WorldWideScience

Sample records for extreme scale era

  1. Software challenges in extreme scale systems

    International Nuclear Information System (INIS)

    Sarkar, Vivek; Harrod, William; Snavely, Allan E

    2009-01-01

    Computer systems anticipated in the 2015 - 2020 timeframe are referred to as Extreme Scale because they will be built using massive multi-core processors with 100's of cores per chip. The largest capability Extreme Scale system is expected to deliver Exascale performance of the order of 10 18 operations per second. These systems pose new critical challenges for software in the areas of concurrency, energy efficiency and resiliency. In this paper, we discuss the implications of the concurrency and energy efficiency challenges on future software for Extreme Scale Systems. From an application viewpoint, the concurrency and energy challenges boil down to the ability to express and manage parallelism and locality by exploring a range of strong scaling and new-era weak scaling techniques. For expressing parallelism and locality, the key challenges are the ability to expose all of the intrinsic parallelism and locality in a programming model, while ensuring that this expression of parallelism and locality is portable across a range of systems. For managing parallelism and locality, the OS-related challenges include parallel scalability, spatial partitioning of OS and application functionality, direct hardware access for inter-processor communication, and asynchronous rather than interrupt-driven events, which are accompanied by runtime system challenges for scheduling, synchronization, memory management, communication, performance monitoring, and power management. We conclude by discussing the importance of software-hardware co-design in addressing the fundamental challenges for application enablement on Extreme Scale systems.

  2. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  3. Quantum universe on extremely small space-time scales

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2010-01-01

    The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.

  4. Extreme weather events in southern Germany - Climatological risk and development of a large-scale identification procedure

    Science.gov (United States)

    Matthies, A.; Leckebusch, G. C.; Rohlfing, G.; Ulbrich, U.

    2009-04-01

    Extreme weather events such as thunderstorms, hail and heavy rain or snowfall can pose a threat to human life and to considerable tangible assets. Yet there is a lack of knowledge about present day climatological risk and its economic effects, and its changes due to rising greenhouse gas concentrations. Therefore, parts of economy particularly sensitve to extreme weather events such as insurance companies and airports require regional risk-analyses, early warning and prediction systems to cope with such events. Such an attempt is made for southern Germany, in close cooperation with stakeholders. Comparing ERA40 and station data with impact records of Munich Re and Munich Airport, the 90th percentile was found to be a suitable threshold for extreme impact relevant precipitation events. Different methods for the classification of causing synoptic situations have been tested on ERA40 reanalyses. An objective scheme for the classification of Lamb's circulation weather types (CWT's) has proved to be most suitable for correct classification of the large-scale flow conditions. Certain CWT's have been turned out to be prone to heavy precipitation or on the other side to have a very low risk of such events. Other large-scale parameters are tested in connection with CWT's to find out a combination that has the highest skill to identify extreme precipitation events in climate model data (ECHAM5 and CLM). For example vorticity advection in 700 hPa shows good results, but assumes knowledge of regional orographic particularities. Therefore ongoing work is focused on additional testing of parameters that indicate deviations of a basic state of the atmosphere like the Eady Growth Rate or the newly developed Dynamic State Index. Evaluation results will be used to estimate the skill of the regional climate model CLM concerning the simulation of frequency and intensity of the extreme weather events. Data of the A1B scenario (2000-2050) will be examined for a possible climate change

  5. Large Scale Influences on Summertime Extreme Precipitation in the Northeastern United States

    Science.gov (United States)

    Collow, Allison B. Marquardt; Bosilovich, Michael G.; Koster, Randal Dean

    2016-01-01

    Observations indicate that over the last few decades there has been a statistically significant increase in precipitation in the northeastern United States and that this can be attributed to an increase in precipitation associated with extreme precipitation events. Here a state-of-the-art atmospheric reanalysis is used to examine such events in detail. Daily extreme precipitation events defined at the 75th and 95th percentile from gridded gauge observations are identified for a selected region within the Northeast. Atmospheric variables from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are then composited during these events to illustrate the time evolution of associated synoptic structures, with a focus on vertically integrated water vapor fluxes, sea level pressure, and 500-hectopascal heights. Anomalies of these fields move into the region from the northwest, with stronger anomalies present in the 95th percentile case. Although previous studies show tropical cyclones are responsible for the most intense extreme precipitation events, only 10 percent of the events in this study are caused by tropical cyclones. On the other hand, extreme events resulting from cutoff low pressure systems have increased. The time period of the study was divided in half to determine how the mean composite has changed over time. An arc of lower sea level pressure along the East Coast and a change in the vertical profile of equivalent potential temperature suggest a possible increase in the frequency or intensity of synoptic-scale baroclinic disturbances.

  6. Scaling of Precipitation Extremes Modelled by Generalized Pareto Distribution

    Science.gov (United States)

    Rajulapati, C. R.; Mujumdar, P. P.

    2017-12-01

    Precipitation extremes are often modelled with data from annual maximum series or peaks over threshold series. The Generalized Pareto Distribution (GPD) is commonly used to fit the peaks over threshold series. Scaling of precipitation extremes from larger time scales to smaller time scales when the extremes are modelled with the GPD is burdened with difficulties arising from varying thresholds for different durations. In this study, the scale invariance theory is used to develop a disaggregation model for precipitation extremes exceeding specified thresholds. A scaling relationship is developed for a range of thresholds obtained from a set of quantiles of non-zero precipitation of different durations. The GPD parameters and exceedance rate parameters are modelled by the Bayesian approach and the uncertainty in scaling exponent is quantified. A quantile based modification in the scaling relationship is proposed for obtaining the varying thresholds and exceedance rate parameters for shorter durations. The disaggregation model is applied to precipitation datasets of Berlin City, Germany and Bangalore City, India. From both the applications, it is observed that the uncertainty in the scaling exponent has a considerable effect on uncertainty in scaled parameters and return levels of shorter durations.

  7. Assessing future climatic changes of rainfall extremes at small spatio-temporal scales

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Sørup, Hjalte Jomo Danielsen; Madsen, Henrik

    2013-01-01

    Climate change is expected to influence the occurrence and magnitude of rainfall extremes and hence the flood risks in cities. Major impacts of an increased pluvial flood risk are expected to occur at hourly and sub-hourly resolutions. This makes convective storms the dominant rainfall type...... in relation to urban flooding. The present study focuses on high-resolution regional climate model (RCM) skill in simulating sub-daily rainfall extremes. Temporal and spatial characteristics of output from three different RCM simulations with 25 km resolution are compared to point rainfall extremes estimated...... from observed data. The applied RCM data sets represent two different models and two different types of forcing. Temporal changes in observed extreme point rainfall are partly reproduced by the RCM RACMO when forced by ERA40 re-analysis data. Two ECHAM forced simulations show similar increases...

  8. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    Science.gov (United States)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  9. On the nonlinearity of spatial scales in extreme weather attribution statements

    Science.gov (United States)

    Angélil, Oliver; Stone, Daíthí; Perkins-Kirkpatrick, Sarah; Alexander, Lisa V.; Wehner, Michael; Shiogama, Hideo; Wolski, Piotr; Ciavarella, Andrew; Christidis, Nikolaos

    2018-04-01

    In the context of ongoing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event—some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporal scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement.

  10. Climatic forecast: down-scaling and extremes

    International Nuclear Information System (INIS)

    Deque, M.; Li, L.

    2007-01-01

    There is a strong demand for specifying the future climate at local scale and about extreme events. New methods, allowing a better output from the climate models, are currently being developed and French laboratories involved in the Escrime project are actively participating. (authors)

  11. Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era

    Science.gov (United States)

    Hinnov, Linda; Ogg, James; Huang, Chunju

    2010-05-01

    Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.

  12. Extreme-scale Algorithms and Solver Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack [Univ. of Tennessee, Knoxville, TN (United States)

    2016-12-10

    A widening gap exists between the peak performance of high-performance computers and the performance achieved by complex applications running on these platforms. Over the next decade, extreme-scale systems will present major new challenges to algorithm development that could amplify this mismatch in such a way that it prevents the productive use of future DOE Leadership computers due to the following; Extreme levels of parallelism due to multicore processors; An increase in system fault rates requiring algorithms to be resilient beyond just checkpoint/restart; Complex memory hierarchies and costly data movement in both energy and performance; Heterogeneous system architectures (mixing CPUs, GPUs, etc.); and Conflicting goals of performance, resilience, and power requirements.

  13. Faster Parallel Traversal of Scale Free Graphs at Extreme Scale with Vertex Delegates

    KAUST Repository

    Pearce, Roger

    2014-11-01

    © 2014 IEEE. At extreme scale, irregularities in the structure of scale-free graphs such as social network graphs limit our ability to analyze these important and growing datasets. A key challenge is the presence of high-degree vertices (hubs), that leads to parallel workload and storage imbalances. The imbalances occur because existing partitioning techniques are not able to effectively partition high-degree vertices. We present techniques to distribute storage, computation, and communication of hubs for extreme scale graphs in distributed memory supercomputers. To balance the hub processing workload, we distribute hub data structures and related computation among a set of delegates. The delegates coordinate using highly optimized, yet portable, asynchronous broadcast and reduction operations. We demonstrate scalability of our new algorithmic technique using Breadth-First Search (BFS), Single Source Shortest Path (SSSP), K-Core Decomposition, and Page-Rank on synthetically generated scale-free graphs. Our results show excellent scalability on large scale-free graphs up to 131K cores of the IBM BG/P, and outperform the best known Graph500 performance on BG/P Intrepid by 15%

  14. Faster Parallel Traversal of Scale Free Graphs at Extreme Scale with Vertex Delegates

    KAUST Repository

    Pearce, Roger; Gokhale, Maya; Amato, Nancy M.

    2014-01-01

    © 2014 IEEE. At extreme scale, irregularities in the structure of scale-free graphs such as social network graphs limit our ability to analyze these important and growing datasets. A key challenge is the presence of high-degree vertices (hubs), that leads to parallel workload and storage imbalances. The imbalances occur because existing partitioning techniques are not able to effectively partition high-degree vertices. We present techniques to distribute storage, computation, and communication of hubs for extreme scale graphs in distributed memory supercomputers. To balance the hub processing workload, we distribute hub data structures and related computation among a set of delegates. The delegates coordinate using highly optimized, yet portable, asynchronous broadcast and reduction operations. We demonstrate scalability of our new algorithmic technique using Breadth-First Search (BFS), Single Source Shortest Path (SSSP), K-Core Decomposition, and Page-Rank on synthetically generated scale-free graphs. Our results show excellent scalability on large scale-free graphs up to 131K cores of the IBM BG/P, and outperform the best known Graph500 performance on BG/P Intrepid by 15%

  15. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  16. Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, U. [Bjerknes Centre for Climate Research, Uni Bjerknes Centre, Bergen (Norway); Sandvik, A. [Bjerknes Centre for Climate Research, Institute for Marine Research (IMR), Bergen (Norway); Sorteberg, A. [University of Bergen, Geophysical Institute, Bergen (Norway)

    2011-10-15

    Results from a first-time employment of the WRF regional climate model to climatological simulations in Europe are presented. The ERA-40 reanalysis (resolution 1 ) has been downscaled to a horizontal resolution of 30 and 10 km for the period of 1961-1990. This model setup includes the whole North Atlantic in the 30 km domain and spectral nudging is used to keep the large scales consistent with the driving ERA-40 reanalysis. The model results are compared against an extensive observational network of surface variables in complex terrain in Norway. The comparison shows that the WRF model is able to add significant detail to the representation of precipitation and 2-m temperature of the ERA-40 reanalysis. Especially the geographical distribution, wet day frequency and extreme values of precipitation are highly improved due to the better representation of the orography. Refining the resolution from 30 to 10 km further increases the skill of the model, especially in case of precipitation. Our results indicate that the use of 10-km resolution is advantageous for producing regional future climate projections. Use of a large domain and spectral nudging seems to be useful in reproducing the extreme precipitation events due to the better resolved synoptic scale features over the North Atlantic, and also helps to reduce the large regional temperature biases over Norway. This study presents a high-resolution, high-quality climatological data set useful for reference climate impact studies. (orig.)

  17. Temporal and spatial scaling impacts on extreme precipitation

    Science.gov (United States)

    Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.

    2015-01-01

    Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.

  18. Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia

    Science.gov (United States)

    Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep

    2014-05-01

    Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the

  19. A Network Contention Model for the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  20. Drivers and seasonal predictability of extreme wind speeds in the ECMWF System 4 and a statistical model

    Science.gov (United States)

    Walz, M. A.; Donat, M.; Leckebusch, G. C.

    2017-12-01

    As extreme wind speeds are responsible for large socio-economic losses in Europe, a skillful prediction would be of great benefit for disaster prevention as well as for the actuarial community. Here we evaluate patterns of large-scale atmospheric variability and the seasonal predictability of extreme wind speeds (e.g. >95th percentile) in the European domain in the dynamical seasonal forecast system ECMWF System 4, and compare to the predictability based on a statistical prediction model. The dominant patterns of atmospheric variability show distinct differences between reanalysis and ECMWF System 4, with most patterns in System 4 extended downstream in comparison to ERA-Interim. The dissimilar manifestations of the patterns within the two models lead to substantially different drivers associated with the occurrence of extreme winds in the respective model. While the ECMWF System 4 is shown to provide some predictive power over Scandinavia and the eastern Atlantic, only very few grid cells in the European domain have significant correlations for extreme wind speeds in System 4 compared to ERA-Interim. In contrast, a statistical model predicts extreme wind speeds during boreal winter in better agreement with the observations. Our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world, and therefore fails to provide reliable seasonal predictions for lead months 2-4. This is likely related to the unrealistic representation of large-scale patterns of atmospheric variability. Hence our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric dynamics.

  1. Extreme-Scale Alignments Of Quasar Optical Polarizations And Galactic Dust Contamination

    Science.gov (United States)

    Pelgrims, Vincent

    2017-10-01

    Almost twenty years ago the optical polarization vectors from quasars were shown to be aligned over extreme-scales. That evidence was later confirmed and enhanced thanks to additional optical data obtained with the ESO instrument FORS2 mounted on the VLT, in Chile. These observations suggest either Galactic foreground contamination of the data or, more interestingly, a cosmological origin. Using 353-GHz polarization data from the Planck satellite, I recently showed that the main features of the extreme-scale alignments of the quasar optical polarization vectors are unaffected by the Galactic thermal dust. This confirms previous studies based on optical starlight polarization and discards the scenario of Galactic contamination. In this talk, I shall briefly review the extreme-scale quasar polarization alignments, discuss the main results submitted in A&A and motivate forthcoming projects at the frontier between Galactic and extragalactic astrop hysics.

  2. Censored rainfall modelling for estimation of fine-scale extremes

    Science.gov (United States)

    Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro

    2018-01-01

    Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  3. Large Scale Processes and Extreme Floods in Brazil

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  4. Investigating the Scaling Properties of Extreme Rainfall Depth ...

    African Journals Online (AJOL)

    Investigating the Scaling Properties of Extreme Rainfall Depth Series in Oromia Regional State, Ethiopia. ... Science, Technology and Arts Research Journal ... for storm duration ranging from 0.5 to 24 hr observed at network of rain gauges sited in Oromia regional state were analyzed using an approach based on moments.

  5. United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation

    Science.gov (United States)

    Black, R. X.

    2017-12-01

    We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.

  6. Understanding convective extreme precipitation scaling using observations and an entraining plume model

    NARCIS (Netherlands)

    Loriaux, J.M.; Lenderink, G.; De Roode, S.R.; Siebesma, A.P.

    2013-01-01

    Previously observed twice-Clausius–Clapeyron (2CC) scaling for extreme precipitation at hourly time scales has led to discussions about its origin. The robustness of this scaling is assessed by analyzing a subhourly dataset of 10-min resolution over the Netherlands. The results confirm the validity

  7. Spatial Heterogeneity, Scale, Data Character and Sustainable Transport in the Big Data Era

    Science.gov (United States)

    Jiang, Bin

    2018-04-01

    In light of the emergence of big data, I have advocated and argued for a paradigm shift from Tobler's law to scaling law, from Euclidean geometry to fractal geometry, from Gaussian statistics to Paretian statistics, and - more importantly - from Descartes' mechanistic thinking to Alexander's organic thinking. Fractal geometry falls under the third definition of fractal - that is, a set or pattern is fractal if the scaling of far more small things than large ones recurs multiple times (Jiang and Yin 2014) - rather than under the second definition of fractal, which requires a power law between scales and details (Mandelbrot 1982). The new fractal geometry is more towards living geometry that "follows the rules, constraints, and contingent conditions that are, inevitably, encountered in the real world" (Alexander et al. 2012, p. 395), not only for understanding complexity, but also for creating complex or living structure (Alexander 2002-2005). This editorial attempts to clarify why the paradigm shift is essential and to elaborate on several concepts, including spatial heterogeneity (scaling law), scale (or the fourth meaning of scale), data character (in contrast to data quality), and sustainable transport in the big data era.

  8. Extreme-Scale Bayesian Inference for Uncertainty Quantification of Complex Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Biros, George [Univ. of Texas, Austin, TX (United States)

    2018-01-12

    Uncertainty quantification (UQ)—that is, quantifying uncertainties in complex mathematical models and their large-scale computational implementations—is widely viewed as one of the outstanding challenges facing the field of CS&E over the coming decade. The EUREKA project set to address the most difficult class of UQ problems: those for which both the underlying PDE model as well as the uncertain parameters are of extreme scale. In the project we worked on these extreme-scale challenges in the following four areas: 1. Scalable parallel algorithms for sampling and characterizing the posterior distribution that exploit the structure of the underlying PDEs and parameter-to-observable map. These include structure-exploiting versions of the randomized maximum likelihood method, which aims to overcome the intractability of employing conventional MCMC methods for solving extreme-scale Bayesian inversion problems by appealing to and adapting ideas from large-scale PDE-constrained optimization, which have been very successful at exploring high-dimensional spaces. 2. Scalable parallel algorithms for construction of prior and likelihood functions based on learning methods and non-parametric density estimation. Constructing problem-specific priors remains a critical challenge in Bayesian inference, and more so in high dimensions. Another challenge is construction of likelihood functions that capture unmodeled couplings between observations and parameters. We will create parallel algorithms for non-parametric density estimation using high dimensional N-body methods and combine them with supervised learning techniques for the construction of priors and likelihood functions. 3. Bayesian inadequacy models, which augment physics models with stochastic models that represent their imperfections. The success of the Bayesian inference framework depends on the ability to represent the uncertainty due to imperfections of the mathematical model of the phenomena of interest. This is a

  9. Changes and Attribution of Extreme Precipitation in Climate Models: Subdaily and Daily Scales

    Science.gov (United States)

    Zhang, W.; Villarini, G.; Scoccimarro, E.; Vecchi, G. A.

    2017-12-01

    Extreme precipitation events are responsible for numerous hazards, including flooding, soil erosion, and landslides. Because of their significant socio-economic impacts, the attribution and projection of these events is of crucial importance to improve our response, mitigation and adaptation strategies. Here we present results from our ongoing work.In terms of attribution, we use idealized experiments [pre-industrial control experiment (PI) and 1% per year increase (1%CO2) in atmospheric CO2] from ten general circulation models produced under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and the fraction of attributable risk to examine the CO2 effects on extreme precipitation at the sub-daily and daily scales. We find that the increased CO2 concentration substantially increases the odds of the occurrence of sub-daily precipitation extremes compared to the daily scale in most areas of the world, with the exception of some regions in the sub-tropics, likely in relation to the subsidence of the Hadley Cell. These results point to the large role that atmospheric CO2 plays in extreme precipitation under an idealized framework. Furthermore, we investigate the changes in extreme precipitation events with the Community Earth System Model (CESM) climate experiments using the scenarios consistent with the 1.5°C and 2°C temperature targets. We find that the frequency of annual extreme precipitation at a global scale increases in both 1.5°C and 2°C scenarios until around 2070, after which the magnitudes of the trend become much weaker or even negative. Overall, the frequency of global annual extreme precipitation is similar between 1.5°C and 2°C for the period 2006-2035, and the changes in extreme precipitation in individual seasons are consistent with those for the entire year. The frequency of extreme precipitation in the 2°C experiments is higher than for the 1.5°C experiment after the late 2030s, particularly for the period 2071-2100.

  10. Extreme-Scale De Novo Genome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Georganas, Evangelos [Intel Corporation, Santa Clara, CA (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.; Rokhsar, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Yelick, Katherine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Genome Inst.

    2017-09-26

    De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and potentially erroneous DNA segments and is one of the most important computations in modern genomics. This work presents HipMER, a high-quality end-to-end de novo assembler designed for extreme scale analysis, via efficient parallelization of the Meraculous code. Genome assembly software has many components, each of which stresses different components of a computer system. This chapter explains the computational challenges involved in each step of the HipMer pipeline, the key distributed data structures, and communication costs in detail. We present performance results of assembling the human genome and the large hexaploid wheat genome on large supercomputers up to tens of thousands of cores.

  11. Dynamics Of Saturn'S Mid-scale Storms In The Cassini Era.

    Science.gov (United States)

    Del Rio Gaztelurrutia, Teresa; Hueso, R.; Sánchez-Lavega, A.

    2010-10-01

    Convective storms, similar to those in Earth, but of much larger scale, develop often in Saturn's atmosphere. During the Voyagers’ flybys of Saturn in 1981 mid-scale storms, with an horizontal extension of the order of 1000-3000 km were observed to occur mainly in a narrow tropical-latitude band in the Northern hemisphere at latitudes 38-40 deg North. Contrasting with the Voyagers’ era, since the starting of the Cassini mission in 2004, a similar mid-scale convective activity has concentrated in the so-called "storm alley", a narrow band at a symmetric Southern latitude of 38 deg.. In this work, we characterize this storm activity using available visual information provided by Cassini ISS cameras and the continuous survey from the Earth by the International Outer Planets Watch (IOPW) and its online database PVOL (Hueso et al., Planetary and Space Science, 2010). We study the frequency of appearance of storms with sizes above 2000 km, their characteristic size and life-time, as well as their interaction with surrounding dynamical features. In particular we examine the possibility that storms might provide a mechanism of injection of energy into Saturn's jets, the influence of storms in the generation of atmospheric vortices, and the analogies and differences of Voyagers’ and present day jet structure at the relevant latitudes. Acknowledgments: This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464

  12. Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast

    Science.gov (United States)

    Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.

    2018-03-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.

  13. Extreme daily precipitation in Western Europe with climate change at appropriate spatial scales

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Extreme daily precipitation for the current and changed climate at appropriate spatial scales is assessed. This is done in the context of the impact of climate change on flooding in the river Meuse in Western Europe. The objective is achieved by determining and comparing extreme precipitation from

  14. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?

    Science.gov (United States)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.

    2016-04-01

    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  15. LEMON - LHC Era Monitoring for Large-Scale Infrastructures

    International Nuclear Information System (INIS)

    Babik, Marian; Hook, Nicholas; Lansdale, Thomas Hector; Lenkes, Daniel; Siket, Miroslav; Waldron, Denis; Fedorko, Ivan

    2011-01-01

    At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.

  16. Ecological recovery in ERA

    DEFF Research Database (Denmark)

    EFSA Scientific Committee (Scientific Committee); Topping, Christopher John

    2016-01-01

    knowledge and data retrieved from the literature. Finally, the information presented in this opinion was reviewed by experts from the relevant EFSA Panels, European risk assessment bodies and through an open consultation requesting input from stakeholders. A conceptual framework was developed to address...... recognises the importance of more integrated ERAs considering both the local and landscape scales, as well as the possible co-occurrence of multiple potential stressors that fall under the remit of EFSA, which are important when addressing ecological recovery. In this scientific opinion, the Scientific...... Committee gathered scientific knowledge on the potential for the recovery of non-target organisms for the further development of ERA. Current EFSA guidance documents and opinions were reviewed on how ecological recovery is addressed in ERA schemes. In addition, this scientific opinion is based on expert...

  17. Frameworks for visualization at the extreme scale

    International Nuclear Information System (INIS)

    Joy, Kenneth I; Miller, Mark; Childs, Hank; Bethel, E Wes; Clyne, John; Ostrouchov, George; Ahern, Sean

    2007-01-01

    The challenges of visualization at the extreme scale involve issues of scale, complexity, temporal exploration and uncertainty. The Visualization and Analytics Center for Enabling Technologies (VACET) focuses on leveraging scientific visualization and analytics software technology as an enabling technology to increased scientific discovery and insight. In this paper, we introduce new uses of visualization frameworks through the introduction of Equivalence Class Functions (ECFs). These functions give a new class of derived quantities designed to greatly expand the ability of the end user to explore and visualize data. ECFs are defined over equivalence classes (i.e., groupings) of elements from an original mesh, and produce summary values for the classes as output. ECFs can be used in the visualization process to directly analyze data, or can be used to synthesize new derived quantities on the original mesh. The design of ECFs enable a parallel implementation that allows the use of these techniques on massive data sets that require parallel processing

  18. Return levels of temperature extremes in southern Pakistan

    Science.gov (United States)

    Zahid, Maida; Blender, Richard; Lucarini, Valerio; Caterina Bramati, Maria

    2017-12-01

    Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the peaks over threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are analyzed: temperatures observed at nine meteorological stations in southern Pakistan from 1980 to 2013, and the ERA-Interim (ECMWF reanalysis) data for the nearest corresponding locations. The analysis provides the 2-, 5-, 10-, 25-, 50-, and 100-year return levels (RLs) of temperature extremes. The 90 % quantile is found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50 °C at northern stations and above 45 °C at the southern stations. The RLs of the observed TWmax exceed 35 °C in the region, which is considered as a limit of survivability. The RLs estimated from the ERA-Interim data are lower by 3 to 5 °C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA-Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the risk assessment of extreme temperatures in Sindh.

  19. Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5

    Science.gov (United States)

    Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D.

    2015-12-01

    This presentation will provide an overview of the most recent reanalysis activities performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). A pilot reanalysis of the 20th-century (ERA-20C) has recently been completed. Funded through the European FP7 collaborative project ERA-CLIM, ERA-20C is part of a suite of experiments that also includes a model-only integration (ERA-20CM) and a land-surface reanalysis (ERA-20CL). Its data assimilation system is constrained by only surface observations obtained from ISPD (3.2.6) and ICOADS (2.5.1). Surface boundary conditions are provided by the Hadley Centre (HadISST2.1.0.0) and radiative forcing follows CMIP5 recommended data sets. First-guess uncertainty estimates are based on a 10-member ensemble of Data Assimilations, ERA-20C ensemble, run prior to ERA-20C using ten SST and sea-ice realizations from the Hadley Centre. In November 2014, the European Commission entrusted ECMWF to run on its behalf the Copernicus Climate Change Service (C3S) aiming at producing quality-assured information about the past, current and future states of the climate at both European and global scales. Reanalysis will be one of the main components of the C3S portfolio and the first one to be produced is a global modern era reanalysis (ERA5) covering the period from 1979 onwards. Based on a recent version of the ECMWF data assimilation system, ERA5 will replace the widely used ERA-Interim dataset. This new production will benefit from a much improved model, and better characterized and exploited observations compared to its predecessor. The first part of the presentation will focus on the ERA-20C production, provide an overview of its main characteristics and discuss some of the key results from its assessment. The second part of the talk will give an overview of ERA5, and briefly discuss some of its challenges.

  20. The Relationship between Spatial and Temporal Magnitude Estimation of Scientific Concepts at Extreme Scales

    Science.gov (United States)

    Price, Aaron; Lee, H.

    2010-01-01

    Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.

  1. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    Science.gov (United States)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  2. Improving the Performance of the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2014-01-01

    Investigating the performance of parallel applications at scale on future high-performance computing (HPC) architectures and the performance impact of different architecture choices is an important component of HPC hardware/software co-design. The Extreme-scale Simulator (xSim) is a simulation-based toolkit for investigating the performance of parallel applications at scale. xSim scales to millions of simulated Message Passing Interface (MPI) processes. The overhead introduced by a simulation tool is an important performance and productivity aspect. This paper documents two improvements to xSim: (1) a new deadlock resolution protocol to reduce the parallel discrete event simulation management overhead and (2) a new simulated MPI message matching algorithm to reduce the oversubscription management overhead. The results clearly show a significant performance improvement, such as by reducing the simulation overhead for running the NAS Parallel Benchmark suite inside the simulator from 1,020\\% to 238% for the conjugate gradient (CG) benchmark and from 102% to 0% for the embarrassingly parallel (EP) and benchmark, as well as, from 37,511% to 13,808% for CG and from 3,332% to 204% for EP with accurate process failure simulation.

  3. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  4. Extreme value statistics and finite-size scaling at the ecological extinction/laminar-turbulence transition

    Science.gov (United States)

    Shih, Hong-Yan; Goldenfeld, Nigel

    Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.

  5. Ideologies and Discourses: Extreme Narratives in Extreme Metal Music

    Directory of Open Access Journals (Sweden)

    Bojana Radovanović

    2016-10-01

    Full Text Available Historically speaking, metal music has always been about provoking a strong reaction. Depending on the characteristics of different sub-genres, one can focus on the sound, technique, visual appearance, and furthermore, the ideologies and ideas that are the foundation for each of the sub-genres. Although the majority of the metal community rejects accusations of being racially intolerant, some ideologies of extreme sub-genres (such as black metal are in fact formed around the ideas of self-conscious elitism expressed through interest in pagan mythology, racism, Nazism and fascism. There has been much interest in the Nazi era within the extreme metal scene thus influencing other sub-genres and artists. The aim of this paper is to examine various appearances of extreme narratives such as Nazism and racism in  different sub-genres of metal, bearing in mind variations dependent on geographical, political, and other factors.

  6. Scale orientated analysis of river width changes due to extreme flood hazards

    Directory of Open Access Journals (Sweden)

    G. Krapesch

    2011-08-01

    Full Text Available This paper analyses the morphological effects of extreme floods (recurrence interval >100 years and examines which parameters best describe the width changes due to erosion based on 5 affected alpine gravel bed rivers in Austria. The research was based on vertical aerial photos of the rivers before and after extreme floods, hydrodynamic numerical models and cross sectional measurements supported by LiDAR data of the rivers. Average width ratios (width after/before the flood were calculated and correlated with different hydraulic parameters (specific stream power, shear stress, flow area, specific discharge. Depending on the geomorphological boundary conditions of the different rivers, a mean width ratio between 1.12 (Lech River and 3.45 (Trisanna River was determined on the reach scale. The specific stream power (SSP best predicted the mean width ratios of the rivers especially on the reach scale and sub reach scale. On the local scale more parameters have to be considered to define the "minimum morphological spatial demand of rivers", which is a crucial parameter for addressing and managing flood hazards and should be used in hazard zone plans and spatial planning.

  7. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    Science.gov (United States)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  8. Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Dongbin [Univ. of Utah, Salt Lake City, UT (United States)

    2017-03-03

    The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.

  9. Moths produce extremely quiet ultrasonic courtship songs by rubbing specialized scales

    DEFF Research Database (Denmark)

    Nakano, Ryo; Skals, Niels; Takanashi, Takuma

    2008-01-01

    level at 1 cm) adapted for private sexual communication in the Asian corn borer moth, Ostrinia furnacalis. During courtship, the male rubs specialized scales on the wing against those on the thorax to produce the songs, with the wing membrane underlying the scales possibly acting as a sound resonator....... The male's song suppresses the escape behavior of the female, thereby increasing his mating success. Our discovery of extremely low-intensity ultrasonic communication may point to a whole undiscovered world of private communication, using "quiet" ultrasound....

  10. India Labour and Employment Report 2014: Workers in the era of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-07

    Jun 7, 2016 ... India's rapid economic growth has reduced extreme poverty among ... India Labour and Employment Report 2014: Workers in the era of globalization ... The impact of demographic change on economic growth in Kenya and ...

  11. Establishing the Turkish version of the SIGAM mobility scale, and determining its validity and reliability in lower extremity amputees.

    Science.gov (United States)

    Yilmaz, Hülya; Gafuroğlu, Ümit; Ryall, Nicola; Yüksel, Selcen

    2018-02-01

    The aim of this study is to adapt the Special Interest Group in Amputee Medicine (SIGAM) mobility scale to Turkish, and to test its validity and reliability in lower extremity amputees. Adaptation of the scale into Turkish was performed by following the steps in American Association of Orthopedic Surgeons (AAOS) guideline. Turkish version of the scale was tested twice on 109 patients who had lower extremity amputations, at hours 0 and 72. The reliability of the Turkish version was tested for internal consistency and test-retest reliability. Structural validity was tested using the "scale validity" method. For this purpose, the scores of the Short Form-36 (SF-36), Functional Ambulation Scale (FAS), Get Up and Go Test, and Satisfaction with the Prosthesis Questionnaire (SATPRO) were calculated, and analyzed using Spearman's correlation test. Cronbach's alpha coefficient was 0.67 for the Turkish version of the SIGAM mobility scale. Cohen's kappa coefficients were between 0.224 and 0.999. Repeatability according to the results of the SIGAM mobility scale (grades A-F) was 0.822. We found significant and strong positive correlations of the SIGAM mobility scale results with the FAS, Get Up and Go Test, SATPRO, and all of the SF-36 subscales. In our study, the Turkish version of the SIGAM mobility scale was found as a reliable, valid, and easy to use scale in everyday practice for measuring mobility in lower extremity amputees. Implications for Rehabilitation Amputation is the surgical removal of a severely injured and nonfunctional extremity, at a level of one or more bones proximal to the body. Loss of a lower extremity is one of the most important conditions that cause functional disability. The Special Interest Group in Amputee Medicine (SIGAM) mobility scale contains 21 questions that evaluate the mobility of lower extremity amputees. Lack of a specific Turkish scale that evaluates rehabilitation results and mobility of lower extremity amputees, and determines their

  12. Regional tendencies of extreme wind characteristics in Hungary

    Science.gov (United States)

    Radics, Dr.; Bartholy, Dr.; Péliné

    2009-09-01

    Human activities have substantial effects on climate system. It has already accepted that change in the long-term climatic mean state will have significant consequences in the global economy and society, but the most important effects of climate change may come from changes in the intensity and frequency of climatic extremes. It is therefore of great interest to document the extremes of surface wind that could assist in estimating the regional effects of climate change. The research presented is based on 34-year-long (1975-2008) wind (speed, direction, and wind gust) data sets of 36 Hungarian synoptic meteorological stations. After processing (including digitalisation of old instrumental records, quality control and homogenisation of wind time series) the measured wind data sets, time series and complex wind climate analysis were carried out. Spatial and temporal distributions of mean and extreme wind climate characteristics were estimated, wind extremes and trends were interpolated and mapped over the country. Finally, measured and reanalysed (ERA40) wind data were compared over Hungary, in order to verify not only the validity of ERA40 reanalysed data sets, but the adaptability of climate simulation results in estimation of regional climate change effects.

  13. Using GRACE Satellite Gravimetry for Assessing Large-Scale Hydrologic Extremes

    Directory of Open Access Journals (Sweden)

    Alexander Y. Sun

    2017-12-01

    Full Text Available Global assessment of the spatiotemporal variability in terrestrial total water storage anomalies (TWSA in response to hydrologic extremes is critical for water resources management. Using TWSA derived from the gravity recovery and climate experiment (GRACE satellites, this study systematically assessed the skill of the TWSA-climatology (TC approach and breakpoint (BP detection method for identifying large-scale hydrologic extremes. The TC approach calculates standardized anomalies by using the mean and standard deviation of the GRACE TWSA corresponding to each month. In the BP detection method, the empirical mode decomposition (EMD is first applied to identify the mean return period of TWSA extremes, and then a statistical procedure is used to identify the actual occurrence times of abrupt changes (i.e., BPs in TWSA. Both detection methods were demonstrated on basin-averaged TWSA time series for the world’s 35 largest river basins. A nonlinear event coincidence analysis measure was applied to cross-examine abrupt changes detected by these methods with those detected by the Standardized Precipitation Index (SPI. Results show that our EMD-assisted BP procedure is a promising tool for identifying hydrologic extremes using GRACE TWSA data. Abrupt changes detected by the BP method coincide well with those of the SPI anomalies and with documented hydrologic extreme events. Event timings obtained by the TC method were ambiguous for a number of river basins studied, probably because the GRACE data length is too short to derive long-term climatology at this time. The BP approach demonstrates a robust wet-dry anomaly detection capability, which will be important for applications with the upcoming GRACE Follow-On mission.

  14. Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering

    KAUST Repository

    AbdulJabbar, Mustafa Abdulmajeed

    2018-03-27

    Algorithmic and architecture-oriented optimizations are essential for achieving performance worthy of anticipated energy-austere exascale systems. In this paper, we present an extreme scale FMM-accelerated boundary integral equation solver for wave scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory, targeting emerging Intel extreme performance HPC architectures. We extract the potential thread- and data-level parallelism of the key Helmholtz kernels of FMM. Our application code is well optimized to exploit the AVX-512 SIMD units of Intel Skylake and Knights Landing architectures. We provide different performance models for tuning the task-based tree traversal implementation of FMM, and develop optimal architecture-specific and algorithm aware partitioning, load balancing, and communication reducing mechanisms to scale up to 6,144 compute nodes of a Cray XC40 with 196,608 hardware cores. With shared memory optimizations, we achieve roughly 77% of peak single precision floating point performance of a 56-core Skylake processor, and on average 60% of peak single precision floating point performance of a 72-core KNL. These numbers represent nearly 5.4x and 10x speedup on Skylake and KNL, respectively, compared to the baseline scalar code. With distributed memory optimizations, on the other hand, we report near-optimal efficiency in the weak scalability study with respect to both the logarithmic communication complexity as well as the theoretical scaling complexity of FMM. In addition, we exhibit up to 85% efficiency in strong scaling. We compute in excess of 2 billion DoF on the full-scale of the Cray XC40 supercomputer.

  15. Rework of the ERA software system: ERA-8

    Science.gov (United States)

    Pavlov, D.; Skripnichenko, V.

    2015-08-01

    The software system that has been powering many products of the IAA during decades has undergone a major rework. ERA has capabilities for: processing tables of observations of different kinds, fitting parameters to observations, integrating equations of motion of the Solar system bodies. ERA comprises a domain-specific language called SLON, tailored for astronomical tasks. SLON provides a convenient syntax for reductions of observations, choosing of IAU standards to use, applying rules for filtering observations or selecting parameters for fitting. Also, ERA includes a table editor and a graph plotter. ERA-8 has a number of improvements over previous versions such as: integration of the Solar system and TT xA1 TDB with arbitrary number of asteroids; option to use different ephemeris (including DE and INPOP); integrator with 80-bit floating point. The code of ERA-8 has been completely rewritten from Pascal to C (for numerical computations) and Racket (for running SLON programs and managing data). ERA-8 is portable across major operating systems. The format of tables in ERA-8 is based on SQLite. The SPICE format has been chosen as the main format for ephemeris in ERA-8.

  16. Analyzing extreme sea levels for broad-scale impact and adaptation studies

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.

    2017-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels (ESL), because increasing damage due to extreme events is one of the major consequences of sea-level rise (SLR) and climate change. Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future SLR; different scenarios were developed with process-based or semi-empirical models and used for coastal impact studies at various temporal and spatial scales to guide coastal management and adaptation efforts. Uncertainties in future SLR are typically accounted for by analyzing the impacts associated with a range of scenarios and model ensembles. ESL distributions are then displaced vertically according to the SLR scenarios under the inherent assumption that we have perfect knowledge on the statistics of extremes. However, there is still a limited understanding of present-day ESL which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of storm surge water levels, and (2) statistical models used for determining present-day ESL exceedance probabilities. There is no universally accepted approach to obtain such values for broad-scale flood risk assessments and while substantial research has explored SLR uncertainties, we quantify, for the first time globally, key uncertainties in ESL estimates. We find that contemporary ESL uncertainties exceed those from SLR projections and, assuming that we meet the Paris agreement, the projected SLR itself by the end of the century. Our results highlight the necessity to further improve our understanding of uncertainties in ESL estimates through (1) continued improvement of numerical and statistical models to simulate and analyze coastal water levels and (2) exploit the rich observational database and continue data archeology to obtain longer time series and remove model bias

  17. Extreme temperature events on Greenland in observations and the MAR regional climate model

    Science.gov (United States)

    Leeson, Amber A.; Eastoe, Emma; Fettweis, Xavier

    2018-03-01

    Meltwater from the Greenland Ice Sheet contributed 1.7-6.12 mm to global sea level between 1993 and 2010 and is expected to contribute 20-110 mm to future sea level rise by 2100. These estimates were produced by regional climate models (RCMs) which are known to be robust at the ice sheet scale but occasionally miss regional- and local-scale climate variability (e.g. Leeson et al., 2017; Medley et al., 2013). To date, the fidelity of these models in the context of short-period variability in time (i.e. intra-seasonal) has not been fully assessed, for example their ability to simulate extreme temperature events. We use an event identification algorithm commonly used in extreme value analysis, together with observations from the Greenland Climate Network (GC-Net), to assess the ability of the MAR (Modèle Atmosphérique Régional) RCM to reproduce observed extreme positive-temperature events at 14 sites around Greenland. We find that MAR is able to accurately simulate the frequency and duration of these events but underestimates their magnitude by more than half a degree Celsius/kelvin, although this bias is much smaller than that exhibited by coarse-scale Era-Interim reanalysis data. As a result, melt energy in MAR output is underestimated by between 16 and 41 % depending on global forcing applied. Further work is needed to precisely determine the drivers of extreme temperature events, and why the model underperforms in this area, but our findings suggest that biases are passed into MAR from boundary forcing data. This is important because these forcings are common between RCMs and their range of predictions of past and future ice sheet melting. We propose that examining extreme events should become a routine part of global and regional climate model evaluation and that addressing shortcomings in this area should be a priority for model development.

  18. Spatial Scaling of Global Rainfall and Flood Extremes

    Science.gov (United States)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2014-05-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented

  19. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    Science.gov (United States)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  20. Comparing Evaporative Sources of Terrestrial Precipitation and Their Extremes in MERRA Using Relative Entropy

    Science.gov (United States)

    Dirmeyer, Paul A.; Wei, Jiangfeng; Bosilovich, Michael G.; Mocko, David M.

    2014-01-01

    A quasi-isentropic back trajectory scheme is applied to output from the Modern Era Retrospective-analysis for Research and Applications and a land-only replay with corrected precipitation to estimate surface evaporative sources of moisture supplying precipitation over every ice-free land location for the period 1979-2005. The evaporative source patterns for any location and time period are effectively two dimensional probability distributions. As such, the evaporative sources for extreme situations like droughts or wet intervals can be compared to the corresponding climatological distributions using the method of relative entropy. Significant differences are found to be common and widespread for droughts, but not wet periods, when monthly data are examined. At pentad temporal resolution, which is more able to isolate floods and situations of atmospheric rivers, values of relative entropy over North America are typically 50-400 larger than at monthly time scales. Significant differences suggest that moisture transport may be the key to precipitation extremes. Where evaporative sources do not change significantly, it implies other local causes may underlie the extreme events.

