WorldWideScience

Sample records for extreme sea levels

  1. Understanding extreme sea levels for coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter

  2. Future extreme sea level seesaws in the tropical Pacific.

    Science.gov (United States)

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.

  3. Past and future changes in extreme sea levels and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Lawe, J.A.; Woodworth, P.L.; Knutson, T.; McDonald, R.E.; Mclnnes, K.L.; Woth, K.; Von Storch, H.; Wolf, J.; Swail, V.; Bernier, N.B.; Gulev, S.; Horsburgh, K.J.; Unnikrishnan, A.S.; Hunter, J.R.; Weisse, R.

    of Extreme Sea Level 11.3.1 An Introduction to Storms Both mid-latitude and tropical storms are associated with extremes of sea level. Storm surges are generated by low atmospheric pressure and intense winds over the ocean. The latter also cause high wave... timescales, extremes and mean-sea-level change are both major factors in determining coastal evolution including the development of coastal ecosystems. It will be seen below that, although it is difficult to determine how mean sea level has changed...

  4. Changes in extreme regional sea level under global warming

    NARCIS (Netherlands)

    Brunnabend, S. E.; Dijkstra, H. A.; Kliphuis, Michael; Bal, Henri E.; Seinstra, Frank J.; van Werkhoven, Ben; Maassen, J.; van Meersbergen, Maarten

    2017-01-01

    An important contribution to future changes in regional sea level extremes is due to the changes in intrinsic ocean variability, in particular ocean eddies. Here, we study a scenario of future dynamic sea level (DSL) extremes using a high-resolution version of the Parallel Ocean Program and

  5. Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain)

    Science.gov (United States)

    Sayol, J. M.; Marcos, M.

    2018-02-01

    This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.

  6. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis

    NARCIS (Netherlands)

    Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B.A.

    2017-01-01

    One of the main consequences of mean sea level rise (SLR) on human settlements is an increase in flood risk due to an increase in the intensity and frequency of extreme sea levels (ESL). While substantial research efforts are directed towards quantifying projections and uncertainties of future

  7. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    International Nuclear Information System (INIS)

    Brydsten, Lars; Engqvist, Anders; Naeslund, Jens-Ove; Lindborg, Tobias

    2009-01-01

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about ± 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  8. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars (Umeaa Univ., Umeaa (Sweden)); Engqvist, Anders (Royal Institute of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove; Lindborg, Tobias (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-01-15

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about +- 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  9. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.

    Science.gov (United States)

    Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A

    2015-07-01

    Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end

  10. Analysis of extreme sea level along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Sundar, D.; Blackman, D.

    the r-largest annual maximum method, the joint probability method (JPM) as well as the revised joint probability method (RJPM) was performed to estimate the return periods of extreme sea level. JPM gave an underestimate of levels for long return periods...

  11. Comparison of different statistical methods for estimation of extreme sea levels with wave set-up contribution

    Science.gov (United States)

    Kergadallan, Xavier; Bernardara, Pietro; Benoit, Michel; Andreewsky, Marc; Weiss, Jérôme

    2013-04-01

    Estimating the probability of occurrence of extreme sea levels is a central issue for the protection of the coast. Return periods of sea level with wave set-up contribution are estimated here in one site : Cherbourg in France in the English Channel. The methodology follows two steps : the first one is computation of joint probability of simultaneous wave height and still sea level, the second one is interpretation of that joint probabilities to assess a sea level for a given return period. Two different approaches were evaluated to compute joint probability of simultaneous wave height and still sea level : the first one is multivariate extreme values distributions of logistic type in which all components of the variables become large simultaneously, the second one is conditional approach for multivariate extreme values in which only one component of the variables have to be large. Two different methods were applied to estimate sea level with wave set-up contribution for a given return period : Monte-Carlo simulation in which estimation is more accurate but needs higher calculation time and classical ocean engineering design contours of type inverse-FORM in which the method is simpler and allows more complex estimation of wave setup part (wave propagation to the coast for example). We compare results from the two different approaches with the two different methods. To be able to use both Monte-Carlo simulation and design contours methods, wave setup is estimated with an simple empirical formula. We show advantages of the conditional approach compared to the multivariate extreme values approach when extreme sea-level occurs when either surge or wave height is large. We discuss the validity of the ocean engineering design contours method which is an alternative when computation of sea levels is too complex to use Monte-Carlo simulation method.

  12. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK.

    Science.gov (United States)

    Haigh, Ivan D; Wadey, Matthew P; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J; Brown, Jennifer M; Horsburgh, Kevin; Gouldby, Ben

    2016-12-06

    In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915-2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (sea level events from happening within 4-8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective.

  13. Ensemble-based evaluation of extreme water levels for the eastern Baltic Sea

    Science.gov (United States)

    Eelsalu, Maris; Soomere, Tarmo

    2016-04-01

    The risks and damages associated with coastal flooding that are naturally associated with an increase in the magnitude of extreme storm surges are one of the largest concerns of countries with extensive low-lying nearshore areas. The relevant risks are even more contrast for semi-enclosed water bodies such as the Baltic Sea where subtidal (weekly-scale) variations in the water volume of the sea substantially contribute to the water level and lead to large spreading of projections of future extreme water levels. We explore the options for using large ensembles of projections to more reliably evaluate return periods of extreme water levels. Single projections of the ensemble are constructed by means of fitting several sets of block maxima with various extreme value distributions. The ensemble is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. A hindcast by the Rossby Centre Ocean model is sampled with a resolution of 6 h and a similar hindcast by the circulation model NEMO with a resolution of 1 h. As the annual maxima of water levels in the Baltic Sea are not always uncorrelated, we employ maxima for calendar years and for stormy seasons. As the shape parameter of the Generalised Extreme Value distribution changes its sign and substantially varies in magnitude along the eastern coast of the Baltic Sea, the use of a single distribution for the entire coast is inappropriate. The ensemble involves projections based on the Generalised Extreme Value, Gumbel and Weibull distributions. The parameters of these distributions are evaluated using three different ways: maximum likelihood method and method of moments based on both biased and unbiased estimates. The total number of projections in the ensemble is 40. As some of the resulting estimates contain limited additional information, the members of pairs of projections that are highly correlated are assigned weights 0.6. A comparison of the ensemble-based projection of

  14. Sea level change

    Digital Repository Service at National Institute of Oceanography (India)

    Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; Payne, A.J.; Pfeffer, W.T.; Stammer, D.; Unnikrishnan, A.S.

    This chapter considers changes in global mean sea level, regional sea level, sea level extremes, and waves. Confidence in projections of global mean sea level rise has increased since the Fourth Assessment Report (AR4) because of the improved...

  15. Sandy berm and beach-ridge formation in relation to extreme sea-levels

    DEFF Research Database (Denmark)

    Bendixen, Mette; Clemmensen, Lars B; Kroon, Aart

    2013-01-01

    The formation of berms and their transformation into beach ridges in a micro-tidal environment is coupled to wave run-up and overtopping during extreme sea levels. A straight-forward comparison between extreme sea levels due to storm-surges and active berm levels is impossible in the semi...... prograding spit on the south-eastern Baltic shores of Zealand, Denmark. The modern, sandy beach at this location consists of a beachface with a shallow incipient berm, a mature berm, and a dune-covered beach ridge. It borders a beach-ridge plain to the west, where more than 20 N–S oriented beach ridges...... and swales are present. Measured water-level data from 1991 to 2012 and topographical observations, carried out during fair weather period and during a storm event, provided the basis for a conceptual model exhibiting berm formation and transformation into the local beach-ridge system. The character...

  16. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A. B. A.

    2017-07-01

    One of the main consequences of mean sea level rise (SLR) on human settlements is an increase in flood risk due to an increase in the intensity and frequency of extreme sea levels (ESL). While substantial research efforts are directed towards quantifying projections and uncertainties of future global and regional SLR, corresponding uncertainties in contemporary ESL have not been assessed and projections are limited. Here we quantify, for the first time at global scale, the uncertainties in present-day ESL estimates, which have by default been ignored in broad-scale sea-level rise impact assessments to date. ESL uncertainties exceed those from global SLR projections and, assuming that we meet the Paris agreement goals, the projected SLR itself by the end of the century in many regions. Both uncertainties in SLR projections and ESL estimates need to be understood and combined to fully assess potential impacts and adaptation needs.

  17. Relative Sea Level, Tidal Range, and Extreme Water Levels in Boston Harbor from 1825 to 2016

    Science.gov (United States)

    Talke, S. A.; Kemp, A.; Woodruff, J. D.

    2017-12-01

    Long time series of water-level measurements made by tide gauges provide a rich and valuable observational history of relative sea-level change, the frequency and height of extreme water levels and evolving tidal regimes. However, relatively few locations have available tide-gauge records longer than 100 years and most of these places are in northern Europe. This spatio-temporal distribution hinders efforts to understand global-, regional- and local-scale trends. Using newly-discovered archival measurements, we constructed a 200 year, instrumental record of water levels, tides, and storm surges in Boston Harbor. We detail the recovery, datum reconstruction, digitization, quality assurance, and analysis of this extended observational record. Local, decadally-averaged relative sea-level rose by 0.28 ± 0.05 m since the 1820s, with an acceleration of 0.023 ±0.009 mm/yr2. Approximately 0.13 ± 0.02 m of the observed RSL rise occurred due to ongoing glacial isostatic adjustment, and the remainder occurred due to changes in ocean mass and volume associated with the onset of modern mean sea-level rise. Change-point analysis of the new relative sea level record confirms that anthropogenic rise began in 1924-1932, which is in agreement with global mean sea level estimates from the global tide gauge network. Tide range decreased by 5.5% between 1830 and 1910, likely due in large part to anthropogenic development. Storm tides in Boston Harbor are produced primarily by extratropical storms during the November-April time frame. The three largest storm tides occurred in 1851, 1909, and 1978. Because 90% of the top 20 storm tides since 1825 occurred during a spring tide, the secular change in tide range contributes to a slight reduction in storm tide magnitudes. However, non-stationarity in storm hazard was historically driven primarily by local relative sea-level rise; a modest 0.2 m increase in relative sea level reduces the 100 year high water mark to a once-in-10 year event.

  18. Analyzing extreme sea levels for broad-scale impact and adaptation studies

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.

    2017-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels (ESL), because increasing damage due to extreme events is one of the major consequences of sea-level rise (SLR) and climate change. Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future SLR; different scenarios were developed with process-based or semi-empirical models and used for coastal impact studies at various temporal and spatial scales to guide coastal management and adaptation efforts. Uncertainties in future SLR are typically accounted for by analyzing the impacts associated with a range of scenarios and model ensembles. ESL distributions are then displaced vertically according to the SLR scenarios under the inherent assumption that we have perfect knowledge on the statistics of extremes. However, there is still a limited understanding of present-day ESL which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of storm surge water levels, and (2) statistical models used for determining present-day ESL exceedance probabilities. There is no universally accepted approach to obtain such values for broad-scale flood risk assessments and while substantial research has explored SLR uncertainties, we quantify, for the first time globally, key uncertainties in ESL estimates. We find that contemporary ESL uncertainties exceed those from SLR projections and, assuming that we meet the Paris agreement, the projected SLR itself by the end of the century. Our results highlight the necessity to further improve our understanding of uncertainties in ESL estimates through (1) continued improvement of numerical and statistical models to simulate and analyze coastal water levels and (2) exploit the rich observational database and continue data archeology to obtain longer time series and remove model bias

  19. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide

    Science.gov (United States)

    2016-04-01

    authors and do not necessarily reflect the view of the authors’ Agencies. MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR...COASTAL RISK MANAGEMENT 2-20 contingent probabilities given their dependence on non-probabilistic emissions futures, have extended the ranges of...flood risk provides confidence in the associated projection as a true minimum value for risk management purposes. The contemporary rate observed by

  20. Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa

    Directory of Open Access Journals (Sweden)

    Ron Karl Hoeke

    2015-09-01

    Full Text Available Wind-wave contributions to tropical cyclone (TC-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR, particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.

  1. Global projections of extreme sea levels in view of climate change

    Science.gov (United States)

    Vousdoukas, M. I.; Feyen, L.; Voukouvalas, E.; Mentaschi, L.; Verlaan, M.; Jevrejeva, S.; Jackson, L. P.

    2017-12-01

    Global warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the world's coasts. The present contribution aims to present global ESL projections obtained by combining dynamic simulations of all the major ESL components during the present century, considering the latest CMIP5 projections for RCP4.5 and RCP8.5. Baseline values are obtained combining global re-analyses of tides, waves, and storm surges, including the effects of tropical cyclones. The global average RSLR is projected around 20 and 24 cm by the 2050s under RCP4.5 and RCP8.5, respectively and is projected to reach 46 and 67 cm by the year 2100. The largest increases in MSL are projected along the South Pacific, Australia and West Africa, while the smaller RSLR is projected around East North America, and Europe. Contributions from waves and storm surges show a very weak increasing global trend, which becomes statistically significant only towards the end of the century and under RCP8.5. However, for areas like the East China Sea, Sea of Japan, Alaska, East Bering Sea, as well as the Southern Ocean, climate extremes could increase up to 15%. By the end of this century the 100-year event ESL along the world's coastlines will on average increase by 48 cm for RCP4.5 and 75 cm for RCP8.5. The strongest rise is projected along the Southern Ocean exceeding 1 m under RCP8.5 by the end of the century. Increase exceeding 80 cm is projected for East Asia, West North America, East South America, and the North Indian Ocean. Considering always the business as usual and the year 2100, the lowest increase in ESL100 is projected along the East North America and Europe (below 50 cm). The present findings indicate that, under both RCPs, by the year 2050 the present day 100-year event will occur every 5 years along a large part of the tropics, rendering coastal zones exposed to intermittent flood hazard.

  2. Sea level oscillations over minute timescales: a global perspective

    Science.gov (United States)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  3. Daily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machine

    Science.gov (United States)

    Imani, Moslem; Kao, Huan-Chin; Lan, Wen-Hau; Kuo, Chung-Yen

    2018-02-01

    The analysis and the prediction of sea level fluctuations are core requirements of marine meteorology and operational oceanography. Estimates of sea level with hours-to-days warning times are especially important for low-lying regions and coastal zone management. The primary purpose of this study is to examine the applicability and capability of extreme learning machine (ELM) and relevance vector machine (RVM) models for predicting sea level variations and compare their performances with powerful machine learning methods, namely, support vector machine (SVM) and radial basis function (RBF) models. The input dataset from the period of January 2004 to May 2011 used in the study was obtained from the Dongshi tide gauge station in Chiayi, Taiwan. Results showed that the ELM and RVM models outperformed the other methods. The performance of the RVM approach was superior in predicting the daily sea level time series given the minimum root mean square error of 34.73 mm and the maximum determination coefficient of 0.93 (R2) during the testing periods. Furthermore, the obtained results were in close agreement with the original tide-gauge data, which indicates that RVM approach is a promising alternative method for time series prediction and could be successfully used for daily sea level forecasts.

  4. Projecting future sea level

    Science.gov (United States)

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    global sea level rises in examining possible impacts at California coastal and estuarine stations. Two climate models and three scenarios considered in this scenarios study provide a set of possible future weather and short-period climate fluctuations, and a range of potential long-term sea level rise values. A range of mean sea level rise was considered in combination with weather and El Niño fluctuations extracted from two global climate models and two GHG emissions scenarios. The mean sea level rise values, determined from a survey of several climate models, range from approximately 10–80 cm (3.9–31 in) between 2000 and 2100. The middle to higher end of this range would substantially exceed the historical rate of sea level rise of 15–20 cm (5.9–7.9 in)per century observed at San Francisco and San Diego during the last 100 years. Gradual sea level rise progressively worsens the impacts of high tides and the surge and waves associated with storms. The potential for impacts of future sea level rise was assessed from the occurrence of hourly sea level extremes. The occurrence of extreme events follows a sharply escalating pattern as the magnitude of future sea level rise increases. The confluence of Low barometric pressures from storms and the presence large waves at the same time substantially increases the likelihood of high, damaging sea levels along the California coast. Similarly, astronomical tides and disturbances in sea level that are caused by weather and climate fluctuations are x transmitted into the San Francisco Bay and Delta, and on into the lower reaches of the Sacramento River. In addition to elevating Bay and Delta sea levels directly through inverse barometer and wind effects, storms may generate heavy precipitation and high fresh water runoff and cause floods in the Sacramento/San Joaquin Delta, increasing the potential for inundation of levees and other structures. There may also be increased risk of levee failure due to the hydraulics and

  5. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    Directory of Open Access Journals (Sweden)

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  6. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Knudsen, Per; Broge, Niels

    2016-01-01

    protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from......We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology,and geotechnical soil properties are combined with flood...... research advances and projections for the future are updated....

  7. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    Science.gov (United States)

    Sorensen, Carlo; Knudsen, Per; Broge, Niels; Molgaard, Mads; Andersen, Ole

    2016-04-01

    We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology, and geotechnical soil properties are combined with flood protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from future storm surges and other geo- and hydro-parameters need to be considered in order to provide for the best protection and mitigation efforts, however. Based on the results we present and discuss a simple conceptual model setup that can e.g. be used for 'translation' of regional sea level rise evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders -often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level research advances and projections for the future are updated.

  8. Sea-Level Allowances along the World Coastlines

    Science.gov (United States)

    Vandewal, R.; Tsitsikas, C.; Reerink, T.; Slangen, A.; de Winter, R.; Muis, S.; Hunter, J. R.

    2017-12-01

    Sea level changes as a result of climate change. For projections we take ocean mass changes and volume changes into account. Including gravitational and rotational fingerprints this provide regional sea level changes. Hence we can calculate sea-level rise patterns based on CMIP5 projections. In order to take the variability around the mean state, which follows from the climate models, into account we use the concept of allowances. The allowance indicates the height a coastal structure needs to be increased to maintain the likelihood of sea-level extremes. Here we use a global reanalysis of storm surges and extreme sea levels based on a global hydrodynamic model in order to calculate allowances. It is shown that the model compares in most regions favourably with tide gauge records from the GESLA data set. Combining the CMIP5 projections and the global hydrodynamical model we calculate sea-level allowances along the global coastlines and expand the number of points with a factor 50 relative to tide gauge based results. Results show that allowances increase gradually along continental margins with largest values near the equator. In general values are lower at midlatitudes both in Northern and Southern Hemisphere. Increased risk for extremes are typically 103-104 for the majority of the coastline under the RCP8.5 scenario at the end of the century. Finally we will show preliminary results of the effect of changing wave heights based on the coordinated ocean wave project.

  9. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  10. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses.

    Science.gov (United States)

    Guo, Zixiao; Li, Xinnian; He, Ziwen; Yang, Yuchen; Wang, Wenqing; Zhong, Cairong; Greenberg, Anthony J; Wu, Chung-I; Duke, Norman C; Shi, Suhua

    2018-04-01

    The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance. To assess the impact of historical sea level changes, we conducted an extensive genetic diversity survey on the Indo-Malayan coast, a hotspot with a large global mangrove distribution. A survey of 26 populations in six species reveals extremely low genome-wide nucleotide diversity and hence very small effective population sizes (N e ) in all populations. Whole-genome sequencing of three mangrove species further shows the decline in N e to be strongly associated with the speed of past changes in sea level. We also used a recent series of flooding events in Yalong Bay, southern China, to test the robustness of mangroves to sea level changes in relation to their genetic diversity. The events resulted in the death of half of the mangrove trees in this area. Significantly, less genetically diverse mangrove species suffered much greater destruction. The dieback was accompanied by a drastic reduction in local invertebrate biodiversity. We thus predict that tropical coastal communities will be seriously endangered as the global sea level rises. Well-planned coastal development near mangrove forests will be essential to avert this crisis. © 2017 John Wiley & Sons Ltd.

  11. Modelling sea level rise impacts on storm surges along US coasts

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; Strauss, Benjamin H; Zervas, Chris E

    2012-01-01

    Sound policies for protecting coastal communities and assets require good information about vulnerability to flooding. Here, we investigate the influence of sea level rise on expected storm surge-driven water levels and their frequencies along the contiguous United States. We use model output for global temperature changes, a semi-empirical model of global sea level rise, and long-term records from 55 nationally distributed tidal gauges to develop sea level rise projections at each gauge location. We employ more detailed records over the period 1979–2008 from the same gauges to elicit historic patterns of extreme high water events, and combine these statistics with anticipated relative sea level rise to project changing local extremes through 2050. We find that substantial changes in the frequency of what are now considered extreme water levels may occur even at locations with relatively slow local sea level rise, when the difference in height between presently common and rare water levels is small. We estimate that, by mid-century, some locations may experience high water levels annually that would qualify today as ‘century’ (i.e., having a chance of occurrence of 1% annually) extremes. Today’s century levels become ‘decade’ (having a chance of 10% annually) or more frequent events at about a third of the study gauges, and the majority of locations see substantially higher frequency of previously rare storm-driven water heights in the future. These results add support to the need for policy approaches that consider the non-stationarity of extreme events when evaluating risks of adverse climate impacts. (letter)

  12. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  13. Estimating sea-level allowances for Atlantic Canada under conditions of uncertain sea-level rise

    Directory of Open Access Journals (Sweden)

    B. Greenan

    2015-03-01

    Full Text Available This paper documents the methodology of computing sea-level rise allowances for Atlantic Canada in the 21st century under conditions of uncertain sea-level rise. The sea-level rise allowances are defined as the amount by which an asset needs to be raised in order to maintain the same likelihood of future flooding events as that site has experienced in the recent past. The allowances are determined by combination of the statistics of present tides and storm surges (storm tides and the regional projections of sea-level rise and associated uncertainty. Tide-gauge data for nine sites from the Canadian Atlantic coast are used to derive the scale parameters of present sea-level extremes using the Gumbel distribution function. The allowances in the 21st century, with respect to the year 1990, were computed for the Intergovernmental Panel on Climate Change (IPCC A1FI emission scenario. For Atlantic Canada, the allowances are regionally variable and, for the period 1990–2050, range between –13 and 38 cm while, for the period 1990–2100, they range between 7 and 108 cm. The negative allowances in the northern Gulf of St. Lawrence region are caused by land uplift due to glacial isostatic adjustment (GIA.

  14. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm....../y for the region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  15. The contribution to future flood risk in the Severn Estuary from extreme sea level rise due to ice sheet mass loss

    Science.gov (United States)

    Quinn, N.; Bates, P. D.; Siddall, M.

    2013-12-01

    The rate at which sea levels will rise in the coming century is of great interest to decision makers tasked with developing mitigation policies to cope with the risk of coastal inundation. Accurate estimates of future sea levels are vital in the provision of effective policy. Recent reports from UK Climate Impacts Programme (UKCIP) suggest that mean sea levels in the UK may rise by as much as 80 cm by 2100; however, a great deal of uncertainty surrounds model predictions, particularly the contribution from ice sheets responding to climatic warming. For this reason, the application of semi-empirical modelling approaches for sea level rise predictions has increased of late, the results from which suggest that the rate of sea level rise may be greater than previously thought, exceeding 1 m by 2100. Furthermore, studies in the Red Sea indicate that rapid sea level rise beyond 1m per century has occurred in the past. In light of such research, the latest UKCIP assessment has included a H++ scenario for sea level rise in the UK of up to 1.9 m which is defined as improbable but, crucially, physically plausible. The significance of such low-probability sea level rise scenarios upon the estimation of future flood risk is assessed using the Somerset levels (UK) as a case study. A simple asymmetric probability distribution is constructed to include sea level rise scenarios of up to 1.9 m by 2100 which are added to a current 1:200 year event water level to force a two-dimensional hydrodynamic model of coastal inundation. From the resulting ensemble predictions an estimation of risk by 2100 is established. The results indicate that although the likelihood of extreme sea level rise due to rapid ice sheet mass loss is low, the resulting hazard can be large, resulting in a significant (27%) increase to the projected annual risk. Furthermore, current defence construction guidelines for the coming century in the UK are expected to account for 95% of the sea level rise distribution

  16. Sea-level rise risks to coastal cities

    Science.gov (United States)

    Nicholls, Robert J.

    2017-04-01

    Understanding the consequence of sea-level rise for coastal cities has long lead times and huge political implications. Civilisation has emerged and developed during a period of several thousand years during which in geological terms sea level has been unusually stable. We have now moved out of this period and the challenge will be to develop a long-term proactive assessment approach to manage this challenge. In 2005 there were 136 coastal cities with a population exceeding one million people and a collective population of 400 million people. All these coastal cities are threatened by flooding from the sea to varying degrees and these risks are increasing due to growing exposure (people and assets), rising sea levels due to climate change, and in some cities, significant coastal subsidence due to human agency (drainage and groundwater withdrawals from susceptible soils). In these cities we wish to avoid major flood events, with associated damage and potentially deaths and ultimately decline of the cities. Flood risks grow with sea-level rise as it raises extreme sea levels. As sea levels continue to rise, protection will have to be progressively upgraded. Even with this, the magnitude of losses when flood events do occur would increase as coastal cities expand, and water depths and hence unit damage increase with sea-level rise/subsidence. This makes it critical to also prepare for larger coastal flood disasters than we experience today and raises questions on the limits to adaptation. There is not an extensive literature or significant empirical information on the limits to adaptation in coastal cities. These limits are not predictable in a formal sense - while the rise in mean sea level raises the likelihood of a catastrophic flood, extreme events are what cause damage and trigger a response, be it abandonment, a defence upgrade or something else. There are several types of potential limits that could be categorised into three broad types: • Physical

  17. Numerical Modelling of Extreme Natural Hazards in the Russian Seas

    Science.gov (United States)

    Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav; Surkova, Galina

    2017-04-01

    Storm surges and extreme waves are severe natural sea hazards. Due to the almost complete lack of natural observations of these phenomena in the Russian seas (Caspian, Black, Azov, Baltic, White, Barents, Okhotsk, Kara), especially about their formation, development and destruction, they have been studied using numerical simulation. To calculate the parameters of wind waves for the seas listed above, except the Barents Sea, the spectral model SWAN was applied. For the Barents and Kara seas we used WAVEWATCH III model. Formation and development of storm surges were studied using ADCIRC model. The input data for models - bottom topography, wind, atmospheric pressure and ice cover. In modeling of surges in the White and Barents seas tidal level fluctuations were used. They have been calculated from 16 harmonic constant obtained from global atlas tides FES2004. Wind, atmospheric pressure and ice cover was taken from the NCEP/NCAR reanalysis for the period from 1948 to 2010, and NCEP/CFSR reanalysis for the period from 1979 to 2015. In modeling we used both regular and unstructured grid. The wave climate of the Caspian, Black, Azov, Baltic and White seas was obtained. Also the extreme wave height possible once in 100 years has been calculated. The statistics of storm surges for the White, Barents and Azov Seas were evaluated. The contribution of wind and atmospheric pressure in the formation of surges was estimated. The technique of climatic forecast frequency of storm synoptic situations was developed and applied for every sea. The research was carried out with financial support of the RFBR (grant 16-08-00829).

  18. Recent Arctic sea level variations from satellites

    OpenAIRE

    Ole Baltazar Andersen; Gaia ePiccioni

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher...

  19. Upper Limit for Regional Sea Level Projections

    Science.gov (United States)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  20. Doubling of coastal flooding frequency within decades due to sea-level rise

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.

    2017-01-01

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  1. Doubling of coastal flooding frequency within decades due to sea-level rise.

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L; Fletcher, Charles H; Frazer, Neil; Erikson, Li; Storlazzi, Curt D

    2017-05-18

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  2. Extreme storms, sea level rise, and coastal change: implications for infrastructure reliability in the Gulf of Mexico

    Science.gov (United States)

    Anarde, K.; Kameshwar, S.; Irza, N.; Lorenzo-Trueba, J.; Nittrouer, J. A.; Padgett, J.; Bedient, P. B.

    2016-12-01

    Predicting coastal infrastructure reliability during hurricane events is important for risk-based design and disaster planning, such as delineating viable emergency response routes. Previous research has focused on either infrastructure vulnerability to coastal flooding or the impact of changing sea level and landforms on surge dynamics. Here we investigate the combined impact of sea level, morphology, and coastal flooding on the reliability of highway bridges - the only access points between barrier islands and mainland communities - during future extreme storms. We forward model coastal flooding for static projections of geomorphic change using ADCIRC+SWAN. First-order parameters that are adjusted include sea level and elevation. These are varied for each storm simulation to evaluate relative impact on the reliability of bridges surrounding Freeport, TX. Simulated storms include both synthetic and historical events, which are classified by intensity using the storm's integrated kinetic energy, a metric for surge generation potential. Reliability is estimated through probability of failure - given wave and surge loads - and time inundated. Findings include that: 1) bridge reliability scales inversely with surge height, and 2) sea level rise reduces bridge reliability due to a monotonic increase in surge height. The impact of a shifting landscape on bridge reliability is more complex: barrier island rollback can increase or decrease inundation times for storms of different intensity due to changes in wind-setup and back-barrier bay interactions. Initial storm surge readily inundates the coastal landscape during large intensity storms, however the draining of inland bays following storm passage is significantly impeded by the barrier. From a coastal engineering standpoint, we determine that to protect critical infrastructure, efforts now implemented that nourish low-lying barriers may be enhanced by also armoring back-bay coastlines and elevating bridge approach

  3. Sea level change: lessons from the geologic record

    Science.gov (United States)

    ,

    1995-01-01

    Rising sea level is potentially one of the most serious impacts of climatic change. Even a small sea level rise would have serious economic consequences because it would cause extensive damage to the world's coastal regions. Sea level can rise in the future because the ocean surface can expand due to warming and because polar ice sheets and mountain glaciers can melt, increasing the ocean's volume of water. Today, ice caps on Antarctica and Greenland contain 91 and 8 percent of the world's ice, respectively. The world's mountain glaciers together contain only about 1 percent. Melting all this ice would raise sea level about 80 meters. Although this extreme scenario is not expected, geologists know that sea level can rise and fall rapidly due to changing volume of ice on continents. For example, during the last ice age, about 18,000 years ago, continental ice sheets contained more than double the modem volume of ice. As ice sheets melted, sea level rose 2 to 3 meters per century, and possibly faster during certain times. During periods in which global climate was very warm, polar ice was reduced and sea level was higher than today.

  4. XXI century projections of wind-wave conditions and sea-level rise in the Black sea

    Science.gov (United States)

    Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.

    2012-04-01

    Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which

  5. Temporal energy partitions of Florida extreme sea level events as a function of Atlantic multidecadal oscillation

    Directory of Open Access Journals (Sweden)

    J. Park

    2010-06-01

    Full Text Available An energy-conservative metric based on the discrete wavelet transform is applied to assess the relative energy distribution of extreme sea level events across different temporal scales. The metric is applied to coastal events at Key West and Pensacola Florida as a function of two Atlantic Multidecadal Oscillation (AMO regimes. Under AMO warm conditions there is a small but significant redistribution of event energy from nearly static into more dynamic (shorter duration timescales at Key West, while at Pensacola the AMO-dependent changes in temporal event behaviour are less pronounced. Extreme events with increased temporal dynamics might be consistent with an increase in total energy of event forcings which may be a reflection of more energetic storm events during AMO warm phases. As dynamical models mature to the point of providing regional climate index predictability, coastal planners may be able to consider such temporal change metrics in planning scenarios.

  6. Tropical cyclones in the Bay of Bengal and extreme sea-level projections along the east coast of India in a future climate scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; RameshKumar, M.R.; Sindhu, B.

    (2071– 2100), A2. The analysis showed an increase in the frequency of cyclones in the Bay of Bengal during the late monsoon (August and September) in the A2 scenario compared to the baseline scenario. Extreme sea-level projections along the east coast...

  7. Total Water Level Fun Facts: The Relative Contribution of Extreme Total Water Levels Along the US West Coast

    Science.gov (United States)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.

    2016-02-01

    In the fall of 2014, parts of the US West Coast endured some of the highest monthly mean sea level anomalies on record, likely due to the presence of "the blob" (Bond et al., 2015), an anomalously warm water mass in the NE Pacific. However, despite the significantly above average water levels, the coastline experienced only marginal coastal flooding and erosion hazards because the ensuing winter lacked significant storms, underscoring the fact that extreme total water levels (TWLs) are compound events. To better understand how several individual processes combine to cause devastating coastal hazards, we investigate the relative contribution that each component (waves, tides, and non-tidal residuals) has on extreme TWLs on sandy beaches. Water level records along the US West Coast are decomposed into mean sea level, astronomical tide, and non-tidal residuals (NTRs). The NTR is further split into an intra-annual seasonal signal, monthly mean sea level anomalies (inter-annual variability), and meteorological surge. TWL time series are then generated by combining water levels with wave runup, computed using wave data and beach morphology. We use this data-driven, structural function approach to investigate the spatial variability of the relative contribution of each component to the maximum TWL event on record. We also use a probabilistic, full simulation TWL model (Serafin and Ruggiero, 2014) to generate multiple, synthetic TWL records, to explore the relative contribution of each component to extreme TWL return levels. We assess the sensitivity to local beach morphology by computing TWLs for a range of observed beach slopes. Extreme TWLs are higher in Oregon and Washington than in California. Wave runup typically comprises > 50% of the TWL signal, while NTRs often compose < 5%, illustrating the importance wave climate has on the potential for extreme TWLs. While waves are typically larger in the North, California experiences greater contributions to extreme TWLs from

  8. Projections of extreme water level events for atolls in the western Tropical Pacific

    Science.gov (United States)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-12-01

    Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.

  9. Two centuries of extreme events over the Baltic Sea and North Sea regions

    Science.gov (United States)

    Stendel, Martin; den Besselaar Else, van; Abdel, Hannachi; Jaak, Jaagus; Elizabeth, Kent; Christiana, Lefebvre; Gudrun, Rosenhagen; Anna, Rutgersson; Frederik, Schenk; der Schrier Gerard, van; Tim, Woolings

    2017-04-01

    Two centuries of extreme events over the Baltic Sea and North Sea regions In the framework of the BACC 2 (for the Baltic Sea) and NOSCCA projects (for the North Sea region), studies of past and present variability and changes in atmospheric variables within the North Sea region over the instrumental period (roughly the past 200 years) have been investigated. Findings on trends in temperature and precipitation have already been presented. Here we focus on data homogeneity issues and examine how reliable reanalyses are in this context. Unlike most other regions in the world, there is a wealth of old observations available for the Baltic and North Sea regions, most of it in handwritten form in meteorological journals and other publications. These datasets need to be carefully digitised and homogenized. For this, a thorough quality control must be applied; otherwise the digitised datasets may prove useless or even counterproductive. We present evidence that this step cannot be conducted without human interference and thus cannot be fully automated. Furthermore, inhomogeneities due to e.g. instrumentation and station relocations need to be addressed. A wealth of reanalysis products is available, which can help detect such inhomogeneities in observed time series, but at the same time are prone to biases and/or spurious trends themselves e.g. introduced by changes in the availability and quality of the underlying assimilated data. It therefore in general remains unclear in how far we can simulate the pre-satellite era with respect to homogeneity with reanalyses based only on parts of the observing system. Extreme events and changes in extreme situations are more important and of greater (societal) significance than changes in mean climate. However, changes in extreme weather events are difficult to assess not only because they are, per definition, rare events, but also due to the homogeneity issues outlined above. Taking these into account, we present evidence for changes

  10. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore

    Science.gov (United States)

    Cannaby, Heather; Palmer, Matthew D.; Howard, Tom; Bricheno, Lucy; Calvert, Daley; Krijnen, Justin; Wood, Richard; Tinker, Jonathan; Bunney, Chris; Harle, James; Saulter, Andrew; O'Neill, Clare; Bellingham, Clare; Lowe, Jason

    2016-05-01

    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time-mean sea level were evaluated using the process-based climate model data and methods presented in the United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Regional surge and wave solutions extending from 1980 to 2100 were generated using ˜ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( ˜ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980 to 2010, enabling a quantitative assessment of model skill. Simulated historical sea-surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data, respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the Representative Concentration Pathway (RCP)4.5 (8.5) scenarios. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically

  11. Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea** The study was supported by the Estonian Ministry of Education and Research (IUT20-11 and Grant ETF9134 and by the EU Regional Development Foundation, Environmental Conservation and Environmental Technology R&D Programme Project No. 3.2.0801.12-0044.

    Directory of Open Access Journals (Sweden)

    Piia Post

    2014-01-01

    Full Text Available The basic parameters of extra-tropical cyclones in the northern Baltic are examined in relation to extreme sea level events at Estonian coastal stations between 1948 and 2010. The hypothesis that extreme sea level events might be caused not by one intense extra-tropical cyclone, as suggested by earlier researchers, but by the temporal clustering of cyclones in a certain trajectory corridor, is tested. More detailed analysis of atmospheric conditions at the time of the two most extreme cases support this concept: the sequence of 5 cyclones building up the extreme sea level within about 10 days was very similar in structure and periodicity.

  12. Characterizing uncertain sea-level rise projections to support investment decisions.

    Science.gov (United States)

    Sriver, Ryan L; Lempert, Robert J; Wikman-Svahn, Per; Keller, Klaus

    2018-01-01

    Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments

  13. Projecting Future Sea Level Rise for Water Resources Planning in California

    Science.gov (United States)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise

  14. Sea level trends in South East Asian Seas (SEAS)

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2014-10-01

    Southeast Asian Seas (SEAS) span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian Oceans. The SEAS regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost two decades. Initial comparisons of global sea level reconstructions find that 17 year sea level trends over the past 60 years exhibit good agreement in areas and at times of strong signal to noise associated decadal variability forced by low frequency variations in Pacific trade winds. The SEAS region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer time scales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past twenty years, the rate of sea level rise is greatly reduced in the SEAS region. As a result of the influence of the PDO, the SEAS regional sea level trends during 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the SEAS will continue to be affected by GMSL rise occurring now and in the future.

  15. Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe

    Science.gov (United States)

    Volosciuk, Claudia; Maraun, Douglas; Semenov, Vladimir A.; Tilinina, Natalia; Gulev, Sergey K.; Latif, Mojib

    2016-08-01

    The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970-1999 and 2000-2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000-2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970-1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.

  16. Sea level report

    International Nuclear Information System (INIS)

    Schwartz, M.L.

    1979-01-01

    Study of Cenozoic Era sea levels shows a continual lowering of sea level through the Tertiary Period. This overall drop in sea level accompanied the Pleistocene Epoch glacio-eustatic fluctuations. The considerable change of Pleistocene Epoch sea level is most directly attributable to the glacio-eustatic factor, with a time span of 10 5 years and an amplitude or range of approximately 200 m. The lowering of sea level since the end of the Cretaceous Period is attributed to subsidence and mid-ocean ridges. The maximum rate for sea level change is 4 cm/y. At present, mean sea level is rising at about 3 to 4 mm/y. Glacio-eustacy and tectono-eustacy are the parameters for predicting sea level changes in the next 1 my. Glacio-eustatic sea level changes may be projected on the basis of the Milankovitch Theory. Predictions about tectono-eustatic sea level changes, however, involve predictions about future tectonic activity and are therefore somewhat difficult to make. Coastal erosion and sedimentation are affected by changes in sea level. Erosion rates for soft sediments may be as much as 50 m/y. The maximum sedimentation accumulation rate is 20 m/100 y

  17. Sea level trends in Southeast Asian seas

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2015-05-01

    Southeast Asian seas span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian oceans. The Southeast Asian sea regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost 2 decades. Initial comparisons of global sea level reconstructions find that 17-year sea level trends over the past 60 years exhibit good agreement with decadal variability associated with the Pacific Decadal Oscillation and related fluctuations of trade winds in the region. The Southeast Asian sea region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer timescales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past 20 years, the rate of sea level rise is greatly reduced in the Southeast Asian sea region. As a result of the influence of the PDO, the Southeast Asian sea regional sea level trends during the 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the Southeast Asian seas will continue to be affected by GMSL rise occurring now and in the future.

  18. Characterizing uncertain sea-level rise projections to support investment decisions

    Science.gov (United States)

    Lempert, Robert J.; Wikman-Svahn, Per; Keller, Klaus

    2018-01-01

    Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments

  19. Characterizing uncertain sea-level rise projections to support investment decisions.

    Directory of Open Access Journals (Sweden)

    Ryan L Sriver

    Full Text Available Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1 Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2 Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making

  20. Generic Hurricane Extreme Seas State

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Skourup, Jesper; Frigaard, Peter

    2012-01-01

    Extreme sea states, which the IEC 61400-3 (2008) standard requires for the ultimate limit state (ULS) analysis of offshore wind turbines are derived to establish the design basis for the conceptual layout of deep water floating offshore wind turbine foundations in hurricane affected areas....... Especially in the initial phase of floating foundation concept development, site specific metocean data are usually not available. As the areas of interest are furthermore not covered by any design standard, in terms of design sea states, generic and in engineering terms applicable environmental background...... data is required for a type specific conceptual design. ULS conditions for different return periods are developed, which can subsequently be applied in siteindependent analysis and conceptual design. Recordings provided by National Oceanic and Atmospheric Administration (NOAA), of hurricanes along...

  1. Adapting to Rising Sea Level: A Florida Perspective

    Science.gov (United States)

    Parkinson, Randall W.

    2009-07-01

    Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.

  2. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    Science.gov (United States)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  3. Return period estimates of extreme sea level along the east coast of India from numerical simulations

    Digital Repository Service at National Institute of Oceanography (India)

    Sindhu, B.; Unnikrishnan, A.S.

    . The simulated total sea level and the surge component were obtained for each event. The simulated peak levels showed good agreement with the observations available at few stations. The annual maxima of sea levels, extracted from the simulations, were fitted...

  4. Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States.

    Energy Technology Data Exchange (ETDEWEB)

    Eckert-Gallup, Aubrey Celia; Sallaberry, Cedric Jean-Marie; Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-09-01

    Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours. In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters

  5. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards

    Science.gov (United States)

    Wolff, Claudia; Vafeidis, Athanasios T.; Muis, Sanne; Lincke, Daniel; Satta, Alessio; Lionello, Piero; Jimenez, Jose A.; Conte, Dario; Hinkel, Jochen

    2018-01-01

    We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial assessment units. Using information on coastal morphology, human settlements and administrative boundaries, we have divided the Mediterranean coast into 13 900 coastal assessment units. To these units we have spatially attributed 160 parameters on the characteristics of the natural and socio-economic subsystems, such as extreme sea levels, vertical land movement and number of people exposed to sea-level rise and extreme sea levels. The database contains information on current conditions and on plausible future changes that are essential drivers for future impacts, such as sea-level rise rates and socio-economic development. Besides its intended use in risk and impact assessment, we anticipate that the Mediterranean Coastal Database (MCD) constitutes a useful source of information for a wide range of coastal applications. PMID:29583140

  6. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards

    Science.gov (United States)

    Wolff, Claudia; Vafeidis, Athanasios T.; Muis, Sanne; Lincke, Daniel; Satta, Alessio; Lionello, Piero; Jimenez, Jose A.; Conte, Dario; Hinkel, Jochen

    2018-03-01

    We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial assessment units. Using information on coastal morphology, human settlements and administrative boundaries, we have divided the Mediterranean coast into 13 900 coastal assessment units. To these units we have spatially attributed 160 parameters on the characteristics of the natural and socio-economic subsystems, such as extreme sea levels, vertical land movement and number of people exposed to sea-level rise and extreme sea levels. The database contains information on current conditions and on plausible future changes that are essential drivers for future impacts, such as sea-level rise rates and socio-economic development. Besides its intended use in risk and impact assessment, we anticipate that the Mediterranean Coastal Database (MCD) constitutes a useful source of information for a wide range of coastal applications.

  7. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards.

    Science.gov (United States)

    Wolff, Claudia; Vafeidis, Athanasios T; Muis, Sanne; Lincke, Daniel; Satta, Alessio; Lionello, Piero; Jimenez, Jose A; Conte, Dario; Hinkel, Jochen

    2018-03-27

    We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial assessment units. Using information on coastal morphology, human settlements and administrative boundaries, we have divided the Mediterranean coast into 13 900 coastal assessment units. To these units we have spatially attributed 160 parameters on the characteristics of the natural and socio-economic subsystems, such as extreme sea levels, vertical land movement and number of people exposed to sea-level rise and extreme sea levels. The database contains information on current conditions and on plausible future changes that are essential drivers for future impacts, such as sea-level rise rates and socio-economic development. Besides its intended use in risk and impact assessment, we anticipate that the Mediterranean Coastal Database (MCD) constitutes a useful source of information for a wide range of coastal applications.

  8. Changes in extreme regional sea surface height due to an abrupt weakening of the Atlantic meridional overturning circulation

    NARCIS (Netherlands)

    Brunnabend, S.-E.; Dijkstra, H. A.; Kliphuis, M. A.; van Werkhoven, B.J.C.; Bal, H. E.; Seinstra, F.; Maassen, J.; van Meersbergen, M.

    2014-01-01

    As an extreme scenario of dynamical sea level changes, regional sea surface height (SSH) changes that occur in the North Atlantic due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated. Two versions of the same ocean-only model are used to study the effect

  9. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  10. Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.

    2017-12-01

    In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  11. Late Holocene higher sea level and its radiocarbon dates in Okierabu-jima, Ryukyus

    International Nuclear Information System (INIS)

    Koba, Motoharu; Omoto, Kunio; Takahashi, Tatsuo.

