly focuses on i) the existence of trends in heavy rainfall and ii) the characterization of the distribution of extreme events. First, to study possible trends in extreme events a few indices have been analyzed by the linear regression test. The analysis has been carried out at annual and seasonal scales. Then, extreme values analysis has been carried out by fitting a Generalized Pareto Distribution (GPD) to the data. As far as trends are concerned, different results are obtained at the two temporal scales: significant trends are obtained at the seasonal scale which are masked at the annual scale. By combining trend analysis and GPD analysis, the vulnerability of the study area to the occurrence of heavy rainfall has been characterized. Therefore, this work might support the improvement of land use planning and the application of suitable prevention systems. Future work will consider the extension of the analysis to all Sardinia and the application of statistical methods taking into account the spatial correlation of extreme events.

  10. Subsurface signatures and timing of extreme wave events along the southeast Indian coast

    Indian Academy of Sciences (India)

    Rajesh R Nair; Madhav K Murari; C S Vijaya Lakshmi; Ilya Buynevich; Ron J Goble; P Srinivasan; S G N Murthy; Deshraj Trivedi; Suresh Chandra Kandpal; S M Hussain; D Sengupta; Ashok K Singhvi


    Written history’s limitation becomes apparent when attempting to document the predecessors of extreme coastal events in the Indian Ocean, from 550–700 years in Thailand and 1000 years in Indonesia. Detailed ground-penetrating radar (GPR) surveys in Mahabalipuram, southeast India, complemented with sedimentological analyses, magnetic susceptibility measurements, and optical dating provide strong evidence of extreme wave events during the past 3700 years. The diagnostic event signatures include the extent and elevation of the deposits, as well as morphologic similarity of buried erosional scarps to those reported in northern Sumatra region. Optical ages immediately overlying the imaged discontinuities that coincides with high concentration of heavy minerals date the erosional events to 340 ± 35, 350 ± 20, 490 ± 30, 880 ± 40, 1080 ± 60, 1175 ± 188, 2193 ± 266, 2235 ± 881, 2489 ± 293, 2450 ± 130, 2585 ± 609, 3710 ± 200 years ago. These evidences are crucial in reconstructing paleo extreme wave events and will pave the way for regional correlation of erosional horizons along the northern margin of Indian Ocean.

  11. Extreme dissipation event due to plume collision in a turbulent convection cell

    CERN Document Server

    Schumacher, Joerg


    An extreme dissipation event in the bulk of a closed three-dimensional turbulent convection cell is found to be correlated with a strong reduction of the large-scale circulation flow in the system that happens at the same time as a plume emission event from the bottom plate. The reduction in the large-scale circulation opens the possibility for a nearly frontal collision of down- and upwelling plumes and the generation of a high-amplitude thermal dissipation layer in the bulk. This collision is locally connected to a subsequent high-amplitude energy dissipation event in the form of a strong shear layer. Our analysis illustrates the impact of transitions in the large-scale structures on extreme events at the smallest scales of the turbulence, a direct link that is observed in a flow with boundary layers. We also show that detection of extreme dissipation events which determine the far-tail statistics of the dissipation fields in the bulk requires long-time integrations of the equations of motion over at least ...

  12. Sea extreme events during the last millennium in north-east of Morocco (United States)

    Raji, O.; Dezileau, L.; Von Grafenstein, U.; Niazi, S.; Snoussi, M.; Martinez, P.


    The Moroccan Mediterranean coast is located in one of the most vulnerable area to extreme weather events or tsunami hazards. The objective of this research is to reconstruct the historical extreme submersion-events record using sea-induced deposits preserved in coastal lagoon. The Nador lagoon is the largest Moroccan lagoon (115 km2) located along the Western Mediterranean which presents a high cyclogenetic character and is exposed to tsunamis from Alboran Sea. The sandy barrier which separates the lagoon from the Mediterranean Sea is marked by many overwashes, which indicate how intensely has been exposed to the adverse sea events through history. Using the UWITEC coring platform, an undisturbed MC4.5 core (1.15 m long) was successfully sampled in the studied lagoon. To identify sea extreme events, a multi-proxy approach was applied combining sedimentogical and geochemical data. The preliminary results show that the identified paleo-events are concentrated over the last 500 years. The challenge that remains now is to distinguish between the tsunami and the storm deposits.

  13. Sea extreme events during the last millennium in north-east of Morocco

    Directory of Open Access Journals (Sweden)

    O. Raji


    Full Text Available The Moroccan Mediterranean coast is located in one of the most vulnerable area to extreme weather events or tsunami hazards. The objective of this research is to reconstruct the historical extreme submersion-events record using sea-induced deposits preserved in coastal lagoon. The Nador lagoon is the largest Moroccan lagoon (115 km2 located along the Western Mediterranean which presents a high cyclogenetic character and is exposed to tsunamis from Alboran Sea. The sandy barrier which separates the lagoon from the Mediterranean Sea is marked by many overwashes, which indicate how intensely has been exposed to the adverse sea events through history. Using the UWITEC coring platform, an undisturbed MC4.5 core (1.15 m long was successfully sampled in the studied lagoon. To identify sea extreme events, a multi-proxy approach was applied combining sedimentogical and geochemical data. The preliminary results show that the identified paleo-events are concentrated over the last 500 years. The challenge that remains now is to distinguish between the tsunami and the storm deposits.

  14. Extreme dissipation event due to plume collision in a turbulent convection cell (United States)

    Schumacher, Jörg; Scheel, Janet D.


    An extreme dissipation event in the bulk of a closed three-dimensional turbulent convection cell is found to be correlated with a strong reduction of the large-scale circulation flow in the system that happens at the same time as a plume emission event from the bottom plate. The reduction in the large-scale circulation opens the possibility for a nearly frontal collision of down- and upwelling plumes and the generation of a high-amplitude thermal dissipation layer in the bulk. This collision is locally connected to a subsequent high-amplitude energy dissipation event in the form of a strong shear layer. Our analysis illustrates the impact of transitions in the large-scale structures on extreme events at the smallest scales of the turbulence, a direct link that is observed in a flow with boundary layers. We also show that detection of extreme dissipation events which determine the far-tail statistics of the dissipation fields in the bulk requires long-time integrations of the equations of motion over at least a hundred convective time units.

  15. Extreme Rainfall Events and Associated Natural Hazards in Alaknanda Valley, Indian Himalayan Region

    Institute of Scientific and Technical Information of China (English)

    JOSHI Varun; KUMAR Kireet


    Entire Himalayan region is vulnerable to rain-induced (torrential rainfall) hazards in the form of flash flood, cloudburst or glacial lake outburst flood. Flash floods and cloudburst are generally caused by high intensity rainfall followed by debris flow or landslide often resulting into blockade of river channels. The examples of some major disasters caused by torrential rainfall events in last fifty years are the flash floods of 1968 in Teesta valley, in 1993 and 20o0 in Sntlej valley, in 1978 in Bhagirathi and in 197o in Alaknanda river valleys. The formation of landslide dams and subsequent breaching is also associated with such rainfall events. These dams may persist for years or may burst within a short span of its formation. Due to sudden surge of water level in the river valleys, havoc and panic are created in the down stream. In Alaknanda valley, frequencies of such extreme rainfall events are found to be increasing in last two decades. However, the monthly trend of extreme rainfall events has partly indicated this increase. In most of the years extreme rainfall events and cloudburst disaster were reported in August during the later part of the monsoon season.