  1. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brunsell, Nathaniel [Univ. of Kansas, Lawrence, KS (United States); Mechem, David [Univ. of Kansas, Lawrence, KS (United States); Ma, Chunsheng [Wichita State Univ., KS (United States)

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the

  2. Extreme-scale alignments of quasar optical polarizations and Galactic dust contamination

    OpenAIRE

    Pelgrims, Vincent

    2017-01-01

    Almost twenty years ago the optical polarization vectors from quasars were shown to be aligned over extreme-scales. That evidence was later confirmed and enhanced thanks to additional optical data obtained with the ESO instrument FORS2 mounted on the VLT, in Chile. These observations suggest either Galactic foreground contamination of the data or, more interestingly, a cosmological origin. Using 353-GHz polarization data from the Planck satellite, I recently showed that the main features of t...

  3. ERA`s Ranger uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Davies, W. [Energy Resources of Australia Ltd., Sydney, NSW (Australia)

    1997-12-31

    Energy Resource of Australia (ERA) is a public company with 68% of its shares owned by the Australian company North Limited. It is currently operating one major production centre - Ranger Mine which is 260 kilometres east of Darwin, extracting and selling uranium from the Ranger Mine in the Northern Territory to nuclear electricity utilities in Japan, South Korea, Europe and North America. The first drum of uranium oxide from Ranger was drummed in August 1981 and operations have continued since that time. ERA is also in the process of working towards obtaining approvals for the development of a second mine - Jabiluka which is located 20 kilometres north of Ranger. The leases of Ranger and Jabiluka adjoin. The Minister for the Environment has advised the Minister for Resources and Energy that there does not appear to be any environmental issue which would prevent the preferred Jabiluka proposal from proceeding. Consent for the development of ERA`s preferred option for the development of Jabiluka is being sought from the Aboriginal Traditional Owners. Ranger is currently the third largest producing uranium mine in the world producing 4,237 tonnes of U{sub 3}O{sub 8} in the year to June 1997.

  4. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    Science.gov (United States)

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  5. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

    Science.gov (United States)

    Schroeer, K.; Kirchengast, G.

    2018-06-01

    Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.

  6. Contribution of large-scale midlatitude disturbances to hourly precipitation extremes in the United States

    Science.gov (United States)

    Barbero, Renaud; Abatzoglou, John T.; Fowler, Hayley J.

    2018-02-01

    Midlatitude synoptic weather regimes account for a substantial portion of annual precipitation accumulation as well as multi-day precipitation extremes across parts of the United States (US). However, little attention has been devoted to understanding how synoptic-scale patterns contribute to hourly precipitation extremes. A majority of 1-h annual maximum precipitation (AMP) across the western US were found to be linked to two coherent midlatitude synoptic patterns: disturbances propagating along the jet stream, and cutoff upper-level lows. The influence of these two patterns on 1-h AMP varies geographically. Over 95% of 1-h AMP along the western coastal US were coincident with progressive midlatitude waves embedded within the jet stream, while over 30% of 1-h AMP across the interior western US were coincident with cutoff lows. Between 30-60% of 1-h AMP were coincident with the jet stream across the Ohio River Valley and southeastern US, whereas a a majority of 1-h AMP over the rest of central and eastern US were not found to be associated with either midlatitude synoptic features. Composite analyses for 1-h AMP days coincident to cutoff lows and jet stream show that an anomalous moisture flux and upper-level dynamics are responsible for initiating instability and setting up an environment conducive to 1-h AMP events. While hourly precipitation extremes are generally thought to be purely convective in nature, this study shows that large-scale dynamics and baroclinic disturbances may also contribute to precipitation extremes on sub-daily timescales.

  7. WRF high resolution dynamical downscaling of ERA-Interim for Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Pedro M.M. [University of Lisbon, Instituto Dom Luiz, Lisbon (Portugal); Faculdade de Ciencias da Universidade de Lisboa, Lisbon (Portugal); Cardoso, Rita M.; Miranda, Pedro M.A.; Medeiros, Joana de [University of Lisbon, Instituto Dom Luiz, Lisbon (Portugal); Belo-Pereira, Margarida; Espirito-Santo, Fatima [Instituto de Meteorologia, Lisbon (Portugal)

    2012-11-15

    This study proposes a dynamically downscaled climatology of Portugal, produced by a high resolution (9 km) WRF simulation, forced by 20 years of ERA-Interim reanalysis (1989-2008), nested in an intermediate domain with 27 km of resolution. The Portuguese mainland is characterized by large precipitation gradients, with observed mean annual precipitation ranging from about 400 to over 2,200 mm, with a very wet northwest and rather dry southeast, largely explained by orographic processes. Model results are compared with all available stations with continuous records, comprising daily information in 32 stations for temperature and 308 for precipitation, through the computation of mean climatologies, standard statistical errors on daily to seasonally timescales, and distributions of extreme events. Results show that WRF at 9 km outperforms ERA-Interim in all analyzed variables, with good results in the representation of the annual cycles in each region. The biases of minimum and maximum temperature are reduced, with improvement of the description of temperature variability at the extreme range of its distribution. The largest gain of the high resolution simulations is visible in the rainiest regions of Portugal, where orographic enhancement is crucial. These improvements are striking in the high ranking percentiles in all seasons, describing extreme precipitation events. WRF results at 9 km compare favorably with published results supporting its use as a high-resolution regional climate model. This higher resolution allows a better representation of extreme events that are of major importance to develop mitigation/adaptation strategies by policy makers and downstream users of regional climate models in applications such as flash floods or heat waves. (orig.)

  8. Global Learning in a New Era

    Science.gov (United States)

    Ramaley, Judith

    2016-01-01

    Our nation's colleges and universities frequently adapt their approach to education in response to the reality of social, economic and environmental challenges. Today the reality is that we are increasingly interconnected on a global scale. This new era of globalization impacts every facet of society, and it offers both an exciting blend of…

  9. Kinetic turbulence simulations at extreme scale on leadership-class systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei [Princeton Univ., Princeton, NJ (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Tang, William [Princeton Univ., Princeton, NJ (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Williams, Timothy [Argonne National Lab. (ANL), Argonne, IL (United States); Ibrahim, Khaled Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Madduri, Kamesh [The Pennsylvania State Univ., University Park, PA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCF and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).

  10. Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive large-scale ascent

    Science.gov (United States)

    Nie, Ji; Shaevitz, Daniel A.; Sobel, Adam H.

    2016-09-01

    Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. The causal relationships between these factors are often not obvious, however, the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here we examine the large-scale forcings and convective heating feedback in the precipitation events, which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation using input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic lifting is the most important dynamic forcing in both events, while differential potential vorticity advection also contributes to the triggering of the first event. Horizontal moisture advection modulates the extreme events mainly by setting the environmental humidity, which modulates the amplitude of the convection's response to the dynamic forcings. When the CRM is replaced by either a single-column model (SCM) with parameterized convection or a dry model with a reduced effective static stability, the model results show substantial discrepancies compared with reanalysis data. The reasons for these discrepancies are examined, and the implications for global models and theoretical models are discussed.

  11. The Persistence of Informality: Small-Scale Water Providers in Manila’s Post-Privatisation Era

    Directory of Open Access Journals (Sweden)

    Deborah Cheng

    2014-02-01

    Full Text Available This article troubles the notion of a formal-informal dichotomy in urban water provision. Whereas expansion of a water utility typically involves the replacement of informal providers, the experience in Manila demonstrates that the rapid connection of low-income areas actually hinges, in part, on the selective inclusion and exclusion of these smaller actors. In this sense, privatisation has not eliminated small-scale water provision, but has led to the reconfiguration of its usage, blurring the boundaries between formal and informal. By examining the spatial and temporal evolution of small-scale water provision in Manila’s post-privatisation era, I show how certain spaces are seen as less serviceable than others. Critically, small providers working in partnership with the utilities are sanctioned because they supplement the utilities’ operations. The areas in which they work are considered served, factoring into aggregate coverage statistics, even though their terms of service are often less desirable than those of households directly connected to the utilities. In contrast, small providers that operate outside of the utilities’ zones of coverage are considered inferior, to be replaced. The result is a differentiation in informality – one in which the private utilities largely determine modes of access and thus the spatialisation of informal water provision.

  12. Modelling of spatio-temporal precipitation relevant for urban hydrology with focus on scales, extremes and climate change

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen

    -correlation lengths for sub-daily extreme precipitation besides having too low intensities. Especially the wrong spatial correlation structure is disturbing from an urban hydrological point of view as short-term extremes will cover too much ground if derived directly from bias corrected regional climate model output...... of precipitation are compared and used to rank climate models with respect to performance metrics. The four different observational data sets themselves are compared at daily temporal scale with respect to climate indices for mean and extreme precipitation. Data density seems to be a crucial parameter for good...... happening in summer and most of the daily extremes in fall. This behaviour is in good accordance with reality where short term extremes originate in convective precipitation cells that occur when it is very warm and longer term extremes originate in frontal systems that dominate the fall and winter seasons...

  13. Extreme events in total ozone: Spatio-temporal analysis from local to global scale

    Science.gov (United States)

    Rieder, Harald E.; Staehelin, Johannes; Maeder, Jörg A.; Ribatet, Mathieu; di Rocco, Stefania; Jancso, Leonhardt M.; Peter, Thomas; Davison, Anthony C.

    2010-05-01

    dynamics (NAO, ENSO) on total ozone is a global feature in the northern mid-latitudes (Rieder et al., 2010c). In a next step frequency distributions of extreme events are analyzed on global scale (northern and southern mid-latitudes). A specific focus here is whether findings gained through analysis of long-term European ground based stations can be clearly identified as a global phenomenon. By showing results from these three types of studies an overview of extreme events in total ozone (and the dynamical and chemical features leading to those) will be presented from local to global scales. References: Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part I: Application of extreme value theory, to be submitted to ACPD. Rieder, H.E., Staehelin, J., Maeder, J.A., Ribatet, M., Stübi, R., Weihs, P., Holawe, F., Peter, T., and A.D., Davison (2010): Extreme events in total ozone over Arosa - Part II: Fingerprints of atmospheric dynamics and chemistry and effects on mean values and long-term changes, to be submitted to ACPD. Rieder, H.E., Jancso, L., Staehelin, J., Maeder, J.A., Ribatet, Peter, T., and A.D., Davison (2010): Extreme events in total ozone over the northern mid-latitudes: A case study based on long-term data sets from 5 ground-based stations, in preparation. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998a. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa

  14. Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East based on Potential Vorticity and Moisture Transport

    KAUST Repository

    de Vries, A. J.

    2017-12-26

    Extreme precipitation events in the otherwise arid Middle East can cause flooding with dramatic socioeconomic impacts. Most of these events are associated with tropical-extratropical interactions, whereby a stratospheric potential vorticity (PV) intrusion reaches deep into the subtropics and forces an incursion of high poleward vertically integrated water vapor transport (IVT) into the Middle East. This study presents an object-based identification method for extreme precipitation events based on the combination of these two larger-scale meteorological features. The general motivation for this approach is that precipitation is often poorly simulated in relatively coarse weather and climate models, whereas the synoptic-scale circulation is much better represented. The algorithm is applied to ERA-Interim reanalysis data (1979-2015) and detects 90% (83%) of the 99th (97.5th) percentile of extreme precipitation days in the region of interest. Our results show that stratospheric PV intrusions and IVT structures are intimately connected to extreme precipitation intensity and seasonality. The farther south a stratospheric PV intrusion reaches, the larger the IVT magnitude, and the longer the duration of their combined occurrence, the more extreme the precipitation. Our algorithm detects a large fraction of the climatological rainfall amounts (40-70%), heavy precipitation days (50-80%), and the top 10 extreme precipitation days (60-90%) at many sites in southern Israel and the northern and western parts of Saudi Arabia. This identification method provides a new tool for future work to disentangle teleconnections, assess medium-range predictability and improve understanding of climatic changes of extreme precipitation in the Middle East and elsewhere.

  15. Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East Based On Potential Vorticity and Moisture Transport

    Science.gov (United States)

    de Vries, A. J.; Ouwersloot, H. G.; Feldstein, S. B.; Riemer, M.; El Kenawy, A. M.; McCabe, M. F.; Lelieveld, J.

    2018-01-01

    Extreme precipitation events in the otherwise arid Middle East can cause flooding with dramatic socioeconomic impacts. Most of these events are associated with tropical-extratropical interactions, whereby a stratospheric potential vorticity (PV) intrusion reaches deep into the subtropics and forces an incursion of high poleward vertically integrated water vapor transport (IVT) into the Middle East. This study presents an object-based identification method for extreme precipitation events based on the combination of these two larger-scale meteorological features. The general motivation for this approach is that precipitation is often poorly simulated in relatively coarse weather and climate models, whereas the synoptic-scale circulation is much better represented. The algorithm is applied to ERA-Interim reanalysis data (1979-2015) and detects 90% (83%) of the 99th (97.5th) percentile of extreme precipitation days in the region of interest. Our results show that stratospheric PV intrusions and IVT structures are intimately connected to extreme precipitation intensity and seasonality. The farther south a stratospheric PV intrusion reaches, the larger the IVT magnitude, and the longer the duration of their combined occurrence, the more extreme the precipitation. Our algorithm detects a large fraction of the climatological rainfall amounts (40-70%), heavy precipitation days (50-80%), and the top 10 extreme precipitation days (60-90%) at many sites in southern Israel and the northern and western parts of Saudi Arabia. This identification method provides a new tool for future work to disentangle teleconnections, assess medium-range predictability, and improve understanding of climatic changes of extreme precipitation in the Middle East and elsewhere.

  16. Inflation with a smooth constant-roll to constant-roll era transition

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  17. Measurement Properties of the Lower Extremity Functional Scale: A Systematic Review.

    Science.gov (United States)

    Mehta, Saurabh P; Fulton, Allison; Quach, Cedric; Thistle, Megan; Toledo, Cesar; Evans, Neil A

    2016-03-01

    Systematic review of measurement properties. Many primary studies have examined the measurement properties, such as reliability, validity, and sensitivity to change, of the Lower Extremity Functional Scale (LEFS) in different clinical populations. A systematic review summarizing these properties for the LEFS may provide an important resource. To locate and synthesize evidence on the measurement properties of the LEFS and to discuss the clinical implications of the evidence. A literature search was conducted in 4 databases (PubMed, MEDLINE, Embase, and CINAHL), using predefined search terms. Two reviewers performed a critical appraisal of the included studies using a standardized assessment form. A total of 27 studies were included in the review, of which 18 achieved a very good to excellent methodological quality level. The LEFS scores demonstrated excellent test-retest reliability (intraclass correlation coefficients ranging between 0.85 and 0.99) and demonstrated the expected relationships with measures assessing similar constructs (Pearson correlation coefficient values of greater than 0.7). The responsiveness of the LEFS scores was excellent, as suggested by consistently high effect sizes (greater than 0.8) in patients with different lower extremity conditions. Minimal detectable change at the 90% confidence level (MDC90) for the LEFS scores varied between 8.1 and 15.3 across different reassessment intervals in a wide range of patient populations. The pooled estimate of the MDC90 was 6 points and the minimal clinically important difference was 9 points in patients with lower extremity musculoskeletal conditions, which are indicative of true change and clinically meaningful change, respectively. The results of this review support the reliability, validity, and responsiveness of the LEFS scores for assessing functional impairment in a wide array of patient groups with lower extremity musculoskeletal conditions.

  18. Combinations of large-scale circulation anomalies conducive to precipitation extremes in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Marek; Müller, Miloslav

    2014-01-01

    Roč. 138, March 2014 (2014), s. 205-212 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GAP209/11/1990 Institutional support: RVO:68378289 Keywords : precipitation extreme * synoptic-scale cause * re-analysis * circulation anomaly Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.844, year: 2014 http://www.sciencedirect.com/science/article/pii/S0169809513003372

  19. A Large-Scale Multi-Hop Localization Algorithm Based on Regularized Extreme Learning for Wireless Networks.

    Science.gov (United States)

    Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan

    2017-12-20

    A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.

  20. Survival of Er(a+) red cells in a patient with allo-anti-Era

    International Nuclear Information System (INIS)

    Thompson, H.W.; Skradski, K.J.; Thoreson, J.R.; Polesky, H.F.

    1985-01-01

    51 Chromium-labeled Er(a+) red cells survived nearly normally (T1/2 of 21 days) in a patient with allo-anti-Era. Transfusion of Er(a+) blood was without significant reaction and did not affect the anti-Era titer

  1. Durango: Scalable Synthetic Workload Generation for Extreme-Scale Application Performance Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, Christopher D. [Rensselaer Polytechnic Institute (RPI); Meredith, Jeremy S. [ORNL; Blanco, Marc [Rensselaer Polytechnic Institute (RPI); Vetter, Jeffrey S. [ORNL; Mubarak, Misbah [Argonne National Laboratory; LaPre, Justin [Rensselaer Polytechnic Institute (RPI); Moore, Shirley V. [ORNL

    2017-05-01

    Performance modeling of extreme-scale applications on accurate representations of potential architectures is critical for designing next generation supercomputing systems because it is impractical to construct prototype systems at scale with new network hardware in order to explore designs and policies. However, these simulations often rely on static application traces that can be difficult to work with because of their size and lack of flexibility to extend or scale up without rerunning the original application. To address this problem, we have created a new technique for generating scalable, flexible workloads from real applications, we have implemented a prototype, called Durango, that combines a proven analytical performance modeling language, Aspen, with the massively parallel HPC network modeling capabilities of the CODES framework.Our models are compact, parameterized and representative of real applications with computation events. They are not resource intensive to create and are portable across simulator environments. We demonstrate the utility of Durango by simulating the LULESH application in the CODES simulation environment on several topologies and show that Durango is practical to use for simulation without loss of fidelity, as quantified by simulation metrics. During our validation of Durango's generated communication model of LULESH, we found that the original LULESH miniapp code had a latent bug where the MPI_Waitall operation was used incorrectly. This finding underscores the potential need for a tool such as Durango, beyond its benefits for flexible workload generation and modeling.Additionally, we demonstrate the efficacy of Durango's direct integration approach, which links Aspen into CODES as part of the running network simulation model. Here, Aspen generates the application-level computation timing events, which in turn drive the start of a network communication phase. Results show that Durango's performance scales well when

  2. Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation

    Science.gov (United States)

    Tramblay, Yves; Hertig, Elke

    2018-04-01

    Long droughts periods can affect the Mediterranean region during the winter season, when most of annual precipitation occurs, and consequently have strong impacts on agriculture, groundwater levels and water resources. The goal of this study is to model annual maximum dry spells lengths (AMDSL) that occur during the extended winter season (October to April). The spatial patterns of extreme dry spells and their relationships with large-scale atmospheric circulation were first investigated. Then, AMDSL were modelled using Generalized Extreme Value (GEV) distributions incorporating climatic covariates, to evaluate the dependences of extreme dry spells to synoptic patterns using an analogue approach. The data from a network of 160 rain gauges having daily precipitation measurements between 1960 and 2009 are considered together with the ERA-20C reanalysis of the 20th century to provide atmospheric variables (geopotential heights, humidity, winds). A regional classification of both the occurrence and the duration of AMDSL helped to distinguish three spatially contiguous regions in which the regional distributions were found homogeneous. From composite analysis, significant positive anomalies in geopotential height (Z500) and negative anomalies in zonal wind (U850) and relative and specific humidity (S850, R850) were found to be associated with AMDSL in the three regions and provided the reference to build analogue days. Finally, non-stationary GEV models have been compared, in which the location and scale parameters are related to different atmospheric indices. Results indicates, at the whole Mediterranean scale, that positives anomalies of the North Atlantic Oscillation index and to a lesser extent the Mediterranean Oscillation index are linked to longer extreme dry spells in the majority of stations. For the three regions identified, the frequency of U850 negative anomalies over North Africa is significantly associated with the magnitude of AMDSL. AMDL are also

  3. Power-law scaling of extreme dynamics near higher-order exceptional points

    Science.gov (United States)

    Zhong, Q.; Christodoulides, D. N.; Khajavikhan, M.; Makris, K. G.; El-Ganainy, R.

    2018-02-01

    We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT ) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other physical systems as well.

  4. Using Discrete Event Simulation for Programming Model Exploration at Extreme-Scale: Macroscale Components for the Structural Simulation Toolkit (SST).

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Jeremiah J [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Kenny, Joseph P. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading framework allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.

  5. Rain Characteristics and Large-Scale Environments of Precipitation Objects with Extreme Rain Volumes from TRMM Observations

    Science.gov (United States)

    Zhou, Yaping; Lau, William K M.; Liu, Chuntao

    2013-01-01

    This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.

  6. Fine-scale population structure and the era of next-generation sequencing.

    Science.gov (United States)

    Henn, Brenna M; Gravel, Simon; Moreno-Estrada, Andres; Acevedo-Acevedo, Suehelay; Bustamante, Carlos D

    2010-10-15

    Fine-scale population structure characterizes most continents and is especially pronounced in non-cosmopolitan populations. Roughly half of the world's population remains non-cosmopolitan and even populations within cities often assort along ethnic and linguistic categories. Barriers to random mating can be ecologically extreme, such as the Sahara Desert, or cultural, such as the Indian caste system. In either case, subpopulations accumulate genetic differences if the barrier is maintained over multiple generations. Genome-wide polymorphism data, initially with only a few hundred autosomal microsatellites, have clearly established differences in allele frequency not only among continental regions, but also within continents and within countries. We review recent evidence from the analysis of genome-wide polymorphism data for genetic boundaries delineating human population structure and the main demographic and genomic processes shaping variation, and discuss the implications of population structure for the distribution and discovery of disease-causing genetic variants, in the light of the imminent availability of sequencing data for a multitude of diverse human genomes.

  7. Arctic daily temperature and precipitation extremes: Observed and simulated physical behavior

    Science.gov (United States)

    Glisan, Justin Michael

    climatological records, regional weather patterns, and geographical/topographical features. We compared simulated extremes with those occurring at corresponding observing stations in the U.S. National Climate Data Center's (NCDC's) Global Summary of the Day. Our analysis focused on variations in features of the extremes such as magnitudes, spatial scales, and temporal regimes. Using composites of extreme events, we also analyzed the processes producing these extremes, comparing circulation, pressure, temperature and humidity fields from the ERA-Interim reanalysis and the model output. The analysis revealed the importance of atmospheric convection in the Arctic for some extreme precipitation events and the overall importance of topographic precipitation. The analysis established the physical credibility of the simulations for extreme behavior, laying a foundation for examining projected changes in extreme precipitation. It also highlighted the utility of the model for extracting behavior that one cannot discern directly from the observations, such as summer convective precipitation.

  8. Validity and Reliability of the Upper Extremity Work Demands Scale.

    Science.gov (United States)

    Jacobs, Nora W; Berduszek, Redmar J; Dijkstra, Pieter U; van der Sluis, Corry K

    2017-12-01

    Purpose To evaluate validity and reliability of the upper extremity work demands (UEWD) scale. Methods Participants from different levels of physical work demands, based on the Dictionary of Occupational Titles categories, were included. A historical database of 74 workers was added for factor analysis. Criterion validity was evaluated by comparing observed and self-reported UEWD scores. To assess structural validity, a factor analysis was executed. For reliability, the difference between two self-reported UEWD scores, the smallest detectable change (SDC), test-retest reliability and internal consistency were determined. Results Fifty-four participants were observed at work and 51 of them filled in the UEWD twice with a mean interval of 16.6 days (SD 3.3, range = 10-25 days). Criterion validity of the UEWD scale was moderate (r = .44, p = .001). Factor analysis revealed that 'force and posture' and 'repetition' subscales could be distinguished with Cronbach's alpha of .79 and .84, respectively. Reliability was good; there was no significant difference between repeated measurements. An SDC of 5.0 was found. Test-retest reliability was good (intraclass correlation coefficient for agreement = .84) and all item-total correlations were >.30. There were two pairs of highly related items. Conclusion Reliability of the UEWD scale was good, but criterion validity was moderate. Based on current results, a modified UEWD scale (2 items removed, 1 item reworded, divided into 2 subscales) was proposed. Since observation appeared to be an inappropriate gold standard, we advise to investigate other types of validity, such as construct validity, in further research.

  9. Assessment of Observational Uncertainty in Extreme Precipitation Events over the Continental United States

    Science.gov (United States)

    Slinskey, E. A.; Loikith, P. C.; Waliser, D. E.; Goodman, A.

    2017-12-01

    Extreme precipitation events are associated with numerous societal and environmental impacts. Furthermore, anthropogenic climate change is projected to alter precipitation intensity across portions of the Continental United States (CONUS). Therefore, a spatial understanding and intuitive means of monitoring extreme precipitation over time is critical. Towards this end, we apply an event-based indicator, developed as a part of NASA's support of the ongoing efforts of the US National Climate Assessment, which assigns categories to extreme precipitation events based on 3-day storm totals as a basis for dataset intercomparison. To assess observational uncertainty across a wide range of historical precipitation measurement approaches, we intercompare in situ station data from the Global Historical Climatology Network (GHCN), satellite-derived precipitation data from NASA's Tropical Rainfall Measuring Mission (TRMM), gridded in situ station data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), global reanalysis from NASA's Modern Era Retrospective-Analysis version 2 (MERRA 2), and regional reanalysis with gauge data assimilation from NCEP's North American Regional Reanalysis (NARR). Results suggest considerable variability across the five-dataset suite in the frequency, spatial extent, and magnitude of extreme precipitation events. Consistent with expectations, higher resolution datasets were found to resemble station data best and capture a greater frequency of high-end extreme events relative to lower spatial resolution datasets. The degree of dataset agreement varies regionally, however all datasets successfully capture the seasonal cycle of precipitation extremes across the CONUS. These intercomparison results provide additional insight about observational uncertainty and the ability of a range of precipitation measurement and analysis products to capture extreme precipitation event climatology. While the event category threshold is fixed

  10. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A. B. A.

    2017-07-01

    One of the main consequences of mean sea level rise (SLR) on human settlements is an increase in flood risk due to an increase in the intensity and frequency of extreme sea levels (ESL). While substantial research efforts are directed towards quantifying projections and uncertainties of future global and regional SLR, corresponding uncertainties in contemporary ESL have not been assessed and projections are limited. Here we quantify, for the first time at global scale, the uncertainties in present-day ESL estimates, which have by default been ignored in broad-scale sea-level rise impact assessments to date. ESL uncertainties exceed those from global SLR projections and, assuming that we meet the Paris agreement goals, the projected SLR itself by the end of the century in many regions. Both uncertainties in SLR projections and ESL estimates need to be understood and combined to fully assess potential impacts and adaptation needs.

  11. Statistical Downscaling of Gusts During Extreme European Winter Storms Using Radial-Basis-Function Networks

    Science.gov (United States)

    Voigt, M.; Lorenz, P.; Kruschke, T.; Osinski, R.; Ulbrich, U.; Leckebusch, G. C.

    2012-04-01

    Winterstorms and related gusts can cause extensive socio-economic damages. Knowledge about the occurrence and the small scale structure of such events may help to make regional estimations of storm losses. For a high spatial and temporal representation, the use of dynamical downscaling methods (RCM) is a cost-intensive and time-consuming option and therefore only applicable for a limited number of events. The current study explores a methodology to provide a statistical downscaling, which offers small scale structured gust fields from an extended large scale structured eventset. Radial-basis-function (RBF) networks in combination with bidirectional Kohonen (BDK) maps are used to generate the gustfields on a spatial resolution of 7 km from the 6-hourly mean sea level pressure field from ECMWF reanalysis data. BDK maps are a kind of neural network which handles supervised classification problems. In this study they are used to provide prototypes for the RBF network and give a first order approximation for the output data. A further interpolation is done by the RBF network. For the training process the 50 most extreme storm events over the North Atlantic area from 1957 to 2011 are used, which have been selected from ECMWF reanalysis datasets ERA40 and ERA-Interim by an objective wind based tracking algorithm. These events were downscaled dynamically by application of the DWD model chain GME → COSMO-EU. Different model parameters and their influence on the quality of the generated high-resolution gustfields are studied. It is shown that the statistical RBF network approach delivers reasonable results in modeling the regional gust fields for untrained events.

  12. The scaling of population persistence with carrying capacity does not asymptote in populations of a fish experiencing extreme climate variability.

    Science.gov (United States)

    White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R

    2017-06-14

    Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).

  13. Scaling and clustering effects of extreme precipitation distributions

    Science.gov (United States)

    Zhang, Qiang; Zhou, Yu; Singh, Vijay P.; Li, Jianfeng

    2012-08-01

    SummaryOne of the impacts of climate change and human activities on the hydrological cycle is the change in the precipitation structure. Closely related to the precipitation structure are two characteristics: the volume (m) of wet periods (WPs) and the time interval between WPs or waiting time (t). Using daily precipitation data for a period of 1960-2005 from 590 rain gauge stations in China, these two characteristics are analyzed, involving scaling and clustering of precipitation episodes. Our findings indicate that m and t follow similar probability distribution curves, implying that precipitation processes are controlled by similar underlying thermo-dynamics. Analysis of conditional probability distributions shows a significant dependence of m and t on their previous values of similar volumes, and the dependence tends to be stronger when m is larger or t is longer. It indicates that a higher probability can be expected when high-intensity precipitation is followed by precipitation episodes with similar precipitation intensity and longer waiting time between WPs is followed by the waiting time of similar duration. This result indicates the clustering of extreme precipitation episodes and severe droughts or floods are apt to occur in groups.

  14. Combined dendro-documentary evidence of Central European hydroclimatic springtime extremes over the last millennium

    Science.gov (United States)

    Büntgen, Ulf; Brázdil, Rudolf; Heussner, Karl-Uwe; Hofmann, Jutta; Kontic, Raymond; Kyncl, Tomáš; Pfister, Christian; Chromá, Kateřina; Tegel, Willy

    2011-12-01

    A predicted rise in anthropogenic greenhouse gas emissions and associated effects on the Earth's climate system likely imply more frequent and severe weather extremes with alternations in hydroclimatic parameters expected to be most critical for ecosystem functioning, agricultural yield, and human health. Evaluating the return period and amplitude of modern climatic extremes in light of pre-industrial natural changes is, however, limited by generally too short instrumental meteorological observations. Here we introduce and analyze 11,873 annually resolved and absolutely dated ring width measurement series from living and historical fir ( Abies alba Mill.) trees sampled across France, Switzerland, Germany, and the Czech Republic, which continuously span the AD 962-2007 period. Even though a dominant climatic driver of European fir growth was not found, ring width extremes were evidently triggered by anomalous variations in Central European April-June precipitation. Wet conditions were associated with dynamic low-pressure cells, whereas continental-scale droughts coincided with persistent high-pressure between 35 and 55°N. Documentary evidence independently confirms many of the dendro signals over the past millennium, and further provides insight on causes and consequences of ambient weather conditions related to the reconstructed extremes. A fairly uniform distribution of hydroclimatic extremes throughout the Medieval Climate Anomaly, Little Ice Age and Recent Global Warming may question the common believe that frequency and severity of such events closely relates to climate mean stages. This joint dendro-documentary approach not only allows extreme climate conditions of the industrial era to be placed against the backdrop of natural variations, but also probably helps to constrain climate model simulations over exceptional long timescales.

  15. AN AUTOMATIC DETECTION METHOD FOR EXTREME-ULTRAVIOLET DIMMINGS ASSOCIATED WITH SMALL-SCALE ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Alipour, N.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of); Innes, D. E. [Max-Planck Institut fuer Sonnensystemforschung, 37191 Katlenburg-Lindau (Germany)

    2012-02-10

    Small-scale extreme-ultraviolet (EUV) dimming often surrounds sites of energy release in the quiet Sun. This paper describes a method for the automatic detection of these small-scale EUV dimmings using a feature-based classifier. The method is demonstrated using sequences of 171 Angstrom-Sign images taken by the STEREO/Extreme UltraViolet Imager (EUVI) on 2007 June 13 and by Solar Dynamics Observatory/Atmospheric Imaging Assembly on 2010 August 27. The feature identification relies on recognizing structure in sequences of space-time 171 Angstrom-Sign images using the Zernike moments of the images. The Zernike moments space-time slices with events and non-events are distinctive enough to be separated using a support vector machine (SVM) classifier. The SVM is trained using 150 events and 700 non-event space-time slices. We find a total of 1217 events in the EUVI images and 2064 events in the AIA images on the days studied. Most of the events are found between latitudes -35 Degree-Sign and +35 Degree-Sign . The sizes and expansion speeds of central dimming regions are extracted using a region grow algorithm. The histograms of the sizes in both EUVI and AIA follow a steep power law with slope of about -5. The AIA slope extends to smaller sizes before turning over. The mean velocity of 1325 dimming regions seen by AIA is found to be about 14 km s{sup -1}.

  16. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  17. Attractions to radiation-like eras in superstring cosmologies

    CERN Document Server

    Partouche, Herve

    2010-01-01

    We review the cosmology induced by finite temperature and quantum effects on non-supersymmetric string models. We show the evolution is attracted to radiation-like solutions after the Hagedorn era and before the electroweak phase transition. This mechanism generates a hierarchy between the Planck mass and the supersymmetry breaking scale. A dynamical change of space-time dimension can take place.

  18. Spatial extreme value analysis to project extremes of large-scale indicators for severe weather.

    Science.gov (United States)

    Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M

    2013-09-01

    Concurrently high values of the maximum potential wind speed of updrafts ( W max ) and 0-6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd.

  19. Topology-oblivious optimization of MPI broadcast algorithms on extreme-scale platforms

    KAUST Repository

    Hasanov, Khalid

    2015-11-01

    © 2015 Elsevier B.V. All rights reserved. Significant research has been conducted in collective communication operations, in particular in MPI broadcast, on distributed memory platforms. Most of the research efforts aim to optimize the collective operations for particular architectures by taking into account either their topology or platform parameters. In this work we propose a simple but general approach to optimization of the legacy MPI broadcast algorithms, which are widely used in MPICH and Open MPI. The proposed optimization technique is designed to address the challenge of extreme scale of future HPC platforms. It is based on hierarchical transformation of the traditionally flat logical arrangement of communicating processors. Theoretical analysis and experimental results on IBM BlueGene/P and a cluster of the Grid\\'5000 platform are presented.

  20. Reliability, validity, and sensitivity to change of the lower extremity functional scale in individuals affected by stroke.

    Science.gov (United States)

    Verheijde, Joseph L; White, Fred; Tompkins, James; Dahl, Peder; Hentz, Joseph G; Lebec, Michael T; Cornwall, Mark

    2013-12-01

    To investigate reliability, validity, and sensitivity to change of the Lower Extremity Functional Scale (LEFS) in individuals affected by stroke. The secondary objective was to test the validity and sensitivity of a single-item linear analog scale (LAS) of function. Prospective cohort reliability and validation study. A single rehabilitation department in an academic medical center. Forty-three individuals receiving neurorehabilitation for lower extremity dysfunction after stroke were studied. Their ages ranged from 32 to 95 years, with a mean of 70 years; 77% were men. Test-retest reliability was assessed by calculating the classical intraclass correlation coefficient, and the Bland-Altman limits of agreement. Validity was assessed by calculating the Pearson correlation coefficient between the instruments. Sensitivity to change was assessed by comparing baseline scores with end of treatment scores. Measurements were taken at baseline, after 1-3 days, and at 4 and 8 weeks. The LEFS, Short-Form-36 Physical Function Scale, Berg Balance Scale, Six-Minute Walk Test, Five-Meter Walk Test, Timed Up-and-Go test, and the LAS of function were used. The test-retest reliability of the LEFS was found to be excellent (ICC = 0.96). Correlated with the 6 other measures of function studied, the validity of the LEFS was found to be moderate to high (r = 0.40-0.71). Regarding the sensitivity to change, the mean LEFS scores from baseline to study end increased 1.2 SD and for LAS 1.1 SD. LEFS exhibits good reliability, validity, and sensitivity to change in patients with lower extremity impairments secondary to stroke. Therefore, the LEFS can be a clinically efficient outcome measure in the rehabilitation of patients with subacute stroke. The LAS is shown to be a time-saving and reasonable option to track changes in a patient's functional status. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  1. Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States

    International Nuclear Information System (INIS)

    Yu, Lejiang; Zhong, Shiyuan; Pei, Lisi; Bian, Xindi; Heilman, Warren E

    2016-01-01

    The mean global climate has warmed as a result of the increasing emission of greenhouse gases induced by human activities. This warming is considered the main reason for the increasing number of extreme precipitation events in the US. While much attention has been given to extreme precipitation events occurring over several days, which are usually responsible for severe flooding over a large region, little is known about how extreme precipitation events that cause flash flooding and occur at sub-daily time scales have changed over time. Here we use the observed hourly precipitation from the North American Land Data Assimilation System Phase 2 forcing datasets to determine trends in the frequency of extreme precipitation events of short (1 h, 3 h, 6 h, 12 h and 24 h) duration for the period 1979–2013. The results indicate an increasing trend in the central and eastern US. Over most of the western US, especially the Southwest and the Intermountain West, the trends are generally negative. These trends can be largely explained by the interdecadal variability of the Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation (AMO), with the AMO making a greater contribution to the trends in both warm and cold seasons. (letter)

  2. Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Hukerikar, Saurabh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Engelmann, Christian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest that very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Practical limits on power consumption in HPC systems will require future systems to embrace innovative architectures, increasing the levels of hardware and software complexities. The resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies that are capable of handling a broad set of fault models at accelerated fault rates. These techniques must seek to improve resilience at reasonable overheads to power consumption and performance. While the HPC community has developed various solutions, application-level as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power eciency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software ecosystems, which are expected to be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience based on the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. The catalog of resilience design patterns provides designers with reusable design elements. We define a design framework that enhances our understanding of the important

  3. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  4. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    Science.gov (United States)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  5. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Patrick [Oregon State Univ., Corvallis, OR (United States)

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  6. XVIS: Visualization for the Extreme-Scale Scientific-Computation Ecosystem Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Maynard, Robert [Kitware, Inc., Clifton Park, NY (United States)

    2017-10-27

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respective features into a new visualization toolkit called VTK-m.

  7. Achieving Transformational Materials Performance in a New Era of Science

    International Nuclear Information System (INIS)

    Sarrao, John

    2009-01-01

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  8. Large-scale simulation of ductile fracture process of microstructured materials

    International Nuclear Information System (INIS)

    Tian Rong; Wang Chaowei

    2011-01-01

    The promise of computational science in the extreme-scale computing era is to reduce and decompose macroscopic complexities into microscopic simplicities with the expense of high spatial and temporal resolution of computing. In materials science and engineering, the direct combination of 3D microstructure data sets and 3D large-scale simulations provides unique opportunity for the development of a comprehensive understanding of nano/microstructure-property relationships in order to systematically design materials with specific desired properties. In the paper, we present a framework simulating the ductile fracture process zone in microstructural detail. The experimentally reconstructed microstructural data set is directly embedded into a FE mesh model to improve the simulation fidelity of microstructure effects on fracture toughness. To the best of our knowledge, it is for the first time that the linking of fracture toughness to multiscale microstructures in a realistic 3D numerical model in a direct manner is accomplished. (author)

  9. Attitude extremity, consensus and diagnosticity

    NARCIS (Netherlands)

    van der Pligt, J.; Ester, P.; van der Linden, J.

    1983-01-01

    Studied the effects of attitude extremity on perceived consensus and willingness to ascribe trait terms to others with either pro- or antinuclear attitudes. 611 Ss rated their attitudes toward nuclear energy on a 5-point scale. Results show that attitude extremity affected consensus estimates. Trait

  10. Measuring activity limitations in walking : Development of a hierarchical scale for patients with lower-extremity disorders who live at home

    NARCIS (Netherlands)

    Roorda, LD; Roebroeck, ME; van Tilburg, T; Molenaar, IW; Lankhorst, GJ; Bouter, LM

    2005-01-01

    Objective: To develop a hierarchical scale that measures activity limitations in walking in patients with lower-extremity disorders who live at home. Design: Cross-sectional study. Setting: Orthopedic workshops and outpatient clinics of secondary and tertiary care centers. Participants: Patients

  11. Enabling Structured Exploration of Workflow Performance Variability in Extreme-Scale Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin; Stephan, Eric G.; Raju, Bibi; Altintas, Ilkay; Elsethagen, Todd O.; Krishnamoorthy, Sriram

    2015-11-15

    Workflows are taking an Workflows are taking an increasingly important role in orchestrating complex scientific processes in extreme scale and highly heterogeneous environments. However, to date we cannot reliably predict, understand, and optimize workflow performance. Sources of performance variability and in particular the interdependencies of workflow design, execution environment and system architecture are not well understood. While there is a rich portfolio of tools for performance analysis, modeling and prediction for single applications in homogenous computing environments, these are not applicable to workflows, due to the number and heterogeneity of the involved workflow and system components and their strong interdependencies. In this paper, we investigate workflow performance goals and identify factors that could have a relevant impact. Based on our analysis, we propose a new workflow performance provenance ontology, the Open Provenance Model-based WorkFlow Performance Provenance, or OPM-WFPP, that will enable the empirical study of workflow performance characteristics and variability including complex source attribution.

  12. Reliability and validity of the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower limb musculoskeletal disorders.

    Science.gov (United States)

    Negahban, Hossein; Hessam, Masumeh; Tabatabaei, Saeid; Salehi, Reza; Sohani, Soheil Mansour; Mehravar, Mohammad

    2014-01-01

    The aim was to culturally translate and validate the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower extremity musculoskeletal disorders (n = 304). This is a prospective methodological study. After a standard forward-backward translation, psychometric properties were assessed in terms of test-retest reliability, internal consistency, construct validity, dimensionality, and ceiling or floor effects. The acceptable level of intraclass correlation coefficient >0.70 and Cronbach's alpha coefficient >0.70 was obtained for the Persian LEFS. Correlations between Persian LEFS and Short-Form 36 Health Survey (SF-36) subscales of Physical Health component (rs range = 0.38-0.78) were higher than correlations between Persian LEFS and SF-36 subscales of Mental Health component (rs range = 0.15-0.39). A corrected item--total correlation of >0.40 (Spearman's rho) was obtained for all items of the Persian LEFS. Horn's parallel analysis detected a total of two factors. No ceiling or floor effects were detected for the Persian LEFS. The Persian version of the LEFS is a reliable and valid instrument that can be used to measure functional status in Persian-speaking patients with different musculoskeletal disorders of the lower extremity. Implications for Rehabilitation The Persian lower extremity functional scale (LEFS) is a reliable, internally consistent and valid instrument, with no ceiling or floor effects, to determine functional status of heterogeneous patients with musculoskeletal disorders of the lower extremity. The Persian version of the LEFS can be used in clinical and research settings to measure function in Iranian patients with different musculoskeletal disorders of the lower extremity.