    1980-01-01

    Okierabu-jima of the Ryukyu Islands, which is a poly-terraced Pleistocene raised coral reef island, doesn't have a Holocene raised coral reef, but coastal erosional features showing higher sea levels in Holocene. The authors obtained some data indicating the period of one of the Holocene higher sea levels. All radiocarbon dates concerning Okierabu-jima's Holocene sea-level changes are plotted on the date-height coordinates. The paleo sea level between 5000 and 2000 y. B. P. lies above the broken line drawn from 6 m below to 2.18 m above the present sea level. The period of the highest sea level in Holocene seems to be about 3000 to 2000 y. B. P. in this island. Its height is presumably 2.4 m a. s. l. derived on an average from heights of stacks and coastal benches in the almost all coasts of the island (Koba, 1974). Beach rocks were already formed at the landward extremity of the reef flat corresponding to the almost present sea level about 1300 y. B. P. (author)

  12. The study of the hydrological regime extreme effects of the Caspian Sea during the XX-XXI centuries

    Science.gov (United States)

    Yaitskaya, Natalia

    2016-04-01

    The Caspian Sea - the unique largest enclosed inland body of water on Earth. Significant periodic sea level fluctuations are a typical feature of the sea. In the XIX-XX centuries a number of comprehensive studies of the Caspian Sea was carried out. The results are published in the papers, monographs and climatic atlases. But a number of fundamental questions about the features of the hydrological regime of the Caspian Sea is still open: 1. How does the water circulation change during the level variations? 2. What is the effect of heterogeneity of evaporation from the water surface on the formation of the flow field in the conditions of long-term level changes? 3. How does the water salinity regime change depending on the sea level position, water circulation, river flow and different climatic influences? 4. What is the effect of extreme events (multi-hazards) (ice, storms, destruction of the coasts) on coastal infrastructure? In 2016, the project aims to study hydrological regime extreme effects of the Caspian Sea was supported by the Russian Foundation for Basic Research. Within this project all of the above problems will be solved. Geographic information system "Caspian Sea" for the storage and data processing, including a database of primary oceanographic information for the period of instrumental observations (1897-2013), cartographic database (1921-2011) and tools for multidimensional analysis of spatio-temporal information is the basis of the study. The scheme of interconnected hydrodynamic models (Caspian Sea MODel - Ocean Model - Wind wave model) was developed. The important factors are taken into account in the structure of the models: long-term and seasonal dynamics of the sea waves parameters, new long-term values of evaporation from the shallow waters areas of the Caspian Sea, water circulation. Schemes of general seasonal circulation of the Caspian Sea and the Northern Caspian at different positions of the sea level in XX-XXI centuries using

  13. Extreme total solar irradiance due to cloud enhancement at sea level of the NE Atlantic coast of Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Piacentini, Ruben D. [Instituto de Fisica Rosario (CONICET-Universidad Nacional de Rosario), 27 de Febrero 210bis, 2000 Rosario (Argentina); Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Pellegrini 250, 2000 Rosario (Argentina); Salum, Graciela M. [Instituto de Fisica Rosario (CONICET-Universidad Nacional de Rosario), 27 de Febrero 210bis, 2000 Rosario (Argentina); Facultad Regional Concepcion del Uruguay, Universidad Tecnologica Nacional, Concepcion del Uruguay (Argentina); Fraidenraich, Naum; Tiba, Chigueru [Grupo de Pesquisas em Fontes Alternativas de Energia, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, 1000 - 50.740-540, Recife, PE (Brazil)

    2011-01-15

    Extraterrestrial total solar irradiance, usually called Solar Constant, is attenuated by the atmosphere in different proportions, depending mainly on solar zenith angle and altitude of the measurement point. In this work, it is presented very high and extreme horizontal plane measurements of global solar irradiance that in some days overpassed the Solar Constant corrected by the actual Sun-Earth distance (CSC). They were obtained at sea level of the intertropical Atlantic coast, in the city of Recife, Brazil, in the period February 2008-January 2009. Extreme total solar irradiance values larger than CSC were measured during 3.4% of the days of the total registered period. This percentage increases to 7.4% for global solar irradiance within 95.1-100% of the CSC and to 15.3% within 90.1-95% of the CSC. The largest extreme total solar irradiance value, 1477 {+-} 30 W/m{sup 2}, was registered the 28th of March 2008 at 11:34 local time (UT - 3h). It overpassed by 7.9% the CSC value for this day (1369.4 W/m{sup 2}) and by 42.3% the estimated value of the clear sky Iqbal C radiation model (1037.7 W/m{sup 2}). The observation of extreme values should be taken into account in the study of solar radiation effects related to materials exposed to the outside, UV index and biological effects, among others. Also, the detailed knowledge of this interesting effect may contribute significantly to clarify physical aspects about the interaction of global solar radiation with the ecosystem and climate change. (author)

  14. Sea level hazards: Altimetric monitoring of tsunamis and sea level rise

    Science.gov (United States)

    Hamlington, Benjamin Dillon

    Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.

  15. Sea Level Forecasts Aggregated from Established Operational Systems

    Directory of Open Access Journals (Sweden)

    Andy Taylor

    2017-08-01

    Full Text Available A system for providing routine seven-day forecasts of sea level observable at tide gauge locations is described and evaluated. Forecast time series are aggregated from well-established operational systems of the Australian Bureau of Meteorology; although following some adjustments these systems are only quasi-complimentary. Target applications are routine coastal decision processes under non-extreme conditions. The configuration aims to be relatively robust to operational realities such as version upgrades, data gaps and metadata ambiguities. Forecast skill is evaluated against hourly tide gauge observations. Characteristics of the bias correction term are demonstrated to be primarily static in time, with time varying signals showing regional coherence. This simple approach to exploiting existing complex systems can offer valuable levels of skill at a range of Australian locations. The prospect of interpolation between observation sites and exploitation of lagged-ensemble uncertainty estimates could be meaningfully pursued. Skill characteristics define a benchmark against which new operational sea level forecasting systems can be measured. More generally, an aggregation approach may prove to be optimal for routine sea level forecast services given the physically inhomogeneous processes involved and ability to incorporate ongoing improvements and extensions of source systems.

  16. Quantifying the effect of sea level rise and flood defence - a point process perspective on coastal flood damage

    Science.gov (United States)

    Boettle, M.; Rybski, D.; Kropp, J. P.

    2016-02-01

    In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage.

  17. On extreme atmospheric and marine nitrogen fluxes and chlorophyll-a levels in the Kattegat Strait

    Directory of Open Access Journals (Sweden)

    C. B. Hasager

    2003-01-01

    Full Text Available A retrospective analysis is carried out to investigate the importance of the vertical fluxes of nitrogen to the marine sea surface layer in which high chlorophyll a levels may cause blooms of harmful algae and subsequent turn over and oxygen depletion at the bottom of the sea. Typically nitrogen is the limiting factor for phytoplankton in the Kattegat Strait during summer periods (May to August and the major nitrogen inputs come from the atmosphere and deep-water entrainment. The extreme reoccurrence values of nitrogen from atmospheric wet and dry deposition and deep-water flux entrainments are calculated by the periodic maximum method and the results are successfully compared to a map of chlorophyll return periods based on in-situ observations. The one-year return of extreme atmospheric wet deposition is around 60 mg N m-2 day-1 and 30 mg N m-2 day-1 for deep-water entrainment. Atmospheric nitrogen dry deposition is insignificant in the context of algal blooms. At longer time-scales e.g. at 10-year return, the nitrogen deep-water entrainment is larger than the extreme of atmospheric wet deposition. This indicates that the pool of nitrogen released from the sea bottom by deep-water entrainment forced by high winds greatly exceeds the atmospheric pool of nitrogen washed out by precipitation. At the frontal zone of the Kattegat Strait and Skagerrak, the nitrogen deep-water entrainment is very high and this explains the high 10-year return chlorophyll level at 8 mg m-3 in the Kattegat Strait. In the southern part, the extreme chlorophyll level is only 4 mg m-3 according to the statistics of a multi-year time-series of water samples. The chlorophyll level varies greatly in time and space as documented by a series of SeaWiFS satellite maps (OC4v4 algorithm of chlorophyll ScanFish and buoy observations from an experimental period in the Kattegat Strait. It is recommended to sample in-situ chlorophyll observation collocated in time to the satellite

  18. Extreme water level and wave estimation for nearshore of Ningde City

    Science.gov (United States)

    Jin, Y. D.; Wang, E. K.; Xu, G. Q.

    2017-08-01

    The high and low design water levels are calculated by observation tidal data in sea areas of Ningde offshore wind power project from September 2010 to August 2011, with the value 318 cm and -246 cm, respectively. The extreme high and low levels are also calculated using synchronous difference ratio method based on station data from 1973 to 2005 at Sansha station. The value is 431 cm and -378 cm respectively. The design wave elements are estimated using the wave data from Beishuang Station and Pingtan station. On this basis, the SWAN wave model is applied to calculating the design wave elements in the engineering sea areas. The results show that the southern sea area is mainly affected by the wave effect on ESE, and the northern is mainly affected by the E waves. This paper is helpful and useful for design and construction of offshore and coastal engineering.

  19. A framework to investigate the economic growth impact of sea level rise

    International Nuclear Information System (INIS)

    Hallegatte, Stéphane

    2012-01-01

    This article reviews the channels through which sea level rise can affect economic growth, namely the loss of land, the loss of infrastructure and physical capital, the loss of social capital, the additional cost from extreme events and coastal floods, and the increased expenditure for coastal protection. It discusses how existing studies on the direct impact of sea level rise could be used to investigate the resulting consequences on economic growth, emphasizes research needs on this question, and discusses consequences on migration. (letter)

  20. Regional sea level projections with observed gauge, altimeter and reconstructed data along China coast

    Science.gov (United States)

    Du, L.; Shi, H.; Zhang, S.

    2017-12-01

    Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.

  1. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    Science.gov (United States)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  2. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  3. A new 25 years Arctic Sea level record from ESA satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Cheng, Yongcun; Knudsen, Per

    The Arctic is an extremely challenging region for the use of remote sensing for ocean studies. One is the fact that despite 25 years of altimetry only very limited sea level observations exists in the interior of the Arctic Ocean. However, with Cryosat-2 SAR altimetry the situation is changing...... the ESA GOCE mission we are now able to derive a mean dynamic topography of the Arctic Ocean with unprecedented accuracy to constrain the ocean circulation. We present both a new estimation of the mean ocean circulation and new estimates of large scale sea level changes based on satellite data and perform...

  4. Assessing extreme sea levels due to tropical cyclones in the Atlantic basin

    Science.gov (United States)

    Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen

    2017-04-01

    provide reliable probabilities of surge levels for the entire Atlantic basin. References Demuth, J., DeMaria, M., and Knaff, J.A. (2006). Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. Journal of Applied Meteorology., 45, pp. 1573-1581. Emanuel, K., Ravela, S., Vivant, E. and Risi, C. (2006). A statistical deterministic approach to hurricane risk assessment. Bulletin of the American Meteorological Society, 87(3), pp.299-314. Holland, G.J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8), pp.1212-1218. Lin, N. and D. Chavas (2012). On hurricane parametric wind and applications in storm surge modeling. Journal of Geophysical Research - Atmospheres. 117. doi:10.1029/2011jd017126. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., & Ward, P. J. (2016). A global reanalysis of storm surge and extreme sea levels. Nature Communications, 7(7:11969), 1-11.

  5. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  6. Sea level ~400 000 years ago (MIS 11: analogue for present and future sea-level?

    Directory of Open Access Journals (Sweden)

    D. Q. Bowen

    2010-01-01

    Full Text Available Comparison of the sea-level today with that of 400 000 years ago (MIS 11, when the Earth's orbital characteristics were similar may provide, under conditions of natural variability, indications of future sea-level during the present interglacial. Then, as now, orbital eccentricity was low and precession dampened. Evidence for MIS 11 sea-level occurs on uplifting coastlines where shorelines with geochronological ages have been preserved. The sea-level term and the uplift term may be separated with an "uplift correction" formula. This discovers the original sea-level at which the now uplifted shoreline was fashioned. Estimates are based on average uplift rates of the "last interglacial" sea-level (MIS 5.5 using a range of estimates for sea-level and age at that time at different locations. These, with varying secular tectonic regimes in different ocean basins, provide a band of estimates for the MIS 11 sea-level. They do not support the hypothesis of an MIS 11 sea-level at ~20 m, and instead show that it was closer to its present level.

  7. Long-term variability of extreme waves in the Caspian, Black, Azov and Baltic Seas

    Science.gov (United States)

    Arkhipkin, Victor; Dobroliubov, Sergey

    2013-04-01

    In order to study extreme storm waves in the Caspian, Black, Azov and Baltic Sea we used the spectral wave model SWAN. Significant wave height, swell and sea height, direction of propagation, their length and period were calculated with the NCEP/NCAR (1,9°x1,9°, 4-daily) reanalysis wind forcing from 1948 to 2010 in the Caspian, Black and Baltic Seas and with the NCEP/CFSR (0,3°x0,3°, 1 hour) for the period from 1979 to 2010 in the Azov Sea. The calculations were performed on supercomputers of Lomonosov Moscow State University (MSU). The spatial resolution of the numerical grid was of order 5 km for the Caspian, Baltic and Black Seas, 2 km for the Azov Sea. These model wave hindcasts were used to calculate interannual and seasonal variability of the storm frequency, location and duration. The Initial Distribution Method and Annual Maxima Series Methods were used to study probable waves of a century reoccurrence. The long-term variability of extreme waves revealed different trends in the investigated seas. The Caspian and Azov seas decreased the storm activity, while in the Baltic Sea the number of storm cases increased and the Black Sea showed no significant trend. The of more than 12 m were observed in two centers in the middle part of the Caspian Sea and in the center of the Baltic Sea. In the Black Sea the extreme waves of the same probability of more than 14 m were found in the region to the south of the Crimean peninsula. In the Azov Sea the highest waves of a century reoccurrence do not exceed 5 m. The work was done in Natural Risk Assessment Laboratory, MSU under contract G.34.31.0007.

  8. Intermittent sea-level acceleration

    Science.gov (United States)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  9. Wetland Responses to Sea Level Rise in the Northern Gulf of Mexico

    Science.gov (United States)

    Alizad, K.; Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.; Morris, J. T.

    2016-12-01

    Coastal regions are vulnerable to flood risk due to climate change, sea level rise, and wetland losses. The Northern Gulf of Mexico (NGOM) is a region in which extreme events are projected to be more intense under climate change and sea level rise scenarios [Wang et al., 2013; Bilskie et al., 2014]. Considering increased frequency and intensity of coastal flooding, wetlands are valuable natural resources that protect shorelines by dissipating waves and storm surges [Costanza et al., 2008]. Therefore, it is critical to investigate the response of salt marsh systems in different estuaries to sea level rise in the NGOM and their effects on storm surges to inform coastal managers to choose effective restoration plans. This research applies the coupled Hydro-MEM model [Alizad et al., 2016] to study three different estuarine systems in the NGOM. The model incorporates both sea level rise rate and feedbacks between physics and biology by coupling a hydrodynamic (ADCIRC) and salt marsh (MEM) model. The results of the model provide tidal hydrodynamics and biomass density change under four sea level rise projections during a 100-year period. The results are used to investigate marsh migration path in the estuarine systems. In addition, this study shows how marsh migration and biomass density change can impact storm surge modeling. The results imply the broader impacts of sea level rise on the estuarine systems in the NGOM. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, P. Bacopoulos, M. V. Bilskie, J. Weishampel, and S. C. Medeiros (2016), A coupled, two-dimensional hydrodynamic-marsh model with biological feedback, Ecological Modeling, 327, 29-43. Bilskie, M. V., S. C. Hagen, S. C. Medeiros, and D. L. Passeri (2014), Dynamics of sea level rise and coastal flooding on a changing landscape, Geophysical Research Letters, 41(3), 927-934. Costanza, R., O. Pérez-Maqueo, M. L. Martinez, P. Sutton, S. J. Anderson, and K. Mulder (2008), The Value of Coastal Wetlands for Hurricane

  10. A comparison of observed extreme water levels at the German Bight elaborated through an extreme value analysis (EVA) with extremes derived from a regionally coupled ocean-atmospheric climate model (MPI-OM)

    Science.gov (United States)

    Möller, Jens; Heinrich, Hartmut

    2017-04-01

    As a consequence of climate change atmospheric and oceanographic extremes and their potential impacts on coastal regions are of growing concern for governmental authorities responsible for the transportation infrastructure. Highest risks for shipping as well as for rail and road traffic originate from combined effects of extremes of storm surges and heavy rainfall which sometimes lead to insufficient dewatering of inland waterways. The German Ministry of Transport and digital Infrastructure therefore has tasked its Network of Experts to investigate the possible evolutions of extreme threats for low lands and especially for Kiel Canal, which is an important shortcut for shipping between the North and Baltic Seas. In this study we present results of a comparison of an Extreme Value Analysis (EVA) carried out on gauge observations and values derived from a coupled Regional Ocean-Atmosphere Climate Model (MPI-OM). High water levels at the coasts of the North and Baltic Seas are one of the most important hazards which increase the risk of flooding of the low-lying land and prevents such areas from an adequate dewatering. In this study changes in the intensity (magnitude of the extremes) and duration of extreme water levels (above a selected threshold) are investigated for several gauge stations with data partly reaching back to 1843. Different methods are used for the extreme value statistics, (1) a stationary general Pareto distribution (GPD) model as well as (2) an instationary statistical model for better reproduction of the impact of climate change. Most gauge stations show an increase of the mean water level of about 1-2 mm/year, with a stronger increase of the highest water levels and a decrease (or lower increase) of the lowest water levels. Also, the duration of possible dewatering time intervals for the Kiel-Canal was analysed. The results for the historical gauge station observations are compared to the statistics of modelled water levels from the coupled

  11. A joint analysis of wave and surge conditions for past and present extrem events in the south-western Baltic Sea

    Science.gov (United States)

    Groll, Nikolaus; Gaslikova, Lidia

    2017-04-01

    Extreme marine events in the south-western Baltic Sea like the historic storm in 1872 are rare, but have large impacts on human safety and coastal infrastructure. The aforementioned extreme storm event of 1872 and has cost over 250 human lives, left severely damaged infrastructure and caused land loss due to coastal erosion. Recent extreme events also result in drastic impacts to coastal regions. Using results from numerical wave and hydrodynamic model simulations we will present a joint analysis of wave and water level conditions for selected extreme events. For the historic event the numerical models have been forced by reconstructed wind and pressure fields from pressure readings. Simulated atmospheric conditions from reanalysis have been used for the more recent events. The height of the water level due to the possible previous inflow of water masses in the Baltic Sea basin, as well as possible seiches and swell effects have been incorporated in the simulations. We will discuss similarities and differences between the historic and the more recent marine hazard events.

  12. The Impact of Sea Level Rise on Developing Countries: A Comparative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, S. [World Bank, Washington, DC (United States)

    2008-07-01

    Sea-level rise (SLR) due to climate change is a serious global threat: The scientific evidence is now overwhelming. In this paper, Geographic Information System software has been used to overlay the best available, spatially-disaggregated global data on land, population, agriculture, urban extent, wetlands, and GDP, to assess the consequences of continued SLR for 84 coastal developing countries. Estimates suggest that even a one-meter rise in sea level in coastal countries of the developing world would submerge 194,000 square kilometers of land area, and turn at least 56 million people into environmental refugees. At the country level results are extremely skewed.

  13. The Impact of Sea Level Rise on Developing Countries: A Comparative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Susmita (World Bank, Washington, DC (United States))

    2008-07-01

    Sea-level rise (SLR) due to climate change is a serious global threat: The scientific evidence is now overwhelming. In this paper, Geographic Information System software has been used to overlay the best available, spatially-disaggregated global data on land, population, agriculture, urban extent, wetlands, and GDP, to assess the consequences of continued SLR for 84 coastal developing countries. Estimates suggest that even a one-meter rise in sea level in coastal countries of the developing world would submerge 194,000 square kilometers of land area, and turn at least 56 million people into environmental refugees. At the country level results are extremely skewed

  14. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    Science.gov (United States)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control

  15. Extreme sea-levels, coastal risks and climate changes: lost in translation

    Science.gov (United States)

    Marone, Eduardo; Castro Carneiro, Juliane; Cintra, Márcio; Ribeiro, Andréa; Cardoso, Denis; Stellfeld, Carol

    2014-05-01

    Occurring commonly in Brazilian coastal (and continental) areas, floods are probably the most devastating natural hazards our local society faces nowadays. With the expected sea-level rise and tropical storms becoming stronger and more frequents, the scenarios of local impacts of sea-level rise and storm surges; causing loss of lives, environmental damages and socio-economic stress; need to be addressed and properly communicated. We present results related to the sea-level setups accordingly to IPCC's scenarios and the expected coastal floods in the Paraná State, Southern Brazil. The outcomes are displayed in scientific language accompanied by "translations" with the objective of showing the need of a different language approach to communicate with the players affected by coastal hazards. To create the "translation" of the "scientific" text we used the Up-Goer Five Text Editor, which allows writing texts using only the ten hundred most used English words. We allowed ourselves to use a maximum of five other words per box not present at this dictionary, not considering geographical names or units in the count, provided there were simple. That was necessary because words as sea, beach, sand, storm, etc., are not among the one thousand present at the Up-Goer, and they are simple enough anyhow. On the other hand, the not scientific public we targeted speaks Portuguese, not English, and we do not have an Up-Goer tool for that language. Anyhow, each Box was also produced in Portuguese, as much simple as possible, to disseminate our results to the local community. To illustrate the need of "translation", it is worthy to mention a real case of a troublesome misunderstanding caused by us, scientists, in our coastal society. Some years ago, one of our colleagues at the university, a much-respected scientist, informed through a press release that, on a given day, "we will experience the highest astronomical tide of the century". That statement (scientifically true and

  16. Recent Extreme Marine Events at Southern Coast of Black Sea

    Science.gov (United States)

    Ozyurt Tarakcioglu, Gulizar; Cevdet Yalciner, Ahmet; Kirezci, Cagil; Baykal, Cuneyt; Gokhan Guler, Hasan; Erol, Onur; Zaytsev, Andrey; Kurkin, Andrey

    2015-04-01

    The utilization at the coastal areas of Black Sea basin has increased in the recent years with the projects such as large commercial ports, international transportation hubs, gas and petrol pipelines, touristic and recreational infrastructures both along surrounding shoreline. Although Black Sea is a closed basin, extreme storms and storm surges have also been observed with an increasing frequency in the recent years. Among those events, February 1999, March 2013 and September 2014 storms impacted Southern coast of Black sea have clearly shown that the increasing economic value at the coastal areas caused the increasing cost of damages and loss of property by natural hazards. The storm occurred on February 19-20, 1999 is one of the most destructive storm in the last decades. The 1999 event (1999 Southern Black sea storm) caused destruction at all harbors and coastal protection structures along the Black Sea coast of Turkey. The complete damage of the breakwater of Giresun Harbor and damage on the harbor structures and cargo handling equipment were the major impacts of the 1999 Southern Black sea storm. Similar coastal impact have also been observed during the September 24, 2014 storm at 500m East of Giresun harbor. Although there are considerable number of destructive storms observed at southern coast of Black sea recently, data on these events are limited and vastly scattered. In this study the list of recent extreme marine events at South coast of the Black sea compiled and related data such as wind speed, wave height, period, and type of damages are cataloged. Particular attention is focused on the 1999 and 2014 storm events. The meteorological and morphological characteristics which may be considered as the reasons of the generation and coastal amplification of these storms are discussed. ACKNOWLEDGEMENTS: This study is partly supported by Turkish Russian Joint Research Grant Program by TUBITAK (Turkey) and RFBR (Russia), and TUBITAK 213M534 Research Project.

  17. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action.

    Science.gov (United States)

    Mengel, Matthias; Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich

    2018-02-20

    Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO 2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.

  18. Contemporary sea level rise.

    Science.gov (United States)

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.

  19. More than 70 years of continuous sea level records on the Santander Bay.

    Science.gov (United States)

    Lavín, Alicia; Tel, Elena; Molinero, Joaquin; Rodriguez, Carmen

    2017-04-01

    The knowledge of sea level height is important for many different sectors as navigation, transport, building infrastructures, tourism, or maritime sports, between others. Tides are mainly composed of an astronomical part and a meteorological one. Sometimes, their joined action is the responsible of extreme behaviors in the sea level. Influence of pressure differences, as well as related winds, is important in the behavior of sea level to analyze. The first system for reading the sea level was a tide board attached at the pier. In Spain the first modern tide gauge was installed in the Port of Alicante, Mediterranean Sea, in 1873 depending of the National Geographic Institute (IGN). Just the following year, a similar tide gauge was installed at the entrance of the Santander Bay. "La Magdalena" tide gauge was working during two periods 1876-1928 and 1963-1975. Together with Cádiz, the IGN tide gauges were used to determinate the national datum for terrestrial cartography. The Spanish Institute of Oceanography (IEO) tide gauge network was initiated in 1943 with the installation of tide gauges along the Spanish coast. One of them was located in Santander and has been working since then. At the beginning it was a float tide gauge connected to a graphical continuous recorder. Nowadays, it also has a digital encoder and a remote connection that allow using the recorded data for operational purposes. Later a Radar system was added. This tide gauge is referred to the Tide Gauge Zero and also calibrated to a benchmark in order to have a unique reference. This high quality sea level information is required for international and regional research activities, as Global Sea Level Observing System (GLOSS). In particular, long time series are widely used for climate change detection. The sea level long term variability studies require a very good quality data focus in the reference of the data along the whole period and also it will be more precisely if we can remove the crustal

  20. Environmental safety evaluation in test sea disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    1979-01-01

    The study results on the environmental safety in the test sea disposal of low-level wastes by Subcommittee on Radioactive Waste Safety Technology in Nuclear Safety Commission are given in connection with the test disposal of radioactive wastes into sea reported by the Nuclear Safety Bureau. The Subcommittee concludes that the effect of the test disposal of radioactive wastes into sea on the environment is extremely small. The contents are as follows. The full text of the report; attached data, (1) prediction of the concentrations of radioactive nuclides in sea, (2) calculation of the concentrations of radioactive nuclides in marine life with biological paths, and (3) estimation of exposure dose in general people; references (1) radiation exposure of the personnel engaged in sea disposal, (2) the effect of a sea disaster during ocean transport. (J.P.N.)

  1. Extreme sea-level events in coastal regions

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    that the outcome of the project has been a code that is capable of predicting correct trends more often (15 out of 20) than the other ‘black box’ codes in operation at various agencies. U. N. SINHA CSIR-Centre for Mathematical Modelling and Computer... of the extreme climate events. Their past trends, future projections and vulnerabi- lity and adaptation to such events are discussed in the report. The report was based on the efforts of both the working groups of the IPCC, WG I, which deals with the science...

  2. Temperature-driven global sea-level variability in the Common Era

    Science.gov (United States)

    Kopp, Robert E.; Kemp, Andrew C.; Bittermann, Klaus; Horton, Benjamin P.; Donnelly, Jeffrey P.; Gehrels, W. Roland; Hay, Carling C.; Mitrovica, Jerry X.; Morrow, Eric D.; Rahmstorf, Stefan

    2016-01-01

    We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0–700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000–1400 CE is associated with ∼0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability P≥0.95) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely (P=0.95) that 20th century GSL would have risen by less than 51% of the observed 13.8±1.5 cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report. PMID:26903659

  3. The Barbados Sea Level Record

    Science.gov (United States)

    Fairbanks, R. G.; Mortlock, R. A.; Abdul, N. A.; Wright, J. D.; Cao, L.; Mey, J. L.

    2013-12-01

    Additional offshore drill cores, nearly 100 new radiometric dates, and more than 1000 kilometers of Multibeam mapping greatly enhance the Barbados Sea Level record. Extensive Multibeam mapping around the entire island covers approximately 2650 km2 of the sea bottom and now integrates the offshore reef topography and Barbados Sea Level Record with the unparalleled onshore core collection, digital elevation maps, and Pleistocene sea level record spanning the past one million years. The reef crest coral, Acropora palmata, remains the stalwart indicator of sea level for many reasons that are validated by our redundant sea level records and redundant dating via Th/U and Pa/U analyses. Microanalysis and densitometry studies better explain why Acropora palmata is so well preserved in the Pleistocene reef records and therefore why it is the species of choice for sea level reconstructions and radiometric dating. New drill cores into reefs that formed during Marine Isotope Stage 3 lead us to a model of diagenesis that allows us to better prospect for unaltered coral samples in older reefs that may be suitable for Th/U dating. Equally important, our diagenesis model reinforces our rigorous sample quality criteria in a more quantitative manner. The Barbados Sea Level record has a sampling resolution of better than 100 years throughout much of the last deglaciation showing unprecedented detail in redundant drill cores. The Melt Water Pulses (MWP1A and MWP1B) are well resolved and the intervening interval that includes the Younger Dryas reveals sea level changes in new detail that are consistent with the terrestrial records of ice margins (see Abdul et al., this section). More than 100 paired Th/U and radiocarbon ages place the Barbados Sea Level Record unambiguously on the radiocarbon time scale for direct comparisons with the terrestrial records of ice margin changes.

  4. Caribbean Sea Level Network

    Science.gov (United States)

    von Hillebrandt-Andrade, C.; Crespo Jones, H.

    2012-12-01

    Over the past 500 years almost 100 tsunamis have been observed in the Caribbean and Western Atlantic, with at least 3510 people having lost their lives to this hazard since 1842. Furthermore, with the dramatic increase in population and infrastructure along the Caribbean coasts, today, millions of coastal residents, workers and visitors are vulnerable to tsunamis. The UNESCO IOC Intergovernmental Coordination Group for Tsunamis and other Coastal Hazards for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 to coordinate and advance the regional tsunami warning system. The CARIBE EWS focuses on four areas/working groups: (1) Monitoring and Warning, (2) Hazard and Risk Assessment, (3) Communication and (4) Education, Preparedness and Readiness. The sea level monitoring component is under Working Group 1. Although in the current system, it's the seismic data and information that generate the initial tsunami bulletins, it is the data from deep ocean buoys (DARTS) and the coastal sea level gauges that are critical for the actual detection and forecasting of tsunamis impact. Despite multiple efforts and investments in the installation of sea level stations in the region, in 2004 there were only a handful of sea level stations operational in the region (Puerto Rico, US Virgin Islands, Bermuda, Bahamas). Over the past 5 years there has been a steady increase in the number of stations operating in the Caribbean region. As of mid 2012 there were 7 DARTS and 37 coastal gauges with additional ones being installed or funded. In order to reach the goal of 100 operational coastal sea level stations in the Caribbean, the CARIBE EWS recognizes also the importance of maintaining the current stations. For this, a trained workforce in the region for the installation, operation and data analysis and quality control is considered to be critical. Since 2008, three training courses have been offered to the sea level station operators and data analysts. Other

  5. Sea Level Rise Data Discovery

    Science.gov (United States)

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

  6. ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    A. I. A. Hamid

    2016-09-01

    Full Text Available Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS. Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  7. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    Science.gov (United States)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  8. Comment on 'The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment'

    NARCIS (Netherlands)

    Tol, R.S.J.; Nicholls, R.J.; Brown, S.; Hinkel, J.; Vafeidis, A.T.; Spencer, T.

    2016-01-01

    Pycroft et al. (Environ Resour Econ 1–29, 2015) used incorrect and outdated data to study the economic impact of sea level rise. They misinterpret some of their input data, and fail to exploit the strengths of their computable general equilibrium model and previously developed methods to study

  9. Do we have to take an acceleration of sea level rise into account?

    Science.gov (United States)

    Dillingh, D.; Baart, F.; de Ronde, J.

    2012-04-01

    , particularly for the high scenario. Dutch design levels for coastal water defence structures (dikes and dunes) are based on extreme value statistics of long time series of high water levels. These design levels have typically return periods of 2000, 4000 and 10.000 years, depending on the importance of the protected dike ring. The last statistical analysis for the update of the design levels refers to the sea level situation of 1985. According to the Water Act Dutch design levels must be tested periodically (every 6 years). Due to sea level rise and tidal changes the design levels are corrected for the rise of the mean high waters from 1985 until the end of the testing period under consideration. This demands a tailoring approach for different regions or locations instead of a national average as for coastal preservation. Runs with climate models and coupled hydrodynamic models in the framework of the Essence project and the Delta Committee 2008 showed no indication for a change in the statistics of extreme storm surge levels. For the estimation of sea level rise over the last 120 years a linear regression gives the most robust estimate. Showing decadal variability needs more sophisticated models. For the last update of the design levels the elegant Whittaker smoother has been applied. Dutch policy prescribes to account for a future sea level rise of 60 cm per century for the design of new dikes or dike reinforcements and 85 cm per century for the long term (200 years) allocation of space for future reinforcements, in agreement with the KNMI'06 scenario's for sea level rise (central value and upper limit).

  10. Tropical vegetation evidence for rapid sea level changes associated with Heinrich Events

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Catalina; Dupont, Lydie M, E-mail: catalina@uni-bremen.d, E-mail: dupont@uni-bremen.d [MARUM - Centre for Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Germany (Germany)

    2010-03-15

    A Cariaco Basin pollen record shows the development of tropical salt marshes during marine isotope stage 3. Rapid and abrupt expansions of salt marsh vegetation in tropical South America are associated with north Atlantic Heinrich Events stadials (HE-stadials). Intervals of salt marsh expansion have an internal structure, which consists of a recurrent alternation of species that starts with pollen increments of Chenopodiaceae, that are followed by increments of grasses, and subsequently by increments of Cyperaceae. This pattern suggests a successional process that is determined by the close relationship between sea-level and plant community dynamics. The salt tolerant Chenopodiaceae, indicate hypersaline intertidal environments, which were most likely promoted by extremely dry atmospheric conditions. Rapid sea-level rise characterizes the onset of HE-stadials, causing the continued recruitment of pioneer species, which are the only ones tolerating rapid rates of disturbance. Once sea-level rise decelerates, marsh plants are able to trap and stabilize sediments, favouring the establishment of more competitive species. These results add to the scarce knowledge on the dynamics of tropical salt marsh ecosystems, and provide independent paleoclimatic evidence on sea-level changes following Antarctic climate variability.

  11. Extreme waves at Filyos, southern Black Sea

    Directory of Open Access Journals (Sweden)

    E. Bilyay

    2011-03-01

    Full Text Available A wave measurement project was carried out for a new port planned in Filyos, in the Western Black Sea region of Turkey. The measurement at a depth of 12.5 m lasted for a period of two years and 7949 records were obtained. During the analysis, it was noticed that there were 209 records in which H/Hs ratio was higher than 2.0. These higher waves in a record are called extreme waves in this study. Although the purpose of wave measurement is not to investigate extreme waves, it is believed that studying these unexpected waves could be interesting. Therefore, detailed statistical and spectral analyses on the extreme waves were done for the records. The analyses results show that the distribution of surface profiles of the records containing extreme waves deviates from Gaussian distribution with the negative skewness changing between –0.01 and –0.4 and with the high kurtosis in the range of 3.1–4.2. Although the probability of occurrence of the extreme waves is over-predicted by the Rayleigh distribution, a higher ratio of Hsrms indicates that the wave height distribution can be represented by Rayleigh. The average value of the slope of the frequency spectrum at the high frequency range is proportional to f–9 which is much steeper than the typical wind-wave frequency power law, f–4, –5. The directional spreading is measured with the parameter Smax and it is in the range of 5–70 for the extreme wave records. The wave and current interaction was also investigated and it was found that in most cases, extreme waves occur when the wave and the current are almost aligned. Furthermore, it is observed that extreme waves appear within a group of high waves.

  12. Increasing Resilience Through Engagement In Sea Level Rise Community Science Initiatives.

    Science.gov (United States)

    Chilton, L. A.; Rindge, H.

    2017-12-01

    Science literate and engaged members of the public, including students, are critical to building climate resilient communities. USC Sea Grant facilitates programs that work to build and strengthen these connections. The Urban Tides Community Science Initiative (Urban Tides) and the Youth Exploring Sea Level Rise Science Program (YESS) engage communities across the boundaries of public engagement, K-12 education, and informal education. YESS is an experiential sea level rise education program that combines classroom learning, field investigations and public presentations. Students explore sea level rise using a new curricula, collect their own data on sea level rise, develop communication products, and present their findings to city governments, researchers, and others. Urban Tides engages community members, informal education centers, K-12 students, and local government leaders in a citizen science program photo- documenting extreme high tides, erosion and coastal flooding in Southern California. Images provide critical information to help calibrate scientific models used to identify locations vulnerable to damage from future sea level rise. These tools and information enable community leaders and local governments to set priorities, guidelines, and update policies as they plan strategies that will help the region adapt. The program includes a mobile app for data collection, an open database to view photos, a lesson plan, and community beach walks. Urban Tides has led to an increase in data and data-gathering capacity for regional scientists, an increase in public participation in science, and an increase in ocean and climate literacy among initiative participants. Both of these programs bring informed and diverse voices into the discussion of how to adapt and build climate resilient communities. USC Sea Grant will share impacts and lessons learned from these two unique programs.

  13. Assessment extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea

    Science.gov (United States)

    Dvornikov, Anton; Martyanov, Stanislav; Ryabchenko, Vladimir; Eremina, Tatjana; Isaev, Alexey; Sein, Dmitry

    2017-04-01

    Extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea, are estimated paying a special attention to the area of the future construction of nuclear power plant (NPP) "Hanhikivi-1" (24° 16' E, 64° 32' N). To produce these estimates, long-term observations and results from numerical models of water and ice circulation and wind waves are used. It is estimated that the average annual air temperature in the vicinity of the station is +3° C, summer and winter extreme temperature is equal to 33.3° C and -41.5° C, respectively. Model calculations of wind waves have shown that the most dangerous (in terms of the generation of wind waves in the NPP area) is a north-west wind with the direction of 310°. The maximum height of the waves in the Gulf of Bothnia near the NPP for this wind direction with wind velocity of 10 m/s is 1.2-1.4 m. According to the model estimates, the highest possible level of the sea near the NPP is 248 cm, the minimum level, -151 cm, respectively for the western and eastern winds. These estimates are in good agreement with observations on the sea level for the period 1922-2015 at the nearest hydrometeorological station Raahe (Finland). In order to assess the likely impact of the NPP on the marine environment numerical experiments for the cold (2010) and warm year (2014) have been carried out. These calculations have shown that permanent release of heat into the marine environment from the operating NPP for the cold year (2010) will increase the temperature in the upper layer of 0-250m zone by 10°C in winter - spring and by 8°C in summer - early autumn, and in the bottom layer of 0-250m zone by 5°C in winter - spring and 3°C in summer - early autumn. For the warm year (2014), these temperature changes are smaller. Ice cover in both cases will disappear in two - kilometer vicinity of the NPP. These effects should be taken into account when assessing local climate changes in the future

  14. Vulnerability of marginal seas to sea level rise

    Science.gov (United States)

    Gomis, Damia; Jordà, Gabriel

    2017-04-01

    Sea level rise (SLR) is a serious thread for coastal areas and has a potential negative impact on society and economy. SLR can lead for instance to land loss, beach reduction, increase of the damage of marine storms on coastal infrastructures and to the salinization of underground water streams. It is well acknowledged that future SLR will be inhomogeneous across the globe, with regional differences of up to 100% with respect to global mean sea level (GMSL). Several studies have addressed the projections of SLR at regional scale, but most of them are based on global climate models (GCMs) that have a relatively coarse spatial resolution (>1°). In marginal seas this has proven to be a strong limitation, as their particular configurations require spatial resolutions that are not reachable by present GCMs. A paradigmatic case is the Mediterranean Sea, connected to the global ocean through the Strait of Gibraltar, a narrow passage of 14 km width. The functioning of the Mediterranean Sea involves a variety of processes including an overturning circulation, small-scale convection and a rich mesoscale field. Moreover, the long-term evolution of Mediterranean sea level has been significantly different from the global mean during the last decades. The observations of present climate and the projections for the next decades have lead some authors to hypothesize that the particular characteristics of the basin could allow Mediterranean mean sea level to evolve differently from the global mean. Assessing this point is essential to undertake proper adaptation strategies for the largely populated Mediterranean coastal areas. In this work we apply a new approach that combines regional and global projections to analyse future SLR. In a first step we focus on the quantification of the expected departures of future Mediterranean sea level from GMSL evolution and on the contribution of different processes to these departures. As a result we find that, in spite of its particularities

  15. Arctic sea level change over the past 2 decades from GRACE gradiometry and multi-mission satellite altimetry

    DEFF Research Database (Denmark)

    Andersen, O. B.; Stenseng, L.; Sørensen, C. S.

    2014-01-01

    The Arctic is still an extremely challenging region for theuse of remote sensing for sea level studies. Despite the availability of 20 years of altimetry, only very limited sea level observations exist in the interior of the Arctic Ocean. However, with Cryosat-2 SAR altimetry the situation...... gradiometer observations from the ESA GOCE mission, we are now able to derive a mean dynamic topography of the Arctic Ocean with unprecedented accuracy to constrain the Arctic Ocean circulation controlling sea level variations in the Arctic. We present both a new estimation of the mean ocean circulation...... and new estimates of large scale sea level changes based on satellite data and perform an estimation of the fresh waterstorage increase over the last decade using temporal gravity changes from the GRACE satellite....

  16. Sea Level Changes: Determination and Effects

    Science.gov (United States)

    Woodworth, P. L.; Pugh, D. T.; DeRonde, J. G.; Warrick, R. G.; Hannah, J.

    The measurement of sea level is of fundamental importance to a wide range of research in climatology, oceanography, geology and geodesy. This volume attempts to cover many aspects of the field. The volume opens with a description by Bolduc and Murty of one of the products stemming from the development of tide gauge networks in the northern and tropical Atlantic. This work is relevant to the growth of the Global Sea Level Observing System (GLOSS), the main goal of which is to provide the world with an efficient, coherent sea level monitoring system for océanographie and climatological research. The subsequent four papers present results from the analysis of existing tide gauge data, including those datasets available from the Permanent Service for Mean Sea Level and the TOGA Sea Level Center. Two of the four, by Wroblewski and by Pasaric and Orlic, are concerned with European sea level changes, while Yu Jiye et al. discuss inter-annual changes in the Pacific, and Wang Baocan et al. describe variability in the Changjiang estuary in China. The papers by El- Abd and A wad, on Red Sea levels, are the only contributions to the volume from the large research community of geologists concerned with sea level changes.

  17. Challenges in Projecting Sea Level Rise impacts on the Coastal Environment of South Florida (Invited)

    Science.gov (United States)

    Obeysekera, J.; Park, J.; Irizarry-Ortiz, M. M.; Barnes, J. A.; Trimble, P.; Said, W.

    2010-12-01

    Due to flat topography, a highly transmissive groundwater aquifer, and a growing population with the associated infrastructure, South Florida’s coastal environment is one of the most vulnerable areas to sea level rise. Current projections of sea level rise and the associated storm surges will have direct impacts on coastal beaches and infrastructure, flood protection, freshwater aquifers, and both the isolated and regional wetlands. Uncertainties in current projections have made it difficult for regional and local governments to develop adaptation strategies as such measures will depend heavily on the temporal and spatial patterns of sea level rise in the coming decades. We demonstrate the vulnerability of both the built and natural environments of the coastal region and present the current efforts to understand and predict the sea level rise estimate that management agencies could employ in planning of adaptation strategies. In particular, the potential vulnerabilities of the flood control system as well as the threat to the water supply wellfields in the coastal belt will be presented. In an effort to understand the historical variability of sea level rise, we present linkages to natural phenomena such as Atlantic Multi-Decadal Oscillation, and the analytical methods we have developed to provide probabilistic projections of both mean sea level rise and the extremes.

  18. Possible Evidence of Multiple Sea Level Oscillations in the Seychelles During the Last Interglacial

    Science.gov (United States)

    Dutton, A. L.; Vyverberg, K.; Webster, J.; Dechnik, B.; Zwartz, D.; Lambeck, K.

    2013-12-01

    In search of a eustatic sea level signal on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its far-field location with respect to the former margins of Northern Hemisphere ice sheets, glacio-hydro-isostatic models predict that relative sea level in the Seychelles should lie within a few meters of the globally averaged eustatic signal during interglacial periods. We have surveyed and dated fossil coral reefs from the last interglacial period to determine the magnitude of peak sea level and to assess sedimentologic evidence of potential sea level oscillations. Numerous outcrops we studied in detail exhibit a stratigraphic sequence comprised of in situ coralgal framework at the base, capped by thick coralline algae crusts, and overlain by coral rubble deposits. We also observed a succession of three stacked coralgal reefs within a single outcrop, separated by hardgrounds that have been bored by molluscs. In general, the succession within each reef unit consists of interlayered corals and crusts of coralline algae-vermetid gastropods-encrusting foraminifera. The lower two reef units are capped by a well-cemented 5 to 10 cm thick carbonate mud layer that is heavily bored by molluscs. These two surfaces may represent exposure surfaces during brief sea level oscillations, where sea level fell and exposed the top of the reef sequence, which was subsequently bored when sea level rose again and reef growth resumed. The elevations of the corals in each reef unit provide minimum elevations of sea level during each of the three pulses of sea level highstands during the last interglacial period. Significantly, since many of these corals are capped by thick coralline algae layers that contain vermetid gastropods and encrusting foraminifera that are indicative of the intertidal zone, there is strong evidence that these corals grew in extremely shallow water, providing a robust indication of sea level position. These

  19. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice

    DEFF Research Database (Denmark)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.

    2018-01-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light......, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties...... for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with approximate to 1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (...

  20. Coastal Adaptation Planning for Sea Level Rise and Extremes: A Global Model for Adaptation Decision-making at the Local Level Given Uncertain Climate Projections

    Science.gov (United States)

    Turner, D.

    2014-12-01

    Understanding the potential economic and physical impacts of climate change on coastal resources involves evaluating a number of distinct adaptive responses. This paper presents a tool for such analysis, a spatially-disaggregated optimization model for adaptation to sea level rise (SLR) and storm surge, the Coastal Impact and Adaptation Model (CIAM). This decision-making framework fills a gap between very detailed studies of specific locations and overly aggregate global analyses. While CIAM is global in scope, the optimal adaptation strategy is determined at the local level, evaluating over 12,000 coastal segments as described in the DIVA database (Vafeidis et al. 2006). The decision to pursue a given adaptation measure depends on local socioeconomic factors like income, population, and land values and how they develop over time, relative to the magnitude of potential coastal impacts, based on geophysical attributes like inundation zones and storm surge. For example, the model's decision to protect or retreat considers the costs of constructing and maintaining coastal defenses versus those of relocating people and capital to minimize damages from land inundation and coastal storms. Uncertain storm surge events are modeled with a generalized extreme value distribution calibrated to data on local surge extremes. Adaptation is optimized for the near-term outlook, in an "act then learn then act" framework that is repeated over the model time horizon. This framework allows the adaptation strategy to be flexibly updated, reflecting the process of iterative risk management. CIAM provides new estimates of the economic costs of SLR; moreover, these detailed results can be compactly represented in a set of adaptation and damage functions for use in integrated assessment models. Alongside the optimal result, CIAM evaluates suboptimal cases and finds that global costs could increase by an order of magnitude, illustrating the importance of adaptive capacity and coastal policy.

  1. Eustatic and Relative Sea Level Changes

    NARCIS (Netherlands)

    Rovere, A.; Stocchi, P.; Vacchi, M.

    2016-01-01

    Sea level changes can be driven by either variationsin the masses or volume of the oceans, or bychanges of the land with respect to the sea surface. Inthe first case, a sea level change is defined ‘eustatic’;otherwise, it is defined ‘relative’. Several techniques canbe used to observe changes in sea

  2. The Dependency between the Arabian Peninsula Wet Events and Sea Level Pressure Patterns during Spring Season

    KAUST Repository

    El Kenawy, Ahmed M.; McCabe, Matthew; Stenchikov, Georgiy L.; Raj, Jerry

    2014-01-01

    This work investigates the relationships between regional extreme wet events in the Arabian Peninsula during the spring season (MAM) and sea level pressure (SLP) patterns. Based on NCEP/NCAR reanalysis data, S-mode principal components were computed

  3. Modeling nonstationary extreme wave heights in present and future climates of Greek Seas

    Directory of Open Access Journals (Sweden)

    Panagiota Galiatsatou

    2016-01-01

    Full Text Available In this study the generalized extreme value (GEV distribution function was used to assess nonstationarity in annual maximum wave heights for selected locations in the Greek Seas, both in the present and future climates. The available significant wave height data were divided into groups corresponding to the present period (1951–2000, a first future period (2001–2050, and a second future period (2051–2100. For each time period, the parameters of the GEV distribution were specified as functions of time-varying covariates and estimated using the conditional density network (CDN. For each location and selected time period, a total number of 29 linear and nonlinear models were fitted to the wave data, for a given combination of covariates. The covariates used in the GEV-CDN models consisted of wind fields resulting from the Regional Climate Model version 3 (RegCM3 developed by the International Center for Theoretical Physics (ICTP with a spatial resolution of 10 km × 10 km, after being processed using principal component analysis (PCA. The results obtained from the best fitted models in the present and future periods for each location were compared, revealing different patterns of relationships between wind components and extreme wave height quantiles in different parts of the Greek Seas and different periods. The analysis demonstrates an increase of extreme wave heights in the first future period as compared with the present period, causing a significant threat to Greek coastal areas in the North Aegean Sea and the Ionian Sea.

  4. Preparing Norfolk Area Students for America's Second Highest Sea Level Rise

    Science.gov (United States)

    Dunbar, R. R.