  16. Human-biometeorological assessment of increasing summertime extreme heat events in Shanghai, China during 1973-2015 (United States)

    Kong, Qinqin; Ge, Quansheng; Xi, Jianchao; Zheng, Jingyun


    Summertime extreme heat events, defined by the Universal Thermal Climate Index (UTCI), have shown increasing trends in Shanghai from 1973 to 2015. There is a clear shift to higher temperatures for the daily maximum UTCI values, and the number of days with daily maximum UTCI exceeding 38 °C significantly increased by 4.34 days/10a. An upward trend of 3.67 days/10a was detected for the number of hot days which also displays an abrupt increase around 1998. Both the frequency and total duration of heat waves have significantly increased by 0.77 times/10a and 3.51 days/10a respectively. Their inter-decadal variations indicate a three-part division of the study period showing more and more heat waves and longer total duration, which are 1.0 times/a and 4.13 days/a for 1973-1987, 1.71 times/a and 7.64 days/a for 1988-2001, and 3.57 times/a and 16.0 days/a for 2002-2015. In addition to that are more occurrences of long-lasting heat waves. Compared with the UTCI, air temperature-based definitions have indicated substantially higher increases in extreme heat events, especially for hot nights. The relatively low humidity and strong wind speeds in the twenty-first century are considered to be responsible for this difference. Our study provides a more in-depth case to monitor extreme heat events under the combining effects of air temperature, humidity, wind speeds, total cloud cover, etc. and can support studies over other regions.

  17. No evidence of the effect of extreme weather events on annual occurrence of four groups of ectothermic species.

    Directory of Open Access Journals (Sweden)

    Agnieszka H Malinowska

    Full Text Available Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i trends in distribution patterns, (ii the effect of temperature on colonisation and persistence probability, and (iii the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity, or other factors might be masking the effects (e.g. availability and quality of habitat. Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest.

  18. Increase of record-breaking temperature and precipitation extremes in a warming world (United States)

    Coumou, D.; Lehmann, J.; Robinson, A.; Rahmstorf, S.


    The last decade has seen many record-breaking weather events, including severe heat waves, as well as rainfall and drought extremes. At the same time, this decade was globally the warmest since accurate measurements started in the 19th century. This raises the question, often asked by public and media directly after the occurrence of a specific extreme, whether these extremes are related to global warming. Here we analyze record-breaking events in the last decade using global gridded datasets of monthly-mean surface temperature and precipitation. We compare the number of observed records with those expected in a stationary climate, for which the simple 1/n relationship holds, with n the number of previous data points (e.g. years). In addition, we develop a first-order theoretical model to quantify the respective contributions of climate change and natural variability to the occurrence of records. World wide the number of monthly heat records is now, on average 5 times larger than expected in a stationary climate. This indicates that record-breaking heat waves lasting for several weeks now have, on average, an 80% chance of being due to climatic warming. Some tropical regions including East-Africa, India and Amazonia have seen an even larger increase in the number of record breaking events, pushing the probability that a record event is due to climatic warming to more than 90%. The high number of observed records is well explained by a model assuming a linear warming over the last 40 years. Precipitation extremes are more complex than heat extremes as different physical processes associated with global warming are likely to affect them. Warmer air can hold more moisture and thus, in principle, enhances extremes in both rainfall maxima and minima. Also, changes in wind patterns will affect precipitation and it is expected that dry areas will become drier and wet areas wetter. We show that, globally averaged the number of observed records, both for minima and maxima

  19. The Physical Processes of Eruptive Flares Revealed By An Extremely-Long-Duration Event (United States)

    Zhang, Jie; Zhou, Zhenjun


    In this work, we report the physical processes of eruptive flares inferred from an extremely- long-duration event occurred on June 21, 2011. The flare, peaked at C7.7 level, had a two-hour-long rise time in soft X-rays emission; this rise time is much longer than the typical rise time of solar flares that last for only about ten minutes. Combining the fact that the flare occurred near the disk center as seen by SDO, but near the limbs as seen by STEREO A and B, we are able to track the evolution of the eruption in 3-D as well as in a rare slow-motion manner. The time sequence of temperature maps, constructed from six corona-temperature passbands of AIA, clearly shows process of how the highly-twisted sigmoid structure prior to the eruption is transformed into a near-potential post-eruption loop arcade. The observed sigmoid is likely to be the structure of a twisted magnetic flux rope, which reached a height of about 60 Mm at the onset of the eruption. The onset is likely triggered by the torus instability (or loss of equilibrium) of the flux rope as indicated by the slow rise motion prior to the impulsive phase. We also find that the complex evolution of footprints of the eruption as seen from AIA transition region images is consistent with the magnetic evolution in the corona, which is the consequence of the combined effects of the expansion of the magnetic flux rope and the magnetic reconnection of surrounding magnetic fields.

  20. Two spatial scales in a bleaching event: Corals from the mildest and the most extreme thermal environments escape mortality

    KAUST Repository

    Pineda, Jesús


    In summer 2010, a bleaching event decimated the abundant reef flat coral Stylophora pistillata in some areas of the central Red Sea, where a series of coral reefs 100–300 m wide by several kilometers long extends from the coastline to about 20 km offshore. Mortality of corals along the exposed and protected sides of inner (inshore) and mid and outer (offshore) reefs and in situ and satellite sea surface temperatures (SSTs) revealed that the variability in the mortality event corresponded to two spatial scales of temperature variability: 300 m across the reef flat and 20 km across a series of reefs. However, the relationship between coral mortality and habitat thermal severity was opposite at the two scales. SSTs in summer 2010 were similar or increased modestly (0.5°C) in the outer and mid reefs relative to 2009. In the inner reef, 2010 temperatures were 1.4°C above the 2009 seasonal maximum for several weeks. We detected little or no coral mortality in mid and outer reefs. In the inner reef, mortality depended on exposure. Within the inner reef, mortality was modest on the protected (shoreward) side, the most severe thermal environment, with highest overall mean and maximum temperatures. In contrast, acute mortality was observed in the exposed (seaward) side, where temperature fluctuations and upper water temperature values were relatively less extreme. Refuges to thermally induced coral bleaching may include sites where extreme, high-frequency thermal variability may select for coral holobionts preadapted to, and physiologically condition corals to withstand, regional increases in water temperature.