  13. Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial.

    Science.gov (United States)

    Page, Stephen J; Hill, Valerie; White, Susan

    2013-06-01

    To compare the efficacy of a repetitive task-specific practice regimen integrating a portable, electromyography-controlled brace called the 'Myomo' versus usual care repetitive task-specific practice in subjects with chronic, moderate upper extremity impairment. Sixteen subjects (7 males; mean age 57.0 ± 11.02 years; mean time post stroke 75.0 ± 87.63 months; 5 left-sided strokes) exhibiting chronic, stable, moderate upper extremity impairment. Subjects were administered repetitive task-specific practice in which they participated in valued, functional tasks using their paretic upper extremities. Both groups were supervised by a therapist and were administered therapy targeting their paretic upper extremities that was 30 minutes in duration, occurring 3 days/week for eight weeks. One group participated in repetitive task-specific practice entirely while wearing the portable robotic, while the other performed the same activity regimen manually. The upper extremity Fugl-Meyer, Canadian Occupational Performance Measure and Stroke Impact Scale were administered on two occasions before intervention and once after intervention. After intervention, groups exhibited nearly identical Fugl-Meyer score increases of ≈2.1 points; the group using robotics exhibited larger score changes on all but one of the Canadian Occupational Performance Measure and Stroke Impact Scale subscales, including a 12.5-point increase on the Stroke Impact Scale recovery subscale. Findings suggest that therapist-supervised repetitive task-specific practice integrating robotics is as efficacious as manual practice in subjects with moderate upper extremity impairment.

  14. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB)

    Science.gov (United States)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.

    2016-01-01

    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  15. Potential changes in the extreme climate conditions at the regional scale: from observed data to modelling approaches and towards probabilistic climate change information

    International Nuclear Information System (INIS)

    Gachon, P.; Radojevic, M.; Harding, A.; Saad, C.; Nguyen, V.T.V.

    2008-01-01

    The changes in the characteristics of extreme climate conditions are one of the most critical challenges for all ecosystems, human being and infrastructure, in the context of the on-going global climate change. However, extremes information needed for impacts studies cannot be obtained directly from coarse scale global climate models (GCMs), due mainly to their difficulties to incorporate regional scale feedbacks and processes responsible in part for the occurrence, intensity and duration of extreme events. Downscaling approaches, namely statistical and dynamical downscaling techniques (i.e. SD and RCM), have emerged as useful tools to develop high resolution climate change information, in particular for extremes, as those are theoretically more capable to take into account regional/local forcings and their feedbacks from large scale influences as they are driven with GCM synoptic variables. Nevertheless, in spite of the potential added values from downscaling methods (statistical and dynamical), a rigorous assessment of these methods are needed as inherent difficulties to simulate extremes are still present. In this paper, different series of RCM and SD simulations using three different GCMs are presented and evaluated with respect to observed values over the current period and over a river basin in southern Quebec, with future ensemble runs, i.e. centered over 2050s (i.e. 2041-2070 period using the SRES A2 emission scenario). Results suggest that the downscaling performance over the baseline period significantly varies between the two downscaling techniques and over various seasons with more regular reliable simulated values with SD technique for temperature than for RCM runs, while both approaches produced quite similar temperature changes in the future from median values with more divergence for extremes. For precipitation, less accurate information is obtained compared to observed data, and with more differences among models with higher uncertainties in the

  16. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

    International Nuclear Information System (INIS)

    Engelmann, Christian; Hukerikar, Saurabh

    2017-01-01

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution space remains fragmented. There are no formal methods and metrics to integrate the various HPC resilience techniques into composite solutions, nor are there methods to holistically evaluate the adequacy and efficacy of such solutions in terms of their protection coverage, and their performance \\& power efficiency characteristics. Additionally, few of the current approaches are portable to newer architectures and software environments that will be deployed on future systems. In this paper, we develop a structured approach to the design, evaluation and optimization of HPC resilience using the concept of design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the problems caused by various types of faults, errors and failures in HPC systems and the techniques used to deal with these events. Each well-known solution that addresses a specific HPC resilience challenge is described in the form of a pattern. We develop a complete catalog of such resilience design patterns, which may be used by system architects, system software and tools developers, application programmers, as well as users and operators as essential building blocks when designing and deploying resilience solutions. We also develop a design framework that enhances a designer's understanding the opportunities for integrating multiple patterns across layers of the system stack and the important constraints during implementation of the individual patterns. It is also useful for defining mechanisms and interfaces to coordinate flexible fault management across

  17. Evaluation of NASA's MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States

    Science.gov (United States)

    Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; Bosilovich, Michael G.; Lee, Jaechoul; Wehner, Michael F.; Collow, Allison

    2016-01-01

    This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that

  18. Exploring the Links in Monthly to Decadal Variability of the Atmospheric Water Balance Over the Wettest Regions in ERA-20C

    Science.gov (United States)

    Nogueira, M.

    2017-10-01

    Monthly-to-decadal variability of the regional precipitation over Intertropical Convergence Zone and north-Atlantic and north-Pacific storm tracks was investigated using ERA-20C reanalysis. Satellite-based precipitation (P) and evaporation (E) climatological patterns were well reproduced by ERA-20C. Regional P and E monthly time series displayed 20% differences, but these decreased rapidly with time scale ( 10% at yearly time scales). Spectral analysis showed good scale-by-scale statistical agreement between ERA-20C and observations. Using ERA-Interim showed no improvement despite the much wider range of information assimilated (including satellites). Remarkably high Detrended Cross-Correlation Analysis coefficients (ρDCCA > 0.7 and often ρDCCA > 0.9) revealed tight links between the nonperiodic variability of P, moisture divergence (DIV), and pressure velocity (ω) at monthly-to-decadal time scales over all the wet regions. In contrast, ρDCCA was essentially nonsignificant between nonperiodic P and E or sea surface temperature (SST). Thus, the nonperiodic monthly-to-decadal variability of precipitation in these regions is almost fully controlled by dynamics and not by local E or SST (suggested by Clausius-Clapeyron relation). Analysis of regional nonperiodic standard deviations and power spectra (and respective spectral exponents, β) provided further robustness to this conclusion. Finally, clear transitions in β for P, DIV, and ω between tropical and storm track regions were found. The latter is dominated by transient storms, with energy accumulation at synoptic scales and β β values (0.2 to 0.4) were found in the tropics, implying longer-range autocorrelations and slower decreasing variability and information creation with time scale, consistent with the important forcing from internal modes of variability (e.g., El Niño-Southern Oscillation).

  19. Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Hukerikar, Saurabh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Engelmann, Christian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Therefore the resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies that are capable of handling a broad set of fault models at accelerated fault rates. Also, due to practical limits on power consumption in HPC systems future systems are likely to embrace innovative architectures, increasing the levels of hardware and software complexities. As a result the techniques that seek to improve resilience must navigate the complex trade-off space between resilience and the overheads to power consumption and performance. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power efficiency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software environments that will be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience using the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. Each established solution is described in the form of a pattern that

  20. Precipitation, temperature and wind in Norway: dynamical downscaling of ERA40

    Energy Technology Data Exchange (ETDEWEB)

    Barstad, I.; Sorteberg, A.; Flatoey, F. [Bjerknes Centre for Climate Research, Bergen (Norway); Deque, M. [Meteo France, EAC/GMGEC/CNRM, Toulouse (France)

    2009-11-15

    A novel downscaling approach of the ERA40 (ECMWF 40-years reanalysis) data set has been taken and results for comparison with observations in Norway are shown. The method applies a nudging technique in a stretched global model, focused in the Norwegian Sea (67 N, 5 W). The effective resolution is three times the one of the ERA40, equivalent to about 30 km grid spacing in the area of focus. Longer waves (ERA40 solution, and thus the large-scale circulation is similar in the two data sets. The shorter waves are free to evolve, and produce high intensities of winds and precipitation. The comparison to observations incorporate numerous station data points of (1) precipitation (357), (2) temperature (98) and (3) wind (10), and for the period 1961-1990, the downscaled data set shows large improvements over ERA40. The daily precipitation shows considerable reduction in bias (from 50 to 11%), and twofold reduction at the 99.9 percentile (from -59 to -29%). The daily temperature showed a bias reduction of about a degree in most areas, and relative large RMSE reduction (from 7.5 to 5.0 C except winter). The wind comparison showed a slight improvement in bias, and significant improvements in RMSE. (orig.)

  1. Rater Reliability of the Hardy Classification for Pituitary Adenomas in the Magnetic Resonance Imaging Era.

    Science.gov (United States)

    Mooney, Michael A; Hardesty, Douglas A; Sheehy, John P; Bird, C Roger; Chapple, Kristina; White, William L; Little, Andrew S

    2017-10-01

    Objectives  The Hardy classification is used to classify pituitary tumors for clinical and research purposes. The scale was developed using lateral skull radiographs and encephalograms, and its reliability has not been evaluated in the magnetic resonance imaging (MRI) era. Design  Fifty preoperative MRI scans of biopsy-proven pituitary adenomas using the sellar invasion and suprasellar extension components of the Hardy scale were reviewed. Setting  This study was a cohort study set at a single institution. Participants  There were six independent raters. Main Outcome Measures  The main outcome measures of this study were interrater reliability, intrarater reliability, and percent agreement. Results  Overall interrater reliability of both Hardy subscales on MRI was strong. However, reliability of the intermediate scores was weak, and percent agreement among raters was poor (12-16%) using the full scales. Dichotomizing the scale into clinically useful groups maintained strong interrater reliability for the sellar invasion scale and increased the percent agreement for both scales. Conclusion  This study raises important questions about the reliability of the original Hardy classification. Editing the measure to a clinically relevant dichotomous scale simplifies the rating process and may be useful for preoperative tumor characterization in the MRI era. Future research studies should use the dichotomized Hardy scale (sellar invasion Grades 0-III versus Grade IV, suprasellar extension Types 0-C versus Type D).

  2. Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations

    Science.gov (United States)

    Xie, Z.

    2015-12-01

    In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.

  3. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pugmire, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)

    2017-10-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  4. Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism.

    Directory of Open Access Journals (Sweden)

    Isabelle Mifom Vea

    Full Text Available Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana. We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis.

  5. Problematika Pendidikan Islam Sebagai Sub Sistem Pendidikan Nasional di Era Global

    Directory of Open Access Journals (Sweden)

    Moch. Miftachul Choiri

    2011-11-01

    Full Text Available A globalization, which looks like both sides of one coin, has both positive and negative impacts. The globalization inspired not only by capitalism but also by pragmatism has practically affected the education in Indonesia. The roles of education become practically unfamiliar and faraway from society needs. The globalization takes some issues such as competence, standardization, and commerce. To face this era, what should Islamic education do as sub-system of national education? The Islamic school (madrasah as a sub-system of Islamic education in Indonesia, had extremely strong experienced to face the challenges at the last era of Dutch colonialism. The fact that madrasah had not only an autonomy but also an intellectual resources had proven that it could fulfill the needs of Islamic community. These are cultural potencies which should be kept and not be abandoned for the sake of globalization interest. The globalization as a cultural transformation process affects the world, especially the practice of education in Indonesia. All people using science and technology can easily access the global culture. The global culture which is value-free should be faced by transformation of values of which Islamic scholars had transformed in pesantren (Islamic boarding schools and Islamic schools (madrasah. In other word, both pesantren and madrasah should not be entrapped in capitalism ideology and could serve all people. It is because the paradigm of Islamic education differs from that of both capitalism and pragmatism. The article tries to elaborate how Islamic education in Indonesia especially madrasah should be positioned in the global era

  6. Three eras of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Huq, Saleemul; Toulmin, Camilla

    2006-10-15

    Climate change as a global challenge has evolved through a series of stages in the last few decades. We are now on the brink of a new era which will see the terms of the debate shift once again. The different eras are characterised by the scientific evidence, public perceptions, responses and engagement of different groups to address the problem. In the first era, from the late 1980s to 2000, climate change was seen as an “environmental” problem to do with prevention of future impacts on the planet's climate systems over the next fifty to hundred years, through reductions in emissions of greenhouse gases, known as “mitigation”. The second era can be said to have started around the turn of the millennium, with the recognition that there will be some unavoidable impacts from climate change in the near term (over the next decade or two). These impacts must be coped with through “adaptation”, as well as mitigation, to prevent much more severe and possibly catastrophic impacts in the longer term. It has become clear that many of the impacts of climate change in the near term are likely to fall on the poorest countries and communities. The third era, which we are just about to enter, will see the issue change from tackling an environmental or development problem to a question of “global justice”. It will engage with a much wider array of citizens from around the world than previous eras.

  7. MEMAKNAI SUMPAH PEMUDA DI ERA REFORMASI

    Directory of Open Access Journals (Sweden)

    Sutejo K. Widodo

    2013-03-01

    Full Text Available The moment of Sumpah Pemuda (Young Man Oath took place 84 years ago, reflecting the spirit of nationalism that is still very important in this Reformation era. This paper endeavors to dig deeper meaning of Sumpah Pemuda in its pre-independence era and applying it to our contemporary situation. The method used here is historical research using literature resources, such as articles, books, and other readings in internet. It is then concluded that the spirit of Sumpah Pemuda should be our contemplative materials and valuable Iesson so that Reformation era may succeed in achieving national goals stated in the Constitution, a society that is fair, prosperous, and democratic. Keywords: Sumpah Pemuda, Reformation era, nationalism.

  8. Data co-processing for extreme scale analysis level II ASC milestone (4745).

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, David; Moreland, Kenneth D.; Oldfield, Ron A.; Fabian, Nathan D.

    2013-03-01

    Exascale supercomputing will embody many revolutionary changes in the hardware and software of high-performance computing. A particularly pressing issue is gaining insight into the science behind the exascale computations. Power and I/O speed con- straints will fundamentally change current visualization and analysis work ows. A traditional post-processing work ow involves storing simulation results to disk and later retrieving them for visualization and data analysis. However, at exascale, scien- tists and analysts will need a range of options for moving data to persistent storage, as the current o ine or post-processing pipelines will not be able to capture the data necessary for data analysis of these extreme scale simulations. This Milestone explores two alternate work ows, characterized as in situ and in transit, and compares them. We nd each to have its own merits and faults, and we provide information to help pick the best option for a particular use.

  9. Large-scale regions of antimatter

    International Nuclear Information System (INIS)

    Grobov, A. V.; Rubin, S. G.

    2015-01-01

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era

  10. Large-scale regions of antimatter

    Energy Technology Data Exchange (ETDEWEB)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  11. Neutron Star Astronomy in the era of the European Extremely Large Telescope

    International Nuclear Information System (INIS)

    Mignani, Roberto P.

    2011-01-01

    About 25 isolated neutron stars (INSs) are now detected in the optical domain, mainly thanks to the HST and to VLT-class telescopes. The European Extremely Large Telescope(E-ELT) will yield ∼100 new identifications, many of which from the follow-up of SKA, IXO, and Fermi observations. Moreover, the E-ELT will allow to carry out, on a much larger sample, INS observations which still challenge VLT-class telescopes, enabling studies on the structure and composition of the NS interior, of its atmosphere and magnetosphere, as well as to search for debris discs. In this contribution, I outline future perspectives for NS optical astronomy with the E-ELT.

  12. El lenguaje en la era digital

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vergara Silva

    1998-02-01

    Con base en la interrelación entre lenguaje y pensamiento se plantea el papel fundamental que el lenguaje ocupa en el modelo económico, educativo y cultural generado por la aparición de la era digital o era del conocimiento. en este artículo se evidencian los retos que genera una era marcada por un esquema digital en el desarrollo y uso de habilidades comunicativas tanto en la docencia superior como en el ejercicio profesional eficiente.

  13. Dakwah di Era Digital

    OpenAIRE

    Budiantoro, Wahyu

    2018-01-01

    These days dakwah is not only interpreted as transformation of a pure religious value, but also transformation of a more relevant value including many aspects in digital era. Digital era is when society succumbed into the flow of information causing cultural shock and difficulties on synthesizing meaning from those scattered information. Dakwah on Digital age must accommodate societal needs which tend to move into a mass society. It results in strategy and more humane and innovative dakwah me...

  14. Automatic detection of ischemic stroke based on scaling exponent electroencephalogram using extreme learning machine

    Science.gov (United States)

    Adhi, H. A.; Wijaya, S. K.; Prawito; Badri, C.; Rezal, M.

    2017-03-01

    Stroke is one of cerebrovascular diseases caused by the obstruction of blood flow to the brain. Stroke becomes the leading cause of death in Indonesia and the second in the world. Stroke also causes of the disability. Ischemic stroke accounts for most of all stroke cases. Obstruction of blood flow can cause tissue damage which results the electrical changes in the brain that can be observed through the electroencephalogram (EEG). In this study, we presented the results of automatic detection of ischemic stroke and normal subjects based on the scaling exponent EEG obtained through detrended fluctuation analysis (DFA) using extreme learning machine (ELM) as the classifier. The signal processing was performed with 18 channels of EEG in the range of 0-30 Hz. Scaling exponents of the subjects were used as the input for ELM to classify the ischemic stroke. The performance of detection was observed by the value of accuracy, sensitivity and specificity. The result showed, performance of the proposed method to classify the ischemic stroke was 84 % for accuracy, 82 % for sensitivity and 87 % for specificity with 120 hidden neurons and sine as the activation function of ELM.

  15. ERA-40

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ERA-40 project was to produce and promote the use of a comprehensive set of global analysis describing the state of the atmosphere and land and ocean-wave conditions...

  16. Temperature-driven global sea-level variability in the Common Era

    Science.gov (United States)

    Kopp, Robert E.; Kemp, Andrew C.; Bittermann, Klaus; Horton, Benjamin P.; Donnelly, Jeffrey P.; Gehrels, W. Roland; Hay, Carling C.; Mitrovica, Jerry X.; Morrow, Eric D.; Rahmstorf, Stefan

    2016-01-01

    We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0–700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000–1400 CE is associated with ∼0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability P≥0.95) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely (P=0.95) that 20th century GSL would have risen by less than 51% of the observed 13.8±1.5 cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report. PMID:26903659

  17. A Decade-Long European-Scale Convection-Resolving Climate Simulation on GPUs

    Science.gov (United States)

    Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.

    2016-12-01

    Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer designs that involve conventional multi-core CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation over Europe using the GPU-enabled COSMO version on a computational domain with 1536x1536x60 gridpoints. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss some of the advantages and prospects from using GPUs, and focus on the performance of the convection-resolving modeling approach on the European scale. Specifically we investigate the organization of convective clouds and on validate hourly rainfall distributions with various high-resolution data sets.

  18. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  19. ExM:System Support for Extreme-Scale, Many-Task Applications

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Daniel S

    2011-05-31

    The ever-increasing power of supercomputer systems is both driving and enabling the emergence of new problem-solving methods that require the effi cient execution of many concurrent and interacting tasks. Methodologies such as rational design (e.g., in materials science), uncertainty quanti fication (e.g., in engineering), parameter estimation (e.g., for chemical and nuclear potential functions, and in economic energy systems modeling), massive dynamic graph pruning (e.g., in phylogenetic searches), Monte-Carlo- based iterative fi xing (e.g., in protein structure prediction), and inverse modeling (e.g., in reservoir simulation) all have these requirements. These many-task applications frequently have aggregate computing needs that demand the fastest computers. For example, proposed next-generation climate model ensemble studies will involve 1,000 or more runs, each requiring 10,000 cores for a week, to characterize model sensitivity to initial condition and parameter uncertainty. The goal of the ExM project is to achieve the technical advances required to execute such many-task applications efficiently, reliably, and easily on petascale and exascale computers. In this way, we will open up extreme-scale computing to new problem solving methods and application classes. In this document, we report on combined technical progress of the collaborative ExM project, and the institutional financial status of the portion of the project at University of Chicago, over the rst 8 months (through April 30, 2011)

  20. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  1. Coupled large-eddy simulation and morphodynamics of a large-scale river under extreme flood conditions

    Science.gov (United States)

    Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team

    2016-11-01

    We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.

  2. Evaluation of precipitation extremes over the Asian domain: observation and modelling studies

    Science.gov (United States)

    Kim, In-Won; Oh, Jaiho; Woo, Sumin; Kripalani, R. H.

    2018-04-01

    In this study, a comparison in the precipitation extremes as exhibited by the seven reference datasets is made to ascertain whether the inferences based on these datasets agree or they differ. These seven datasets, roughly grouped in three categories i.e. rain-gauge based (APHRODITE, CPC-UNI), satellite-based (TRMM, GPCP1DD) and reanalysis based (ERA-Interim, MERRA, and JRA55), having a common data period 1998-2007 are considered. Focus is to examine precipitation extremes in the summer monsoon rainfall over South Asia, East Asia and Southeast Asia. Measures of extreme precipitation include the percentile thresholds, frequency of extreme precipitation events and other quantities. Results reveal that the differences in displaying extremes among the datasets are small over South Asia and East Asia but large differences among the datasets are displayed over the Southeast Asian region including the maritime continent. Furthermore, precipitation data appear to be more consistent over East Asia among the seven datasets. Decadal trends in extreme precipitation are consistent with known results over South and East Asia. No trends in extreme precipitation events are exhibited over Southeast Asia. Outputs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulation data are categorized as high, medium and low-resolution models. The regions displaying maximum intensity of extreme precipitation appear to be dependent on model resolution. High-resolution models simulate maximum intensity of extreme precipitation over the Indian sub-continent, medium-resolution models over northeast India and South China and the low-resolution models over Bangladesh, Myanmar and Thailand. In summary, there are differences in displaying extreme precipitation statistics among the seven datasets considered here and among the 29 CMIP5 model data outputs.

  3. Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America

    Science.gov (United States)

    Vorosmarty, Charles J.; de Guenni, Lelys Bravo; Wollheim, Wilfred M.; Pellerin, Brian A.; Bjerklie, David M.; Cardoso, Manoel; D'Almeida, Cassiano; Colon, Lilybeth

    2013-01-01

    Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960–2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.

  4. Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America.

    Science.gov (United States)

    Vörösmarty, Charles J; Bravo de Guenni, Lelys; Wollheim, Wilfred M; Pellerin, Brian; Bjerklie, David; Cardoso, Manoel; D'Almeida, Cassiano; Green, Pamela; Colon, Lilybeth

    2013-11-13

    Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960-2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.

  5. Understanding Research Strategies to Improve ERA Performance in Australian Universities: Circumventing Secrecy to Achieve Success

    Science.gov (United States)

    Diezmann, Carmel M.

    2018-01-01

    Many Australian universities have prioritised improving discipline performance on the national research assessment--Excellence for Research in Australia. However, a "culture of secrecy" pervades "Excellence in Research for Australia" (ERA). There are no specified criteria for the assignment of ratings on a 5-point scale ranging…

  6. Nuclear energy and the new era

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1992-01-01

    The problem of the utilization of nuclear energy is not only technical but also has important social, economic, political and ethical ramifications. Therefore, to discuss nuclear energy for the future, a vision of the new era needs to be identified. A model for the new era, as a natural consequence of growing interdependence among nations and the process of human evolution is described. The problems of inherent and passive safety, waste disposal, ecology, proliferation, economy and regulatory institutions in the new era are discussed. The particular role of small nuclear power reactors and their potential advantages are described. (author). 12 refs

  7. The Era of Kilometer-Scale Neutrino Detectors

    Directory of Open Access Journals (Sweden)

    Francis Halzen

    2013-01-01

    Full Text Available Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. KM3NeT, an instrument that aims to exploit several cubic kilometers of the deep Mediterranean sea as its detector medium, is in its final design stages. The scientific missions of these instruments include searching for sources of cosmic rays and for dark matter, observing Galactic supernova explosions, and studying the neutrinos themselves. Identifying the accelerators that produce Galactic and extragalactic cosmic rays has been a priority mission of several generations of high-energy gamma-ray and neutrino telescopes; success has been elusive so far. Detecting the gamma-ray and neutrino fluxes associated with cosmic rays reaches a new watershed with the completion of IceCube, the first neutrino detector with sensitivity to the anticipated fluxes. In this paper, we will first revisit the rationale for constructing kilometer-scale neutrino detectors. We will subsequently recall the methods for determining the arrival direction, energy and flavor of neutrinos, and will subsequently describe the architecture of the IceCube and KM3NeT detectors.

  8. METODE MUHADDITSIN DI ERA MODERN

    Directory of Open Access Journals (Sweden)

    Adriansyah Adriansyah

    2016-05-01

    Full Text Available After the era of tadwin, almost all disciplines of knowledge in the Islamic world, including the study of hadith, was considered “running on the spot.” Yet, attention and maintenance of the hadith was still favored by intellectuals. Similarly, in the modern era, the hadith remains the object of criticism by not only Muslim intellectuals but also outsiders, such as the West. Western imperialism against the Islamic world in the past was now the beginning of the history of how Muslims are only able to “survive” rather than “attack.” The emergence of defensive and reactive works against trends of the West in criticizing and blasphemed the hadith, then, such works became trends and supporting methodologies among Muslim observers of the hadith in today’s modern era

  9. Prototyping a large-scale distributed system for the Great Observatories era - NASA Astrophysics Data System (ADS)

    Science.gov (United States)

    Shames, Peter

    1990-01-01

    The NASA Astrophysics Data System (ADS) is a distributed information system intended to support research in the Great Observatories era, to simplify access to data, and to enable simultaneous analyses of multispectral data sets. Here, the user agent and interface, its functions, and system components are examined, and the system architecture and infrastructure is addressed. The present status of the system and related future activities are examined.

  10. Recommended Capacities for Educational Leadership: Pre-Reform Era Scholars versus Reform-Era Scholars versus National Standards

    Science.gov (United States)

    Gordon, Stephen P.; Taylor-Backor, Karen; Croteau, Susan

    2017-01-01

    We reviewed the scholarship on capacities for educational leadership for the past decade of the pre-reform era (1976-1985), as well as a recent decade of the reform era (2005-2015), and compared scholarship from both decades with the current Professional Standards for Educational Leaders. We found that scholars in the past decade of the pre-reform…

  11. Evolution caused by extreme events.

    Science.gov (United States)

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  12. An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea

    Science.gov (United States)

    Akpinar, Adem; Ponce de León, S.

    2016-03-01

    This study aims at an assessment of wind re-analyses for modelling storms in the Black Sea. A wind-wave modelling system (Simulating WAve Nearshore, SWAN) is applied to the Black Sea basin and calibrated with buoy data for three recent re-analysis wind sources, namely the European Centre for Medium-Range Weather Forecasts Reanalysis-Interim (ERA-Interim), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective Analysis for Research and Applications (MERRA) during an extreme wave condition that occurred in the north eastern part of the Black Sea. The SWAN model simulations are carried out for default and tuning settings for deep water source terms, especially whitecapping. Performances of the best model configurations based on calibration with buoy data are discussed using data from the JASON2, TOPEX-Poseidon, ENVISAT and GFO satellites. The SWAN model calibration shows that the best configuration is obtained with Janssen and Komen formulations with whitecapping coefficient (Cds) equal to 1.8e-5 for wave generation by wind and whitecapping dissipation using ERA-Interim. In addition, from the collocated SWAN results against the satellite records, the best configuration is determined to be the SWAN using the CFSR winds. Numerical results, thus show that the accuracy of a wave forecast will depend on the quality of the wind field and the ability of the SWAN model to simulate the waves under extreme wind conditions in fetch limited wave conditions.

  13. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003

    Energy Technology Data Exchange (ETDEWEB)

    You, Qinglong [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Friedrich-Schiller University Jena, Department of Geoinformatics, Jena (Germany); Graduate University of Chinese Academy of Sciences, Beijing (China); Kang, Shichang [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Lanzhou (China); Aguilar, Enric [Universitat Rovirai Virgili de Tarragona, Climate Change Research Group, Geography Unit, Tarragona (Spain); Pepin, Nick [University of Portsmouth, Department of Geography, Portsmouth (United Kingdom); Fluegel, Wolfgang-Albert [Friedrich-Schiller University Jena, Department of Geoinformatics, Jena (Germany); Yan, Yuping [National Climate Center, Beijing (China); Xu, Yanwei; Huang, Jie [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Zhang, Yongjun [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China)

    2011-06-15

    negative magnitudes. This is inconsistent with changes of water vapor flux calculated from NCEP/NCAR reanalysis. Large scale atmospheric circulation changes derived from NCEP/NCAR reanalysis grids show that a strengthening anticyclonic circulation, increasing geopotential height and rapid warming over the Eurasian continent have contributed to the changes in climate extremes in China. (orig.)

  14. Pulsar Timing Array Based Search for Supermassive Black Hole Binaries in the Square Kilometer Array Era.

    Science.gov (United States)

    Wang, Yan; Mohanty, Soumya D

    2017-04-14

    The advent of next generation radio telescope facilities, such as the Square Kilometer Array (SKA), will usher in an era where a pulsar timing array (PTA) based search for gravitational waves (GWs) will be able to use hundreds of well timed millisecond pulsars rather than the few dozens in existing PTAs. A realistic assessment of the performance of such an extremely large PTA must take into account the data analysis challenge posed by an exponential increase in the parameter space volume due to the large number of so-called pulsar phase parameters. We address this problem and present such an assessment for isolated supermassive black hole binary (SMBHB) searches using a SKA era PTA containing 10^{3} pulsars. We find that an all-sky search will be able to confidently detect nonevolving sources with a redshifted chirp mass of 10^{10}  M_{⊙} out to a redshift of about 28 (corresponding to a rest-frame chirp mass of 3.4×10^{8}  M_{⊙}). We discuss the important implications that the large distance reach of a SKA era PTA has on GW observations from optically identified SMBHB candidates. If no SMBHB detections occur, a highly unlikely scenario in the light of our results, the sky-averaged upper limit on strain amplitude will be improved by about 3 orders of magnitude over existing limits.

  15. Synchronization and Causality Across Time-scales: Complex Dynamics and Extremes in El Niño/Southern Oscillation

    Science.gov (United States)

    Jajcay, N.; Kravtsov, S.; Tsonis, A.; Palus, M.

    2017-12-01

    A better understanding of dynamics in complex systems, such as the Earth's climate is one of the key challenges for contemporary science and society. A large amount of experimental data requires new mathematical and computational approaches. Natural complex systems vary on many temporal and spatial scales, often exhibiting recurring patterns and quasi-oscillatory phenomena. The statistical inference of causal interactions and synchronization between dynamical phenomena evolving on different temporal scales is of vital importance for better understanding of underlying mechanisms and a key for modeling and prediction of such systems. This study introduces and applies information theory diagnostics to phase and amplitude time series of different wavelet components of the observed data that characterizes El Niño. A suite of significant interactions between processes operating on different time scales was detected, and intermittent synchronization among different time scales has been associated with the extreme El Niño events. The mechanisms of these nonlinear interactions were further studied in conceptual low-order and state-of-the-art dynamical, as well as statistical climate models. Observed and simulated interactions exhibit substantial discrepancies, whose understanding may be the key to an improved prediction. Moreover, the statistical framework which we apply here is suitable for direct usage of inferring cross-scale interactions in nonlinear time series from complex systems such as the terrestrial magnetosphere, solar-terrestrial interactions, seismic activity or even human brain dynamics.

  16. Extreme-Scale Computing Project Aims to Advance Precision Oncology | FNLCR

    Science.gov (United States)

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru

  17. Changes in intensity of precipitation extremes in Romania on very hight temporal scale and implications on the validity of the Clausius-Clapeyron relation

    Science.gov (United States)

    Busuioc, Aristita; Baciu, Madalina; Breza, Traian; Dumitrescu, Alexandru; Stoica, Cerasela; Baghina, Nina

    2016-04-01

    Many observational, theoretical and based on climate model simulation studies suggested that warmer climates lead to more intense precipitation events, even when the total annual precipitation is slightly reduced. In this way, it was suggested that extreme precipitation events may increase at Clausius-Clapeyron (CC) rate under global warming and constraint of constant relative humidity. However, recent studies show that the relationship between extreme rainfall intensity and atmospheric temperature is much more complex than would be suggested by the CC relationship and is mainly dependent on precipitation temporal resolution, region, storm type and whether the analysis is conducted on storm events rather than fixed data. The present study presents the dependence between the very hight temporal scale extreme rainfall intensity and daily temperatures, with respect to the verification of the CC relation. To solve this objective, the analysis is conducted on rainfall event rather than fixed interval using the rainfall data based on graphic records including intensities (mm/min.) calculated over each interval with permanent intensity per minute. The annual interval with available a such data (April to October) is considered at 5 stations over the interval 1950-2007. For Bucuresti-Filaret station the analysis is extended over the longer interval (1898-2007). For each rainfall event, the maximum intensity (mm/min.) is retained and these time series are considered for the further analysis (abbreviated in the following as IMAX). The IMAX data were divided based on the daily mean temperature into bins 2oC - wide. The bins with less than 100 values were excluded. The 90th, 99th and 99.9th percentiles were computed from the binned data using the empirical distribution and their variability has been compared to the CC scaling (e.g. exponential relation given by a 7% increase per temperature degree rise). The results show a dependence close to double the CC relation for

  18. A Generalized Framework for Non-Stationary Extreme Value Analysis

    Science.gov (United States)

    Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.

    2017-12-01

    Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA

  19. Storm-Tracks in ERA-40 and ERA-Interim Reanalyses

    Science.gov (United States)

    Liberato, M. L. R.; Trigo, I. F.; Trigo, R. M.

    2009-04-01

    Extratropical cyclones, their dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of cyclone characteristics for the Euro-Atlantic sector (85°W-70°E; 20°N-75°N) presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al., 1999, 2002) and recently extended to a larger Euro-Atlantic region (Trigo, 2006). The objective methodology, which identifies and follows individual lows (Trigo et al. 1999), is applied to 6-hourly geopotential data at 1000-hPa from two reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA-Interim reanalyses. Two storm-track databases are built over the Northern Atlantic European area, spanning the common available extended winter seasons from October 1989 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions (T106 and T255, respectively). This exercise is mostly focused on the key areas of cyclone formation and dissipation and main cyclone characteristics for the Euro-Atlantic sector. Trigo, I. F., T. D. Davies, and G. R. Bigg, 1999: Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 1685-1696. Trigo I. F., G. R. Bigg and T. D. Davies, 2002: Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Weather Rev. 130, 549-569. Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR Reanalyses. Clim. Dyn. DOI 10.1007/s00382-005-0065-9.

  20. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sewell, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Meredith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  1. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pugmire, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogers, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Childs, Hank [Univ. of Oregon, Eugene, OR (United States); Ma, Kwan-Liu [Univ. of California, Davis, CA (United States); Geveci, Berk [Kitware Inc., Clifton Park, NY (United States)

    2017-05-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  2. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth D.; Sewell, Christopher (LANL); Childs, Hank (U of Oregon); Ma, Kwan-Liu (UC Davis); Geveci, Berk (Kitware); Meredith, Jeremy (ORNL)

    2016-05-01

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

  3. Cause and Properties of the Extreme Space Weather Event of 2012 July 23

    Science.gov (United States)

    Liu, Y. D.; Luhmann, J. G.; Kajdic, P.; Kilpua, E.; Lugaz, N.; Nitta, N.; Lavraud, B.; Bale, S. D.; Farrugia, C. J.; Galvin, A. B.

    2013-12-01

    Extreme space weather refers to extreme conditions in space driven by solar eruptions and subsequent disturbances in interplanetary space, or otherwise called solar superstorms. Understanding extreme space weather events is becoming ever more vital, as the vulnerability of our society and its technological infrastructure to space weather has increased dramatically. Instances of extreme space weather, however, are very rare by definition and therefore are difficult to study. Here we report and investigate an extreme event, which occurred on 2012 July 23 with a maximum speed of about 3050 km/s near the Sun. This event, with complete modern remote sensing and in situ observations from multiple vantage points, provides an unprecedented opportunity to study the cause and consequences of extreme space weather. It produced a superfast shock with a peak solar wind speed of 2246 km/s and a superstrong magnetic cloud with a peak magnetic field of 109 nT observed near 1 AU at STEREO A. The record solar wind speed and magnetic field would produce a record geomagnetic storm since the space era with a minimum Dst of -1200 - -600 nT, if this event hit the Earth. We demonstrate how successive coronal mass ejections (CMEs) can be enhanced into a solar superstorm as they interact en route from the Sun to 1 AU. These results not only provide a benchmark for studies of extreme space weather, but also present a new view of how an extreme space weather event can be generated from usual solar eruptions.

  4. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    Planton, S.; Deque, M.; Chauvin, F.; Terray, L.

    2008-01-01

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  5. An investigation into the nutritional status of patients receiving an Enhanced Recovery After Surgery (ERAS) protocol versus standard care following Oesophagectomy.

    Science.gov (United States)

    Benton, Katie; Thomson, Iain; Isenring, Elisabeth; Mark Smithers, B; Agarwal, Ekta

    2018-06-01

    Enhanced Recovery After Surgery (ERAS) protocols have been effectively expanded to various surgical specialities including oesophagectomy. Despite nutrition being a key component, actual nutrition outcomes and specific guidelines are lacking. This cohort comparison study aims to compare nutritional status and adherence during implementation of a standardised post-operative nutritional support protocol, as part of ERAS, compared to those who received usual care. Two groups of patients undergoing resection of oesophageal cancer were studied. Group 1 (n = 17) underwent oesophagectomy between Oct 2014 and Nov 2016 during implementation of an ERAS protocol. Patients in group 2 (n = 16) underwent oesophagectomy between Jan 2011 and Dec 2012 prior to the implementation of ERAS. Demographic, nutritional status, dietary intake and adherence data were collected. Ordinal data was analysed using independent t tests, and categorical data using chi-square tests. There was no significant difference in nutrition status, dietary intake or length of stay following implementation of an ERAS protocol. Malnutrition remained prevalent in both groups at day 42 post surgery (n = 10, 83% usual care; and n = 9, 60% ERAS). A significant difference was demonstrated in adherence with earlier initiation of oral free fluids (p nutrition protocol, within an ERAS framework, results in earlier transition to oral intake; however, malnutrition remains prevalent post surgery. Further large-scale studies are warranted to examine individualised decision-making regarding nutrition support within an ERAS protocol.

  6. ERA's Ranger uranium mine

    International Nuclear Information System (INIS)

    Davies, W.

    1997-01-01

    Energy Resource of Australia (ERA) is a public company with 68% of its shares owned by the Australian company North Limited. It is currently operating one major production centre - Ranger Mine which is 260 kilometres east of Darwin, extracting and selling uranium from the Ranger Mine in the Northern Territory to nuclear electricity utilities in Japan, South Korea, Europe and North America. The first drum of uranium oxide from Ranger was drummed in August 1981 and operations have continued since that time. ERA is also in the process of working towards obtaining approvals for the development of a second mine - Jabiluka which is located 20 kilometres north of Ranger. The leases of Ranger and Jabiluka adjoin. The Minister for the Environment has advised the Minister for Resources and Energy that there does not appear to be any environmental issue which would prevent the preferred Jabiluka proposal from proceeding. Consent for the development of ERA's preferred option for the development of Jabiluka is being sought from the Aboriginal Traditional Owners. Ranger is currently the third largest producing uranium mine in the world producing 4,237 tonnes of U 3 O 8 in the year to June 1997

  7. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  8. Extreme-Scale Computing Project Aims to Advance Precision Oncology | Poster

    Science.gov (United States)

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict drug response, and improve treatments for patients.

  9. Long-memory exchange rate dynamics in the euro era

    International Nuclear Information System (INIS)

    Barkoulas, John T.; Barilla, Anthony G.; Wells, William

    2016-01-01

    We investigate the long-run dynamics of a system of eight major exchange rates in the euro era using both integer and fractional cointegration methodologies. Contrary to the fragile evidence in the pre-euro era, robust evidence of linear cointegratedness is obtained in the foreign exchange market during the euro era. Upon closer examination, deviations from the cointegrating relationship exhibit nonstationary, long-memory dynamic behavior (Joseph effect). We find the long-memory evidence to be temporally stable in the most recent era. Finally, the foreign exchange system dynamics appears to be characterized by less persistence (smaller fractional exponent) in the euro era (as compared to pre-euro time periods), potentially indicating increased policy coordination by central banks in the recent period.

  10. Communicating mathematics in the digital era

    CERN Document Server

    Borwein, Jonathan; Rodrigues, Jose Francisco

    2008-01-01

    The digital era has dramatically changed the ways that researchers search, produce, publish, and disseminate their scientific work. These processes are still rapidly evolving due to improvements in information science, new achievements in computer science technologies, and initiatives such as DML and open access journals, digitization projects, scientific reference catalogs, and digital repositories. These changes have prompted many mathematicians to play an active part in the developments of the digital era, and have led mathematicians to promote and discuss new ideas with colleagues from other fields, such as technology developers and publishers. This book is a collection of contributions by key leaders in the field, offering the paradigms and mechanisms for producing, searching, and exploiting scientific and technical scholarship in mathematics in the digital era.

  11. Modulation of extreme temperatures in Europe under extreme values of the North Atlantic Oscillation Index.

    Science.gov (United States)

    Beniston, Martin

    2018-03-10

    This paper reports on the influence that extreme values in the tails of the North Atlantic Oscillation (NAO) Index probability density function (PDF) can exert on temperatures in Europe. When the NAO Index enters into its lowest (10% quantile or less) and highest (90% quantile or higher) modes, European temperatures often exhibit large negative or positive departures from their mean values, respectively. Analyses of the joint quantiles of the Index and temperatures (i.e., the simultaneous exceedance of particular quantile thresholds by the two variables) show that temperatures enter into the upper or lower tails of their PDF when the NAO Index also enters into its extreme tails, more often that could be expected from random statistics. Studies of this nature help further our understanding of the manner by which mechanisms of decadal-scale climate variability can influence extremes of temperature-and thus perhaps improve the forecasting of extreme temperatures in weather and climate models. © 2018 New York Academy of Sciences.