    2017-12-01

    The nonprofit Elizabeth River Project located in Hampton Roads, Virginia was awarded a 3-year national NOAA Environmental Literacy award 2016-2019 to teach 21,000 K-12 youth how to help restore one of the most polluted rivers on the Chesapeake Bay and to help create a resilient community that is facing impacts from the rising seas and changing climate. Through a community collaboration, partners are also creating perhaps the nation's first Youth Resilience Strategy with a vision, goals, best practices and resources on engaging youth to help create resilient cities facing environmental and economic changes. During Year 1, 7,000 elementary students held field investigations aboard the floating classroom Learning Barge and at Paradise Creek Nature Park and helped restore wetland restoration sites. Students performed inquiry based investigations, learned stewardship actions to help create resilience and showed a 40% increase in knowledge. Year 1 best practices in teaching resilience include youth: getting out of the classroom, discovering how rain water travels, performing bioblitzes and water quality testing, engaging in hands-on GreenSTEM activities, using investigation tools, creating innovative solutions to retain and reuse rain water, creating art and voicing their opinions on creating a resilient community.Lessons learned include developing engaging inquiry questions based on creating a resilient community. These included: "What are the impact of rising tides?", "How can sea level rise affect river animals?", "How can we be safe and prepare for extreme weather and flooding as the sea level rises?", "How has the way people worked with the Elizabeth River changed?", "How could sea level rise affect the Elizabeth River's water quality?", "How hot might the air temperature get by 2050 and what can we do to keep it cooler?", "What does this park show us about sea level rise and other ways our climate is changing?", "How do trees help make our park and community

  5. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  6. Arctic sea ice, Eurasia snow, and extreme winter haze in China.

    Science.gov (United States)

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-03-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.

  7. Extreme pressure differences at 0900 NZST and winds across New Zealand

    Science.gov (United States)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are

  8. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea

    KAUST Repository

    Pearman, John K.

    2016-01-07

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water.

  9. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea

    KAUST Repository

    Pearman, John K.; Kurten, Saskia; Yellepeddi, Sarma B.; Jones, Burton; Carvalho, Susana

    2016-01-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water.

  10. Causes for contemporary regional sea level changes.

    Science.gov (United States)

    Stammer, Detlef; Cazenave, Anny; Ponte, Rui M; Tamisiea, Mark E

    2013-01-01

    Regional sea level changes can deviate substantially from those of the global mean, can vary on a broad range of timescales, and in some regions can even lead to a reversal of long-term global mean sea level trends. The underlying causes are associated with dynamic variations in the ocean circulation as part of climate modes of variability and with an isostatic adjustment of Earth's crust to past and ongoing changes in polar ice masses and continental water storage. Relative to the coastline, sea level is also affected by processes such as earthquakes and anthropogenically induced subsidence. Present-day regional sea level changes appear to be caused primarily by natural climate variability. However, the imprint of anthropogenic effects on regional sea level-whether due to changes in the atmospheric forcing or to mass variations in the system-will grow with time as climate change progresses, and toward the end of the twenty-first century, regional sea level patterns will be a superposition of climate variability modes and natural and anthropogenically induced static sea level patterns. Attribution and predictions of ongoing and future sea level changes require an expanded and sustained climate observing system.

  11. Sea level and climate variations

    NARCIS (Netherlands)

    Oerlemans, J.

    1985-01-01

    Review paper, ESA Symposium on Application of Satellite Data to Climate Modelling. Alpbach (Austria) Sea level is an essential component of the climate system, on which many human activities in the coastal zone depend. Climate variations leading to changes in relative sea level are

  12. Sea-level variability over five glacial cycles.

    Science.gov (United States)

    Grant, K M; Rohling, E J; Ramsey, C Bronk; Cheng, H; Edwards, R L; Florindo, F; Heslop, D; Marra, F; Roberts, A P; Tamisiea, M E; Williams, F

    2014-09-25

    Research on global ice-volume changes during Pleistocene glacial cycles is hindered by a lack of detailed sea-level records for time intervals older than the last interglacial. Here we present the first robustly dated, continuous and highly resolved records of Red Sea sea level and rates of sea-level change over the last 500,000 years, based on tight synchronization to an Asian monsoon record. We observe maximum 'natural' (pre-anthropogenic forcing) sea-level rise rates below 2 m per century following periods with up to twice present-day ice volumes, and substantially higher rise rates for greater ice volumes. We also find that maximum sea-level rise rates were attained within 2 kyr of the onset of deglaciations, for 85% of such events. Finally, multivariate regressions of orbital parameters, sea-level and monsoon records suggest that major meltwater pulses account for millennial-scale variability and insolation-lagged responses in Asian monsoon records.

  13. Extending the Instrumental Record of Sea-Level Change: A 1300-Year Sea-Level Record From Eastern Connecticut

    Science.gov (United States)

    Donnelly, J. P.; Cleary, P.

    2002-12-01

    The instrumental record of sea-level change in the northeastern United States extends back to the early 20th century and at New York City (NYC) extends back to 1856. These tide gauge records indicate that sea level has risen at a rate of 2.5 to 4 mm/year over the last 100-150 years. Geologic evidence of sea-level change in the region over the last 2,000 years indicates rates of sea-level rise of about 1 mm/year or less. The discordance between the instrumental and geologic records is frequently cited as potentially providing evidence that anthropogenic warming of the climate system has resulted in an increase in the rate of sea-level rise. In order to begin to test the hypothesis that acceleration in the rate of sea-level rise has occurred in the last 150 years due to anthropogenic climate warming, accurate and precise information on the timing of the apparent acceleration in sea-level rise are needed. Here we construct a high-resolution relative sea-level record for the past 1350 years by dating basal salt marsh peat samples above a glacial erratic in a western Connecticut salt marsh. Preservation of marsh vegetation remains in the sediment record that has a narrow vertical habitat range at the upper end of the tidal range provides information on past sea levels. { \\it Spartina patens} (marsh hay) and { \\it Juncus gerardi} (black rush) dominate both the modern marsh and their remains are the major constituent of the marsh sediments and occur in the modern marsh between mean high water (MHW) and mean highest high water. We use the elevation distribution of modern plant communities to estimate the relationship of sediment samples to paleo-mean high water. The chronology is based on 15 radiocarbon ages, supplemented by age estimates derived from the horizons of industrial Pb pollution and pollen indicative of European land clearance. Thirteen of the radiocarbon ages and the Pb and pollen data come from samples taken along a contact between marsh peat and a glacial

  14. Sea-level Variation Along the Suez Canal

    Science.gov (United States)

    Eid, F. M.; Sharaf El-Din, S. H.; Alam El-Din, K. A.

    1997-05-01

    The variation of sea level at 11 stations distributed along the Suez Canal was studied during the period from 1980 to 1986. The ranges of variation in daily mean sea level at Port Said and Port Tawfik are about 60 and 120 cm, respectively. The minimum range of daily variation is at Kantara (47 cm). The fluctuations of the monthly mean sea level between the two ends of the Suez Canal vary from one season to another. From July to December, the sea level at Port Said is higher than that at Port Tawfik, with the maximum difference (10·5 cm) in September. During the rest of the year, the mean sea level at Port Tawfik is higher than that at Port Said, with the maximum difference (31·5 cm) in March. The long-term variations of the annual mean sea level at both Port Said and Port Tawfik for the period from 1923 to 1986 showed a positive trend. The sea level at Port Said increased by about 27·8 cm century -1while it increased by only 9·1 cm century -1at Port Tawfik. This indicates that the difference between sea level at Port Said and Port Tawfik has decreased with time.

  15. Continuous sea-level reconstructions beyond the Pleistocene: improving the Mediterranean sea-level method

    Science.gov (United States)

    Grant, K.; Rohling, E. J.; Amies, J.

    2017-12-01

    Sea-level (SL) reconstructions over glacial-interglacial timeframes are critical for understanding the equilibrium response of ice sheets to sustained warming. In particular, continuous and high-resolution SL records are essential for accurately quantifying `natural' rates of SL rise. Global SL changes are well-constrained since the last glacial maximum ( 20,000 years ago, ky) by radiometrically-dated corals and paleoshoreline data, and fairly well-constrained over the last glacial cycle ( 150 ky). Prior to that, however, studies of ice-volume:SL relationships tend to rely on benthic δ18O, as geomorphological evidence is far more sparse and less reliably dated. An alternative SL reconstruction method (the `marginal basin' approach) was developed for the Red Sea over 500 ky, and recently attempted for the Mediterranean over 5 My (Rohling et al., 2014, Nature). This method exploits the strong sensitivity of seawater δ18O in these basins to SL changes in the relatively narrow and shallow straits which connect the basins with the open ocean. However, the initial Mediterranean SL method did not resolve sea-level highstands during Northern Hemisphere insolation maxima, when African monsoon run-off - strongly depleted in δ18O - reached the Mediterranean. Here, we present improvements to the `marginal basin' sea-level reconstruction method. These include a new `Med-Red SL stack', which combines new probabilistic Mediterranean and Red Sea sea-level stacks spanning the last 500 ky. We also show how a box model-data comparison of water-column δ18O changes over a monsoon interval allows us to quantify the monsoon versus SL δ18O imprint on Mediterranean foraminiferal carbonate δ18O records. This paves the way for a more accurate and fully continuous SL reconstruction extending back through the Pliocene.

  16. Evolution of extreme Total Water Levels along the northern coast of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    D. F. Rasilla Álvarez

    2011-02-01

    Full Text Available This paper assesses the evolution of storminess along the northern coast of the Iberian Peninsula through the calculation of extreme (1% Total Water Levels (eTWL on both observed (tide gauge and buoy data and hindcasted (SIMAR-44 data. Those events were first identified and then characterized in terms of oceanographic parameters and atmospheric circulation features. Additionally, an analysis of the long-term trends in both types of data was performed. Most of the events correspond to a rough wave climate and moderate storm surges, linked to extratropical disturbances following a northern track. While local atmospheric conditions seem to be evolving towards lesser storminess, their impact has been balanced by the favorable exposure of the northern coast of the Iberian Peninsula to the increasing frequency and strength of distant disturbances crossing the North Atlantic. This evolution is also correctly reproduced by the simulated long-term evolution of the forcing component (meteorological sea level residuals and wave run up of the Total Water Level values calculated from the SIMAR 44 database, since sea level residuals have been experiencing a reduction while waves are arriving with longer periods. Finally, the addition of the rate of relative sea level trend to the temporal evolution of the atmospheric forcing component of the Total Water Level values is enough to simulate more frequent and persistent eTWL.

  17. Daily temperature and precipitation extremes in the Baltic Sea region derived from the BaltAn65+ reanalysis

    Science.gov (United States)

    Toll, Velle; Post, Piia

    2018-04-01

    Daily 2-m temperature and precipitation extremes in the Baltic Sea region for the time period of 1965-2005 is studied based on data from the BaltAn65 + high resolution atmospheric reanalysis. Moreover, the ability of regional reanalysis to capture extremes is analysed by comparing the reanalysis data to gridded observations. The shortcomings in the simulation of the minimum temperatures over the northern part of the region and in the simulation of the extreme precipitation over the Scandinavian mountains in the BaltAn65+ reanalysis data are detected and analysed. Temporal trends in the temperature and precipitation extremes in the Baltic Sea region, with the largest increases in temperature and precipitation in winter, are detected based on both gridded observations and the BaltAn65+ reanalysis data. However, the reanalysis is not able to capture all of the regional trends in the extremes in the observations due to the shortcomings in the simulation of the extremes.

  18. Barrier response to Holocene sea-level rise

    DEFF Research Database (Denmark)

    Pejrup, Morten; Andersen, Thorbjørn Joest; Johannessen, Peter N

    Normally it is believed that sea-level rise causes coastal barrier retreat. However, sea-level is only one of the parameters determining the long term coastal development of barrier coasts. Sediment supply is an equally important determinant and may overshadow the effects of sea-level rise....... Conceptually this has been known for a long time but for the first time we can show the relative effect of these two parameters. We have studied three neighboring barrier islands in the Wadden Sea, and described their 3D morphological evolution during the last 8000 years. It appears that the barrier islands...... a much stronger component of sea-level control. The distance between the islands is only 50 km, and therefore our study shows that prediction of barrier development during a period of rising sea level may be more complicated than formerly believed....

  19. Economic vulnerability to sea-level rise along the northern U.S. Gulf Coast

    Science.gov (United States)

    Thatcher, Cindy A.; Brock, John C.; Pendleton, Elizabeth A.

    2013-01-01

    The northern Gulf of Mexico coast of the United States has been identified as highly vulnerable to sea-level rise, based on a combination of physical and societal factors. Vulnerability of human populations and infrastructure to projected increases in sea level is a critical area of uncertainty for communities in the extremely low-lying and flat northern gulf coastal zone. A rapidly growing population along some parts of the northern Gulf of Mexico coastline is further increasing the potential societal and economic impacts of projected sea-level rise in the region, where observed relative rise rates range from 0.75 to 9.95 mm per year on the Gulf coasts of Texas, Louisiana, Mississippi, Alabama, and Florida. A 1-m elevation threshold was chosen as an inclusive designation of the coastal zone vulnerable to relative sea-level rise, because of uncertainty associated with sea-level rise projections. This study applies a Coastal Economic Vulnerability Index (CEVI) to the northern Gulf of Mexico region, which includes both physical and economic factors that contribute to societal risk of impacts from rising sea level. The economic variables incorporated in the CEVI include human population, urban land cover, economic value of key types of infrastructure, and residential and commercial building values. The variables are standardized and combined to produce a quantitative index value for each 1-km coastal segment, highlighting areas where human populations and the built environment are most at risk. This information can be used by coastal managers as they allocate limited resources for ecosystem restoration, beach nourishment, and coastal-protection infrastructure. The study indicates a large amount of variability in index values along the northern Gulf of Mexico coastline, and highlights areas where long-term planning to enhance resiliency is particularly needed.

  20. Investigating the influence of anthropogenic forcing on observed mean and extreme sea level pressure trends over the Mediterranean Region.

    Science.gov (United States)

    Barkhordarian, Armineh

    2012-01-01

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scale component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.

  1. The Caribbean conundrum of Holocene sea level.

    Science.gov (United States)

    Jackson, Luke; Mound, Jon

    2014-05-01

    In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.

  2. Revised paleoenvironmental analysis of the Holocene portion of the Barbados sea-level record: Cobbler's Reef revisited

    Science.gov (United States)

    Toscano, Marguerite A.

    2016-06-01

    Sample elevations corrected for tectonic uplift and assessed relative to local modeled sea levels provide a new perspective on paleoenvironmental history at Cobbler's Reef, Barbados. Previously, 14C-dated surface samples of fragmented Acropora palmata plotted above paleo sea level based on their present (uplifted) elevations, suggesting supratidal rubble deposited during a period of extreme storms (4500-3000 cal BP), precipitating reef demise. At several sites, however, A. palmata persisted, existing until ~370 cal BP. Uplift-corrected A. palmata sample elevations lie below the western Atlantic sea-level curve, and ~2 m below ICE-6G-modeled paleo sea level, under slow rates of sea-level rise, negating the possibility that Cobbler's Reef is a supratidal storm ridge. Most sites show limited age ranges from corals likely damaged/killed on the reef crest, not the mixed ages of rubble ridges, strongly suggesting the reef framework died off in stages over 6500 yr. Reef crest death assemblages invoke multiple paleohistoric causes, from ubiquitous hurricanes to anthropogenic impacts. Comparison of death assemblage ages to dated regional paleotempestological sequences, proxy-based paleotemperatures, recorded hurricanes, tsunamis, European settlement, deforestation, and resulting turbidity, reveals many possible factors inimical to the survival of A. palmata along Cobbler's Reef.

  3. Present-day sea level rise: a synthesis

    International Nuclear Information System (INIS)

    Cazenave, A.; Llovel, W.; Lombard, A.

    2008-01-01

    Measuring sea level change and understanding its causes have improved considerably in the recent years, essentially because new in situ and remote sensing data sets have become available. Here we report on the current knowledge of present-day sea level change. We briefly present observational results on sea level change from satellite altimetry since 1993 and tide gauges for the past century. We next discuss recent progress made in quantifying the processes causing sea level change on time scales ranging from years to decades, i.e., thermal expansion, land ice mass loss and land water storage change. For the 1993-2003 decade, the sum of climate-related contributions agree well (within the error bars) with the altimetry-based sea level, half of the observed rate of rise being due to ocean thermal expansion, land ice plus land waters explaining the other half. Since about 2003, thermal expansion increase has stopped, whereas the sea level continues to rise, although at a reduced rate compared to the previous decade (2.5 mm/yr versus 3.1 mm/yr). Recent increases in glacier melting and ice mass loss from the ice sheets appear able to account alone for the rise in sea level reported over the last five years. (authors)

  4. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  5. A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability

    Directory of Open Access Journals (Sweden)

    J. Frigola

    2012-06-01

    Full Text Available Borehole PRGL1-4 drilled in the upper slope of the Gulf of Lion provides an exceptional record to investigate the impact of late Pleistocene orbitally-driven glacio-eustatic sea-level oscillations on the sedimentary outbuilding of a river fed continental margin. High-resolution grain-size and geochemical records supported by oxygen isotope chronostratigraphy allow reinterpreting the last 500 ka upper slope seismostratigraphy of the Gulf of Lion. Five main sequences, stacked during the sea-level lowering phases of the last five glacial-interglacial 100-kyr cycles, form the upper stratigraphic outbuilding of the continental margin. The high sensitivity of the grain-size record down the borehole to sea-level oscillations can be explained by the great width of the Gulf of Lion continental shelf. Sea level driven changes in accommodation space over the shelf cyclically modified the depositional mode of the entire margin. PRGL1-4 data also illustrate the imprint of sea-level oscillations at millennial time-scale, as shown for Marine Isotopic Stage 3, and provide unambiguous evidence of relative high sea-levels at the onset of each Dansgaard-Oeschger Greenland warm interstadial. The PRGL1-4 grain-size record represents the first evidence for a one-to-one coupling of millennial time-scale sea-level oscillations associated with each Dansgaard-Oeschger cycle.

  6. Detecting sea-level hazards: Simple regression-based methods for calculating the acceleration of sea level

    Science.gov (United States)

    Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.

    2016-01-04

    This report documents the development of statistical tools used to quantify the hazard presented by the response of sea-level elevation to natural or anthropogenic changes in climate and ocean circulation. A hazard is a physical process (or processes) that, when combined with vulnerability (or susceptibility to the hazard), results in risk. This study presents the development and comparison of new and existing sea-level analysis methods, exploration of the strengths and weaknesses of the methods using synthetic time series, and when appropriate, synthesis of the application of the method to observed sea-level time series. These reports are intended to enhance material presented in peer-reviewed journal articles where it is not always possible to provide the level of detail that might be necessary to fully support or recreate published results.

  7. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea.

    Science.gov (United States)

    Pearman, J K; Kürten, S; Sarma, Y V B; Jones, B H; Carvalho, S

    2016-03-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Science.gov (United States)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor; Jakobsson, Martin

    2017-09-01

    Deglacial (12.8-10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM; ˜ 24 kiloannum or ka) minimum sea level of ˜ 125-130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ˜ 400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42-47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  9. Present day sea level changes: observation and causes

    International Nuclear Information System (INIS)

    Lombard, A.

    2005-11-01

    Whereas sea level has changed little over the last 2000 years, it has risen at a rate of about 2 mm/year during the 20. century. This unexpected sea level rise has been attributed to the anthropogenic global warming, recorded over several decades. Sea level variations have been measured globally and precisely for about 12 years due to satellite altimeter missions Topex/Poseidon and Jason-1. These observations indicate a global mean sea level rise of about 3 mm/year since 1993, a value significantly larger than observed during previous decades. Recent observations have allowed us to quantify the various climatic factors contributing to observed sea level change: thermal expansion of sea water due to ocean warming, melting of mountain glaciers and ice sheets, and changes in the land water reservoirs. A water budget based on these new observations allows us to partly explain the observed sea level rise. In particular, we show that the thermal expansion explains only 25% of the secular sea level rise as recorded by tide-gauges over the last 50 years, while it contributes about 50% of sea level rise observed over the last decade. Meanwhile, recent studies show that glacier and ice sheet melting could contribute the equivalent of 1 mm/year in sea level rise over the last decade. In addition, the high regional variability of sea level trends revealed by satellite altimetry is mainly due to thermal expansion. There is also an important decadal spatio-temporal variability in the ocean thermal expansion over the last 50 years, which seems to be controlled by natural climate fluctuations. We question for the first time the link between the decadal fluctuations in the ocean thermal expansion and in the land reservoirs, and indeed their climatic contribution to sea level change. Finally a preliminary analysis of GRACE spatial gravimetric observations over the oceans allows us to estimate the seasonal variations in mean sea level due to ocean water mass balance variations

  10. Tide-surge historical assessment of extreme water levels for the St. Johns River: 1928-2017

    Science.gov (United States)

    Bacopoulos, Peter

    2017-10-01

    An historical storm population is developed for the St. Johns River, located in northeast Florida-US east coast, via extreme value assessment of an 89-year-long record of hourly water-level data. Storm surge extrema and the corresponding (independent) storm systems are extracted from the historical record as well as the linear and nonlinear trends of mean sea level. Peaks-over-threshold analysis reveals the top 16 most-impactful (storm surge) systems in the general return-period range of 1-100 years. Hurricane Matthew (2016) broke the record with a new absolute maximum water level of 1.56 m, although the peak surge occurred during slack tide level (0.00 m). Hurricanes and tropical systems contribute to return periods of 10-100 years with water levels in the approximate range of 1.3-1.55 m. Extratropical systems and nor'easters contribute to the historical storm population (in the general return-period range of 1-10 years) and are capable of producing extreme storm surges (in the approximate range of 1.15-1.3 m) on par with those generated by hurricanes and tropical systems. The highest astronomical tide is 1.02 m, which by evaluation of the historical record can contribute as much as 94% to the total storm-tide water level. Statically, a hypothetical scenario of Hurricane Matthew's peak surge coinciding with the highest astronomical tide would yield an overall storm-tide water level of 2.58 m, corresponding to an approximate 1000-year return period by historical comparison. Sea-level trends (linear and nonlinear) impact water-level return periods and constitute additional risk hazard for coastal engineering designs.

  11. Is sea-level rising?

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    correction in the estimation of trends obtained for tide gauge records. The altimeter data permits to prepare spatial maps of sea-level rise trends. We present a map prepared for the Indian Ocean (Figure 4) north of 10oS , which shows a fairly uniform... drawn information from research papers published by the author and report of the IPCC AR5 WG1 Chapter 13: Sea Level Changes, in which the author has served as a ‘Lead Author’. Figure1 is prepared using data from the University of Colorado. Nerem, R...

  12. Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008

    Science.gov (United States)

    2008-01-01

    Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred. It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate. Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water. The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer. In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat. This image of sea level trend also reveals a significant

  13. The extremely high 137Cs inventory in the Sulu Sea: a possible mechanism

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Wang Zhongliang; Zheng Jian

    2006-01-01

    Large-volume seawater samples were collected in the Sulu and South China Seas and their 137 Cs activities were determined by γ-ray spectrometry using a low background type high-purity Ge detector. Vertical distributions of 137 Cs activity showed an exponential decrease in the South China Sea, whereas a subsurface maximum at 200 m depth and monotonic decrease below 300 m were observed in the Sulu Sea. A significant difference in intermediate water 137 Cs activities in the 500-2000 m depth was observed between the Sulu and South China Seas, i.e., the 137 Cs activities in the Sulu Sea were remarkably higher than those in the South China Sea. The difference in the 137 Cs inventory below 500 m was ∼1200 Bq m -2 between the Sulu and South China Seas. The 137 Cs total inventory of 3200 Bq m -2 in the Sulu Sea was 5.7 times higher than that expected from global fallout. A possible mechanism controlling this extremely high 137 Cs total inventory may be inflows of the 137 Cs rich water masses through the Luzon Strait, lateral transport across the Mindoro Strait into the Sulu Sea, and then subduction into the deep layer in the basin

  14. Case studies: Application of SEA in provincial level expressway infrastructure network planning in China - Current existing problems

    International Nuclear Information System (INIS)

    Zhou Kaiyi; Sheate, William R.

    2011-01-01

    Since the Law of the People's Republic of China on Environmental Impact Assessment was enacted in 2003 and Huanfa 2004 No. 98 was released in 2004, Strategic Environmental Assessment (SEA) has been officially being implemented in the expressway infrastructure planning field in China. Through scrutinizing two SEA application cases of China's provincial level expressway infrastructure (PLEI) network plans, it is found that current SEA practice in expressway infrastructure planning field has a number of problems including: SEA practitioners do not fully understand the objective of SEA; its potential contributions to strategic planning and decision-making is extremely limited; the employed application procedure and prediction and assessment techniques are too simple to bring objective, unbiased and scientific results; and no alternative options are considered. All these problems directly lead to poor quality SEA and consequently weaken SEA's effectiveness.

  15. Sea level rise and the geoid: factor analysis approach

    Directory of Open Access Journals (Sweden)

    Alexey Sadovski

    2013-08-01

    Full Text Available Sea levels are rising around the world, and this is a particular concern along most of the coasts of the United States. A 1989 EPA report shows that sea levels rose 5-6 inches more than the global average along the Mid-Atlantic and Gulf Coasts in the last century. The main reason for this is coastal land subsidence. This sea level rise is considered more as relative sea level rise than global sea level rise. Thus, instead of studying sea level rise globally, this paper describes a statistical approach by using factor analysis of regional sea level rates of change. Unlike physical models and semi-empirical models that attempt to approach how much and how fast sea levels are changing, this methodology allows for a discussion of the factor(s that statistically affects sea level rates of change, and seeks patterns to explain spatial correlations.

  16. Arctic Sea Level During the Satellite Altimetry Era

    DEFF Research Database (Denmark)

    Carret, A.; Johannessen, J. A.; Andersen, Ole Baltazar

    2017-01-01

    Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data....... However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry......-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled...

  17. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  18. Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth.

    Science.gov (United States)

    Myrow, P M; Lamb, M P; Ewing, R C

    2018-04-19

    Earth's most severe climate changes occurred during global-scale snowball-Earth glaciations, which profoundly altered Earth's atmosphere, oceans, and biosphere. Extreme rates of glacio-eustatic sea-level rise are a fundamental prediction of the snowball Earth hypothesis, but supporting geologic evidence is lacking. We use paleohydraulic analysis of wave ripples and tidal laminae of the Elatina Formation, Australia - deposited following the Marinoan glaciation ca. 635Ma - to show that water depths of 9-16m remained nearly constant for ~100yrs throughout 27m of sediment accumulation. This accumulation rate was too great to have been accommodated by subsidence, and instead indicates an extraordinarily rapid rate of sea-level rise (0.2-0.27m/yr). Our results substantiate a fundamental prediction of snowball Earth models of rapid deglaciation during the early transition to a super-greenhouse climate. Copyright © 2018, American Association for the Advancement of Science.

  19. Coastal Sea Levels, Impacts, and Adaptation

    Directory of Open Access Journals (Sweden)

    Thomas Wahl

    2018-02-01

    Full Text Available Sea-level rise (SLR poses a great threat to approximately 10% of the world’s population residing in low-elevation coastal zones (i.e., land located up to 10 m of present-day mean sea-level (MSL[...

  20. Experiments in Reconstructing Twentieth-Century Sea Levels

    Science.gov (United States)

    Ray, Richard D.; Douglas, Bruce C.

    2011-01-01

    One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.

  1. A new Arctic 25-year Altimetric Sea-level Record (1992-2016) and Initial look at Arctic Sea Level Budget Closure

    OpenAIRE

    Andersen O.B., Passaro M., Benveniste J., Piccioni G.

    2016-01-01

    A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reproce...

  2. Sea level rise and the geoid: factor analysis approach

    OpenAIRE

    Song, Hongzhi; Sadovski, Alexey; Jeffress, Gary

    2013-01-01

    Sea levels are rising around the world, and this is a particular concern along most of the coasts of the United States. A 1989 EPA report shows that sea levels rose 5-6 inches more than the global average along the Mid-Atlantic and Gulf Coasts in the last century. The main reason for this is coastal land subsidence. This sea level rise is considered more as relative sea level rise than global sea level rise. Thus, instead of studying sea level rise globally, this paper describes a statistical...

  3. Analysis of Sea Level Rise in Singapore Strait

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung

    2013-04-01

    Sea level in Singapore Strait is governed by various scale phenomena, from global to local. Global signals are dominated by the climate change and multi-decadal variability and associated sea level rise; at regional scale seasonal sea level variability is caused by ENSO-modulated monsoons; locally, astronomic tides are the strongest force. Tide gauge records in Singapore Strait are analyzed to derive local sea level trend, and attempts are made to attribute observed sea level variability to phenomena at various scales, from global to local. It is found that at annual scale, sea level anomalies in Singapore Strait are quasi-periodic, of the order of ±15 cm, the highest during northeast monsoon and the lowest during southwest monsoon. Interannual regional sea level falls are associated with El Niño events, while the rises are related to La Niña episodes; both variations are in the range of ±9 cm. At multi-decadal scale, sea level in Singapore Strait has been rising at the rate 1.2-1.9 mm/year for the period 1975-2009, 2.0±0.3 mm/year for 1984-2009, and 1.3-4.7 mm/year for 1993-2009. When compared with the respective global trends of 2.0±0.3, 2.4, and 2.8±0.8 mm/year, Singapore Strait sea level rise trend was weaker at the earlier period and stronger at the recent decade.

  4. Indo-Pacific sea level variability during recent decades

    Science.gov (United States)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  5. Interannual sea level variability in the Pearl River Estuary and its response to El Niño-Southern Oscillation

    Science.gov (United States)

    Wang, Linlin; Li, Qiang; Mao, Xian-zhong; Bi, Hongsheng; Yin, Peng

    2018-03-01

    The South China coast, especially the Pearl River Estuary (PRE) region, is prosperous and densely populated, but vulnerable to sea level changes. Sea level anomalies (SLA) during 1954-2012 from tide gauge station data and regional SLAs during 1993-2012 from satellite altimetry are analyzed and compare to the El Niño-Southern Oscillation (ENSO). Results show that sea level declines during El Niño events and rises during La Niña. Sea level in the PRE responds to ENSO with 3-month lag. The ENSO can cause sea level in the PRE to fluctuate from -8.70 to 8.11 cm. Sea level cycles of 3 and 5 years are related to ENSO. The ENSO mechanism affecting sea level in the PRE was analyzed by identifying dominant regional and local forces. Weak/strong SLAs in most El Niño/La Niña events may be attributed to less/more seawater transport driven by anomalously weak/strong north winds and local anomalously high/low sea level pressure. Wind-driven coastal current is the predominant factor. It generated coastal seawater volume transport along a 160 km wide cross section to decrease by 21.07% in a typical El Niño period (January 2010) and increase by 44.03% in a typical La Niña period (January 2011) as compared to an ENSO neutral situation (January 2013). Results of sea level rise and its potential mechanism provide insight for disaster protection during extreme El Niño/La Niña events.

  6. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  7. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Science.gov (United States)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor

    2017-01-01

    Deglacial (12.8–10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka) minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  8. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Directory of Open Access Journals (Sweden)

    T. M. Cronin

    2017-09-01

    Full Text Available Deglacial (12.8–10.7 ka sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1 and multicore SWERUS-L2-4-MC1 (4-MC1, and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1. Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.. Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1 followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  9. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  10. Regional Risk Assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea.

    Science.gov (United States)

    Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge

  11. Sea level rise and variability around Peninsular Malaysia

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei

    2014-05-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single

  12. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Science.gov (United States)

    Nelson, Joanna L; Zavaleta, Erika S

    2012-01-01

    Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4)NO(3))-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a) aboveground biomass, b) plant tissue N concentrations, c) N stock sequestered in plants, and d) shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.

  13. The Red Sea during the Last Glacial Maximum: implications for sea level reconstructions

    Science.gov (United States)

    Gildor, H.; Biton, E.; Peltier, W. R.

    2006-12-01

    The Red Sea (RS) is a semi-enclosed basin connected to the Indian Ocean via a narrow and shallow strait, and surrounded by arid areas which exhibits high sensitivity to atmospheric changes and sea level reduction. We have used the MIT GCM to investigate the changes in the hydrography and circulation in the RS in response to reduced sea level, variability in the Indian monsoons, and changes in atmospheric temperature and humidity that occurred during the Last Glacial Maximum (LGM). The model results show high sensitivity to sea level reduction especially in the salinity field (increasing with the reduction in sea level) together with a mild atmospheric impact. Sea level reduction decreases the stratification, increases subsurface temperatures, and alters the circulation pattern at the Strait of Bab el Mandab, which experiences a transition from submaximal flow to maximal flow. The reduction in sea level at LGM alters the location of deep water formation which shifts to an open sea convective site in the northern part of the RS compared to present day situation in which deep water is formed from the Gulf of Suez outflow. Our main result based on both the GCM and on a simple hydraulic control model which takes into account mixing process at the Strait of Bab El Mandeb, is that sea level was reduced by only ~100 m in the Bab El Mandeb region during the LGM, i.e. the water depth at the Hanish sill (the shallowest part in the Strait Bab el Mandab) was around 34 m. This result agrees with the recent reconstruction of the LGM low stand of the sea in this region based upon the ICE-5G (VM2) model of Peltier (2004).

  14. Sea level monitoring in Africa | Woodworth | African Journal of ...

    African Journals Online (AJOL)

    Information Network for Africa (ODINAfrica) programme are described and a survey of currently existing and planned sea level stations in Africa is presented, together with information on where data for existing stations may be found. Keywords: sea level data applications, sea level data telemetry, sea level networks. African ...

  15. Sea level rise : A literature survey

    NARCIS (Netherlands)

    Oude Essink, G.H.P.

    1992-01-01

    In order to assess the impact of sea level rise on Water Management, it is useful to understand the mechanisrns that determine the level of the sea. In this study, a literature survey is executed to analyze these mechanisms. Climate plays a centra! role in these mechanisms, Climate mainly changes

  16. Evaluating model simulations of 20th century sea-level rise. Part 1: global mean sea-level change

    NARCIS (Netherlands)

    Slangen, A.B.A.; Meyssignac, B.; Agosta, C.; Champollion, N.; Church, J.A.; Fettweis, X.; Ligtenberg, S.R.M.; Marzeion, B.; Melet, A.; Palmer, M.D.; Richter, K.; Roberts, C.D.; Spada, G.

    2017-01-01

    Sea level change is one of the major consequences of climate change and is projected to affect coastal communities around the world. Here, global mean sea level (GMSL) change estimated by 12 climate models from phase 5 of the World Climate Research Programme’s Climate Model Intercomparison Project

  17. Holocene sea level, a semi-empirical contemplation

    Science.gov (United States)

    Bittermann, K.; Kemp, A.; Vermeer, M.; Rahmstorf, S.

    2017-12-01

    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the `Holocene Optimum'. From ­­there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with semi-empirical sea-level models. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., et al. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews, 103, 91

  18. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt

    2014-01-01

    the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative...... sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest...... Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality...

  19. The multimillennial sea-level commitment of global warming.

    Science.gov (United States)

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.

  20. Coupling of sea level and tidal range changes, with implications for future water levels.

    Science.gov (United States)

    Devlin, Adam T; Jay, David A; Talke, Stefan A; Zaron, Edward D; Pan, Jiayi; Lin, Hui

    2017-12-05

    Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

  1. Climate in France during the 21. century - Regionalized scenarios - Reference indices for the metropolitan region - Evolution at sea level

    International Nuclear Information System (INIS)

    Peings, Yannick; Planton, Serge; Deque, Michel; Jamous, Marc; Le Treut, Herve; Gallee, Hubert; Li, Laurent; Jouzel, J.

    2011-01-01

    After some comments on climate modelling (models, scenarios, uncertainties, regional predictions), the first part reports the study of several temperature indices (minimum, average and maximum daily temperature, number of days with abnormally high or low temperature, number of days of heat wave, number of days with negative temperatures, and so on.), precipitation indices (daily and extreme precipitations, dry periods, snow falls). It also discusses soil humidity index, strong wind index, river flow rate, and sea level. The second part reports simulation results for indices in metropolitan France according to the French Aladin-Climat, LMDZ and MAR models. The third volume reports evolutions and predictions of average sea level at the planet scale and along the French coasts, and discusses impacts related to sea level change (coast erosion, submersion, salt intrusion)

  2. Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon

    Directory of Open Access Journals (Sweden)

    A. Torres-Freyermuth

    2012-12-01

    Full Text Available Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH. This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i laboratory experiments conducted on a physical model (Demirbilek et al., 2007and (ii field observations (Coronado et al., 2007. Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (Hs >2 m. The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions.

  3. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Directory of Open Access Journals (Sweden)

    Joanna L Nelson

    Full Text Available Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4NO(3-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a aboveground biomass, b plant tissue N concentrations, c N stock sequestered in plants, and d shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.

  4. Sea level rise in the Arctic Ocean

    OpenAIRE

    Proshutinsky, Andrey; Pavlov, Vladimir; Bourke, Robert H.

    2001-01-01

    The article of record as published may be found at http://dx.doi.org/10.1029/2000GL012760 About 60 tide-gauge stations in the Kara, Laptev, East-Siberian and Chukchi Seas have recorded the sea level change from the 1950s through 1990s. Over this 40-year period, most of these stations show a significant sea level rise (SLR). In light of global change, this SLR could be a manifestation of warming in the Artic coupled with a decrease of sea ice extent, warming of Atlantic waters, changes in...

  5. Sediment transport and deposition during extreme sea storm events at the Salerno Bay (Tyrrhenian Sea: comparison of field data with numerical model results

    Directory of Open Access Journals (Sweden)

    F. Budillon

    2006-01-01

    Full Text Available Seismic stratigraphy and core litho-stratigraphy in the Salerno Bay inner shelf (Southern Tyrrhenian Sea reveal significant storm deposition episodes over the last 1 ky. Three major events are preserved as decimetre thick silt/sand layers bounded at their base by erosional surfaces and sealed in the muddy marine sequences between 25 and 60 m of depth. Geochronology and chrono-stratigraphy on core sediment point towards a recurrence of major sea storms between 0.1 and 0.3 ky and put the last significant event in the 19th century, when no local meteorological time series is available. A modelling of extreme sea-storms with a return period of about 0.1 ky is here proposed based on historical hindcast and aims at explaining the occurrence of such unusual deep and thick sand deposits in the northern sector of the bay. Results highlight the vulnerability of the northern coast of the Salerno Bay to the south western sea storms which can drive waves up to about 8 m high and wave period of about 13 s. With these conditions an intense combined flow current is formed and might account for winnowing fine sand down to the depth of 40 m at least. The numerical model thus confirms a possible sand transport in the bottom boundary layer due to wave-current interaction and could corroborate the interpretation of the most recent sand layers, included in the cores, as being generated under extreme sea storm conditions.

  6. Global change and the measurement of absolute sea-level

    Science.gov (United States)

    Diamante, John M.; Pyle, Thomas E.; Carter, William E.; Scherer, Wolfgang

    To quantify properly the long-term response of sea-level to climate change, land motions must be separated from the apparent or relative sea-level change recorded by conventional tide/sea-level gauges. Here we present a concept for global measurement of the true or “absolute” sea-level change, which combines recent advances in space-based geodetic techniques with plans for a global sea-level network under the World Climate Research Programme (WCRP). Data from initial feasibility tests show that land motion, due to global (plate tectonic), regional (glacial rebound), or local (fluid withdrawal) effects, can probably be measured to ±1cm (on a single measurement basis) by an innovative combination of Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) tevhniques. By making repeated observations of position at a number of tide gauges using portable, economical GPS receivers in a differential mode relative to the fewer, more stable, but more expensive VLBI observatories, it will be possible to subtract land motion from the relative sea-level signal. Decadal to century scale trends at the 1-2mm y -1 level will be resolvable in the sea-level and vertical land motion time series within about a decade. Detection of subsidence or uplift at specific gauges will allow correction for land motion or deletion of bad data when computing regional or global, i.e. eustatic, sea-level changes. In addition to their applications in oceanography and climate studies, such data will test models by Peltier and other that relate mantle viscosity and deglaciation history to present rates of crustal subsidence or uplift. If the predicted crustal motions are confirmed, we can also have more confidence in the use of historical tide/sea-level gauge records in retrospective studies of sea-level change related to climate variability on decadal or longer time scales. It is concluded that as few as one-third (about 100) of the total number of tide/sea-level gauges (250

  7. An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea

    Science.gov (United States)

    Akpinar, Adem; Ponce de León, S.

    2016-03-01

    This study aims at an assessment of wind re-analyses for modelling storms in the Black Sea. A wind-wave modelling system (Simulating WAve Nearshore, SWAN) is applied to the Black Sea basin and calibrated with buoy data for three recent re-analysis wind sources, namely the European Centre for Medium-Range Weather Forecasts Reanalysis-Interim (ERA-Interim), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective Analysis for Research and Applications (MERRA) during an extreme wave condition that occurred in the north eastern part of the Black Sea. The SWAN model simulations are carried out for default and tuning settings for deep water source terms, especially whitecapping. Performances of the best model configurations based on calibration with buoy data are discussed using data from the JASON2, TOPEX-Poseidon, ENVISAT and GFO satellites. The SWAN model calibration shows that the best configuration is obtained with Janssen and Komen formulations with whitecapping coefficient (Cds) equal to 1.8e-5 for wave generation by wind and whitecapping dissipation using ERA-Interim. In addition, from the collocated SWAN results against the satellite records, the best configuration is determined to be the SWAN using the CFSR winds. Numerical results, thus show that the accuracy of a wave forecast will depend on the quality of the wind field and the ability of the SWAN model to simulate the waves under extreme wind conditions in fetch limited wave conditions.

  8. Sea level trend and variability around Peninsular Malaysia

    Science.gov (United States)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2015-08-01

    Sea level rise due to climate change is non-uniform globally, necessitating regional estimates. Peninsular Malaysia is located in the middle of Southeast Asia, bounded from the west by the Malacca Strait, from the east by the South China Sea (SCS), and from the south by the Singapore Strait. The sea level along the peninsula may be influenced by various regional phenomena native to the adjacent parts of the Indian and Pacific oceans. To examine the variability and trend of sea level around the peninsula, tide gauge records and satellite altimetry are analyzed taking into account vertical land movements (VLMs). At annual scale, sea level anomalies (SLAs) around Peninsular Malaysia on the order of 5-25 cm are mainly monsoon driven. Sea levels at eastern and western coasts respond differently to the Asian monsoon: two peaks per year in the Malacca Strait due to South Asian-Indian monsoon; an annual cycle in the remaining region mostly due to the East Asian-western Pacific monsoon. At interannual scale, regional sea level variability in the range of ±6 cm is correlated with El Nino-Southern Oscillation (ENSO). SLAs in the Malacca Strait side are further correlated with the Indian Ocean Dipole (IOD) in the range of ±5 cm. Interannual regional sea level falls are associated with El Nino events and positive phases of IOD, whilst rises are correlated with La Nina episodes and negative values of the IOD index. At seasonal to interannual scales, we observe the separation of the sea level patterns in the Singapore Strait, between the Raffles Lighthouse and Tanjong Pagar tide stations, likely caused by a dynamic constriction in the narrowest part. During the observation period 1986-2013, average relative rates of sea level rise derived from tide gauges in Malacca Strait and along the east coast of the peninsula are 3.6±1.6 and 3.7±1.1 mm yr-1, respectively. Correcting for respective VLMs (0.8±2.6 and 0.9±2.2 mm yr-1), their corresponding geocentric sea level rise rates

  9. Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr

    Science.gov (United States)

    Yi, Liang; Chen, Yanping

    2013-04-01

    Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of

  10. Advancing Best Practices for the Formulation of Localized Sea Level Rise/Coastal Inundation Extremes Scenarios for Military Installations in the Pacific Islands

    Science.gov (United States)

    2015-07-14

    in mean sea level, El Niño Southern Oscillation (ENSO) and other modes of natural variability, tropical and extratropical storms , and unusually high...parameter) and changes in typical ( extratropical ) storm track (scale parameter) need to be explored as does the applicability of customized climate...mean sea level over decades to months; tropical and extratropical storms , and swell from distant storms that manifest as events lasting hours to

  11. Changing Sea Levels

    Science.gov (United States)

    Pugh, David

    2004-04-01

    Flooding of coastal communities is one of the major causes of environmental disasters world-wide. This textbook explains how sea levels are affected by astronomical tides, weather effects, ocean circulation and climate trends. Based on courses taught by the author in the U.K. and the U.S., it is aimed at undergraduate students at all levels, with non-basic mathematics being confined to Appendices and a website http://publishing.cambridge.org/resources/0521532183/.

  12. Aminostratigraphic correlations and paleotemperature implications, Pliocene-Pleistocene high-sea-level deposits, northwestern Alaska

    Science.gov (United States)

    Kaufman, Darrell S.; Brigham-Grette, Julie

    Multiple periods of Late Pliocene and Pleistocene high sea level are recorded by surficial deposits along the coastal plains of northwestern Alaska. Analyses of the extent of amino acid epimerization in fossil molluscan shells from the Nome coastal plain of the northern Bering Sea coast, and from the Alaskan Arctic Coastal Plain of the Chukchi and Beaufort Sea coasts, allow recognition of at least five intervals of higher-than-present relative sea level. Three Late Pliocene transgressions are represented at Nome by the complex and protracted Beringian transgression, and on the Arctic Coastal Plain by the Colvillian, Bigbendian, and Fishcreekian transgressions. These were followed by a lengthy period of non-marine deposition during the Early Pleistocene when sea level did not reach above its present position. A Middle Pleistocene high-sea-level event is represented at Nome by the Anvilian transgression, and on the Arctic Coastal Plain by the Wainwrightian transgression. Anvilian deposits at the type locality are considerably younger than previously thought, perhaps as young as Oxygen-Isotope Stage 11 (˜410,000 BP). Finally, the last interglacial Pelukian transgression is represented discontinuously along the shores of northwestern Alaska. Amino acid epimerization data, together with previous paleomagnetic measurements, radiometric-age determinations, and paleontologic evidence provide geochronological constraints on the sequence of marine deposits. They form the basis of regional correlations and offer a means of evaluating the post-depositional thermal history of the high-sea-level deposits. Provisional correlations between marine units at Nome and the Artic Coastal Plain indicate that the temperature difference that separates the two sites today had existed by about 3.0 Ma. Since that time, the effective diagenetic temperature was lowered by about 3-4°C at both sites, and the mean annual temperature was lowered considerably more. This temperature decrease was

  13. Sea-level rise: towards understanding local vulnerability

    Science.gov (United States)

    Rahmstorf, Stefan

    2012-06-01

    Projections of global sea-level rise into the future have become more pessimistic over the past five years or so. A global rise by more than one metre by the year 2100 is now widely accepted as a serious possibility if greenhouse gas emissions continue unabated. That is witnessed by the scientific assessments that were made since the last IPCC report was published in 2007. The Delta Commission of the Dutch government projected up to 1.10 m as a 'high-end' scenario (Vellinga et al 2009). The Scientific Committee on Antarctic Research (SCAR) projected up to 1.40 m (Scientific Committee on Antarctic Research 2009), and the Arctic Monitoring and Assessment Programme (AMAP) gives a range of 0.90-1.60 m in its 2011 report (Arctic Monitoring and Assessment Programme 2011). And recently the US Army Corps of Engineers recommends using a 'low', an 'intermediate' and a 'high' scenario for global sea-level rise when planning civil works programmes, with the high one corresponding to a 1.50 m rise by 2100 (US Army Corps of Engineers 2011). This more pessimistic view is based on a number of observations, most importantly perhaps the fact that sea level has been rising at least 50% faster in the past decades than projected by the IPCC (Rahmstorf et al 2007, IPCC 2007). Also, the rate of rise (averaged over two decades) has accelerated threefold, from around 1 mm yr-1 at the start of the 20th century to around 3 mm yr-1 over the past 20 years (Church and White 2006), and this rate increase closely correlates with global warming (Rahmstorf et al 2011). The IPCC projections, which assume almost no further acceleration in the 20th century, thus look less plausible. And finally the observed net mass loss of the two big continental ice sheets (Van den Broeke et al 2011) calls into question the assumption that ice accumulation in Antarctica would largely balance ice loss from Greenland in the course of further global warming (IPCC 2007). With such a serious sea-level rise on the horizon

  14. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    Science.gov (United States)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100

  15. The social values at risk from sea-level rise

    International Nuclear Information System (INIS)

    Graham, Sonia; Barnett, Jon; Fincher, Ruth; Hurlimann, Anna; Mortreux, Colette; Waters, Elissa

    2013-01-01

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies

  16. The social values at risk from sea-level rise

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Sonia, E-mail: sonia.graham@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Barnett, Jon, E-mail: jbarn@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Fincher, Ruth, E-mail: r.fincher@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Hurlimann, Anna, E-mail: anna.hurlimann@unimelb.edu.au [Faculty of Architecture, Building and Planning, The University of Melbourne, Architecture and Planning Building, Parkville, Victoria 3010 (Australia); Mortreux, Colette, E-mail: colettem@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Waters, Elissa, E-mail: elissa.waters@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia)

    2013-07-15

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.