  1. Terrestrial Laser Scanner (TLS) as a tool for the reconstruction of extreme wave event characteristics (United States)

    Schneider, Bastian; Hoffmann, Gösta


    The shores of the Northern Indian Ocean were exposed to extreme wave inundation in the past. Two relevant hazards, storm surges triggered by tropical cyclones and tsunamis, are known to occur in the region but are rarely instrumentally recorded. Various sediment deposits along the coast are the only remnants of those past events. A profound understanding of return periods and magnitudes of past events is essential for developing land-use planning and risk mitigation measures in Oman and neighboring countries. A detailed investigation of these deposits, in this case primarily blocks and boulder trains but also fine grained sediments, provides insight on parameters such as wave height and inundation distance. These parameters can then be used for modeling inundation scenarios superimposed on modern infrastructure. We are investigating the spatial 3D-distribution of the extreme wave event sediments along the coastline through a high-precision survey of the event deposits using a Faro Focus 3D X330 TLS. A TLS is capable of recording high-detail and colored point clouds, which allows detailed measurements and has proved to be a powerful tool in geosciences. These multi-parameter point clouds in combination with dating results serve as a base for extreme wave event return period and magnitude estimations. Relevant parameters on large sediments are size, shape, volume, mass as well as relative arrangement, sorting and orientation. Furthermore, the TLS data is used to distinguish between the various boulder lithologies using a multi-scale supervised classification. Surface roughness as a result of weathering can serve as an indicator for exposure time of boulders and hint on various generations of extreme wave events. The distribution of the boulders relative to the site they were quarried from indicates on the flow direction of the waves and consequently might help to distinguish between storm and tsunami waves.

  2. Possible effect of extreme solar energetic particle events of September–October 1989 on polar stratospheric aerosols: a case study

    Directory of Open Access Journals (Sweden)

    I. A. Mironova


    Full Text Available The main ionization source of the middle and low Earth atmosphere is related to energetic particles coming from outer space. Usually it is ionization from cosmic rays that is always present in the atmosphere. But in a case of a very strong solar eruption some solar energetic particles (SEP can reach middle/low atmosphere increasing the ionization rate up to some orders of magnitude at polar latitudes. We continue investigating such a special class of solar events and their possible applications for natural variations of the aerosol content. After the case study of the extreme SEP event of January 2005 and its possible effect upon polar stratospheric aerosols, here we analyze atmospheric applications of the second sequence of several events that took place over the Autumn 1989. Using aerosol data obtained over polar regions from two satellites with space-borne optical instruments SAGE II and SAM II that were operating during September–October 1989, we found that an extreme major SEP event might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, the effect of the additional ambient air ionization on the aerosol formation is minor, in comparison with temperature effect, and can take place only in the cold polar atmospheric conditions.

  3. Quantifying the effect of interannual ocean variability on the attribution of extreme climate events to human influence (United States)

    Risser, Mark D.; Stone, Dáithí A.; Paciorek, Christopher J.; Wehner, Michael F.; Angélil, Oliver


    In recent years, the climate change research community has become highly interested in describing the anthropogenic influence on extreme weather events, commonly termed "event attribution." Limitations in the observational record and in computational resources motivate the use of uncoupled, atmosphere/land-only climate models with prescribed ocean conditions run over a short period, leading up to and including an event of interest. In this approach, large ensembles of high-resolution simulations can be generated under factual observed conditions and counterfactual conditions that might have been observed in the absence of human interference; these can be used to estimate the change in probability of the given event due to anthropogenic influence. However, using a prescribed ocean state ignores the possibility that estimates of attributable risk might be a function of the ocean state. Thus, the uncertainty in attributable risk is likely underestimated, implying an over-confidence in anthropogenic influence. In this work, we estimate the year-to-year variability in calculations of the anthropogenic contribution to extreme weather based on large ensembles of atmospheric model simulations. Our results both quantify the magnitude of year-to-year variability and categorize the degree to which conclusions of attributable risk are qualitatively affected. The methodology is illustrated by exploring extreme temperature and precipitation events for the northwest coast of South America and northern-central Siberia; we also provides results for regions around the globe. While it remains preferable to perform a full multi-year analysis, the results presented here can serve as an indication of where and when attribution researchers should be concerned about the use of atmosphere-only simulations.

  4. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)


    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel

  5. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik


    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  6. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adelie penguins.

    Directory of Open Access Journals (Sweden)

    Amélie Lescroël

    Full Text Available In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC on the foraging efficiency of Adélie penguins (Pygoscelis adeliae breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  7. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins. (United States)

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G


    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  8. Establishing a Numerical Modeling Framework for Hydrologic Engineering Analyses of Extreme Storm Events

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby


    In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. The evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.

  9. Mathematical aspects of assessing extreme events for the safety of nuclear plants (United States)

    Potempski, Slawomir; Borysiewicz, Mieczyslaw


    In the paper the review of mathematical methodologies applied for assessing low frequencies of rare natural events like earthquakes, tsunamis, hurricanes or tornadoes, floods (in particular flash floods and surge storms), lightning, solar flares, etc., will be given in the perspective of the safety assessment of nuclear plants. The statistical methods are usually based on the extreme value theory, which deals with the analysis of extreme deviation from the median (or the mean). In this respect application of various mathematical tools can be useful, like: the extreme value theorem of Fisher-Tippett-Gnedenko leading to possible choices of general extreme value distributions, or the Pickands-Balkema-de Haan theorem for tail fitting, or the methods related to large deviation theory. In the paper the most important stochastic distributions relevant for performing rare events statistical analysis will be presented. This concerns, for example, the analysis of the data with the annual extreme values (maxima - "Annual Maxima Series" or minima), or the peak values, exceeding given thresholds at some periods of interest ("Peak Over Threshold"), or the estimation of the size of exceedance. Despite of the fact that there is a lack of sufficient statistical data directly containing rare events, in some cases it is still possible to extract useful information from existing larger data sets. As an example one can consider some data sets available from the web sites for floods, earthquakes or generally natural hazards. Some aspects of such data sets will be also presented taking into account their usefulness for the practical assessment of risk for nuclear power plants coming from extreme weather conditions.

  10. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction (United States)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.


    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  11. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events. (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K


    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  12. A mechanism for decadal variations in the frequency of extreme El Niño events (United States)

    Wang, G.; Cai, W.


    The El Niño Southern Oscillation (ENSO), the largest source of Earth's climate variability on interannual time scales, has massive impacts on extreme weathers, agriculture and ecosystems, particularly during extreme El Niño events, such as the 1982/83 and 1997/98 episodes. However, the associated mechanism is not fully understood, hindering their forecasts, as attested by the false alarm of an extreme El Niño in 2014 predicted by many models. Recent studies have identified additional precursors beyond westerly wind anomalies and oceanic heat content along the equatorial Pacific, including the southwest Pacific southerly jets, which tend to occur strongly and concurrently with equatorial westerly anomalies during extreme El Niño, but NOT during weak El Niño events. Here we show that the concurrences of southwest Pacific southerlies, anomalous equatorial westerlies, and their relationship, are modulated by the Pacific Decadal Oscillation (PDO)/Interdecadal Pacific Oscillation (IPO), even on daily timescales. During a positive phase of the PDO/IPO, occurrences of westerly wind events (WWEs), in the region between the Maritime continent and the eastern Pacific Ocean, are reinforced by the southwest Pacific southerly surges (SPSSs) in austral winter. By contrast, during a negative phase of the PDO/IPO, such SPSSs are not reinforcing WWEs; instead stronger SPSSs are associated with weaker WWEs. This interdecadal contrast in the relationship between SPSSs and WWEs contributes to the decadal variations in the frequency of extreme El Niño events. The associated mechanism will be discussed.