  12. Multifractal Conceptualisation of Hydro-Meteorological Extremes

    Science.gov (United States)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2009-04-01

    Hydrology and more generally sciences involved in water resources management, technological or operational developments face a fundamental difficulty: the extreme variability of hydro-meteorological fields. It clearly appears today that this variability is a function of the observation scale and yield hydro-meteorological hazards. Throughout the world, the development of multifractal theory offers new techniques for handling such non-classical variability over wide ranges of time and space scales. The resulting stochastic simulations with a very limited number of parameters well reproduce the long range dependencies and the clustering of rainfall extremes often yielding fat tailed (i.e., an algebraic type) probability distributions. The goal of this work was to investigate the ability of using very short or incomplete data records for reliable statistical predictions of the extremes. In particular we discuss how to evaluate the uncertainty in the empirical or semi-analytical multifractal outcomes. We consider three main aspects of the evaluation, such as the scaling adequacy, the multifractal parameter estimation error and the quantile estimation error. We first use the multiplicative cascade model to generate long series of multifractal data. The simulated samples had to cover the range of the universal multifractal parameters widely available in the scientific literature for the rainfall and river discharges. Using these long multifractal series and their sub-samples, we defined a metric for parameter estimation error. Then using the sets of estimated parameters, we obtained the quantile values for a range of excedance probabilities from 5% to 0.01%. Plotting the error bars on a quantile plot enable an approximation of confidence intervals that would be particularly important for the predictions of multifractal extremes. We finally illustrate the efficiency of such concept on its application to a large database (more than 16000 selected stations over USA and

  13. Nutrition security under extreme events

    Science.gov (United States)

    Martinez, A.

    2017-12-01

    Nutrition security under extreme events. Zero hunger being one of the Sustainable Development Goal from the United Nations, food security has become a trending research topic. However extreme events impact on global food security is not yet 100% understood and there is a lack of comprehension of the underlying mechanisms of global food trade and nutrition security to improve countries resilience to extreme events. In a globalized world, food is still a highly regulated commodity and a strategic resource. A drought happening in a net food-exporter will have little to no effect on its own population but the repercussion on net food-importers can be extreme. In this project, we propose a methodology to describe and quantify the impact of a local drought to human health at a global scale. For this purpose, nutrition supply and global trade data from FAOSTAT have been used with domestic food production from national agencies and FAOSTAT, global precipitation from the Climate Research Unit and health data from the World Health Organization. A modified Herfindahl-Hirschman Index (HHI) has been developed to measure the level of resilience of one country to a drought happening in another country. This index describes how a country is dependent of importation and how diverse are its importation. Losses of production and exportation due to extreme events have been calculated using yield data and a simple food balance at country scale. Results show that countries the most affected by global droughts are the one with the highest dependency to one exporting country. Changes induced by droughts also disturbed their domestic proteins, fat and calories supply resulting most of the time in a higher intake of calories or fat over proteins.

  14. Implementation of the Spanish ERAS program in bariatric surgery.

    Science.gov (United States)

    Ruiz-Tovar, Jaime; Muñoz, José Luis; Royo, Pablo; Duran, Manuel; Redondo, Elisabeth; Ramirez, Jose Manuel

    2018-03-08

    The essence of Enhanced Recovery After Surgery (ERAS) programs is the multimodal approach, and many authors have demonstrated safety and feasibility in fast track bariatric surgery. According to this concept, a multidisciplinary ERAS program for bariatric surgery has been developed by the Spanish Fast Track Group (ERAS Spain). The aim of this study was to analyze the initial implementation of this Spanish National ERAS protocol in bariatric surgery, comparing it with a historical cohort receiving standard care. A multi-centric prospective study was performed, including 233 consecutive patients undergoing bariatric surgery during 2015 and following ERAS protocol. It was compared with a historical cohort of 286 patients, who underwent bariatric surgery at the same institutions between 2013 and 2014 and following standard care. Compliance with the protocol, morbidity, mortality, hospital stay and readmission were evaluated. Bariatric techniques performed were Roux-en-Y gastric bypass and sleeve gastrectomy. There were no significant differences in complications, mortality and readmission. Postoperative pain and hospital stay were significantly lower in the ERAS group. The total compliance to protocol was 80%. The Spanish National ERAS protocol is a safe issue, obtaining similar results to standard care in terms of complications, reoperations, mortality and readmissions. It is associated with less postoperative pain and earlier hospital discharge.

  15. A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States)

    2014-11-01

    The evolution of the computing world from teraflop to petaflop has been relatively effortless, with several of the existing programming models scaling effectively to the petascale. The migration to exascale, however, poses considerable challenges. All industry trends infer that the exascale machine will be built using processors containing hundreds to thousands of cores per chip. It can be inferred that efficient concurrency on exascale machines requires a massive amount of concurrent threads, each performing many operations on a localized piece of data. Currently, visualization libraries and applications are based off what is known as the visualization pipeline. In the pipeline model, algorithms are encapsulated as filters with inputs and outputs. These filters are connected by setting the output of one component to the input of another. Parallelism in the visualization pipeline is achieved by replicating the pipeline for each processing thread. This works well for today’s distributed memory parallel computers but cannot be sustained when operating on processors with thousands of cores. Our project investigates a new visualization framework designed to exhibit the pervasive parallelism necessary for extreme scale machines. Our framework achieves this by defining algorithms in terms of worklets, which are localized stateless operations. Worklets are atomic operations that execute when invoked unlike filters, which execute when a pipeline request occurs. The worklet design allows execution on a massive amount of lightweight threads with minimal overhead. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale machine.

  16. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  17. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    Science.gov (United States)

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. THE SZ EFFECT IN THE PLANCK ERA: ASTROPHYSICAL AND COSMOLOGICAL IMPACT

    Directory of Open Access Journals (Sweden)

    Sergio Colafrancesco

    2013-12-01

    Full Text Available The Sunyaev–Zel’dovich effect (SZE is a relevant probe for cosmology and particle astrophysics. The Planck Era marks a definite step forward in the use of this probe for astrophysics and cosmology. Astrophysical applications to galaxy clusters, galaxies, radiogalaxies and large-scale structures are discussed. Cosmological relevance for the Dark Energy equation of state, modified Gravity scenarios, Dark Matter search, cosmic magnetism and other cosmological applications is also reviewed. Future directions for the study of the SZE and its polarization are finally outlined.

  19. Effects of thermal inflation on small scale density perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E. [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Lee, Hyung-Joo; Lee, Young Jae; Stewart, Ewan D. [Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Zoe, Heeseung, E-mail: swhong@kias.re.kr, E-mail: ohsk111@kaist.ac.kr, E-mail: noasac@kaist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu 711-873 (Korea, Republic of)

    2015-06-01

    In cosmological scenarios with thermal inflation, extra eras of moduli matter domination, thermal inflation and flaton matter domination exist between primordial inflation and the radiation domination of Big Bang nucleosynthesis. During these eras, cosmological perturbations on small scales can enter and re-exit the horizon, modifying the power spectrum on those scales. The largest modified scale, k{sub b}, touches the horizon size when the expansion changes from deflation to inflation at the transition from moduli domination to thermal inflation. We analytically calculate the evolution of perturbations from moduli domination through thermal inflation and evaluate the curvature perturbation on the constant radiation density hypersurface at the end of thermal inflation to determine the late time curvature perturbation. Our resulting transfer function suppresses the power spectrum by a factor 0∼ 5 at k >> k{sub b}, with k{sub b} corresponding to anywhere from megaparsec to subparsec scales depending on the parameters of thermal inflation. Thus, thermal inflation might be constrained or detected by small scale observations such as CMB distortions or 21cm hydrogen line observations.

  20. An observational and modeling study of the August 2017 Florida climate extreme event.

    Science.gov (United States)

    Konduru, R.; Singh, V.; Routray, A.

    2017-12-01

    A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.

  1. Economic outcome for intensive care of infants of birthweight 500-999 g born in Victoria in the post surfactant era. The Victorian Infant Collaborative Study Group.

    Science.gov (United States)

    1997-06-01

    To determine the incremental cost of improving the outcome for extremely low birthweight (ELBW, birthweight 500-999 g) infants born in Victoria after the introduction of exogenous surfactant (the post surfactant era). This was a geographically determined cohort study of ELBW children in Victoria, Australia of consecutive livebirths born in three distinct eras: (i) 1979-80 (n = 351); (ii) 1985-87 (n = 560); and (iii) 1991-92 (n = 429). Exogenous surfactant was first used in Victoria in March, 1991. The consumption of nursery resources per livebirth, and the survival and sensorineural disability rates at 2 years of age for each era were investigated. Utilities were assigned as follows: 0 for dead, 0.4 for severe disability, 0.6 for moderate disability, 0.8 for mild disability, and 1 for no disability. Utilities were multiplied for more than one disability. Dollar costs were assumed to be $1470 ($A 1992) per day of assisted ventilation, and one dose of exogenous surfactant was assumed to be equivalent to one third of a day of assisted ventilation. Cost-effectiveness (additional costs per additional survivor or life-year gained) and cost-utility (additional costs per additional quality-adjusted survivor or life-year gained) ratios were calculated for the pre-surfactant era (1985-87 vs 1979-80), and for the post surfactant era (1991-92 vs 1985-87). Considering only the costs incurred during the primary hospitalization, cost-effectiveness and cost-utility ratios were lower (i.e. economically better) in the post surfactant era than in the pre-surfactant era (pre-surfactant vs post surfactant; $7040 vs $4040 per life year gained; $6700 vs $5360 per quality-adjusted life year gained). Both ratios fell with increasing birthweight. In contrast with the pre-surfactant era, cost-utility ratios were less favourable than cost-effectiveness ratios in the post surfactant era. With costs for long-term care of severely disabled children added, both cost ratios were higher in the post

  2. Coastal Change Analysis Program (C-CAP) zone 66 1995-era and 2000-era land cover change analysis (NODC Accession 0042136)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the 1995-era and 2000-era classifications of US Coast zone 66 and can be used to analyze change. This imagery was collected as part of the...

  3. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  4. Seasonal temperature extremes in Potsdam

    Science.gov (United States)

    Kundzewicz, Zbigniew; Huang, Shaochun

    2010-12-01

    The awareness of global warming is well established and results from the observations made on thousands of stations. This paper complements the large-scale results by examining a long time-series of high-quality temperature data from the Secular Meteorological Station in Potsdam, where observation records over the last 117 years, i.e., from January 1893 are available. Tendencies of change in seasonal temperature-related climate extremes are demonstrated. "Cold" extremes have become less frequent and less severe than in the past, while "warm" extremes have become more frequent and more severe. Moreover, the interval of the occurrence of frost has been decreasing, while the interval of the occurrence of hot days has been increasing. However, many changes are not statistically significant, since the variability of temperature indices at the Potsdam station has been very strong.

  5. Comparison of regional and seasonal changes and trends in daily surface temperature extremes over India and its subregions

    Science.gov (United States)

    Dimri, A. P.

    2018-04-01

    Regional changes in surface meteorological variables are one of the key issues affecting the Indian subcontinent especially in recent decades. These changes impact agriculture, health, water, etc., hence important to assess and investigate these changes. The Indian subcontinent is characterized by heterogeneous temperature regimes at regional and seasonal scales. The India Meteorological Department (IMD) observations are limited to recent decades as far as its spatial distribution is concerned. In particular, over Hilly region, these observations are sporadic. Due to variable topography and heterogeneous land use/land cover, it is complex to substantiate impacts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERA-I) reanalysis not only covers a larger spatial domain but also provides a greater number of inputs than IMD. This study used ERA-I in conjunction with IMD gridded data to provide a comparative assessment of changing temperature patterns over India and its subregions at both regional and seasonal scales. Warming patterns are observed in both ERA-I and IMD data sets. Cold nights decrease during winter; warm days increase and warm spell duration increased during winter could become a cause of concern for society, agriculture, socio-economic reasons, and health. Increasing warm days over the hilly regions may affect the corresponding snow cover and thus river hydrology and glaciological dynamics. Such changes during monsoon are slower, which could be attributed to moisture availability to dampen the temperature changes. On investigation and comparison thereon, the present study provisions usages of ERA-I-based indices for various impact and adaptation studies.

  6. (When and where) Do extreme climate events trigger extreme ecosystem responses? - Development and initial results of a holistic analysis framework

    Science.gov (United States)

    Hauber, Eva K.; Donner, Reik V.

    2015-04-01

    a seasonal cycle for each quantile of the distribution, which can be used for a fully data-adaptive definition of extremes as exceedances above this time-dependent quantile function. (2) Having thus identified the extreme events, their distribution is analyzed in both space and time. Following a procedure recently proposed by Lloyd-Hughes (2012) and further exploited by Zscheischler et al. (2013), extremes observed at neighboring points in space and time are considered to form connected sets. Investigating the size distribution of these sets provides novel insights into the development and dynamical characteristics of spatio-temporally extended climate and ecosystem extremes. (3) Finally, the timing of such spatio-temporally extended extremes in different climatic as well as ecological variables is tested pairwise to rule out that co-occurrences of extremes have emerged solely due to chance. For this purpose, the recently developed framework of coincidence analysis (Donges et al., 2011; Rammig et al. 2014) is applied. The corresponding analysis allows identifying potential causal linkages between climatic extremes and extreme ecosystem responses and, thus, to study their mechanisms and spatial as well as seasonal distribution in great detail. In this work, the described method is exemplified by using different climate data from the ERA-Interim reanalysis as well as remote sensing-based land surface temperature data. References: Donges et al., PNAS, 108, 20422, 2011 Lloyd-Hughes, Int. J. Climatol., 32, 406, 2012 Rammig et al., Biogeosc. Disc., 11, 2537, 2014 Zscheischler et al., Ecol. Inform., 15, 66, 2013

  7. Stochastic generation of multi-site daily precipitation focusing on extreme events

    Directory of Open Access Journals (Sweden)

    G. Evin

    2018-01-01

    Full Text Available Many multi-site stochastic models have been proposed for the generation of daily precipitation, but they generally focus on the reproduction of low to high precipitation amounts at the stations concerned. This paper proposes significant extensions to the multi-site daily precipitation model introduced by Wilks, with the aim of reproducing the statistical features of extremely rare events (in terms of frequency and magnitude at different temporal and spatial scales. In particular, the first extended version integrates heavy-tailed distributions, spatial tail dependence, and temporal dependence in order to obtain a robust and appropriate representation of the most extreme precipitation fields. A second version enhances the first version using a disaggregation method. The performance of these models is compared at different temporal and spatial scales on a large region covering approximately half of Switzerland. While daily extremes are adequately reproduced at the stations by all models, including the benchmark Wilks version, extreme precipitation amounts at larger temporal scales (e.g., 3-day amounts are clearly underestimated when temporal dependence is ignored.

  8. Sea surface temperature variability in the North Western Mediterranean Sea (Gulf of Lion) during the Common Era

    Science.gov (United States)

    Sicre, Marie-Alexandrine; Jalali, Bassem; Martrat, Belen; Schmidt, Sabine; Bassetti, Maria-Angela; Kallel, Nejib

    2016-12-01

    This study investigates the multidecadal-scale variability of sea surface temperatures (SSTs) in the convection region of the Gulf of Lion (NW Mediterranean Sea) over the full past 2000 yr (Common Era) using alkenone biomarkers. Our data show colder SSTs by 1.7 °C over most of the first millennium (200-800 AD) and by 1.3 °C during the Little Ice Age (LIA; 1400-1850 AD) than the 20th century mean (17.9 °C). Although on average warmer, those of the Medieval Climate Anomaly (MCA) (1000-1200 AD) were lower by 1 °C. We found a mean SST warming of 2 °C/100 yr over the last century in close agreement with the 0.22 and 0.26 °C/decade values calculated for the western Mediterranean Sea from in situ and satellite data, respectively. Our results also reveal strongly fluctuating SSTs characterized by cold extremes followed by abrupt warming during the LIA. We suggest that the coldest decades of the LIA were likely caused by prevailing negative EA states and associated anticyclone blocking over the North Atlantic resulting in cold continental northeasterly winds to blow over Western Europe and the Mediterranean region.

  9. La era de la información

    Directory of Open Access Journals (Sweden)

    Mauro Florez Calderón

    1991-01-01

    Full Text Available La revolución de la información basada en la información tiene como límite las fronteras del conocimiento. La información a diferencia de un bien material es inalienable, acumulativa y no produce los tipos de deterioro ambiental creados por la industria; por lo anterior, algunos especialistas, a la era de la información la denominan era Post-industrial. Si es necio pretender entender los procesos producidos por la revolución industrial, con una mentalidad pastoril, mucho más necio será tratar de comprender la era informacional con una concepción industrial. La nueva era implica formas y estructuras del pensamiento radicalmente diferentes, pues las profundas transformaciones sociales, técnicas, políticas, económicas que conlleva, no conducirán necesariamente por si mismos a un mayor bienestar para la humanidad. En el presente artículo pretendo dar una visión general sobre este apasionante y delicado tema.

  10. Extreme-Scale Computing Project Aims to Advance Precision Oncology | FNLCR Staging

    Science.gov (United States)

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru

  11. Amputations for extremity soft tissue sarcoma in an era of limb salvage treatment : Local control and survival

    NARCIS (Netherlands)

    Stevenson, Marc G; Musters, Annelie H; Geertzen, Jan H B; van Leeuwen, Barbara L; Hoekstra, Harald J; Been, Lukas B

    2018-01-01

    BACKGROUND: Despite multimodality limb salvage treatment (LST) for locally advanced extremity soft tissue sarcoma (ESTS), some patients still need an amputation. Indications for amputation and oncological outcome for these patients are described. METHODS: Between 1996 and 2016, all patients who

  12. Extreme Networks' 10-Gigabit Ethernet enables

    CERN Multimedia

    2002-01-01

    " Extreme Networks, Inc.'s 10-Gigabit switching platform enabled researchers to transfer one Terabyte of information from Vancouver to Geneva across a single network hop, the world's first large-scale, end-to-end transfer of its kind" (1/2 page).

  13. ERA: Adverse Consequences

    Science.gov (United States)

    Martin, Brian

    2011-01-01

    Excellence in Research for Australia has a number of limitations: inputs are counted as outputs, time is wasted, disciplinary research is favoured and public engagement is discouraged. Most importantly, by focusing on measurement and emphasising competition, ERA may actually undermine the cooperation and intrinsic motivation that underpin research…

  14. Extreme hydrometeorological events in the Peruvian Central Andes during austral summer and their relationship with the large-scale circulation

    Science.gov (United States)

    Sulca, Juan C.

    In this Master's dissertation, atmospheric circulation patterns associated with extreme hydrometeorological events in the Mantaro Basin, Peruvian Central Andes, and their teleconnections during the austral summer (December-January-February-March) are addressed. Extreme rainfall events in the Mantaro basin are related to variations of the large-scale circulation as indicated by the changing strength of the Bolivian High-Nordeste Low (BH-NL) system. Dry (wet) spells are associated with a weakening (strengthening) of the BH-NL system and reduced (enhanced) influx of moist air from the lowlands to the east due to strengthened westerly (easterly) wind anomalies at mid- and upper-tropospheric levels. At the same time extreme rainfall events of the opposite sign occur over northeastern Brazil (NEB) due to enhanced (inhibited) convective activity in conjunction with a strengthened (weakened) Nordeste Low. Cold episodes in the Mantaro Basin are grouped in three types: weak, strong and extraordinary cold episodes. Weak and strong cold episodes in the MB are mainly associated with a weakening of the BH-NL system due to tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the potential for development of convective cloud cover. The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below the 10-percentile. Extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. Therefore, weak and strong cold episodes in the MB appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection, while the latter plays an important role for extraordinary cold episodes only.

  15. Two spatial scales in a bleaching event: Corals from the mildest and the most extreme thermal environments escape mortality

    KAUST Repository

    Pineda, Jesús

    2013-07-28

    In summer 2010, a bleaching event decimated the abundant reef flat coral Stylophora pistillata in some areas of the central Red Sea, where a series of coral reefs 100–300 m wide by several kilometers long extends from the coastline to about 20 km offshore. Mortality of corals along the exposed and protected sides of inner (inshore) and mid and outer (offshore) reefs and in situ and satellite sea surface temperatures (SSTs) revealed that the variability in the mortality event corresponded to two spatial scales of temperature variability: 300 m across the reef flat and 20 km across a series of reefs. However, the relationship between coral mortality and habitat thermal severity was opposite at the two scales. SSTs in summer 2010 were similar or increased modestly (0.5°C) in the outer and mid reefs relative to 2009. In the inner reef, 2010 temperatures were 1.4°C above the 2009 seasonal maximum for several weeks. We detected little or no coral mortality in mid and outer reefs. In the inner reef, mortality depended on exposure. Within the inner reef, mortality was modest on the protected (shoreward) side, the most severe thermal environment, with highest overall mean and maximum temperatures. In contrast, acute mortality was observed in the exposed (seaward) side, where temperature fluctuations and upper water temperature values were relatively less extreme. Refuges to thermally induced coral bleaching may include sites where extreme, high-frequency thermal variability may select for coral holobionts preadapted to, and physiologically condition corals to withstand, regional increases in water temperature.

  16. Adaptation to extreme climate events at a regional scale

    OpenAIRE

    Hoffmann, Christin

    2017-01-01

    A significant increase of the frequency, the intensity and the duration of extreme climate events in Switzerland induces the need to find a strategy to deal with the damages they cause. For more than two decades, mitigation has been the main objective of climate policy. However, due to already high atmospheric carbon concentrations and the inertia of the climate system, climate change is unavoidable to some degree, even if today’s emissions were almost completely cut back. Along with the high...

  17. Evaluation of ERA-Interim precipitation data in complex terrain

    Science.gov (United States)

    Gao, Lu; Bernhardt, Matthias; Schulz, Karsten

    2013-04-01

    Precipitation controls a large variety of environmental processes, which is an essential input parameter for land surface models e.g. in hydrology, ecology and climatology. However, rain gauge networks provides the necessary information, are commonly sparse in complex terrains, especially in high mountainous regions. Reanalysis products (e.g. ERA-40 and NCEP-NCAR) as surrogate data are increasing applied in the past years. Although they are improving forward, previous studies showed that these products should be objectively evaluated due to their various uncertainties. In this study, we evaluated the precipitation data from ERA-Interim, which is a latest reanalysis product developed by ECMWF. ERA-Interim daily total precipitation are compared with high resolution gridded observation dataset (E-OBS) at 0.25°×0.25° grids for the period 1979-2010 over central Alps (45.5-48°N, 6.25-11.5°E). Wet or dry day is defined using different threshold values (0.5mm, 1mm, 5mm, 10mm and 20mm). The correspondence ratio (CR) is applied for frequency comparison, which is the ratio of days when precipitation occurs in both ERA-Interim and E-OBS dataset. The result shows that ERA-Interim captures precipitation occurrence very well with a range of CR from 0.80 to 0.97 for 0.5mm to 20mm thresholds. However, the bias of intensity increases with rising thresholds. Mean absolute error (MAE) varies between 4.5 mm day-1 and 9.5 mm day-1 in wet days for whole area. In term of mean annual cycle, ERA-Interim almost has the same standard deviation of the interannual variability of daily precipitation with E-OBS, 1.0 mm day-1. Significant wet biases happened in ERA-Interim throughout warm season (May to August) and dry biases in cold season (November to February). The spatial distribution of mean annual daily precipitation shows that ERA-Interim significant underestimates precipitation intensity in high mountains and northern flank of Alpine chain from November to March while pronounced

  18. Extreme air pollution events in Hokkaido, Japan, traced back to early snowmelt and large-scale wildfires over East Eurasia: Case studies.

    Science.gov (United States)

    Yasunari, Teppei J; Kim, Kyu-Myong; da Silva, Arlindo M; Hayasaki, Masamitsu; Akiyama, Masayuki; Murao, Naoto

    2018-04-25

    To identify the unusual climate conditions and their connections to air pollutions in a remote area due to wildfires, we examine three anomalous large-scale wildfires in May 2003, April 2008, and July 2014 over East Eurasia, as well as how products of those wildfires reached an urban city, Sapporo, in the northern part of Japan (Hokkaido), significantly affecting the air quality. NASA's MERRA-2 (the Modern-Era Retrospective analysis for Research and Applications, Version 2) aerosol re-analysis data closely reproduced the PM 2.5 variations in Sapporo for the case of smoke arrival in July 2014. Results show that all three cases featured unusually early snowmelt in East Eurasia, accompanied by warmer and drier surface conditions in the months leading to the fires, inducing long-lasting soil dryness and producing climate and environmental conditions conducive to active wildfires. Due to prevailing anomalous synoptic-scale atmospheric motions, smoke from those fires eventually reached a remote area, Hokkaido, and worsened the air quality in Sapporo. In future studies, continuous monitoring of the timing of Eurasian snowmelt and the air quality from the source regions to remote regions, coupled with the analysis of atmospheric and surface conditions, may be essential in more accurately predicting the effects of wildfires on air quality.

  19. The structure and large-scale organization of extreme cold waves over the conterminous United States

    Science.gov (United States)

    Xie, Zuowei; Black, Robert X.; Deng, Yi

    2017-12-01

    Extreme cold waves (ECWs) occurring over the conterminous United States (US) are studied through a systematic identification and documentation of their local synoptic structures, associated large-scale meteorological patterns (LMPs), and forcing mechanisms external to the US. Focusing on the boreal cool season (November-March) for 1950‒2005, a hierarchical cluster analysis identifies three ECW patterns, respectively characterized by cold surface air temperature anomalies over the upper midwest (UM), northwestern (NW), and southeastern (SE) US. Locally, ECWs are synoptically organized by anomalous high pressure and northerly flow. At larger scales, the UM LMP features a zonal dipole in the mid-tropospheric height field over North America, while the NW and SE LMPs each include a zonal wave train extending from the North Pacific across North America into the North Atlantic. The Community Climate System Model version 4 (CCSM4) in general simulates the three ECW patterns quite well and successfully reproduces the observed enhancements in the frequency of their associated LMPs. La Niña and the cool phase of the Pacific Decadal Oscillation (PDO) favor the occurrence of NW ECWs, while the warm PDO phase, low Arctic sea ice extent and high Eurasian snow cover extent (SCE) are associated with elevated SE-ECW frequency. Additionally, high Eurasian SCE is linked to increases in the occurrence likelihood of UM ECWs.

  20. Scientific Grand Challenges: Discovery In Basic Energy Sciences: The Role of Computing at the Extreme Scale - August 13-15, 2009, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States). Workshop Chair; Dunning, Thom [Univ. of Illinois, Urbana, IL (United States). Workshop Chair

    2009-08-13

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) and Office of Advanced Scientific Computing Research (ASCR) workshop in August 2009 on extreme-scale computing provided a forum for more than 130 researchers to explore the needs and opportunities that will arise due to expected dramatic advances in computing power over the next decade. This scientific community firmly believes that the development of advanced theoretical tools within chemistry, physics, and materials science—combined with the development of efficient computational techniques and algorithms—has the potential to revolutionize the discovery process for materials and molecules with desirable properties. Doing so is necessary to meet the energy and environmental challenges of the 21st century as described in various DOE BES Basic Research Needs reports. Furthermore, computational modeling and simulation are a crucial complement to experimental studies, particularly when quantum mechanical processes controlling energy production, transformations, and storage are not directly observable and/or controllable. Many processes related to the Earth’s climate and subsurface need better modeling capabilities at the molecular level, which will be enabled by extreme-scale computing.

  1. Enhanced recovery after surgery (ERAS) in penetrating abdominal ...

    African Journals Online (AJOL)

    Background: Enhanced recovery after surgery (ERAS) programmes employed in elective surgery have provided strong evidence for decreased lengths of hospital stay without increase in postoperative complications. The aim of this study was to explore the role and benefits of ERAS implemented in patients undergoing ...

  2. Vulnerability assessment of Central-East Sardinia (Italy to extreme rainfall events

    Directory of Open Access Journals (Sweden)

    A. Bodini

    2010-01-01

    Full Text Available In Sardinia (Italy, the highest frequency of extreme events is recorded in the Central-East area (3–4 events per year. The presence of high and steep mountains near the sea on the central and south-eastern coast, causes an East-West precipitation gradient in autumn especially, due to hot and moist currents coming from Africa. Soil structure and utilization make this area highly vulnerable to flash flooding and landslides. The specific purpose of this work is to provide a description of the heavy rainfall phenomenon on a statistical basis. The analysis mainly focuses on i the existence of trends in heavy rainfall and ii the characterization of the distribution of extreme events. First, to study possible trends in extreme events a few indices have been analyzed by the linear regression test. The analysis has been carried out at annual and seasonal scales. Then, extreme values analysis has been carried out by fitting a Generalized Pareto Distribution (GPD to the data. As far as trends are concerned, different results are obtained at the two temporal scales: significant trends are obtained at the seasonal scale which are masked at the annual scale. By combining trend analysis and GPD analysis, the vulnerability of the study area to the occurrence of heavy rainfall has been characterized. Therefore, this work might support the improvement of land use planning and the application of suitable prevention systems. Future work will consider the extension of the analysis to all Sardinia and the application of statistical methods taking into account the spatial correlation of extreme events.

  3. Spatio-temporal modelling of wind speed variations and extremes in the Caribbean and the Gulf of Mexico

    Science.gov (United States)

    Rychlik, Igor; Mao, Wengang

    2018-02-01

    The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.

  4. The Spatial Scaling of Global Rainfall Extremes

    Science.gov (United States)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  5. Exascale Co-design for Modeling Materials in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Timothy C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  6. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    Science.gov (United States)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  7. The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia

    Science.gov (United States)

    Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz

    2015-07-01

    This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.

  8. A New Era for Research Education in Australia?

    Science.gov (United States)

    Marsh, Helene; Smith, Bradley; King, Max; Evans, Terry

    2012-01-01

    Use of the Australian research assessment exercise, Excellence in Research for Australia (ERA) to influence the policy and practice of research education in Australia will undoubtedly have many consequences, some of them unintended and potentially deleterious. ERA is a retrospective measure of research quality; research education is prospective.…

  9. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  10. Consistent scalar and tensor perturbation power spectra in single fluid matter bounce with dark energy era

    Science.gov (United States)

    Bacalhau, Anna Paula; Pinto-Neto, Nelson; Vitenti, Sandro Dias Pinto

    2018-04-01

    We investigate cosmological scenarios containing one canonical scalar field with an exponential potential in the context of bouncing models, in which the bounce happens due to quantum cosmological effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine-tuned exception) must have one and only one dark energy phase, occurring either in the contracting era or in the expanding era. Hence, these bounce solutions are necessarily asymmetric. Naturally, the more convenient solution is the one in which the dark energy phase happens in the expanding era, in order to be a possible explanation for the current accelerated expansion indicated by cosmological observations. In this case, one has the picture of a Universe undergoing a classical dust contraction from very large scales, the initial repeller of the model, moving to a classical stiff-matter contraction near the singularity, which is avoided due to the quantum bounce. The Universe is then launched to a dark energy era, after passing through radiation- and dust-dominated phases, finally returning to the dust expanding phase, the final attractor of the model. We calculate the spectral indices and amplitudes of scalar and tensor perturbations numerically, considering the whole history of the model, including the bounce phase itself, without making any approximation nor using any matching condition on the perturbations. As the background model is necessarily dust dominated in the far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a cosmological model in which the presence of dark energy behavior in the Universe does not turn the usual vacuum initial conditions prescription for cosmological perturbation in bouncing models problematic. Scalar and tensor perturbations end up being almost scale invariant, as expected. The background parameters can be adjusted, without fine-tunings, to yield the observed amplitude for scalar

  11. El Nino, from 1870 to 2014, and other Atmospheric Circulation Forcing by Extreme Apparitions of the Eight Annual, Continental Scale, Aerosol Plumes in the Satellite Era which Point to a Possible Cause for the Current Californian Drought

    Science.gov (United States)

    Potts, K. A.

    2015-12-01

    Eight continental scale aerosol plumes exist each year as the enclosed image shows. Apparitions of seven plumes only exist for a few months in the same season each year whilst the East Asian Plume is visible all year. The aerosol optical depth (AOD) of all the plumes varies enormously interannually with two studies showing the surface radiative forcing of the South East Asian Plume (SEAP) as -150W/m2 and -286W/m2/AOD. I show that the SEAP, created by volcanic aerosols (natural) and biomass burning and gas flares in the oil industry (anthropogenic), is the sole cause of all El Nino events, the greatest interannual perturbation of the atmospheric circulation system. The SEAP creates an El Nino by absorbing solar radiation at the top of the plume which heats the upper atmosphere and cools the surface. This creates a temperature inversion compared to periods without the plume and reduces convection. With reduced convection in SE Asia, the Maritime Continent, the Trade Winds blowing across the Pacific are forced to relax as their exit into the Hadley and Walker Cells is constrained and the reduced Trade Wind speed causes the Sea Surface Temperature (SST) to rise in the central tropical Pacific Ocean as there is a strong negative correlation between wind speed and SST. The warmer SST in the central Pacific creates convection in the region which further reduces the Trade Wind speed and causes the Walker Cell to reverse - a classic El Nino. Having established the ability of such extreme aerosol plumes to create El Nino events I will then show how the South American, West African, Middle East and SEAP plumes create drought in the Amazon, Spain, Darfur and Australia as well as causing the extremely warm autumn and winter in Europe in 2006-07. All these effects are created by the plumes reducing convection in the region of the plume which forces the regional Hadley Cells into anomalous positions thereby creating persistent high pressure cells in the mid latitudes. This

  12. Chinese librarianship in the digital era

    CERN Document Server

    Fang, Conghui

    2013-01-01

    The library in China has been transformed by rapid socioeconomic development, and the proliferation of the Internet. The issues faced by Chinese libraries andlibrarians are those faced by library practitioners more globally, however, China also has its own unique set of issues in the digital era, including developmental imbalance between East and West, urban and rural areas, and availability of skilled practitioners. Chinese Librarianship in the Digital Era is the first book on Chinese libraries responding to these issues, and more.The first part of the book places discussion in historical con

  13. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    Science.gov (United States)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  14. Satellite-Enhanced Dynamical Downscaling of Extreme Events

    Science.gov (United States)

    Nunes, A.

    2015-12-01

    Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.

  15. Large-Scale Skin Resurfacing of the Upper Extremity in Pediatric Patients Using a Pre-Expanded Intercostal Artery Perforator Flap.

    Science.gov (United States)

    Wei, Jiao; Herrler, Tanja; Gu, Bin; Yang, Mei; Li, Qingfeng; Dai, Chuanchang; Xie, Feng

    2018-05-01

    The repair of extensive upper limb skin lesions in pediatric patients is extremely challenging due to substantial limitations of flap size and donor-site morbidity. We aimed to create an oversize preexpanded flap based on intercostal artery perforators for large-scale resurfacing of the upper extremity in children. Between March 2013 and August 2016, 11 patients underwent reconstructive treatment for extensive skin lesions in the upper extremity using a preexpanded intercostal artery perforator flap. Preoperatively, 2 to 4 candidate perforators were selected as potential pedicle vessels based on duplex ultrasound examination. After tissue expander implantation in the thoracodorsal area, regular saline injections were performed until the expanded flap was sufficient in size. Then, a pedicled flap was formed to resurface the skin lesion of the upper limb. The pedicles were transected 3 weeks after flap transfer. Flap survival, complications, and long-term outcome were evaluated. The average time of tissue expansion was 133 days with a mean final volume of 1713 mL. The thoracoabdominal flaps were based on 2 to 6 pedicles and used to resurface a mean skin defect area of 238 cm ranging from 180 to 357 cm. In all cases, primary donor-site closure was achieved. Marginal necrosis was seen in 5 cases. The reconstructed limbs showed satisfactory outcome in both aesthetic and functional aspects. The preexpanded intercostal artery perforator flap enables 1-block repair of extensive upper limb skin lesions. Due to limited donor-site morbidity and a pedicled technique, this resurfacing approach represents a useful tool especially in pediatric patients.

  16. Heavy Tail Behavior of Rainfall Extremes across Germany

    Science.gov (United States)

    Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.

    2017-12-01

    Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.

  17. ERA Panga pankrotiprotsess on lõppenud / Väinu Rozental

    Index Scriptorium Estoniae

    Rozental, Väinu, 1957-

    2005-01-01

    Viis ja pool aastat kestnud ERA Panga pankrotimenetlus on lõppenud ning mõlemad pankrotihaldurid said 3,53 miljonit krooni. Vt. samas: Järgmisena saab joone alla EVEA Panga pankrot. Lisa: ERA Panga pankrotil joon all

  18. Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses

    Directory of Open Access Journals (Sweden)

    José M. R. Alves

    2013-05-01

    Full Text Available The Regional Ocean Modeling System ocean model is used to simulate the decadal evolution of the regional waters in offshore Iberia in response to atmospheric fields given by ECMWF ERA-40 (1961–2001 and ERA-Interim (1989–2008 reanalyses. The simulated sea surface temperature (SST fields are verified against satellite AVHRR SST, and they are analysed to characterise the variability and trends of coastal upwelling in the region. Opposing trends in upwelling frequency are found at the northern limit, where upwelling has been decreasing in recent decades, and at its southern edge, where there is some evidence of increased upwelling. These results confirm previous observational studies and, more importantly, indicate that observed SST trends are not only due to changes in radiative or atmospheric heat fluxes alone but also due to changes in upwelling dynamics, suggesting that such a process may be relevant in climate change scenarios.

  19. Null infinity and extremal horizons in AdS-CFT

    International Nuclear Information System (INIS)

    Hickling, Andrew; Wiseman, Toby; Lucietti, James

    2015-01-01

    We consider AdS gravity duals to CFT on background spacetimes with a null infinity. Null infinity on the conformal boundary may extend to an extremal horizon in the bulk. For example it does so for Poincaré–AdS, although does not for planar Schwarzschild–AdS. If null infinity does extend into an extremal horizon in the bulk, we show that the bulk near-horizon geometry is determined by the geometry of the boundary null infinity. Hence the ‘infra-red’ geometry of the bulk is fixed by the large scale behaviour of the CFT spacetime. In addition the boundary stress tensor must have a particular decay at null infinity. As an application, we argue that for CFT on asymptotically flat backgrounds, any static bulk dual containing an extremal horizon extending from the boundary null infinity, must have the near-horizon geometry of Poincaré–AdS. We also discuss a class of boundary null infinity that cannot extend to a bulk extremal horizon, although we give evidence that they can extend to an analogous null surface in the bulk which possesses an associated scale-invariant ‘near-geometry’. (paper)

  20. Progressive-Era Resources on the World Wide Web.

    Science.gov (United States)

    Howenstein, Amanda

    1999-01-01

    Provides a list of Progressive-era websites with the address and a detailed description of each of the websites. Includes topics such as the womens suffrage movement, the Triangle Shirtwaist Factory fire, the Prohibition, labor-management conflicts, the Hull House, the Chicago fire, Emma Goldman, Progressive-era entertainment, and the Worlds Fair.…

  1. Assessing changes in extreme convective precipitation from a damage perspective

    Science.gov (United States)

    Schroeer, K.; Tye, M. R.

    2016-12-01

    Projected increases in high-intensity short-duration convective precipitation are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to which, not only are extreme events rare, but such small scale events are likely to be underreported where they don't coincide with the observation network. Rather than focus solely on the convective precipitation, understanding the characteristics of these extremes which drive damage may be more effective to assess future risks. Two sources of data are used in this study. First, sub-daily precipitation observations over the Southern Alps enable an examination of seasonal and regional patterns in high-intensity convective precipitation and their relationship with weather types. Secondly, reports of private loss and damage on a household scale are used to identify which events are most damaging, or what conditions potentially enhance the vulnerability to these extremes.This study explores the potential added value from including recorded loss and damage data to understand the risks from summertime convective precipitation events. By relating precipitation generating weather types to the severity of damage we hope to develop a mechanism to assess future risks. A further benefit would be to identify from damage reports the likely occurrence of precipitation extremes where no direct observations are available and use this information to validate remotely sensed observations.

  2. The Contribution of Extreme Precipitation to the Total Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-Qi

    2012-01-01

    Using daily precipitation data from weather stations in China, the variations in the contribution of extreme precipitation to the total precipitation are analyzed. It is found that extreme precipitation accounts for approximately one third of the total precipitation based on the overall mean for China. Over the past half century, extreme precipitation has played a dominant role in the year-to-year variability of the total precipitation. On the decadal time scale, the extreme precipitation makes different contributions to the wetting and drying regions of China. The wetting trends of particular regions are mainly attributed to increases in extreme precipitation; in contrast, the drying trends of other regions are mainly due to decreases in non-extreme precipitation.

  3. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  4. The ERA-EDTA today and tomorrow: a progress document by the ERA-EDTA Council.

    Science.gov (United States)

    Zoccali, Carmine; Arici, Mustafa; Blankestijn, Peter J; Bruchfeld, Annette; Capasso, Giovambattista; Fliser, Danilo; Fouque, Denis; Goumenos, Dimitrios; Ketteler, Markus; Malyszko, Jolanta; Massy, Ziad; Rychlík, Ivan; Spasovski, Goce

    2018-05-23

    Scientific societies are increasingly seen as central to the advancement of information sharing and collaboration among scientists and clinical investigators for the progress of medical research and the promotion of education, professional competence, integrity and quality studies. To more effectively serve the practicing nephrologists and investigators dedicated to renal science, the Council of the European Renal Association and European Dialysis and Transplantation Association (ERA-EDTA) reorganized and integrated the various activities of the society into two branches, the Clinical Nephrology Governance branch and the Renal Science branch. New affordable initiatives to promote research, education and professional development and to advocate for the recognition of chronic kidney disease as a major public health issue at the European level will be put in place and/or potentiated in the new organizational frame. Educational initiatives will be espoused to Continuous Professional Development and, starting from 2019, 14 Education & Continuous Professional Development courses will be held covering the full range of knowledge areas of modern nephrology. Consolidation and development is the short- and medium-term mantra of the ERA-EDTA. The society has a rich portfolio of successful activities and brilliant, creative scientists among its members. Integrating the various activities of the ERA-EDTA and treasuring the expertise and wisdom of its most accomplished members will facilitate collaborative research, education and its public impact at large.

  5. Regional climate change trends and uncertainty analysis using extreme indices: A case study of Hamilton, Canada

    OpenAIRE

    Razavi, Tara; Switzman, Harris; Arain, Altaf; Coulibaly, Paulin

    2016-01-01

    This study aims to provide a deeper understanding of the level of uncertainty associated with the development of extreme weather frequency and intensity indices at the local scale. Several different global climate models, downscaling methods, and emission scenarios were used to develop extreme temperature and precipitation indices at the local scale in the Hamilton region, Ontario, Canada. Uncertainty associated with historical and future trends in extreme indices and future climate projectio...