  17. Sea level change since 2005: importance of salinity

    Science.gov (United States)

    Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.

    2017-12-01

    Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.

  18. A Late Pleistocene sea level stack

    OpenAIRE

    Spratt Rachel M; Lisiecki Lorraine E

    2016-01-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal componen...

  19. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an \\'intermediate\\' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  20. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-01-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  1. Sea Levels Online: Sea Level Variations of the United States Derived from National Water Level Observation Network Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water level records are a combination of the fluctuations of the ocean and the vertical land motion at the location of the station. Monthly mean sea level (MSL)...

  2. MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium

    Science.gov (United States)

    Stocchi, Paolo; Vacchi, Matteo; Lorscheid, Thomas; de Boer, Bas; Simms, Alexander R.; van de Wal, Roderik S. W.; Vermeersen, Bert L. A.; Pappalardo, Marta; Rovere, Alessio

    2018-04-01

    Sea-level indicators dated to the Last Interglacial, or Marine Isotope Stage (MIS) 5e, have a twofold value. First, they can be used to constrain the melting of Greenland and Antarctic Ice Sheets in response to global warming scenarios. Second, they can be used to calculate the vertical crustal rates at active margins. For both applications, the contribution of glacio- and hydro-isostatic adjustment (GIA) to vertical displacement of sea-level indicators must be calculated. In this paper, we re-assess MIS 5e sea-level indicators at 11 Mediterranean sites that have been generally considered tectonically stable or affected by mild tectonics. These are found within a range of elevations of 2-10 m above modern mean sea level. Four sites are characterized by two separate sea-level stands, which suggest a two-step sea-level highstand during MIS 5e. Comparing field data with numerical modeling we show that (i) GIA is an important contributor to the spatial and temporal variability of the sea-level highstand during MIS 5e, (ii) the isostatic imbalance from the melting of the MIS 6 ice sheet can produce a >2.0 m sea-level highstand, and (iii) a two-step melting phase for the Greenland and Antarctic Ice Sheets reduces the differences between observations and predictions. Our results show that assumptions of tectonic stability on the basis of the MIS 5e records carry intrinsically large uncertainties, stemming either from uncertainties in field data and GIA models. The latter are propagated to either Holocene or Pleistocene sea-level reconstructions if tectonic rates are considered linear through time.

  3. Spatial variation in extreme water levels in the Baltic Sea – North Sea transition from tide gauge records

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Andersen, Ole Baltazar; Knudsen, Per

    events.Knowledge about extremes is essential for climate adaptation, design, and planning purposes. In an ongoing research project we seek to develop more robust and objective statistics for Denmark. This includes a revisit to all tide gauge stations’ (TG) data and exploring methods for extreme value...

  4. Spatial sea-level reconstruction in the Baltic Sea and in the Pacific Ocean from tide gauges observations

    Directory of Open Access Journals (Sweden)

    Marco Olivieri

    2016-07-01

    Full Text Available Exploiting the Delaunay interpolation, we present a newly implemented 2-D sea-level reconstruction from coastal sea-level observations to open seas, with the aim of characterizing the spatial variability of the rate of sea-level change. To test the strengths and weaknesses of this method and to determine its usefulness in sea-level interpolation, we consider the case studies of the Baltic Sea and of the Pacific Ocean. In the Baltic Sea, a small basin well sampled by tide gauges, our reconstructions are successfully compared with absolute sea-level observations from altimetry during 1993-2011. The regional variability of absolute sea level observed across the Pacific Ocean, however, cannot be reproduced. We interpret this result as the effect of the uneven and sparse tide gauge data set and of the composite vertical land movements in and around the region. Useful considerations arise that can serve as a basis for developing sophisticated approaches.

  5. Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2

    Science.gov (United States)

    Benedict, J. J.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.

  6. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important

  7. Cambro-ordovician sea-level fluctuations and sequence boundaries: The missing record and the evolution of new taxa

    Science.gov (United States)

    Lehnert, O.; Miller, J.F.; Leslie, Stephen A.; Repetski, J.E.; Ethington, Raymond L.

    2005-01-01

    The evolution of early Palaeozoic conodont faunas shows a clear connection to sea-level changes. One way that this connection manifests itself is that thick successions of carbonates are missing beneath major sequence boundaries due to karstification and erosion. From this observation arises the question of how many taxa have been lost from different conodont lineages in these incomplete successions. Although many taxa suffered extinction due to the environmental stresses associated with falling sea-levels, some must have survived in these extreme conditions. The number of taxa missing in the early Palaeozoic tropics always will be unclear, but it will be even more difficult to evaluate the missing record in detrital successions of higher latitudes. A common pattern in the evolution of Cambrian-Ordovician conodont lineages is appearances of new species at sea-level rises and disappearances at sea-level drops. This simple picture can be complicated by intervals that consistently have no representatives of a particular lineage, even after extensive sampling of the most complete sections. Presumably the lineages survived in undocumented refugia. In this paper, we give examples of evolution in Cambrian-Ordovician shallowmarine conodont faunas and highlight problems of undiscovered or truly missing segments of lineages. ?? The Palaeontological Association.

  8. Rising sea levels and small island states

    International Nuclear Information System (INIS)

    Leatherman, S.P.

    1994-01-01

    A review is given of the problems small island nations face with respect to sea level rise caused by global warming. Many small island nations are very vulnerable to sea level rise. Particularly at risk are coral reef atolls, which are generally quite small, lie within three metres of current sea levels, and have no land at higher elevations to relocate populations and economic activity. Volcanic islands in the Pacific have high ground, but it is largely rugged, high relief and soil-poor. The most vulnerable islands are those that consist entirely of atolls and reef islands, such as Kirabai, Maldives, Tokelau and Tuvalu. Small island states, which by themselves have little power or influence in world affairs, have banded together to form the Strategic Alliance of Small Island States (AOSIS). This alliance had grown to include 42 states by the time of the 1992 U.N. Earth Summit. Although the greenhouse effect is mainly caused by industrial nations, developing countries will suffer the most from it. Choices of response strategy will depend on environmental, economic and social factors. Most small island nations do not have the resources to fight sea level rise in the way that the Dutch have. Retreat can occur as a gradual process or as catastrophic abandonment. Prohibiting construction close to the water's edge is a good approach. Sea level histories for each island state should be compiled and updated, island geomorphology and settlement patterns should be surveyed to determine risk areas, storm regimes should be determined, and information on coastal impacts of sea level rise should be disseminated to the public

  9. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    Science.gov (United States)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin H.

    2017-12-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  10. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    Science.gov (United States)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin

    2017-01-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  11. Climate related sea-level variations over the past two millennia.

    Science.gov (United States)

    Kemp, Andrew C; Horton, Benjamin P; Donnelly, Jeffrey P; Mann, Michael E; Vermeer, Martin; Rahmstorf, Stefan

    2011-07-05

    We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.

  12. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  13. Potential of sea level rise impact on South China Sea: a preliminary ...

    African Journals Online (AJOL)

    The effect of the sea level rise was involved the existence of sea water intrusion and coastal erosion phenomenon in the coastal of Terengganu. This study aim to determine fluctuation of high and low tides of the South China Sea in their relation to water quality value of Marang and Paka Rivers as well as from wells ...

  14. Climate And Sea Level: It's In Our Hands Now

    Science.gov (United States)

    Turrin, M.; Bell, R. E.; Ryan, W. B. F.

    2014-12-01

    Changes in sea level are measurable on both a local and a global scale providing an accessible way to connect climate to education, yet engaging teachers and students with the complex science that is behind the change in sea level can be a challenge. Deciding how much should be included and just how it should be introduced in any single classroom subject area can be an obstacle for a teacher. The Sea Level Rise Polar Explorer App developed through the PoLAR CCEP grant offers a guided tour through the many layers of science that impact sea level rise. This map-based data-rich app is framed around a series of questions that move the user through map layers with just the level of complexity they chose to explore. For a quick look teachers and students can review a 3 or 4 sentence introduction on how the given map links to sea level and then launch straight into the interactive touchable map. For a little more in depth look they can listen to (or read) a one-minute recorded background on the data displayed in the map prior to launching in. For those who want more in depth understanding they can click to a one page background piece on the topic with links to further visualizations, videos and data. Regardless of the level of complexity selected each map is composed of clickable data allowing the user to fully explore the science. The different options for diving in allow teachers to differentiate the learning for either the subject being taught or the user level of the student group. The map layers also include a range of complexities. Basic questions like "What is sea level?" talk about shorelines, past sea levels and elevations beneath the sea. Questions like "Why does sea level change?" includes slightly more complex issues like the role of ocean temperature, and how that differs from ocean heat content. And what is the role of the warming atmosphere in sea level change? Questions about "What about sea level in the past?" can bring challenges for students who have

  15. Anthropogenic sea level rise and adaptation in the Yangtze estuary

    Science.gov (United States)

    Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.

    2016-02-01

    Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021

  16. Precise mean sea level measurements using the Global Positioning System

    Science.gov (United States)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  17. Global sea level change and the response of solid earth; Kaisuijun hendo ni taisuru kotai chikyu no yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Y. [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    A review was given on the theory that sea level change having occurred in the past 20,000 years has given a great impact on patterns of upheaval and subsidence of the islands of Japan. Nakada has summarized distribution of underwater remains in the western part of Kyushu and estimated values of sea surface altitude in 6000 years ago, and used this conceptional chart to propose a crust upheaval mechanism by using hydroisostasy. More specifically, this is a model that crust which has subsided due to rise in the sea level has created flows of mantle, causing upheaval of the crust in land areas. This viewpoint requires further accumulation of data and verification of the theory in areas other than the western part of Kyushu. It is important to consider the effect of sea level change also in studying processes of subsidence and sedimentation in sedimentary basins including Osaka Bay. The currently available theories use analysis solutions on stratified ground, but does not consider topographical profiles from land areas to sea areas. As this topographical effect is thought extremely important, it is necessary to develop a two-dimensional cross section analyzing method by using the finite element method. 6 refs., 3 figs.

  18. Actionable Science for Sea Level Rise and Coastal Flooding to Help Avoid Maladaptation

    Science.gov (United States)

    Buchanan, M. K.

    2017-12-01

    Rising sea levels increase the frequency of flooding at all levels, from nuisance to extreme, along coastlines across the world. Although recent flooding has increased the saliency of sea level rise (SLR) and the risks it presents to governments and communities, the effect of SLR on coastal hazards is complex and filled with uncertainty that is often uncomfortable for decision-makers. Although it is certain that SLR is occurring and will continue, its rate remains ambiguous. Because extreme flooding is by definition rare, there is also uncertainty in the effect of natural variability on flood frequency. These uncertainties pose methodological obstacles for integrating SLR into flood hazard projections and risk management. A major challenge is how to distill this complexity into information geared towards public sectors to help inform adaptation decision-making. Because policy windows are limited, budgets are tight, and decisions may have long-term consequences, it is especially important that this information accounts for uncertainty to help avoid damage and maladaptation. The U.S. Global Research Program, and others, describe this type of science—data and tools that help decision-makers plan for climate change impacts—as actionable [1]. We produce actionable science to support decision-making for adaptation to coastal impacts, despite uncertainty in projections of SLR and flood frequency. We found that SLR will boost the occurrence of minor rather than severe flooding in some regions of the U.S., while in other regions the reverse is true. For many cities, the current ten-year flood level will become a regular occurrence as the century progresses and by 2100 will occur every few days for some cities. This creates a mismatch with current planning in some cases. For example, a costly storm surge barrier may be built to protect parts of New York City from extreme flood levels but these are not often used because they are expensive to operate and obstructive to

  19. Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries

    Science.gov (United States)

    Rasmussen, D. J.; Bittermann, Klaus; Buchanan, Maya K.; Kulp, Scott; Strauss, Benjamin H.; Kopp, Robert E.; Oppenheimer, Michael

    2018-03-01

    Sea-level rise (SLR) is magnifying the frequency and severity of extreme sea levels (ESLs) that can cause coastal flooding. The rate and amount of global mean sea-level (GMSL) rise is a function of the trajectory of global mean surface temperature (GMST). Therefore, temperature stabilization targets (e.g. 1.5 °C and 2.0 °C of warming above pre-industrial levels, as from the Paris Agreement) have important implications for coastal flood risk. Here, we assess, in a global network of tide gauges, the differences in the expected frequencies of ESLs between scenarios that stabilize GMST warming at 1.5 °C, 2.0 °C, and 2.5 °C above pre-industrial levels. We employ probabilistic, localized SLR projections and long-term hourly tide gauge records to estimate the expected frequencies of historical and future ESLs for the 21st and 22nd centuries. By 2100, under 1.5 °C, 2.0 °C, and 2.5 °C GMST stabilization, the median GMSL is projected to rise 48 cm (90% probability of 28-82 cm), 56 cm (28-96 cm), and 58 cm (37-93 cm), respectively. As an independent comparison, a semi-empirical sea level model calibrated to temperature and GMSL over the past two millennia estimates median GMSL rise within 7-8 cm of these projections. By 2150, relative to the 2.0 °C scenario and based on median sea level projections, GMST stabilization of 1.5 °C spares the inundation of lands currently home to about 5 million people, including 60 000 individuals currently residing in Small Island Developing States. We quantify projected changes to the expected frequency of historical 10-, 100-, and 500-year ESL events using frequency amplification factors that incorporate uncertainty in both local SLR and historical return periods of ESLs. By 2150, relative to a 2.0 °C scenario, the reduction in the frequency amplification of the historical 100 year ESL event arising from a 1.5 °C GMST stabilization is greatest in the eastern United States, with ESL event

  20. Sea Level Data Archaeology for the Global Sea Level Observing System (GLOSS)

    Science.gov (United States)

    Bradshaw, Elizabeth; Matthews, Andy; Rickards, Lesley; Jevrejeva, Svetlana

    2015-04-01

    The Global Sea Level Observing System (GLOSS) was set up in 1985 to collect long term tide gauge observations and has carried out a number of data archaeology activities over the past decade, including sending member organisations questionnaires to report on their repositories. The GLOSS Group of Experts (GLOSS GE) is looking to future developments in sea level data archaeology and will provide its user community with guidance on finding, digitising, quality controlling and distributing historic records. Many records may not be held in organisational archives and may instead by in national libraries, archives and other collections. GLOSS will promote a Citizen Science approach to discovering long term records by providing tools for volunteers to report data. Tide gauge data come in two different formats, charts and hand-written ledgers. Charts are paper analogue records generated by the mechanical instrument driving a pen trace. Several GLOSS members have developed software to automatically digitise these charts and the various methods were reported in a paper on automated techniques for the digitization of archived mareograms, delivered to the GLOSS GE 13th meeting. GLOSS is creating a repository of software for scanning analogue charts. NUNIEAU is the only publically available software for digitising tide gauge charts but other organisations have developed their own tide gauge digitising software that is available internally. There are several other freely available software packages that convert image data to numerical values. GLOSS could coordinate a comparison study of the various different digitising software programs by: Sending the same charts to each organisation and asking everyone to digitise them using their own procedures Comparing the digitised data Providing recommendations to the GLOSS community The other major form of analogue sea level data is handwritten ledgers, which are usually observations of high and low waters, but sometimes contain higher

  1. Sea level trend and variability around the Peninsular Malaysia

    Science.gov (United States)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2014-06-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. Resulting sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); while long-term sea level trend is related to global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability around the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 1.6 mm yr-1 and 2.7 ± 1.0 mm yr-1, respectively. Allowing for corresponding vertical land movements (VLM; 0.8 ± 2.6 mm yr-1 and 0.9 ± 2.2 mm yr-1), their absolute SLR rates are 3.2 ± 4.2 mm yr-1 and 3.6 ± 3.2 mm yr-1, respectively. For the common period 1993-2009, absolute SLR rates obtained from both tide gauge and satellite altimetry in Peninsular Malaysia are similar; and they are slightly higher than the global tendency. It further underlines that VLM should be taken into account to get better estimates of SLR observations. At interannual scale, ENSO affects sea level over the Malaysian coast in the range of ±5 cm with a very high correlation. Meanwhile, IOD modulates sea level anomalies mainly in the Malacca Strait in the range of ±2 cm with a high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index

  2. The rise of sea level. To understand and to anticipate

    International Nuclear Information System (INIS)

    2013-03-01

    By proposing and briefly commenting graphs and drawings, this publication propose brief presentations of the main issues related to sea level rise: global warming and climate disturbance, description of the phenomenon of sea level rise (difference between sea ice and ground ice, melting of glaciers), increase of sea level rise during the twentieth century, territories at risk (examples of Greenland, Tuvalu, Shanghai), acceleration of ice melting during the twenty first century with many coastal areas at risk, already noticed and possible future impacts in France (glaciers runoff, threatened coasts, example of the Xynthia tempest), how to be united and to anticipate (a threat for millions of people, adaptation to sea level rise, limitation of global warming to limit sea level rise)

  3. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world

    NARCIS (Netherlands)

    Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T; Stocchi, P.; Gómez-Pujolf, L.; Harris, D.L.; Casella, E.; O'Leary, M.J.; Hearty, P.J.

    2016-01-01

    The Last Interglacial (MIS 5e, 128–116 ka) is among the most studied past periods in Earth's history. The climate at that time was warmer than today, primarily due to different orbital conditions, with smaller ice sheets and higher sea-level. Field evidence for MIS 5e sea-level was reported from

  4. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.

    Science.gov (United States)

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo

    2016-12-08

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  5. Separating decadal global water cycle variability from sea level rise.

    Science.gov (United States)

    Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R

    2017-04-20

    Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.

  6. Timescales for detecting a significant acceleration in sea level rise.

    Science.gov (United States)

    Haigh, Ivan D; Wahl, Thomas; Rohling, Eelco J; Price, René M; Pattiaratchi, Charitha B; Calafat, Francisco M; Dangendorf, Sönke

    2014-04-14

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

  7. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Sea-level rise impacts on the temporal and spatial variability of extreme water levels: A case study for St. Peter-Ording, Germany

    Science.gov (United States)

    Santamaria-Aguilar, S.; Arns, A.; Vafeidis, A. T.

    2017-04-01

    Both the temporal and spatial variability of storm surge water level (WL) curves are usually not taken into account in flood risk assessments as observational data are often scarce. In addition, sea-level rise (SLR) can further affect the variability of WLs. We analyze the temporal and spatial variability of the WL curve of 75 historical storm surge events that have been numerically simulated for St. Peter-Ording at the German North Sea coast, considering the effects induced by three SLR scenarios (RCP 4.5, RCP 8.5, and a RCP 8.5 high end scenario). We assess potential impacts of these scenarios on two parameters related to flooding: overflow volumes and fullness. Our results indicate that due to both the temporal and spatial variability of those events the resulting overflow volume can be two or even three times greater. We observe a steepening of the WL curve with an increase of the tidal range under the three SLR scenarios, although SLR induced effects are relatively higher for the RCP 4.5. The steepening of the WL curve with SLR produces a reduction of the fullness, but the changes in overflow volumes also depend on the magnitude of the storm surge event.

  9. Generalized Cauchy model of sea level fluctuations with long-range dependence

    Science.gov (United States)

    Li, Ming; Li, Jia-Yue

    2017-10-01

    This article suggests the contributions with two highlights. One is to propose a novel model of sea level fluctuations (sea level for short), which is called the generalized Cauchy (GC) process. It provides a new outlook for the description of local and global behaviors of sea level from a view of fractal in that the fractal dimension D that measures the local behavior of sea level and the Hurst parameter H which characterizes the global behavior of sea level are independent of each other. The other is to show that sea level appears multi-fractal in both spatial and time. Such a meaning of multi-fractal is new in the sense that a pair of fractal parameters (D, H) of sea level is varying with measurement sites and time. This research exhibits that the ranges of D and H of sea level, in general, are 1 ≤ D sea level, we shall show that H > 0 . 96 for all data records at all measurement sites, implying that strong LRD may be a general phenomenon of sea level. On the other side, regarding with the local behavior, we will reveal that there appears D = 1 or D ≈ 1 for data records at a few stations and at some time, but D > 0 . 96 at most stations and at most time, meaning that sea level may appear highly local irregularity more frequently than weak local one.

  10. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant "Hanhikivi-1" on the local thermal regime

    Science.gov (United States)

    Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Eremina, Tatjana R.; Isaev, Alexey V.; Sein, Dmitry V.

    2017-04-01

    The results of the study aimed to assess the influence of future nuclear power plant Hanhikivi-1 upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.

  11. Radioactivity levels in some sediment samples from Red Sea and Baltic Sea

    International Nuclear Information System (INIS)

    Salahel Din, K.; Vesterbacka, P.

    2012-01-01

    Levels of 226, 228 Ra, 232 Th, 210 Pb, 210 Po and 40 K in sediments from four monitoring areas, El Hamraween and Ras El Behar (Red Sea (Egypt)) and LL3A and JML (Baltic Sea (Finland)), have been investigated using alpha and gamma spectrometry. The average activity concentrations were 238±4 Bq kg -1 ( 226 Ra), 215±11 Bq kg -1 ( 210 Pb) and 311±18 Bq kg -1 ( 210 Po) for El Hamraween area. In Ras El Behar area, the corresponding values were 16±0.4, 18±1 and 20±5 Bq kg -1 , respectively. The activity concentrations for 226 Ra, 210 Pb and 210 Po (uranium series) in El Hamraween bottom sediment are much high compared with those in Ras El Behar area, which indicates the enhanced levels due to the activities of phosphate mining and shipment operations in El Hamraween area. Excluding the influence of phosphate mining activities, it can be concluded that the levels of radioactivity in Baltic Sea sediments are higher than those in Red Sea sediments. (authors)

  12. Millennial, centennial and decadal sea- level change in Florida, USA

    Science.gov (United States)

    Kemp, A.; Hawkes, A. D.; Donnelly, J. P.; Horton, B. P.

    2012-12-01

    Reconstructions of relative sea-level changes on millennial timescales provide data against which to test and calibrate Earth-Ice models. On the U.S. mid-Atlantic coast they constrain the geometry of the Laurentide Ice Sheet's collapsing forebulge. Sea -level data from southeastern Atlantic coast additionally constrain ice-equivalent meltwater input. Here we produce the first Holocene sea-level curve for Florida and Georgia from the St. Mary's River using agglutinated foraminifera preserved in radiocarbon-dated brackish and salt-marsh sediment. The use of foraminfera as sea-level indicators was underpinned by local and regional datasets describing the modern distribution of assemblages that are analogues for those preserved in buried sediment. This approach produced 25 index points that record 5.2 m of relative sea level rise over the last 8000 years with no evidence of a mid Holocene high stand. These reconstructions indicate that existing GIA models do not replicate proxy reconstructions and that northern Florida is subsiding in response to ongoing forebulge collapse at an estimated rate of approximately 0.3 mm/yr. Over multi decadal time scales, detailed sea level reconstructions provide an appropriate geological context for modern rates of sea-level rise. Reconstructions spanning the last 2000 years of known climate variability are important for developing models with predictive capacity that link climate and sea level changes. A reconstruction of sea-level changes since 2000 years BP was developed using a core of brackish marsh sediment from the Nassau River in Florida. Foraminifera estimated the elevation of former sea level with an uncertainty of ± 10 cm. Consistent downcore assemblages indicate that the marsh maintained its tidal elevation for 2000 years. An age depth model was developed for the core results from radiocarbon dating, 210Pb and 137Cs. The resulting relative sea level record was adjusted for the contribution made by glacio

  13. Linking micro- and macroevolutionary perspectives to evaluate the role of Quaternary sea-level oscillations in island diversification.

    Science.gov (United States)

    Papadopoulou, Anna; Knowles, L Lacey

    2017-12-01

    With shifts in island area, isolation, and cycles of island fusion-fission, the role of Quaternary sea-level oscillations as drivers of diversification is complex and not well understood. Here, we conduct parallel comparisons of population and species divergence between two island areas of equivalent size that have been affected differently by sea-level oscillations, with the aim to understand the micro- and macroevolutionary dynamics associated with sea-level change. Using genome-wide datasets for a clade of seven Amphiacusta ground cricket species endemic to the Puerto Rico Bank (PRB), we found consistently deeper interspecific divergences and higher population differentiation across the unfragmented Western PRB, in comparison to the currently fragmented Eastern PRB that has experienced extreme changes in island area and connectivity during the Quaternary. We evaluate alternative hypotheses related to the microevolutionary processes (population splitting, extinction, and merging) that regulate the frequency of completed speciation across the PRB. Our results suggest that under certain combinations of archipelago characteristics and taxon traits, the repeated changes in island area and connectivity may create an opposite effect to the hypothesized "species pump" action of oscillating sea levels. Our study highlights how a microevolutionary perspective can complement current macroecological work on the Quaternary dynamics of island biodiversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. Holocene sea-level changes in the Falkland Islands

    Science.gov (United States)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike

    2014-05-01

    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above

  15. Modelling the impacts of sea level rise on tidal basin ecomorphodynamics and mangrove habitat evolution

    Science.gov (United States)

    van Maanen, Barend; Coco, Giovanni; Bryan, Karin

    2016-04-01

    The evolution of tidal basins and estuaries in tropical and subtropical regions is often influenced by the presence of mangrove forests. These forests are amongst the most productive environments in the world and provide important ecosystem services. However, these intertidal habitats are also extremely vulnerable and are threatened by climate change impacts such as sea level rise. It is therefore of key importance to improve our understanding of how tidal systems occupied by mangrove vegetation respond to rising water levels. An ecomorphodynamic model was developed that simulates morphological change and mangrove forest evolution as a result of mutual feedbacks between physical and biological processes. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. Under stable water levels, model results indicate that mangrove trees enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The landward expansion of the channels, on the other hand, is reduced. Model simulations including sea level rise suggest that mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone. While the sea level is rising, mangroves are migrating landward and the channel network tends to expand landward too. The presence of mangrove trees, however, was found to hinder both the branching and headward erosion of the landward expanding channels. Simulations are performed according to different sea level rise scenarios and with different tidal range conditions to assess which tidal environments are most vulnerable. Changes in the properties of the tidal channel networks are being examined as well. Overall, model results highlight the role of mangroves in driving the

  16. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    Science.gov (United States)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  17. Projecting twenty-first century regional sea-level changes

    NARCIS (Netherlands)

    Slangen, A.B.A.; Carson, M.; Katsman, C.A.; van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D.

    2014-01-01

    We present regional sea-level projections and associated uncertainty estimates for the end of the 21 (st) century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined

  18. Modelling regional sea-level changes in recent past and future

    NARCIS (Netherlands)

    Slangen, A.B.A.

    2012-01-01

    Sea-level change is one of the most important consequences of a warming climate, affecting many densely populated coastal communities. To improve coastal management and the planning of flood defences, information on the future development of sea-level rise is needed. However, sea-level rise is not

  19. Holocene sea-level fluctuation in the southern hemisphere

    Science.gov (United States)

    Isla, Federico Ignacio

    If rising sea levels dominate in the northern hemisphere (NH), falling or fluctuating sea levels predominate in the southern hemisphere (SH). Endogenic processes (tectonics, isostasy or geoidal changes) could explain local or regional mean sea level (MSL) fluctuations but not an hemispherical one. Evidence from South America, Africa, Antarctica, Australia and the Pacific and Indian Oceans suggest that the Holocene transgression rose above the present MSL, in higher latitudes before the tropics. By plotting latitude against the age of MSL arrival at present coasts, good correlation is observed. Oceanic salinity mixing has been already proposed to explain this mid-Holocene sea-level fluctuation. Climate could be the only factor responsible for this hemisphere-wide behavior of MSL. It has been suggested previously that the climate of the SH precedes that of the NH by 3000 years. The climatic optimum, or maximum warmth, occurred predominantly about 6000 BP in the NH, but about 10-9000 BP in the SH. Short-term climatic effects on the sea level (monsoons, southern oscillation/El Niño phenomena) should have significant occurrences during the past in the windiest oceanic hemisphere. This latitudinal trend in former MSL should be considered when using shorelines as reference points for measuring vertical crustal movements.

  20. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600).

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-12-01

    Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.

  1. Course of sea-level change

    Science.gov (United States)

    Carlowicz, Michael

    This summer, the Environment and Climate Program of the European Union will offer an advanced study course on “sea-level changes on micro to macro timescales: measurements, modeling, interpretation, and application.” The short course will be taught from July 1-12 at the Aesclepon Conference Center on the island of Kos, Greece.The interdisciplinary course is designed to bring together at least 40 students from different disciplines in an attempt to share and disseminate fundamental ideas about sea level change, focusing particularly on changes influenced by anthropogenic factors. Participants will be selected by a scientific panel; the European Union will conduct the course free of charge and will provide free lodging. Students must pay for their own travel expenses and food.

  2. The Orinoco megadelta as a conservation target in the face of the ongoing and future sea level rise.

    Science.gov (United States)

    Vegas-Vilarrúbia, T; Hernández, E; Rull, Valentí; Rull Vegas, Elisa

    2015-05-15

    Currently, risk assessments related to rising sea levels and the adoption of defensive or adaptive measures to counter these sea level increases are underway for densely populated deltas where economic losses might be important, especially in the developed world. However, many underpopulated deltas harbouring high biological and cultural diversity are also at risk but will most likely continue to be ignored as conservation targets. In this study, we explore the potential effects of erosion, inundation and salinisation on one of the world's comparatively underpopulated megadeltas, the Orinoco Delta. With a 1 m sea level rise expected to occur by 2100, several models predict a moderate erosion of the delta's shorelines, migration or loss of mangroves, general inundation of the delta with an accompanying submersion of wetlands, and an increase in the distance to which sea water intrudes into streams, resulting in harm to the freshwater biota and resources. The Warao people are the indigenous inhabitants of the Orinoco Delta and currently are subject to various socioeconomic stressors. Changes due to sea level rise will occur extremely rapidly and cause abrupt shifts in the Warao's traditional environments and resources, resulting in migrations and abandonment of their ancestral territories. However, evidence indicates that deltaic aggradation/accretion processes at the Orinoco delta due to allochthonous sediment input and vegetation growth could be elevating the surface of the land, keeping pace with the local sea level rise. Other underpopulated and large deltas of the world also may risk immeasurable biodiversity and cultural losses and should not be forgotten as important conservation targets. Copyright © 2015. Published by Elsevier B.V.

  3. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

    DEFF Research Database (Denmark)

    Lecroq, Beatrice; Gooday, Andrew John; Cedhagen, Tomas

    2009-01-01

    Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between the tubu......Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between...... suggest strongly that komokiaceans, and probably many other large testate protists, provide a habitat structure for a large spectrum of eukaryotes, significantly contributing to maintaining the biodiversity of micro- and meiofaunal communities in the deep sea....

  4. Chronology of Fluctuating Sea Levels since the Triassic

    Science.gov (United States)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  5. Mechanisms of long-term mean sea level variability in the North Sea

    Science.gov (United States)

    Dangendorf, Sönke; Calafat, Francisco; Øie Nilsen, Jan Even; Richter, Kristin; Jensen, Jürgen

    2015-04-01

    We examine mean sea level (MSL) variations in the North Sea on timescales ranging from months to decades under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a state-of-the-art tide+surge model (HAMSOM), to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We demonstrate that local atmospheric forcing mainly triggers MSL variability on timescales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind (piling up the water along the coast) controlling the MSL variability in the south from Belgium up to Denmark. However, in addition to the large inter-annual sea level variability there is also a considerable fraction of decadal scale variability. We show that on decadal timescales MSL variability in the North Sea mainly reflects steric changes, which are mostly remotely forced. A spatial correlation analysis of altimetry observations and baroclinic ocean model outputs suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This supports the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate along the continental slope. With a combination of oceanographic and meteorological measurements we demonstrate that ~80% of the decadal sea level variability in the North Sea can be explained as response of the ocean to longshore wind forcing, including boundary wave propagation in the Northeast Atlantic. These findings have important implications for (i) detecting significant accelerations in North Sea MSL, (ii) the conceptual set up of regional ocean models in terms of resolution and boundary conditions, and (iii) the development of adequate and realistic regional climate change projections.

  6. Past sea level changes along the western continental margins of India: Evidences from morphology of the sea bed

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.

    -wide have been affected to a considerable extent by Pleistocene glaciations (Emery, 1968). The rate of sea-level rise has varied frequently and the sea-level still stands produced wave-cut terraces and platforms. In other words, the surface of a terrace... Merh (1992) while reviewing Quaternary sea level changes along India’s coasts observed that the Last Glacial Stage was a period of regression when the sea level went down to almost -150 m. With the advent of the Holocene, the sea started rising...

  7. Flooded! An Investigation of Sea-Level Rise in a Changing Climate

    Science.gov (United States)

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    Explore how melting ice sheets affect global sea levels. Sea-level rise (SLR) is a rise in the water level of the Earth's oceans. There are two major kinds of ice in the polar regions: sea ice and land ice. Land ice contributes to SLR and sea ice does not. This article explores the characteristics of sea ice and land ice and provides some hands-on…

  8. Sea-level trend in the South China Sea observed from 20 years of along-track satellite altimetric data

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Xu, Qing; Andersen, Ole Baltazar

    2014-01-01

    The sea-level trend in the South China Sea (SCS) is investigated based on 20 years of along-track data from TOPEX and Jason-1/2 satellite altimetry. The average sea-level rise over all the regions in the study area is observed to have a rate of 5.1 ± 0.8 mm year-1 for the period from 1993 to 2012....... The steric sea level contributes 45% to the observed sea-level trend. These results are consistent with previous studies. In addition, the results demonstrate that the maximum sea-level rise rate of 8.4 mm year-1 is occurring off the east coast of Vietnam and eastern part of SCS. During 2010-2011, the La...... Niña event was highly correlated with the dramatic sea-level rise in the SCS; La Niña events were also associated with the maximum rate of sea rise off the east coast of Vietnam, which occurred during 1993 and 2012. We also evaluated the trends in the geophysical (e.g. dynamical atmospheric correction...

  9. Revisiting global mean sea level budget closure : Preliminary results from an integrative study within ESA's Climate Change Initiative -Sea level Budget Closure-Climate Change Initiative

    Science.gov (United States)

    Palanisamy, H.; Cazenave, A. A.

    2017-12-01

    The global mean sea level budget is revisited over two time periods: the entire altimetry era, 1993-2015 and the Argo/GRACE era, 2003-2015 using the version '0' of sea level components estimated by the SLBC-CCI teams. The SLBC-CCI is an European Space Agency's project on sea level budget closure using CCI products. Over the entire altimetry era, the sea level budget was performed as the sum of steric and mass components that include contributions from total land water storage, glaciers, ice sheets (Greenland and Antarctica) and total water vapor content. Over the Argo/GRACE era, it was performed as the sum of steric and GRACE based ocean mass. Preliminary budget analysis performed over the altimetry era (1993-2015) results in a trend value of 2.83 mm/yr. On comparison with the observed altimetry-based global mean sea level trend over the same period (3.03 ± 0.5 mm/yr), we obtain a residual of 0.2 mm/yr. In spite of a residual of 0.2 mm/yr, the sea level budget result obtained over the altimetry era is very promising as this has been performed using the version '0' of the sea level components. Furthermore, uncertainties are not yet included in this study as uncertainty estimation for each sea level component is currently underway. Over the Argo/GRACE era (2003-2015), the trend estimated from the sum of steric and GRACE ocean mass amounts to 2.63 mm/yr while that observed by satellite altimetry is 3.37 mm/yr, thereby leaving a residual of 0.7 mm/yr. Here an ensemble GRACE ocean mass data (mean of various available GRACE ocean mass data) was used for the estimation. Using individual GRACE data results in a residual range of 0.5 mm/yr -1.1 mm/yr. Investigations are under way to determine the cause of the vast difference between the observed sea level and the sea level obtained from steric and GRACE ocean mass. One main suspect is the impact of GRACE data gaps on sea level budget analysis due to lack of GRACE data over several months since 2011. The current action plan

  10. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  11. Interactive Sea Level Rise App & Online Viewer Offers Deep Dive Into Climate

    Science.gov (United States)

    Turrin, M.; Porter, D. F.; Ryan, W. B. F.; Pfirman, S. L.

    2015-12-01

    Climate has captured the attention of the public but its complexity can cause interested individuals to turn to opinion pieces, news articles or blogs for information. These platforms often oversimplify or present heavily interpreted or personalized perspectives. Data interactives are an extremely effective way to explore complex geoscience topics like climate, opening windows of understanding for the user that have previously been closed. Layering data onto maps through programs like GeoMapApp and the Earth Observer App has allowed users to dig directly into science data, but with only limited scaffolding. The interactive 'Polar Explorer: Sea Level Explorer App' provides a richly layered introduction to a range of topics connected to sea level rise. Each map is supported with a pop up and a short audio file of supplementary material, and an information page that includes the data source and links for further reading. This type of learning platform works well for both the formal and informal learning environment. Through science data displayed as map visualizations the user is invited into topics through an introductory question, such as "Why does sea level change?" After clicking on that question the user moves to a second layer of questions exploring the role of the ocean, the atmosphere, the contribution from the world's glaciers, world's ice sheets and other less obvious considerations such as the role of post-glacial rebound, or the mining of groundwater. Each question ends in a data map, or series of maps, that offer opportunities to interact with the topic. Under the role of the ocean 'Internal Ocean Temperature' offers the user a chance to touch to see temperature values spatially over the world's ocean, or to click through a data series starting at the ocean surface and diving to 5000 meters of depth showing how temperature changes with depth. Other sections, like the role of deglaciation of North America, allow the user to click and see change through

  12. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  13. 60-year Nordic and arctic sea level reconstruction based on a reprocessed two decade altimetric sea level record and tide gauges

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    Due to the sparsity and often poor quality of data, reconstructing Arctic sea level is highly challenging. We present a reconstruction of Arctic sea level covering 1950 to 2010, using the approaches from Church et al. (2004) and Ray and Douglas (2011). This involves decomposition of an altimetry...

  14. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  15. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  16. Tracking multidecadal trends in sea level using coral microatolls

    Science.gov (United States)

    Majewski, Jedrzej; Pham, Dat; Meltzner, Aron; Switzer, Adam; Horton, Benjamin; Heng, Shu Yun; Warrick, David

    2015-04-01

    Tracking multidecadal trends in sea level using coral microatolls Jędrzej M. Majewski 1, Dat T. Pham1, Aron J. Meltzner 1, Adam D. Switzer 1, Benjamin P. Horton2, Shu Yun Heng1, David Warrick3, 1 Earth Observatory of Singapore, Nanyang Technological University, Singapore 2 Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA Coral microatolls can be used to study relative sea-level change at multidecadal timescales associated with vertical land movements, climate induced sea-level rise and other oceanographic phenomena such as the El Niño/Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) with the assumption that the highest level of survival (HLS) of coral microatolls track sea level over the course of their lifetimes. In this study we compare microatoll records covering from as early as 1883 through 2013, from two sites in Indonesia, with long records (>20 years) from proximal tide gauges, satellite altimetry, and other sea-level reconstructions. We compared the HLS time series derived from open-ocean and moated (or ponded) microatolls on tectonically stable Belitung Island and a potentially tectonically active setting in Mapur Island, with sea-level reconstructions for 1950-2011. The sea-level reconstructions are based on ground and satellite measurements, combining a tide model with the Estimating the Circulation and Climate of the Ocean (ECCO) model. Our results confirm that open-ocean microatolls do track low water levels at multi decadal time scales and can be used as a proxy for relative sea level (RSL) over time. However, microatolls that are even partially moated are unsuitable and do not track RSL; rather, their growth patterns likely reflect changes in the elevation of the sill of the local pond, as reported by earlier authors. Our ongoing efforts will include an attempt to recognize similarities in moated

  17. Flooding hazards from sea extremes and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Vognsen, Karsten; Broge, Niels

    2015-01-01

    of tide gauge records, statistics that allow also for projections of SLR, meteorological variability, and extremes with a very low probability of occurrence are provided. Land movement is researched with a focus on short term surface height variability in the groundwater-ocean interface that, together...... with longer term processes, may cause substantial subsidence and impact future water management and adaptation strategies in flood prone coastal areas. Field studies’ results from repeated precise levelling, GPS setups, and ocean and groundwater level monitoring in Thyborøn and Aarhus are integrated...

  18. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.

    Directory of Open Access Journals (Sweden)

    Thomas Prime

    Full Text Available Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

  19. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.

    Science.gov (United States)

    Prime, Thomas; Brown, Jennifer M; Plater, Andrew J

    2015-01-01

    Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

  20. Future sea level rise constrained by observations and long-term commitment

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-01-01

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648

  1. Future sea level rise constrained by observations and long-term commitment.

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-03-08

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

  2. Quantifying the role of climate variability on extreme total water level impacts: An application of a full simulation model to Ocean Beach, California

    Science.gov (United States)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.; Barnard, P.; Long, J.

    2014-12-01

    Many coastal communities worldwide are vulnerable to flooding and erosion driven by extreme total water levels (TWL), potentially dangerous events produced by the combination of large waves, high tides, and high non-tidal residuals. The West coast of the United States provides an especially challenging environment to model these processes due to its complex geological setting combined with uncertain forecasts for sea level rise (SLR), changes in storminess, and possible changes in the frequency of major El Niños. Our research therefore aims to develop an appropriate methodology to assess present-day and future storm-induced coastal hazards along the entire U.S. West coast, filling this information gap. We present the application of this framework in a pilot study at Ocean Beach, California, a National Park site within the Golden Gate National Recreation Area where existing event-scale coastal change data can be used for model calibration and verification. We use a probabilistic, full simulation TWL model (TWL-FSM; Serafin and Ruggiero, in press) that captures the seasonal and interannual climatic variability in extremes using functions of regional climate indices, such as the Multivariate ENSO index (MEI), to represent atmospheric patterns related to the El Niño-Southern Oscillation (ENSO). In order to characterize the effect of climate variability on TWL components, we refine the TWL-FSM by splitting non-tidal residuals into low (monthly mean sea level anomalies) and high frequency (storm surge) components. We also develop synthetic climate indices using Markov sequences to reproduce the autocorrelated nature of ENSO behavior. With the refined TWL-FSM, we simulate each TWL component, resulting in synthetic TWL records providing robust estimates of extreme return level events (e.g., the 100-yr event) and the ability to examine the relative contribution of each TWL component to these extreme events. Extreme return levels are then used to drive storm impact models

  3. Sea-level rise caused by climate change and its implications for society

    Science.gov (United States)

    MIMURA, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society. PMID:23883609

  4. Identification of Transportation Infrastructure at Risk Due To Sea-Level Rise and Subsidence of Land In Coastal Louisiana

    Science.gov (United States)

    Tewari, S.; Palmer, W.; Manning, F.

    2017-12-01

    Climate change can affect coastal areas in a variety of ways. Coasts are sensitive to sea level rise, changes in the frequency/intensity of storms, increase in precipitation and storm surges. The resilience of transportation infrastructure located in Louisiana's coastal zone, against storm surges and climatic sea-level rise is critical. The net change in sea-level is affected by the increase in global sea level as well as land movement up or down. There are many places in coastal Louisiana that have a high subsidence rate. The subsidence could be related to excess extraction activities of oil and water, natural and/or human induced compaction, and tectonic movement. Where the land is sinking, the rate of relative sea level rise is larger than the global rate. Some of the fastest rates of relative sea level rise in the United States are occurring in areas where the land is sinking, including parts of the Gulf Coast. For example, coastal Louisiana has seen its relative sea level rise by eight inches or more in the last 50 years, which is about twice the global rate. Subsiding land in the Gulf area worsens the effects of relative sea level rise, increasing the risk of flooding in cities, inhabited islands, and tidal wetlands. The research team is investigating the trends for sea-level rise and land subsidence in coastal region of Louisiana. The variability in storm surges and its potential implication on the transportation infrastructure in the region is the focus of the study. The spatial maps will be created for spatial trends. This is extremely useful in being prepared for long-term natural hazards. The results of this study will be helpful to LADOTD and infrastructure managers and officials who are tasked with resiliency planning and management. Research results will also directly benefit university researchers in the state, Coastal Protection and Restoration Authority and LADOTD/LTRC through collaborative activity which will educate both professionals and the

  5. ENSO-induced inter-annual sea level variability in the Singapore strait

    Digital Repository Service at National Institute of Oceanography (India)

    Soumya, M.; Vethamony, P.; Tkalich, P.

    Sea level data from four tide gauge stations in the SS (Tanjong Pagar, Sultan Shoal, Sembawang and Raffles Lighthouse) for the period 1970-2012 were extracted to study the ENSO-induced interannual sea level variability Sea level during this period...

  6. Late mid-Holocene sea-level oscillation: A possible cause

    Science.gov (United States)

    Scott, D. B.; Collins, E. S.

    Sea level oscillated between 5500 and 3500 years ago at Murrells Inlet, South Carolina, Chezzetcook and Baie Verte, Nova Scotia and Montmagny, Quebec. The oscillation is well constrained by foraminiferal marsh zonations in three locations and by diatoms in the fourth one. The implications are: (1) there was a eustatic sea-level oscillation of about 2-10 m in the late mid-Holocene on the southeast coast of North America (South Carolina to Quebec) that is not predicted by present geophysical models of relative sea-level change; (2) this oscillation coincides with oceanographic cooling on the east coast of Canada that we associate with melting ice; and (3) this sea- level oscillation/climatic event coincides exactly with the end of pyramid building in Egypt which is suggested to have resulted from a climate change (i.e. drought, cooling). This sea-level/climatic change is a prime example of feedback where climatic warming in the mid-Holocene promoted ice melt in the Arctic which subsequently caused climatic cooling by opening up Arctic channels releasing cold water into the Inner Labrador Current that continued to intensify until 4000 years ago. This sea-level event may also be the best way of measuring when the final ice melted since most estimates of the ages of the last melting are based on end moraine dates in the Arctic which may not coincide with when the last ice actually melted out, since there is no way of dating the final ice positions.

  7. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    Science.gov (United States)

    Luu, Q.; Tkalich, P.

    2013-12-01

    The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient

  8. Late Quaternary sea level and environmental changes from relic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Late Quaternary sea level; western margin of India; subsidence; uplift; depositional environment. ...... sea level rise by about 80m (between 12,000 and. 7,000 yr BP) or, .... from the Florida Keys; Palaentology 28 189–206. Carballo ...

  9. Sea-level changes on multiple spatial scales: estimates and contributing processes

    NARCIS (Netherlands)

    Frederikse, T.

    2018-01-01

    Being one of the major consequences of anthropogenic climate change, sea level rise forms a threat for many coastal areas and their inhabitants. Because all processes that cause sea-level changes have a spatially-varying fingerprint, local sea-level changes deviate substantially from the global

  10. Extreme sea level variability along the coast of India. Vol. 1-2

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Shetye, S.R.; Shankar, D; Sundar, D; Michael, G.S.; Fernandes, S.E.; Telang, M.