  13. Extreme operative temperatures are better descriptors of the thermal environment than mean temperatures. (United States)

    Camacho, Agustín; Trefaut Rodrigues, Miguel; Navas, Carlos


    In ecological studies of thermal biology the thermal environment is most frequently described using the mean or other measures of central tendency in environmental temperatures. However, this procedure may hide biologically relevant thermal variation for ectotherms, potentially misleading interpretations. Extremes of operative temperatures (EOT) can help with this problem by bracketing the thermal environment of focal animals. Within this paper, we quantify how mean operative temperatures relate to the range of simultaneously available operative temperatures (a measure of error). We also show how EOT: 1) detect more thermal differences among microsites than measures of central tendency, like the mean OT, 2) allow inferring on microsite use by ectothermic animals, and 3) clarify the relationships between field operative temperatures and temperatures measured at weather stations (WS). To do that, we explored operative temperatures measured at four sites of the Brazilian Caatingas and their correspondent nearest weather stations. We found that the daily mean OT can hide temperature ranges of 41 °C simultaneously available at our study sites. In addition, EOT detected more thermal differences among microsites than central quantiles. We also show how EOT allow inferring about microsite use of ectothermic animals in a given site. Finally, the daily maximum temperature and the daily temperature range measured at WSs predicted well the minimum available field OT at localities many kilometers away. Based on our results, we recommend the use of EOT, instead of mean OT, in thermal ecology studies.

  14. The impacts of '05.6' extreme flood event on riverine carbon fluxes in Xijiang River

    Institute of Scientific and Technical Information of China (English)

    SUN HuiGuo; HAN JingTai; ZHANG ShuRong; LU XiXi


    An extreme flood event with a frequency of nearly 200 year occurred in June of 2005 in the Xijiang River,the main trunk stream of the Zhujiang River. Samples were systematically collected during the flood event, and water quality parameters, including total suspended sediment (TSS), dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were analyzed,and riverine carbon concentrations associated with its changing pattern through the flood process were discussed. These parameters reflect the changes in basin surface flow and subsurface flow during the flood. This flood event influenced annual flux estimations of POC, DOC, and DIC to great extents.Based on carbon flux estimations for the year 2005 and the flood event (June 21-28) in the Xijiang River, it was found that DIC, DOC, and POC fluxes during '05.6' flood event are 1.52x106,0.24x106, and 0.54x106, and account for 14.87%, 24.75% and 44.89% of the annual fluxes in 2005, respectively. The results suggested that carbon exports during extreme flood events had great contributions to the total carbon fluxes and composition of various carbon components, being important for accurate estimates of annual carbon fluxes in rivers with frequent floods.

  15. Heat-related deaths after an extreme heat event--four states, 2012, and United States, 1999-2009. (United States)


    On June 29, 2012, a rapidly moving line of intense thunderstorms with high winds swept across the midwestern and eastern United States, causing widespread damage and power outages. Afterward, the area experienced extreme heat, with maximum temperatures exceeding 100°F (37.8°C). This report describes 32 heat-related deaths in Maryland, Ohio, Virginia, and West Virginia that occurred during the 2 weeks following the storms and power outages. Median age of the decedents was 65 years, and most of the excessive heat exposures occurred within homes. During 1999-2009, an annual average of 658 heat-related deaths occurred in the United States. Heat-related deaths are preventable, and heat response plans should be in place before an extreme heat event (EHE). Interventions should focus on identifying and limiting heat exposure among vulnerable populations.

  16. A multigap resistive plate chamber array for the Extreme Energy Events project (United States)

    De Gruttola, D.; Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Tosello, F.; Votano, L.; Williams, M. C. S.; Yanez, G.; Zichichi, A.; Zouyevski, R.


    The Extreme Energy Events (EEE) Project is a Centro Fermi - CERN - INFN - MIUR Collaboration Project for the study of extremely high energy cosmic rays, which exploits the Multigap Resistive Plate Chamber (MRPC) technology. The excellent time resolution and good tracking capability of this kind of detector allows us to study Extensive Air Showers (EAS) with an array of MRPC telescopes distributed across the Italian territory. Each telescope is installed in a high school, with the further goal to introduce students to particle and astroparticle Physics. The status of the experiment and the results obtained are reported.

  17. A systemic approach for managing extreme risk events-dynamic financial analysis

    Directory of Open Access Journals (Sweden)

    Ph.D.Student Rodica Ianole


    Full Text Available Following the Black Swan logic, it often happens that what we do not know becomes more relevant that what we (believe to know. The management of extreme risks falls under this paradigm in the sense that it cannot be limited to a static approach based only on objective and easily quantifiable variables. Making appeal to the operational tools developed primarily for the insurance industry, the present paper aims to investigate how dynamic financial analysis (DFA can be used within the framework of extreme risk events.

  18. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed? (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex


    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  19. Occurrence of extreme solar particle events: Assessment from historical proxy data

    CERN Document Server

    Usoskin, I G


    The probability of occurrence of extreme solar particle events (SPEs) with the fluence of (>30 MeV) protons F30>10^{10} cm^{-2} is evaluated based on data of cosmogenic isotopes 14C and 10Be in terrestrial archives centennial-millennial time scales. Four potential candidates with F30=(1-1.5)x10^{10} cm^{-2} and no events with F30>2x10^{10} cm^{-2} are identified since 1400 AD in the annually resolved 10Be data. A strong SPE related to the Carrington flare of 1859 AD is not supported by the data. For the last 11400 years, 19 SPE candidates with F30=(1-3)x10^{10} cm^{-2} are found and clearly no event with F30>5x10^{10} cm^{-2} (50-fold the SPE of 23-Feb-1956) occurring. This values serve as an observational upper limit for the strength of SPE on the time scale of tens of millennia. Two events, ca. 780 and 1460 AD, appear in different data series making them strong candidates to extreme SPEs. We built a distribution of the occurrence probability of extreme SPEs, providing a new strict observational constraint. ...