  6. Climate projections and extremes in dynamically downscaled CMIP5 model outputs over the Bengal delta: a quartile based bias-correction approach with new gridded data

    Science.gov (United States)

    Hasan, M. Alfi; Islam, A. K. M. Saiful; Akanda, Ali Shafqat

    2017-11-01

    In the era of global warning, the insight of future climate and their changing extremes is critical for climate-vulnerable regions of the world. In this study, we have conducted a robust assessment of Regional Climate Model (RCM) results in a monsoon-dominated region within the new Coupled Model Intercomparison Project Phase 5 (CMIP5) and the latest Representative Concentration Pathways (RCP) scenarios. We have applied an advanced bias correction approach to five RCM simulations in order to project future climate and associated extremes over Bangladesh, a critically climate-vulnerable country with a complex monsoon system. We have also generated a new gridded product that performed better in capturing observed climatic extremes than existing products. The bias-correction approach provided a notable improvement in capturing the precipitation extremes as well as mean climate. The majority of projected multi-model RCMs indicate an increase of rainfall, where one model shows contrary results during the 2080s (2071-2100) era. The multi-model mean shows that nighttime temperatures will increase much faster than daytime temperatures and the average annual temperatures are projected to be as hot as present-day summer temperatures. The expected increase of precipitation and temperature over the hilly areas are higher compared to other parts of the country. Overall, the projected extremities of future rainfall are more variable than temperature. According to the majority of the models, the number of the heavy rainy days will increase in future years. The severity of summer-day temperatures will be alarming, especially over hilly regions, where winters are relatively warm. The projected rise of both precipitation and temperature extremes over the intense rainfall-prone northeastern region of the country creates a possibility of devastating flash floods with harmful impacts on agriculture. Moreover, the effect of bias-correction, as presented in probable changes of both bias

  7. Analysis on the University’s Network Security Level System in the Big Data Era

    Science.gov (United States)

    Li, Tianli

    2017-12-01

    The rapid development of science and technology, the continuous expansion of the scope of computer network applications, has gradually improved the social productive forces, has had a positive impact on the increase production efficiency and industrial scale of China's different industries. Combined with the actual application of computer network in the era of large data, we can see the existence of influencing factors such as network virus, hacker and other attack modes, threatening network security and posing a potential threat to the safe use of computer network in colleges and universities. In view of this unfavorable development situation, universities need to pay attention to the analysis of the situation of large data age, combined with the requirements of network security use, to build a reliable network space security system from the equipment, systems, data and other different levels. To avoid the security risks exist in the network. Based on this, this paper will analyze the hierarchical security system of cyberspace security in the era of large data.

  8. Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland

    Directory of Open Access Journals (Sweden)

    Shaowei Ning

    2016-10-01

    Full Text Available The Global Precipitation Mission (GPM Core Observatory that was launched on 27 February 2014 ushered in a new era for estimating precipitation from satellites. Based on their high spatial–temporal resolution and near global coverage, satellite-based precipitation products have been applied in many research fields. The goal of this study was to quantitatively compare two of the latest GPM-era satellite precipitation products (GPM IMERG and GSMap-Gauge Ver. 6 with a network of 840 precipitation gauges over the Chinese mainland. Direct comparisons of satellite-based precipitation products with rain gauge observations over a 20 month period from April 2014 to November 2015 at 0.1° and daily/monthly resolutions showed the following results: Both of the products were capable of capturing the overall spatial pattern of the 20 month mean daily precipitation, which was characterized by a decreasing trend from the southeast to the northwest. GPM IMERG overestimated precipitation by approximately 0.09 mm/day while GSMap-Gauge Ver. 6 underestimated precipitation by −0.04 mm/day. The two satellite-based precipitation products performed better over wet southern regions than over dry northern regions. They also showed better performance in summer than in winter. In terms of mean error, root mean square error, correlation coefficient, and probability of detection, GSMap-Gauge was better able to estimate precipitation and had more stable quality results than GPM IMERG on both daily and monthly scales. GPM IMERG was more sensitive to conditions of no rain or light rainfall and demonstrated good capability of capturing the behavior of extreme precipitation events. Overall, the results revealed some limitations of these two latest satellite-based precipitation products when used over the Chinese mainland, helping to characterize some of the error features in these datasets for potential users.

  9. Scaling a Survey Course in Extreme Weather

    Science.gov (United States)

    Samson, P. J.

    2013-12-01

    "Extreme Weather" is a survey-level course offered at the University of Michigan that is broadcast via the web and serves as a research testbed to explore best practices for large class conduct. The course has led to the creation of LectureTools, a web-based student response and note-taking system that has been shown to increase student engagement dramatically in multiple courses by giving students more opportunities to participate in class. Included in this is the capacity to pose image-based questions (see image where question was "Where would you expect winds from the south") as well as multiple choice, ordered list, free response and numerical questions. Research in this class has also explored differences in learning outcomes from those who participate remotely versus those who physically come to class and found little difference. Moreover the technologies used allow instructors to conduct class from wherever they are while the students can still answer questions and engage in class discussion from wherever they are. This presentation will use LectureTools to demonstrate its features. Attendees are encouraged to bring a mobile device to the session to participate.

  10. Asynchronous schemes for CFD at extreme scales

    Science.gov (United States)

    Konduri, Aditya; Donzis, Diego

    2013-11-01

    Recent advances in computing hardware and software have made simulations an indispensable research tool in understanding fluid flow phenomena in complex conditions at great detail. Due to the nonlinear nature of the governing NS equations, simulations of high Re turbulent flows are computationally very expensive and demand for extreme levels of parallelism. Current large simulations are being done on hundreds of thousands of processing elements (PEs). Benchmarks from these simulations show that communication between PEs take a substantial amount of time, overwhelming the compute time, resulting in substantial waste in compute cycles as PEs remain idle. We investigate a novel approach based on widely used finite-difference schemes in which computations are carried out asynchronously, i.e. synchronization of data among PEs is not enforced and computations proceed regardless of the status of messages. This drastically reduces PE idle time and results in much larger computation rates. We show that while these schemes remain stable, their accuracy is significantly affected. We present new schemes that maintain accuracy under asynchronous conditions and provide a viable path towards exascale computing. Performance of these schemes will be shown for simple models like Burgers' equation.

  11. Extreme weather: Subtropical floods and tropical cyclones

    Science.gov (United States)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the

  12. Exploring the extreme gamma-ray sky with HESS

    International Nuclear Information System (INIS)

    Sol, Helene

    2006-01-01

    The international HESS experiment. High Energy Stereoscopic System, fully operational since January 2004, is opening a new era for extreme gamma-ray astronomy. Located in Namibia, it is now the most sensitive detector for cosmic sources of very high energy (VHE) gamma-rays, in the tera-electron-volt (TeV) range. In July 2005, it had already more than double the number of sources detected at such energies, with the discovery of several active galactic nuclei (AGN), supernova remnants and plerions, a binary pulsar system, a microquasar candidate, and a sample of yet unidentified sources. HESS has also provide for the first time gamma-ray images of extended sources with the first astrophysical jet resolved in gamma-rays, and the first mapping of a shell supernova remnant, which proves the efficiency of in situ acceleration of particles up to 100 TeV and beyond

  13. Electra en Piñera

    Directory of Open Access Journals (Sweden)

    Elina Miranda Cancela

    1991-12-01

    Full Text Available Este artigo e uma análise da Electra Garrigó de Virgilio Piñera, teatrólogo cubano, e das suas vinculações com o teatro trágico grego, sobretudo com a Electra de Sófocles, acrescida ainda de aproximações com autores modernos que trataram do mesmo tema. Apesar da inspiração grega, Piñera permanece um típico teatrólogo nacional, marcado pelos momentos de grande tensão social da sua época (a tragédia em apreço data de 1941. O conflito produzido pela excessiva autoridade dos pais sobre os filhos, latente neste mito, interessa-o por seu significado dentro da família cubana.

  14. Second Nuclear Era

    International Nuclear Information System (INIS)

    Weinberg, A.M.; Spiewak, I.; Barkenbus, J.N.; Livingston, R.S.; Phung, D.L.

    1984-03-01

    The Institute for Energy Analysis with support from The Andrew W. Mellon Foundation has studied the decline of the present nuclear era in the United States and the characteristics of a Second Nuclear Era which might be instrumental in restoring nuclear power to an appropriate place in the energy options of our country. The study has determined that reactors operating today are much safer than they were at the time of the TMI accident. A number of concepts for a supersafe reactor were reviewed and at least two were found that show considerable promise, the PIUS, a Swedish pressurized water design, and a gas-cooled modular design of German and US origin. Although new, safer, incrementally improved, conventional reactors are under study by the nuclear industry, the complete lack of new orders in the United States will slow their introduction and they are likely to be more expensive than present designs. The study recommends that supersafe reactors be taken seriously and that federal and private funds both be used to design and, if feasible, to build a prototype reactor of substantial size. 146 references, 8 figures, 2 tables

  15. Continuous Spatial Process Models for Spatial Extreme Values

    KAUST Repository

    Sang, Huiyan

    2010-01-28

    We propose a hierarchical modeling approach for explaining a collection of point-referenced extreme values. In particular, annual maxima over space and time are assumed to follow generalized extreme value (GEV) distributions, with parameters μ, σ, and ξ specified in the latent stage to reflect underlying spatio-temporal structure. The novelty here is that we relax the conditionally independence assumption in the first stage of the hierarchial model, an assumption which has been adopted in previous work. This assumption implies that realizations of the the surface of spatial maxima will be everywhere discontinuous. For many phenomena including, e. g., temperature and precipitation, this behavior is inappropriate. Instead, we offer a spatial process model for extreme values that provides mean square continuous realizations, where the behavior of the surface is driven by the spatial dependence which is unexplained under the latent spatio-temporal specification for the GEV parameters. In this sense, the first stage smoothing is viewed as fine scale or short range smoothing while the larger scale smoothing will be captured in the second stage of the modeling. In addition, as would be desired, we are able to implement spatial interpolation for extreme values based on this model. A simulation study and a study on actual annual maximum rainfall for a region in South Africa are used to illustrate the performance of the model. © 2009 International Biometric Society.

  16. Extreme Events and Energy Providers: Science and Innovation

    Science.gov (United States)

    Yiou, P.; Vautard, R.

    2012-04-01

    Most socio-economic regulations related to the resilience to climate extremes, from infrastructure or network design to insurance premiums, are based on a present-day climate with an assumption of stationarity. Climate extremes (heat waves, cold spells, droughts, storms and wind stilling) affect in particular energy production, supply, demand and security in several ways. While national, European or international projects have generated vast amounts of climate projections for the 21st century, their practical use in long-term planning remains limited. Estimating probabilistic diagnostics of energy user relevant variables from those multi-model projections will help the energy sector to elaborate medium to long-term plans, and will allow the assessment of climate risks associated to those plans. The project "Extreme Events for Energy Providers" (E3P) aims at filling a gap between climate science and its practical use in the energy sector and creating in turn favourable conditions for new business opportunities. The value chain ranges from addressing research questions directly related to energy-significant climate extremes to providing innovative tools of information and decision making (including methodologies, best practices and software) and climate science training for the energy sector, with a focus on extreme events. Those tools will integrate the scientific knowledge that is developed by scientific communities, and translate it into a usable probabilistic framework. The project will deliver projection tools assessing the probabilities of future energy-relevant climate extremes at a range of spatial scales varying from pan-European to local scales. The E3P project is funded by the Knowledge and Innovation Community (KIC Climate). We will present the mechanisms of interactions between academic partners, SMEs and industrial partners for this project. Those mechanisms are elementary bricks of a climate service.

  17. Modeling annual extreme temperature using generalized extreme value distribution: A case study in Malaysia

    Science.gov (United States)

    Hasan, Husna; Salam, Norfatin; Kassim, Suraiya

    2013-04-01

    Extreme temperature of several stations in Malaysia is modeled by fitting the annual maximum to the Generalized Extreme Value (GEV) distribution. The Augmented Dickey Fuller (ADF) and Phillips Perron (PP) tests are used to detect stochastic trends among the stations. The Mann-Kendall (MK) test suggests a non-stationary model. Three models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. The results show that Subang and Bayan Lepas stations favour a model which is linear for the location parameters while Kota Kinabalu and Sibu stations are suitable with a model in the logarithm of the scale parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.

  18. Sino­Pakistan Relations and the Challenges of Post-­Cold War Era

    Directory of Open Access Journals (Sweden)

    Mutahir Ahmed

    2015-04-01

    Full Text Available China has emerged as the world’s second largest economy, and the largest exporter of goods with 9.6 per cent of the global share. Moreover, the last two decades have seen China emerging as an international and regional power of the 21st century. Thus, in order to continue with the economic benefits, China wants peace and stability as well as to play an active role on international and regional fronts. On the other hand, Pakistan, the world’s sixth most populous country, is a major power of South Asia. While having a developed infrastructure and vibrant political and security institutions, Pakistan is nevertheless currently facing many challenges on the economic front, including political instability and religious extremism. This paper is an attempt to analyze the challenges faced by both China and Pakistan in the post-Cold War era.

  19. Is prescribed lower extremity weight-bearing status after geriatric lower extremity trauma associated with increased mortality?

    Science.gov (United States)

    Gitajn, Ida Leah; Connelly, Daniel; Mascarenhas, Daniel; Breazeale, Stephen; Berger, Peter; Schoonover, Carrie; Martin, Brook; O'Toole, Robert V; Pensy, Raymond; Sciadini, Marcus

    2018-02-01

    Evaluate whether mortality after discharge is elevated in geriatric fracture patients whose lower extremity weight-bearing is restricted. Retrospective cohort study SETTING: Urban Level 1 trauma center PATIENTS/PARTICIPANTS: 1746 patients >65 years of age INTERVENTION: Post-operative lower extremity weight-bearing status MAIN OUTCOME MEASURE: Mortality, as determined by the Social Security Death Index RESULTS: Univariate analysis demonstrated that patients who were weight-bearing as tolerated on bilateral lower extremities (BLE) had significantly higher 5-year mortality compared to patients with restricted weight-bearing on one lower extremity and restricted weight-bearing on BLE (30%, 21% and 22% respectively, p bearing as tolerated on BLE, restricted weight-bearing on one lower extremity had a hazard ratio (HR) of 0.97 (95% confidence interval 0.78 to 1.20, p = 0.76) and restricted weight-bearing in BLE had a HR of 0.91 (95% confidence interval 0.60 to 1.36, p = 0.73). In geriatric patients, prescribed weight-bearing status did not have a statistically significant association with mortality after discharge, when controlling for age, sex, body mass index, medical comorbidities, Injury Severity Scale (ISS), mechanism of injury, nonoperative treatment and admission GCS. This remained true in when the analysis was restricted to operative injuries only. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enhanced Recovery After Surgery (ERAS) - The Evidence in Geriatric Emergency Surgery

    DEFF Research Database (Denmark)

    Paduraru, Mihai; Ponchietti, Luca; Casas, Isidro Martinez

    2017-01-01

    Background: Geriatric surgery is rising and projected to continue at a greater rate. There is already concern about the poor outcomes for the emergency surgery in elderly. How to manage the available resources to improve outcomes in this group of patients is an important object of debate...... to conventional care. Emergency surgical patients also had fewer postoperative complications with ERAS compared to conventional care. Hospital stay was reduced in 2 out of 3 studies for emergency surgery.Conclusions:ERAS can be safely applied to elderly and emergency patients with a reduction in postoperative....... OBJECTIVES: We aimed to determine the feasibility and safety of applying ERAS pathways to emergency elderly surgical patients. METHOD: Two searches were undertaken for ERAS protocols in elderly patients and emergency surgery, in order to gather evidence in relation to ERAS in geriatric emergency patients...

  1. Scale dependency of regional climate modeling of current and future climate extremes in Germany

    Science.gov (United States)

    Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver

    2017-11-01

    A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.

  2. Causal Analysis of the Unanticipated Extremity Exposure at HFEF

    Energy Technology Data Exchange (ETDEWEB)

    David E. James; Charles R. Posegate; Thomas P. Zahn; Alan G. Wagner

    2011-11-01

    This report covers the unintended extremity exposure to an operator while handling a metallurgical mount sample of irradiated fuel following an off-scale high beta radiation reading of the sample. The decision was made to continue working after the meter indicated high off-scale by the HPT Supervisor, which resulted in the operator at the next operation being exposed.

  3. Projecting changes in regional temperature and precipitation extremes in the United States

    OpenAIRE

    Justin T. Schoof; Scott M. Robeson

    2016-01-01

    Regional and local climate extremes, and their impacts, result from the multifaceted interplay between large-scale climate forcing, local environmental factors (physiography), and societal vulnerability. In this paper, we review historical and projected changes in temperature and precipitation extremes in the United States, with a focus on strengths and weaknesses of (1) commonly used definitions for extremes such as thresholds and percentiles, (2) statistical approaches to quantifying change...

  4. Mapping probabilities of extreme continental water storage changes from space gravimetry

    Science.gov (United States)

    Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.

    2016-12-01

    Using data from the Gravity Recovery and Climate Experiment (GRACE) mission, we derive statistically robust 'hotspot' regions of high probability of peak anomalous - i.e. with respect to the seasonal cycle - water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/mon). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hotspot regions to GRACE results, and that most exceptions are located in the Tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020 it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e. combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE-FO. J. Kusche et al. (2016): Mapping probabilities of extreme continental water storage changes from space gravimetry, Geophysical Research Letters, accepted online, doi:10.1002/2016GL069538

  5. Characterization and prediction of extreme events in turbulence

    Science.gov (United States)

    Fonda, Enrico; Iyer, Kartik P.; Sreenivasan, Katepalli R.

    2017-11-01

    Extreme events in Nature such as tornadoes, large floods and strong earthquakes are rare but can have devastating consequences. The predictability of these events is very limited at present. Extreme events in turbulence are the very large events in small scales that are intermittent in character. We examine events in energy dissipation rate and enstrophy which are several tens to hundreds to thousands of times the mean value. To this end we use our DNS database of homogeneous and isotropic turbulence with Taylor Reynolds numbers spanning a decade, computed with different small scale resolutions and different box sizes, and study the predictability of these events using machine learning. We start with an aggressive data augmentation to virtually increase the number of these rare events by two orders of magnitude and train a deep convolutional neural network to predict their occurrence in an independent data set. The goal of the work is to explore whether extreme events can be predicted with greater assurance than can be done by conventional methods (e.g., D.A. Donzis & K.R. Sreenivasan, J. Fluid Mech. 647, 13-26, 2010).

  6. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    Science.gov (United States)

    van Oldenborgh, Geert Jan; van der Wiel, Karin; Sebastian, Antonia; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-12-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1 °C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2 × CC scaling, the second 1 × CC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston’s flood protection system.

  7. Extreme scenarios: the tightest possible constraints on the power spectrum due to primordial black holes

    Science.gov (United States)

    Cole, Philippa S.; Byrnes, Christian T.

    2018-02-01

    Observational constraints on the abundance of primordial black holes (PBHs) constrain the allowed amplitude of the primordial power spectrum on both the smallest and the largest ranges of scales, covering over 20 decades from 1‑1020/ Mpc. Despite tight constraints on the allowed fraction of PBHs at their time of formation near horizon entry in the early Universe, the corresponding constraints on the primordial power spectrum are quite weak, typically Script PRlesssim 10‑2 assuming Gaussian perturbations. Motivated by recent claims that the evaporation of just one PBH would destabilise the Higgs vacuum and collapse the Universe, we calculate the constraints which follow from assuming there are zero PBHs within the observable Universe. Even if evaporating PBHs do not collapse the Universe, this scenario represents the ultimate limit of observational constraints. Constraints can be extended on to smaller scales right down to the horizon scale at the end of inflation, but where power spectrum constraints already exist they do not tighten significantly, even though the constraint on PBH abundance can decrease by up to 46 orders of magnitude. This shows that no future improvement in observational constraints can ever lead to a significant tightening in constraints on inflation (via the power spectrum amplitude). The power spectrum constraints are weak because an order unity perturbation is required in order to overcome pressure forces. We therefore consider an early matter dominated era, during which exponentially more PBHs form for the same initial conditions. We show this leads to far tighter constraints, which approach Script PRlesssim10‑9, albeit over a smaller range of scales and are very sensitive to when the early matter dominated era ends. Finally, we show that an extended early matter era is incompatible with the argument that an evaporating PBH would destroy the Universe, unless the power spectrum amplitude decreases by up to ten orders of magnitude.

  8. Seasonal Cycle in German Daily Precipitation Extremes

    Directory of Open Access Journals (Sweden)

    Madlen Fischer

    2018-01-01

    Full Text Available The seasonal cycle of extreme precipitation in Germany is investigated by fitting statistical models to monthly maxima of daily precipitation sums for 2,865 rain gauges. The basis is a non-stationary generalized extreme value (GEV distribution variation of location and scale parameters. The negative log-likelihood serves as the forecast error for a cross validation to select adequate orders of the harmonic functions for each station. For nearly all gauges considered, the seasonal model is more appropriate to estimate return levels on a monthly scale than a stationary GEV used for individual months. The 100-year return-levels show the influence of cyclones in the western, and convective events in the eastern part of Germany. In addition to resolving the seasonality, we use a simulation study to show that annual return levels can be estimated more precisely from a monthly-resolved seasonal model than from a stationary model based on annual maxima.

  9. Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake

    Science.gov (United States)

    Ulrich, T.; Gabriel, A. A.; Madden, E. H.; Wollherr, S.; Uphoff, C.; Rettenberger, S.; Bader, M.

    2017-12-01

    SeisSol (www.seissol.org) is an open-source software package based on an arbitrary high-order derivative Discontinuous Galerkin method (ADER-DG). It solves spontaneous dynamic rupture propagation on pre-existing fault interfaces according to non-linear friction laws, coupled to seismic wave propagation with high-order accuracy in space and time (minimal dispersion errors). SeisSol exploits unstructured meshes to account for complex geometries, e.g. high resolution topography and bathymetry, 3D subsurface structure, and fault networks. We present the up-to-date largest (1500 km of faults) and longest (500 s) dynamic rupture simulation modeling the 2004 Sumatra-Andaman earthquake. We demonstrate the need for end-to-end-optimization and petascale performance of scientific software to realize realistic simulations on the extreme scales of subduction zone earthquakes: Considering the full complexity of subduction zone geometries leads inevitably to huge differences in element sizes. The main code improvements include a cache-aware wave propagation scheme and optimizations of the dynamic rupture kernels using code generation. In addition, a novel clustered local-time-stepping scheme for dynamic rupture has been established. Finally, asynchronous output has been implemented to overlap I/O and compute time. We resolve the frictional sliding process on the curved mega-thrust and a system of splay faults, as well as the seismic wave field and seafloor displacement with frequency content up to 2.2 Hz. We validate the scenario by geodetic, seismological and tsunami observations. The resulting rupture dynamics shed new light on the activation and importance of splay faults.

  10. Aplikasi Citizen Journalism di Era Konvergensi Media

    Directory of Open Access Journals (Sweden)

    Rahmat Edi Irawan

    2014-10-01

    Full Text Available Citizen journalism has now become one of the most developed television program concepts. If the concept was initially more widely used in radio and online media, this time with easier and cheaper technology coverage and delivery of images, it is a concept that provides a place for people to become amateur journalist that can also be easily applied in the medium of television. Research raised the issue on how the concept and implementation of citizen journalism on television in the era of media convergence. The purpose of this study is to explain concepts and demonstrate the implementation of citizen journalism on television in the era of media convergence. Research used qualitative method in which data were obtained using literature study. Results of the study showed that the implementation of citizen journalism on television is also increasingly facilitated by the entry of the television in the era of media convergence, or different media mingle, such as television with printed, radio, and Internet media. The era of media convergence makes the concept of citizen journalism can be more developed, because the platform or media distribution is also increasingly varied for amateur journalist. However, the system equipment that must be provided, human resources that must be owned, as well as huge capital to be owned make a few television stations open a lot of platforms to provide space for amateur journalist in citizen journalism. 

  11. La era de la información

    OpenAIRE

    Florez Calderón, Mauro

    2011-01-01

    La revolución de la información basada en la información tiene como límite las fronteras del conocimiento. La información a diferencia de un bien material es inalienable, acumulativa y no produce los tipos de deterioro ambiental creados por la industria; por lo anterior, algunos especialistas, a la era de la información la denominan era Post-industrial. Si es necio pretender entender los procesos producidos por la revolución industrial, con una mentalidad pastoril, mucho más necio será tratar...

  12. VALUATION IN THE CONSTITUTIONAL ERA

    African Journals Online (AJOL)

    Brimer

    16 ..... stem from the pre-constitutional era, and the constitutional framework and its legitimate reform efforts. A decision on what is just ...... Carroll L Alice's Adventures in Wonderland (Digital Scanning Scituate MA. 2007). Dagan 1999 Va L Rev.

  13. Tarbijalepingud rahvusvahelises eraõiguses / Margus Kingisepp

    Index Scriptorium Estoniae

    Kingisepp, Margus, 1969-

    1997-01-01

    Tarbijalepingute reguleerimisest erinevates riikides, 1955. a. Haagi konventsioonist ja 1980. a. Rooma konventsioonist, rahvusvahelisest jurisdiktsioonist tarbijalepingute puhul ning rahvusvahelise eraõiguse sätetest Eesti õiguses

  14. Web-based Visual Analytics for Extreme Scale Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Evans, Katherine J [ORNL; Harney, John F [ORNL; Jewell, Brian C [ORNL; Shipman, Galen M [ORNL; Smith, Brian E [ORNL; Thornton, Peter E [ORNL; Williams, Dean N. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via new visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.

  15. Leprosy: International Public Health Policies and Public Health Eras

    Directory of Open Access Journals (Sweden)

    Niyi Awofeso

    2011-09-01

    Full Text Available Public health policies continue to play important roles in national and international health reforms. However, the influence and legacies of the public health eras during which such policies are formulated remain largely underappreciated. The limited appreciation of this relationship may hinder consistent adoption of public health policies by nation-states, and encumber disinvestment from ineffective or anachronistic policies. This article reviews seven public health eras and highlights how each era has influenced international policy formulation for leprosy control—“the fertile soil for policy learning”. The author reiterates the role of health leadership and health activism in facilitating consistency in international health policy formulation and implementation for leprosy control.

  16. Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz

    OpenAIRE

    Mainik, Georg; Mitov, Georgi; Rüschendorf, Ludger

    2015-01-01

    Using daily returns of the S&P 500 stocks from 2001 to 2011, we perform a backtesting study of the portfolio optimization strategy based on the extreme risk index (ERI). This method uses multivariate extreme value theory to minimize the probability of large portfolio losses. With more than 400 stocks to choose from, our study seems to be the first application of extreme value techniques in portfolio management on a large scale. The primary aim of our investigation is the potential of ERI in p...

  17. Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan

    Directory of Open Access Journals (Sweden)

    Chunhung WU

    2017-11-01

    Full Text Available This study analyzed the characteristics of, and locations prone to, extreme rainfall-induced landslides in three watersheds in Taiwan, as well as the long-term evolution of landslides in the Laonong River watershed (LRW, based on multiannual landslide inventories during 2003–2014. Extreme rainfall-induced landslides were centralized beside sinuous or meandering reaches, especially those with large sediment deposition. Landslide-prone strata during extreme rainfall events were sandstone and siltstone. Large-scale landslides were likely to occur when the maximum 6-h accumulated rainfall exceeded 420 mm. All of the large-scale landslides induced by short-duration and high-intensity rainfall developed from historical small-scale landslides beside the sinuous or meandering reaches or in the source area of rivers. However, most of the large-scale landslides induced by long-duration and high-intensity rainfall were new but were still located beside sinuous or meandering reaches or near the source. The frequency density of landslides under long-duration and high-intensity rainfall was larger by one order than those under short-duration rainfall, and the β values in the landslide frequency density-area analysis ranged from 1.22 to 1.348. The number of downslope landslides was three times larger than those of midslope and upslope landslides. The extreme rainfall-induced landslides occurred in the erosion gullies upstream of the watersheds, whereas those beside rivers were downstream. Analysis of the long-term evolution of landslides in the LRW showed that the geological setting, sinuousness of reaches, and sediment yield volume determined their location and evolution. Small-scale landslides constituted 71.9–96.2% of the total cases from 2003 to 2014, and were more easily induced after Typhoon Morakot (2009. The frequency density of landslides after Morakot was greater by one order than before, with 61% to 68% of total landslides located in the

  18. CENET: Cost Efficiency in a New Era with new Technology

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, Jan E.; Lund, Bjoernar; Bos, Christian F.M.; Stokka, Sigmund

    1997-12-31

    This report relates to the CENET (Cost Efficiency in a New Era with new Technology) project the oil and gas in Europe. Key objectives of the CENET project are to determine the role of RTD (Research and Technology Development) in European oil and gas industry towards improved value and cost reduction with a particular focus on the means of developing offshore European marginal fields commercially, to identify RTD areas with the largest potential for improved value and cost reduction and technological developments and advances which are likely to increase European competitiveness internationally, and to provide guidance to European governments when deciding RTD priorities. A new era with new technology concerns increased oil and gas potential during the next century, a new era with clean, safe and cost efficient energy production, a new era with a new business structure, and globalization of the industry. 44 tabs., 5 figs., 23 tabs.

  19. [Extreme Climatic Events in the Altai Republic According to Dendrochronological Data].

    Science.gov (United States)

    Barinov, V V; Myglan, V S; Nazarov, A N; Vaganov, E A; Agatova, A R; Nepop, R K

    2016-01-01

    The results of dating of extreme climatic events by damage to the anatomical structure and missing tree rings of the Siberian larch in the upper forest boundary of the Altai Republic are given. An analysis of the spatial distribution of the revealed dates over seven plots (Kokcy, Chind, Ak-ha, Jelo, Tute, Tara, and Sukor) allowed us to distinguish the extreme events on interregional (1700, 1783, 1788, 1812, 1814, 1884), regional (1724, 1775, 1784, 1835, 1840, 1847, 1850, 1852, 1854, 1869, 1871, 1910, 1917, 1927, 1938, 1958, 1961), and local (1702, 1736, 1751, 1785, 1842, 1843,1874, 1885, 1886, 1919, 2007, and 2009) scales. It was shown that the events of an interregional scale correspond with the dates of major volcanic eruptions (Grimsvotn, Lakagigar, Etna, Awu, Tambora, Soufriere St. Vinsent, Mayon, and Krakatau volcanos) and extreme climatic events, crop failures, lean years, etc., registered in historical sources.

  20. Spatio-temporal dynamics and synoptic characteristics of wet and drought extremes in Northern Eurasia

    Science.gov (United States)

    Utkuzova, Dilyara; Khan, Valentina

    2015-04-01

    Synoptical-statistical analysis has been conducted using SPI index calculated for 478 stations with records from 1966 through 2013. Different parameters of SPI frequency distribution and long-term tendencies were calculated as well as spatial characteristics indicating drought and wetness propagation. Results of analysis demonstrate that during last years there is a tendency of increasing of the intensity of draught and wetness extremes over Russia. There are fewer droughts in the northern regions. The drought propagation for the European territory of Russia is decreasing in June and August, and increasing in July. The situation is opposite for the wetness tendencies. For the Asian territory of Russia, the drought propagation is significantly increasing in July along with decreasing wetness trend. Synoptic conditions favorable for the formation of wet and drought extremes were identified by comparing synoptic charts with the spatial patterns of SPI. For synoptic analysis, episodes of extremely wet (6 episodes for the APR and 7 episodes for the EPR) and drought (6 episodes for the APR and 6 for the EPR) events were classified using A. Katz' typology of weather regimes. For European part of Russia, extreme DROUGHT events are linked to the weather type named "MIXED", for Asian part of Russia - the type "CENTRAL". For European part of Russia, extreme WET events associated with "CENTRAL" type. There is a displacement of the planetary frontal zone into southward direction approximately for 5-25 degrees relatively to normal climatological position during WET extreme events linked to «EASTERN» classification type. Intercomparison of SPI calculated on the base of NOAA NCEP CPC CAMS for the same period and with the resolution 0,5 degree, month precipitation data, Era-Interim Daily fields archive for the period 1979-2014 with the resolution 0,5 degree reanalysis and observational precipitation data was done. The results of comparative analysis has been discussed.

  1. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis

    NARCIS (Netherlands)

    Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B.A.

    2017-01-01

    One of the main consequences of mean sea level rise (SLR) on human settlements is an increase in flood risk due to an increase in the intensity and frequency of extreme sea levels (ESL). While substantial research efforts are directed towards quantifying projections and uncertainties of future

  2. Identitas Moral: Rekonstruksi Identitas Keindonesiaan pada Era Globalisasi Budaya

    Directory of Open Access Journals (Sweden)

    Leonardus Pandu Hapsoro

    2016-06-01

    Full Text Available Tulisan ini membahas mengenai proses rekonstruksi identitas keindonesiaan para aktor dalam komunitas Kultura Indonesia Star Society (KISS pada era globalisasi budaya. Dengan menggunakan metode penelitian kualitatif dan kerangka pemikiran Zygmunt Bauman antara modernitas cair dan agensi moral, tulisan ini menunjukkan bagaimana proses rekonstruksi identitas moral berawal dari keresahan aktor terhadap kondisi budaya tradisional pada era globalisasi. Penulis berpendapat bahwa ekspresi dari identitas aktor melalui gerakan sosial ini akan berperan menciptakan keberagaman budaya pada era globalisasi dan modernitas cair. Penulis ingin bergerak menjauh dari pandangan agentless dalam proses globalisasi dengan melihat dinamika agensi. Melalui agen dan bentuk agensi moral, penulis berpendapat bahwa di dalam proses dan dampak globalisasi, manusia tidak tertahan pada kondisi "adalah" atau tekanan struktural, melainkan terdapat optimisme untuk melihat suatu harapan atas kondisi yang "seharusnya" atau lebih baik melalui kesadaran identitas dan moral.This study discusses about the process of identity construction of actor  in the KISS community in an era of cultural globalization. This study will explain how the construction process of moral identity actor is formed in the era of cultural globalization. Moral identity construction of the actor in the era of globalization will be the anchor for agents to act and preserve the traditional culture with motivation, passion, and hope. This study used a qualitative approach by using the framework of Zygmunt Bauman concept of liquid modernity and moral agency. Through the framework of moral agency, this study shows how the construction of moral identity process begins with the actor disquite over the state of traditional culture in globalization era. Moral identity of the actor is capable of forming social practices agent in a daily life. First, by forming a community KISS. Second, as the cornerstone of actors to act

  3. Are extreme hydro-meteorological events a prerequisite for extreme water quality impacts? Exploring climate impacts on inland and coastal waters

    Science.gov (United States)

    Michalak, A. M.; Balaji, V.; Del Giudice, D.; Sinha, E.; Zhou, Y.; Ho, J. C.

    2017-12-01

    Questions surrounding water sustainability, climate change, and extreme events are often framed around water quantity - whether too much or too little. The massive impacts of extreme water quality impairments are equally compelling, however. Recent years have provided a host of compelling examples, with unprecedented harmful algal blooms developing along the West coast, in Utah Lake, in Lake Erie, and off the Florida coast, and huge hypoxic dead zones continuing to form in regions such as Lake Erie, the Chesapeake Bay, and the Gulf of Mexico. Linkages between climate change, extreme events, and water quality impacts are not well understood, however. Several factors explain this lack of understanding, including the relative complexity of underlying processes, the spatial and temporal scale mismatch between hydrologists and climatologists, and observational uncertainty leading to ambiguities in the historical record. Here, we draw on a number of recent studies that aim to quantitatively link meteorological variability and water quality impacts to test the hypothesis that extreme water quality impairments are the result of extreme hydro-meteorological events. We find that extreme hydro-meteorological events are neither always a necessary nor a sufficient condition for the occurrence of extreme water quality impacts. Rather, extreme water quality impairments often occur in situations where multiple contributing factors compound, which complicates both attribution of historical events and the ability to predict the future incidence of such events. Given the critical societal importance of water quality projections, a concerted program of uncertainty reduction encompassing observational and modeling components will be needed to examine situations where extreme weather plays an important, but not solitary, role in the chain of cause and effect.

  4. Reaping the space investment. [Shuttle era geosynchronous satellite based technological trends

    Science.gov (United States)

    Calio, A. J.

    1979-01-01

    By 1999 operational space systems will be implemented routinely on a worldwide scale in many areas vital to human survival and life quality. Geosynchronous-based monitoring and observation will be extensively used. The Shuttle era will bring in the capability to allow monitoring and identifying pollution sources which fail to stay within required limits. Remotely sensed data over land masses will provide needed facts on renewable and nonrenewable earth resources. New instruments and techniques will have been developed to provide geologists with clues to the declining number of deposits of fuels and minerals. Also, practical methods for predicting earthquakes will have been elaborated by 1999. Communications will see implementation of many of the technological goals of 1978.

  5. THE APPEARANCE OF GOVERNMENT BUREAUCRACY IN QUANTUM ERA

    OpenAIRE

    Kadir, Gau

    2015-01-01

    This study will answer three main questions: 1) how is the reduction of Weber???s theory in the bureaucracy appearance?; 2) How is the model of government bureaucracy in rationalistic and quantum era?; and 3) how is the reality of government bureaucracy reformation model in rationalistic and quantum era? This study was employed empirically by using qualitative method and content analysis techniques with the focus on the bureaucracy reformation as a result of rational thinking application in q...

  6. Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era

    Energy Technology Data Exchange (ETDEWEB)

    Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal; Cong, Jason

    2016-11-14

    Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.

  7. Going Extreme For Small Solutions To Big Environmental Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, Christopher E.

    2011-03-31

    This chapter is devoted to the scale, scope, and specific issues confronting the cleanup and long-term disposal of the U.S. nuclear legacy generated during WWII and the Cold War Era. The research reported is aimed at complex microbiological interactions with legacy waste materials generated by past nuclear production activities in the United States. The intended purpose of this research is to identify cost effective solutions to the specific problems (stability) and environmental challenges (fate, transport, exposure) in managing and detoxifying persistent contaminant species. Specifically addressed are high level waste microbiology and bacteria inhabiting plutonium laden soils in the unsaturated subsurface.

  8. Using damage data to estimate the risk from summer convective precipitation extremes

    Science.gov (United States)

    Schroeer, Katharina; Tye, Mari

    2017-04-01

    This study explores the potential added value from including loss and damage data to understand the risks from high-intensity short-duration convective precipitation events. Projected increases in these events are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows, and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to this, not only are extreme events rare, but such small-scale events are likely to be underreported where they do not coincide with the observation network. Reports of private loss and damage on a local administrative unit scale (LAU 2 level) are used to explore the relationship between observed rainfall events and damages reportedly related to hydro-meteorological processes. With 480 Austrian municipalities located within our south-eastern Alpine study region, the damage data are available on a much smaller scale than the available rainfall data. Precipitation is recorded daily at 185 gauges and 52% of these stations additionally deliver sub-hourly rainfall information. To obtain physically plausible information, damage and rainfall data are grouped and analyzed on a catchment scale. The data indicate that rainfall intensities are higher on days that coincide with a damage claim than on days for which no damage was reported. However, approximately one third of the damages related to hydro-meteorological hazards were claimed on days for which no rainfall was recorded at any gauge in the respective catchment. Our goal is to assess whether these events indicate potential extreme events missing in the observations. Damage always is a consequence of an asset being exposed and susceptible to a hazardous process, and naturally, many factors influence whether an extreme rainfall event causes damage. We set up a statistical

  9. Nonlinear wave-mixing processes in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Misoguti, L.; Christov, I. P.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.

    2005-01-01

    We present data from two-color high-order harmonic generation in a hollow waveguide, that suggest the presence of a nonlinear-optical frequency conversion process driven by extreme ultraviolet light. By combining the fundamental and second harmonic of an 800 nm laser in a hollow-core fiber, with varying relative polarizations, and by observing the pressure and power scaling of the various harmonic orders, we show that the data are consistent with a picture where we drive the process of high-harmonic generation, which in turn drives four-wave frequency mixing processes in the extreme EUV. This work promises a method for extending nonlinear optics into the extreme ultraviolet region of the spectrum using an approach that has not previously been considered, and has compelling implications for generating tunable light at short wavelengths

  10. Conservative treatment of soft tissue sarcomas of the extremities. Functional evaluation with LENT-SOMA scales and the Enneking score

    International Nuclear Information System (INIS)

    Tawfiq, N.; Lagarde, P.; Thomas, L.; Kantor, G.; Stockle, E.; Bui, B.N.

    2000-01-01

    Objective. - The aim of this prospective study is the feasibility of late effects assessment by LENT-SOMA scales after conservative treatment of soft tissue sarcomas of the extremities and a comparison with the functional evaluation by the Enneking score. Patients and methods. - During the systematic follow-up consultations, a series of 32 consecutive patients was evaluated in terms of late effects by LENT SOMA scales and functional results by the Enneking score. The median time after treatment was 65 months. The treatment consisted of conservative surgery (all cases) followed by radiation therapy (29 cases), often combined with adjuvant therapy (12 concomitant radio-chemotherapy association cases out of 14). The assessment of the toxicity was retrospective for acute effects and prospective for the following late tissue damage: skin/subcutaneous tissues, muscles/soft tissues and peripheral nerves. Results. -According to the Enneking score, the global score for the overall series was high (24/30) despite four the scores zero for the psychological acceptance. According to LENT SOMA scales, a low rate of severe sequelae (grade 3-4) was observed. The occurrence of high-grade sequelae and their functional consequences were not correlated with quality of exeresis, dose of radiotherapy or use of concomitant chemotherapy. A complementarity was observed between certain factors of the Enneking score and some criteria of the LENTSOMA scales, especially of muscles/soft tissues. Conclusion. -The good quality of functional results was confirmed by the two mean scoring systems for late normal tissue damage. The routine use of LENT-SOMA seems to be more time consuming than the Enneking score (mean time of scoring: 1 3 versus five minutes). The LENT-SOMA scales are aimed at a detailed description of late toxicity and sequelae while the Enneking score provides a more global evaluation, including the psychological acceptance of treatment. The late effects assessment by the LENT

  11. 75 FR 13319 - NextEra Energy Seabrook, LLC, et al.

    Science.gov (United States)

    2010-03-19

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-443; NRC-2010-0108] NextEra Energy Seabrook, LLC, et al.,* Seabrook Station, Unit No. 1 Environmental Assessment and Finding of No Significant Impact * NextEra Energy Seabrook, LLC is authorized to act as agent for the Hudson Light & Power Department...