    52 Annexure – II 53 Annexure – III 107 Project Team A.S. Unnikrishnan S.R. Shetye D. Shankar D... 95˚E 95˚E 5˚N 5˚N 10˚N 10˚N 15˚N 15˚N 20˚N 20˚N 25˚N 25˚N Arabian Sea Bay of Bengal Indian Ocean India Contai Nagapattinam Gopalpur Puri Balasore Cape Comorin Nellore Kakinada Chittagong NizampatnamOngole Chandbali Rameswaram Hatia Bhavnagar Porbandar...

  11. Sea-Level Rise and Flood Potential along the California Coast

    Science.gov (United States)

    Delepine, Q.; Leung, C.

    2013-12-01

    Sea-level rise is becoming an ever-increasing problem in California. Sea-level is expected to rise significantly in the next 100 years, which will raise flood elevations in coastal communities. This will be an issue for private homeowners, businesses, and the state. One study suggests that Venice Beach could lose a total of at least $440 million in tourism spending and tax dollars from flooding and beach erosion if sea level rises 1.4 m by 2100. In addition, several airports, such as San Francisco International Airport, are located in coastal regions that have flooded in the past and will likely be flooded again in the next 30 years, but sea-level rise is expected to worsen the effects of flooding in the coming decades It is vital for coastal communities to understand the risks associated with sea-level rise so that they can plan to adapt to it. By obtaining accurate LiDAR elevation data from the NOAA Digital Coast Website (http://csc.noaa.gov/dataviewer/?keyword=lidar#), we can create flood maps to simulate sea level rise and flooding. The data are uploaded to ArcGIS and contour lines are added for different elevations that represent future coastlines during 100-year flooding. The following variables are used to create the maps: 1. High-resolution land surface elevation data - obtained from NOAA 2. Local mean high water level - from USGS 3. Local 100-year flood water level - from the Pacific Institute 4. Sea-level rise projections for different future dates (2030, 2050, and 2100) - from the National Research Council The values from the last three categories are added to represent sea-level rise plus 100-year flooding. These values are used to make the contour lines that represent the projected flood elevations, which are then exported as KML files, which can be opened in Google Earth. Once these KML files are made available to the public, coastal communities will gain an improved understanding of how flooding and sea-level rise might affect them in the future

  12. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    Science.gov (United States)

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  13. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    Directory of Open Access Journals (Sweden)

    Amélie Lescroël

    Full Text Available In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC on the foraging efficiency of Adélie penguins (Pygoscelis adeliae breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  14. Sea-level rise caused by climate change and its implications for society.

    Science.gov (United States)

    Mimura, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society.(Communicated by Kiyoshi HORIKAWA, M.J.A.).

  15. The Impact of Sea Level Rise on Florida's Everglades

    Science.gov (United States)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous

  16. Land Sea Level Difference Impacts on Socio-Hydrological System.

    Science.gov (United States)

    Sung, K.; Yu, D. J.; Oh, W. S.; Sangwan, N.

    2016-12-01

    Allowing moderate shocks can be a new solution that helps to build adaptive capacity in society is a rising issue. In Social-Ecological field, Carpenter et al. (2015) suggested that exposure to short-term variability leads to long term resilience by enlarging safe operating space (SOS). The SOS refers to the boundary of favorable state that ecosystem can maintain resilience without imposing certain conditions (Carpenter et al. 2015). Our work is motivated by defining SOS in socio-hydrological system(SHS) because it can be an alternative way for flood management beyond optimized or robust flood control. In this context, large flood events that make system to cross the SOS should be fully managed, but frequent small floods need to be allowed if the system is located in SOS. Especially, land sea level change is critical factor to change flood resilience since it is one of the most substantial disturbance that changes the entire boundary of SOS. In order to have broader perspective of vulnerability and resilience of the coastal region, it is crucial to understand the land sea level dynamics changed with human activities and natural variances.The risk of land sea level change has been researched , but most of these researches have focused on explain cause and effect of land sea level change, paying little attention to its dynamics interacts with human activities. Thus, an objective of this research is to study dynamics of human work, land sea level change and resilience to flood with SOS approach. Especially, we focus on the case in Ganges-Brahmaputra, Bangladesh where has high vulnerability to flood, and is faced with relatively rapid land sea level change problem. To acheive the goal, this study will develop a stylized model by extending the human - flood interaction model combined with relative sea level difference equation. The model describes the dynamics of flood protection system which is changed by SHS and land sea level chage. we will focus on the aggradation

  17. A heuristic evaluation of long-term global sea level acceleration

    Science.gov (United States)

    Spada, Giorgio; Olivieri, Marco; Galassi, Gaia

    2015-05-01

    In view of the scientific and social implications, the global mean sea level rise (GMSLR) and its possible causes and future trend have been a challenge for so long. For the twentieth century, reconstructions generally indicate a rate of GMSLR in the range of 1.5 to 2.0 mm yr-1. However, the existence of nonlinear trends is still debated, and current estimates of the secular acceleration are subject to ample uncertainties. Here we use various GMSLR estimates published on scholarly journals since the 1940s for a heuristic assessment of global sea level acceleration. The approach, alternative to sea level reconstructions, is based on simple statistical methods and exploits the principles of meta-analysis. Our results point to a global sea level acceleration of 0.54 ± 0.27 mm/yr/century (1σ) between 1898 and 1975. This supports independent estimates and suggests that a sea level acceleration since the early 1900s is more likely than currently believed.

  18. Integrative study of the mean sea level and its components

    CERN Document Server

    Champollion, Nicolas; Paul, Frank; Benveniste, Jérôme

    2017-01-01

    This volume presents the most recent results of global mean sea level variations over the satellite altimetry era (starting in the early 1990s) and associated contributions, such as glaciers and ice sheets mass loss, ocean thermal expansion, and land water storage changes. Sea level is one of the best indicators of global climate changes as it integrates the response of several components of the climate system to external forcing factors (including anthropogenic forcing) and internal climate variability. Providing long, accurate records of the sea level at global and regional scales and of the various components causing sea level changes is of crucial importance to improve our understanding of climate processes at work and to validate the climate models used for future projections. The Climate Change Initiative project of the European Space Agency has provided a first attempt to produce consistent and continuous space-based records for several climate parameters observable from space, among them sea level. Th...

  19. Building more effective sea level rise models for coastal management

    Science.gov (United States)

    Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.

    2017-12-01

    For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.

  20. Roles of Sea Level and Climate Change in the Development of Holocene Deltaic Sequences in the Yellow Sea

    Science.gov (United States)

    Liu, J.; Milliman, J. D.

    2002-12-01

    Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.

  1. 60-year Nordic and arctic sea level reconstruction based on a reprocessed two decade altimetric sea level record and tide gauges

    OpenAIRE

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2015-01-01

    Due to the sparsity and often poor quality of data, reconstructing Arctic sea level is highly challenging. We present a reconstruction of Arctic sea level covering 1950 to 2010, using the approaches from Church et al. (2004) and Ray and Douglas (2011). This involves decomposition of an altimetry calibration record into EOFs, and fitting these patterns to a historical tide gauge record.

  2. Thermosteric contribution of warming oceans to the global sea level variations

    OpenAIRE

    Bâki Iz H.

    2016-01-01

    Thermosteric contribution of warming oceans to the global sea level variations during the last century was evaluated at globally distributed 27 tide gauge stations with records over 80 years. The assessment was made using a recently proposed lagged model inclusive of a sea level trend, long and decadal periodicities, and lagged sea surface temperature measurements. The new model solutions revealed that almost all the long period periodic sea level changes experienced a...

  3. The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches

    Science.gov (United States)

    Serafin, Katherine A.; Ruggiero, Peter; Stockdon, Hilary F.

    2017-01-01

    To better understand how individual processes combine to cause flooding and erosion events, we investigate the relative contribution of tides, waves, and nontidal residuals to extreme total water levels (TWLs) at the shoreline of U.S. West Coast sandy beaches. Extreme TWLs, defined as the observed annual maximum event and the simulated 100 year return level event, peak in Washington, and are on average larger in Washington and Oregon than in California. The relative contribution of wave-induced and still water levels (SWL) to the 100 year TWL event is similar to that of the annual maximum event; however, the contribution of storm surge to the SWL doubles across events. Understanding the regional variability of TWLs will lead to a better understanding of how sea level rise, changes in storminess, and possible changes in the frequency of major El Niños may impact future coastal flooding and erosion along the U.S. West Coast and elsewhere.

  4. Detailed Tropical Sea Level Record Spanning the Younger Dryas Chronozone

    Science.gov (United States)

    Abdul, N. A.; Mortlock, R. A.; Wright, J. D.; Fairbanks, R. G.

    2010-12-01

    Variability in sea level is a fundamental measure of past changes in continental ice volume and provides an important benchmark to test climate change hypotheses. Records of the most recent deglaciation show two pulses of accelerated sea-level rise (Meltwater Pulses 1A and 1B) separated by an interval of slower sea level rise. The Younger Dryas chronozone falls within the interval between MWP 1A and 1B. It was first described over 100 years ago and remains one of the most studied periods in Earth’s history. The Younger Dryas was originally constrained with 14C dating to the interval between 11,000 and 10,000 14C years BP, which converts to 13,000 to 11,640 calendar years BP. The climatic expression of the Younger Dryas was most pronounced in the circum North Atlantic where climate proxies returned in some regions to near glacial values. Interpretations of the Younger Dryas’ significance range from a catastrophic global cooling event accompanied by Northern hemisphere ice sheet growth to simply regional changes in ocean and air mass mixing zones confined mainly to the North Atlantic. A detailed sea level record containing the interval from the end of MWP 1A to the beginning of MWP 1B (~14,000 to 11,300 years BP) was generated using 26 new U/Th dates from our 2007 Barbados offshore drilling expedition combined with our 1988 expedition measurements. 16 of these dates fall within the Younger Dryas Chronozone. Younger Dryas sea level positions were based on Acropora palmata samples from 3 overlapping and contemporaneous offshore drill cores (RGF 12 and BBDS 9 & 10) and corrected for minor tectonic uplift. From 14,000 to 11,300 years BP, sea level rose from ~81 to 56.5 m below present sea level with an initial rate of 10 m/kyr that decreased smoothly to <5 m/kyr at the base of MWP 1B. At the beginning of the Younger Dryas, sea level was at 69 m below present and rose 8 m by the end of this interval. In the context of the Barbados sea level record, the Younger Dryas

  5. Measuring progress of the global sea level observing system

    Science.gov (United States)

    Woodworth, Philip L.; Aarup, Thorkild; Merrifield, Mark; Mitchum, Gary T.; Le Provost, Christian

    Sea level is such a fundamental parameter in the sciences of oceanography geophysics, and climate change, that in the mid-1980s, the Intergovernmental Oceanographic Commission (IOC) established the Global Sea Level Observing System (GLOSS). GLOSS was to improve the quantity and quality of data provided to the Permanent Service for Mean Sea Level (PSMSL), and thereby, data for input to studies of long-term sea level change by the Intergovernmental Panel on Climate Change (IPCC). It would also provide the key data needed for international programs, such as the World Ocean Circulation Experiment (WOCE) and later, the Climate Variability and Predictability Programme (CLIVAR).GLOSS is now one of the main observation components of the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) of IOC and the World Meteorological Organization (WMO). Progress and deficiencies in GLOSS were presented in July to the 22nd IOC Assembly at UNESCO in Paris and are contained in the GLOSS Assessment Report (GAR) [IOC, 2003a].

  6. Trends in Intense Typhoon Minimum Sea Level Pressure

    Directory of Open Access Journals (Sweden)

    Stephen L. Durden

    2012-01-01

    Full Text Available A number of recent publications have examined trends in the maximum wind speed of tropical cyclones in various basins. In this communication, the author focuses on typhoons in the western North Pacific. Rather than maximum wind speed, the intensity of the storms is measured by their lifetime minimum sea level pressure (MSLP. Quantile regression is used to test for trends in storms of extreme intensity. The results indicate that there is a trend of decreasing intensity in the most intense storms as measured by MSLP over the period 1951–2010. However, when the data are broken into intervals 1951–1987 and 1987–2010, neither interval has a significant trend, but the intensity quantiles for the two periods differ. Reasons for this are discussed, including the cessation of aircraft reconnaissance in 1987. The author also finds that the average typhoon intensity is greater in El Nino years, while the intensity of the strongest typhoons shows no significant relation to El Nino Southern Oscillation.

  7. GHRSST Level 4 DMI_OI North Sea and Baltic Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  8. Analysis of Sea Level Rise in Action

    Science.gov (United States)

    Gill, K. M.; Huang, T.; Quach, N. T.; Boening, C.

    2016-12-01

    NASA's Sea Level Change Portal provides scientists and the general public with "one-stop" source for current sea level change information and data. Sea Level Rise research is a multidisciplinary research and in order to understand its causes, scientists must be able to access different measurements and to be able to compare them. The portal includes an interactive tool, called the Data Analysis Tool (DAT), for accessing, visualizing, and analyzing observations and models relevant to the study of Sea Level Rise. Using NEXUS, an open source, big data analytic technology developed at the Jet Propulsion Laboratory, the DAT is able provide user on-the-fly data analysis on all relevant parameters. DAT is composed of three major components: A dedicated instance of OnEarth (a WMTS service), NEXUS deep data analytic platform, and the JPL Common Mapping Client (CMC) for web browser based user interface (UI). Utilizing the global imagery, a user is capable of browsing the data in a visual manner and isolate areas of interest for further study. The interfaces "Analysis" tool provides tools for area or point selection, single and/or comparative dataset selection, and a range of options, algorithms, and plotting. This analysis component utilizes the Nexus cloud computing platform to provide on-demand processing of the data within the user-selected parameters and immediate display of the results. A RESTful web API is exposed for users comfortable with other interfaces and who may want to take advantage of the cloud computing capabilities. This talk discuss how DAT enables on-the-fly sea level research. The talk will introduce the DAT with an end-to-end tour of the tool with exploration and animating of available imagery, a demonstration of comparative analysis and plotting, and how to share and export data along with images for use in publications/presentations. The session will cover what kind of data is available, what kind of analysis is possible, and what are the outputs.

  9. A scaling approach to project regional sea level rise and its uncertainties

    Directory of Open Access Journals (Sweden)

    M. Perrette

    2013-01-01

    Full Text Available Climate change causes global mean sea level to rise due to thermal expansion of seawater and loss of land ice from mountain glaciers, ice caps and ice sheets. Locally, sea level can strongly deviate from the global mean rise due to changes in wind and ocean currents. In addition, gravitational adjustments redistribute seawater away from shrinking ice masses. However, the land ice contribution to sea level rise (SLR remains very challenging to model, and comprehensive regional sea level projections, which include appropriate gravitational adjustments, are still a nascent field (Katsman et al., 2011; Slangen et al., 2011. Here, we present an alternative approach to derive regional sea level changes for a range of emission and land ice melt scenarios, combining probabilistic forecasts of a simple climate model (MAGICC6 with the new CMIP5 general circulation models. The contribution from ice sheets varies considerably depending on the assumptions for the ice sheet projections, and thus represents sizeable uncertainties for future sea level rise. However, several consistent and robust patterns emerge from our analysis: at low latitudes, especially in the Indian Ocean and Western Pacific, sea level will likely rise more than the global mean (mostly by 10–20%. Around the northeastern Atlantic and the northeastern Pacific coasts, sea level will rise less than the global average or, in some rare cases, even fall. In the northwestern Atlantic, along the American coast, a strong dynamic sea level rise is counteracted by gravitational depression due to Greenland ice melt; whether sea level will be above- or below-average will depend on the relative contribution of these two factors. Our regional sea level projections and the diagnosed uncertainties provide an improved basis for coastal impact analysis and infrastructure planning for adaptation to climate change.

  10. What Causes the North Sea Level to Rise Faster over the Last Decade ?

    Science.gov (United States)

    Karpytchev, Mikhail; Letetrel, Camille

    2013-04-01

    We combined tide gauge records (PSMSL) and satellite altimetry data (TOPEX/POSEIDON-JASON 1-2) to reconstruct the mean level of the North Sea and the Norwegian Sea Shelf (NS-NSS) over 1950-2012. The reconstructed NS-NSS mean sea level fluctuations reveal a pronounced interannual variability and a strong sea level acceleration since the mid-1990's. In order to understand the causes of this acceleration, the NS-NSS mean sea level was cross-correlated with the North Atlantic Oscillation and Arctic Oscillation indices. While the interannual variability of the mean sea level correlates well with the NAO/AO indices, the observed acceleration in the NS-NSS mean level is not linked linearly to the NAO/AO fluctuations. On the other hand, the Empirical Orthogonal Functions (EOF) analysis of steric sea level variations in the eastern North Atlantic gives a dominant EOF pattern (55% of variance explained) that varies on a decadal scale very closely to the NS-NSS mean level flcutuations. Also, the amplification in the temporal amplitude of the dominant steric sea level EOF corresponds to the acceleration observed in the NS-NSS mean sea level signal. This suggests that decadal variations in the mean level of the North Sea - the Norwegian Sea Shelf reflect changes in the Subpolar Front currents (Rossby, 1996).

  11. Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: a lesson from Sonneratia alba.

    Science.gov (United States)

    Yang, Yuchen; Li, Jianfang; Yang, Shuhuan; Li, Xinnian; Fang, Lu; Zhong, Cairong; Duke, Norman C; Zhou, Renchao; Shi, Suhua

    2017-01-18

    A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation. In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation

  12. Coping with Higher Sea Levels and Increased Coastal Flooding in New York City. Chapter 13

    Science.gov (United States)

    Gornitz, Vivien; Horton, Radley; Bader, Daniel A.; Orton, Philip; Rosenzweig, Cynthia

    2017-01-01

    The 837 km New York City shoreline is lined by significant economic assets and dense population vulnerable to sea level rise and coastal flooding. After Hurricane Sandy in 2012, New York City developed a comprehensive plan to mitigate future climate risks, drawing upon the scientific expertise of the New York City Panel on Climate Change (NPCC), a special advisory group comprised of university and private-sector experts. This paper highlights current NPCC findings regarding sea level rise and coastal flooding, with some of the City's ongoing and planned responses. Twentieth century sea level rise in New York City (2.8 cm/decade) exceeded the global average (1.7 cm/decade), underscoring the enhanced regional risk to coastal hazards. NPCC (2015) projects future sea level rise at the Battery of 28 - 53 cm by the 2050s and 46 - 99 cm by the 2080s, relative to 2000 - 2004 (mid-range, 25th - 75th percentile). High-end SLR estimates (90th percentile) reach 76 cm by the 2050s, and 1.9 m by 2100. Combining these projections with updated FEMA flood return period curves, assuming static flood dynamics and storm behavior, flood heights for the 100-year storm (excluding waves) attain 3.9-4.5 m (mid-range), relative to the NAVD88 tidal datum, and 4.9 m (high end) by the 2080s, up from 3.4 m in the 2000s. Flood heights with a 1% annual chance of occurrence in the 2000s increase to 2.0 - 5.4% (mid-range) and 12.7% per year (high-end), by the 2080s. Guided by NPCC (2013, 2015) findings, New York City has embarked on a suite of initiatives to strengthen coastal defenses, employing various approaches tailored to specific neighborhood needs. NPCC continues its collaboration with the city to investigate vulnerability to extreme climate events, including heat waves, inland floods and coastal storms. Current research entails higher-resolution neighborhood-level coastal flood mapping, changes in storm characteristics, surge height interactions with sea level rise, and stronger engagement

  13. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  14. Modal recovery of sea-level variability in the South China Sea using merged altimeter data

    Science.gov (United States)

    Jiang, Haoyu; Chen, Ge

    2015-09-01

    Using 20 years (1993-2012) of merged data recorded by contemporary multi-altimeter missions, a variety of sea-level variability modes are recovered in the South China Sea employing three-dimensional harmonic extraction. In terms of the long-term variation, the South China Sea is estimated to have a rising sea-level linear trend of 5.39 mm/a over these 20 years. Among the modes extracted, the seven most statistically significant periodic or quasi-periodic modes are identified as principal modes. The geographical distributions of the magnitudes and phases of the modes are displayed. In terms of intraannual and annual regimes, two principal modes with strict semiannual and annual periods are found, with the annual variability having the largest amplitudes among the seven modes. For interannual and decadal regimes, five principal modes at approximately 18, 21, 23, 28, and 112 months are found with the most mode-active region being to the east of Vietnam. For the phase distributions, a series of amphidromes are observed as twins, termed "amphidrome twins", comprising rotating dipole systems. The stability of periodic modes is investigated employing joint spatiotemporal analysis of latitude/longitude sections. Results show that all periodic modes are robust, revealing the richness and complexity of sea-level modes in the South China Sea.

  15. Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean

    Science.gov (United States)

    Nidheesh, A. G.; Lengaigne, M.; Vialard, J.; Izumo, T.; Unnikrishnan, A. S.; Meyssignac, B.; Hamlington, B.; de Boyer Montegut, C.

    2017-07-01

    We examine the consistency of Indo-Pacific decadal sea level variability in 10 gridded, observation-based sea level products for the 1960-2010 period. Decadal sea level variations are robust in the Pacific, with more than 50% of variance explained by decadal modulation of two flavors of El Niño-Southern Oscillation (classical ENSO and Modoki). Amplitude of decadal sea level variability is weaker in the Indian Ocean than in the Pacific. All data sets indicate a transmission of decadal sea level signals from the western Pacific to the northwest Australian coast through the Indonesian throughflow. The southern tropical Indian Ocean sea level variability is associated with decadal modulations of ENSO in reconstructions but not in reanalyses or in situ data set. The Pacific-independent Indian Ocean decadal sea level variability is not robust but tends to be maximum in the southwestern tropical Indian Ocean. The inconsistency of Indian Ocean decadal variability across the sea level products calls for caution in making definitive conclusions on decadal sea level variability in this basin.

  16. Orthogonal stack of global tide gauge sea level data

    Science.gov (United States)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  17. Salt marsh persistence is threatened by predicted sea-level rise

    Science.gov (United States)

    Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.

    2016-11-01

    Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.

  18. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  19. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD

    DEFF Research Database (Denmark)

    Grinsted, Aslak; Moore, John; Jevrejeva, Svetlana

    2010-01-01

    -proxy reconstructions assuming that the established relationship between temperature and sea level holds from 200 to 2100 ad. Over the last 2,000 years minimum sea level (-19 to -26 cm) occurred around 1730 ad, maximum sea level (12–21 cm) around 1150 AD. Sea level 2090–2099 is projected to be 0.9 to 1.3 m for the A1B...

  20. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  1. Present day sea level changes: observations and climatic causes

    International Nuclear Information System (INIS)

    Lombard, A.

    2007-01-01

    After a few thousand years of relative stability, sea level has risen of about 20 cm since the beginning of the 20. century. It currently rises at an average rate of about 3 mm/yr in response to global warming. About half of this rate is directly attributed to thermal expansion of sea water due to ocean warming, while the other half is mainly due to the melting of mountain glaciers and ice sheets. Satellite observations show that sea level rise is highly non-uniform. (author)

  2. Impact of sea level rise on tide gate function.

    Science.gov (United States)

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.

  3. Inter-annual sea level variability in the southern South China Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Soumya, M.; Vethamony, P.; Tkalich, P.

    (SCS) is one of the western marginal seas of the Pacific Ocean, surrounded by South China, Indo China Peninsula, Malaysian Peninsula, Philippines and Borneo Island. The SCS is a semi- enclosed basin connected to the western Pacific Ocean through Taiwan.... Sea level trend and variability in the Singapore Strait. Ocean Science, 9(2). Torrence, C. and Compo, G.P., 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1): 61-78. Vargas‐Hernandez, J.M., Wijffels...

  4. Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise

    Science.gov (United States)

    Hatfield, Jeff S.; Reynolds, Michelle H.; Seavy, Nathaniel E.; Krause, Crystal M.

    2012-01-01

    Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds.

  5. The impact of future sea-level rise on the global tides

    Science.gov (United States)

    Pickering, M. D.; Horsburgh, K. J.; Blundell, J. R.; Hirschi, J. J.-M.; Nicholls, R. J.; Verlaan, M.; Wells, N. C.

    2017-06-01

    Tides are a key component in coastal extreme water levels. Possible changes in the tides caused by mean sea-level rise (SLR) are therefore of importance in the analysis of coastal flooding, as well as many other applications. We investigate the effect of future SLR on the tides globally using a fully global forward tidal model: OTISmpi. Statistical comparisons of the modelled and observed tidal solutions demonstrate the skill of the refined model setup with no reliance on data assimilation. We simulate the response of the four primary tidal constituents to various SLR scenarios. Particular attention is paid to future changes at the largest 136 coastal cities, where changes in water level would have the greatest impact. Spatially uniform SLR scenarios ranging from 0.5 to 10 m with fixed coastlines show that the tidal amplitudes in shelf seas globally respond strongly to SLR with spatially coherent areas of increase and decrease. Changes in the M2 and S2 constituents occur globally in most shelf seas, whereas changes in K1 and O1 are confined to Asian shelves. With higher SLR tidal changes are often not proportional to the SLR imposed and larger portions of mean high water (MHW) changes are above proportional. Changes in MHW exceed ±10% of the SLR at 10% of coastal cities. SLR scenarios allowing for coastal recession tend increasingly to result in a reduction in tidal range. The fact that the fixed and recession shoreline scenarios result mainly in changes of opposing sign is explained by the effect of the perturbations on the natural period of oscillation of the basin. Our results suggest that coastal management strategies could influence the sign of the tidal amplitude change. The effect of a spatially varying SLR, in this case fingerprints of the initial elastic response to ice mass loss, modestly alters the tidal response with the largest differences at high latitudes.

  6. Evaluation of sea level rise in Bohai Bay and associated responses

    Directory of Open Access Journals (Sweden)

    Ke-Xiu LIU

    2017-03-01

    Full Text Available Tide gauge data from 1950 to 2015 are used to analyze sea level change, tidal change, return levels, and design tide levels under rising sea level scenarios in Bohai Bay. Results show the following: 1 Since 1950 sea levels in Bohai Bay show a significant rising trend of 3.3 mm per year. The speed has been particularly rapid in 1980–2015 at a rate of 4.7 mm per year. 2 Astronomical tides showed a clear long-term trend in 1950–2015. The amplitude and phase lag of the M2 tide constituent decreased at a rate of 0.21 cm per year and 0.11° per year, respectively and the phase lag of K1 decreased at a rate of 0.09° per year, whereas there was little change in its amplitude. The mean high and low tides increased at a rate of 0.08 and 0.52 cm per year, respectively, whereas the mean tidal range decreased at a rate of 0.44 cm per year. Results from numerical experiments show that local sea level rise plays an important role in the tidal dynamics change in Bohai Bay. 3 It is considered that the sea level return periods will decrease owing to the influence of sea level rise and land subsidence, therefore design tide level will change in relation to sea level rise. Therefore, the ability of seawalls to withstand water will diminish, and storm surge disasters will become more serious in the future.

  7. Predicting the impact of tsunami in California under rising sea level

    Science.gov (United States)

    Dura, T.; Garner, A. J.; Weiss, R.; Kopp, R. E.; Horton, B.

    2017-12-01

    The flood hazard for the California coast depends not only on the magnitude, location, and rupture length of Alaska-Aleutian subduction zone earthquakes and their resultant tsunamis, but also on rising sea levels, which combine with tsunamis to produce overall flood levels. The magnitude of future sea-level rise remains uncertain even on the decadal scale, with future sea-level projections becoming even more uncertain at timeframes of a century or more. Earthquake statistics indicate that timeframes of ten thousand to one hundred thousand years are needed to capture rare, very large earthquakes. Because of the different timescales between reliable sea-level projections and earthquake distributions, simply combining the different probabilities in the context of a tsunami hazard assessment may be flawed. Here, we considered 15 earthquakes between Mw 8 to Mw 9.4 bound by -171oW and -140oW of the Alaska-Aleutian subduction zone. We employed 24 realizations at each magnitude with random epicenter locations and different fault length-to-width ratios, and simulated the tsunami evolution from these 360 earthquakes at each decade from the years 2000 to 2200. These simulations were then carried out for different sea-level-rise projections to analyze the future flood hazard for California. Looking at the flood levels at tide gauges, we found that the flood level simulated at, for example, the year 2100 (including respective sea-level change) is different from the flood level calculated by adding the flood for the year 2000 to the sea-level change prediction for the year 2100. This is consistent for all sea-level rise scenarios, and this difference in flood levels range between 5% and 12% for the larger half of the given magnitude interval. Focusing on flood levels at the tide gauge in the Port of Los Angeles, the most probable flood level (including all earthquake magnitudes) in the year 2000 was 5 cm. Depending on the sea-level predictions, in the year 2050 the most probable

  8. Measuring the Rate of Change in Sea Level and Its Adherence to USACE Sea Level Rise Planning Scenarios Using Timeseries Metrics

    Science.gov (United States)

    White, K. D.; Huang, N.; Huber, M.; Veatch, W.; Moritz, H.; Obrien, P. S.; Friedman, D.

    2017-12-01

    In 2013, the United States Army Corps of Engineers (USACE) issued guidance for all Civil Works activities to incorporate the effects of sea level change as described in three distinct planning scenarios.[1] These planning scenarios provided a useful framework to incorporate these effects into Civil Works activities, but required the manual calculation of these scenarios for a given gage and set of datum. To address this need, USACE developed the Sea Level Change Curve Calculator (SLCCC) in 2014 which provided a "simple, web-based tool to provide repeatable analytical results."[2]USACE has been developing a successor to the SLCCC application which retains the same, intuitive functionality to calculate these planning scenarios, but it also allows the comparison of actual sea level change between 1992 and today against the projections, and builds on the user's ability to understand the rate of change using a variety of timeseries metrics (e.g. moving averages, trends) and related visualizations. These new metrics help both illustrate and measure the complexity and nuances of sea level change. [1] ER 1000-2-8162. http://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1100-2-8162.pdf. [2] SLCC Manual. http://www.corpsclimate.us/docs/SLC_Calculator_Manual_2014_88.pdf.

  9. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant ''Hanhikivi-1'' on the local thermal regime

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Isaev, Alexey V. [Russian Academy of Sciences, St. Petersburg (Russian Federation). P.P. Shirshov Inst. of Oceanology; Eremina, Tatjana R. [Russian State Hydrometeorological Univ., St. Petersburg (Russian Federation); Sein, Dmitry V. [Helmholtz Centre for Polar and Marine Research, Bremerhaven (Germany). Alfred Wegener Inst.

    2017-07-01

    The results of the study aimed to assess the influence of future nuclear power plant ''Hanhikivi-1'' upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.

  10. The Offlap Break Position Vs Sea Level: A Discussion

    Science.gov (United States)

    Tropeano, M.; Pieri, P.; Pomar, L.; Sabato, L.

    Sedimentary lithosomes with subhorizontal topsets, basinward prograding foresets and subhorizontal bottomsets are common in the geologic record, and most of them display similar bedding architectures and/or seismic reflection patterns (i.e. Gylbert- type deltas and shelf wedges). Nevertheless, in shallow marine settings these bodies may form in distinct sedimentary environments and they result from different sed- imentary processes. The offlap break (topset edge) occurs in relation to the posi- tion of baselevel and two main groups of lithosomes can be differentiated with re- spect to the position of the offlap break within the shelf profile. The baselevel of the first group is the sea level (or lake level); the topsets are mainly composed by continental- or very-shallow-water sedimentary facies and the offlap break practi- cally corresponds to the shoreline. Exemples of these lithosomes are high-constructive deltas (river-dominated deltas) and prograding beaches. For the second group, base- level corresponds to the base of wave/tide traction, and their topsets are mostly composed by shoreface/nearshore deposits. Examples of these lithosomes are high- destructive deltas (wave/tide-dominated deltas) and infralittoral prograding wedges (i.e Hernandez-Molina et al., 2000). The offlap break corresponds to the shelf edge (shoreface edge), which is located at the transition between nearshore and offshore set- tings, where a terrace prodelta- or transition-slope may develop (Pomar &Tropeano, 2001). Two main problems derive from these alternative interpretations of shallow- marine seaward prograding lithosomes: 1) both in ancient sedimentary shallow-marine successios (showing seaward prograding foresets) and in high resolution seismic pro- files (showing shelf wedges), the offlap break is commonly considered to correspond to the sea-level (shoreline) and used to inferr paleo sea-level positions and to construct sea-level curves. Without a good facies control, this use of

  11. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  12. Wind-Driven Sea-Level Variation Influences Dynamics of Salt Marsh Vegation

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2011-01-01

    Long-term variation of mean sea level has been considered the primary exogenous factor of vegetation dynamics in salt marshes. In this study, we address the importance of short-term, wind-induced rise of the sea surface in such biogeographic changes. There was an unusual opportunity for examining......, waterlogging of marsh soils, which has retarded ecological succession. To conclude, we stress the need for a multitemporal perspective that recognizes the significance of short-term sea-level fluctuations nested within long-term trends......) continuous sedimentation with spatial variability (2.0–4.0 mm yr-1), (3) increased frequency of over-marsh flooding events, and (4) contemporary dominance of Halimione portulacoides, indicating little progressive succession toward a later phase. Conventionally, recent eustatic sea-level rise was believed...... to drive the increased frequency of flooding and such retarded succession. Skallingen, however, has showed more or less equilibrated yearly rates between sea-level rise and surface accretion. This implies that the long-term, gradual sea-level rise alone might not be enough to explain the increased...

  13. Coastal Sea Level from CryoSat-2 SARIn Altimetry in Norway

    DEFF Research Database (Denmark)

    Idžanović, Martina; Ophaug, Vegard; Andersen, Ole Baltazar

    2017-01-01

    Conventional (pulse-limited) altimeters determine the sea surface height with an accuracy of a few centimeters over the open ocean. Sea surface heights and tide-gauge sea level serve as each other’s buddy check. However, in coastal areas, altimetry suffers from numerous effects, which degrade its...... conventional altimeters. In this study, we explore the potential of CryoSat-2 to provide valid observations in the Norwegian coastal zone. We do this by comparing time series of CryoSat-2 sea level anomalies with time series of in situ sea level at 22 tide gauges, where the CryoSat-2 sea level anomalies...... are averaged in a 45-km area around each tide gauge. For all tide gauges, CryoSat-2 shows standard deviations of differences and correlations of 16 cm and 61%, respectively. We further identify the ocean tide and inverted barometer geophysical corrections as the most crucial, and note that a large amount...

  14. Greenhouse effect, sea level rise, and coastal drainage systems

    Energy Technology Data Exchange (ETDEWEB)

    Titus, J G; Kuo, C Y; Gibbs, M J; LaRoche, T B; Webb, M K; Waddell, J O

    1987-01-01

    Increasing concentrations of carbon dioxide and other gases are expected to warm the earth several degrees in the next century, which would raise sea level a few feet and alter precipitation patterns. Both of these changes would have major impacts on the operation of coastal drainage systems. However, because sea level rise and climate change resulting from the greenhouse effect are still uncertain, most planners and engineers are ignoring the potential implications. Case studies of the potential impact on watersheds in Charleston, South Carolina, and Fort Walton Beach, Florida, suggest that the cost of designing a new system to accommodate a rise in sea level will sometimes be small compared with the retrofit cost that may ultimately be necessary if new systems are not designed for a rise. Rather than ignore the greenhouse effect until its consequences are firmly established, engineers and planners should evaluate whether it would be worthwhile to insure that new systems are not vulnerable to the risks of climate change and sea level rise.

  15. Statistical analysis of global surface temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmidt, Torben; Johansen, Søren; Thejll, Peter

    2012-01-01

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to the lack of representation of ice-sheet dynamics in present-day physically-based climate models being unable to simulate observed sea level trends......, semi-empirical models have been applied as an alternative for projecting of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and land-ocean surface air...... temperature, capable of handling such peculiarities. We find a relationship between sea level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s...

  16. The land-ice contribution to 21st-century dynamic sea level rise

    Science.gov (United States)

    Howard, T.; Ridley, J.; Pardaens, A. K.; Hurkmans, R. T. W. L.; Payne, A. J.; Giesen, R. H.; Lowe, J. A.; Bamber, J. L.; Edwards, T. L.; Oerlemans, J.

    2014-06-01

    Climate change has the potential to influence global mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. In addition to their contribution to global mean sea level change, these two processes (among others) lead to local departures from the global mean sea level change, through a number of mechanisms including the effect on spatial variations in the change of water density and transport, usually termed dynamic sea level changes. In this study, we focus on the component of dynamic sea level change that might be given by additional freshwater inflow to the ocean under scenarios of 21st-century land-based ice melt. We present regional patterns of dynamic sea level change given by a global-coupled atmosphere-ocean climate model forced by spatially and temporally varying projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland Ice Sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global mean sea level rise over the 21st century. The temporal evolution of the dynamic sea level changes, in the presence of considerable variations in the ice melt flux, is also analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes occurring in the North Atlantic amounting to 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed CO2 or under a business-as-usual greenhouse gas warming scenario of increasing CO2.

  17. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  18. Estimation of sea level variations with GPS/GLONASS-reflectometry technique

    Science.gov (United States)

    Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.

    2017-11-01

    In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.

  19. Monthly Variations in Sea Level at the Island of Zanzibar

    African Journals Online (AJOL)

    The trend in sea level. (9%) appeared ... There is a strong likelihood that physical processes other .... a bell-shaped curve. To avoid erroneous conclusions, residual analysis tests were carried ..... prediction of sea level, regardless of the units ...

  20. Predictability of twentieth century sea-level rise from past data

    International Nuclear Information System (INIS)

    Bittermann, Klaus; Rahmstorf, Stefan; Perrette, Mahé; Vermeer, Martin

    2013-01-01

    The prediction of global sea-level rise is one of the major challenges of climate science. While process-based models are still being improved to capture the complexity of the processes involved, semi-empirical models, exploiting the observed connection between global-mean sea level and global temperature and calibrated with data, have been developed as a complementary approach. Here we investigate whether twentieth century sea-level rise could have been predicted with such models given a knowledge of twentieth century global temperature increase. We find that either proxy or early tide gauge data do not hold enough information to constrain the model parameters well. However, in combination, the use of proxy and tide gauge sea-level data up to 1900 AD allows a good prediction of twentieth century sea-level rise, despite this rise being well outside the rates experienced in previous centuries during the calibration period of the model. The 90% confidence range for the linear twentieth century rise predicted by the semi-empirical model is 13–30 cm, whereas the observed interval (using two tide gauge data sets) is 14–26 cm. (letter)

  1. The exposure of Sydney (Australia) to earthquake-generated tsunamis, storms and sea level rise: a probabilistic multi-hazard approach.

    Science.gov (United States)

    Dall'Osso, F; Dominey-Howes, D; Moore, C; Summerhayes, S; Withycombe, G

    2014-12-10

    Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney.

  2. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea

    Science.gov (United States)

    Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian

    2018-05-01

    Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).

  3. On the regional characteristics of past and future sea-level change (Invited)

    Science.gov (United States)

    Timmermann, A.; McGregor, S.

    2010-12-01

    Global sea-level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice-sheets is threatening to inundate low-lying islands and coast-lines worldwide. At present global mean sea level rises at 3.1 ± 0.7 mm/yr with an accelerating tendency. However, the magnitude of recent decadal sea-level trends varies greatly spatially attaining values of up to 10 mm/yr in some areas of the western tropical Pacific. Identifying the causes of recent regional sea-level trends and understanding the patterns of future projected sea-level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, we show that the regional features of recent decadal and multidecadal sea-level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind-regimes. Furthermore it is demonstrated that within an ensemble of ten state-of-the art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced re-distributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea-level rise. Wind-related changes in near- surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands and French Polynesia oppose, but can not cancel the regional signal of global mean sea-level rise.

  4. Probabilistic reanalysis of twentieth-century sea-level rise.

    Science.gov (United States)

    Hay, Carling C; Morrow, Eric; Kopp, Robert E; Mitrovica, Jerry X

    2015-01-22

    Estimating and accounting for twentieth-century global mean sea level (GMSL) rise is critical to characterizing current and future human-induced sea-level change. Several previous analyses of tide gauge records--employing different methods to accommodate the spatial sparsity and temporal incompleteness of the data and to constrain the geometry of long-term sea-level change--have concluded that GMSL rose over the twentieth century at a mean rate of 1.6 to 1.9 millimetres per year. Efforts to account for this rate by summing estimates of individual contributions from glacier and ice-sheet mass loss, ocean thermal expansion, and changes in land water storage fall significantly short in the period before 1990. The failure to close the budget of GMSL during this period has led to suggestions that several contributions may have been systematically underestimated. However, the extent to which the limitations of tide gauge analyses have affected estimates of the GMSL rate of change is unclear. Here we revisit estimates of twentieth-century GMSL rise using probabilistic techniques and find a rate of GMSL rise from 1901 to 1990 of 1.2 ± 0.2 millimetres per year (90% confidence interval). Based on individual contributions tabulated in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, this estimate closes the twentieth-century sea-level budget. Our analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, also indicates that GMSL rose at a rate of 3.0 ± 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauge records.The increase in rate relative to the 1901-90 trend is accordingly larger than previously thought; this revision may affect some projections of future sea-level rise.

  5. Bipolar seesaw control on last interglacial sea level.

    Science.gov (United States)

    Marino, G; Rohling, E J; Rodríguez-Sanz, L; Grant, K M; Heslop, D; Roberts, A P; Stanford, J D; Yu, J

    2015-06-11

    Our current understanding of ocean-atmosphere-cryosphere interactions at ice-age terminations relies largely on assessments of the most recent (last) glacial-interglacial transition, Termination I (T-I). But the extent to which T-I is representative of previous terminations remains unclear. Testing the consistency of termination processes requires comparison of time series of critical climate parameters with detailed absolute and relative age control. However, such age control has been lacking for even the penultimate glacial termination (T-II), which culminated in a sea-level highstand during the last interglacial period that was several metres above present. Here we show that Heinrich Stadial 11 (HS11), a prominent North Atlantic cold episode, occurred between 135 ± 1 and 130 ± 2 thousand years ago and was linked with rapid sea-level rise during T-II. Our conclusions are based on new and existing data for T-II and the last interglacial that we collate onto a single, radiometrically constrained chronology. The HS11 cold episode punctuated T-II and coincided directly with a major deglacial meltwater pulse, which predominantly entered the North Atlantic Ocean and accounted for about 70 per cent of the glacial-interglacial sea-level rise. We conclude that, possibly in response to stronger insolation and CO2 forcing earlier in T-II, the relationship between climate and ice-volume changes differed fundamentally from that of T-I. In T-I, the major sea-level rise clearly post-dates Heinrich Stadial 1. We also find that HS11 coincided with sustained Antarctic warming, probably through a bipolar seesaw temperature response, and propose that this heat gain at high southern latitudes promoted Antarctic ice-sheet melting that fuelled the last interglacial sea-level peak.

  6. Vertical ground motion and historical sea-level records in Dakar (Senegal)

    International Nuclear Information System (INIS)

    Le Cozannet, Gonéri; Raucoules, Daniel; Garcin, Manuel; Lavigne, Franck; Wöppelmann, Guy; Gravelle, Médéric; Da Sylva, Sylvestre; Meyssignac, Benoit

    2015-01-01

    With growing concerns regarding future impacts of sea-level in major coastal cities, the most accurate information is required regarding local sea-level changes with respect to the coast. Besides global and regional sea-level changes, local coastal vertical ground motions can substantially contribute to local changes in sea-level. In some cases, such ground motions can also limit the usefulness of tide-gauge records, which are a unique source of information to evaluate global sea-level changes before the altimetry era. Using satellite synthetic aperture radar interferometry, this study aims at characterizing vertical coastal ground motion in Dakar (Senegal), where a unique century-long record in Africa has been rediscovered. Given the limited number of available images, we use a stacking procedure to compute ground motion velocities in the line of sight over 1992–2010. Despite a complex geology and a rapid population growth and development, we show that the city as a whole is unaffected by differential ground motions larger than 1 mm year −1 . Only the northern part of the harbor displays subsidence patterns after 2000, probably as a consequence of land reclamation works. However, these ground motions do not affect the historical tide gauge. Our results highlight the value of the historical sea-level records of Dakar, which cover a 100 year time-span in a tropical oceanic region of Africa, where little data are available for past sea-level reconstructions. (letter)

  7. The disposal of low-level radioactive waste into the sea

    International Nuclear Information System (INIS)

    Saruhashi, Katsuko

    1979-01-01

    Disposal of low-level radioactive wastes is made both on land and in sea. Though the land disposal has been already carried out in the U.S.A. and the U.S.S.R., it is impossible in the narrow land of Japan. In the United States, the wastes solidified with cement in drums were previously abandoned in deep seas of the Pacific and the Atlantic. This is no longer done presently; instead, the land disposal is employed due to its lower costs. In European countries, the sea disposal is performed under OECDNEA, trial disposal in 1961 and full-scale disposal since 1967, in the Atlantic. Meanwhile, in Japan, test sea disposal will be carried out in the near future in deep sea of the northern Pacific, the important sea area for fisheries. The international trends of the deep sea disposal of low-level wastes and the correspondent trends of the same in Japan, in the past years are described. (J.P.N.)

  8. Statistical analysis of global surface air temperature and sea level using cointegration methods

    DEFF Research Database (Denmark)

    Schmith, Torben; Johansen, Søren; Thejll, Peter

    Global sea levels are rising which is widely understood as a consequence of thermal expansion and melting of glaciers and land-based ice caps. Due to physically-based models being unable to simulate observed sea level trends, semi-empirical models have been applied as an alternative for projecting...... of future sea levels. There is in this, however, potential pitfalls due to the trending nature of the time series. We apply a statistical method called cointegration analysis to observed global sea level and surface air temperature, capable of handling such peculiarities. We find a relationship between sea...... level and temperature and find that temperature causally depends on the sea level, which can be understood as a consequence of the large heat capacity of the ocean. We further find that the warming episode in the 1940s is exceptional in the sense that sea level and warming deviates from the expected...

  9. On the Application of Science Systems Engineering and Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Schlegel, Nicole-Jeanne; Boening, Carmen; Larour, Eric; Limonadi, Daniel; Schodlok, Michael; Seroussi, Helene; Watkins, Michael

    2017-04-01

    Research and development activities at the Jet Propulsion Laboratory (JPL) currently support the creation of a framework to formally evaluate the observational needs within earth system science. One of the pilot projects of this effort aims to quantify uncertainties in global mean sea level rise projections, due to contributions from the continental ice sheets. Here, we take advantage of established uncertainty quantification tools embedded within the JPL-University of California at Irvine Ice Sheet System Model (ISSM). We conduct sensitivity and Monte-Carlo style sampling experiments on forward simulations of the Greenland and Antarctic ice sheets. By varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges, we assess the impact of the different parameter ranges on century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  10. Limits on the adaptability of coastal marshes to rising sea level

    Science.gov (United States)

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; D'Alpaos, Andrea; Morris, James T.; Mudd, Simon M.; Temmerman, Stijn

    2010-01-01

    Assumptions of a static landscape inspire predictions that about half of the world's coastal wetlands will submerge during this century in response to sea-level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea-level assessments, we find that non-linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea-level rise where suspended sediment concentrations are greater than ~20 mg/L. Under scenarios of more rapid sea-level rise (e.g., those that include ice sheet melting), marshes will likely submerge near the end of the 21st century. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processes to modify their physical environment.

  11. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique

    Science.gov (United States)

    Krien, Yann; Dudon, Bernard; Roger, Jean; Arnaud, Gael; Zahibo, Narcisse

    2017-09-01

    In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge - up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.