  20. Characterization of extreme flood and drought events in Singapore and investigation of their relationships with ENSO (United States)

    Li, Xin; Babovic, Vladan


    Flood and drought are hydrologic extreme events that have significant impact on human and natural systems. Characterization of flood and drought in terms of their start, duration and strength, and investigation of the impact of natural climate variability (i.e., ENSO) and anthropogenic climate change on them can help decision makers to facilitate adaptions to mitigate potential enormous economic costs. To date, numerous studies in this area have been conducted, however, they are primarily focused on extra-tropical regions. Therefore, this study presented a detailed framework to characterize flood and drought events in a tropical urban city-state (i.e., Singapore), based on daily data from 26 precipitation stations. Flood and drought events are extracted from standardized precipitation anomalies from monthly to seasonal time scales. Frequency, duration and magnitude of flood and drought at all the stations are analyzed based on crossing theory. In addition, spatial variation of flood and drought characteristics in Singapore is investigated using ordinary kriging method. Lastly, the impact of ENSO condition on flood and drought characteristics is analyzed using regional regression method. The results show that Singapore can be prone to extreme flood and drought events at both monthly and seasonal time scales. ENSO has significant influence on flood and drought characteristics in Singapore, but mainly during the South West Monsoon season. During the El Niño phase, drought can become more extreme. The results have implications for water management practices in Singapore.

  1. Ensuring Resilience of Natural Resources under Exposure to Extreme Climate Events

    Directory of Open Access Journals (Sweden)

    Brent Jacobs


    Full Text Available Natural resources directly support rural livelihoods and underpin much of the wealth of rural and regional Australia. Climate change manifesting as increasing frequency and or severity of extreme weather events poses a threat to sustainable management of natural resources because the recurrence of events may exceed the resilience of natural systems or the coping capacity of social systems. We report the findings of a series of participatory workshops with communities in eight discrete landscapes in South East New South Wales, Australia. The workshops focused on how natural resource management (NRM is considered in the Prevent-Prepare-Respond-Recover emergency management cycle. We found that NRM is generally considered only in relation to the protection of life and property and not for the intrinsic value of ecosystem services that support communities. We make three recommendations to improve NRM under extreme climate events. Firstly, the support to communities offered by emergency management agencies could be bolstered by guidance material co-produced with government NR agencies. Secondly, financial assistance from government should specifically target the restoration and maintenance of green infrastructure to avoid loss of social-ecological resilience. Thirdly, action by natural resource dependent communities should be encouraged and supported to better protect ecosystem services in preparation for future extreme events.

  2. An agent-based approach to modelling the effects of extreme events on global food prices (United States)

    Schewe, Jacob; Otto, Christian; Frieler, Katja


    Extreme climate events such as droughts or heat waves affect agricultural production in major food producing regions and therefore can influence the price of staple foods on the world market. There is evidence that recent dramatic spikes in grain prices were at least partly triggered by actual and/or expected supply shortages. The reaction of the market to supply changes is however highly nonlinear and depends on complex and interlinked processes such as warehousing, speculation, and export restrictions. Here we present for the first time an agent-based modelling framework that accounts, in simplified terms, for these processes and allows to estimate the reaction of world food prices to supply shocks on a short (monthly) timescale. We test the basic model using observed historical supply, demand, and price data of wheat as a major food grain. Further, we illustrate how the model can be used in conjunction with biophysical crop models to assess the effect of future changes in extreme event regimes on the volatility of food prices. In particular, the explicit representation of storage dynamics makes it possible to investigate the potentially nonlinear interaction between simultaneous extreme events in different food producing regions, or between several consecutive events in the same region, which may both occur more frequently under future global warming.

  3. Environmental prediction, risk assessment and extreme events: adaptation strategies for the developing world. (United States)

    Webster, Peter J; Jian, Jun


    The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income. We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change.

  4. Hydro-meteorological extreme events in the 18th century in Portugal (United States)

    Fragoso, Marcelo; João Alcoforado, Maria; Taborda, João Paulo


    The present work is carried out in the frame of the KLIMHIST PROJECT ("Reconstruction and model simulations of past climate in Portugal using documentary and early instrumental sources, 17th-19th century)", and is devoted to the study of hydro-meteorological extreme events during the last 350 years, in order to understand how they have changed in time and compare them with current analogues. More specifically, the results selected to this presentation will focus on some hydro-meteorological extreme events of the 18th century, like severe droughts, heavy precipitation episodes and windstorms. One of the most noteworthy events was the winterstorm Bárbara (3rd to 6th December 1739), already studied in prior investigations (Taborda et al, 2004; Pfister et al, 2010), a devastating storm with strong impacts in Portugal caused by violent winds and heavy rainfall. Several other extreme events were detected by searching different documentary archives, including individual, administrative and ecclesiastic sources. Moreover, a more detailed insight to the 1783-1787 period will be made with regard the Lisbon region, taking into consideration the availability of information for daily meteorological observations as well as documentary evidences, like descriptions from Gazeta de Lisboa, the periodic with more continuous publication in the 18thcentury. Key-words: Instrumental data, Documentary data, Extreme events, Klimhist Project, Portugal References Pfister, C., Garnier, E., Alcoforado, M.J., Wheeler, D. Luterbacher, J. Nunes, M.F., Taborda, J.P. (2010) The meteorological framework and the cultural memory of three severe winter-storms in early eighteenth-century Europe, Climatic Change, 101, 1-2, 281-310 Taborda, JP; Alcoforado, MJ and Garcia, JC (2004) O Clima do Sul de Portugal no Séc.XVIII, Centro de Estudos Geográficos, Área de de Investigação de Geo-Ecologia, relatório no 2

  5. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud


    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate change caused increased

  6. Climate Extremes Events and their Connection with Runoff in the Yellow River Basin (United States)

    Hu, Caihong; Lei, Deyi; He, Huli; Wang, Jijun


    This study analyzes the temporal and spatial distribution of runoff and their relationship with the extreme values of eight climate indices, based on observational data from 143 meteorological stations and 6 hydrological stations across the basin. The eight core indices selected from the STARDEX projects reflect rather moderate extremes. Statistics methods and GIS technology were be used for analysis on the relationship and distribution characteristics. We analyzed the reason of runoff change and the relationship between the climate extreme events and observed runoff from six hydrological stations. Our results show that the annual and seasonal runoff showed obviously decrease tendency. Sharp decreases of runoff in six hydrological stations occurred in the late 1980s and 1990s. It can be seen that the decrease in runoff was caused by climate change, increased demands for water supply, land use change, etc. And the difference between the magnitude of the increasing and decreasing trends for different indices at different stations suggests that the climate extremes and environment change resulted in a decrease in runoff. The results also show that the shortage of water resources will become more pronounced in the Yellow River Basin with the increased occurrence of climate extremes. The results presented here will help to improve our understanding of the changes to climate extremes, and provide a basis for further investigation.

  7. Trends in indices of daily temperature and precipitations extremes in Morocco (United States)

    Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y.


    The purpose of this paper is to provide a summary of Morocco's climate extreme trends during the last four decades. Indices were computed based on a daily temperature and precipitation using a consistent approach recommended by the ETCCDI. Trends in these indices were calculated at 20 stations from 1970 to 2012. Twelve indices were considered to detect trends in temperature. A large number of stations have significant trends and confirm an increase in temperature, showing increased warming during spring and summer seasons. The results also show a decrease in the number of cold days and nights and an increase in the number of warm days and nights. Increasing trends have also been found in the absolute warmest and coldest temperatures of the year. A clear increase is detected for warm nights and diurnal temperature range. Eight indices for precipitation were also analyzed, but the trends for these precipitation indices are much less significant than for temperature indices and show more mixed spatial patterns of change. Heavy precipitation events do not exhibit significant trends except at a few locations, in the north and central parts of Morocco, with a general tendency towards drier conditions. The correlation between these climate indices and the large-scale atmospheric circulations indices such as the NAO, MO, and WEMO were also analyzed. Results show a stronger relationship with these climatic indices for the precipitation indices compared to the temperature indices. The correlations are more significant in the Atlantic regions, but they remain moderate at the whole country scale.