  12. Parathyroid carcinoma survival: improvements in the era of intact parathyroid hormone monitoring?

    Directory of Open Access Journals (Sweden)

    Steve R. Martinez

    2013-02-01

    Full Text Available The intact parathyroid hormone (iPTH assay is a critical test in the diagnosis and management of PTH-mediated hypercalcemia, including parathyroid carcinoma (PCa. We hypothesized that the survival of patients diagnosed with PCa has improved since adoption of the iPTH assay into clinical practice. We identified all confirmed cases of PCa within the Surveillance, Epidemiology and End Results database from 1973 to 2006. Patients were categorized into two eras based upon introduction of the iPTH assay: 1973 to 1997 (era I and 1997 to 2006 (era II, when the iPTH assay was in standard use. We estimated overall survival (OS and disease-specific survival (DSS using the Kaplan-Meier method, with differences among survival curves assessed via log rank. Multivariate Cox proportional hazards models compared the survival rates between treatment eras while controlling for patient age, sex, race/ethnicity, tumor size, nodal status, extent of disease, and type of surgery. Multivariate models included patients undergoing potentially curative surgery and excluded those with dis- tant metastases. Risks of overall and disease-specific mortality were reported as hazard ratios with 95% confidence intervals. Study criteria were met by 370 patients. Median survival was 15.6 years. Five-year rates of OS and DSS were 78% and 88% for era I and 82% and 96% for era II. On multivariate analysis, age, black race, and unknown extent of disease predicted an increased risk of death from any cause. Treatment era did not predict OS. No factor predicted PCa-specific mortality. In multivariate analysis, neither OS nor DSS have improved in the current era that utilizes iPTH for the detection and management of PCa.

  13. Technology: A New Era in Education

    Science.gov (United States)

    Cunningham, William G.

    1977-01-01

    Teachers and technologists have lived apart, with much doubt on both sides. The author suggests that collaboration, mutual trust, and respect, will usher in a new era for effective education. (Editor)

  14. Energy: a new era

    International Nuclear Information System (INIS)

    Moore, Curtis.

    1995-01-01

    The world appears on the verge of a new era of advanced technologies and new fuels. Although such a transformation is unlikely to take place overnight, change is clearly coming. The question is how much and how fast: Will energy transition amount to a technological revolution, or merely an evolution? A detailed evaluation of the various aspects is given. (author). 23 refs

  15. Understanding extreme sea levels for coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter

  16. A short generic measure of work stress in the era of globalization: effort-reward imbalance.

    Science.gov (United States)

    Siegrist, Johannes; Wege, Natalia; Pühlhofer, Frank; Wahrendorf, Morten

    2009-08-01

    We evaluate psychometric properties of a short version of the original effort-reward imbalance (ERI) questionnaire. This measure is of interest in the context of assessing stressful work conditions in the era of economic globalization. In a representative sample of 10,698 employed men and women participating in the longitudinal Socio-Economic Panel (SOEP) in Germany, a short version of the ERI questionnaire was included in the 2006 panel wave. Structural equation modeling and logistic regression analysis were applied. In addition to satisfactory internal consistency of scales, a model representing the theoretical structure of the scales provided the best data fit in a competitive test (RMSEA = 0.059, CAIC = 4124.19). Scoring high on the ERI scales was associated with elevated risks of poor self-rated health. This short version of the ERI questionnaire reveals satisfactory psychometric properties, and can be recommended for further use in research and practice.

  17. MOOCs 2.0: THE SOCIAL ERA OF EDUCATION

    Directory of Open Access Journals (Sweden)

    Arda SOYLEV

    2017-04-01

    Full Text Available The improvements in the Internet technology led an evolution in education. Some students’ lives have changed since 2012 when the MOOCs gained popularity among the academia. The students now take courses from the top universities all around the world without time limitations and they even earn credits for their courses. They are able to discuss lecture topics not only with their instructors in the class but also with thousands of other online students and can get just-in-time help regarding to their questions from teaching assistants. These are some of the practices from the new era of MOOCs called “social MOOCs” or MOOC 2.0. The concepts of collaboration, blended learning and TAs are the new consequences. In this paper, we review the problems and the current solutions associated with MOOC 1.0 era. In the light of these, we analyze the MOOC 2.0 era and discuss its present and possible future affects to our lives.

  18. Multi-level programming paradigm for extreme computing

    International Nuclear Information System (INIS)

    Petiton, S.; Sato, M.; Emad, N.; Calvin, C.; Tsuji, M.; Dandouna, M.

    2013-01-01

    In order to propose a framework and programming paradigms for post peta-scale computing, on the road to exa-scale computing and beyond, we introduced new languages, associated with a hierarchical multi-level programming paradigm, allowing scientific end-users and developers to program highly hierarchical architectures designed for extreme computing. In this paper, we explain the interest of such hierarchical multi-level programming paradigm for extreme computing and its well adaptation to several large computational science applications, such as for linear algebra solvers used for reactor core physic. We describe the YML language and framework allowing describing graphs of parallel components, which may be developed using PGAS-like language such as XMP, scheduled and computed on supercomputers. Then, we propose experimentations on supercomputers (such as the 'K' and 'Hooper' ones) of the hybrid method MERAM (Multiple Explicitly Restarted Arnoldi Method) as a case study for iterative methods manipulating sparse matrices, and the block Gauss-Jordan method as a case study for direct method manipulating dense matrices. We conclude proposing evolutions for this programming paradigm. (authors)

  19. Results of ERAS protocol in patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    A. O. Rasulov

    2016-01-01

    Full Text Available Objective: explore the use of enhanced recovery after surgery (ERAS in the treatment of patients with colorectal cancer, evaluate its efficacy and safety.Materials and methods. Prospective, single-site, randomized study for the implementation of enhanced recovery after surgery in patients with colorectal cancer has been conducted from October 2014 till the present time. All patients after laparoscopic surgeries undergo treatment according to ERAS protocol, patients after open surgeries are randomized (1:1 in groups of the standard treatment or treatment according to ERAS protocol. The study included patients with localized and locally disseminated colorectal cancer aged from 18 to 75 years, ECOG score ≤ 2. The primary evaluated parameters were the following: the number of postoperative complications (according to Clavien– Dindo classification, postoperative hospital days, incidence of complications and mortality in the 30-day period, timing of activation.Results. Up to date, the study includes 105 patients: laparoscopic group – 51 patients, open-surgery group of patients treated by ERAS protocol – 27 patients, open-surgery group of patients with the standard post-op treatment – 26 patients. Complications requiring emergency surgery for anastomotic leak (p = 0.159 developed in 3.7 % of patients with the standard post-op treatment and in 3.9 % of patients after laparoscopic surgery, while 1 patient required repeat hospitalization. The total number of complications was significantly lower in opensurgery group of patients treated by ERAS protocol compared with the standard post-op treatment (p = 0.021. However, there were no differences between laparoscopic and open-surgery group with the standard post-op treatment (p = 0.159. An average hospitalization stay in patients with the standard post-op treatment was equal to 10 days compared to 7 days in patients treated by ERAS protocol (p = 0.067 and 6 days after laparoscopic

  20. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    Science.gov (United States)

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  1. Extreme Winds from the NCEP/NCAR Reanalysis Data

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob

    2009-01-01

    wind. We examined extreme winds in different places where the strongest wind events are weather phenomena of different scales, including the mid-latitude lows in Denmark, channelling winds in the Gulf of Suez, typhoons in the western North Pacific, cyclones in the Caribbean Sea, local strong winds...

  2. Participatory Design in an Era of Participation, Special Issue

    DEFF Research Database (Denmark)

    This special issue on participatory design in an era of participation presents emerging topics and discussions from the thirteenth Participatory Design conference (PDC), held at Aarhus University in August 2016. The PDC 2016 marked the twenty-fifth anniversary of the Participatory Design conference...... series, which began in 1990 with the first biannual conference in Seattle. Since then, the PDC conferences have continued to bring together a multidisciplinary, international community of researchers and practitioners around issues of cooperative design. The theme for the 2016 PDC conference...... was ‘Participatory Design in an Era of Participation.’ Critical and constructive discussions were invited on the values, characteristics, politics and future practices of participatory design in an era in which participation has now become pervasive (Bossen, Smith, Kanstrup, McDonnell, et al. 2016, Bossen, Smith...

  3. Dakwah di Era Digital

    Directory of Open Access Journals (Sweden)

    Wahyu Budiantoro

    2018-04-01

    Full Text Available These days dakwah is not only interpreted as transformation of a pure religious value, but also transformation of a more relevant value including many aspects in digital era. Digital era is when society succumbed into the flow of information causing cultural shock and difficulties on synthesizing meaning from those scattered information. Dakwah on Digital age must accommodate societal needs which tend to move into a mass society. It results in strategy and more humane and innovative dakwah methods. One of innovative dakwah methods is conducted dakwah activities through digital media,with the consequences of this is that da’i must developed soft skill and technological capabilities. Another beneficial comes from this is that dakwah could become more modern and practical in terms of methods and material. On the other hand, citizen Journalism as a mass cultural product and the results of technological development, gives an opportunity for da’i to able to record the entire activities, including the dynamics of islamic life. In terms of learning curriculum, dakwah in digital format must be included, so then the intellectual and cultural spirit which flourished in pesantren could be adapted and competed in a global world.

  4. Characterization of ERAS, a putative novel human oncogene, in skin and breast

    Energy Technology Data Exchange (ETDEWEB)

    Peña Avalos, B.L. de la

    2014-07-01

    Most human tumors have mutations in genes of the RAS small GTPase protein family. RAS works as a molecular switch for signaling pathways that modulate many aspects of cell behavior, including proliferation, differentiation, motility and death. Oncogenic mutations in RAS prevent GTP hydrolysis, locking RAS in a permanently active state, being the most common mutations in HRAS, KRAS and NRAS. The human RAS family consists of at least 36 different genes, many of which have been scarcely studied. One of these relatively unknown genes is ERAS (ES cell-expressed RAS), which is a constitutively active RAS protein, localized in chromosome X and expressed only in embryonic cells, being undetectable in adult tissues. New high throughput technologies have made it possible to screen complete cancer genomes for identification of mutations associated to cancer. Using the Sleeping Beauty (SB) transposon system, ERAS was identified as a putative novel oncogene in non-melanoma skin and breast cancers. The major aim of this project is to determine the general characteristics of ERAS as a putative novel human oncogene in skin and breast cells. Forced expression of ERAS results in drastic changes in cell shape, proliferation and motility. When ERAS is overexpressed in skin and breast human cells it is mainly localized in the cytoplasmic membrane. ERAS activates the phosphatidylinositol-3-OH kinase (PI3K) pathway but not the mitogen-activated protein kinase (MAPK) pathway. ERAS-expressing cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and N-cadherin up-regulation and down-regulation of E-cadherin, which can be associated with increased malignancy, and invasive and metastatic potential. Our results suggest that inappropriate expression of ERAS lead to transformation of human cells. (Author)

  5. Brownian gas models for extreme-value laws

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2013-01-01

    In this paper we establish one-dimensional Brownian gas models for the extreme-value laws of Gumbel, Weibull, and Fréchet. A gas model is a countable collection of independent particles governed by common diffusion dynamics. The extreme-value laws are the universal probability distributions governing the affine scaling limits of the maxima and minima of ensembles of independent and identically distributed one-dimensional random variables. Using the recently introduced concept of stationary Poissonian intensities, we construct two gas models whose global statistical structures are stationary, and yield the extreme-value laws: a linear Brownian motion gas model for the Gumbel law, and a geometric Brownian motion gas model for the Weibull and Fréchet laws. The stochastic dynamics of these gas models are studied in detail, and closed-form analytical descriptions of their temporal correlation structures, their topological phase transitions, and their intrinsic first-passage-time fluxes are presented. (paper)

  6. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    Science.gov (United States)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision

  7. Odds of death after glioblastoma diagnosis in the United States by chemotherapeutic era

    International Nuclear Information System (INIS)

    Wachtel, Mitchell S; Yang, Shengping

    2014-01-01

    Bevacizumab (BZM) and temozolomide (TMZ) have been shown to be beneficial in the treatment of patients with glioblastoma. We sought evidence for the benefit of BZM in the general patient population at large. The Surveillance, Epidemiology, and End Results SEER database was queried for patients diagnosed with glioblastoma between 2000 and 2009, divided into a pre-TMZ era (January 2000–June 2003), a transitional era (July 2003–March 2005), a TMZ era (April 2005–October 2007), and a BZM-TMZ era (November 2007–December 2009). Binomial logit regression analyzed odds of death, taking into account age at diagnosis, tumor size, gender, race, marital status, radiotherapy, and extensive surgery. Compared with the pre-TMZ era, odds of death were decreased in the TMZ era by 12% (97.5% CI [confidence interval] 3–20%) 6 months after diagnosis and 36% (30–42%) a year after diagnosis; corresponding values for BZM-TMZ were 31% (24–37%) and 50% (45–55%). For era comparisons, decreases in odds of death were larger at 12 than 6 months; the opposite was true for extensive surgery and radiotherapy (P < 0.025, Wald χ 2 test, for each analysis). For both 6 and 12 month comparisons, odds of death in the BZM-TMZ era were lower than in the TMZ era (P < 0.025, Wald χ 2 test, for each analysis). The results provide evidence that TMZ positively impacted survival of glioblastoma patients and that the addition of BZM further improved survival, this lends support to the addition of BZM to the chemotherapeutic armamentarium. Evaluation of odds of death is an attractive alternative to Cox regression when proportional hazards assumptions are violated and follow-up is good

  8. Aare Sosaar nõuab sisse ERA Panga halbu laene / Tiit Elner

    Index Scriptorium Estoniae

    Elner, Tiit

    2000-01-01

    Ekspankur Aare Sosaare juhitav teadmata omanikega ERA Liising ostis pankrotis ERA Pangalt probleemseid laene, suurem nõuete ostja oli ka Krediidipank. Kokku on müüdud laenude lepingujärgne väärtus kuni 100 mln. kr.

  9. Visualization and parallel I/O at extreme scale

    International Nuclear Information System (INIS)

    Ross, R B; Peterka, T; Shen, H-W; Hong, Y; Ma, K-L; Yu, H; Moreland, K

    2008-01-01

    In our efforts to solve ever more challenging problems through computational techniques, the scale of our compute systems continues to grow. As we approach petascale, it becomes increasingly important that all the resources in the system be used as efficiently as possible, not just the floating-point units. Because of hardware, software, and usability challenges, storage resources are often one of the most poorly used and performing components of today's compute systems. This situation can be especially true in the case of the analysis phases of scientific workflows. In this paper we discuss the impact of large-scale data on visual analysis operations and examine a collection of approaches to I/O in the visual analysis process. First we examine the performance of volume rendering on a leadership-computing platform and assess the relative cost of I/O, rendering, and compositing operations. Next we analyze the performance implications of eliminating preprocessing from this example workflow. Then we describe a technique that uses data reorganization to improve access times for data-intensive volume rendering

  10. The extremity function index (EFI), a disability severity measure for neuromuscular diseases : psychometric evaluation

    NARCIS (Netherlands)

    Bos, Isaac; Wynia, Klaske; Drost, Gea; Almansa, Josué; Kuks, Joannes

    2017-01-01

    OBJECTIVE: To adapt and to combine the self-report Upper Extremity Functional Index and Lower Extremity Function Scale, for the assessment of disability severity in patients with a neuromuscular disease and to examine its psychometric properties in order to make it suitable for indicating disease

  11. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  12. Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Lisi Pei; Xindi (Randy) Bian; Warren E. Heilman

    2016-01-01

    The mean global climate has warmed as a result of the increasing emission of greenhouse gases induced by human activities. This warming is considered the main reason for the increasing number of extreme precipitation events in the US. While much attention has been given to extreme precipitation events occurring over several days, which are usually responsible for...

  13. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    International Nuclear Information System (INIS)

    Kilpua, E. K. J.; Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J.; Miyahara, H.; Kataoka, R.; Liu, Y. D.

    2015-01-01

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field

  14. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kilpua, E. K. J. [Department of Physics, University Helsinki (Finland); Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J. [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto Univeristy (Finland); Miyahara, H. [Musashino Art University, 1-736 Ogawa-cho, Kodaira-shi, Tokyo 187-8505 (Japan); Kataoka, R. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-06-20

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.

  15. Erasüüdistus. Kas vajalik täiendus Eesti kriminaalmenetlusõigusele? / Kevin Siivelt

    Index Scriptorium Estoniae

    Siivelt, Kevin, 1987-

    2014-01-01

    Erasüüdistuse olemusest, lühiülevaade (Ungari, Hispaania, Kanada, USA, Poola ja Soome) erasüüdistuse süsteemidest ning erasüüdistuse kehtestamise poolt- ja vastuargumentidest Eestis. Artikkel põhineb autori magistritööl

  16. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale. Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  17. Toward Improving Predictability of Extreme Hydrometeorological Events: the Use of Multi-scale Climate Modeling in the Northern High Plains

    Science.gov (United States)

    Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.

    2014-12-01

    Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and

  18. Bremsstrahlung: an experimentalists personal perspective on the post modern era

    International Nuclear Information System (INIS)

    Quarles, C.A.

    2000-01-01

    In this brief review I will discuss the recent experimental work on the doubly differential cross section, i.e. the photon energy and angular distribution, for electron Bremsstrahlung from thin solid film and gas targets. Since the beginning of the modern era in the study of Bremsstrahlung with the publication of the 1971 paper by Ts eng and Pratt, Professor Pratt has been the dominant influence in Bremsstrahlung research. Most, if not all, experimental research during the modern era has been motivated by the interest in comparing data with the theory of Pratt and his coworkers. As Bremsstrahlung research has moved into its post modern era, new experiments with increasing precision are concentrating on determining under what conditions ordinary Bremsstrahlung theory needs to be supplemented by a contribution from polarization Bremsstrahlung. Efforts to improve the comparison of thin-target experiment with theory have also led to new experimental and modeling work on Bremsstrahlung from thick solid targets. Thick-target Bremsstrahlung is interesting in its own right, but we also want to understand it better since it is the ever-present background in the thin-target experiments and the limiting factor in the effort to distinguish the polarization contribution to the total Bremsstrahlung spectrum. Professor Pratt ushered in the modern era in Bremsstrahlung research and has recently guided the transition into the post modern era. It can be expected that he will continue to have a formative influence on the developments of Bremsstrahlung research into the foreseeable future.

  19. Environmental prediction, risk assessment and extreme events: adaptation strategies for the developing world

    Science.gov (United States)

    Webster, Peter J.; Jian, Jun

    2011-01-01

    The uncertainty associated with predicting extreme weather events has serious implications for the developing world, owing to the greater societal vulnerability to such events. Continual exposure to unanticipated extreme events is a contributing factor for the descent into perpetual and structural rural poverty. We provide two examples of how probabilistic environmental prediction of extreme weather events can support dynamic adaptation. In the current climate era, we describe how short-term flood forecasts have been developed and implemented in Bangladesh. Forecasts of impending floods with horizons of 10 days are used to change agricultural practices and planning, store food and household items and evacuate those in peril. For the first time in Bangladesh, floods were anticipated in 2007 and 2008, with broad actions taking place in advance of the floods, grossing agricultural and household savings measured in units of annual income. We argue that probabilistic environmental forecasts disseminated to an informed user community can reduce poverty caused by exposure to unanticipated extreme events. Second, it is also realized that not all decisions in the future can be made at the village level and that grand plans for water resource management require extensive planning and funding. Based on imperfect models and scenarios of economic and population growth, we further suggest that flood frequency and intensity will increase in the Ganges, Brahmaputra and Yangtze catchments as greenhouse-gas concentrations increase. However, irrespective of the climate-change scenario chosen, the availability of fresh water in the latter half of the twenty-first century seems to be dominated by population increases that far outweigh climate-change effects. Paradoxically, fresh water availability may become more critical if there is no climate change. PMID:22042897

  20. Tutorial - applying extreme value theory to characterize food-processing systems

    DEFF Research Database (Denmark)

    Skou, Peter Bæk; Holroyd, Stephen E.; van der Berg, Franciscus Winfried J

    2017-01-01

    This tutorial presents extreme value theory (EVT) as an analytical tool in process characterization and shows its potential to describe production performance, eg, across different factories, via reliable estimates of the frequency and scale of extreme events. Two alternative EVT methods...... are discussed: point over threshold and block maxima. We illustrate the theoretical framework for EVT by process data from two different examples from the food-processing industry. Finally, we discuss limitations, decisions, and possibilities when applying EVT for process data....

  1. Use of genome-scale microbial models for metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Åkesson, M.; Nielsen, Jens

    2004-01-01

    Metabolic engineering serves as an integrated approach to design new cell factories by providing rational design procedures and valuable mathematical and experimental tools. Mathematical models have an important role for phenotypic analysis, but can also be used for the design of optimal metaboli...... network structures. The major challenge for metabolic engineering in the post-genomic era is to broaden its design methodologies to incorporate genome-scale biological data. Genome-scale stoichiometric models of microorganisms represent a first step in this direction....

  2. Evaluating sub-seasonal skill in probabilistic forecasts of Atmospheric Rivers and associated extreme events

    Science.gov (United States)

    Subramanian, A. C.; Lavers, D.; Matsueda, M.; Shukla, S.; Cayan, D. R.; Ralph, M.

    2017-12-01

    Atmospheric rivers (ARs) - elongated plumes of intense moisture transport - are a primary source of hydrological extremes, water resources and impactful weather along the West Coast of North America and Europe. There is strong demand in the water management, societal infrastructure and humanitarian sectors for reliable sub-seasonal forecasts, particularly of extreme events, such as floods and droughts so that actions to mitigate disastrous impacts can be taken with sufficient lead-time. Many recent studies have shown that ARs in the Pacific and the Atlantic are modulated by large-scale modes of climate variability. Leveraging the improved understanding of how these large-scale climate modes modulate the ARs in these two basins, we use the state-of-the-art multi-model forecast systems such as the North American Multi-Model Ensemble (NMME) and the Subseasonal-to-Seasonal (S2S) database to help inform and assess the probabilistic prediction of ARs and related extreme weather events over the North American and European West Coasts. We will present results from evaluating probabilistic forecasts of extreme precipitation and AR activity at the sub-seasonal scale. In particular, results from the comparison of two winters (2015-16 and 2016-17) will be shown, winters which defied canonical El Niño teleconnection patterns over North America and Europe. We further extend this study to analyze probabilistic forecast skill of AR events in these two basins and the variability in forecast skill during certain regimes of large-scale climate modes.

  3. 21st Century Changes in Precipitation Extremes Based on Resolved Atmospheric Patterns

    Science.gov (United States)

    Gao, X.; Schlosser, C. A.; O'Gorman, P. A.; Monier, E.

    2014-12-01

    Global warming is expected to alter the frequency and/or magnitude of extreme precipitation events. Such changes could have substantial ecological, economic, and sociological consequences. However, climate models in general do not correctly reproduce the frequency distribution of precipitation, especially at the regional scale. In this study, a validated analogue method is employed to diagnose the potential future shifts in the probability of extreme precipitation over the United States under global warming. The method is based on the use of the resolved large-scale meteorological conditions (i.e. flow features, moisture supply) to detect the occurrence of extreme precipitation. The CMIP5 multi-model projections have been compiled for two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). We further analyze the accompanying circulation features and their changes that may be responsible for shifts in extreme precipitation in response to changed climate. The application of such analogue method to detect other types of hazard events, i.e. landslides is also explored. The results from this study may guide hazardous weather watches and help society develop adaptive strategies for preventing catastrophic losses.

  4. Characteristics of storms that contribute to extreme precipitation events over the Iberian Peninsula

    Science.gov (United States)

    Trigo, Ricardo; Ramos, Alexandre M.; Ordoñez, Paulina; Liberato, Margarida L. R.; Trigo, Isabel F.

    2014-05-01

    Floods correspond to one of the most deadly natural disasters in the Iberian Peninsula during the last century. Quite often these floods are associated to intense low pressure systems with an Atlantic origin. In recent years a number of episodes have been evaluated on a case-by-case approach, with a clear focus on extreme events, thus lacking a systematic assessment. In this study we focus on the characteristics of storms for the extended winter season (October to March) that are responsible for the most extreme rainfall events over large areas of the Iberian Peninsula. An objective method for ranking daily precipitation events during the extended winter is used based on the most comprehensive database of high resolution (0.2º latitude by 0.2º longitude) gridded daily precipitation dataset available for the Iberian Peninsula. The magnitude of an event is obtained after considering the total area affected as well as its intensity in every grid point (taking into account the daily normalised departure from climatology). Different precipitation rankings are studied considering the entire Iberian Peninsula, Portugal and also the six largest river basins in the Iberian Peninsula (Duero, Ebro, Tagus, Minho, Guadiana and Guadalquivir). Using an objective cyclone detecting and tracking scheme [Trigo, 2006] the storm track and characteristics of the cyclones were obtained using the ERA-Interim reanalyses for the 1979-2008 period. The spatial distribution of extratropical cyclone positions when the precipitation extremes occur will be analysed over the considered sub-domains (Iberia, Portugal, major river basins). In addition, we distinguish the different cyclone characteristics (lifetime, direction, minimum pressure, position, velocity, vorticity and radius) with significant impacts in precipitation over the different domains in the Iberian Peninsula. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa

  5. Research on intact marine ecosystems: a lost era.

    Science.gov (United States)

    Stachowitsch, Michael

    2003-07-01

    It is proposed that a new, fifth era should be added to the four historical phases of marine research identified by Rupert Riedl, specifically an era devoted to studying and ameliorating disturbed marine ecosystems. In an age of global environmental deterioration, many marine ecosystems and organisms are high on the list of threatened entities. This poor status prompts research that would otherwise have been unnecessary and hinders research that would normally have been conducted. I argue that research into intact marine ecosystems is becoming increasingly difficult, and that most of our future insights into marine habitats will stem from knowledge gained by examining various disfunctions of those systems rather than their functions. The new era will therefore differ from past research in its underlying aim, the range of topics studied, the selection and funding of those topics, the validity of its conclusions, and in its urgency. Sea turtles and cetaceans are cited as case studies at the organismic level, shallow-water benthic communities, including coral reefs, at the ecosystem level.

  6. Ages and Stages Questionnaire used to measure cognitive deficit in children born extremely preterm

    DEFF Research Database (Denmark)

    Klamer, Anja; Lando, Ane; Pinborg, Anja

    2005-01-01

    AIM: To validate the Ages and Stages Questionnaire (ASQ) and to measure average cognitive deficit in children born extremely preterm. METHODS: Parents of 30 term children aged 36-42 mo completed the ASQ and the children underwent the Wechsler Preschool and Primary Scales of Intelligence--Revised.......AIM: To validate the Ages and Stages Questionnaire (ASQ) and to measure average cognitive deficit in children born extremely preterm. METHODS: Parents of 30 term children aged 36-42 mo completed the ASQ and the children underwent the Wechsler Preschool and Primary Scales of Intelligence...

  7. Flood protection diversification to reduce probabilities of extreme losses.

    Science.gov (United States)

    Zhou, Qian; Lambert, James H; Karvetski, Christopher W; Keisler, Jeffrey M; Linkov, Igor

    2012-11-01

    Recent catastrophic losses because of floods require developing resilient approaches to flood risk protection. This article assesses how diversification of a system of coastal protections might decrease the probabilities of extreme flood losses. The study compares the performance of portfolios each consisting of four types of flood protection assets in a large region of dike rings. A parametric analysis suggests conditions in which diversifications of the types of included flood protection assets decrease extreme flood losses. Increased return periods of extreme losses are associated with portfolios where the asset types have low correlations of economic risk. The effort highlights the importance of understanding correlations across asset types in planning for large-scale flood protection. It allows explicit integration of climate change scenarios in developing flood mitigation strategy. © 2012 Society for Risk Analysis.

  8. Assessment of the potential forecasting skill of a global hydrological model in reproducing the occurrence of monthly flow extremes

    Directory of Open Access Journals (Sweden)

    N. Candogan Yossef

    2012-11-01

    Full Text Available As an initial step in assessing the prospect of using global hydrological models (GHMs for hydrological forecasting, this study investigates the skill of the GHM PCR-GLOBWB in reproducing the occurrence of past extremes in monthly discharge on a global scale. Global terrestrial hydrology from 1958 until 2001 is simulated by forcing PCR-GLOBWB with daily meteorological data obtained by downscaling the CRU dataset to daily fields using the ERA-40 reanalysis. Simulated discharge values are compared with observed monthly streamflow records for a selection of 20 large river basins that represent all continents and a wide range of climatic zones.

    We assess model skill in three ways all of which contribute different information on the potential forecasting skill of a GHM. First, the general skill of the model in reproducing hydrographs is evaluated. Second, model skill in reproducing significantly higher and lower flows than the monthly normals is assessed in terms of skill scores used for forecasts of categorical events. Third, model skill in reproducing flood and drought events is assessed by constructing binary contingency tables for floods and droughts for each basin. The skill is then compared to that of a simple estimation of discharge from the water balance (PE.

    The results show that the model has skill in all three types of assessments. After bias correction the model skill in simulating hydrographs is improved considerably. For most basins it is higher than that of the climatology. The skill is highest in reproducing monthly anomalies. The model also has skill in reproducing floods and droughts, with a markedly higher skill in floods. The model skill far exceeds that of the water balance estimate. We conclude that the prospect for using PCR-GLOBWB for monthly and seasonal forecasting of the occurrence of hydrological extremes is positive. We argue that this conclusion applies equally to other similar GHMs and

  9. Era of superheavy-particle dominance and big bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Polnarev, A.G.; Khlopov, M.Y.

    1982-01-01

    The observed primordial He/sup 4/ abundance imposes astrophysical constraints on the possible departures from radiation dominance in the big bang universe during the neutron hardening era (at epoch t roughly-equal1 sec). Limits are obtained which, along with the data on the spectrum of the cosmic background radiation, practically rule out any stages of superheavy stable-particle dominance in the era 1< or approx. =t<10/sup 10/ sec, thereby setting restrictions on current elementary-particle theories.

  10. Australia's Unprecedented Future Temperature Extremes Under Paris Limits to Warming

    Science.gov (United States)

    Lewis, Sophie C.; King, Andrew D.; Mitchell, Daniel M.

    2017-10-01

    Record-breaking temperatures can detrimentally impact ecosystems, infrastructure, and human health. Previous studies show that climate change has influenced some observed extremes, which are expected to become more frequent under enhanced future warming. Understanding the magnitude, as a well as frequency, of such future extremes is critical for limiting detrimental impacts. We focus on temperature changes in Australian regions, including over a major coral reef-building area, and assess the potential magnitude of future extreme temperatures under Paris Agreement global warming targets (1.5°C and 2°C). Under these limits to global mean warming, we determine a set of projected high-magnitude unprecedented Australian temperature extremes. These include extremes unexpected based on observational temperatures, including current record-breaking events. For example, while the difference in global-average warming during the hottest Australian summer and the 2°C Paris target is 1.1°C, extremes of 2.4°C above the observed summer record are simulated. This example represents a more than doubling of the magnitude of extremes, compared with global mean change, and such temperatures are unexpected based on the observed record alone. Projected extremes do not necessarily scale linearly with mean global warming, and this effect demonstrates the significant potential benefits of limiting warming to 1.5°C, compared to 2°C or warmer.

  11. Modified enhanced recovery after surgery (ERAS) protocols for patients with obstructive colorectal cancer.

    Science.gov (United States)

    Shida, Dai; Tagawa, Kyoko; Inada, Kentaro; Nasu, Keiichi; Seyama, Yasuji; Maeshiro, Tsuyoshi; Miyamoto, Sachio; Inoue, Satoru; Umekita, Nobutaka

    2017-02-16

    Enhanced recovery after surgery (ERAS) protocols are now well-known to be useful for elective colorectal surgery, as they result in shorter hospital stays without adversely affecting morbidity. However, the efficacy and safety of ERAS protocols for patients with obstructive colorectal cancer have yet to be clarified. We evaluated 122 consecutive resections for obstructive colorectal cancer performed between July 2008 and November 2012 at Tokyo Metropolitan Bokutoh Hospital. Patients with rupture or impending rupture and those who received simple colostomy were excluded. The first set of 42 patients was treated based on traditional protocols, and the latter 80 according to modified ERAS protocols. The main endpoints were length of postoperative hospital stay, postoperative short-term morbidity, rate of readmission within 30 days, and mortality. Differences in modified ERAS protocols relative to traditional care include intensive preoperative counseling (by both surgeons and anesthesiologists), perioperative fluid management (avoidance of sodium/fluid overload), shortening of postoperative fasting period and early provision of oral nutrition, intraoperative warm air body heating, enforced postoperative mobilization, stimulation of gut motility, early removal of urinary catheter, and a multidisciplinary team approach to care. Median (interquartile range) postoperative hospital stay was 10 (10-14.25) days in the traditional group, and seven (7-8.75) days in the ERAS group, showing a 3-day reduction in hospital stay (p < 0.01). According to the Clavien-Dindo classification, overall incidences of grade 2 or higher postoperative complications for the traditional and ERAS groups were 15 and 10% (p = 0.48), and 30-day readmission rates were 0 and 1.3% (p = 1.00), respectively. As for mortality, one patient in the traditional group died and none in the ERAS group (p = 0.34). Modified ERAS protocols for obstructive colorectal cancer reduced hospital stay

  12. Extreme value prediction of the wave-induced vertical bending moment in large container ships

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2015-01-01

    increase the extreme hull girder response significantly. Focus in the present paper is on the influence of the hull girder flexibility on the extreme response amidships, namely the wave-induced vertical bending moment (VBM) in hogging, and the prediction of the extreme value of the same. The analysis...... in the present paper is based on time series of full scale measurements from three large container ships of 8600, 9400 and 14000 TEU. When carrying out the extreme value estimation the peak-over-threshold (POT) method combined with an appropriate extreme value distribution is applied. The choice of a proper...... threshold level as well as the statistical correlation between clustered peaks influence the extreme value prediction and are taken into consideration in the present paper....

  13. Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA

    Science.gov (United States)

    Zarekarizi, Mahkameh; Rana, Arun; Moradkhani, Hamid

    2018-06-01

    There has been focus on the influence of climate indices on precipitation extremes in the literature. Current study presents the evaluation of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific Northwest USA. We first analyzed the precipitation-based extremes using statistically (ten GCMs) and dynamically downscaled (three GCMs) past and future climate projections. Seven precipitation-based indices that help inform about the flood duration/intensity are used. These indices help in attaining first-hand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. Evaluation of these indices is first performed in historical period (1971-2000) followed by analysis of their relation to large scale tele-connections. Further we mapped these indices over the area to evaluate the spatial variation of past and future extremes in downscaled and observational data. The analysis shows that high values of extreme indices are clustered in either western or northern parts of the basin for historical period whereas the northern part is experiencing higher degree of change in the indices for future scenario. The focus is also on evaluating the relation of these extreme indices to climate tele-connections in historical period to understand their relationship with extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of 13 climate tele-connections used in the study, CRB is being most affected inversely by East Pacific (EP), Western Pacific (WP), East Atlantic (EA) and North Atlaentic Oscillation (NAO).

  14. A compliant mechanism for inspecting extremely confined spaces

    Science.gov (United States)

    Mascareñas, David; Moreu, Fernando; Cantu, Precious; Shields, Daniel; Wadden, Jack; El Hadedy, Mohamed; Farrar, Charles

    2017-11-01

    We present a novel, compliant mechanism that provides the capability to navigate extremely confined spaces for the purpose of infrastructure inspection. Extremely confined spaces are commonly encountered during infrastructure inspection. Examples of such spaces can include pipes, conduits, and ventilation ducts. Often these infrastructure features go uninspected simply because there is no viable way to access their interior. In addition, it is not uncommon for extremely confined spaces to possess a maze-like architecture that must be selectively navigated in order to properly perform an inspection. Efforts by the imaging sensor community have resulted in the development of imaging sensors on the millimeter length scale. Due to their compact size, they are able to inspect many extremely confined spaces of interest, however, the means to deliver these sensors to the proper location to obtain the desired images are lacking. To address this problem, we draw inspiration from the field of endoscopic surgery. Specifically we consider the work that has already been done to create long flexible needles that are capable of being steered through the human body. These devices are typically referred to as ‘steerable needles.’ Steerable needle technology is not directly applicable to the problem of navigating maze-like arrangements of extremely confined spaces, but it does provide guidance on how this problem should be approached. Specifically, the super-elastic nitinol tubing material that allows steerable needles to operate is also appropriate for the problem of navigating maze-like arrangements of extremely confined spaces. Furthermore, the portion of the mechanism that enters the extremely confined space is completely mechanical in nature. The mechanical nature of the device is an advantage when the extremely confined space features environmental hazards such as radiation that could degrade an electromechanically operated mechanism. Here, we present a compliant mechanism

  15. Correlation dimension and phase space contraction via extreme value theory

    Science.gov (United States)

    Faranda, Davide; Vaienti, Sandro

    2018-04-01

    We show how to obtain theoretical and numerical estimates of correlation dimension and phase space contraction by using the extreme value theory. The maxima of suitable observables sampled along the trajectory of a chaotic dynamical system converge asymptotically to classical extreme value laws where: (i) the inverse of the scale parameter gives the correlation dimension and (ii) the extremal index is associated with the rate of phase space contraction for backward iteration, which in dimension 1 and 2, is closely related to the positive Lyapunov exponent and in higher dimensions is related to the metric entropy. We call it the Dynamical Extremal Index. Numerical estimates are straightforward to obtain as they imply just a simple fit to a univariate distribution. Numerical tests range from low dimensional maps, to generalized Henon maps and climate data. The estimates of the indicators are particularly robust even with relatively short time series.

  16. E-Polmas: Paradigma Baru Pemolisian Masyarakat Era Digital

    Directory of Open Access Journals (Sweden)

    Bayu Suseno

    2016-05-01

    Full Text Available Tulisan ini memberikan perpekstif baru tentang polmas di era digital dengan menggunakan studi kasus kejahatan cyber crime di Polrestabes Semarang. Berdasarkan tingginya angka kejahatan berbasis teknologi yang ditangani kepolisian maka ada kebutuhan mendesak untuk melakukan kajian ulang terhadap pendekatan polmas yang selama ini ada. Penulis memberikan sebuah pandangan baru konsep polmas era digital atau E-Polmas. E-Polmas merupakan pengembangan dari konsep Polmas yang sudah ada, akan tetapi menitikberatkan kepada media yang digunakan untuk menyampaikan pesan kamtibmas kepada masyarakat. Yang semula dilaksanakan secara manual konvensional, dirubah menjadi cara online dengan memanfaatkan media sosial yang sudah ada.

  17. Translation and cross-cultural adaptation of the lower extremity functional scale into a Brazilian Portuguese version and validation on patients with knee injuries.

    Science.gov (United States)

    Metsavaht, Leonardo; Leporace, Gustavo; Riberto, Marcelo; Sposito, Maria Matilde M; Del Castillo, Letícia N C; Oliveira, Liszt P; Batista, Luiz Alberto

    2012-11-01

    Clinical measurement. To translate and culturally adapt the Lower Extremity Functional Scale (LEFS) into a Brazilian Portuguese version, and to test the construct and content validity and reliability of this version in patients with knee injuries. There is no Brazilian Portuguese version of an instrument to assess the function of the lower extremity after orthopaedic injury. The translation of the original English version of the LEFS into a Brazilian Portuguese version was accomplished using standard guidelines and tested in 31 patients with knee injuries. Subsequently, 87 patients with a variety of knee disorders completed the Brazilian Portuguese LEFS, the Medical Outcomes Study 36-Item Short-Form Health Survey, the Western Ontario and McMaster Universities Osteoarthritis Index, and the International Knee Documentation Committee Subjective Knee Evaluation Form and a visual analog scale for pain. All patients were retested within 2 days to determine reliability of these measures. Validation was assessed by determining the level of association between the Brazilian Portuguese LEFS and the other outcome measures. Reliability was documented by calculating internal consistency, test-retest reliability, and standard error of measurement. The Brazilian Portuguese LEFS had a high level of association with the physical component of the Medical Outcomes Study 36-Item Short-Form Health Survey (r = 0.82), the Western Ontario and McMaster Universities Osteoarthritis Index (r = 0.87), the International Knee Documentation Committee Subjective Knee Evaluation Form (r = 0.82), and the pain visual analog scale (r = -0.60) (all, Pcoefficient = 0.957) of the Brazilian Portuguese version of the LEFS were high. The standard error of measurement was low (3.6) and the agreement was considered high, demonstrated by the small differences between test and retest and the narrow limit of agreement, as observed in Bland-Altman and survival-agreement plots. The translation of the LEFS into a

  18. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale.

    Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  19. Characteristics of Extreme Extratropical Cyclones in a High-Resolution Global Climate Model

    Science.gov (United States)

    Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.; Janoski, T. P.

    2017-12-01

    In the northeastern United States, many of the strongest impacts from extratropical cyclones (ETCs) are associated with storms that exhibit slow movement, unusual tracks, or exceptional intensity. Examples of extreme ETCs include the Appalachian storm of November 1950, the Perfect Storm of October 1991, and the Superstorm of March 1993. Owing to the rare nature of these events, it is difficult to quantify the associated risks (e.g. high winds, storm surge) given the limited duration of high-quality observational datasets. Furthermore, storms with even greater impacts than those observed may be possible, particularly in a warming climate. In the context of tropical cyclones, Lin and Emanuel (2016) have used the metaphor "grey swans" to refer to high-impact events that have not been observed but may be physically possible. One method for analyzing "grey swans" is to generate a larger sample of ETCs using a coupled climate model. Therefore, we use long simulations (over 1,000 years with atmospheric constituents fixed at 1990 levels) from a global climate model (GFDL FLOR) with 50km atmospheric resolution. FLOR has been shown to realistically simulate the spatial distribution and climatology of ETCs during the reanalysis era. We will discuss the climatological features of these extreme ETC events.

  20. Computational data sciences for assessment and prediction of climate extremes

    Science.gov (United States)

    Ganguly, A. R.

    2011-12-01

    Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.

  1. “PASANTIAN”IN BALI AND ITS RENAISSANCE IN GLOBALIZATION ERA

    Directory of Open Access Journals (Sweden)

    I Komang Sudirga

    2013-02-01

    Full Text Available Pasantian, which means reading and reciting a literary work, is growing, developing and resurrecting resistively in the life of the Balinese community in the globalization era. This study tries to answer the following questions: (1 what was the renaissance of pasantian in the globalization era in Bali like; (2 what factors contributed to the renaissance of pasantian in the globalization era in Bali; (3 what was the meaning of the renaissance of pasantian in the globalization era in Bali? This study in which qualitative method was used. It was intended to identify the existence of pasantian and its dynamism through its renaissance in the globalization era. The theory of deconstruction (Derrida, in Norris, 2008, the theory of practice (Bourdieu in Takwin, 2009 and Fashri, 2007, the theory of postmodern (Piliang, 2004, and Piliang, 2004a, and the theory of hegemony (Gramsci, in Barker, 2005 were eclectically used to analyze the data. The result showed that the renaissance of pasantian took place in three periods; the initial renaissance took place from 1979 to 1990, the second from 1991 to 1998, and the third from 1999 to 2010s. Such a renaissance was supported by cultural factors. In addition, political and economic factors also contributed to the renaissance of pasantian. It had socio-cultural, and economic effects, which led to multi-meanings such as educational meaning, entertainment meaning, the meaning of politics of image, the meaning of hypermorality, and the meaning of maintenance of socio-cultural meanings.