  12. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  13. Evolution of the Rømø barrier island in the Wadden Sea: Impacts of sea-level change on coastal morphodynamics

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Andersen, Thorbjørn Joest; Johannessen, Peter

    , and falling sea-level, whereas wash-over sedimentation was promoted during periods of rapid sea-level rise when shoreface, beach and coastal dune deposits were reworked. In contrast, lagoonal sedimentation has been relatively continuous and kept pace with the long-term Holocene sea-level rise. Our findings...

  14. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    Changes in relative mean sea level affect coastal areas in various ways, such as the risk of flooding, the evolution of barrier island systems, or the development of salt marshes. Long-term trends in these changes are partly masked by variability on shorter time scales. Some of this variability, for instance due to wind waves and tides (with the exception of long-period tides), is easily averaged out. In contrast, inter-annual variability is found to be irregular and large, of the order of several decimeters, as is evident from tide gauge records. This is why the climatic trend, typically of a few millimeters per year, can only be reliably identified by examining a record that is long enough to outweigh the inter-annual and decadal variabilities. In this presentation we examine the relation between the annual wind conditions from meteorological records and annual mean sea level along the Dutch coast. To do this, we need reliable and consistent long-term wind records. Some wind records from weather stations in the Netherlands date back to the 19th century, but they are unsuitable for trend analysis because of changes in location, height, surroundings, instrument type or protocol. For this reason, we will use only more recent, homogeneous wind records, from the past two decades. The question then is whether such a relatively short record is sufficient to find a convincing relation with annual mean sea level. It is the purpose of this work to demonstrate that the answer is positive and to suggest methods to find and exploit such a relation. We find that at the Dutch coast, southwesterly winds are dominant in the wind climate, but the west-east direction stands out as having the highest correlation with annual mean sea level. For different stations in the Dutch Wadden Sea and along the coast, we find a qualitatively similar pattern, although the precise values of the correlations vary. The inter-annual variability of mean sea level can already be largely explained by

  15. Evidence of exceptional oyster-reef resilience to fluctuations in sea level.

    Science.gov (United States)

    Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel

    2017-12-01

    Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n  = 3) constructed in 1997 and 2000, young reefs ( n  = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and

  16. Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise.

    Science.gov (United States)

    Hatfield, Jeff S; Reynolds, Michelle H; Seavy, Nathaniel E; Krause, Crystal M

    2012-08-01

    Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds. Conservation Biology ©2012 Society for Conservation Biology. No claim to original

  17. Integrating Non-Tidal Sea Level data from altimetry and tide gauges for coastal sea level prediction

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2012-01-01

    The main objective of this paper is to integrate Non-Tidal Sea Level (NSL) from the joint TOPEX, Jason-1 and Jason-2 satellite altimetry with tide gauge data at the west and north coast of the United Kingdom for coastal sea level prediction. The temporal correlation coefficient between altimetric...... NSLs and tide gauge data reaches a maximum higher than 90% for each gauge. The results show that the multivariate regression approach can efficiently integrate the two types of data in the coastal waters of the area. The Multivariate Regression Model is established by integrating the along-track NSL...... from the joint TOPEX/Jason-1/Jason-2 altimeters with that from eleven tide gauges. The model results give a maximum hindcast skill of 0.95, which means maximum 95% of NSL variance can be explained by the model. The minimum Root Mean Square Error (RMSe) between altimetric observations and model...

  18. Future extreme water levels and floodplains in Gironde Estuary considering climate change

    Science.gov (United States)

    Laborie, V.; Hissel, F.; Sergent, P.

    2012-04-01

    Within THESEUS European project, an overflowing model of Gironde Estuary has been used to evaluate future surge levels at Le Verdon and future water levels at 6 specific sites of the estuary : le Verdon, Richard, Laména, Pauillac, Le Marquis and Bordeaux. It was then used to study the evolution of floodplains' location and areas towards 2100 in the entire Estuary. In this study, no breaching and no modification in the elevation of the dike was considered. The model was fed by several data sources : wind fields at Royan and Mérignac interpolated from the grid of the European Climatolologic Model CLM/SGA, a tide signal at Le Verdon, the discharges of Garonne (at La Réole), the Dordogne (at Pessac) and Isle (at Libourne). A simplified mathematical model of surge levels has been adjusted at Le Verdon with 10 surge storms and by using wind and pressure fields given by CLM/SGA. This adjustment was led so that the statistical analysis of the global signal at Le Verdon gives the same quantiles as the same analysis driven on maregraphic observations for the period [1960 ; 2000]. The assumption used for sea level rise was the pessimistic one of the French national institute for climate change: 60 cm in 2100. The model was then used to study the evolution of extreme water levels towards 2100. The analysis of surge levels at Le Verdon shows a decrease in quantiles which is coherent with the analysis of climatologic fields. The analysis of water levels shows that the increase in mean water levels quantiles represents only a part of sea level rise in Gironde Estuary. Moreover this effect seems to decrease from the maritime limit of the model towards upstream. Concerning floodplains, those corresponding to return periods from 2 to 100 years for present conditions and 3 slices [2010; 2039], [2040; 2069] and [2070; 2099] have been mapped for 3 areas in Gironde Estuary : around Le Verdon, at the confluence between Garonne and Dordogne, and near Bordeaux. Concerning the evolution

  19. Short Lived Climate Pollutants cause a Long Lived Effect on Sea-level Rise: Analyzing climate metrics for sea-level rise

    Science.gov (United States)

    Sterner, E.; Johansson, D. J.

    2013-12-01

    Climate change depends on the increase of several different atmospheric pollutants. While long term global warming will be determined mainly by carbon dioxide, warming in the next few decades will depend to a large extent on short lived climate pollutants (SLCP). Reducing emissions of SLCPs could contribute to lower the global mean surface temperature by 0.5 °C already by 2050 (Shindell et al. 2012). Furthermore, the warming effect of one of the most potent SLCPs, black carbon (BC), may have been underestimated in the past. Bond et al. (2013) presents a new best estimate of the total BC radiative forcing (RF) of 1.1 W/m2 (90 % uncertainty bounds of 0.17 to 2.1 W/m2) since the beginning of the industrial era. BC is however never emitted alone and cooling aerosols from the same sources offset a majority of this RF. In the wake of calls for mitigation of SLCPs it is important to study other aspects of the climate effect of SLCPs. One key impact of climate change is sea-level rise (SLR). In a recent study, the effect of SLCP mitigation scenarios on SLR is examined. Hu et al (2013) find a substantial effect on SLR from mitigating SLCPs sharply, reducing SLR by 22-42% by 2100. We choose a different approach focusing on emission pulses and analyse a metric based on sea level rise so as to further enlighten the SLR consequences of SLCPs. We want in particular to understand the time dynamics of SLR impacts caused by SLCPs compared to other greenhouse gases. The most commonly used physical based metrics are GWP and GTP. We propose and evaluate an additional metric: The global sea-level rise potential (GSP). The GSP is defined as the sea level rise after a time horizon caused by an emissions pulse of a forcer to the sea level rise after a time horizon caused by an emissions pulse of a CO2. GSP is evaluated and compared to GWP and GTP using a set of climate forcers chosen to cover the whole scale of atmospheric perturbation life times (BC, CH4, N2O, CO2 and SF6). The study

  20. Observed Sea-Level Changes along the Norwegian Coast

    Directory of Open Access Journals (Sweden)

    Kristian Breili

    2017-07-01

    Full Text Available Norway’s national sea level observing system consists of an extensive array of tide gauges, permanent GNSS stations, and lines of repeated levelling. Here, we make use of this observation system to calculate relative sea-level rates and rates corrected for glacial isostatic adjustment (GIA along the Norwegian coast for three different periods, i.e., 1960 to 2010, 1984 to 2014, and 1993 to 2016. For all periods, the relative sea-level rates show considerable spatial variations that are largely due to differences in vertical land motion due to GIA. The variation is reduced by applying corrections for vertical land motion and associated gravitational effects on sea level. For 1960 to 2010 and 1984 to 2014, the coastal average GIA-corrected rates for Norway are 2.0 ± 0.6 mm/year and 2.2 ± 0.6 mm/year, respectively. This is close to the rate of global sea-level rise for the same periods. For the most recent period, 1993 to 2016, the GIA-corrected coastal average is 3.5 ± 0.6 mm/year and 3.2 ± 0.6 mm/year with and without inverse barometer (IB corrections, respectively, which is significantly higher than for the two earlier periods. For 1993 to 2016, the coastal average IB-corrected rates show broad agreement with two independent sets of altimetry. This suggests that there is no systematic error in the vertical land motion corrections applied to the tide-gauge data. At the same time, altimetry does not capture the spatial variation identified in the tide-gauge records. This could be an effect of using altimetry observations off the coast instead of directly at each tide gauge. Finally, we note that, owing to natural variability in the climate system, our estimates are highly sensitive to the selected study period. For example, using a 30-year moving window, we find that the estimated rates may change by up to 1 mm/year when shifting the start epoch by only one year.

  1. Taxonomic analysis of extremely halophilic archaea isolated from 56-years-old dead sea brine samples.

    Science.gov (United States)

    Arahal, D R; Gutiérrez, M C; Volcani, B E; Ventosa, A

    2000-10-01

    A taxonomic study comprising both phenotypic and genotypic characterization, has been carried out on a total of 158 extremely halophilic aerobic archaeal strains. These strains were isolated from enrichments prepared from Dead Sea water samples dating from 1936 that were collected by B. E. Volcani for the demonstration of microbial life in the Dead Sea. The isolates were examined for 126 morphological, physiological, biochemical and nutritional tests. Numerical analysis of the data, by using the S(J) coefficient and UPGMA clustering method, showed that the isolates clustered into six phenons. Twenty-two out of the 158 strains used in this study were characterized previously (ARAHAL et al., 1996) and were placed into five phenotypic groups. The genotypic study included both the determination of the guanineplus-cytosine content of the DNA and DNA-DNA hybridization studies. For this purpose, representative strains from the six phenons were chosen. These groups were found to represent some members of three different genera - Haloarcula (phenons A, B, and C), Haloferax (phenons D and E) and Halobacterium (phenon F) - of the family Halobacteriaceae, some of them never reported to occur in the Dead Sea, such as Haloarcula hispanica, while Haloferax volcanii (phenons D and E) was described in the Dead Sea by studies carried out several decades later than Volcani's work.

  2. Extreme levels of 222Rn and U in a private water supply

    International Nuclear Information System (INIS)

    Lowry, J.D.; Hoxie, D.C.; Moreau, E.

    1987-01-01

    In 1985, the Maine Department of Human Services discovered a private water supply in Leeds, ME, that contains over 40,700 BqL -1 (1.1 x 10 +6 pCil -1 ) of 222 Rn on average, and ranges between 13,300 and 59,200 Bql -1 . The well water also contains a gross alpha concentration of approximately 10.0 BqL -1 (270 pCiL -1 ), of which more than 95 percent is U (403 ugL -1 ). The ratio of 234 U to 238 U averages 1.17, which compares closely to the sea water at 1.14. The Ra content comprises less than 2 percent of the gross alpha. The levels of 222 Rn and U are considered to be extremely high, with the 222 Rn being the highest known level the authors are aware of for a drinking water supply. This area of Maine has geologic features characteristic of those shown by others to have a high potential for elevated levels of 222 Rn and other radioisotopes. The purpose of this paper is to update the information presented previously about this site, in particular to the ramifications on treatment alternatives associated with the presence of both 222 Rn and U in a water supply

  3. Coastal sea level rise with warming above 2 °C.

    Science.gov (United States)

    Jevrejeva, Svetlana; Jackson, Luke P; Riva, Riccardo E M; Grinsted, Aslak; Moore, John C

    2016-11-22

    Two degrees of global warming above the preindustrial level is widely suggested as an appropriate threshold beyond which climate change risks become unacceptably high. This "2 °C" threshold is likely to be reached between 2040 and 2050 for both Representative Concentration Pathway (RCP) 8.5 and 4.5. Resulting sea level rises will not be globally uniform, due to ocean dynamical processes and changes in gravity associated with water mass redistribution. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 °C goal. By 2040, with a 2 °C warming under the RCP8.5 scenario, more than 90% of coastal areas will experience sea level rise exceeding the global estimate of 0.2 m, with up to 0.4 m expected along the Atlantic coast of North America and Norway. With a 5 °C rise by 2100, sea level will rise rapidly, reaching 0.9 m (median), and 80% of the coastline will exceed the global sea level rise at the 95th percentile upper limit of 1.8 m. Under RCP8.5, by 2100, New York may expect rises of 1.09 m, Guangzhou may expect rises of 0.91 m, and Lagos may expect rises of 0.90 m, with the 95th percentile upper limit of 2.24 m, 1.93 m, and 1.92 m, respectively. The coastal communities of rapidly expanding cities in the developing world, and vulnerable tropical coastal ecosystems, will have a very limited time after midcentury to adapt to sea level rises unprecedented since the dawn of the Bronze Age.

  4. Linear and non-linear sea-level variations in the Adriatic Sea from tide gauge records (1872-2012

    Directory of Open Access Journals (Sweden)

    Gaia Galassi

    2015-03-01

    Full Text Available We have analyzed tide gauge data from the Adriatic Sea in order to assess the secular sea-level trend, its acceleration and the existence of possible cyclic variation. Analyzing the sea-level stack of all Adriatic tide gauges, we have obtained a trend of (1.25±0.04 mm yr-1, in agreement with that observed for the last century in the Mediterranean Sea, and an acceleration that is negligibile compared to the average global values. By means of the Ensemble Empirical Mode Decomposition technique, we have evidenced an energetic oscillation with a period of ∼20 years that we relate with the recurrence of opposite phases in the Atlantic Multi–decadal Oscillation and North Atlantic Oscillation indices. We suggest that anomalously high sea-level values observed at all the Adriatic tide gauges during 2010 and 2011 can be explained by the rising phase of this 20 years cycle.

  5. Principles and reconstruction of the ancient sea levels during the Quaternary

    International Nuclear Information System (INIS)

    Martin, L.; Flexor, J.M.; Suguio, K.

    1986-01-01

    This work focused the multiple aspects related to the ''reconstruction of the ancient sea level during the Quaternary''. The relative sea level, fluctuations are produced by true variations of the level (eustasy) and by changes in the land level (tectonism and isostasy). The changes of the relative levels are reconstructed through several evidence of these fluctuations, which are recognised in time and space. To define their situation in space is necessary to know their present altitude in relation to their original altitude, that is, to determine their position in relation to the sea level during their formation or sedimentation. Their situation in time is determined by measuring the moment of their formation or sedimentation, using for this the dating methods (isotopic, archeological, etc.) When numerous ancient levels could be reconstructed, spread through a considerable time interval, is possible to delineate the sea level fluctuation curve for this period. (C.D.G.) [pt

  6. History of Aral Sea level variability and current scientific debates

    Science.gov (United States)

    Cretaux, Jean-François; Letolle, René; Bergé-Nguyen, Muriel

    2013-11-01

    The Aral Sea has shrunk drastically over the past 50 years, largely due to water abstraction from the Amu Darya and Syr Darya rivers for land irrigation. Over a longer timescale, Holocene palaeolimnological reconstruction of variability in water levels of the Aral Sea since 11,700 BP indicates a long history of alternating phases of regression and transgression, which have been attributed variously to climate, tectonic and anthropogenic forcing. The hydrological history of the Aral Sea has been investigated by application of a variety of scientific approaches, including archaeology, palaeolimnological palaeoclimate reconstruction, geophysics, sedimentology, and more recently, space science. Many issues concerning lake level variability over the Holocene and more recent timescales, and the processes that drive the changes, are still a matter for active debate. Our aim in this article is to review the current debates regarding key issues surrounding the causes and magnitude of Aral Sea level variability on a variety of timescales from months to thousands of years. Many researchers have shown that the main driving force of Aral Sea regressions and transgressions is climate change, while other authors have argued that anthropogenic forcing is the main cause of Aral Sea water level variations over the Holocene. Particular emphasis is made on contributions from satellite remote sensing data in order to improve our understanding of the influence of groundwater on the current hydrological water budget of the Aral Sea since 2005. Over this period of time, water balance computation has been performed and has shown that the underground water inflow to the Aral Sea is close to zero with an uncertainty of 3 km3/year.

  7. Guiding Users to Sea Level Change Data Through Content

    Science.gov (United States)

    Quach, N.; Abercrombie, S. P.; Boening, C.; Brennan, H. P.; Gill, K. M.; Greguska, F. R., III; Huang, T.; Jackson, R.; Larour, E. Y.; Shaftel, H.; Tenenbaum, L. F.; Zlotnicki, V.; Boeck, A.; Moore, B.; Moore, J.

    2017-12-01

    The NASA Sea Level Change Portal (https://sealevel.nasa.gov) is an immersive and innovative web portal for sea level change research that addresses the needs of diverse audiences, from scientists across disparate disciplines to the general public to policy makers and businesses. Since sea level change research involves vast amounts of data from multiple fields, it becomes increasingly important to come up with novel and effective ways to guide users to the data they need. News articles published on the portal contains links to relevant data. The Missions section highlights missions and projects as well as provide a logical grouping of the data. Tools available on the portal, such as the Data Analysis Tool, a data visualization and high-performance environment for sea level analysis, and the Virtual Earth System Laboratory, a 3D simulation application, describes and links to the source data. With over 30K Facebook followers and over 23K Twitter follower, the portal outreach team also leverages social media to guide users to relevant data. This presentation focuses on how the portal uses news articles, mission and project pages, tools, and social media to connect users to the data.

  8. Climate Adaptation and Sea Level Rise

    Science.gov (United States)

    EPA supports the development and maintenance of water utility infrastructure across the country. Included in this effort is helping the nation’s water utilities anticipate, plan for, and adapt to risks from flooding, sea level rise, and storm surge.

  9. Sea-level Rise Impacts on Oregon Estuaries: Biology and Hydrology

    Science.gov (United States)

    Estuaries are transitional ecosystems located at the margin of the land and ocean and as a result they are particularly sensitive to sea level rise and other climate drivers. In this presentation, we summarize the potential impacts of sea level rise on key estuarine habitats inc...

  10. PERSPECTIVE: The tripping points of sea level rise

    Science.gov (United States)

    Hecht, Alan D.

    2009-12-01

    When President Nixon created the US Environmental Protection Agency (EPA) in 1970 he said the environment must be perceived as a single, interrelated system. We are nowhere close to achieving this vision. Jim Titus and his colleagues [1] highlight one example of where one set of regulations or permits may be in conflict with another and where regulations were crafted in the absence of understanding the cumulative impact of global warming. The issue here is how to deal with the impacts of climate change on sea level and the latter's impact on wetland polices, clean water regulations, and ecosystem services. The Titus paper could also be called `The tripping points of sea level rise'. Titus and his colleagues have looked at the impact of such sea level rise on the east coast of the United States. Adaptive responses include costly large- scale investment in shore protection (e.g. dikes, sand replenishment) and/or ecosystem migration (retreat), where coastal ecosystems move inland. Shore protection is limited by available funds, while ecosystem migrations are limited by available land use. The driving factor is the high probability of sea level rise due to climate change. Estimating sea level rise is difficult because of local land and coastal dynamics including rising or falling land areas. It is estimated that sea level could rise between 8 inches and 2 feet by the end of this century [2]. The extensive data analysis done by Titus et al of current land use is important because, as they observe, `property owners and land use agencies have generally not decided how they will respond to sea level rise, nor have they prepared maps delineating where shore protection and retreat are likely'. This is the first of two `tripping points', namely the need for adaptive planning for a pending environmental challenge that will create economic and environment conflict among land owners, federal and state agencies, and businesses. One way to address this gap in adaptive management

  11. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir......This study tested the hypothesis that the diurnal variations of serum-erythropoietin concentration (serum-EPO) observed in normoxia also exist in hypoxia. The study also attempted to investigate the regulation of EPO production during sustained hypoxia. Nine subjects were investigated at sea level...... and during 4 days at an altitude of 4350 m. Median sea level serum-EPO concentration was 6 (range 6-13) U.l-1. Serum-EPO concentration increased after 18 and 42 h at altitude, [58 (range 39-240) and 54 (range 36-340) U.l-1, respectively], and then decreased after 64 and 88 h at altitude [34 (range 18...

  12. Tides, surges and mean sea-level

    National Research Council Canada - National Science Library

    Pugh, D. T

    1987-01-01

    .... Interest in mean sea-level changes has recently been focused on the possibility of significant increases over the coming century as a result of global warming. Examples of applications from North America, Europe and other parts of the world are included.

  13. Synoptic conditions of fine-particle transport to the last interglacial Red Sea -Dead Sea from Nd-Sr compositions of sediment cores

    Science.gov (United States)

    Stein, M.; Palchan, D.; Goldstein, S. L.; Almogi-Labin, A.; Tirosh, O.; Erel, Y.

    2017-12-01

    The last interglacial peak, Marine Isotope Stage 5e (MIS 5e), was associated with stronger northern hemisphere insolation, higher global sea levels and higher average global temperatures compared to the Holocene, and is considered as an analogue for a future warming world. In this perspective the present-day areas of the Sahara - Arabia deserts (the "desert belt") are of special interest since their margins are densely inhabited and global climate models predict enhanced aridity in these regions due to future warming. The Red Sea situated at the midst of the desert belt and the Dead Sea at the northern fringe of the desert belt comprise sensitive monitors for past hydroclimate changes in the Red Sea-Levant regions as global climate shifted from glacial to interglacial conditions. Here, we reconstruct the synoptic conditions that controlled desert dust transport to the Red Sea and the Dead Sea during MIS5e. The reconstruction is based on Nd-Sr isotopes and chemical composition of carbonate-free detritus recovered from sediment cores drilled at the deep floors of these water-bodies combined with data of contemporaneous dust storms transporting dust to the lake and sea floors. During Termination 2 ( 134-130 ka) the Sahara, Nile River desiccated and the Dead Sea watershed were under extreme dry conditions manifested by lake level drop, deposition of salt and enhanced transport of Sahara dusts to the entire studied transect. At the peak of the interglacial MIS 5e ( 130-120 ka), enhanced flooding activity mobilized local fine detritus from the surroundings of the Red Sea and the Dead Sea watershed into the water-bodies. This interval coincided with the Sapropel event S5 in the Mediterranean that responded to enhanced monsoon rains at the heads of the Blue Nile River. At the end of MIS 5e ( 120-116 ka) the effect of the regional floods faded and the Dead Sea and Red Sea areas re-entered sever arid conditions with salt deposition at the Dead Sea. Overall, the desert

  14. Topex-Poseidon analysis of sea level variability over the Atlantic Ocean

    Science.gov (United States)

    Catalan P-U, M.; Villares, P.; Catalan, M.; Gomez-Enri, J.

    2003-04-01

    The variability of sea level and surface geostrophic currents in Atlantic Ocean is investigated using 333 cycles of altimeter information obtained by TOPEX-POSEIDON satellite. After the improvements of orbit accuracy, the most important concern to studies of sea level variability from altimeter height data are related with the formalism used for modelling the altimetric measurement corrections. Presently, one of the main sources of potential error is the correction for atmospheric pressure loading, the so-called ‘inverse barometer effect’. As is well known, this correction is intended to adjust the sea surface elevation for the static effects of the downward force of the mass of the atmosphere on the sea surface, adjusted, in this oversimplified model in 1cm/mbar. The exact response of the sea surface to atmospheric pressure loading depends on the space and time scales of the pressure field and must be specially a concern at high latitudes where atmospheric pressure fluctuations are large due to the intensity of low pressure fields at these latitudes and the additional uncertainty in the model estimates of the local sea level pressure. To study these effects over the whole Atlantic Ocean we compute a linear regression adjustment and an Empirical Orthogonal Functions Decomposition (EOFD), between sea level variation without inverse barometer correction and the atmospheric pressure, in all the Topex-Poseidon cross points over the whole Atlantic, including both the Artic and Antarctic Oceans. We use the barometric factor computed from the linear regression to correct the satellite mean sea level variation, comparing the correlation with the pressure. Our results show an important improvement in the decorrelation between sea level and atmospheric pressure time series, compared with the use of Inverse Barometer model, at most of the satellite cross points. The complicated nature of sea level variability at high latitudes justify that EOFD analysis conclusions

  15. Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China

    Science.gov (United States)

    Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.

    2017-12-01

    Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.

  16. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir...

  17. Genetic Programming for Sea Level Predictions in an Island Environment

    Directory of Open Access Journals (Sweden)

    M.A. Ghorbani

    2010-03-01

    Full Text Available Accurate predictions of sea-level are important for geodetic applications, navigation, coastal, industrial and tourist activities. In the current work, the Genetic Programming (GP and artificial neural networks (ANNs were applied to forecast half-daily and daily sea-level variations from 12 hours to 5 days ahead. The measurements at the Cocos (Keeling Islands in the Indian Ocean were used for training and testing of the employed artificial intelligence techniques. A comparison was performed of the predictions from the GP model and the ANN simulations. Based on the comparison outcomes, it was found that the Genetic Programming approach can be successfully employed in forecasting of sea level variations.

  18. Remarks on the sea level records of the north Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    variability in the tide gauge records along the coasts of the north Indian Ocean A. S. Unnikrishnan National Institute of Oceanography, Dona Paula, Goa, India 403004 e-mail: unni@nio.org Introduction Global sea-level rise has been relatively well... studied by making use of the coastal tide gauge data that are available (Woodworth and Player, 2003) through the Permanent Service for Mean Sea Level (PSMSL). However, studies on regional sea level rise have not gathered momentum, similar to those on a...

  19. Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa

    Science.gov (United States)

    Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.

    2011-12-01

    The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The

  20. NOAA Digital Coast Sea Level Rise and Coastal Flooding Impacts Viewer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Level Rise and Coastal Flooding Impacts Viewer depicts potential sea level rise and its associated impacts on the nation's coastal areas. These coastal areas...

  1. Sea level measured by tide gauges from global oceans as part of the Joint Archive for Sea Level (JASL) from 1846-01-01 to 2015-07-31

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains the complete holdings of the Joint Archive for Sea Level (JASL) for sea level data that have been quality controlled, assessed, and...

  2. Preliminary investigation of the effects of sea-level rise on groundwater levels in New Haven, Connecticut

    Science.gov (United States)

    Bjerklie, David M.; Mullaney, John R.; Stone, Janet R.; Skinner, Brian J.; Ramlow, Matthew A.

    2012-01-01

    Global sea level rose about 0.56 feet (ft) (170 millimeters (mm)) during the 20th century. Since the 1960s, sea level has risen at Bridgeport, Connecticut, about 0.38 ft (115 mm), at a rate of 0.008 ft (2.56 mm + or - 0.58 mm) per year. With regional subsidence, and with predicted global climate change, sea level is expected to continue to rise along the northeast coast of the United States through the 21st century. Increasing sea levels will cause groundwater levels in coastal areas to rise in order to adjust to the new conditions. Some regional climate models predict wetter climate in the northeastern United States under some scenarios. Scenarios for the resulting higher groundwater levels have the potential to inundate underground infrastructure in lowlying coastal cities. New Haven is a coastal city in Connecticut surrounded and bisected by tidally affected waters. Monitoring of water levels in wells in New Haven from August 2009 to July 2010 indicates the complex effects of urban influence on groundwater levels. The response of groundwater levels to recharge and season varied considerably from well to well. Groundwater temperatures varied seasonally, but were warmer than what was typical for Connecticut, and they seem to reflect the influence of the urban setting, including the effects of conduits for underground utilities. Specific conductance was elevated in many of the wells, indicating the influence of urban activities or seawater in Long Island Sound. A preliminary steady-state model of groundwater flow for part of New Haven was constructed using MODFLOW to simulate current groundwater levels (2009-2010) and future groundwater levels based on scenarios with a rise of 3 ft (0.91 meters (m)) in sea level, which is predicted for the end of the 21st century. An additional simulation was run assuming a 3-ft rise in sea level combined with a 12-percent increase in groundwater recharge. The model was constructed from existing hydrogeologic information for the

  3. Detection of human influence on sea-level pressure.

    Science.gov (United States)

    Gillett, Nathan P; Zwiers, Francis W; Weaver, Andrew J; Stott, Peter A

    2003-03-20

    Greenhouse gases and tropospheric sulphate aerosols--the main human influences on climate--have been shown to have had a detectable effect on surface air temperature, the temperature of the free troposphere and stratosphere and ocean temperature. Nevertheless, the question remains as to whether human influence is detectable in any variable other than temperature. Here we detect an influence of anthropogenic greenhouse gases and sulphate aerosols in observations of winter sea-level pressure (December to February), using combined simulations from four climate models. We find increases in sea-level pressure over the subtropical North Atlantic Ocean, southern Europe and North Africa, and decreases in the polar regions and the North Pacific Ocean, in response to human influence. Our analysis also indicates that the climate models substantially underestimate the magnitude of the sea-level pressure response. This discrepancy suggests that the upward trend in the North Atlantic Oscillation index (corresponding to strengthened westerlies in the North Atlantic region), as simulated in a number of global warming scenarios, may be too small, leading to an underestimation of the impacts of anthropogenic climate change on European climate.

  4. Stable reconstruction of Arctic sea level for the 1950-2010 period

    OpenAIRE

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2016-01-01

    Reconstruction of historical Arctic sea level is generally difficult due to the limited coverage and quality of both tide gauge and altimetry data in the area. Here a strategy to achieve a stable and plausible reconstruction of Arctic sea level from 1950 to today is presented. This work is based on the combination of tide gauge records and a new 20-year reprocessed satellite altimetry derived sea level pattern. Hence the study is limited to the area covered by satellite altimetry (68ºN and 82...

  5. A new phase in the production of quality-controlled sea level data

    DEFF Research Database (Denmark)

    Quartly, Graham D.; Legeais, Jean François; Ablain, Michaël

    2017-01-01

    Sea level is an essential climate variable (ECV) that has a direct effect on many people through inundations of coastal areas, and it is also a clear indicator of climate changes due to external forcing factors and internal climate variability. Regional patterns of sea level change inform us...... and predict these phenomena, and thereby alleviate some of the environmental conditions associated with them. All such studies rely on the existence of long-term consistent high-accuracy datasets of sea level. The Climate Change Initiative (CCI) of the European Space Agency was established in 2010 to provide...... improved time series of some ECVs, including sea level, with the purpose of providing such data openly to all to enable the widest possible utilisation of such data. Now in its second phase, the Sea Level CCI project (SL-cci) merges data from nine different altimeter missions in a clear, consistent...

  6. Return levels of temperature extremes in southern Pakistan

    Science.gov (United States)

    Zahid, Maida; Blender, Richard; Lucarini, Valerio; Caterina Bramati, Maria

    2017-12-01

    Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the peaks over threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are analyzed: temperatures observed at nine meteorological stations in southern Pakistan from 1980 to 2013, and the ERA-Interim (ECMWF reanalysis) data for the nearest corresponding locations. The analysis provides the 2-, 5-, 10-, 25-, 50-, and 100-year return levels (RLs) of temperature extremes. The 90 % quantile is found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50 °C at northern stations and above 45 °C at the southern stations. The RLs of the observed TWmax exceed 35 °C in the region, which is considered as a limit of survivability. The RLs estimated from the ERA-Interim data are lower by 3 to 5 °C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA-Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the risk assessment of extreme temperatures in Sindh.

  7. US power plant sites at risk of future sea-level rise

    International Nuclear Information System (INIS)

    Bierkandt, R; Levermann, A; Auffhammer, M

    2015-01-01

    Unmitigated greenhouse gas emissions may increase global mean sea-level by about 1 meter during this century. Such elevation of the mean sea-level enhances the risk of flooding of coastal areas. We compute the power capacity that is currently out-of-reach of a 100-year coastal flooding but will be exposed to such a flood by the end of the century for different US states, if no adaptation measures are taken. The additional exposed capacity varies strongly among states. For Delaware it is 80% of the mean generated power load. For New York this number is 63% and for Florida 43%. The capacity that needs additional protection compared to today increases by more than 250% for Texas, 90% for Florida and 70% for New York. Current development in power plant building points towards a reduced future exposure to sea-level rise: proposed and planned power plants are less exposed than those which are currently operating. However, power plants that have been retired or canceled were less exposed than those operating at present. If sea-level rise is properly accounted for in future planning, an adaptation to sea-level rise may be costly but possible. (letter)

  8. Sea level change in Great Britain between 1859 and the present

    Science.gov (United States)

    Woodworth, Philip L.

    2018-04-01

    Short records of sea level measurements by the Ordnance Survey at 31 locations in 1859-1860, together with recent Mean Sea Level (MSL) information from the UK tide gauge network, have been used to estimate the average rates of sea level change around the coast of Great Britain since the mid-19th century. Rates are found to be approximately 1 mm yr-1 in excess of those expected for the present day based on geological information, providing evidence for a climate-change related component of the increase in UK sea level. In turn, the rates of change of MSL for the past 60 yr are estimated to be ˜1 mm yr-1 in excess of the long-term rates since 1859, suggesting an acceleration in the rate of sea level rise between the 19th and 20th/21st centuries. Although the historical records are very short (approximately a fortnight), this exercise in `data archaeology' shows how valuable to research even the shortest records can be, as long as the measurements were made by competent people and the datums of the measurements were fully documented.

  9. Integrating conservation costs into sea level rise adaptive conservation prioritization

    Directory of Open Access Journals (Sweden)

    Mingjian Zhu

    2015-07-01

    Full Text Available Biodiversity conservation requires strategic investment as resources for conservation are often limited. As sea level rises, it is important and necessary to consider both sea level rise and costs in conservation decision making. In this study, we consider costs of conservation in an integrated modeling process that incorporates a geomorphological model (SLAMM, species habitat models, and conservation prioritization (Zonation to identify conservation priorities in the face of landscape dynamics due to sea level rise in the Matanzas River basin of northeast Florida. Compared to conservation priorities that do not consider land costs in the analysis process, conservation priorities that consider costs in the planning process change significantly. The comparison demonstrates that some areas with high conservation values might be identified as lower priorities when integrating economic costs in the planning process and some areas with low conservation values might be identified as high priorities when considering costs in the planning process. This research could help coastal resources managers make informed decisions about where and how to allocate conservation resources more wisely to facilitate biodiversity adaptation to sea level rise.

  10. Statistical analysis of the acceleration of Baltic mean sea-level rise, 1900-2012

    Directory of Open Access Journals (Sweden)

    Birgit Hünicke

    2016-07-01

    Full Text Available We analyse annual mean sea-level records from tide-gauges located in the Baltic and parts of the North Sea with the aim of detecting an acceleration of sea-level rise over the 20textsuperscript{th} and 21textsuperscript{st} centuries. The acceleration is estimated as a (1 fit to a polynomial of order two in time, (2 a long-term linear increase in the rates computed over gliding overlapping decadal time segments, and (3 a long-term increase of the annual increments of sea level.The estimation methods (1 and (2 prove to be more powerful in detecting acceleration when tested with sea-level records produced in global climate model simulations. These methods applied to the Baltic-Sea tide-gauges are, however, not powerful enough to detect a significant acceleration in most of individual records, although most estimated accelerations are positive. This lack of detection of statistically significant acceleration at the individual tide-gauge level can be due to the high-level of local noise and not necessarily to the absence of acceleration.The estimated accelerations tend to be stronger in the north and east of the Baltic Sea. Two hypothesis to explain this spatial pattern have been explored. One is that this pattern reflects the slow-down of the Glacial Isostatic Adjustment. However, a simple estimation of this effect suggests that this slow-down cannot explain the estimated acceleration. The second hypothesis is related to the diminishing sea-ice cover over the 20textsuperscript{th} century. The melting o of less saline and colder sea-ice can lead to changes in sea-level. Also, the melting of sea-ice can reduce the number of missing values in the tide-gauge records in winter, potentially influencing the estimated trends and acceleration of seasonal mean sea-level This hypothesis cannot be ascertained either since the spatial pattern of acceleration computed for winter and summer separately are very similar. The all-station-average-record displays an

  11. Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data

    Science.gov (United States)

    Criado-Aldeanueva, Francisco; Del Río Vera, Jorge; García-Lafuente, Jesús

    2008-02-01

    Long-term series of almost 14 years of altimetry data (1992-2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for ˜ 55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as - 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.

  12. A decade of sea level rise slowed by climate-driven hydrology.

    Science.gov (United States)

    Reager, J T; Gardner, A S; Famiglietti, J S; Wiese, D N; Eicker, A; Lo, M-H

    2016-02-12

    Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 ± 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 ± 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level. Copyright © 2016, American Association for the Advancement of Science.

  13. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    Science.gov (United States)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex

  14. Historical changes in the Mississippi-Alabama barrier islands and the roles of extreme storms, sea level, and human activities

    Science.gov (United States)

    Morton, Robert A.

    2007-01-01

    westward sediment transport by alongshore currents, and Cat Island is being reshaped as it adjusts to post-formation changes in wave and current patterns associated with deposition of the St. Bernard lobe of the Mississippi delta. The principal causes of barrier island land loss are frequent intense storms, a relative rise in sea level, and a deficit in the sediment budget. The only factor that has a historical trend that coincides with the progressive increase in rates of land loss is the progressive reduction in sand supply associated with nearly simultaneous deepening of channels dredged across the outer bars of the three tidal inlets maintained for deep-draft shipping. Neither rates of relative sea level rise nor storm parameters have long-term historical rends that match the increased rates of land loss since the mid 1800s. The historical rates of relative sea level rise in the northern Gulf of Mexico have been relatively constant and storm frequencies and intensities occur in multidecal cycles. However, the most recent land loss accelerations likely related to the increased storm activity since 1995. Considering the predicted trends for storms and sea level related to global warming, it is clear that the barrier islands will continue to lose land area at a rapid rate without a reversal in trend of at least one of the causal factors. The reduction in sand supply related to disruption of the alongshore sediment transport system is the only factor contributing to land loss that can be managed directly. This can be accomplished by placing dredged material so that the adjacent barrier island shores revive it for island nourishment and rebuilding.

  15. Critical Mechanisms for the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiquan [Beijing Normal Univ. (China); Univ. of North Dakota, Grand Forks, ND (United States); Zib, Benjamin J. [Univ. of North Dakota, Grand Forks, ND (United States); Xi, Baike [Univ. of North Dakota, Grand Forks, ND (United States); Stanfield, Ryan [Univ. of North Dakota, Grand Forks, ND (United States); Deng, Yi [Georgia Inst. of Technology, Atlanta, GA (United States); Zhang, Xiangdong [Univ. of Alaska, Fairbanks, AK (United States); Lin, B. [NASA Langley Research Center, Hampton, VA (United States); Long, Charles N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-29

    A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extent from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat during the

  16. Holocene Sea-Level Database For The Caribbean Region

    Science.gov (United States)

    Khan, N. S.; Horton, B.; Engelhart, S. E.; Peltier, W. R.; Scatena, F. N.; Vane, C. H.; Liu, S.

    2013-12-01

    Holocene relative sea-level (RSL) records from far-field locations are important for understanding the driving mechanisms controlling the nature and timing of the mid-late Holocene reduction in global meltwaters and providing background rates of late Holocene RSL change with which to compare the magnitude of 20th century RSL rise. The Caribbean region has traditionally been considered far-field (i.e., with negligible glacio-isostatic adjustment (GIA) influence), although recent investigations indicate otherwise. Here, we consider the spatial variability in glacio-isostatic, tectonic and local contributions on RSL records from the circum-Caribbean region to infer a Holocene eustatic sea-level signal. We have constructed a database of quality-controlled, spatially comprehensive, Holocene RSL observations for the circum-Caribbean region. The database contains over 500 index points, which locate the position of RSL in time and space. The database incorporates sea-level observations from a latitudinal range of 5°N to 25°N and longitudinal range of 55°W to 90°W. We include sea-level observations from 11 ka BP to present, although the majority of the index points in the database are younger than 8 ka BP. The database is sub-divided into 13 regions based on the distance from the former Laurentide Ice Sheet and regional tectonic setting. The index points were primarily derived from mangrove peat deposits, which in the Caribbean form in the upper half of the tidal range, and corals (predominantly Acropora palmata), the growth of which is constrained to the upper 5 m of water depth. The index points are classified on the basis of their susceptibility to compaction (e.g., intercalated, basal). The influence of temporal changes in tidal range on index points is also considered. The sea-level reconstructions demonstrate that RSL did not exceed the present height (0 m) during the Holocene in the majority of locations, except at sites in Suriname/Guayana and possibly Trinidad

  17. Detection of a dynamic topography signal in last interglacial sea-level records.

    Science.gov (United States)

    Austermann, Jacqueline; Mitrovica, Jerry X; Huybers, Peter; Rovere, Alessio

    2017-07-01

    Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters.

  18. Non-eustatic controls on sea-level change in semi-enclosed basins

    Science.gov (United States)

    Major, Candace Olson

    Marginal basins with shallow connections to the world ocean can become isolated from marine influence when eustatic sea level drops below the dividing sill. During isolation the basins may have higher or lower base-levels than the open ocean. This decoupling from global sea level and seawater allows preservation of a distinct history that constrains water balance and erosion in the surrounding continental masses, providing records of continental climates not preserved in marine records. The Mediterranean and Black Seas both experienced isolation stages and significant draw down of base-level below the dividing sill depth. In the Late Miocene (Messinian) a combination of tectonic compression at the marine gateways and eustatic sea level drop isolated the Mediterranean. A negative water balance then caused a lowering of Mediterranean base-level by at least 1500 m, exposing the continental shelves and slopes, and allowing the emergence of bathymetric highs in the central basins. Subaerial exposure features on the summit and evaporite onlap at the base of the Eratosthenes seamount, a carbonate platform in the Levantine basin of the Mediterranean, show the extent of base-level lowering. The Black Sea has periodically become isolated during glacio-eustatic low stands of the Pleistocene. Submerged shoreline deposits and beveled strata during the last isolation exposed the continental shelves out to -105 m below modern sea level. Integration of seismic data, sediment cores, radiocarbon dating, and geochemical analyses indicates that the lowest water level occurred not during the glacial maximum but during the early deglaciation. A brief return toward glacial conditions in the Younger Dryas cold period resulted in increased freshwater input to the Black Sea and a rise in base-level above the outside eustatic level. Subsequent base-level fall to -105 m occurred with resumed warming climate. The first marine invasion, which is seen prominently in the 87Sr/86Sr composition of

  19. Sea Level Activities and Changes on the Islands of the Western ...

    African Journals Online (AJOL)

    1985- 1994), a sea-level study network was established in the Western Indian Ocean (WIO) to monitor sea-level variations. Most of these stations together with additional stations maintained by countries outside the region now form part of the ...

  20. Reconstructing Mid- to Late Holocene Sea-Level Change from Coral Microatolls, French Polynesia

    Science.gov (United States)

    Hallmann, N.; Camoin, G.; Eisenhauer, A.; Vella, C.; Samankassou, E.; Botella, A.; Milne, G. A.; Pothin, V.; Dussouillez, P.; Fleury, J.

    2017-12-01

    Coral microatolls are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level, and can be considered therefore as high-precision recorders of sea-level change. They are of pivotal importance to resolving the rates and amplitudes of millennial-to-century scale changes during periods of relative climate stability such as the Mid- to Late Holocene, which serves as an important baseline of natural variability prior to the Anthropocene. It provides therefore a unique opportunity to study coastal response to sea-level rise, even if the rates of sea-level rise during the Mid- to Late Holocene were lower than the current rates and those expected in the near future. Mid- to Late Holocene relative sea-level changes in French Polynesia encompassing the last 6,000 years were reconstructed based on the coupling between absolute U/Th dating of in situ coral microatolls and their precise positioning via GPS RTK (Real Time Kinematic) measurements. The twelve studied islands represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. In addition, growth pattern analysis of coral microatolls allows the reconstruction of low-amplitude, high-frequency sea-level change on centennial to sub-decadal time scales. The reconstructed sea-level curve extends the Tahiti last deglacial sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to

  1. Coralgal reef morphology records punctuated sea-level rise during the last deglaciation.

    Science.gov (United States)

    Khanna, Pankaj; Droxler, André W; Nittrouer, Jeffrey A; Tunnell, John W; Shirley, Thomas C

    2017-10-19

    Coralgal reefs preserve the signatures of sea-level fluctuations over Earth's history, in particular since the Last Glacial Maximum 20,000 years ago, and are used in this study to indicate that punctuated sea-level rise events are more common than previously observed during the last deglaciation. Recognizing the nature of past sea-level rises (i.e., gradual or stepwise) during deglaciation is critical for informing models that predict future vertical behavior of global oceans. Here we present high-resolution bathymetric and seismic sonar data sets of 10 morphologically similar drowned reefs that grew during the last deglaciation and spread 120 km apart along the south Texas shelf edge. Herein, six commonly observed terrace levels are interpreted to be generated by several punctuated sea-level rise events forcing the reefs to shrink and backstep through time. These systematic and common terraces are interpreted to record punctuated sea-level rise events over timescales of decades to centuries during the last deglaciation, previously recognized only during the late Holocene.

  2. Long-memory and the sea level-temperature relationship: a fractional cointegration approach.

    Science.gov (United States)

    Ventosa-Santaulària, Daniel; Heres, David R; Martínez-Hernández, L Catalina

    2014-01-01

    Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.

  3. Implications of Sea Level Rise on Coastal Flood Hazards

    Science.gov (United States)

    Roeber, V.; Li, N.; Cheung, K.; Lane, P.; Evans, R. L.; Donnelly, J. P.; Ashton, A. D.

    2012-12-01

    Recent global and local projections suggest the sea level will be on the order of 1 m or higher than the current level by the end of the century. Coastal communities and ecosystems in low-lying areas are vulnerable to impacts resulting from hurricane or large swell events in combination with sea-level rise. This study presents the implementation and results of an integrated numerical modeling package to delineate coastal inundation due to storm landfalls at future sea levels. The modeling package utilizes a suite of numerical models to capture both large-scale phenomena in the open ocean and small-scale processes in coastal areas. It contains four components to simulate (1) meteorological conditions, (2) astronomical tides and surge, (3) wave generation, propagation, and nearshore transformation, and (4) surf-zone processes and inundation onto dry land associated with a storm event. Important aspects of this package are the two-way coupling of a spectral wave model and a storm surge model as well as a detailed representation of surf and swash zone dynamics by a higher-order Boussinesq-type wave model. The package was validated with field data from Hurricane Ivan of 2005 on the US Gulf coast and applied to tropical and extratropical storm scenarios respectively at Eglin, Florida and Camp Lejeune, North Carolina. The results show a nonlinear increase of storm surge level and nearshore wave energy with a rising sea level. The exacerbated flood hazard can have major consequences for coastal communities with respect to erosion and damage to infrastructure.

  4. The magnitude of a mid-Holocene sea-level highstand in the Strait of Makassar

    NARCIS (Netherlands)

    Mann, T.; Rovere, A.; Schöne, T.; Klicpera, A.; Stocchi, P.; Lukman, M.; Westphal, H.