  8. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events. (United States)

    Vincenzi, Simone


    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an 'extinction window' of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the 'extinction window', although genetic variance had a smaller role than population size in predicting contemporary risk of extinction.

  9. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating (United States)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.


    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  10. Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña (United States)

    Evans, Jason P.; Boyer-Souchet, Irène


    This study examines the role played by high sea surface temperatures around northern Australia, in producing the extreme precipitation which occurred during the strong La Niña in December 2010. These extreme rains produced floods that impacted almost 1,300,000 km2, caused billions of dollars in damage, led to the evacuation of thousands of people and resulted in 35 deaths. Through the use of regional climate model simulations the contribution of the observed high sea surface temperatures to the rainfall is quantified. Results indicate that the large-scale atmospheric circulation changes associated with the La Niña event, while associated with above average rainfall in northeast Australia, were insufficient to produce the extreme rainfall and subsequent flooding observed. The presence of high sea surface temperatures around northern Australia added ˜25% of the rainfall total.

  11. Quantitative risk assessment of the effects of drought on extreme temperature in eastern China (United States)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.; Ouyang, Wei


    Hot extremes may lead to disastrous impacts on human health and agricultural production. Previous studies have revealed the feedback between drought and hot extremes in large regions of eastern China, while quantifying the impact of antecedent drought on hot extremes has been limited. This study aims at quantitatively assessing the risk of extreme temperature conditioned on the antecedent drought condition represented by Standardized Precipitation Index (SPI) during summer time in eastern China. A copula-based model is proposed to construct the joint probability distribution of extreme temperature and drought based on 6 month SPI (SPI6). Accordingly, the conditional probability distribution is employed to quantify impacts of antecedent dry (and wet) conditions on the exceedance probability of extreme temperature. Results show that the likelihood of extreme temperature exceeding high quantiles is higher given antecedent dry conditions than that given antecedent wet conditions in large regions from southwestern to northeastern China. Specifically, the conditional probability difference of temperature exceeding 80th percentile given SPI6 lower than or equal to -0.5 and SPI6 higher than 0.5 is around 0.2-0.3. The case study of the 2006 summer hot extremes and drought in Sichuan and Chongqing region shows that the conditional return period of extreme temperature conditioned on antecedent drought is around 5-50 years shorter than univariate return period. These results quantify the impact of antecedent drought on subsequent extreme temperature and highlight the important role of antecedent drought in intensifying hot extremes in these regions.

  12. Event-based stormwater management pond runoff temperature model (United States)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.


    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  13. Do climate extreme events foster violent civil conflicts? A coincidence analysis (United States)

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Donner, Reik V.


    Civil conflicts promoted by adverse environmental conditions represent one of the most important potential feedbacks in the global socio-environmental nexus. While the role of climate extremes as a triggering factor is often discussed, no consensus is yet reached about the cause-and-effect relation in the observed data record. Here we present results of a rigorous statistical coincidence analysis based on the Munich Re Inc. extreme events database and the Uppsala conflict data program. We report evidence for statistically significant synchronicity between climate extremes with high economic impact and violent conflicts for various regions, although no coherent global signal emerges from our analysis. Our results indicate the importance of regional vulnerability and might aid to identify hot-spot regions for potential climate-triggered violent social conflicts.

  14. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events

    DEFF Research Database (Denmark)

    Madsen, Henrik; Rasmussen, Peter F.; Rosbjerg, Dan


    Two different models for analyzing extreme hydrologic events, based on, respectively, partial duration series (PDS) and annual maximum series (AMS), are compared. The PDS model assumes a generalized Pareto distribution for modeling threshold exceedances corresponding to a generalized extreme value...... model with ML estimation for large positive shape parameters. Since heavy-tailed distributions, corresponding to negative shape parameters, are far the most common in hydrology, the PDS model generally is to be preferred for at-site quantile estimation....... distribution for annual maxima. The performance of the two models in terms of the uncertainty of the T-year event estimator is evaluated in the cases of estimation with, respectively, the maximum likelihood (ML) method, the method of moments (MOM), and the method of probability weighted moments (PWM...

  15. Developing research about extreme events and impacts to support international climate policy (United States)

    Otto, Friederike; James, Rachel; Parker, Hannah; Boyd, Emily; Jones, Richard; Allen, Myles; Mitchell, Daniel; Cornforth, Rosalind


    Climate change is expected to have some of its most significant impacts through changes in the frequency and severity of extreme events. There is a pressing need for policy to support adaptation to changing climate risks, and to deal with residual loss and damage from climate change. In 2013, the Warsaw International Mechanism was established by the United Nations Framework Convention on Climate Change (UNFCCC) to address loss and damage in developing countries. Strategies to help vulnerable regions cope with losses from extreme events will presumably require information about the influence of anthropogenic forcing on extreme weather. But what kind of scientific evidence will be most useful for the Warsaw Mechanism? And how can the scientific communities working on extreme events and impacts develop their research to support the advance of this important policy? As climate scientists conducting probabilistic event attribution studies, we have been working with social scientists to investigate these questions. Our own research seeks to examine the role of external drivers, including greenhouse gas emissions, on the risk of extreme weather events such as heatwaves, flooding, and drought. We use large ensembles of climate models to compute the probability of occurrence of extreme events under current conditions and in a world which might have been without anthropogenic interference. In cases where the models are able to simulate extreme weather, the analysis allows for conclusions about the extent to which climate change may have increased, decreased, or made no change to the risk of the event occurring. These results could thus have relevance for the UNFCCC negotiations on loss and damage, and we have been communicating with policymakers and observers to the policy process to better understand how we can develop our research to support their work; by attending policy meetings, conducting interviews, and using a participatory game developed with the Red Cross

  16. Resilience of coastal wetlands to extreme hydrologic events in Apalachicola Bay (United States)

    Tahsin, Subrina; Medeiros, Stephen C.; Singh, Arvind


    Extreme hydrologic events such as hurricanes and droughts continuously threaten wetlands which provide key ecosystem services in coastal areas. The recovery time for vegetation after impact from these extreme events can be highly variable depending on the hazard type and intensity. Apalachicola Bay in Florida is home to a rich variety of saltwater and freshwater wetlands and is subject to a wide range of hydrologic hazards. Using spatiotemporal changes in Landsat-based empirical vegetation indices, we investigate the impact of hurricane and drought on both freshwater and saltwater wetlands from year 2000 to 2015 in Apalachicola Bay. Our results indicate that saltwater wetlands are more resilient than freshwater wetlands and suggest that in response to hurricanes, the coastal wetlands took almost a year to recover, while recovery following a drought period was observed after only a month.