  2. Decrease in hydroclimatic conditions generating floods in the southeast of Belgium over the last 50 years resulting from changes in seasonal snow cover and extreme precipitation events

    Science.gov (United States)

    Wyard, Coraline; Fettweis, Xavier

    2016-04-01

    As a consequence of climate change, several studies concluded that winter flood occurrence could increase in the future in many rivers of northern and western Europe in response to an increase in extreme precipitation events. This study aims to determine if trends in extreme hydroclimatic events generating floods can already be detected over the last century. In particular, we focus on the Ourthe River (southeast of Belgium) which is one of the main tributaries of the Meuse River with a catchment area of 3500 km². In this river, most of the floods occur during winter and about 50% of them are due to rainfall events associated with the melting of the snow which covers the Ardennes during winter. In this study, hydroclimatic conditions favorable to flooding were reconstructed over the 20th century using the regional climate model MAR ("Modèle Atmosphérique Régional") forced by the following reanalyses: the ERA-20C, the ERA-Interim and the NCEP/NCAR-v1. The use of the MAR model allows to compute precipitation, snow depth and run-off resulting from precipitation events and snow melting in any part of the Ourthe river catchment area. Therefore, extreme hydroclimatic events, namely extreme run-off events, which could potentially generate floods, can be reconstructed using the MAR model. As validation, the MAR results were compared to weather station-based data. A trend analysis was then performed in order to study the evolution of conditions favorable to flooding in the Ourthe River catchment. The results show that the MAR model allows the detection of more than 95% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the 1974-2014 period. Conditions favorable to flooding present a negative trend over the last 50 years as a result of a decrease in snow accumulation and in extreme precipitation events. However, significance of these trends depends on the reanalysis used to force the regional climate model as well as the

  3. Multiscale computing in the exascale era

    NARCIS (Netherlands)

    Alowayyed, S.; Groen, D.; Coveney, P.V.; Hoekstra, A.G.

    We expect that multiscale simulations will be one of the main high performance computing workloads in the exascale era. We propose multiscale computing patterns as a generic vehicle to realise load balanced, fault tolerant and energy aware high performance multiscale computing. Multiscale computing

  4. Controlled meteorological (CMET free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses

    Directory of Open Access Journals (Sweden)

    T. J. Roberts

    2016-09-01

    Full Text Available Observations from CMET (Controlled Meteorological balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind around Svalbard, European High Arctic. Five Controlled Meteorological (CMET balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen over 5–12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I and to a high-resolution (15 km Arctic System Reanalysis (ASR product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.

  5. Thermal extremes mortality risk assessment in urban areas

    Directory of Open Access Journals (Sweden)

    Paulo Canário

    2010-06-01

    Full Text Available The impact of heat waves on mortality has been the subject of numerous studies and the focus of attention of various national and international governmental bodies. In the summer of 2003 alone, which was exceptionally hot, the number of deaths in 12 European countries increased by 70,000. The overall trend of warming will lead to an increase in frequency, duration and intensity of heat waves and to an increase in heat related mortality. The need to assess the risk of death due to extreme heat, at a detailed spatial scale, has determined the implementation of a research project based on a general model of risk for potentially destructive natural phenomena; the model uses the relationship between hazard and vulnerability and was designed primarily for urban areas. The major hazardous meteorological variables are those that determine the thermal complex (air temperature, radiative temperature, wind and humidity and the variables related to air quality (mainly ozone and Particulate matter. Vulnerability takes into account the population sensitivity (at various spatial scales and their exposure to thermal extremes.

  6. 77 FR 40644 - ERA Systems, LLC, Formerly ERA Systems Corporation, a Subsidiary of Systems Research and...

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,047, TA-W-81,047A] ERA Systems..., 2011, resulted in a negative determination, issued on January 13, 2012. The determination was... partial separation from employment on the date of certification through two years from the date of...

  7. Disaster Risks Reduction for Extreme Natural Hazards

    Science.gov (United States)

    Plag, H.; Jules-Plag, S.

    2013-12-01

    Mega disasters associated with extreme natural hazards have the potential to escalate the global sustainability crisis and put us close to the boundaries of the safe operating space for humanity. Floods and droughts are major threats that potentially could reach planetary extent, particularly through secondary economic and social impacts. Earthquakes and tsunamis frequently cause disasters that eventually could exceed the immediate coping capacity of the global economy, particularly since we have built mega cities in hazardous areas that are now ready to be harvested by natural hazards. Unfortunately, the more we learn to cope with the relatively frequent hazards (50 to 100 years events), the less we are worried about the low-probability, high-impact events (a few hundred and more years events). As a consequence, threats from the 500 years flood, drought, volcano eruption are not appropriately accounted for in disaster risk reduction (DRR) discussions. Extreme geohazards have occurred regularly throughout the past, but mostly did not cause major disasters because exposure of human assets to hazards was much lower in the past. The most extreme events that occurred during the last 2,000 years would today cause unparalleled damage on a global scale and could worsen the sustainability crisis. Simulation of these extreme hazards under present conditions can help to assess the disaster risk. Recent extreme earthquakes have illustrated the destruction they can inflict, both directly and indirectly through tsunamis. Large volcano eruptions have the potential to impact climate, anthropogenic infrastructure and resource supplies on global scale. During the last 2,000 years several large volcano eruptions occurred, which under today's conditions are associated with extreme disaster risk. The comparison of earthquakes and volcano eruptions indicates that large volcano eruptions are the low-probability geohazards with potentially the highest impact on our civilization

  8. Multidecadal oscillations in rainfall and hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2013-04-01

    Many studies have anticipated a worldwide increase in the frequency and intensity of precipitation extremes and floods since the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extreme quantiles, it is shown that hydrological extremes have oscillatory behaviour at multidecadal time scales. Results are based on nearly independent extremes extracted from long-term historical time series of precipitation intensities and river flows. Study regions include Belgium - The Netherlands (Meuse basin), Ethiopia (Blue Nile basin) and Ecuador (Paute basin). For Belgium - The Netherlands, the past 100 years showed larger and more hydrological extremes around the 1910s, 1950-1960s, and more recently during the 1990-2000s. Interestingly, the oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930-1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years. References: Ntegeka V., Willems P. (2008), 'Trends and multidecadal oscillations in rainfall extremes, based on a more than 100 years time series of 10 minutes rainfall intensities at Uccle, Belgium', Water Resources Research, 44, W07402, doi:10.1029/2007WR006471 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water

  9. Validación de una escala de afrontamiento frente a riesgos extremos Validation of a scale measuring coping with extreme risks

    Directory of Open Access Journals (Sweden)

    Esperanza López-Vázquez

    2004-06-01

    Full Text Available OBJETIVO: Validar, en población mexicana, una escala de afrontamiento, adaptada de la escala francesa "Echèlle Toulousaine de Coping". MATERIAL Y MÉTODOS: En el otoño de 2001 la escala se aplicó a 209 sujetos que habitaban en diversas zonas de México, expuestos a cinco diferentes tipos de riesgo extremo, entre los cuales se distinguen riesgos naturales y riesgos industriales. Se analizó la capacidad discriminatoria de los reactivos, así como la estructura factorial y la consistencia interna de la prueba. Se emplearon los métodos U de Mann-Whitney, análisis factorial de componentes principales y alpha de Cronbach. RESULTADOS: La escala final es de 26 reactivos que se agruparon en dos factores: afrontamiento activo y afrontamiento pasivo. La consistencia interna del instrumento es muy alta, tanto en la muestra total como en la submuestra de riesgos naturales y riesgos industriales. CONCLUSIONES: La escala de afrontamiento que proponemos es confiable y válida para la población mexicanaOBJECTIVE: The objective of this study was to validate, in Mexico, the French coping scale "Échelle Toulousaine de Coping". MATERIAL AND METHODS: In the fall of 2001, the scale questionnaire was applied to 209 subjects living in different areas of Mexico, exposed to five different types of extreme natural or industrial risks. The discriminatory capacity of the items, as well as the factorial structure and internal consistency of the scale, were analyzed using Mann-Whitney's U test, principal components factorial analysis, and Cronbach's alpha. RESULTS: The final scale was composed of 26 items forming two groups: active coping and passive coping. Internal consistency of the instrument was high, both in the total sample and in the subsample of natural and industrial risks. CONCLUSIONS: The coping scale is reliable and valid for the Mexican population

  10. Family Therapy in the Postmodern Era.

    Science.gov (United States)

    Mills, Steven D.; Sprenkle, Douglas H.

    1995-01-01

    Discusses theoretical and clinical developments that have accompanied family therapy's entry into the postmodern era. Clinical trends, including use of reflecting teams, self-of-the-therapist issues, increased therapist self-disclosure, and postmodern supervision are examined. Feminist critiques, health-care reform, and increasing collaboration…

  11. Scandinavian neuroscience during the Nazi era

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Hansen, Klaus; Zeidman, Lawrence A

    2013-01-01

    Although Scandinavian neuroscience has a proud history, its status during the Nazi era has been overlooked. In fact, prominent neuroscientists in German-occupied Denmark and Norway, as well as in neutral Sweden, were directly affected. Mogens Fog, Poul Thygesen (Denmark) and Haakon Sæthre (Norway...

  12. Attribution of Extreme Rainfall Events in the South of France Using EURO-CORDEX Simulations

    Science.gov (United States)

    Luu, L. N.; Vautard, R.; Yiou, P.

    2017-12-01

    The Mediterranean region regularly undergoes episodes of intense precipitation in the fall season that exceed 300mm a day. This study focuses on the role of climate change on the dynamics of the events that occur in the South of France. We used an ensemble of 10 EURO-CORDEX model simulations with two horizontal resolutions (EUR-11: 0.11° and EUR-44: 0.44°) for the attribution of extreme rainfall in the fall in the Cevennes mountain range (South of France). The biases of the simulations were corrected with simple scaling adjustment and a quantile correction (CDFt). This produces five datasets including EUR-44 and EUR-11 with and without scaling adjustment and CDFt-EUR-11, on which we test the impact of resolution and bias correction on the extremes. Those datasets, after pooling all of models together, are fitted by a stationary Generalized Extreme Value distribution for several periods to estimate a climate change signal in the tail of distribution of extreme rainfall in the Cévenne region. Those changes are then interpreted by a scaling model that links extreme rainfall with mean and maximum daily temperature. The results show that higher-resolution simulations with bias adjustment provide a robust and confident increase of intensity and likelihood of occurrence of autumn extreme rainfall in the area in current climate in comparison with historical climate. The probability (exceedance probability) of 1-in-1000-year event in historical climate may increase by a factor of 1.8 under current climate with a confident interval of 0.4 to 5.3 following the CDFt bias-adjusted EUR-11. The change of magnitude appears to follow the Clausius-Clapeyron relation that indicates a 7% increase in rainfall per 1oC increase in temperature.

  13. [Embracing medical innovation in the era of big data].

    Science.gov (United States)

    You, Suning

    2015-01-01

    Along with the advent of big data era worldwide, medical field has to place itself in it inevitably. The current article thoroughly introduces the basic knowledge of big data, and points out the coexistence of its advantages and disadvantages. Although the innovations in medical field are struggling, the current medical pattern will be changed fundamentally by big data. The article also shows quick change of relevant analysis in big data era, depicts a good intention of digital medical, and proposes some wise advices to surgeons.

  14. Extremely high wall-shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  15. Capturing spatial and temporal patterns of widespread, extreme flooding across Europe

    Science.gov (United States)

    Busby, Kathryn; Raven, Emma; Liu, Ye

    2013-04-01

    Statistical characterisation of physical hazards is an integral part of probabilistic catastrophe models used by the reinsurance industry to estimate losses from large scale events. Extreme flood events are not restricted by country boundaries which poses an issue for reinsurance companies as their exposures often extend beyond them. We discuss challenges and solutions that allow us to appropriately capture the spatial and temporal dependence of extreme hydrological events on a continental-scale, which in turn enables us to generate an industry-standard stochastic event set for estimating financial losses for widespread flooding. By presenting our event set methodology, we focus on explaining how extreme value theory (EVT) and dependence modelling are used to account for short, inconsistent hydrological data from different countries, and how to make appropriate statistical decisions that best characterise the nature of flooding across Europe. The consistency of input data is of vital importance when identifying historical flood patterns. Collating data from numerous sources inherently causes inconsistencies and we demonstrate our robust approach to assessing the data and refining it to compile a single consistent dataset. This dataset is then extrapolated using a parameterised EVT distribution to estimate extremes. Our method then captures the dependence of flood events across countries using an advanced multivariate extreme value model. Throughout, important statistical decisions are explored including: (1) distribution choice; (2) the threshold to apply for extracting extreme data points; (3) a regional analysis; (4) the definition of a flood event, which is often linked with reinsurance industry's hour's clause; and (5) handling of missing values. Finally, having modelled the historical patterns of flooding across Europe, we sample from this model to generate our stochastic event set comprising of thousands of events over thousands of years. We then briefly

  16. Developing a Framework for Seamless Prediction of Sub-Seasonal to Seasonal Extreme Precipitation Events in the United States.

    Science.gov (United States)

    Rosendahl, D. H.; Ćwik, P.; Martin, E. R.; Basara, J. B.; Brooks, H. E.; Furtado, J. C.; Homeyer, C. R.; Lazrus, H.; Mcpherson, R. A.; Mullens, E.; Richman, M. B.; Robinson-Cook, A.

    2017-12-01

    Extreme precipitation events cause significant damage to homes, businesses, infrastructure, and agriculture, as well as many injures and fatalities as a result of fast-moving water or waterborne diseases. In the USA, these natural hazard events claimed the lives of more than 300 people during 2015 - 2016 alone, with total damage reaching $24.4 billion. Prior studies of extreme precipitation events have focused on the sub-daily to sub-weekly timeframes. However, many decisions for planning, preparing and resilience-building require sub-seasonal to seasonal timeframes (S2S; 14 to 90 days), but adequate forecasting tools for prediction do not exist. Therefore, the goal of this newly funded project is an enhancement in understanding of the large-scale forcing and dynamics of S2S extreme precipitation events in the United States, and improved capability for modeling and predicting such events. Here, we describe the project goals, objectives, and research activities that will take place over the next 5 years. In this project, a unique team of scientists and stakeholders will identify and understand weather and climate processes connected with the prediction of S2S extreme precipitation events by answering these research questions: 1) What are the synoptic patterns associated with, and characteristic of, S2S extreme precipitation evens in the contiguous U.S.? 2) What role, if any, do large-scale modes of climate variability play in modulating these events? 3) How predictable are S2S extreme precipitation events across temporal scales? 4) How do we create an informative prediction of S2S extreme precipitation events for policymaking and planing? This project will use observational data, high-resolution radar composites, dynamical climate models and workshops that engage stakeholders (water resource managers, emergency managers and tribal environmental professionals) in co-production of knowledge. The overarching result of this project will be predictive models to reduce of

  17. Early onset of industrial-era warming across the oceans and continents.

    Science.gov (United States)

    Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S

    2016-08-25

    The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

  18. Contributions of natural climate changes and human activities to the trend of extreme precipitation

    Science.gov (United States)

    Gao, Lu; Huang, Jie; Chen, Xingwei; Chen, Ying; Liu, Meibing

    2018-06-01

    This study focuses on the analysis of the nonstationarity characteristics of extreme precipitation and their attributions in the southeastern coastal region of China. The maximum daily precipitation (MDP) series is extracted from observations at 79 meteorological stations in the study area during the first flood season (April-June) from 1960 to 2012. The trends of the mean (Mn) and variance (Var) of MDP are detected using the Generalized Additive Models for Location, Scale, and Shape parameters (GAMLSS) and Mann-Kendall test. The contributions of natural climate change and human activities to the Mn and Var changes of MDP are investigated using six large-scale circulation variables and emissions of four greenhouse gases based on GAMLSS and a contribution analysis method. The results demonstrate that the nonstationarity of extreme precipitation on local scales is significant. The Mn and Var of extreme precipitation increase in the north of Zhejiang, the middle of Fujian, and the south of Guangdong. In general, natural climate change contributes more to Mn from 1960 to 2012 than to Var. However, human activities cause a greater Var in the rapid socioeconomic development period (1986-2012) than in the slow socioeconomic development period (1960-1985), especially in Zhejiang and Guangdong. The community should pay more attention to the possibility of extreme precipitation events and associated disasters triggered by human activities.

  19. Measuring ocean acidification: new technology for a new era of ocean chemistry.

    Science.gov (United States)

    Byrne, Robert H

    2014-05-20

    Human additions of carbon dioxide to the atmosphere are creating a cascade of chemical consequences that will eventually extend to the bottom of all the world's oceans. Among the best-documented seawater effects are a worldwide increase in open-ocean acidity and large-scale declines in calcium carbonate saturation states. The susceptibility of some young, fast-growing calcareous organisms to adverse impacts highlights the potential for biological and economic consequences. Many important aspects of seawater CO2 chemistry can be only indirectly observed at present, and important but difficult-to-observe changes can include shifts in the speciation and possibly bioavailability of some life-essential elements. Innovation and invention are urgently needed to develop the in situ instrumentation required to document this era of rapid ocean evolution.

  20. The New York City Operations Support Tool: Supporting Water Supply Operations for Millions in an Era of Changing Patterns in Hydrological Extreme Events

    Science.gov (United States)

    Matonse, A. H.; Porter, J. H.; Frei, A.

    2015-12-01

    Providing an average 1.1 billion gallons (~ 4.2 x 106 cubic meters) of drinking water per day to approximately nine million people in New York City (NYC) and four upstate counties, the NYC water supply is among the world's largest unfiltered systems. In addition to providing a reliable water supply in terms of water quantity and quality, the city has to fulfill other flow objectives to serve downstream communities. At times, such as during extreme hydrological events, water quality issues may restrict water usage for parts of the system. To support a risk-based water supply decision making process NYC has developed the Operations Support Tool (OST). OST combines a water supply systems model with reservoir water quality models, near real time data ingestion, data base management and an ensemble hydrological forecast. A number of reports have addressed the frequency and intensities of extreme hydrological events across the continental US. In the northeastern US studies have indicated an increase in the frequency of extremely large precipitation and streamflow events during the most recent decades. During this presentation we describe OST and, using case studies we demonstrate how this tool has been useful to support operational decisions. We also want to motivate a discussion about how undergoing changes in patterns of hydrological extreme events elevate the challenge faced by water supply managers and the role of the scientific community to integrate nonstationarity approaches in hydrologic forecast and modeling.

  1. A pentatonic classification of extreme events

    International Nuclear Information System (INIS)

    Eliazar, Iddo; Cohen, Morrel H.

    2015-01-01

    In this paper we present a classification of the extreme events – very small and very large outcomes – of positive-valued random variables. The classification distinguishes five different categories of randomness, ranging from the very ‘mild’ to the very ‘wild’. In analogy with the common five-tone musical scale we term the classification ‘pentatonic’. The classification is based on the analysis of the inherent Gibbsian ‘forces’ and ‘temperatures’ existing on the logarithmic scale of the random variables under consideration, and provides a statistical-physics insight regarding the nature of these random variables. The practical application of the pentatonic classification is remarkably straightforward, it can be performed by non-experts, and it is demonstrated via an array of examples

  2. Detrending career statistics in professional baseball: Accounting for the steroids era and beyond

    OpenAIRE

    Petersen, Alexander M.; Penner, Orion; Stanley, H. Eugene

    2010-01-01

    There is a long standing debate over how to objectively compare the career achievements of professional athletes from different historical eras. Developing an objective approach will be of particular importance over the next decade as Major League Baseball (MLB) players from the "steroids era" become eligible for Hall of Fame induction. Here we address this issue, as well as the general problem of comparing statistics from distinct eras, by detrending the seasonal statistics of professional b...

  3. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  4. Snow Accumulation Variability Over the West Antarctic Ice Sheet Since 1900: A Comparison of Ice Core Records With ERA-20C Reanalysis

    Science.gov (United States)

    Wang, Yetang; Thomas, Elizabeth R.; Hou, Shugui; Huai, Baojuan; Wu, Shuangye; Sun, Weijun; Qi, Shanzhong; Ding, Minghu; Zhang, Yulun

    2017-11-01

    This study uses a set of 37 firn core records over the West Antarctic Ice Sheet (WAIS) to test the performance of the twentieth century from the European Centre for Medium-Range Weather Forecasts (ERA-20C) reanalysis for snow accumulation and quantify temporal variability in snow accumulation since 1900. The firn cores are allocated to four geographical areas demarcated by drainage divides (i.e., Antarctic Peninsula (AP), western WAIS, central WAIS, and eastern WAIS) to calculate stacked records of regional snow accumulation. Our results show that the interannual variability in ERA-20C precipitation minus evaporation (P - E) agrees well with the corresponding ice core snow accumulation composites in each of the four geographical regions, suggesting its skill for simulating snow accumulation changes before the modern satellite era (pre-1979). Snow accumulation experiences significantly positive trends for the AP and eastern WAIS, a negative trend for the western WAIS, and no significant trend for the central WAIS from 1900 to 2010. The contrasting trends are associated with changes in the large-scale moisture transport driven by a deepening of the low-pressure systems and anomalies of sea ice in the Amundsen Sea Low region.

  5. System and software safety analysis for the ERA control computer

    International Nuclear Information System (INIS)

    Beerthuizen, P.G.; Kruidhof, W.

    2001-01-01

    The European Robotic Arm (ERA) is a seven degrees of freedom relocatable anthropomorphic robotic manipulator system, to be used in manned space operation on the International Space Station, supporting the assembly and external servicing of the Russian segment. The safety design concept and implementation of the ERA is described, in particular with respect to the central computer's software design. A top-down analysis and specification process is used to down flow the safety aspects of the ERA system towards the subsystems, which are produced by a consortium of companies in many countries. The user requirements documents and the critical function list are the key documents in this process. Bottom-up analysis (FMECA) and test, on both subsystem and system level, are the basis for safety verification. A number of examples show the use of the approach and methods used

  6. A North American Hydroclimate Synthesis (NAHS) of the Common Era

    Science.gov (United States)

    Rodysill, Jessica R.; Anderson, Lesleigh; Cronin, Thomas M.; Jones, Miriam C.; Thompson, Robert S.; Wahl, David B.; Willard, Debra A.; Addison, Jason A.; Alder, Jay R.; Anderson, Katherine H.; Anderson, Lysanna; Barron, John A.; Bernhardt, Christopher E.; Hostetler, Steven W.; Kehrwald, Natalie M.; Khan, Nicole S.; Richey, Julie N.; Starratt, Scott W.; Strickland, Laura E.; Toomey, Michael R.; Treat, Claire C.; Wingard, G. Lynn

    2018-03-01

    This study presents a synthesis of century-scale hydroclimate variations in North America for the Common Era (last 2000 years) using new age models of previously published multiple proxy-based paleoclimate data. This North American Hydroclimate Synthesis (NAHS) examines regional hydroclimate patterns and related environmental indicators, including vegetation, lake water elevation, stream flow and runoff, cave drip rates, biological productivity, assemblages of living organisms, and salinity. Centennial-scale hydroclimate anomalies are obtained by iteratively sampling the proxy data on each of thousands of age model realizations and determining the fractions of possible time series indicating that the century-smoothed data was anomalously wet or dry relative to the 100 BCE to 1900 CE mean. Results suggest regionally asynchronous wet and dry periods over multidecadal to centennial timescales and frequent periods of extended regional drought. Most sites indicate drying during previously documented multicentennial periods of warmer Northern Hemisphere temperatures, particularly in the western U.S., central U.S., and Canada. Two widespread droughts were documented by the NAHS: from 50 BCE to 450 CE and from 800 to 1100 CE. Major hydroclimate reorganizations occurred out of sync with Northern Hemisphere temperature variations and widespread wet and dry anomalies occurred during both warm and cool periods. We present a broad assessment of paleoclimate relationships that highlights the potential influences of internal variability and external forcing and supports a prominent role for Pacific and Atlantic Ocean dynamics on century-scale continental hydroclimate.

  7. Carbon tetrachloride ERA soil-gas baseline monitoring

    International Nuclear Information System (INIS)

    Fancher, J.D.

    1994-01-01

    From December 1991 through December 1993, Westinghouse Hanford Company performed routine baseline monitoring of selected wells ad soil-gas points twice weekly in the 200 West Area of the Hanford Site. This work supported the carbon Tetrachloride Expedited Response Action (ERA) and provided a solid baseline of volatile organic compound (VOC) concentrations in wells and in the subsurface at the ERA site. As site remediation continues, comparisons to this baseline can be one means of measuring the success of carbon tetrachloride vapor extraction. This report contains observations of the patterns and trends associated with data obtained during soil-gas monitoring at the 200 West Area: Monitoring performed since late 1991 includes monitoring soil-gas probes ad wellheads for volatile organic compounds (VOCs). This report reflects monitoring data collected from December 1991 through December 1993

  8. Extrapolation of extreme response for different mooring line systems of floating wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard

    2014-01-01

    Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... measurements from lab-scaled WEPTOS WEC are taken. Different catenary anchor leg mooring (CALM) systems as well as single anchor legmooring (SALM)mooring systemsare implemented for a dynamic simulation with different number of mooring lines. Extreme tension loads with a return period of 50 years are assessed...... for the hawser as well as at the different mooring lines. Furthermore, the extreme load impact given failure of one mooring line is assessed and compared with extreme loads given no system failure....

  9. Extreme weather and climate events with ecological relevance: a review.

    Science.gov (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  10. Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida

    Science.gov (United States)

    Gerlach, Matthew J.; Engelhart, Simon E.; Kemp, Andrew C.; Moyer, Ryan P.; Smoak, Joseph M.; Bernhardt, Christopher E.; Cahill, Niamh

    2017-01-01

    To address a paucity of Common Era data in the Gulf of Mexico, we reconstructed ~ 1.1 m of relative sea-level (RSL) rise over the past ~ 2000 years at Little Manatee River (Gulf Coast of Florida, USA). We applied a regional-scale foraminiferal transfer function to fossil assemblages preserved in a core of salt-marsh peat and organic silt that was dated using radiocarbon and recognition of pollution, 137Cs and pollen chronohorizons. Our proxy reconstruction was combined with tide-gauge data from four nearby sites spanning 1913–2014 CE. Application of an Errors-in-Variables Integrated Gaussian Process (EIV-IGP) model to the combined proxy and instrumental dataset demonstrates that RSL fell from ~ 350 to 100 BCE, before rising continuously to present. This initial RSL fall was likely the result of local-scale processes (e.g., silting up of a tidal flat or shallow sub-tidal shoal) as salt-marsh development at the site began. Since ~ 0 CE, we consider the reconstruction to be representative of regional-scale RSL trends. We removed a linear rate of 0.3 mm/yr from the RSL record using the EIV-IGP model to estimate climate-driven sea-level trends and to facilitate comparison among sites. This analysis demonstrates that since ~ 0 CE sea level did not deviate significantly from zero until accelerating continuously from ~ 1500 CE to present. Sea level was rising at 1.33 mm/yr in 1900 CE and accelerated until 2014 CE when a rate of 2.02 mm/yr was attained, which is the fastest, century-scale trend in the ~ 2000-year record. Comparison to existing reconstructions from the Gulf coast of Louisiana and the Atlantic coast of northern Florida reveal similar sea-level histories at all three sites. We explored the influence of compaction and fluvial processes on our reconstruction and concluded that compaction was likely insignificant. Fluvial processes were also likely insignificant, but further proxy evidence is needed to fully test this hypothesis. Our results

  11. The New Era of Counterforce

    Science.gov (United States)

    Lieber, Keir

    Nuclear deterrence rests on the survivability of nuclear arsenals. For much of the nuclear age, counterforce disarming attacks those aimed at eliminating nuclear forces were nearly impossible because of the ability of potential victims to hide and protect their weapons. However, technological developments are eroding this foundation of nuclear deterrence. Advances rooted in the computer revolution have made nuclear forces around the world far more vulnerable than before. Specifically, two key approaches that countries have relied on to ensure arsenal survivability since the dawn of the nuclear age hardening and concealment have been undercut by leaps in weapons accuracy and a revolution in remote sensing. Various models, methods, and evidence demonstrate the emergence of new possibilities for counterforce disarming strikes. In short, the task of securing nuclear arsenals against attack is a far greater challenge than it was in the past. The new era of counterforce challenges the basis for confidence in contemporary deterrence stability, raises critical issues for national and international security policy, and sheds light on one of the enduring theoretical puzzles of the nuclear era: why international security competition has endured in the shadow of the nuclear revolution.

  12. Fractal properties and small-scale structure of cosmic string networks

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Shellard, E.P.S.

    2006-01-01

    We present results from a detailed numerical study of the small-scale and loop production properties of cosmic string networks, based on the largest and highest resolution string simulations to date. We investigate the nontrivial fractal properties of cosmic strings, in particular, the fractal dimension and renormalized string mass per unit length, and we also study velocity correlations. We demonstrate important differences between string networks in flat (Minkowski) spacetime and the two very similar expanding cases. For high resolution matter era network simulations, we provide strong evidence that small-scale structure has converged to 'scaling' on all dynamical length scales, without the need for other radiative damping mechanisms. We also discuss preliminary evidence that the dominant loop production size is also approaching scaling

  13. The Study of the Technical Innovation of Agriculture and the Peasant's Activity in Landholder System, in Meiji-Taisyo Era

    OpenAIRE

    勝部, 眞人

    1997-01-01

    In this article, I analyzed the process of Japanese Modern Technical Innovation of Agriculture by many peasants in Meiji-Taisyo Era, for I think that analysis is the key to link between the study on Japanese Modern Landholder System and the historical study on agricultural technique. This study is made on Hiroshima Prefecture, that had so much population and therefore the smallest-scale farmers in Japan, and Akita Prefecture, that had less population and therefore the most extensive culti...

  14. NOVEL CANDHIKALA KAPURANTA SEBAGAI ALTERNATIF PENYELESAIAN DEHUMANISASI PADA ERA INTERNET OF THINGS (IOT

    Directory of Open Access Journals (Sweden)

    Krisna Pebryawan

    2018-03-01

    Full Text Available AbstractThis study aims to describe the cultural value in Candhikala Kapuranta novel as an alternative to dehumanization settlement in IoT era. The research method used is qualitative descriptive. The data source used is Candhikala Kapuranta's novel by Sugiarto Sriwibawa. Data collection techniques used is the technique of referring note, while the technique of data analysis using interactive analysis techniques. Based on the research that has been done, the results of his research as follows. First, the cultural values in Candhikala Kapuranta's novel include religious values and social values. Second, dehumanization in the IoT era is individualism, pornography, and intolerance. Thirdly, the cultural values contained in Candhikala Kapuranta's novel as an alternative to dehumanization settlement in the IoT era.Keywords: Cultural Values, Dehumanization, Era IoT, Novel

  15. The need of the change of the conceptualisation of hydrologic processes under extreme conditions – taking reference evapotranspiration as an example

    Directory of Open Access Journals (Sweden)

    S. Liu

    2015-06-01

    Full Text Available What a hydrological model displays is the relationships between the output and input in daily, monthly, yearly and other temporal scales. In the case of climate change or other environment changes, the input of the hydrological model may show a gradual or abrupt change. There have been numerous documented studies to explore the response of output of the hydrological models to the change of the input with scenario simulation. Most of the studies assumed that the conceptualisation of hydrologic processes will remain, which may be true for the gradual change of the input. However, under extreme conditions the conceptualisation of hydrologic processes may be completely changed. Taking an example of the Allen's formula to calculate crop reference evapotranspiration (ET0 as a simple hydrological model, we analyze the alternation of the extreme in ET0 from 1955 to 2012 at the Chongling Experimental Station located in Hebei Province, China. The relationships between ET0 and the meteorological factors for the average values, minimum (maximum values at daily, monthly and annual scales are revealed. It is found the extreme of the output can follow the extreme of the input better when their relationship is more linear. For non-liner relationship, the extreme of the input cannot at all be reflected from the extreme of the output. Relatively, extreme event at daily scale is harder to be shown than that at monthly scale. The result implicates that a routine model may not be able to catch the response to extreme events and it is even more so as we extrapolate models to higher temperature/CO2 conditions in the future. Some possible choices for the improvements are suggested for predicting hydrological extremes.

  16. Critical exponents of extremal Kerr perturbations

    Science.gov (United States)

    Gralla, Samuel E.; Zimmerman, Peter

    2018-05-01

    We show that scalar, electromagnetic, and gravitational perturbations of extremal Kerr black holes are asymptotically self-similar under the near-horizon, late-time scaling symmetry of the background metric. This accounts for the Aretakis instability (growth of transverse derivatives) as a critical phenomenon associated with the emergent symmetry. We compute the critical exponent of each mode, which is equivalent to its decay rate. It follows from symmetry arguments that, despite the growth of transverse derivatives, all generally covariant scalar quantities decay to zero.

  17. The Performing Arts in a New Era

    National Research Council Canada - National Science Library

    McCarthy, Kevin

    2001-01-01

    The Pew Charitable Trust commissioned The Performing Arts in a New Era from RAND in 1999 as part of a broad initiative aimed at increasing policy and financial support for nonprofit culture in the United States...

  18. Extreme Events in China under Climate Change: Uncertainty and related impacts (CSSP-FOREX)

    Science.gov (United States)

    Leckebusch, Gregor C.; Befort, Daniel J.; Hodges, Kevin I.

    2016-04-01

    Suitable adaptation strategies or the timely initiation of related mitigation efforts in East Asia will strongly depend on robust and comprehensive information about future near-term as well as long-term potential changes in the climate system. Therefore, understanding the driving mechanisms associated with the East Asian climate is of major importance. The FOREX project (Fostering Regional Decision Making by the Assessment of Uncertainties of Future Regional Extremes and their Linkage to Global Climate System Variability for China and East Asia) focuses on the investigation of extreme wind and rainfall related events over Eastern Asia and their possible future changes. Here, analyses focus on the link between local extreme events and their driving weather systems. This includes the coupling between local rainfall extremes and tropical cyclones, the Meiyu frontal system, extra-tropical teleconnections and monsoonal activity. Furthermore, the relation between these driving weather systems and large-scale variability modes, e.g. NAO, PDO, ENSO is analysed. Thus, beside analysing future changes of local extreme events, the temporal variability of their driving weather systems and related large-scale variability modes will be assessed in current CMIP5 global model simulations to obtain more robust results. Beyond an overview of FOREX itself, first results regarding the link between local extremes and their steering weather systems based on observational and reanalysis data are shown. Special focus is laid on the contribution of monsoonal activity, tropical cyclones and the Meiyu frontal system on the inter-annual variability of the East Asian summer rainfall.

  19. Clinical application of lower extremity CTA and lower extremity perfusion CT as a method of diagnostic for lower extremity atherosclerotic obliterans

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Il Bong; Dong, Kyung Rae [Dept. Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of); Goo, Eun Hoe [Dept. Radiological Science, Cheongju University, Cheongju (Korea, Republic of)

    2016-11-15

    The purpose of this study was to assess clinical application of lower extremity CTA and lower extremity perfusion CT as a method of diagnostic for lower extremity atherosclerotic obliterans. From January to July 2016, 30 patients (mean age, 68) were studied with lower extremity CTA and lower extremity perfusion CT. 128 channel multi-detector row CT scans were acquired with a CT scanner (SOMATOM Definition Flash, Siemens medical solution, Germany) of lower extremity perfusion CT and lower extremity CTA. Acquired images were reconstructed with 3D workstation (Leonardo, Siemens, Germany). Site of lower extremity arterial occlusive and stenosis lesions were detected superficial femoral artery 36.6%, popliteal artery 23.4%, external iliac artery 16.7%, common femoral artery 13.3%, peroneal artery 10%. The mean total DLP comparison of lower extremity perfusion CT and lower extremity CTA, 650 mGy-cm and 675 mGy-cm, respectively. Lower extremity perfusion CT and lower extremity CTA were realized that were never be two examination that were exactly the same legions. Future through the development of lower extremity perfusion CT soft ware programs suggest possible clinical applications.

  20. Scientific Grand Challenges: Challenges in Climate Change Science and the Role of Computing at the Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Khaleel, Mohammad A.; Johnson, Gary M.; Washington, Warren M.

    2009-07-02

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) in partnership with the Office of Advanced Scientific Computing Research (ASCR) held a workshop on the challenges in climate change science and the role of computing at the extreme scale, November 6-7, 2008, in Bethesda, Maryland. At the workshop, participants identified the scientific challenges facing the field of climate science and outlined the research directions of highest priority that should be pursued to meet these challenges. Representatives from the national and international climate change research community as well as representatives from the high-performance computing community attended the workshop. This group represented a broad mix of expertise. Of the 99 participants, 6 were from international institutions. Before the workshop, each of the four panels prepared a white paper, which provided the starting place for the workshop discussions. These four panels of workshop attendees devoted to their efforts the following themes: Model Development and Integrated Assessment; Algorithms and Computational Environment; Decadal Predictability and Prediction; Data, Visualization, and Computing Productivity. The recommendations of the panels are summarized in the body of this report.

  1. Variability in clinical diagnoses during the ICD-8 and ICD-10 era

    DEFF Research Database (Denmark)

    Frederiksen, Julie E Nordgaard; Jessen, Kasper; Sæbye, Ditte

    2016-01-01

    university-affiliated departments of psychiatry in Denmark in two time periods: 1980-1985 (ICD-8) and 2001-2010 (ICD-10). RESULTS: The synchronic inter-departmental diagnostic differences did not decrease in the ICD-10 era compared with ICD-8 era. Nor did the diachronic stability within each department...

  2. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    Science.gov (United States)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it

  3. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  4. Time Management in the Digital Era

    Science.gov (United States)

    Wodarz, Nan

    2013-01-01

    School business officials can strike a balance between setting a long-term strategy and responding to short-term situations by implementing time management strategies. This article presents tips for time management that could help boost productivity and save time in this digital era. Tips include decreasing meeting times via Skype or…

  5. Will ALICE run in the HL-LHC era?

    International Nuclear Information System (INIS)

    Wessels, J.P.

    2012-01-01

    We will present the perspectives for ion running in the HL-LHC era. In particular, ALICE is preparing a significant upgrade of its rate capabilities and is further extending its particle identification potential. This paves the way for heavy ion physics at unprecedented luminosities, which are expected in the HL-LHC era with the heaviest ions. Here, we outline a scenario, in which ALICE will be taking data at a luminosity of L > 6*10 27 cm -2 *s -1 for Pb-Pb with the aim of collecting at least 10 nb -1 . The potential interest of data-taking during high luminosity proton runs for ATLAS and CMS will also be commented. (author)

  6. Governments, contractors seen headed for era of cooperation

    International Nuclear Information System (INIS)

    McHaffie, E.R.; Jarvis, M.G.; Barber, S.A.

    1993-01-01

    The oil and gas industry is on the threshold of a new era in international oil and gas investments. It will be an era of increasing flexibility and cooperation among investors, oil companies, and host governments. And it will develop as a necessary response to flat oil prices and the growing mobility of capital. This article will cover three essential elements of this topic: the effect of fiscal terms on the economics of a project investment; how recent changes in global economies have impacted the economics of the projects the authors evaluated at Amoco; some potential trends that fiscal provisions, and the pattern of investment in the upstream petroleum industry, may take

  7. Predictability and possible earlier awareness of extreme precipitation across Europe

    Science.gov (United States)

    Lavers, David; Pappenberger, Florian; Richardson, David; Zsoter, Ervin

    2017-04-01

    Extreme hydrological events can cause large socioeconomic damages in Europe. In winter, a large proportion of these flood episodes are associated with atmospheric rivers, a region of intense water vapour transport within the warm sector of extratropical cyclones. When preparing for such extreme events, forecasts of precipitation from numerical weather prediction models or river discharge forecasts from hydrological models are generally used. Given the strong link between water vapour transport (integrated vapour transport IVT) and heavy precipitation, it is possible that IVT could be used to warn of extreme events. Furthermore, as IVT is located in extratropical cyclones, it is hypothesized to be a more predictable variable due to its link with synoptic-scale atmospheric dynamics. In this research, we firstly provide an overview of the predictability of IVT and precipitation forecasts, and secondly introduce and evaluate the ECMWF Extreme Forecast Index (EFI) for IVT. The EFI is a tool that has been developed to evaluate how ensemble forecasts differ from the model climate, thus revealing the extremeness of the forecast. The ability of the IVT EFI to capture extreme precipitation across Europe during winter 2013/14, 2014/15, and 2015/16 is presented. The results show that the IVT EFI is more capable than the precipitation EFI of identifying extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase. However, the precipitation EFI is superior during the negative NAO phase and at shorter lead times. An IVT EFI example is shown for storm Desmond in December 2015 highlighting its potential to identify upcoming hydrometeorological extremes.

  8. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea

    Science.gov (United States)

    Murakami, Hiroyuki; Vecchi, Gabriel A.; Underwood, Seth

    2017-12-01

    In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—defined by the WMO as tropical storms with lifetime maximum winds greater than 46 m s-1—were first observed over the Arabian Sea (ARB), causing widespread damage. However, it is unknown to what extent this abrupt increase in post-monsoon ESCSs can be linked to anthropogenic warming, natural variability, or stochastic behaviour. Here, using a suite of high-resolution global coupled model experiments that accurately simulate the climatological distribution of ESCSs, we show that anthropogenic forcing has likely increased the probability of late-season ECSCs occurring in the ARB since the preindustrial era. However, the specific timing of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is further shown that natural variability played a minimal role in the observed increase of ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in the ARB, with corresponding socio-economic implications.

  9. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  10. Report from the 4th Workshop on Extremely Large Databases

    Directory of Open Access Journals (Sweden)

    Jacek Becla

    2011-02-01

    Full Text Available Academic and industrial users are increasingly facing the challenge of petabytes of data, but managing and analyzing such large data sets still remains a daunting task. The 4th Extremely Large Databases workshop was organized to examine the needs of communities under-represented at the past workshops facing these issues. Approaches to big data statistical analytics as well as emerging opportunities related to emerging hardware technologies were also debated. Writable extreme scale databases and the science benchmark were discussed. This paper is the final report of the discussions and activities at this workshop.

  11. Wind and wave extremes over the world oceans from very large ensembles

    Science.gov (United States)

    Breivik, Øyvind; Aarnes, Ole Johan; Abdalla, Saleh; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.

    2014-07-01

    Global return values of marine wind speed and significant wave height are estimated from very large aggregates of archived ensemble forecasts at +240 h lead time. Long lead time ensures that the forecasts represent independent draws from the model climate. Compared with ERA-Interim, a reanalysis, the ensemble yields higher return estimates for both wind speed and significant wave height. Confidence intervals are much tighter due to the large size of the data set. The period (9 years) is short enough to be considered stationary even with climate change. Furthermore, the ensemble is large enough for nonparametric 100 year return estimates to be made from order statistics. These direct return estimates compare well with extreme value estimates outside areas with tropical cyclones. Like any method employing modeled fields, it is sensitive to tail biases in the numerical model, but we find that the biases are moderate outside areas with tropical cyclones.