    2016-01-01

    Knowledge on the timing andmagnitude of past sea-level changes is essential to understandmodern and futuresea-level variability.Holocene sea-level data fromliterature on thewest coast of Sulawesi, central Indonesia, suggestthat this region experienced two relative sea-level highstands over the last

  5. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative

    Science.gov (United States)

    Legeais, Jean-François; Ablain, Michaël; Zawadzki, Lionel; Zuo, Hao; Johannessen, Johnny A.; Scharffenberg, Martin G.; Fenoglio-Marc, Luciana; Joana Fernandes, M.; Baltazar Andersen, Ole; Rudenko, Sergei; Cipollini, Paolo; Quartly, Graham D.; Passaro, Marcello; Cazenave, Anny; Benveniste, Jérôme

    2018-02-01

    Sea level is a very sensitive index of climate change since it integrates the impacts of ocean warming and ice mass loss from glaciers and the ice sheets. Sea level has been listed as an essential climate variable (ECV) by the Global Climate Observing System (GCOS). During the past 25 years, the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter standards were selected to produce new sea level products (called SL_cci v2.0) based on nine altimeter missions for the period 1993-2015 (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612; Legeais and the ESA SL_cci team, 2016c). Corresponding orbit solutions, geophysical corrections and altimeter standards used in this v2.0 dataset are described in detail in Quartly et al. (2017). The present paper focuses on the description of the SL_cci v2.0 ECV and associated uncertainty and discusses how it has been validated. Various approaches have been used for the quality assessment such as internal validation, comparisons with sea level records from other groups and with in situ measurements, sea level budget closure analyses and comparisons with model outputs. Compared with the previous version of the sea level ECV, we show that use of improved geophysical corrections, careful bias reduction between missions and inclusion of new altimeter missions lead to improved sea level products with reduced uncertainties on different spatial and temporal scales. However, there

  6. Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean)

    Science.gov (United States)

    Betzler, Christian; Lüdmann, Thomas; Hübscher, Christian; Fürstenau, Jörn

    2013-05-01

    Periplatform ooze is an admixture of pelagic carbonate and sediment derived from neritic carbonate platforms. Compositional variations of periplatform ooze allow the reconstruction of past sea-level changes. Periplatform ooze formed during sea-level highstands is finer grained and richer in aragonite through the elevated input of material from the flooded platform compared to periplatform ooze formed during the episodes of lowered sea level. In many cases, however, the sea floor around carbonate platforms is subjected to bottom currents which are expected to affect sediment composition, i.e. through winnowing of the fine fraction. The interaction of sea-level driven highstand shedding and current impact on the formation of periplatform ooze has hitherto not been analyzed. To test if a sea-level driven input signal in periplatform ooze is influenced or even distorted by changing current activity, an integrated study using seismic, hydroacoustic and sedimentological data has been performed on periplatform ooze deposited in the Inner Sea of the Maldives. The Miocene to Pleistocene succession of drift deposits is subdivided into nine units; limits of seismostratigraphic units correspond to changes or turnarounds in grain size trends in cores recovered at ODP Site 716 and NEOMA Site 1143. For the Pleistocene it can be shown how changes in grain size occur in concert with sea-level changes and changes of the monsoonal system, which is thought to be a major driver of bottom currents in the Maldives. A clear highstand shedding pattern only appears in the data at a time of relaxation of monsoonal strength during the last 315 ky. Results imply (1) that drift sediments provide a potential target for analyzing past changes in oceanic currents and (2) that the ooze composition bears a mixed signal of input and physical winnowing at the sea floor.

  7. Sea-level proxies in Holocene raised beach ridge deposits (Greenland) revealed by ground-penetrating radar.

    Science.gov (United States)

    Nielsen, Lars; Bendixen, Mette; Kroon, Aart; Hede, Mikkel Ulfeldt; Clemmensen, Lars B; Weβling, Ronny; Elberling, Bo

    2017-04-19

    Identification of sea-level proxies is important for reconstruction of past sea-level variation. Methods for reconstructing Holocene relative sea-level curves are crucial for quantification of the impact of Greenland ice thickness variation on global sea level and vertical land movement. Arctic beach ridges constitute important potential archives of sea-level variation. However, their surface morphology may have undergone modification since deposition due to freezing/thawing processes and erosion, and their morphology may therefore not be trustworthy for sea-level reconstruction. Therefore, geophysical imaging is used to examine the internal structures of the beach ridges and to define a sea-level proxy unaffected by surface processes. The GPR reflections from study sites in West and South Greenland show deposition of beachface deposits and upper shoreface deposits; the contact between steeply dipping beachface reflections and less-dipping shoreface reflections is used as sea-level proxy. Numerous points are identified along GPR transects facilitating reconstruction of relative sea-level variation of hitherto unprecedented resolution. Erosional events and deformation caused by freezing/thawing processes are clearly delineated. The approach constitutes a solid base for reconstruction of relative sea-level curves affected by a well-defined vertical land movement history since the studied beach ridge systems represent long time intervals and only relatively small spatial extents.

  8. Climate Change Impacts on Flood risk in Urban Areas due to Combined Effects of Extreme Precipitation and Sea Surges

    DEFF Research Database (Denmark)

    Larsen, A. N.; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten

    Climate change will impact the hydrological cycle greatly and lead to increases in flood hazards due to both pluvial and fluvial floods as well as sea surges in many regions. The impacts of the individual effects are analysed for a catchment in Greater Copenhagen. Based on both the present...... surges. Presently the most important hazard is due to extreme precipitation. However, due to climate change impacts the future most important hazard is due to sea surges. The increase in probability of floods is substantial over a 70 year horizon and actions must be taken to decrease either the hazards...

  9. IInvestigations of space-time variability of the sea level in the Barents Sea and the White Sea by satellite altimetry data and results of hydrodynamic modelling

    Science.gov (United States)

    Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.

    2003-04-01

    The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).

  10. New evidence for "far-field" Holocene sea level oscillations and links to global climate records

    Science.gov (United States)

    Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.

    2018-04-01

    Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.

  11. Cellular-based sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.

    treaties with greater transparency. Among the various communication technologies used for real-time transmission of sea-level data are the wired telephone connection, VHF/UHF transceivers, satellite transmit terminals and cellular connectivity. Wired... telephone connections are severely susceptible to loss of connectivity during natural disasters such as storm surges, primarily because of telephone line breakage. Communication via VHF/UHF transceivers is limited by line-of-sight distance between...

  12. Accelerated sea level rise and Florida Current transport

    Directory of Open Access Journals (Sweden)

    J. Park

    2015-07-01

    Full Text Available The Florida Current is the headwater of the Gulf Stream and is a component of the North Atlantic western boundary current from which a geostrophic balance between sea surface height and mass transport directly influence coastal sea levels along the Florida Straits. A linear regression of daily Florida Current transport estimates does not find a significant change in transport over the last decade; however, a nonlinear trend extracted from empirical mode decomposition (EMD suggests a 3 Sv decline in mean transport. This decline is consistent with observed tide gauge records in Florida Bay and the straits exhibiting an acceleration of mean sea level (MSL rise over the decade. It is not known whether this recent change represents natural variability or the onset of the anticipated secular decline in Atlantic meridional overturning circulation (AMOC; nonetheless, such changes have direct impacts on the sensitive ecological systems of the Everglades as well as the climate of western Europe and eastern North America.

  13. Lithostratigraphy, depositional history and sea level changes of the Cauvery Basin, southern India

    Directory of Open Access Journals (Sweden)

    Muthuvairvasamy Ramkumar

    2003-01-01

    Full Text Available The sedimentary sequence exposed in the erstwhile Tiruchirapalli district hosts a more or less complete geological record of the Upper Cretaceous-Tertiary period. Systematic field mapping, collation of data on the micro-meso scale lithology, sedimentary structures, petrography, faunal assemblage and facies relationships of these rocks, in the light of modern stratigraphic concepts, helped to enumerate the lithostratigraphic setup and depositional history of the basin. Spatial and temporal variations of the lithologies and revised stratigraphic units are presented in this paper. Many high frequency sea level cycles (presumably fourth or higher order which stack up to form third order sea level cycles (six in number, which in turn form part of second order cycles (two in number, including seven eustatic sea level peaks, have been recorded in this basin. Trend analysis of sea level curves indicates a gradual increase of the sea level from Barremian to Coniacian and a gradual decrease from Coniacian to Danian. Such lasting sea level trends had their influence on the sedimentation pattern and facies association. It is inferred that depositional bathymetry was maintained at a shallow-moderate level, primarily influenced by a lack of major subsidence during the depositional history of this basin. The study also revealed a prevalent simple basin filling process and dominant control by sea level changes, rather than tectonic movements over the depositional regime.

  14. The vulnerability of Indo-Pacific mangrove forests to sea-level rise

    Science.gov (United States)

    Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-01-01

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world’s mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  15. The vulnerability of Indo-Pacific mangrove forests to sea-level rise.

    Science.gov (United States)

    Lovelock, Catherine E; Cahoon, Donald R; Friess, Daniel A; Guntenspergen, Glenn R; Krauss, Ken W; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-10-22

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  16. Mangrove sedimentation and response to relative sea-level rise

    Science.gov (United States)

    Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.

  17. Mangrove Sedimentation and Response to Relative Sea-Level Rise.

    Science.gov (United States)

    Woodroffe, C D; Rogers, K; McKee, K L; Lovelock, C E; Mendelssohn, I A; Saintilan, N

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics.

  18. Bayesian Statistical Analysis of Historical and Late Holocene Rates of Sea-Level Change

    Science.gov (United States)

    Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin

    2014-05-01

    A fundamental concern associated with climate change is the rate at which sea levels are rising. Studies of past sea level (particularly beyond the instrumental data range) allow modern sea-level rise to be placed in a more complete context. Considering this, we perform a Bayesian statistical analysis on historical and late Holocene rates of sea-level change. The data that form the input to the statistical model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. The aims are to estimate rates of sea-level rise, to determine when modern rates of sea-level rise began and to observe how these rates have been changing over time. Many of the current methods for doing this use simple linear regression to estimate rates. This is often inappropriate as it is too rigid and it can ignore uncertainties that arise as part of the data collection exercise. This can lead to over confidence in the sea-level trends being characterized. The proposed Bayesian model places a Gaussian process prior on the rate process (i.e. the process that determines how rates of sea-level are changing over time). The likelihood of the observed data is the integral of this process. When dealing with proxy reconstructions, this is set in an errors-in-variables framework so as to take account of age uncertainty. It is also necessary, in this case, for the model to account for glacio-isostatic adjustment, which introduces a covariance between individual age and sea-level observations. This method provides a flexible fit and it allows for the direct estimation of the rate process with full consideration of all sources of uncertainty. Analysis of tide-gauge datasets and proxy reconstructions in this way means that changing rates of sea level can be estimated more comprehensively and accurately than previously possible. The model captures the continuous and dynamic evolution of sea-level change and results show that not only are modern sea levels rising but that the rates

  19. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative

    DEFF Research Database (Denmark)

    Legeais, Jean-Francois; Ablain, Michael; Zawadzki, Lionel

    2018-01-01

    , the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed...... to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter...

  20. Recent Changes in Land Water Storage and Its Contribution to Sea Level Variations

    Science.gov (United States)

    Wada, Yoshihide; Reager, John T.; Chao, Benjamin F.; Wang, Jida; Lo, Min-Hui; Song, Chunqiao; Li, Yuwen; Gardner, Alex S.

    2016-01-01

    Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.

  1. Relationship between sea level and climate forcing by CO2 on geological timescales.

    Science.gov (United States)

    Foster, Gavin L; Rohling, Eelco J

    2013-01-22

    On 10(3)- to 10(6)-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO(2) and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO(2) in determining Earth's climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO(2) and sea level we describe portrays the "likely" (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO(2) stabilized at 400-450 ppm (as required for the frequently quoted "acceptable warming" of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO(2) should be reduced to levels similar to those of preindustrial times.

  2. Evaluating extreme flood characteristics of small mountainous basins of the Black Sea coastal area, Northern Caucasus

    Directory of Open Access Journals (Sweden)

    L. S. Lebedeva

    2015-06-01

    Full Text Available The probability of heavy rains and river floods is expected to increase with time in the Northern Caucasus region. Densely populated areas in the valleys of small mountainous watersheds already frequently suffer from catastrophic peak floods caused by intense rains at higher elevations. This study aimed at assessing the flood characteristics of several small basins in the piedmont area of the Caucasus Mountains adjacent to the Black Sea coast including ungauged Cemes River in the Novorossiysk city. The Deterministic-Stochastic Modelling System which consists of hydrological model Hydrograph and stochastic weather generator was applied to evaluate extreme rainfall and runoff characteristics of 1% exceedance probability. Rainfall intensity is shown to play more significant role than its depth in formation of extreme flows within the studied region.

  3. Project NOAH: Regulating modern sea-level rise. Phase II: Jerusalem Underground

    Science.gov (United States)

    Newman, Walter S.; Fairbridge, Rhodes W.

    This proposal builds a high-speed inter-urban express between Jerusalem and Tel Aviv, generates 1500 megawatts of hydroelectric energy, curtails littoral erosion, builds a port along the Israeli Mediterranean coast and demands peaceful cooperation on both sides of the Jordan River. Phase II represents a pilot project demonstrating the feasibility of continuing to regulate world sea-level by a new series of water regulation schemes. Phase I previously described all those projects already completed or underway which have inadvertently and/or unintentionally served the purpose of sea-level regulation. These forms of Phase I sea-level regulation include large and small reservoirs, irrigation projects, water infiltration schemes, farm ponds, and swimming and reflecting pools. All these water storage projects have already exercised a very appreciable brake on 20th century sea-level rise. Phase II outlines a high-visibility proposal which will serve to illustrate the viability of “Project NOAH”.

  4. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  5. Stratigraphic response of salt marshes to slow rates of sea-level change

    Science.gov (United States)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  6. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    Science.gov (United States)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea

  7. Monthly Variations in Sea Level at the Island of Zanzibar | Mahongo ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science ... Air pressure and rainfall remained relatively constant during the 20-year study period, but there were trends in sea level, northeast winds, southeast winds and air temperature. Monthly ... The trend in sea level (9%) appeared to be mainly correlated with northeast winds.

  8. Observed sea-level rise in the north Indian Ocean coasts during the past century

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    Content-Type text/plain; charset=UTF-8 91 Observed sea-level rise in the north Indian Ocean coasts during the past century A. S. Unnikrishnan National Institute of Oceanography, Dona Paula, Goa-403004 unni@nio.org Introduction Sea-level... rise is one of the good indicators of global warming. Rise in sea level occurs mainly through melting of glaciers, thermal expansion due to ocean warming and some other processes of relatively smaller magnitudes. Sea level rise is a global...

  9. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing.

    Science.gov (United States)

    Li, Mingsong; Hinnov, Linda A; Huang, Chunju; Ogg, James G

    2018-03-08

    In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ 1 ). Noise modeling of Lower Triassic marine slope stratigraphy in South China reveal evidence for global sea-level variations in the Early Triassic hothouse that are anti-phased with continental water storage variations in the Germanic Basin. This supports the hypothesis that long-period (1-2 myr) astronomically forced water mass exchange between land and ocean reservoirs is a missing link for reconciling geological records and models for sea-level change during non-glacial periods.

  10. Subseasonal to Seasonal Predictions of U.S. West Coast High Water Levels

    Science.gov (United States)

    Khouakhi, A.; Villarini, G.; Zhang, W.; Slater, L. J.

    2017-12-01

    Extreme sea levels pose a significant threat to coastal communities, ecosystems, and assets, as they are conducive to coastal flooding, coastal erosion and inland salt-water intrusion. As sea levels continue to rise, these sea level extremes - including occasional minor coastal flooding experienced during high tide (nuisance floods) - are of concern. Extreme sea levels are increasing at many locations around the globe and have been attributed largely to rising mean sea levels associated with intra-seasonal to interannual climate processes such as the El Niño-Southern Oscillation (ENSO). Here, intra-seasonal to seasonal probabilistic forecasts of high water levels are computed at the Toke Point tide gage station on the US west coast. We first identify the main climate drivers that are responsible for high water levels and examine their predictability using General Circulation Models (GCMs) from the North American Multi-Model Ensemble (NMME). These drivers are then used to develop a probabilistic framework for the seasonal forecasting of high water levels. We focus on the climate controls on the frequency of high water levels using the number of exceedances above the 99.5th percentile and above the nuisance flood level established by the National Weather Service. Our findings indicate good forecast skill at the shortest lead time, with the skill that decreases as we increase the lead time. In general, these models aptly capture the year-to-year variability in the observational records.

  11. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice: A Case Study From Station Nord, NE Greenland

    Science.gov (United States)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.; Højlund Pedersen, Stine; King, Martin D.; Andersen, Per; Sorrell, Brian K.

    2018-02-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with ˜1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (automated high-frequency temperature profiles. We propose that changes in snow optical properties, caused by temperature-driven snow metamorphosis, was the primary driver for allowing sufficient light to penetrate through the thick snow and initiate algae growth below the sea ice. This was supported by radiative-transfer modeling of light attenuation. Implications are an earlier productivity by ice algae in Arctic sea ice than recognized previously.

  12. High-resolution tide projections reveal extinction threshold in response to sea-level rise.

    Science.gov (United States)

    Field, Christopher R; Bayard, Trina S; Gjerdrum, Carina; Hill, Jason M; Meiman, Susan; Elphick, Chris S

    2017-05-01

    Sea-level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea-level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea-level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate-driven variables could be important for understanding the potential responses of coastal species to sea-level rise, especially for species that rely on coastal areas for reproduction. © 2016 John Wiley & Sons Ltd.

  13. The Future of GLOSS Sea Level Data Archaeology

    Science.gov (United States)

    Jevrejeva, S.; Bradshaw, E.; Tamisiea, M. E.; Aarup, T.

    2014-12-01

    Long term climate records are rare, consisting of unique and unrepeatable measurements. However, data do exist in analogue form in archives, libraries and other repositories around the world. The Global Sea Level Observing System (GLOSS) Group of Experts aims to provide advice on locating hidden tide gauge data, scanning and digitising records and quality controlling the resulting data. Long sea level data time series are used in Intergovernmental Panel on Climate Change (IPCC) assessment reports and climate studies, in oceanography to study changes in ocean currents, tides and storm surges, in geodesy to establish national datum and in geography and geology to monitor coastal land movement. GLOSS has carried out a number of data archaeology activities over the past decade, which have mainly involved sending member organisations questionnaires on their repositories. The Group of Experts is now looking at future developments in sea level data archaeology and how new technologies coming on line could be used by member organisations to make data digitisation and transcription more efficient. Analogue tide data comes in two forms charts, which record the continuous measurements made by an instrument, usually via a pen trace on paper ledgers containing written values of observations The GLOSS data archaeology web pages will provide a list of software that member organisations have reported to be suitable for the automatic digitisation of tide gauge charts. Transcribing of ledgers has so far proved more labour intensive and is usually conducted by people entering numbers by hand. GLOSS is exploring using Citizen Science techniques, such as those employed by the Old Weather project, to improve the efficiency of transcribing ledgers. The Group of Experts is also looking at recent advances in Handwritten Text Recognition (HTR) technology, which mainly relies on patterns in the written word, but could be adapted to work with the patterns inherent in sea level data.

  14. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    Science.gov (United States)

    Morrissey, Sheila K.; Clark, Jordan F.; Bennett, Michael; Richardson, Emily; Stute, Martin

    2010-10-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida is best explained by a reorganization of groundwater flow following the sea-level rise at the end of the Last Glacial Maximum approximately 18,000 years ago. We find that the geochemistry of the fresh water found in the upper aquifers at present is consistent with recharge from meteoric water during the last glacial period. The lower aquifer, however, consists of post-sea-level-rise salt water that is most similar to that of the Straits of Florida, though with some dilution from the residual fresh water from the last glacial period circulation. We therefore suggest that during the last glacial period, the entire Floridan Aquifer System was recharged with meteoric waters. After sea level rose, the increased hydraulic head reduced the velocity of the groundwater flow. This velocity reduction trapped the fresh water in the upper aquifers and initiated saltwater circulation in the lower aquifer.

  15. E.X.T.R.E.M.E. project. Launch

    International Nuclear Information System (INIS)

    Eyrolle, F.; Charmasson, S.; Masson, O.

    2005-01-01

    Due to the drastic decrease in artificial radioactivity levels from primary sources such as atmospheric fallout or industrial releases, radioactive storages constituted in the past within several environmental compartments act today as non negligible secondary sources. These delayed sources are particularly active during extreme weather or climatic events such as rainfalls or atmospheric deposits, floods, storms, etc...that may remove important mass, generate activity levels higher than the predicted ones from modeling based on mean transfer process, and produce in a couple of hours or days fluxes similar to those accrued over several month or years. Extreme aims at assessing the consequences on man and its environment of natural events that generate extreme radioactive stocks and/or fluxes within several environmental compartments (atmosphere, soils, rivers, coastal marine environment and deep sea areas). (authors)

  16. Multi-level programming paradigm for extreme computing

    International Nuclear Information System (INIS)

    Petiton, S.; Sato, M.; Emad, N.; Calvin, C.; Tsuji, M.; Dandouna, M.

    2013-01-01

    In order to propose a framework and programming paradigms for post peta-scale computing, on the road to exa-scale computing and beyond, we introduced new languages, associated with a hierarchical multi-level programming paradigm, allowing scientific end-users and developers to program highly hierarchical architectures designed for extreme computing. In this paper, we explain the interest of such hierarchical multi-level programming paradigm for extreme computing and its well adaptation to several large computational science applications, such as for linear algebra solvers used for reactor core physic. We describe the YML language and framework allowing describing graphs of parallel components, which may be developed using PGAS-like language such as XMP, scheduled and computed on supercomputers. Then, we propose experimentations on supercomputers (such as the 'K' and 'Hooper' ones) of the hybrid method MERAM (Multiple Explicitly Restarted Arnoldi Method) as a case study for iterative methods manipulating sparse matrices, and the block Gauss-Jordan method as a case study for direct method manipulating dense matrices. We conclude proposing evolutions for this programming paradigm. (authors)

  17. Postglacial relative sea level change at Fildes Peninsula, King George Island (West Antarctic

    Directory of Open Access Journals (Sweden)

    K. V. Polishchuk

    2016-01-01

    Full Text Available Analysis and integration of data obtained in our field and laboratory investigations of 2008–2012 together with results of previous paleogeographic studies were conducted to reveal parameters and factors of the post-glacial changes in the relative sea-level on the Fildes Peninsula and the King George Island. Results of dating of organic material taken from cross-sections of Quaternary deposits, data on morphology of marine landforms as well as on bottom sediments in lakes were used to construct a curve of changes in the relative sea-level.Our research has shown that the rapid rise of relative sea level in the area (since the beginning of the Holocene decelerated about 8000 years BP, achieving its maximum about 7000 years BP. This was followed by the fall of relative sea-level (the land elevation by 18–20  m in total, and it was characterized by relatively high rate of fall during periods of 6000– 5000 years BP, 4000–2500 years BP, and during the last 1500 years; the rate decreased in 5000–4000 years BP and 2500– 1600 years BP. The changes in relative sea level in this region were determined by the following factors: the eustatic component of the global changes in sea-level and, possibly, oscillations in the global sea level of another nature; local parameters of the Last glacial maximum; a course of the Peninsula deglaciation; regional physical characteristics of the Earth's crust and the mantle substances; local tectonic processes, including the isostatic rebound. Since the beginning of the Holocene up to about 7000 years BP, the main contribution to changes of the relative sea-level in this area was made by the global eustatic factor. The subsequent fall of the relative sea-level (elevation of the Peninsula surface proceeded under condition of reduced role of the eustatic factor and predominance of other factors.

  18. Revealing climate modes in steric sea levels: lessons learned from satellite geodesy, objective analyses and ocean reanalyses

    Science.gov (United States)

    Pfeffer, J.; Tregoning, P.; Purcell, A. P.

    2017-12-01

    Due to increased greenhouse gases emissions, the oceans are accumulating heat. In response to the ocean circulation and atmospheric forcing, the heat is irregularly redistributed within the oceans, causing sea level to rise at variable rates in space and time. These rates of steric expansion are extremely difficult to assess because of the sparsity of in-situ hydrographic observations available within the course of the 20th century. We compare here three methods to reconstruct the steric sea levels over the past 13, 25 and 58 years based on satellite geodesy, objective analyses and ocean reanalyses. The interannual to decadal variability of each dataset is explored with a model merging six climate indices representative of the natural variability of the ocean and climate system. Consistent regional patterns are identified for the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) in all datasets at all timescales. Despite the short time coverage (13 years), the combination of satellite geodetic data (altimetry and GRACE) also reveals significant steric responses to the North Pacific Gyre Oscillation (NPGO), Indian Dipole (IOD) and Indian ocean basinwide (IOBM) mode. The richer information content in the ocean reanalyses allows us to recover the regional fingerprints of the PDO, ENSO, NPGO, IOD and IOBM, but also of the Atlantic Multidecadal Oscillation (AMO) acting over longer time scales (40 to 60 years). Therefore, ocean reanalyses, coupled with climate mode analyses, constitute innovative and promising tools to investigate the mechanisms triggering the variability of sea level rise over the past decades.

  19. Morphological changes within Florida Bay as a result of sea level rise

    Science.gov (United States)

    Holmes, C. W.

    2011-12-01

    Data from Florida Bay indicates that from 10,000 year BP to 6000 BP, the rate of sea level rise averaged about 10 mm/yr. The rate slowed at the end of this period flooding the shallow shelves surrounding the reef platforms of the western Atlantic. The relative flat South Florida shelf, because of its slight tilt to the southwest is an ideal local to assess the effects of this flooding. From 6000 BP to the present, numerous banks were formed within Florida Bay. A morphological model of bank formation based on the sea level oscillations was constructed from analysis of over 120 cores. These cores record sedimentological changes which are correlated to climatic events. In the central bay, the sediment accumulation was controlled by variations in rate of progressive sea-level rise. The Key West sea-level record shows that sea level has been rising incrementally over the last century. Between 1931 and 1950, sea level rose at a rate of 5 mm/yr. After 1950, it remained stable until 1971, when it again began to rise, but at a rate of 3 mm/yr. On the leeward side of mud banks, these variations resulted in shifts in sediment- accumulation rates, with accretion increasing during rising sea level and decreasing during stable periods. Between late 1970 and early 1972, a sharp jump in sea-level rise occurred that was approximately 10 cm higher than the preceding period. This jump coincided with a strongly positive North Atlantic Oscillation (NAO), a la Niña (negative ENSO), and a negative Pacific Decadal Oscillation (PDO). Water driven northward into Florida Bay eroded banks along the northern coastline, increased sediment accumulation in the northern lakes, and increased accretion rates on the banks. In addition to the sedimentological variations in the central portion of the bay, there was significant changes along the northern fringe. Around 1950, the northern fringe of the bay morphed from a fresh water environment to a marine environment. As a result, carbonate production

  20. Sea Level Change and Coastal Climate Services: The Way Forward

    Directory of Open Access Journals (Sweden)

    Gonéri Le Cozannet

    2017-10-01

    Full Text Available For many climate change impacts such as drought and heat waves, global and national frameworks for climate services are providing ever more critical support to adaptation activities. Coastal zones are especially in need of climate services for adaptation, as they are increasingly threatened by sea level rise and its impacts, such as submergence, flooding, shoreline erosion, salinization and wetland change. In this paper, we examine how annual to multi-decadal sea level projections can be used within coastal climate services (CCS. To this end, we review the current state-of-the art of coastal climate services in the US, Australia and France, and identify lessons learned. More broadly, we also review current barriers in the development of CCS, and identify research and development efforts for overcoming barriers and facilitating their continued growth. The latter includes: (1 research in the field of sea level, coastal and adaptation science and (2 cross-cutting research in the area of user interactions, decision making, propagation of uncertainties and overall service architecture design. We suggest that standard approaches are required to translate relative sea level information into the forms required to inform the wide range of relevant decisions across coastal management, including coastal adaptation.

  1. Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    Science.gov (United States)

    Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.

    2018-03-01

    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.

  2. Sea level reconstructions from altimetry and tide gauges using independent component analysis

    Science.gov (United States)

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Forootan, Ehsan

    2017-04-01

    Many reconstructions of global and regional sea level rise derived from tide gauges and satellite altimetry used the method of empirical orthogonal functions (EOF) to reduce noise, improving the spatial resolution of the reconstructed outputs and investigate the different signals in climate time series. However, the second order EOF method has some limitations, e.g. in the separation of individual physical signals into different modes of sea level variations and in the capability to physically interpret the different modes as they are assumed to be orthogonal. Therefore, we investigate the use of the more advanced statistical signal decomposition technique called independent component analysis (ICA) to reconstruct global and regional sea level change from satellite altimetry and tide gauge records. Our results indicate that the used method has almost no influence on the reconstruction of global mean sea level change (1.6 mm/yr from 1960-2010 and 2.9 mm/yr from 1993-2013). Only different numbers of modes are needed for the reconstruction. Using the ICA method is advantageous for separating independent climate variability signals from regional sea level variations as the mixing problem of the EOF method is strongly reduced. As an example, the modes most dominated by the El Niño-Southern Oscillation (ENSO) signal are compared. Regional sea level changes near Tianjin, China, Los Angeles, USA, and Majuro, Marshall Islands are reconstructed and the contributions from ENSO are identified.

  3. How mangrove forests adjust to rising sea level

    Science.gov (United States)

    Krauss, Ken W.; McKee, Karen L.; Lovelock, Catherine E.; Cahoon, Donald R.; Saintilan, Neil; Reef, Ruth; Chen, Luzhen

    2014-01-01

    Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.

  4. The Impact of Sea Level Rise on Geodetic Vertical Datum of Peninsular Malaysia

    Science.gov (United States)

    Din, A. H. M.; Abazu, I. C.; Pa'suya, M. F.; Omar, K. M.; Hamid, A. I. A.

    2016-09-01

    Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015) for tidal data and 23 years (from 1993 to 2015) for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD) is evaluated in this study. the difference between MSL computed from 10 years (1984 - 1993) and 32 years (1984 - 2015) tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  5. THE IMPACT OF SEA LEVEL RISE ON GEODETIC VERTICAL DATUM OF PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. H. M. Din

    2016-09-01

    Full Text Available Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015 for tidal data and 23 years (from 1993 to 2015 for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD is evaluated in this study. the difference between MSL computed from 10 years (1984 – 1993 and 32 years (1984 – 2015 tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  6. Sea level rise along Malaysian coasts due to the climate change

    Science.gov (United States)

    Luu, Quang-Hung; Tkalich, Pavel; Tay, Tzewei

    2015-04-01

    Malaysia consists of two major parts, a mainland on the Peninsular Malaysia and the East Malaysia on the Borneo Island. Their surrounding waters connect the Andaman Sea located northeast of the Indian Ocean to the Celebes Sea in the western tropical Pacific Ocean through the southern East Sea of Vietnam/South China Sea. As a result, inter-annual sea level in the Malaysian waters is governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. We estimated sea level rise (SLR) rate in the domain using tide gauge records often being gappy. To reconstruct the missing data, two methods are used: (i) correlating sea level with climate indices El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), and (ii) filling the gap using records of neighboring tide gauges. Latest vertical land movements have been acquired to derive geocentric SLR rates. Around the Peninsular Malaysia, geocentric SLR rates in waters of Malacca Strait and eastern Peninsular Malaysia during 1986-2011 are found to be 3.9±3.3 mm/year and 4.2 ± 2.5 mm/year, respectively; while in the East Malaysia waters the rate during 1988-2011 is 6.3 ± 4.0 mm/year. These rates are arguably higher than global tendency for the same periods. For the overlapping period 1993-2011, the rates are consistent with those obtained using satellite altimetry.

  7. Global warming and sea level rise. Chikyu Ondanka to kaimen josho

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, N [Ibaraki University, Ibaraki (Japan). Faculty of Engineering

    1993-10-15

    This paper describes the following matters on the problems of global warming and sea level rise. The first evaluation report published by the inter-government panel on climate change (IPCC) in 1990 estimates that, if emission of greenhouse effect gas keeps increasing at the present rate, the air temperature and the average sea level would rise by 3[degree]C and 65 centimeters, respectively by 2100. Global warming would not only result in rise of the sea level, but also accompany changes in strengths and routes of tropical low pressure areas, and precipitation patterns. Downstream areas of large rivers and island countries on coral reefs may have a risk of getting submerged. Countries having coasts developed to high densities (Japan, for example) would be subjected to a high potential effect. An 'East Hemisphere International Conference on Sea Level Rising Problem' was held in Japan in August 1993 as part of the works to prepare the second evaluation report of the IPCC (publication scheduled for 1995). The conference was attended by 24 countries, and 43 study results were reported. 4 figs.

  8. Predicting Impacts of tropical cyclones and sea-Level rise on beach mouse habitat

    Science.gov (United States)

    Chen, Qin; Wang, Hongqing; Wang, Lixia; Tawes, Robert; Rollman, Drew

    2014-01-01

    Alabama beach mouse (ABM) (Peromyscus polionotus ammobates) is an important component of the coastal dune ecosystem along the Gulf of Mexico. Due to habitat loss and degradation, ABM is federally listed as an endangered species. In this study, we examined the impacts of storm surge and wind waves, which are induced by hurricanes and sea-level rise (SLR), on the ABM habitat on Fort Morgan Peninsula, Alabama, using advanced storm surge and wind wave models and spatial analysis tools in geographic information systems (GIS). Statistical analyses of the long-term historical data enabled us to predict the extreme values of winds, wind waves, and water levels in the study area at different return periods. We developed a series of nested domains for both wave and surge modeling and validated the models using field observations of surge hydrographs and high watermarks of Hurricane Ivan (2004). We then developed wave atlases and flood maps corresponding to the extreme wind, surge and waves without SLR and with a 0.5 m of SLR by coupling the wave and surge prediction models. The flood maps were then merged with a map of ABM habitat to determine the extent and location of habitat impacted by the 100-year storm with and without SLR. Simulation results indicate that more than 82% of ABM habitat would be inundated in such an extreme storm event, especially under SLR, making ABM populations more vulnerable to future storm damage. These results have aided biologists, community planners, and other stakeholders in the identification, restoration and protection of key beach mouse habitat in Alabama. Methods outlined in this paper could also be used to assist in the conservation and recovery of imperiled coastal species elsewhere.

  9. Bangladesh’s dynamic coastal regions and sea-level rise

    Directory of Open Access Journals (Sweden)

    Hugh Brammer

    2014-01-01

    Full Text Available The physical geography of Bangladesh’s coastal area is more diverse and dynamic than is generally recognised. Failure to recognise this has led to serious misconceptions about the potential impacts of a rising sea-level on Bangladesh with global warming. This situation has been aggravated by accounts giving incorrect information on current rates of coastal erosion and land subsidence. This paper describes physical conditions within individual physiographic regions in Bangladesh’s coastal area based on ground-surveyed information, and it reviews possible area-specific mitigation measures to counter predicted rates of sea-level rise in the 21st century. Two important conclusions are drawn: the adoption of appropriate measures based on knowledge of the physical geography of potentially-affected areas could significantly reduce the currently-predicted displacement of many millions of people; and the impacts of a slowly-rising sea-level are currently much less than those generated by rapidly increasing population pressure on Bangladesh’s available land and water resources and by exposure to existing environmental hazards, and the latter problems need priority attention.

  10. Lessons derived from two high-frequency sea level events in the Atlantic: implications for coastal risk analysis and tsunami detection

    Directory of Open Access Journals (Sweden)

    Begoña Pérez-Gómez

    2016-11-01

    Full Text Available The upgrade and enhancement of sea level networks worldwide for integration in sea level hazard warning systems have significantly increased the possibilities for measuring and analyzing high frequency sea level oscillations, with typical periods ranging from a few minutes to a few hours. Many tide gauges now afford 1 min or more frequent sampling and have shown such events to be a common occurrence. Their origins and spatial distribution are diverse and must be well understood in order to correctly design and interpret, for example, the automatic detection algorithms used by tsunami warning centers. Two events recorded recently in European Atlantic waters are analyzed here: possible wave-induced seiches that occurred along the North coast of Spain during the storms of January and February of 2014, and oscillations detected after an earthquake in the mid-Atlantic the 13th of February of 2015. The former caused significant flooding in towns and villages and a huge increase in wave-induced coastal damage that was reported in the media for weeks. The second was a smaller signal present in several tide gauges along the Atlantic coast that, that coincided with the occurrence of this earthquake, leading to a debate on the potential detection of a very small tsunami and how it might yield significant information for tsunami wave modelers and for the development of tsunami detection software. These kinds of events inform us about the limitations of automatic algorithms for tsunami warning and help to improve the information provided to tsunami warning centers, whilst also emphasizing the importance of other forcings in generating extreme sea levels and their associated potential for causing damage to infrastructure.

  11. Mass-induced [|#8#|]Sea Level Variations in the Red Sea from Satellite Altimetry and GRACE

    Science.gov (United States)

    Feng, W.; Lemoine, J.; Zhong, M.; Hsu, H.

    2011-12-01

    We have analyzed mass-induced sea level variations (SLVs) in the Red Sea from steric-corrected altimetry and GRACE between January 2003 and December 2010. The steric component of SLVs in the Red Sea calculated from climatological temperature and salinity data is relatively small and anti-phase with the mass-induced SLV. The total SLV in the Red Sea is mainly driven by the mass-induced SLV, which increases in winter when the Red Sea gains the water mass from the Gulf of Aden and vice versa in summer. Spatial and temporal patterns of mass-induced SLVs in the Red Sea from steric-corrected altimetry agree very well with GRACE observations. Both of two independent observations show high annual amplitude in the central Red Sea (>20cm). Total mass-induced SLVs in the Red Sea from two independent observations have similar annual amplitude and phase. One main purpose of our work is to see whether GRGS's ten-day GRACE results can observe intra-seasonal mass change in the Red Sea. The wavelet coherence analysis indicates that GRGS's results show the high correlation with the steric-corrected SLVs on intra-seasonal time scale. The agreement is excellent for all the time-span until 1/3 year period and is patchy between 1/3 and 1/16 year period. Furthermore, water flux estimates from current-meter arrays and moorings show mass gain in winter and mass loss in summer, which is also consistent with altimetry and GRACE.

  12. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    Science.gov (United States)

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  13. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns.

    Science.gov (United States)

    Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa

    2017-12-31

    Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and

  14. Why is mean sea level along the Indian coast higher in the Bay of Bengal than in the Arabian Sea?

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Shetye, S.R.

    Levelling observations conducted during the Great Trigonometrical Survey of India (1858-1909) and subsequent observations showed that mean sea level along the coast of India is higher in the Bay of Bengal than in the Arabian Sea, the difference...

  15. Observation-Driven Estimation of the Spatial Variability of 20th Century Sea Level Rise

    Science.gov (United States)

    Hamlington, B. D.; Burgos, A.; Thompson, P. R.; Landerer, F. W.; Piecuch, C. G.; Adhikari, S.; Caron, L.; Reager, J. T.; Ivins, E. R.

    2018-03-01

    Over the past two decades, sea level measurements made by satellites have given clear indications of both global and regional sea level rise. Numerous studies have sought to leverage the modern satellite record and available historic sea level data provided by tide gauges to estimate past sea level rise, leading to several estimates for the 20th century trend in global mean sea level in the range between 1 and 2 mm/yr. On regional scales, few attempts have been made to estimate trends over the same time period. This is due largely to the inhomogeneity and quality of the tide gauge network through the 20th century, which render commonly used reconstruction techniques inadequate. Here, a new approach is adopted, integrating data from a select set of tide gauges with prior estimates of spatial structure based on historical sea level forcing information from the major contributing processes over the past century. The resulting map of 20th century regional sea level rise is optimized to agree with the tide gauge-measured trends, and provides an indication of the likely contributions of different sources to regional patterns. Of equal importance, this study demonstrates the sensitivities of this regional trend map to current knowledge and uncertainty of the contributing processes.

  16. Estimating absolute sea level variations by combining GNSS and Tide gauge data

    Digital Repository Service at National Institute of Oceanography (India)

    Bos, M.S.; Fernandes, R.M.S; Vethamony, P.; Mehra, P.

    Indian tide gauges can be used to estimate sea level rise. To separate relative sea level rise from vertical land motion at the tide gauges, various GNSS stations have been installed in the last years at, or nearby, tide gauges. Using the PSMSL...

  17. Reconciling projections of the Antarctic contribution to sea level rise

    Science.gov (United States)

    Edwards, Tamsin; Holden, Philip; Edwards, Neil; Wernecke, Andreas

    2017-04-01

    Two recent studies of the Antarctic contribution to sea level rise this century had best estimates that differed by an order of magnitude (around 10 cm and 1 m by 2100). The first, Ritz et al. (2015), used a model calibrated with satellite data, giving a 5% probability of exceeding 30cm by 2100 for sea level rise due to Antarctic instability. The second, DeConto and Pollard (2016), used a model evaluated with reconstructions of palaeo-sea level. They did not estimate probabilities, but using a simple assumption here about the distribution shape gives up to a 5% chance of Antarctic contribution exceeding 2.3 m this century with total sea level rise approaching 3 m. If robust, this would have very substantial implications for global adaptation to climate change. How are we to make sense of this apparent inconsistency? How much is down to the data - does the past tell us we will face widespread and rapid Antarctic ice losses in the future? How much is due to the mechanism of rapid ice loss ('cliff failure') proposed in the latter paper, or other parameterisation choices in these low resolution models (GRISLI and PISM, respectively)? How much is due to choices made in the ensemble design and calibration? How do these projections compare with high resolution, grounding line resolving models such as BISICLES? Could we reduce the huge uncertainties in the palaeo-study? Emulation provides a powerful tool for understanding these questions and reconciling the projections. By describing the three numerical ice sheet models with statistical models, we can re-analyse the ensembles and re-do the calibrations under a common statistical framework. This reduces uncertainty in the PISM study because it allows massive sampling of the parameter space, which reduces the sensitivity to reconstructed palaeo-sea level values and also narrows the probability intervals because the simple assumption about distribution shape above is no longer needed. We present reconciled probabilistic

  18. Should We Leave? Attitudes towards Relocation in Response to Sea Level Rise

    Directory of Open Access Journals (Sweden)

    Jie Song

    2017-12-01

    Full Text Available The participation of individuals contributes significantly to the success of sea level rise adaptation. This study therefore addresses what influences people’s likelihood of relocating away from low-lying areas in response to rising sea levels. The analysis was based on a survey conducted in the City of Panama Beach in Florida (USA. Survey items relate to people’s risk perception, hazard experience, threat appraisal, and coping appraisal, whose theoretical background is Protection Motivation Theory. Descriptive and correlation analysis was first performed to highlight critical factors which were then examined by a multinomial Logit model. Results show that sea level rise awareness is the major explanatory variable. Coping appraisal is qualitatively viewed as a strong predictor for action, while threat appraisal is statistically significant in driving relocation intention. These factors should be integrated in current risk communication regarding sea level rise.

  19. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea

    Science.gov (United States)

    Murakami, Hiroyuki; Vecchi, Gabriel A.; Underwood, Seth

    2017-12-01

    In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—defined by the WMO as tropical storms with lifetime maximum winds greater than 46 m s-1—were first observed over the Arabian Sea (ARB), causing widespread damage. However, it is unknown to what extent this abrupt increase in post-monsoon ESCSs can be linked to anthropogenic warming, natural variability, or stochastic behaviour. Here, using a suite of high-resolution global coupled model experiments that accurately simulate the climatological distribution of ESCSs, we show that anthropogenic forcing has likely increased the probability of late-season ECSCs occurring in the ARB since the preindustrial era. However, the specific timing of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is further shown that natural variability played a minimal role in the observed increase of ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in the ARB, with corresponding socio-economic implications.

  20. Sea level trend and variability in the Singapore Strait

    Digital Repository Service at National Institute of Oceanography (India)

    Tkalich, P.; Vethamony, P.; Luu, Q.-H.; Babu, M.T.

    www.ocean-sci.net/9/293/2013/ doi:10.5194/os-9-293-2013 © Author(s) 2013. CC Attribution 3.0 License. EGU Journal Logos (RGB) Advances in Geosciences O pen A ccess Natural Hazards and Earth System Sciences O pen A ccess Annales Geophysicae O pen A... Sci., 9, 293–300, 2013 www.ocean-sci.net/9/293/2013/ P. Tkalich et al.: Sea level in Singapore Strait 295 likely to be the cause for modulating the inter-annual sea level variability associated with ENSO. On the Sunda Shelf and particularly in SS, our...

  1. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    Science.gov (United States)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  2. Caspian Sea level changes during the last millennium: historical and geological evidences from the south Caspian Sea

    Science.gov (United States)

    Naderi Beni, A.; Lahijani, H.; Mousavi Harami, R.; Arpe, K.; Leroy, S. A. G.; Marriner, N.; Berberian, M.; Andrieu-Ponel, V.; Djamali, M.; Mahboubi, A.

    2013-03-01

    Historical literature may constitute a valuable source of information to reconstruct sea level changes. Here, historical documents and geological records have been combined to reconstruct Caspian sea-level (CSL) changes during the last millennium. In addition to a literature survey, new data from two short sediment cores were obtained from the south-eastern Caspian coast to identify coastal change driven by water-level changes. Two articulated bivalve shells from the marine facies were radiocarbon dated and calibrated to establish a chronology and to compare them with historical findings. The overall results indicate a high-stand during the Little Ice Age, up to -19 m, with a -28 m low-stand during the Medieval Climate Anomaly, while presently the CSL stands at -26.5 m. A comparison of the CSL curve with other lake systems and proxy records suggests that the main sea-level oscillations are essentially paced by solar irradiance. Although the major controller of the long-term CSL changes is driven by climatological factors, the seismicity of the basin could create locally changes in base level. These local base-level changes should be considered in any CSL reconstruction.

  3. Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea

    Science.gov (United States)

    Naderi Beni, A.; Lahijani, H.; Mousavi Harami, R.; Arpe, K.; Leroy, S. A. G.; Marriner, N.; Berberian, M.; Andrieu-Ponel, V.; Djamali, M.; Mahboubi, A.; Reimer, P. J.

    2013-07-01

    Historical literature may constitute a valuable source of information to reconstruct sea-level changes. Here, historical documents and geological records have been combined to reconstruct Caspian sea-level (CSL) changes during the last millennium. In addition to a comprehensive literature review, new data from two short sediment cores were obtained from the south-eastern Caspian coast to identify coastal change driven by water-level changes and to compare the results with other geological and historical findings. The overall results indicate a high-stand during the Little Ice Age, up to -21 m (and extra rises due to manmade river avulsion), with a -28 m low-stand during the Medieval Climate Anomaly, while presently the CSL stands at -26.5 m. A comparison of the CSL curve with other lake systems and proxy records suggests that the main sea-level oscillations are essentially paced by solar irradiance. Although the major controller of the long-term CSL changes is driven by climatological factors, the seismicity of the basin creates local changes in base level. These local base-level changes should be considered in any CSL reconstruction.

  4. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    Science.gov (United States)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  5. Historical changes in the Mississippi-Alabama barrier-island chain and the roles of extreme storms, sea level, and human activities

    Science.gov (United States)

    Morton, R.A.

    2008-01-01

    Barrier-island chains worldwide are undergoing substantial changes, and their futures remain uncertain. An historical analysis of a barrier-island chain in the north-central Gulf of Mexico shows that the Mississippi barriers are undergoing rapid systematic land loss and translocation associated with: (1) unequal lateral transfer of sand related to greater updrift erosion compared to downdrift deposition; (2) barrier narrowing resulting from simultaneous erosion of shores along the Gulf and Mississippi Sound; and (3) barrier segmentation related to storm breaching. Dauphin Island, Alabama, is also losing land for some of the same reasons as it gradually migrates landward. The principal causes of land loss are frequent intense storms, a relative rise in sea level, and a sediment-budget deficit. Considering the predicted trends for storms and sea level related to global warming, it is certain that the Mississippi-Alabama (MS-AL) barrier islands will continue to lose land area at a rapid rate unless the trend of at least one causal factor reverses. Historical land-loss trends and engineering records show that progressive increases in land-loss rate correlate with nearly simultaneous deepening of channels dredged across the outer bars of the three tidal inlets maintained for deep-draft shipping. This correlation indicates that channel-maintenance activities along the MS-AL barriers have impacted the sediment budget by disrupting the alongshore sediment transport system and progressively reducing sand supply. Direct management of this causal factor can be accomplished by strategically placing dredged sediment where adjacent barrier-island shores will receive it for island nourishment and rebuilding.