  17. Variability of continental water storage and its relationship to extreme hydrological events in the Amazon basin

    Directory of Open Access Journals (Sweden)

    Ana Emília Diniz Silva Guedes


    Full Text Available In this paper, we evaluated the variability of total continental water storage derived from estimates of balance water using satellite data in association with hydro-meteorological data. The occurrence of extreme hydrological events such as drought and flood in the Amazon basin was related to the variability of total storage of continental water. Both estimation methods (PER- Precipitation, Evapotranspiration and Runoff and GRACE show a strong decrease in water storage during the 2005 drought and a strong recovery during the 2009 flood. The results show that there is strong relationship between the occurrences of extreme hydrological events and water storage in the Amazon. Local and deep measurements of continental water storage can provide more precise indications of the dynamics of the hydrological system and its response to climate variability.

  18. Credible occurrence probabilities for extreme geophysical events: earthquakes, volcanic eruptions, magnetic storms (United States)

    Love, Jeffrey J.


    Statistical analysis is made of rare, extreme geophysical events recorded in historical data -- counting the number of events $k$ with sizes that exceed chosen thresholds during specific durations of time $\\tau$. Under transformations that stabilize data and model-parameter variances, the most likely Poisson-event occurrence rate, $k/\\tau$, applies for frequentist inference and, also, for Bayesian inference with a Jeffreys prior that ensures posterior invariance under changes of variables. Frequentist confidence intervals and Bayesian (Jeffreys) credibility intervals are approximately the same and easy to calculate: $(1/\\tau)[(\\sqrt{k} - z/2)^{2},(\\sqrt{k} + z/2)^{2}]$, where $z$ is a parameter that specifies the width, $z=1$ ($z=2$) corresponding to $1\\sigma$, $68.3\\%$ ($2\\sigma$, $95.4\\%$). If only a few events have been observed, as is usually the case for extreme events, then these "error-bar" intervals might be considered to be relatively wide. From historical records, we estimate most likely long-term occurrence rates, 10-yr occurrence probabilities, and intervals of frequentist confidence and Bayesian credibility for large earthquakes, explosive volcanic eruptions, and magnetic storms.

  19. Variability of temperature sensitivity of extreme precipitation from a regional-to-local impact scale perspective (United States)

    Schroeer, K.; Kirchengast, G.


    Relating precipitation intensity to temperature is a popular approach to assess potential changes of extreme events in a warming climate. Potential increases in extreme rainfall induced hazards, such as flash flooding, serve as motivation. It has not been addressed whether the temperature-precipitation scaling approach is meaningful on a regional to local level, where the risk of climate and weather impact is dealt with. Substantial variability of temperature sensitivity of extreme precipitation has been found that results from differing methodological assumptions as well as from varying climatological settings of the study domains. Two aspects are consistently found: First, temperature sensitivities beyond the expected consistency with the Clausius-Clapeyron (CC) equation are a feature of short-duration, convective, sub-daily to sub-hourly high-percentile rainfall intensities at mid-latitudes. Second, exponential growth ceases or reverts at threshold temperatures that vary from region to region, as moisture supply becomes limited. Analyses of pooled data, or of single or dispersed stations over large areas make it difficult to estimate the consequences in terms of local climate risk. In this study we test the meaningfulness of the scaling approach from an impact scale perspective. Temperature sensitivities are assessed using quantile regression on hourly and sub-hourly precipitation data from 189 stations in the Austrian south-eastern Alpine region. The observed scaling rates vary substantially, but distinct regional and seasonal patterns emerge. High sensitivity exceeding CC-scaling is seen on the 10-minute scale more than on the hourly scale, in storms shorter than 2 hours duration, and in shoulder seasons, but it is not necessarily a significant feature of the extremes. To be impact relevant, change rates need to be linked to absolute rainfall amounts. We show that high scaling rates occur in lower temperature conditions and thus have smaller effect on absolute

  20. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing. (United States)

    Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M


    Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.

  1. Plant phenological responses to extreme events - A long term perspective from the Chihuahuan Desert (United States)

    Browning, D. M.; Peters, D. P.; Anderson, J.; Yao, J.


    Arid and semi-arid regions of the southwestern USA are especially sensitive to changes in temperature as well as drought frequency and intensity. Timing of periodic life cycle events (i.e., phenology) is an integrated and salient indicator of plant responses to climate change. We examine an 18-year dataset of monthly observations of plant phenology for two species of perennial grasses and a deciduous shrub (honey mesquite) distributed across three upland grassland sites and three mesquite-dominated sites on the Jornada Basin USDA-LTER in southern New Mexico, USA. Precipitation is highly variable between years and across space. Long-term phenology data collection spanned a multi-year drought (1994-2003) followed by a sequence of years with average to very high rainfall (2004 - 2008). Our objective was to compare and contrast responses to extreme dry and wet cycles in the timing and duration of first leaf and fruit production for two grasses (Bouteloua eriopoda [black grama], Sporobolus flexuosus [mesa dropseed]) with one co-existing shrub that has displaced grasses in this system (Prosopis glandulosa [honey mesquite]). Monthly field observations yield estimates of phenological status and abundance for 18 growing seasons from 1993 to 2010. All three species most commonly initiated new growth prior to onset of the monsoon rains (March or April). Timing of first growth for mesquite was less variable (standard deviation = 0.47) than for black grama (SD = 1.42) and mesa dropseed (SD = 1.22) grasses. Initial growth for grasses was delayed to September in 2006 following twelve months of deficit values for PDSI. The appearance of first fruit for grasses occurred consistently in August or September, although the number of plants producing fruit was highly variable from year to year. The largest numbers of fruit-bearing grasses were observed in late fall 2008 in response to heavy monsoon rains in 2006 and 2008. Mesquite demonstrated remarkable synchrony in the production of

  2. Changes in annual temperature and precipitation extremes in the Carpathians since AD 1961 (United States)

    Dumitrescu, Alexandru; Birsan, Marius-Victor; Magdalena Micu, Dana; Cheval, Sorin


    The Carpathians are the largest, longest, most twisted and fragmented segment of the Alpine system, stretching between latitudes 44°N and 50°N, and longitudes 17°E and 27°E. This European mountain range is a climatically transitional region between major atmospheric circulation source areas of the Atlantic Ocean, Mediterranean Sea and continental Europe. The region is a European biodiversity hotspot, containing over one third of all European plant species. It is acknowledged that the mountain regions are particularly sensitive and vulnerable to climate change than any other regions located at the same latitudes. Observational studies on the variability and trends of extreme events suggest an overall consensus towards a significant increase in the frequency, duration and intensity of warm extremes in most of these regions, including the Carpathians. 15 core indices, defined by the Expert Team on Climate Change Detection and Indices (ETCCDI), were computed in order to investigate the changes in annual temperature and precipitation extremes, based on their known relevance for the infrastructure, human health and tourism activities in these mountains. The indices were computed from gridded daily datasets of minimum and maximum temperature and precipitation at 0.1° resolution (~10 km), available online within the framework of the project CarpatClim ( for the period 1961-2010. Changes in the annual temperature and precipitation extremes in the last five decades have been identified with the Mann-Kendall non-parametric trend test, at the 90% significance level (two-tail test). The results show decreasing trends in cold-related thermal indices, especially in the number of frost days, and increasing trends in warm-related ones. No consistent trend in precipitation extremes has been found. There is a generally uniform signal of significant increasing trends in the frequency of summer days across the Carpathians, with no obvious differences between

  3. Power Outages, Extreme Events and Health: a Systematic Review of the Literature from 2011-2012


    Klinger, Chaamala; Landeg, Owen; Murray, Virginia


    Background Extreme events (e.g. flooding) threaten critical infrastructure including power supplies. Many interlinked systems in the modern world depend on a reliable power supply to function effectively. The health sector is no exception, but the impact of power outages on health is poorly understood. Greater understanding is essential so that adverse health impacts can be prevented and/or mitigated. Methods We searched Medline, CINAHL and Scopus for papers about the health impacts of power ...

  4. Indications of an extreme event deposits along the west coast of India: evidences from GPR investigations

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Gujar, A.R.; Iyer, S.D.; Srivastava, P.; Tirodkar, G.; Luis, R.A.A.

    architecture of sedimentary bed sets, to trace paleo-channels and to reconstruct fluvial dynamics are well known (Vandenberghe and van Overmeeren 1999; Neal et al. 2002; Gourry et al. 2003; Sridhar and Patidar 2005; Smith et al. 2006; Smith et al. 2009... architecture of extreme event deposits were established by various earlier studies (Neal 2002; Loveson et al. 2005; Loveson and Gujar 2010; Shukla 2012; Koster, 2012; Loveson et al. 2014). The main goals of the present study were to investigate...

  5. Modelling of extreme rainfall events in Peninsular Malaysia based on annual maximum and partial duration series (United States)

    Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz


    In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.

  6. Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan Province, China (United States)

    Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei


    Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12

  7. The characteristics of clusters of weather and extreme climate events in China during the past 50 years

    Institute of Scientific and Technical Information of China (English)

    Yang Ping; Hou Wei; Feng Guo-Lin


    The pick-up algorithm by the k-th order cluster for the closest distance is used in the fields of weather and climactic events,and the technical terms clustered index and high clustered region are defined to investigate their temporal and spatial distribution characteristics in China during the past 50 years.The results show that the contribution of extreme high-temperature event clusters changed in the period from the 1960s to the 1970s,and its strength was enhanced.On the other hand,the decreasing trend in the clusters of low-temperature extremes can be taken as a signal for warmer winters to follow in the decadal time scale.Torrential rain and heavy rainfall clusters have both been lessened in the past 50 years,and have different cluster characteristics because of their definitions.Regions with high clustered indexes are concentrated in southern China.The spatial evolution of the heavy rainfall clusters reveals that clustered heavy rainfall has played an important role in the rain-belt pattern over China during the last 50 years.

  8. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China: Urbanization and the Increase of EHEs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuchao [Institute of Island and Coastal Ecosystems, Ocean College, Zhejiang University, Zhoushan China; Ruby Leung, L. [Pacific Northwest National Laboratory, Richland Washington USA; Zhao, Naizhuo [Department of Geosciences, Texas Tech University, Lubbock Texas USA; Zhao, Chun [School of Earth and Space Sciences, University of Science and Technology of China, Hefei China; Qian, Yun [Pacific Northwest National Laboratory, Richland Washington USA; Hu, Kejia [Institute of Island and Coastal Ecosystems, Ocean College, Zhejiang University, Zhoushan China; Liu, Xiaoping [School of Geography and Planning, Sun Yat-sen University, Guangzhou China; Chen, Baode [Shanghai Typhoon Institute of China Meteorological Administration, Shanghai China


    The urban agglomeration of Yangtze River Delta (YRD) is emblematic of China’s rapid urbanization during the past decades. Based on homogenized daily maximum and minimum temperature data, the contributions of urbanization to trends of extreme temperature indices (ETIs) during summer in YRD are evaluated. Dynamically classifying the observational stations into urban and rural areas, this study presents unexplored changes in temperature extremes during the past four decades in the YRD region and quantifies the amplification of the positive trends in ETIs by the urban heat island effect. Overall, urbanization contributes to more than one third in the increase of intensity of extreme heat events in the region, which is comparable to the contribution of greenhouse gases. Compared to rural stations, more notable shifts to the right in the probability distribution of temperature and ETIs were observed in urban stations.

  9. Agent Based Simulation of Group Emotions Evolution and Strategy Intervention in Extreme Events

    Directory of Open Access Journals (Sweden)

    Bo Li


    Full Text Available Agent based simulation method has become a prominent approach in computational modeling and analysis of public emergency management in social science research. The group emotions evolution, information diffusion, and collective behavior selection make extreme incidents studies a complex system problem, which requires new methods for incidents management and strategy evaluation. This paper studies the group emotion evolution and intervention strategy effectiveness using agent based simulation method. By employing a computational experimentation methodology, we construct the group emotion evolution as a complex system and test the effects of three strategies. In addition, the events-chain model is proposed to model the accumulation influence of the temporal successive events. Each strategy is examined through three simulation experiments, including two make-up scenarios and a real case study. We show how various strategies could impact the group emotion evolution in terms of the complex emergence and emotion accumulation influence in extreme events. This paper also provides an effective method of how to use agent-based simulation for the study of complex collective behavior evolution problem in extreme incidents, emergency, and security study domains.

  10. Variations of Dissolved Iron in the Amur River During an Extreme Flood Event in 2013

    Institute of Scientific and Technical Information of China (English)

    YAN Baixing; GUAN Jiunian; Vladimir SHESTERKIN; ZHU Hui


    As a key factor limiting primary productivity in marine ecosystem,dissolved iron (DFe) export from fluvial systems has increased recently.There is particular concern about discharges of DFe during extreme flooding,when they are thought to increase considerably.An extreme flood event that caused inundation of extensive areas of Far Eastern Russia and Northeastern China occurred in the basin of the Amur River during summer and autumn 2013.During this event,water samples were collected in the middle reaches of the Amur River and the lower reaches at Khabarovsk City and analyzed for DFe concentrations and other aquatic parameters.The resuits show that the average DFe concentrations in the middle reaches of the Amur River (right bank) and at Khabarovsk were 1.11 mg/L and 0.32 mg/L,respectively,during the extreme flood in 2013.The total discharge of DFe during the flood event was 6.25 x 104 t.The high discharge of DFe during the flood reflects the elevated discharge of the river,hydrologically connected riparian wetlands,vast quantities of terrestrial runoff,and flood discharges from the Zeya and Bureya reservoirs.These results show that long-term monitoring is needed to identify and assess the impacts of DFe transport on the downstream reaches,estuarine area,and c