  6. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    Science.gov (United States)

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  7. Tidal marsh susceptibility to sea-level rise: importance of local-scale models

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.

    2015-01-01

    Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human

  8. Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988-2014)

    Science.gov (United States)

    Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.

    2018-02-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.

  9. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Science.gov (United States)

    Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo

    2018-03-01

    Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the

  10. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Directory of Open Access Journals (Sweden)

    S. Esselborn

    2018-03-01

    Full Text Available Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year, and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ, the Groupe de Recherche de Géodésie Spatiale (GRGS, and the Goddard Space Flight Center (GSFC. The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr−1 (27 % of the corresponding sea level variability and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr−1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test

  11. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  12. Geophysical Imaging of Sea-level Proxies in Beach-Ridge Deposits

    Science.gov (United States)

    Nielsen, L.; Emerich Souza, P.; Meldgaard, A.; Bendixen, M.; Kroon, A.; Clemmensen, L. B.

    2017-12-01

    We show ground-penetrating radar (GPR) reflection data collected over modern and fossil beach deposits from different localities along coastlines in meso-tidal regimes of Greenland and micro-tidal regimes of Denmark. The acquired reflection GPR sections show several similar characteristics but also some differences. A similar characteristic is the presence of downlapping reflections, where the downlap point is interpreted to mark the transition from upper shoreface to beachface deposits and, thus, be a marker of a level close to or at sea-level at the time of deposition. Differences in grain size of the investigated beach ridge system result in different scattering characteristics of the acquired GPR data. These differences call for tailored, careful processing of the GPR data for optimal imaging of internal beach ridge architecture. We outline elements of the GPR data processing of particular importance for optimal imaging. Moreover, we discuss advantages and challenges related to using GPR-based proxies of sea-level as compared to other methods traditionally used for establishment of curves of past sea-level variation.

  13. NASA Sea Level Change Portal - It not just another portal site

    Science.gov (United States)

    Huang, T.; Quach, N.; Abercrombie, S. P.; Boening, C.; Brennan, H. P.; Gill, K. M.; Greguska, F. R., III; Jackson, R.; Larour, E. Y.; Shaftel, H.; Tenenbaum, L. F.; Zlotnicki, V.; Moore, B.; Moore, J.; Boeck, A.

    2017-12-01

    The NASA Sea Level Change Portal (https://sealevel.nasa.gov) is designed as a "one-stop" source for current sea level change information, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. With increasing global temperatures warming the ocean and melting ice sheets and glaciers, there is an immediate need both for accelerating sea level change research and for making this research accessible to scientists in disparate discipline, to the general public, to policy makers and business. The immersive and innovative NASA portal debuted at the 2015 AGU attracts thousands of daily visitors and over 30K followers on Facebook®. Behind its intuitive interface is an extensible architecture that integrates site contents, data for various sources, visualization, horizontal-scale geospatial data analytic technology (called NEXUS), and an interactive 3D simulation platform (called the Virtual Earth System Laboratory). We will present an overview of our NASA portal and some of our architectural decisions along with discussion on our open-source, cloud-based data analytic technology that enables on-the-fly analysis of heterogeneous data.

  14. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule

    Science.gov (United States)

    Cooper, J. Andrew G.; Pilkey, Orrin H.

    2004-11-01

    In the face of a global rise in sea level, understanding the response of the shoreline to changes in sea level is a critical scientific goal to inform policy makers and managers. A body of scientific information exists that illustrates both the complexity of the linkages between sea-level rise and shoreline response, and the comparative lack of understanding of these linkages. In spite of the lack of understanding, many appraisals have been undertaken that employ a concept known as the "Bruun Rule". This is a simple two-dimensional model of shoreline response to rising sea level. The model has seen near global application since its original formulation in 1954. The concept provided an advance in understanding of the coastal system at the time of its first publication. It has, however, been superseded by numerous subsequent findings and is now invalid. Several assumptions behind the Bruun Rule are known to be false and nowhere has the Bruun Rule been adequately proven; on the contrary several studies disprove it in the field. No universally applicable model of shoreline retreat under sea-level rise has yet been developed. Despite this, the Bruun Rule is in widespread contemporary use at a global scale both as a management tool and as a scientific concept. The persistence of this concept beyond its original assumption base is attributed to the following factors: Appeal of a simple, easy to use analytical model that is in widespread use. Difficulty of determining the relative validity of 'proofs' and 'disproofs'. Ease of application. Positive advocacy by some scientists. Application by other scientists without critical appraisal. The simple numerical expression of the model. Lack of easy alternatives. The Bruun Rule has no power for predicting shoreline behaviour under rising sea level and should be abandoned. It is a concept whose time has passed. The belief by policy makers that it offers a prediction of future shoreline position may well have stifled much

  15. GPRS based real-time reporting and internet accessible sea level gauge for monitoring storm surge and tsunami

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Dabholkar, N.; Mehra, P.; Gouveia, A.D.; Tengali, S.; VijayKumar, K.; Parab, A.

    graphical illustration of the predicted fair-weather sea level, the current sea level, and the residual sea level (i.e., measured minus predicted fair-weather sea level). Thus, a cost-effective and easily maintainable platform is realized for real...

  16. Relative sea-level change in the central Cyclades (Greece) since the Early Bronze Age

    Science.gov (United States)

    Draganits, E.

    2012-04-01

    The Aegean is a focus of important cultural achievements in Europe since the Neolithic period. The resulting abundance of archaeological remains, many of them below sea-level represent an advantageous area for the study of local relative sea-level change. We have carried out detailed mapping of Despotiko Island (SW of Antiparos) and its surrounding. Despotiko is situated almost exactly in the center of the Cyclades (as defined nowadays), more so than Delos, and therefore is very well suited for sea-level studies of the Cyclades. This beneficial location, combined with a spacious and protected bay, additionally may explain its former importance as stepping-stone in the Aegean Sea. The island is uninhabited at present, but Early Bronze Age settlement sites and graveyards as well as a large Archaic sanctuary proof its former importance. The sanctuary is situated on a gently northeast dipping slope in the northeast part of Despotiko, in range of sight of the Órmos Despotiko. Since 1997 large parts of this important sanctuary have been excavated during several excavation campaigns. Tectonically, Despotiko, Antiparos and Paros, belong to the Attic-Cycladic Crystalline of the Central Hellenides, a stack of metamorphic tectonic nappes, mainly comprising variable types of gneiss, schist, marble and amphibolite, and tectonic slices of unmetamorphosed sediments on top, separated by low-angle normal faults from the metamorphic units below. Submerged archaeological structures at the sea bottom of the Órmos Despotiko, a Classical marble inscription from the sanctuary and partly submerged agriculture trenches at the east coast Despotiko, indicate that the relative sea-level in this area was some 3 m lower during the Early Bronze Age and still more than 1 m lower during Classical time. These values of relative sea-level rise indicate a subsidence component additional to the global sea-level rise in the investigated time period. Neglecting possible vertical tectonic movements and

  17. Allowances for evolving coastal flood risk under uncertain local sea-level rise

    Science.gov (United States)

    Buchanan, M. K.; Kopp, R. E.; Oppenheimer, M.; Tebaldi, C.

    2015-12-01

    Sea-level rise (SLR) causes estimates of flood risk made under the assumption of stationary mean sea level to be biased low. However, adjustments to flood return levels made assuming fixed increases of sea level are also inaccurate when applied to sea level that is rising over time at an uncertain rate. To accommodate both the temporal dynamics of SLR and their uncertainty, we develop an Average Annual Design Life Level (AADLL) metric and associated SLR allowances [1,2]. The AADLL is the flood level corresponding to a time-integrated annual expected probability of occurrence (AEP) under uncertainty over the lifetime of an asset; AADLL allowances are the adjustment from 2000 levels that maintain current risk. Given non-stationary and uncertain SLR, AADLL flood levels and allowances provide estimates of flood protection heights and offsets for different planning horizons and different levels of confidence in SLR projections in coastal areas. Allowances are a function primarily of local SLR and are nearly independent of AEP. Here we employ probabilistic SLR projections [3] to illustrate the calculation of AADLL flood levels and allowances with a representative set of long-duration tide gauges along U.S. coastlines. [1] Rootzen et al., 2014, Water Resources Research 49: 5964-5972. [2] Hunter, 2013, Ocean Engineering 71: 17-27. [3] Kopp et al., 2014, Earth's Future 2: 383-406.

  18. Can sea level rise cause large submarine landslides on continental slopes?

    Science.gov (United States)

    Urlaub, Morelia

    2014-05-01

    Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.

  19. Timing of return from altitude training for optimal sea level performance.

    Science.gov (United States)

    Chapman, Robert F; Laymon Stickford, Abigail S; Lundby, Carsten; Levine, Benjamin D

    2014-04-01

    While a number of published studies exist to guide endurance athletes with the best practices regarding implementation of altitude training, a key unanswered question concerns the proper timing of return to sea level prior to major competitions. Evidence reviewed here suggests that, altogether, the deacclimatization responses of hematological, ventilatory, and biomechanical factors with return to sea level likely interact to determine the best timing for competitive performance.

  20. Coastline Mapping and Cultural Review to Predict Sea Level Rise Impact on Hawaiian Archeological Sites

    Science.gov (United States)

    Clinton, J.

    2017-12-01

    Much of Hawaii's history is recorded in archeological sites. Researchers and cultural practitioners have been studying and reconstructing significant archeological sites for generations. Climate change, and more specifically, sea level rise may threaten these sites. Our research records current sea levels and then projects possible consequences to these cultural monuments due to sea level rise. In this mixed methods study, research scientists, cultural practitioners, and secondary students use plane-table mapping techniques to create maps of coastlines and historic sites. Students compare historical records to these maps, analyze current sea level rise trends, and calculate future sea levels. They also gather data through interviews with community experts and kupuna (elders). If climate change continues at projected rates, some historic sites will be in danger of negative impact due to sea level rise. Knowing projected sea levels at specific sites allows for preventative action and contributes to raised awareness of the impacts of climate change to the Hawaiian Islands. Students will share results with the community and governmental agencies in hopes of inspiring action to minimize climate change. It will take collaboration between scientists and cultural communities to inspire future action on climate change.

  1. National evaluation of Chinese coastal erosion to sea level rise using a Bayesian approach

    International Nuclear Information System (INIS)

    Zhan, Q; Fan, X; Du, X; Zhu, J

    2014-01-01

    In this paper a Causal Bayesian network is developed to predict decadal-scale shoreline evolution of China to sea-level rise. The Bayesian model defines relationships between 6 factors of Chinese coastal system such as coastal geomorphology, mean tide range, mean wave height, coastal slope, relative sea-level rise rate and shoreline erosion rate. Using the Bayesian probabilistic model, we make quantitative assessment of china's shoreline evolution in response to different future sea level rise rates. Results indicate that the probability of coastal erosion with high and very high rates increases from 28% to 32.3% when relative sea-level rise rates is 4∼6mm/a, and to 44.9% when relative sea-level rise rates is more than 6mm/a. A hindcast evaluation of the Bayesian model shows that the model correctly predicts 79.3% of the cases. Model test indicates that the Bayesian model shows higher predictive capabilities for stable coasts and very highly eroding coasts than moderately and highly eroding coasts. This study demonstrates that the Bayesian model is adapted to predicting decadal-scale Chinese coastal erosion associated with sea-level rise

  2. Investigating Margin and Grounding Line Dynamics with a Coupled Ice and Sea Level Model

    Science.gov (United States)

    Kuchar, J.; Milne, G. A.

    2017-12-01

    We present results from the coupling of an adaptive mesh glaciological model (BISICLES) with a model of glacial isostatic adjustment and sea level. We apply this coupled model to study the deglaciation of the Greenland Ice Sheet (GrIS) from the last glacial maximum. The proximity of the GrIS to the much larger Laurentide results in an east-west gradient in sea level rates across Greenland during the deglaciation. We investigate the impacts of this sea level gradient on ice and grounding line dynamics at the margins, as well as the influence of both local and non-local ice on sea level and ice dynamics.

  3. Ice volume and climate changes from a 6000 year sea-level record in French Polynesia.

    Science.gov (United States)

    Hallmann, N; Camoin, G; Eisenhauer, A; Botella, A; Milne, G A; Vella, C; Samankassou, E; Pothin, V; Dussouillez, P; Fleury, J; Fietzke, J

    2018-01-18

    Mid- to late-Holocene sea-level records from low-latitude regions serve as an important baseline of natural variability in sea level and global ice volume prior to the Anthropocene. Here, we reconstruct a high-resolution sea-level curve encompassing the last 6000 years based on a comprehensive study of coral microatolls, which are sensitive low-tide recorders. Our curve is based on microatolls from several islands in a single region and comprises a total of 82 sea-level index points. Assuming thermosteric contributions are negligible on millennial time scales, our results constrain global ice melting to be 1.5-2.5 m (sea-level equivalent) since ~5500 years before present. The reconstructed curve includes isolated rapid events of several decimetres within a few centuries, one of which is most likely related to loss from the Antarctic ice sheet mass around 5000 years before present. In contrast, the occurrence of large and flat microatolls indicates periods of significant sea-level stability lasting up to ~300 years.

  4. Multivariate Regression Approach To Integrate Multiple Satellite And Tide Gauge Data For Real Time Sea Level Prediction

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2010-01-01

    The Sea Level Thematic Assembly Center in the EUFP7 MyOcean project aims at build a sea level service for multiple satellite sea level observations at a European level for GMES marine applications. It aims to improve the sea level related products to guarantee the sustainability and the quality...

  5. Updating the results of glacier contribution to the sea level change

    Science.gov (United States)

    Dyurgerov, Mark B.; Abdalati, Waleed Dr. (Technical Monitor)

    2005-01-01

    I have completed an update of global glacier volume change. All data of glacier annual mass balances, surface area over the period 1945/46 till 2004, outside the Greenland and Antarctic ice sheets were included in this update. As the result global glacier volume change have been calculated, also in terms of glacier contribution to sea level change. These results were sent to Working Group 1 and 2 of IPCC-4 as the basis for modeling of sea level towards the end of 2100. In this study I have concentrated on studying glacier systems of different scales, from primary (e.g. Devon ice cap) to regional (e.g. Canadian Arctic), continental scale (e,g., entire Arctic), and global (e.g., change in glacier volume and contribution to sea level rise).

  6. Estimation of Sea Level variations with GPS/GLONASS-Reflectometry Technique: Case Study at Stationary Oceanographic Platform in the Black Sea

    Science.gov (United States)

    Kurbatov, G. A.; Padokhin, A. M.

    2017-12-01

    In the present work we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSS-receiver, which are based on the multipath propagation effects (interference pattern in SNR of GNSS signals at small elevation angles) caused by the reflection of navigational signals from the sea surface. The measurements were carried out in the coastal zone of Black Sea at the Stationary Oceanographic Platform during one-week campaign in the summer 2017. GPS/GLONASS signals at two working frequencies of both systems were used to study sea level variations which almost doubled the amount of observations compared to GPS-only tide gauge. Moreover all the measurements were conducted with 4-antenna GNSS receiver providing the opportunity for different orientations of antennas including zenith and nadir looking ones as well as two horizontally oriented ones at different azimuths. As the reference we used data from co-located wire wave gauge which showed good correspondence of both datasets. Though tidal effects are not so pronounced for the Black Sea, the described experimental setup allowed to study the effects of sea surface roughness, driven by meteorological conditions (e.g. wind waves), as well as antenna directivity pattern effects on the observed interference patterns of GPS/GLONASS L1/L2 signals (relation of the main spectral peak to the noise power) and the quality of sea level estimations.

  7. The multi-millennial Antarctic commitment to future sea-level rise.

    Science.gov (United States)

    Golledge, N R; Kowalewski, D E; Naish, T R; Levy, R H; Fogwill, C J; Gasson, E G W

    2015-10-15

    Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.

  8. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    Science.gov (United States)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  9. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

    KAUST Repository

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-01-01

    , temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high

  10. Loss of cultural world heritage and currently inhabited places to sea-level rise

    International Nuclear Information System (INIS)

    Marzeion, Ben; Levermann, Anders

    2014-01-01

    The world population is concentrated near the coasts, as are a large number of Cultural World Heritage sites, defined by the UNESCO. Using spatially explicit sea-level estimates for the next 2000 years and high-resolution topography data, we compute which current cultural heritage sites will be affected by sea-level rise at different levels of sustained future warming. As indicators for the pressure on future cultural heritage we estimate the percentage of each country’s area loss, and the percentage of current population living in regions that will be permanently below sea level, for different temperature levels. If the current global mean temperature was sustained for the next two millennia, about 6% (40 sites) of the UNESCO sites will be affected, and 0.7% of global land area will be below mean sea level. These numbers increase to 19% (136 sites) and 1.1% for a warming of 3 K. At this warming level, 3–12 countries will experience a loss of more than half of their current land surface, 25–36 countries lose at least 10% of their territory, and 7% of the global population currently lives in regions that will be below local sea level. Given the millennial scale lifetime of carbon dioxide in the atmosphere, our results indicate that fundamental decisions with regard to mankind’s cultural heritage are required. (paper)

  11. Effective media reporting of sea level rise projections: 1989-2009

    International Nuclear Information System (INIS)

    Rick, U K; Boykoff, M T; Pielke, R A Jr

    2011-01-01

    In the mass media, sea level rise is commonly associated with the impacts of climate change due to increasing atmospheric greenhouse gases. As this issue garners ongoing international policy attention, segments of the scientific community have expressed unease about how this has been covered by mass media. Therefore, this study examines how sea level rise projections-in IPCC Assessment Reports and a sample of the scientific literature-have been represented in seven prominent United States (US) and United Kingdom (UK) newspapers over the past two decades. The research found that-with few exceptions-journalists have accurately portrayed scientific research on sea level rise projections to 2100. Moreover, while coverage has predictably increased in the past 20 years, journalists have paid particular attention to the issue in years when an IPCC report is released or when major international negotiations take place, rather than when direct research is completed and specific projections are published. We reason that the combination of these factors has contributed to a perceived problem in the sea level rise reporting by the scientific community, although systematic empirical research shows none. In this contemporary high-stakes, high-profile and highly politicized arena of climate science and policy interactions, such results mark a particular bright spot in media representations of climate change. These findings can also contribute to more measured considerations of climate impacts and policy action at a critical juncture of international negotiations and everyday decision-making associated with the causes and consequences of climate change.

  12. Experimental investigation of channel avulsion frequency on river deltas under rising sea levels

    Science.gov (United States)

    Silvestre, J.; Chadwick, A. J.; Steele, S.; Lamb, M. P.

    2017-12-01

    River deltas are low-relief landscapes that are socioeconomically important; they are home to over half a billion people worldwide. Many deltas are built by cycles of lobe growth punctuated by abrupt channel shifts, or avulsions, which often reoccur at a similar location and with a regular frequency. Previous experimental work has investigated the effect of hydrodynamic backwater in controlling channel avulsion location and timing on deltas under constant sea level conditions, but it is unclear how sea-level rise impacts avulsion dynamics. We present results from a flume experiment designed to isolate the role of relative sea-level rise on the evolution of a backwater-influenced delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin. The experimental delta grew under subcritical flow, a persistent backwater zone, and a range of sea level rise rates. Without sea level rise, lobe progradation produced in-channel aggradation and periodic avulsions every 3.6 ± 0.9 hours, which corresponded to when channels aggraded to approximately one-half of their flow depth. With a modest rate of sea-level rise (0.25 mm/hr), we observed enhanced aggradation in the backwater zone, causing channels to aggrade more quickly and avulse more frequently (every 2.1 ± 0.6 hours). In future work, we expect further increases in the rate of relative sea-level rise to cause avulsion frequency to decrease as the delta drowns and the backwater zone retreats upstream. Experimental results can serve as tests of numerical models that are needed for hazard mitigation and coastal sustainability efforts on drowning deltas.

  13. How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?

    Science.gov (United States)

    Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J Walter; Bossick, Matthew

    2016-01-01

    Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between $42 and $57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.

  14. Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion

    Science.gov (United States)

    Caccamise, Dana J.; Merrifield, Mark A.; Bevis, Michael; Foster, James; Firing, Yvonne L.; Schenewerk, Mark S.; Taylor, Frederick W.; Thomas, Donald A.

    2005-02-01

    Since 1946, sea level at Hilo on the Big Island of Hawaii has risen an average of 1.8 +/- 0.4 mm/yr faster than at Honolulu on the island of Oahu. This difference has been attributed to subsidence of the Big Island. However, GPS measurements indicate that Hilo is sinking relative to Honolulu at a rate of -0.4 +/- 0.5 mm/yr, which is too small to account for the difference in sea level trends. In the past 30 years, there has been a statistically significant reduction in the relative sea level trend. While it is possible that the rates of land motion have changed over this time period, the available hydrographic data suggest that interdecadal variations in upper ocean temperature account for much of the differential sea level signal between the two stations, including the recent trend change. These results highlight the challenges involved in estimating secular sea level trends in the presence of significant low frequency variability.

  15. New and improved data products from the Permanent Service for Mean Sea Level (PSMSL)

    Science.gov (United States)

    Matthews, Andrew; Bradshaw, Elizabeth; Gordon, Kathy; Hibbert, Angela; Jevrejeva, Svetlana; Rickards, Lesley; Tamisiea, Mark; Williams, Simon

    2015-04-01

    The Permanent Service for Mean Sea Level (PSMSL) is the internationally recognised global sea level data bank for long term sea level change information from tide gauges. Established in 1933, the PSMSL continues to be responsible for the collection, publication, analysis and interpretation of sea level data. The PSMSL operates under the auspices of the International Council for Science (ICSU) and is one of the main data centres for both the International Association for the Physical Sciences of the Oceans (IAPSO) and the International Association of Geodesy (IAG). The PSMSL continues to work closely with other members of the sea level community through the Intergovernmental Oceanographic Commission's Global Sea Level Observing System (GLOSS). Currently, the PSMSL data bank for monthly and annual sea level data holds over 65,000 station-years of data from over 2200 stations. Data from each site are carefully quality controlled and, wherever possible, reduced to a common datum, whose stability is monitored through a network of geodetic benchmarks. Last year, the PSMSL also made available a data bank of measurements taken from in-situ ocean bottom pressure recorders from over 60 locations across the globe. Here, we present an overview of the data available at the PSMSL, and describe some of the ongoing work that aims to provide more information to users of our data. In particular, we describe the ongoing work with the Système d'Observation du Niveau des Eaux Littorales (SONEL) to use measurements from continuous GNSS records located near tide gauges to provide PSMSL data within a geocentric reference frame. We also highlight changes to the method used to present estimated sea level trends to account for seasonal cycles and autocorrelation in the data, and provide an estimate of the error of the trend.

  16. Statistical selection of tide gauges for Arctic sea-level reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2015-01-01

    In this paper, we seek an appropriate selection of tide gauges for Arctic Ocean sea-level reconstruction based on a combination of empirical criteria and statistical properties (leverages). Tide gauges provide the only in situ observations of sea level prior to the altimetry era. However, tide...... the "influence" of each Arctic tide gauge on the EOF-based reconstruction through the use of statistical leverage and use this as an indication in selecting appropriate tide gauges, in order to procedurally identify poor-quality data while still including as much data as possible. To accommodate sparse...

  17. Present-day sea level rise: a synthesis; Hausse actuelle du niveau de la mer: synthese

    Energy Technology Data Exchange (ETDEWEB)

    Cazenave, A.; Llovel, W. [Laboratoire d' Etudes en Geophysique et Oceanographie Spatiales (LEGOS), Observatoire Midi-Pyrenees, 31 - Toulouse (France); Lombard, A. [CNES, 31 - Toulouse (France)

    2008-11-15

    Measuring sea level change and understanding its causes have improved considerably in the recent years, essentially because new in situ and remote sensing data sets have become available. Here we report on the current knowledge of present-day sea level change. We briefly present observational results on sea level change from satellite altimetry since 1993 and tide gauges for the past century. We next discuss recent progress made in quantifying the processes causing sea level change on time scales ranging from years to decades, i.e., thermal expansion, land ice mass loss and land water storage change. For the 1993-2003 decade, the sum of climate-related contributions agree well (within the error bars) with the altimetry-based sea level, half of the observed rate of rise being due to ocean thermal expansion, land ice plus land waters explaining the other half. Since about 2003, thermal expansion increase has stopped, whereas the sea level continues to rise, although at a reduced rate compared to the previous decade (2.5 mm/yr versus 3.1 mm/yr). Recent increases in glacier melting and ice mass loss from the ice sheets appear able to account alone for the rise in sea level reported over the last five years. (authors)

  18. Uncertainties in Steric Sea Level Change Estimation During the Satellite Altimeter Era: Concepts and Practices

    Science.gov (United States)

    MacIntosh, C. R.; Merchant, C. J.; von Schuckmann, K.

    2017-01-01

    This article presents a review of current practice in estimating steric sea level change, focussed on the treatment of uncertainty. Steric sea level change is the contribution to the change in sea level arising from the dependence of density on temperature and salinity. It is a significant component of sea level rise and a reflection of changing ocean heat content. However, tracking these steric changes still remains a significant challenge for the scientific community. We review the importance of understanding the uncertainty in estimates of steric sea level change. Relevant concepts of uncertainty are discussed and illustrated with the example of observational uncertainty propagation from a single profile of temperature and salinity measurements to steric height. We summarise and discuss the recent literature on methodologies and techniques used to estimate steric sea level in the context of the treatment of uncertainty. Our conclusions are that progress in quantifying steric sea level uncertainty will benefit from: greater clarity and transparency in published discussions of uncertainty, including exploitation of international standards for quantifying and expressing uncertainty in measurement; and the development of community "recipes" for quantifying the error covariances in observations and from sparse sampling and for estimating and propagating uncertainty across spatio-temporal scales.

  19. Solving the Sea-Level Equation in an Explicit Time Differencing Scheme

    Science.gov (United States)

    Klemann, V.; Hagedoorn, J. M.; Thomas, M.

    2016-12-01

    In preparation of coupling the solid-earth to an ice-sheet compartment in an earth-system model, the dependency of initial topography on the ice-sheet history and viscosity structure has to be analysed. In this study, we discuss this dependency and how it influences the reconstruction of former sea level during a glacial cycle. The modelling is based on the VILMA code in which the field equations are solved in the time domain applying an explicit time-differencing scheme. The sea-level equation is solved simultaneously in the same explicit scheme as the viscoleastic field equations (Hagedoorn et al., 2007). With the assumption of only small changes, we neglect the iterative solution at each time step as suggested by e.g. Kendall et al. (2005). Nevertheless, the prediction of the initial paleo topography in case of moving coastlines remains to be iterated by repeated integration of the whole load history. The sensitivity study sketched at the beginning is accordingly motivated by the question if the iteration of the paleo topography can be replaced by a predefined one. This study is part of the German paleoclimate modelling initiative PalMod. Lit:Hagedoorn JM, Wolf D, Martinec Z, 2007. An estimate of global mean sea-level rise inferred from tide-gauge measurements using glacial-isostatic models consistent with the relative sea-level record. Pure appl. Geophys. 164: 791-818, doi:10.1007/s00024-007-0186-7Kendall RA, Mitrovica JX, Milne GA, 2005. On post-glacial sea level - II. Numerical formulation and comparative reesults on spherically symmetric models. Geophys. J. Int., 161: 679-706, doi:10.1111/j.365-246.X.2005.02553.x

  20. Measurements of sea level off Tikkavanipalem - Coast India

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desai, R.G.P.; Peshwe, V.B.; Desa, E.; VijayKumar, K.; Desa, E.S.; Mehra, P.; Nagvekar, S.

    , and meteorological measurements were also made during this one-year period. These measurements have indicated that the sea level along this coast contains contributions from several classes of motions, principally tidal motions and set-up/set-down motions...

  1. Evidence from the Seychelles of Last Interglacial Sea Level Oscillations

    Science.gov (United States)

    Vyverberg, K.; Dutton, A.; Dechnik, B.; Webster, J.; Zwartz, D.

    2014-12-01

    Several studies indicate that sea level oscillated during Marine Isotope Stage (MIS) 5e, but the details of these scenarios, including the number of sea level oscillations, are still debated. We lack a detailed understanding of the sensitivity of the large polar ice sheets to changes in temperature that could result in eustatic sea level oscillations. Because the Seychelles are located far from the margins of the Last Glacial Maximum northern hemisphere ice sheets, they have not been subjected to glacial isostatic adjustment, and have been tectonically stable since the Last Interglacial period; therefore, they provide a robust record of eustatic sea level during MIS 5e. All of the outcrops we examined contain unconformities and/or sharp transitions between facies, though the nature of these boundaries varies between sites. In some outcrops we observed a hardground comprising fine-grained, mollusc-rich sediment layer between distinct generations of in situ coralgal framework. In one outcrop, this succession was observed twice, where two generations of reef growth were each capped by a strongly indurated fine-grained, mollusc-rich sediment layer. At the site with the greatest vertical extent of outcrop, there is a marked difference in the taxonomic composition of the coral community above and below an unconformable surface, but the indurated fine-grained, sediment layer observed elsewhere was absent. Most of the other outcrops we studied contained a common succession of facies from in situ reef units overlain by cemented coral rubble. In two dated outcrops, the age of corals above and below the rubble layer are the same age. The hardgrounds and rubble layers may represent ephemeral exposure of the reef units during two drops in sea level. The inference of multiple meter-scale oscillations during the MIS 5e highstand indicates a more dynamic cryosphere than the present interglacial, although the climatic threshold for more volatile polar ice sheets is not yet clear.

  2. Geodetic infrastructure at the Barcelona harbour for sea level monitoring

    Science.gov (United States)

    Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona

    2015-04-01

    The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and

  3. Coastal sensitivity to sea level rise : a focus on the mid-atlantic region

    Science.gov (United States)

    2009-01-15

    The focus of this product is to identify and review the potential impacts of future sea-level rise based on present scientific understanding. To do so, this product evaluates : several aspects of sea-level rise impacts to the natural environment and ...

  4. The Dead Sea, The Lake and Its Setting

    Science.gov (United States)

    Brink, Uri ten

    I cannot think of a subject more befitting the description of interdisciplinary research with societal relevance than the study of the Dead Sea, a terminal lake of the Jordan River in Israel and Jordan. The scientific study of the Dead Sea is intimately connected with politics, religion, archeology, economic development, tourism, and environmental change.The Dead Sea is a relatively closed geologic and limnologic system with drastic physical changes often occurring on human timescales and with a long human history to observe these changes. Research in this unique area covers diverse aspects such as active subsidence and deformation along strike-slip faults; vertical stratification and stability of the water column; physical properties of extremely saline and dense (1234 kg/m3) water; spontaneous precipitation of minerals in an oversaturated environment; origin of the unusual chemical composition of the brine; existence of life in extreme environments; use of lake level fluctuations as a paleoclimatic indicator; and effects on the environment of human intervention versus natural climatic variability. Although the Dead Sea covers a small area on a global scale, it is nevertheless one of the largest natural laboratories for these types of research on Earth. These reasons make the Dead Sea a fascinating topic for the curious mind.

  5. Atmospheric circulation and storm events in the Black Sea and Caspian Sea

    Science.gov (United States)

    Surkova, Galina V.; Arkhipkin, Victor S.; Kislov, Alexander V.

    2013-12-01

    Extreme sea storms are dangerous and a potential source of damage. In this study, we examine storm events in the Black Sea and Caspian Sea, the atmosphere circulation patterns associated with the sea storm events, and their changes in the present (1961-2000) and future (2046-2065) climates. A calendar of storms for the present climate is derived from results of wave model SWAN (Simulating WAves Nearshore) experiments. On the basis of this calendar, a catalog of atmospheric sea level pressure (SLP) fields was prepared from the NCEP/NCAR reanalysis dataset for 1961-2000. The SLP fields were subjected to a pattern recognition algorithm which employed empirical orthogonal decomposition followed by cluster analysis. The NCEP/NCAR reanalysis data is used to evaluate the occurring circulation types (CTs) within the ECHAM5-MPI/OM Atmosphere and Ocean Global Circulation Model (AOGCM) for the period 1961-2000. Our analysis shows that the ECHAM5-MPI/OM model is capable of reproducing circulation patterns for the storm events. The occurrence of present and future ECHAM5-MPI/OM CTs is investigated. It is shown that storm CTs are expected to occur noticeably less frequently in the middle of the 21st century.

  6. Climate-change-driven accelerated sea-level rise detected in the altimeter era.

    Science.gov (United States)

    Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T

    2018-02-27

    Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.

  7. Extreme events assessment methodology coupling rainfall and tidal levels in the coastal floodplain of the São Paulo North Coast (Brazil) for drainage purposes

    Science.gov (United States)

    Alfredini, P.; Cartacho, D. L.; Arasaki, E.; Rosso, M.; Sousa, W. C., Jr.; Lanzieri, D. R.; Ferreira, J. P. M.

    2012-04-01

    The Caraguatatuba Coastal Plain is the wider in São Paulo State (Brazil) North Coastline. The Santo Antônio Torrent Catchmenth drains that region with high urban concentration (around 100,000 permanent inhabitants), which may quintuplicate with the turists in the summer period. In the last decade important oil and gas sea reserves were discovered and the facilities for their treatment were located in that region. For that great economic growth scenario it is mandatory to design mitigation risk measures to have the fluvial forcing processes well known, considering the natural hazards. The Santo Antônio catchment has a surface area of 40 km2, heavy rainfall rates (around 3000 mm/year), concentrated mainly in the summer period, producing high fluvial sediment transport capacity, floods and debris-flows. Due to the steep slopes and the altitude (~ 1000 m) of the mountains near the coast, the hydrological orographic effect rapidly condensates the sea humidity and recurrent and intense flood events cause extensive risks and damages to population and infrastructures. Strong debris-flows occur in that region, because rains higher than 300-400 mm per day occur in multi decadal periods. Due to the wind blowing landward the humidity from the sea, also meteorological tides occur in correspondence of high rainfall rates. The aim of this project is to present an extreme hydrological assessment methodology, coupling rainfall rates and tidal levels, to show the impact of climate changes during the last decades. It is also presented the magnitude of the rising meteorological tide coupled with the extreme rainfall events. The data base analysed comprised long term data of rainfall and tidal measurements from 1954 to 2003. The correlations of the two data were divided in five classes of rainfall in mm per day (> 0, > 25, > 50, > 75 and > 100) and estimated the tidal levels for different return periods in years (2, 5, 10, 20, 50, 75 and 100). The comparison of two distint periods

  8. Accurately measuring sea level change from space: an ESA Climate Change Initiative for MSL closure budget studies

    DEFF Research Database (Denmark)

    Legeais, Jean-Francois; Cazenave, Anny; Larnicol, Gille

    Sea level is a very sensitive index of climate change and variability. Sea level integrates the ocean warming, mountain glaciers and ice sheet melting. Understanding the sea level variability and changes implies an accurate monitoring of the sea level variable at climate scales, in addition...... to understanding the ocean variability and the exchanges between ocean, land, cryosphere, and atmosphere. That is why Sea Level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing long-term monitoring of the sea level ECV...... validation, performed by several groups of the ocean and climate modeling community. At last, the main improvements derived from the algorithms development dedicated to the 2016 full reprocessing of the dataset are described. Efforts have also focused on the improvement of the sea level estimation...

  9. Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam

    Science.gov (United States)

    Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.

    2010-01-01

    Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.

  10. [Crossing borders. The motivation of extreme sportsmen].

    Science.gov (United States)

    Opaschowski, H W

    2005-08-01

    In his article "Crossing borders -- the motivation of extreme sportsmen" the author gets systematically to the bottom of the question of why extreme sportsmen voluntarily take risks and endanger themselves. Within the scope of a representative sampling 217 extreme sportsmen -- from the fields of mountain biking, trekking and free climbing, canoyning, river rafting and deep sea diving, paragliding, parachuting, bungee jumping and survival training -- give information about their personal motives. What fascinates them? The attraction of risk? The search for sensation? Or the drop out of everyday life? And what comes afterwards? Does in the end the whole life become an extreme sport? Fact is: they live extremely, because they want to move beyond well-trodden paths. To escape the boredom of everyday life they are searching for the kick, the thrill, the no-limit experience. It's about calculated risk between altitude flight and deep sea adventure.

  11. Effective inundation of continental United States communities with 21st century sea level rise

    Directory of Open Access Journals (Sweden)

    Kristina A. Dahl

    2017-07-01

    Full Text Available Recurrent, tidally driven coastal flooding is one of the most visible signs of sea level rise. Recent studies have shown that such flooding will become more frequent and extensive as sea level continues to rise, potentially altering the landscape and livability of coastal communities decades before sea level rise causes coastal land to be permanently inundated. In this study, we identify US communities that will face effective inundation—defined as having 10% or more of livable land area flooded at least 26 times per year—with three localized sea level rise scenarios based on projections for the 3rd US National Climate Assessment. We present these results in a new, online interactive tool that allows users to explore when and how effective inundation will impact their communities. In addition, we identify communities facing effective inundation within the next 30 years that contain areas of high socioeconomic vulnerability today using a previously published vulnerability index. With the Intermediate-High and Highest sea level rise scenarios, 489 and 668 communities, respectively, would face effective inundation by the year 2100. With these two scenarios, more than half of communities facing effective inundation by 2045 contain areas of current high socioeconomic vulnerability. These results highlight the timeframes that US coastal communities have to respond to disruptive future inundation. The results also underscore the importance of limiting future warming and sea level rise: under the Intermediate-Low scenario, used as a proxy for sea level rise under the Paris Climate Agreement, 199 fewer communities would be effectively inundated by 2100.

  12. Impacts of 21st century sea-level rise on a Danish major city - an assessment based on fine-resolution digital topography and a new flooding algorithm

    DEFF Research Database (Denmark)

    Moeslund, Jesper Erenskjold; Bøcher, Peter Klith; Svenning, J.-C.

    2009-01-01

    by future sea-level rise to Aarhus. Under the A2 and A1FI (IPCC) climate scenarios we show that relatively large residential areas in the northern part of the city as well as areas around the river running through the city are likely to become flooded in the event of extreme, but realistic weather events......This study examines the potential impact of 21st century sea-level rise on Aarhus, the second largest city in Denmark, emphasizing the economic risk to the city's real estate. Furthermore, it assesses which possible adaptation measures that can be taken to prevent flooding in areas particularly...... to those produced in this study will become an important tool for a climate-change-integrated planning of future city development as well as for the development of evacuation plans....

  13. Updating Maryland's sea-level rise projections

    Science.gov (United States)

    Boesch, Donald F.; Atkinson, Larry P.; Boicourt, William C.; Boon, John D.; Cahoon, Donald R.; Dalrymple, Robert A.; Ezer, Tal; Horton, Benjamin P.; Johnson, Zoe P.; Kopp, Robert E.; Li, Ming; Moss, Richard H.; Parris, Adam; Sommerfield, Christopher K.

    2013-01-01

    With its 3,100 miles of tidal shoreline and low-lying rural and urban lands, “The Free State” is one of the most vulnerable to sea-level rise. Historically, Marylanders have long had to contend with rising water levels along its Chesapeake Bay and Atlantic Ocean and coastal bay shores. Shorelines eroded and low-relief lands and islands, some previously inhabited, were inundated. Prior to the 20th century, this was largely due to the slow sinking of the land since Earth’s crust is still adjusting to the melting of large masses of ice following the last glacial period. Over the 20th century, however, the rate of rise of the average level of tidal waters with respect to land, or relative sea-level rise, has increased, at least partially as a result of global warming. Moreover, the scientific evidence is compelling that Earth’s climate will continue to warm and its oceans will rise even more rapidly. Recognizing the scientific consensus around global climate change, the contribution of human activities to it, and the vulnerability of Maryland’s people, property, public investments, and natural resources, Governor Martin O’Malley established the Maryland Commission on Climate Change on April 20, 2007. The Commission produced a Plan of Action that included a comprehensive climate change impact assessment, a greenhouse gas reduction strategy, and strategies for reducing Maryland’s vulnerability to climate change. The Plan has led to landmark legislation to reduce the state’s greenhouse gas emissions and a variety of state policies designed to reduce energy consumption and promote adaptation to climate change.

  14. Barrier island response to an elevated sea-level anomaly: Onslow Beach, North Carolina, USA

    Science.gov (United States)

    Theuerkauf, E. J.; Rodriguez, A. B.; Fegley, S. R.; Luettich, R.

    2012-12-01

    Variations in sea level over time scales ranging from hours to millennia influence coastal processes and evolution. At annual time scales, elevated sea-level anomalies produce coastal flooding and promote beach erosion. This study examines the coastal response of Onslow Beach, North Carolina to the summer 2009 East Coast sea-level anomaly. Onslow Beach is a 12-km-long wave-dominated barrier island with highly variable along-barrier morphology. The transgressive southern portion of the island is characterized by a narrow beach, low dunes, and multiple washover fans, while the regressive northern portion is characterized by a wide beach and continuous tall dunes. Hourly tide gauge data from adjacent NOAA stations (Beaufort and Wrightsville Beach) are used to determine the timing and extent of elevated water levels. The seasonal and longer term trends (relative sea level rise) are removed from both of the water level series and the sea-level anomaly is represented by a large residual between the observed and predicted water levels. Beach response is quantified using terrestrial laser scanning for morphology and from geoprobe cores to determine the maximum depth of erosion (MDOE). The mean high water (MHW) shoreline and dune toe are digitized from digital elevation models derived from the laser scans and analyzed using the Digital Shoreline Analysis System (DSAS). Landward (negative) movement of these contacts indicates erosion. Wave data collected from an Acoustic Wave and Current Meter (AWAC) located offshore of the southern end of Onslow Beach is used to characterize the wave regime throughout the study. Water level is elevated in the tide gauge data from June 2009 to March 2010. This sea-level anomaly corresponds with an increase in the maximum depth of erosion between 2009 and 2010. Landward movement of the MHW shoreline and the dunetoe increased during the period between September 2009 and May 2010 indicating an increase in beach erosion during the sea-level

  15. Relative Sea Level Trends Along the Coast of the Bay of Bengal

    Science.gov (United States)

    Becker, M.; Calmant, S.; Papa, F.; Delebecque, C.; Islam, A. S.; Shum, C. K.

    2016-12-01

    In the coastal belt of the Bay of Bengal, the sea level rise is one of a major threat, linked to climate change, which drastically affects the livelihoods of millions of people. A comprehensive understanding of sea level trends and its variability in this region is therefore crucial and should help to anticipate the impacts of climate change and implement adaptation strategies. This region is bordered mostly by Bangladesh, India, Malaysia, Myanmar, and Thailand. Here, we revisit the sea level changes in the Bay of Bengal region from tide gauges and satellite altimetry over the period 1993-2014. The 23 monthly mean tide gauge records, used in this study, are retrieved from PSMSL (15 records) and supplemented with Bangladeshi observations (8 records). We show that, over the satellite altimetry era, the sea level interannual/decadal variability is mainly due to ocean thermal expansion variability driven by IOD/ENSO events and their low frequency modulation. We focus on relative sea level rise at major coastal cities and try to separate the climatic signal (long term trend plus interannual/decadal variability) from local effects, in particular vertical land movements. Results from GPS are analysed where available. When no such data exist, vertical land movements are deduced from the combined use of tide gauge and altimetry data. While the analysis is performed over the whole region, a particular attention is given to the low-lyingBangladesh's coastal area.

  16. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    Science.gov (United States)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  17. The role of local and external factors in determining the interannual sea level variability of the Adriatic and Black Seas during the 20th century.

    Science.gov (United States)

    Scarascia, Luca; Lionello, Piero

    2016-04-01

    The Adriatic Sea and the Black Sea are two semienclosed basins connected to the Mediterranean Sea by the Otranto and the Bosporus straits, respectively. This work aims to reconstruction the sea level for both basins in the 20th century and to investigate main sources of interannual variability. Using 7 tide gauge timeseries located along the Adriatic coast and 5 along the Black Sea coast, provided by the PSMSL (Permanent service of mean sea level), a seamless sea level timeseries (1900-2009) has been obtained for each basin on the basis of statistical procedure involving PCA and Least Square Method. The comparison with satellite data in the period 1993 - 2009 confirms that these are reliable representations of the observed sea level for the whole basin, showing a great agreement with a correlation value of 0.87 and 0.72 for Adriatic and Black Sea respectively. The sea level has been decomposed in various contributions in order to analyze the role of the factors responsible for its interannual variability. The annual cycles of the local effect of pressure (inverse barometer effect IB), of the steric effect due to temperature and salinity variation and of the wind effect have been computed. The largest contribute for the Adriatic Sea is due to the wind, whilst inverse barometer effect plays a minor role and the steric effect seems to be almost negligible. For the Black Sea, on the contrary, wind effect is negligible, and the largest source of variability is due to the Danube river, which is estimated from the available discharge data of Sulina (one of the exits of the Danube delta. Steric and IB effects play both a minor role in this basin. A linear regression model, built considering as predictor the SLP gradient identified at large scale after having carried out the correlation analysis, is capable to explain a further percentage of variability (about 20-25%) of the sea level after subtracting all the factors considered above. Finally, residual sea levels show a

  18. A study on Sea Level Change for Coast of Korean Peninsular from Global Warming and Its Influences I

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.W.; Kim, J.H. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    The Third Assessment Report(2001) of the Intergovernmental Panel on Climate Change(IPCC) concluded that the global warming will be accelerated during the 21st century due to the human activities. The projected warming will increase the steric sea level rise which have large adverse effects on the natural and human systems in the coastal zone. This study intends to assess the sea level change and potential impacts of the future sea level rise on the coastal zone of the Korean Peninsula in which much socioeconomic activities have been already occurred. The contents of the present study include reviews on climate change and its impact, assessments of the current and future sea level change in the global scale and seas ne,ar Korea, and impact assessment methodology. The second year study(2002) will be focused on the impact assessment on the coastal zone of the Korea, especially on the inundation problem on human dimension due to the steric sea level rise, storm surge, and tide. Based on the tide gauge data, IPCC(2001) assessed the global average sea level rise during the 20th century is in the range of 10{approx}20cm, which is higher than that of 19th century. The contributing elements to the sea level rise are in the order of ocean thermal expansion, melting of glacier, mass balance change of the Greenland and Antarctic ice sheets, and surface and ground water storage and permafrost change. The satellite altimeter data during l990s shows higher trend than the mean trend of tide gauge data during 20th century. The recent high trend of the sea level rise by the altimetry is not clear whether it represents the recent acceleration of the global sea level the differences of the two observation methods, or short observation period of altimetry. In the 21st century, the global mean sea level is projected to increase much due to the acceleration of the warming. Based on the 35 IPCC emission scenarios, the sea level rise in the 21st century will be in the range of 9{approx}88

  19. Impacts of climate change and sea level rise to Danish near shore ecosystems

    International Nuclear Information System (INIS)

    Vestergaard, P.

    2001-01-01

    Salt marshes and sand dunes are important types of coastal, terrestrial nature, which like other terrestrial ecosystems will be sensible to the future changes in climate, which have been predicted. Due to the processes acting in their morphogenesis and in the development and composition of their ecosystems, they will not least be influenced by sea level rise. Especially a strong impact of a sea level rise of about 50 cm (midrange of the projected global sea level rise) for the next century can be expected on Danish salt marshes, considering their limited vertical range (50-100 cm). (LN)

  20. Uprated OMS Engine Status-Sea Level Testing Results

    Science.gov (United States)

    Bertolino, J. D.; Boyd, W. C.

    1990-01-01

    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.