  12. REMO poor man's reanalysis

    Science.gov (United States)

    Ries, H.; Moseley, C.; Haensler, A.

    2012-04-01

    Reanalyses depict the state of the atmosphere as a best fit in space and time of many atmospheric observations in a physically consistent way. By essentially solving the data assimilation problem in a very accurate manner, reanalysis results can be used as reference for model evaluation procedures and as forcing data sets for different model applications. However, the spatial resolution of the most common and accepted reanalysis data sets (e.g. JRA25, ERA-Interim) ranges from approximately 124 km to 80 km. This resolution is too coarse to simulate certain small scale processes often associated with extreme events. In addition, many models need higher resolved forcing data ( e.g. land-surface models, tools for identifying and assessing hydrological extremes). Therefore we downscaled the ERA-Interim reanalysis over the EURO-CORDEX-Domain for the time period 1989 to 2008 to a horizontal resolution of approximately 12 km. The downscaling is performed by nudging REMO-simulations to lower and lateral boundary conditions of the reanalysis, and by re-initializing the model every 24 hours ("REMO in forecast mode"). In this study the three following questions will be addressed: 1.) Does the REMO poor man's reanalysis meet the needs (accuracy, extreme value distribution) in validation and forcing? 2.) What lessons can be learned about the model used for downscaling? As REMO is used as a pure downscaling procedure, any systematic deviations from ERA-Interim result from poor process modelling but not from predictability limitations. 3.) How much small scale information generated by the downscaling model is lost with frequent initializations? A comparison to a simulation that is performed in climate mode will be presented.

  13. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  14. Introduction to the special issue: Observed and projected changes in weather and climate extremes

    Directory of Open Access Journals (Sweden)

    John E. Hay

    2016-03-01

    Full Text Available This Special Issue documents not only the more recent progress made in detecting and attributing changes in temperature and precipitation extremes in the observational record, but also in projecting changes in such extremes at regional and local scales. It also deals with the impacts and other consequences and implications of both the historic and anticipated changes in extreme weather and climate events. Impact assessments using both dynamical downscaling and statistical modelling for two tropical cyclones are reported, as well as for storm surge and extreme wave changes. The Special Issue concludes with a consideration of some policy implications and practical applications arising from our relatively robust understanding of how the build up of greenhouse gases in the Earth’s atmosphere affects weather and climate extremes.

  15. Future extreme sea level seesaws in the tropical Pacific.

    Science.gov (United States)

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.

  16. Source Finding in the Era of the SKA (Precursors): Aegean 2.0

    Science.gov (United States)

    Hancock, Paul J.; Trott, Cathryn M.; Hurley-Walker, Natasha

    2018-03-01

    In the era of the SKA precursors, telescopes are producing deeper, larger images of the sky on increasingly small time-scales. The greater size and volume of images place an increased demand on the software that we use to create catalogues, and so our source finding algorithms need to evolve accordingly. In this paper, we discuss some of the logistical and technical challenges that result from the increased size and volume of images that are to be analysed, and demonstrate how the Aegean source finding package has evolved to address these challenges. In particular, we address the issues of source finding on spatially correlated data, and on images in which the background, noise, and point spread function vary across the sky. We also introduce the concept of forced or prioritised fitting.

  17. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  18. Dendroclimate evidence for extreme hydrologic events over the late Holocene in the Northeastern United States

    Science.gov (United States)

    Pearl, J. K.; Anchukaitis, K. J.; Pederson, N.; Donnelly, J. P.

    2017-12-01

    Extreme hydrologic events pose a present and future threat to cities and infrastructure in the densely populated coastal corridor of the northeastern United States (NE). An understanding of the potential range and return interval of storms, floods, and droughts is important for improving coastal management and hazard planning, as well as the detection and attribution of trends in regional climate phenomena. Here, we examine a suite of evidence for Common Era paleohydroclimate extreme events in the NE. Our study analyzes a network of hydroclimate sensitive trees, subfossil 'drowned' forests and co-located sediment records, using both classical and isotope dendrochronology, radiocarbon analyses, and sediment stratigraphy. Atlantic White cedar (AWC) forests grow along the NE coast and are exposed to severe coastal weather, as they are typically most successful in near-shore, glacially formed depressions. Many coastal AWC sites are ombrotrophic and contain a precipitation or drought signal in their ring widths. Sub-fossil AWC forests are found where near-shore swamps were drowned and exposed to the ocean. Additionally, the rings of coastal AWC may contain the geochemical signature of landfalling tropical cyclones, which bring with them a large influx of precipitation with distinct oxygen isotopes, which can be used to identify these large storms. Dendrochronology, radiocarbon dating, and analysis of sediment cores are used here to identify and date the occurrence of large overwash events along the coastline of the northeastern United States associated with extreme storms.

  19. Severe pulmonary hemorrhage in the premature newborn infant: analysis of presurfactant and surfactant eras.

    Science.gov (United States)

    Braun, K R; Davidson, K M; Henry, M; Nielsen, H C

    1999-01-01

    We undertook a case-control study of premature infants who developed clinically significant, severe pulmonary hemorrhage (PH) in the presurfactant and surfactant eras to learn more about the cause of severe PH and whether the pathogenesis of severe PH has changed with the advent of surfactant therapy. Severe PH was defined as an acute onset of severe endotracheal bleeding with an acute drop in hematocrit and the development of multilobar infiltrates on chest radiograph. Eleven premature infants from the presurfactant era population and 17 premature infants from the surfactant era population met the criteria for severe PH, all with gestational ages <32 weeks and birth weights <1,500 g (very low birth weight infants). These were each matched by gestational age, date of birth, birth order (for twins), and birth weight to 2 controls. The incidence of severe PH in infants of gestational age <32 weeks was similar in the two eras (1.8% in the presurfactant era and 3.0% in the surfactant era). Severe PH was not associated with maternal characteristics such as drug use or prenatal care, pregnancy complications, evidence of intrauterine anoxia, hyaline membrane disease, frequency of endotracheal suctioning, or patent ductus arteriosus. Premature infants suffering from severe PH in the presurfactant era required more delivery room resuscitation and had more severe early respiratory disease during the first 12 h of life as compared with their controls. However, these differences were not present in the group from the surfactant era. Infants with severe PH were more likely to have birth weights below the third percentile for gestation (severe intrauterine growth restriction). The proportion of infants receiving surfactant, and the number of surfactant doses used, did not differ between severe-PH infants and their controls in the surfactant era group. We conclude that severe intrauterine growth restriction represents a risk factor for severe PH in very low birth weight infants

  20. The National Extreme Events Data and Research Center (NEED)

    Science.gov (United States)

    Gulledge, J.; Kaiser, D. P.; Wilbanks, T. J.; Boden, T.; Devarakonda, R.

    2014-12-01

    The Climate Change Science Institute at Oak Ridge National Laboratory (ORNL) is establishing the National Extreme Events Data and Research Center (NEED), with the goal of transforming how the United States studies and prepares for extreme weather events in the context of a changing climate. NEED will encourage the myriad, distributed extreme events research communities to move toward the adoption of common practices and will develop a new database compiling global historical data on weather- and climate-related extreme events (e.g., heat waves, droughts, hurricanes, etc.) and related information about impacts, costs, recovery, and available research. Currently, extreme event information is not easy to access and is largely incompatible and inconsistent across web sites. NEED's database development will take into account differences in time frames, spatial scales, treatments of uncertainty, and other parameters and variables, and leverage informatics tools developed at ORNL (i.e., the Metadata Editor [1] and Mercury [2]) to generate standardized, robust documentation for each database along with a web-searchable catalog. In addition, NEED will facilitate convergence on commonly accepted definitions and standards for extreme events data and will enable integrated analyses of coupled threats, such as hurricanes/sea-level rise/flooding and droughts/wildfires. Our goal and vision is that NEED will become the premiere integrated resource for the general study of extreme events. References: [1] Devarakonda, Ranjeet, et al. "OME: Tool for generating and managing metadata to handle BigData." Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 2014. [2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.

  1. RESOLVING IONIZATION AND METALLICITY ON PARSEC SCALES ACROSS MRK 71 WITH HST-WFC3

    Energy Technology Data Exchange (ETDEWEB)

    James, Bethan L.; Auger, Matthew [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Aloisi, Alessandra [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Kewley, Lisa, E-mail: bjames@ast.cam.ac.uk [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2016-01-01

    Blue compact dwarf (BCD) galaxies in the nearby universe provide a means for studying feedback mechanisms and star formation processes in low-metallicity environments in great detail. Owing to their vicinity, these local analogs to primordial young galaxies are well suited for high-resolution studies that are unfeasible for high-redshift galaxies. Here we present Hubble Space Telescope Wide Field Camera 3 observations of one such BCD, Mrk 71, one of the most powerful local starbursts known, in the light of [O ii], He ii, Hβ, [O iii], Hα, and [S ii]. At D ≃ 3.44 Mpc, this extensive suite of emission-line images enables us to explore the chemical and physical conditions of Mrk 71 on ∼2 pc scales. We use emission-line diagnostics to distinguish ionization mechanisms on a pixel-by-pixel basis and show that despite the previously reported hypersonic gas and superbubble blowout, the gas in Mrk 71 is photoionized, with no sign of shock-excited emission. He ii emission line images are used to identify up to six Wolf-Rayet stars, three of which lie on the edge of a blowout region. Using strong-line metallicity diagnostics, we present the first “metallicity image” of a galaxy, revealing chemical inhomogeneity on scales of <50 pc. We additionally demonstrate that while chemical structure can be lost at large scales, metallicity diagnostics can break down on spatial scales smaller than an H ii region. This study highlights not only the benefits of high-resolution spatially resolved observations in assessing the effects of feedback mechanisms but also the potential limitations when employing emission-line diagnostics; these results are particularly relevant as we enter the era of extremely large telescopes.

  2. Exact scale-invariant background of gravitational waves from cosmic defects.

    Science.gov (United States)

    Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon

    2013-03-08

    We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.

  3. The end of a remarkable era

    CERN Multimedia

    2011-01-01

    An important era in particle physics is coming to an end: the US Department of Energy announced on Monday that it will not fund an extension to Tevatron running beyond 2011. It is a poignant moment for particle physics as we prepare to bid farewell to a machine that has changed our view of the Universe, and played a significant role in paving the way for the new era that is opening up with the LHC.   The Tevatron has been at the high-energy frontier of particle physics for over a quarter of a century. That’s a remarkable achievement by any account, and the physics results are there to prove it. As well as bringing us the discovery of the top quark in 1995, the Tevatron’s experiments have provided vitally important precision measurements covering the full spectrum of Standard Model physics, not to mention hints of what may lie beyond. With several months of running still to come, it would be a foolish gambler who bet against further new physics emerging before the Teva...

  4. Crescent and Electoral Strength: Islamic Party Portrait of Reform Era In Indonesia

    Directory of Open Access Journals (Sweden)

    LILI ROMLI

    2013-12-01

    Full Text Available The establishment of Islamic political parties in the reform era in Indonesia after the fall of Suharto (1998, considered as resurgence of political stream. There are several factors that led to the revival of Islamic parties after the New Order, the theological factor, historical, sociological, and reform factor. The presence of Islamic political parties after the New Order was apparently diverse and fragmented. In the political elite of Islam itself in establishing a political party based on Islam and there is also based on nationality, and in establishing political party was using substantially approach and there is also that use formalistic approach. In the reform era elections, political Islam has failed, in which Islamic parties do not receive optimal support from voters Islam. The failure of Islamic parties in election of reform era is caused of factor among Muslims has been change the orientation of political views. Islamic parties in the reform era stuck in a political myth quantity, and Islamic parties are also fragmented and fractured in to small forces.

  5. Global Learning in a New Era

    Directory of Open Access Journals (Sweden)

    Judith Ramaley

    2016-06-01

    Full Text Available Our nation’s colleges and universities have frequently adapted their educational approaches and their relationships with society to respond to new social, economic and environmental challenges. The increasingly interconnected patterns that link together our lives on a global scale have created a new reality. Globalization offers an especially exciting and challenging blend of generational change combined with the emergence of a set of complex, multi-faceted problems created by the global context in which we all now live and work. How shall we educate our students for life in this new era? What can we expect of our graduates in a global world? The answer to these questions is straightforward but will require our institutions to make significant changes in their approach to educating their students and in their interactions with the broader communities that they serve. The approach is shaped by a clear sense of what a globally prepared graduate knows and can do, guided by clear learning outcomes exercised along a sequential pathway of experiences extending from the first year of college through to graduation. These experiences are supported by the use of engaged learning practices that draw students into work that is both personally and socially meaningful cross-disciplinary inquiry that focuses on Big Questions with the goal of finding ways to address those questions in ethical and responsible and effective ways.

  6. Spatio-temporal trends of rainfall across Indian river basins

    Science.gov (United States)

    Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana

    2018-04-01

    Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.

  7. Extreme-Scale Stochastic Particle Tracing for Uncertain Unsteady Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanqi; He, Wenbin; Seo, Sangmin; Shen, Han-Wei; Peterka, Tom

    2016-11-13

    We present an efficient and scalable solution to estimate uncertain transport behaviors using stochastic flow maps (SFM,) for visualizing and analyzing uncertain unsteady flows. SFM computation is extremely expensive because it requires many Monte Carlo runs to trace densely seeded particles in the flow. We alleviate the computational cost by decoupling the time dependencies in SFMs so that we can process adjacent time steps independently and then compose them together for longer time periods. Adaptive refinement is also used to reduce the number of runs for each location. We then parallelize over tasks—packets of particles in our design—to achieve high efficiency in MPI/thread hybrid programming. Such a task model also enables CPU/GPU coprocessing. We show the scalability on two supercomputers, Mira (up to 1M Blue Gene/Q cores) and Titan (up to 128K Opteron cores and 8K GPUs), that can trace billions of particles in seconds.

  8. Constitución de la Realidad en la era Tecnológica de la Posinformación

    OpenAIRE

    San Segundo Manuel, Rosa

    2003-01-01

    La nueva era tecnológica en la que entramos reporta un cambio de constitución y conformación de la realidad. Esta nueva era de la información digital, virtual y electrónica va a suceder a la era tipográfica que ha durado durante los últimos cinco siglos en el mundo occidental. La nueva sociedad de la información electrónica ya ha sido sustituida por la sociedad del conocimiento para apuntar hacia la era del conocimiento. El vehículo de la nueva era en la que entramos son los medios tecnológic...

  9. Menertawakan Fobia Komunis di Era Reproduksi Digital

    Directory of Open Access Journals (Sweden)

    Triyono Lukmantoro

    2017-04-01

    Full Text Available Abstract. In May-June 2016 issue of the rise of the Indonesian Communist Party (PKI and the latent danger of communism appeared again. Excessive fear of PKI and communism continues propagated. That is what is referred to as a communist phobia. But, the issue is considered sensitive that it gave birth to criticism. The phenomenon is the presence of a number of memes comics whose contents laugh hammer and sickle symbol and three communist iconic figures, namely D.N. Aidit, Tan Malaka, and Mao Zedong. Meme comics containing parody to show incongruities that can only happen to the era of digital reproduction. The idea of meme comics can be traced to the thought Walter Benjamin about the works of art in the age of mechanical reproduction. In that era, aura was declining. The crisis and the disappearance of aura increasingly occurs to the time of digital reproduction.

  10. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    Science.gov (United States)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as

  11. Extremely Preterm Birth

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm Birth ... Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” or “ ...

  12. SOCIOLOGIC EXAMINATION OF HELLENISTIC ART IN THE LIGHT OF ANCIENT ERA

    Directory of Open Access Journals (Sweden)

    Z. Aslıhan OZTURK

    2016-10-01

    Full Text Available In this study, the emergence of Hellenistic Art, historical and social background that constitutive it, important features that put it forward and important artworks in the light of Ancient Era Society and Art general framework will be examined. Hellenistic Art as an Ancient Era Art was existed blending Greek culture and art which are dominant elements of the empire and cultures of conquered lands, progressed as a mixed culture. On the wide geography that Alexander the Great conquered, in time differences showed up in the direction of the beliefs, social structure and sense of art of this region and powerful and effective artworks were revealed taking form of this differences with a common understanding. In this reseach, Hellenistic Art that showed a common understanding belongs to almost whole known World in Ancient Era and its sociologic Fundamentals will be analyzed.

  13. The Chinese health care regulatory institutions in an era of transition.

    Science.gov (United States)

    Fang, Jing

    2008-02-01

    The purpose of this paper is to contribute to a better understanding of Chinese health care regulation in an era of transition. It describes the major health care regulatory institutions operating currently in China and analyzes the underlying factors. The paper argues that in the transition from a planned to a market economy, the Chinese government has been employing a hybrid approach where both old and new institutions have a role in the management of emerging markets, including the health care market. This approach is consistent with the incremental reform strategy adopted by the Party-state. Although a health care regulatory framework has gradually taken shape, the framework is incomplete, with a particular lack of emphasis on professional self-regulation. In addition, its effectiveness is limited despite the existence of many regulatory institutions. In poor rural areas, the effectiveness of the regulatory framework is further undermined or distorted by the extremely difficult financial position that local governments find themselves in. The interpretations of the principle of 'rule of law' by policy makers and officials at different levels and the widespread informal network of relations between known individuals (Guanxi) play an important role in the operation of the regulatory framework. The findings of this paper reveal the complex nature of regulating health care in transitional China.

  14. Air pollution or global warming: Attribution of extreme precipitation changes in eastern China—Comments on "Trends of extreme precipitation in Eastern China and their possible causes"

    Science.gov (United States)

    Wang, Yuan

    2015-10-01

    The recent study "Trends of Extreme Precipitation in Eastern China and Their Possible Causes" attributed the observed decrease/increase of light/heavy precipitation in eastern China to global warming rather than the regional aerosol effects. However, there exist compelling evidence from previous long-term observations and numerical modeling studies, suggesting that anthropogenic pollution is closely linked to the recent changes in precipitation intensity because of considerably modulated cloud physical properties by aerosols in eastern China. Clearly, a quantitative assessment of the aerosol and greenhouse effects on the regional scale is required to identify the primary cause for the extreme precipitation changes.

  15. Ophthalmic Vascular Events after Primary Unilateral Intra-arterial Chemotherapy for Retinoblastoma in Early and Recent Eras.

    Science.gov (United States)

    Dalvin, Lauren A; Ancona-Lezama, David; Lucio-Alvarez, J Antonio; Masoomian, Babak; Jabbour, Pascal; Shields, Carol L

    2018-06-16

    To assess risk factors for ophthalmic vascular events after intra-arterial chemotherapy (IAC) for retinoblastoma. Retrospective cohort study. Patients who received unilateral IAC as primary treatment for retinoblastoma from January 1, 2009, to November 30, 2017, at a single center. Records were reviewed for patient demographics, tumor features, IAC parameters, and treatment-related vascular events in the early IAC era (2009-2011) compared with the recent era (2012-2017) using the t test and Fisher exact test. Change in event rates over time was assessed using Poisson regression analysis, with Spearman's rho used to test correlation. Rate of IAC-induced ophthalmic vascular events. There were 243 chemotherapy infusions in 76 eyes of 76 patients, divided into early (22 eyes, 57 infusions) and recent (54 eyes, 186 infusions) eras. Intra-arterial chemotherapy consisted of melphalan (243 infusions), topotecan (124 infusions), and carboplatin (9 infusions). A comparison (early vs. recent era) revealed fewer mean number of infusions (2.6 vs. 3.4, P = 0.02) with similar mean patient age and presenting tumor features. Event rates decreased over time (P early era vs. recent era) in the recent era (59% vs. 9% per eye, 23% vs. 3% per infusion, P age (P = 0.75), tumor diameter (P = 0.32), tumor thickness (P = 0.59), or cumulative dosage of melphalan (P = 0.13) or topotecan (P = 0.59). There were no IAC-induced vascular events in 72 infusions of 21 consecutively treated eyes in 2016 to 2017. Ophthalmic vascular events after IAC have decreased from the early era (2009-2011) through the current era (2012-2017) at this center. Experience performing this highly specialized procedure could be an important factor predicting IAC-related vascular events. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  16. Natural Products Research in South Africa: End of an Era on Land or ...

    African Journals Online (AJOL)

    NICO

    single era of natural product chemistry research in South Africa but rather three ... The Specialization Era (ca. 1960–1990) ... South African Natural Products in the International Drug. Discovery .... subsequently proposed that 24 was formed through an initial ... complete elimination of M. grisea infestation by the commercial.

  17. Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats - Application to the Venice Lagoon, Italy

    Science.gov (United States)

    Montereale Gavazzi, G.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F.

    2016-03-01

    Recent technological developments of multibeam echosounder systems (MBES) allow mapping of benthic habitats with unprecedented detail. MBES can now be employed in extremely shallow waters, challenging data acquisition (as these instruments were often designed for deeper waters) and data interpretation (honed on datasets with resolution sometimes orders of magnitude lower). With extremely high-resolution bathymetry and co-located backscatter data, it is now possible to map the spatial distribution of fine scale benthic habitats, even identifying the acoustic signatures of single sponges. In this context, it is necessary to understand which of the commonly used segmentation methods is best suited to account for such level of detail. At the same time, new sampling protocols for precisely geo-referenced ground truth data need to be developed to validate the benthic environmental classification. This study focuses on a dataset collected in a shallow (2-10 m deep) tidal channel of the Lagoon of Venice, Italy. Using 0.05-m and 0.2-m raster grids, we compared a range of classifications, both pixel-based and object-based approaches, including manual, Maximum Likelihood Classifier, Jenks Optimization clustering, textural analysis and Object Based Image Analysis. Through a comprehensive and accurately geo-referenced ground truth dataset, we were able to identify five different classes of the substrate composition, including sponges, mixed submerged aquatic vegetation, mixed detritic bottom (fine and coarse) and unconsolidated bare sediment. We computed estimates of accuracy (namely Overall, User, Producer Accuracies and the Kappa statistic) by cross tabulating predicted and reference instances. Overall, pixel based segmentations produced the highest accuracies and the accuracy assessment is strongly dependent on the number of classes chosen for the thematic output. Tidal channels in the Venice Lagoon are extremely important in terms of habitats and sediment distribution

  18. A Fault Oblivious Extreme-Scale Execution Environment

    Energy Technology Data Exchange (ETDEWEB)

    McKie, Jim

    2014-11-20

    The FOX project, funded under the ASCR X-stack I program, developed systems software and runtime libraries for a new approach to the data and work distribution for massively parallel, fault oblivious application execution. Our work was motivated by the premise that exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today’s machines. To deliver the capability of exascale hardware, the systems software must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. Our OS research has prototyped new methods to provide efficient resource sharing, synchronization, and protection in a many-core compute node. We have experimented with alternative task/dataflow programming models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in active development through open source projects. Concepts from FOX are being pursued in next generation exascale operating systems. Our OS work focused on adaptive, application tailored OS services optimized for multi → many core processors. We developed a new operating system NIX that supports role-based allocation of cores to processes which was released to open source. We contributed to the IBM FusedOS project, which promoted the concept of latency-optimized and throughput-optimized cores. We built a task queue library based on distributed, fault tolerant key-value store and identified scaling issues. A second fault tolerant task parallel library was developed, based on the Linda tuple space model, that used low level interconnect primitives for optimized communication. We designed fault tolerance mechanisms for task parallel computations

  19. Hydroclimatic Extremes and Cholera Dynamics in the 21st Century

    Science.gov (United States)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2012-12-01

    Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A

  20. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  1. Simulated Extreme Prepitation Indices over Northeast Brasil in Current Climate and Future Scenarios RCP4.5 and RCP8.5

    Science.gov (United States)

    Wender Santiago Marinho, Marcos; Araújo Costa, Alexandre; Cassain Sales, Domingo; Oliveira Guimarães, Sullyandro; Mariano da Silva, Emerson; das Chagas Vasconcelos Júnior, Francisco

    2013-04-01

    In this study, we analyzed extreme precipitation indices, for present and future modeled climates over Northeast of Brazil (NEB), from CORDEX simulations over the domain of Tropical Americas. The period for the model validation was from 1989-2007, using data from the European Center (ECWMF) Reanalysis, ERA-INTERIM, as input to drive the regional model (RAMS 6.0). Reanalysis data were assimilated via both lateral boundaries and the entire domain (a much weaker "central nudging"). Six indices of extreme precipitation were calculated over NEB: the average number of days above 10, 20 and 30 mm in one year (R10, R20, R30), the number of consecutive dry days (CDD), the number of consecutive wet days (CWD) and the maximum rainfall in five consecutive days (RX5). Those indices were compared against two independent databases: MERRA (Modern Era Retrospective analysis for Research and Applications) and TRMM (Tropical Rainfall Measuring Mission). After validation, climate simulations were performed for the present climate (1985-2005) and short-term (2015-2035), mid-term (2045-2065) and long-term (2079 to 2099) future climates for two scenarios: RCP 4.5 and RCP 8.5, nesting RAMS into HadGEM2-ES global model (a participant of CMIP5). Along with the indices, we also calculated Probability Distribution Functions (PDFs) to study the behavior of daily precipitation in the present and by the end of the 21st century (2079 to 2099) to assess possible changes under RCPs 4.5 and 8.5. The regional model is capable of representing relatively well the extreme precipitation indices for current climate, but there is some difficulties in performing a proper validation since the observed databases disagree significantly. Future projections show significant changes in most extreme indices. Rnn generally tend to increase, especially under RCP8.5. More significant changes are projected for the long-term period, under RCP8.5, which shows a pronounced R30 enhancement over northern states. CDD tends

  2. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the

  3. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    Science.gov (United States)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  4. SECOND-ORDER SOLUTIONS OF COSMOLOGICAL PERTURBATION IN THE MATTER-DOMINATED ERA

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim; Gong, Jinn-Ouk

    2012-01-01

    We present the growing mode solutions of cosmological perturbations to the second order in the matter-dominated era. We also present several gauge-invariant combinations of perturbation variables to the second order in the most general fluid context. Based on these solutions, we study the Newtonian correspondence of relativistic perturbations to the second order. In addition to the previously known exact relativistic/Newtonian correspondence of density and velocity perturbations to the second order in the comoving gauge, here we show that in the sub-horizon limit we have the correspondences for density, velocity, and potential perturbations in the zero-shear gauge and in the uniform-expansion gauge to the second order. Density perturbation in the uniform-curvature gauge also shows the correspondence to the second order in the sub-horizon scale. We also identify the relativistic gravitational potential that shows exact correspondence to the Newtonian one to the second order.

  5. Academic Training Lecture | Big Data Challenges in the Era of Data Deluge | 9 - 10 March

    CERN Multimedia

    2015-01-01

    Big Data Challenges in the Era of Data Deluge, by Ilya Volvovski (Senior Software Architect, Cleversafe, USA).   Monday, 9 March 2015 from 11:00 to 12:00 and Tuesday, 10 March 2015 from 11:00 to 12:00 at CERN ( 4-3-006 - TH Conference Room ) Description: For better or for worse, the amount of data generated in the world grows exponentially. The year of 2012 was dubbed the year of 'Big Data' and 'Data Deluge'; in 2013, the petabyte scale was referenced matter­-of-­factly; and exabyte size is now in the vocabulary of storage providers and large organisations. Traditional copy-based technology doesn’t scale into this size territory: relational DBs give up after many billions of rows in tables; typical file systems are not designed to store trillions of objects; Disks fail; networks are not always available. Yet individuals, businesses and academic institutions demand 100% availability with no data loss. Is this the final dead end? ...

  6. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    International Nuclear Information System (INIS)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-01-01

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10 6 frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs

  7. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics, Caltech, 1200 E. California Boulevard, Pasadena, California 91125 (United States)

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  8. Biotechnology: An Era of Hopes and Fears

    Science.gov (United States)

    2016-01-01

    Strategic Studies Quarterly ♦ Fall 2016 23 Biotechnology An Era of Hopes and Fears LTC Douglas R. Lewis, PhD, US Army Abstract Biotechnology ......ignored. The idea of advances in biotechnology increasing the biological weapons threat is not new. In 2003 an analysis of gene sequencing and

  9. Islamism and Democratization in Indonesia Post-Reformation Era:

    Directory of Open Access Journals (Sweden)

    SYAHRIR KARIM

    2014-12-01

    Full Text Available In general, this paper will explore features and patterns of Islamism in Indonesia after the downfall of Suharto’s regime in which people called it as reformation era. In Indonesian context, the Islamism at least have four characteristics; (i promoting Islam as a sole basis in transforming society, (ii acknowledging Islam as an ideology, (iii among at the establishment of Islamic state, (iv which is characterised by implementing Shari`ah laws in daily lives. These four attributes may be used in capturing the growth of Muslim’s perception on state and democracy in the era of Islamic revival. The above views spread in the various streams or any schools existed in Indonesia, both Islamic movements and other form that is very influential in the process of democracy in Indonesia.

  10. Analysis of ERA40-driven CLM simulations for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.B.; Luethi, D.; Schaer, C.; Seneviratne, S.I. [Inst. for Atmospheric and Climate Science, ETH Zurich (Switzerland); Anders, I.; Rockel, B. [Inst. for Coastal Research, GKSS Research Center, Geesthacht (Germany)

    2008-08-15

    The Climate Local Model (CLM) is a community Regional Climate Model (RCM) based on the COSMO weather forecast model. We present a validation of long-term ERA40-driven CLM simulations performed with different model versions. In particular we analyse three simulations with differences in boundary nudging and horizontal resolution performed for the EU-project ENSEMBLES with the model version 2.4.6, and one with the latest version 4.0. Moreover, we include for comparison a long-term simulation with the RCM CHRM previously used at ETH Zurich. We provide a thorough validation of temperature, precipitation, net radiation, cloud cover, circulation, evaporation and terrestrial water storage for winter and summer. For temperature and precipitation the interannual variability is additionally assessed. While simulations with CLM version 2.4.6 are generally too warm and dry in summer but still within the typical error of PRUDENCE simulations, version 4.0 has an anomalous cold and wet bias. This is partly due to a strong underestimation of the net radiation associated with cloud cover overestimation. Two similar CLM 2.4.6 simulations with different spatial resolutions (0.44 and 0.22 ) reveal for the analysed fields no clear benefit of the higher resolution except for better resolved fine-scale structures. While the large-scale circulation is represented more realistically with spectral nudging, temperature and precipitation are not. Overall, CLM performs comparatively to other state-of-the-art RCMs over Europe. (orig.)

  11. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    Science.gov (United States)

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.

  12. Mortality associated with extremity injuries compared with other types of trauma

    Directory of Open Access Journals (Sweden)

    Sanches JEA

    2011-04-01

    Full Text Available José Eduardo Arantes Sanches1, José Maria Pereira de Godoy3, André Luciano Baitello2, Alceu Gomes Chueire11Departments of Orthopedic and Traumatology, 2Trauma, 3Cardiology and Cardiovascular Surgery, Faculty of Medicine, São Jose do Rio Preto, BrazilBackground: The aim of this study was to evaluate one-month hospital mortality in victims with injuries of the extremities.Methods: All accident victims admitted to the Hospital de Base in São José do Rio Preto, Brazil, during the period from July 2004 to June 2005, were evaluated in an observational study. Patients were classified using the Abbreviated Injury Scale (AIS. Patients with severe injuries of the extremities (AIS 3–4 were compared with those without injuries or with minor extremity injuries (AIS 0–2.Results: A total of 3489 accident victims were evaluated; 3244 (92.98% did not suffer injuries or had minor injuries of the extremities (AIS 0–2 and 245 (7.02% had severe injuries (AIS 3–4. Of the 245 patients with AIS 3–4 extremity injuries, 13 (5.31% patients died, and of those without severe injuries to the extremities, 34 (1.05% died (Fisher’s Exact test P = 0.0000, relative risk 5.063, 95% confidence interval [CI]: 2.707–9.467.Conclusion: Patients with injuries of the extremities are at greater risk of death than accident victims with other types of trauma.Keywords: trauma, extremities, mortality, Brazil

  13. Satellite skill in detecting extreme episodes in near-surface air quality

    Science.gov (United States)

    Ruiz, D. J.; Prather, M. J.

    2017-12-01

    Ozone (O3) contributes to ambient air pollution, adversely affecting public health, agriculture, and ecosystems. Reliable, long-term, densely distributed surface networks are required to establish the scale, intensity and repeatability of major pollution events (designated here in a climatological sense as air quality extremes, AQX as defined in Schnell's work). Regrettably, such networks are only available for North America (NA) and Europe (EU), which does not include many populated regions where the deaths associated with air pollution exposure are alarmingly high. Directly measuring surface pollutants from space without lidar is extremely difficult. Mapping of daily pollution events requires cross-track nadir scanners and these have limited sensitivity to surface O3 levels. This work examines several years of coincident surface and OMI satellite measurements over NA-EU, in combination with a chemistry-transport model (CTM) hindcast of that period to understand how the large-scale AQX episodes may extend into the free troposphere and thus be more amenable to satellite mapping. We show how extreme NA-EU episodes are measured from OMI and then look for such patterns over other polluted regions of the globe. We gather individual high-quality O3 surface site measurements from these other regions, to check on our satellite detection. Our approach with global satellite detection would avoid issues associated with regional variations in seasonality, chemical regime, data product biases; and it does not require defining a separate absolute threshold for each data product (surface site and satellite). This also enables coherent linking of the extreme events into large-scale pollution episodes whose magnitude evolves over 100's of km for several days. Tools used here include the UC Irvine CTM, which shows that much of the O3 surface variability is lost at heights above 2 km, but AQX local events are readily seen in a 0-3 km column average. The OMI data are taken from X

  14. Dominant Large-Scale Atmospheric Circulation Systems for the Extreme Precipitation over the Western Sichuan Basin in Summer 2013

    Directory of Open Access Journals (Sweden)

    Yamin Hu

    2015-01-01

    Full Text Available The western Sichuan Basin (WSB is a rainstorm center influenced by complicated factors such as topography and circulation. Based on multivariable empirical orthogonal function technique for extreme precipitation processes (EPP in WSB in 2013, this study reveals the dominant circulation patterns. Results indicate that the leading modes are characterized by “Saddle” and “Sandwich” structures, respectively. In one mode, a TC from the South China Sea (SCS converts into the inverted trough and steers warm moist airflow northward into the WSB. At the same time, WPSH extends westward over the Yangtze River and conveys a southeasterly warm humid flow. In the other case, WPSH is pushed westward by TC in the Western Pacific and then merges with an anomalous anticyclone over SCS. The anomalous anticyclone and WPSH form a conjunction belt and convey the warm moist southwesterly airflow to meet with the cold flow over the WSB. The configurations of WPSH and TC in the tropic and the blocking and trough in the midhigh latitudes play important roles during the EPPs over the WSB. The persistence of EPPs depends on the long-lived large-scale circulation configuration steady over the suitable positions.

  15. RAZLIKE U UPRAVLJANJU VREMENOM HRVATSKIH MENADŽERA S OBZIROM NA SPOL I HIJERARHIJSKU RAZINU

    OpenAIRE

    Pološki Vokić, Nina; Mrđenović, Robert

    2008-01-01

    Na temelju anketnog upitnika za samo-evaluaciju aktivnosti upravljanja i aktivnosti gubljenja vremena, na uzorku od 151 menadžera, istraživano je upravljanje vremenom hrvatskih menadžera te utjecaj dvije individualne karakteristike (spola i hijerarhijske razine) na njihovu uspješnost pri tome. Istraživanje je pokazalo da: (1) su hrvatski menadžeri prosječno dobri u upravljanju vremenom, (2) da ne postoje značajne razlike u upravljanju vremenom menadžera s obzirom na njihov spol, te (3) da pos...

  16. ERA: Efficient serial and parallel suffix tree construction for very long strings

    KAUST Repository

    Mansour, Essam

    2011-09-01

    The suffix tree is a data structure for indexing strings. It is used in a variety of applications such as bioinformatics, time series analysis, clustering, text editing and data compression. However, when the string and the resulting suffix tree are too large to fit into the main memory, most existing construction algorithms become very inefficient. This paper presents a disk-based suffix tree construction method, called Elastic Range (ERa), which works efficiently with very long strings that are much larger than the available memory. ERa partitions the tree construction process horizontally and vertically and minimizes I/Os by dynamically adjusting the horizontal partitions independently for each vertical partition, based on the evolving shape of the tree and the available memory. Where appropriate, ERa also groups vertical partitions together to amortize the I/O cost. We developed a serial version; a parallel version for shared-memory and shared-disk multi-core systems; and a parallel version for shared-nothing architectures. ERa indexes the entire human genome in 19 minutes on an ordinary desktop computer. For comparison, the fastest existing method needs 15 minutes using 1024 CPUs on an IBM BlueGene supercomputer.

  17. CAPITALISM EMERGING ERA TAX SYSTEMS OF THE EUROPEAN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tsokova Viktoria Aleksandrovna

    2013-04-01

    Full Text Available Three phases should be distinguished in the development of tax systems: I. The Ancient World and Middle Ages (from the IV - III centuries. BC. till. XVII - XVIII centuries AD. II. The new time (from the XVII - XVIII centuries till the end of XIX century. - the era of the emerging capitalism. III. Modern History (from the XX century and up to the present time. The capitalism emerging era scientific ideas and tax systems research relevance (importance is caused by the emergence of the main distinct characteristics of any state, that is by the permanently increasing demand of that institution for money. This fact, in its turn, contributes to the formation of the state tax system, and, of course, the evolution of scientific views on taxation. Nowadays, some theoretical ideas in the field of taxation, clarifying the nature and the role of taxes in the European countries budget formation begin to appear in Europe, especially in the UK. The development of tax systems in England, France and Germany have been analyzed; and , basing on the dialectical, historical and logical approaches, and the method of scientific abstraction, the authors identify the following common features of the capitalism emerging era tax systems in the European countries: the taxation on a regular (permanent basis, the expansion of the tax-payers range – all citizens of the state are becoming tax payers, the introduction of the income tax and the abolishment of the revenue leasing – creation of government agencies system responsible for the administration of taxes, to establishing and collecting taxes only with the Parliament approval and permission. Classical theoretical and practical approaches to creation of tax systems of the states have been formulated in Europe in the era of nascent capitalism and they haven’t lost the relevance yet.

  18. Towards Geo-spatial Information Science in Big Data Era

    Directory of Open Access Journals (Sweden)

    LI Deren

    2016-04-01

    Full Text Available Since the 1990s, with the advent of worldwide information revolution and the development of internet, geospatial information science have also come of age, which pushed forward the building of digital Earth and cyber city. As we entered the 21st century, with the development and integration of global information technology and industrialization, internet of things and cloud computing came into being, human society enters into the big data era. This article covers the key features (ubiquitous, multi-dimension and dynamics, internet+networking, full automation and real-time, from sensing to recognition, crowdsourcing and VGI, and service-oriented of geospatial information science in the big data era and addresses the key technical issues (non-linear four dimensional Earth reference frame system, space based enhanced GNSS, space-air and land unified network communication techniques, on board processing techniques for multi-sources image data, smart interface service techniques for space-borne information, space based resource scheduling and network security, design and developing of a payloads based multi-functional satellite platform. That needs to be resolved to provide a new definition of geospatial information science in big data era. Based on the discussion in this paper, the author finally proposes a new definition of geospatial information science (geomatics, i.e. Geomatics is a multiple discipline science and technology which, using a systematic approach, integrates all the means for spatio-temporal data acquisition, information extraction, networked management, knowledge discovering, spatial sensing and recognition, as well as intelligent location based services of any physical objects and human activities around the earth and its environment. Starting from this new definition, geospatial information science will get much more chances and find much more tasks in big data era for generation of smart earth and smart city . Our profession

  19. Rethinking Education in an Era of Globalisation

    Science.gov (United States)

    Wrigley, Terry

    2007-01-01

    This article reflects on the historic tensions of education under capitalism, arguing that they have been exacerbated in our era of neo-liberal globalisation. Government drives for greater "accountability" and "effectiveness" are a blinkered response to the threefold global crisis we face: poverty and debt; a collapse of the…

  20. Faculty Recruitment in an Era of Change

    Science.gov (United States)

    Levine, Marilyn; Schimpf, Martin

    2010-01-01

    Faculty recruitment is a challenge for administration and departments, especially in an era of change in the academy. This article builds on information from an interactive conference panel session that focused on faculty recruitment best practices. The article addresses faculty recruitment strategies that focus on the optimization of search…

  1. New Software for the Fast Estimation of Population Recombination Rates (FastEPRR in the Genomic Era

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2016-06-01

    Full Text Available Genetic recombination is a very important evolutionary mechanism that mixes parental haplotypes and produces new raw material for organismal evolution. As a result, information on recombination rates is critical for biological research. In this paper, we introduce a new extremely fast open-source software package (FastEPRR that uses machine learning to estimate recombination rate ρ (=4Ner from intraspecific DNA polymorphism data. When ρ>10 and the number of sampled diploid individuals is large enough (≥50, the variance of ρFastEPRR remains slightly smaller than that of ρLDhat. The new estimate ρcomb (calculated by averaging ρFastEPRR and ρLDhat has the smallest variance of all cases. When estimating ρFastEPRR, the finite-site model was employed to analyze cases with a high rate of recurrent mutations, and an additional method is proposed to consider the effect of variable recombination rates within windows. Simulations encompassing a wide range of parameters demonstrate that different evolutionary factors, such as demography and selection, may not increase the false positive rate of recombination hotspots. Overall, accuracy of FastEPRR is similar to the well-known method, LDhat, but requires far less computation time. Genetic maps for each human population (YRI, CEU, and CHB extracted from the 1000 Genomes OMNI data set were obtained in less than 3 d using just a single CPU core. The Pearson Pairwise correlation coefficient between the ρFastEPRR and ρLDhat maps is very high, ranging between 0.929 and 0.987 at a 5-Mb scale. Considering that sample sizes for these kinds of data are increasing dramatically with advances in next-generation sequencing technologies, FastEPRR (freely available at http://www.picb.ac.cn/evolgen/ is expected to become a widely used tool for establishing genetic maps and studying recombination hotspots in the population genomic era.

  2. Storm-tracks interannual variability and large-scale climate modes

    Science.gov (United States)

    Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2013-04-01

    In this study we focus on the interannual variability and observed changes in northern hemisphere mid-latitude storm-tracks and relate them to large scale atmospheric circulation variability modes. Extratropical storminess, cyclones dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of storm characteristics and historical trends presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al. 1999) and recently extended to a larger Euro-Atlantic region (Trigo 2006). The objective methodology, which identifies and follows individual lows as minima in SLP fields, fulfilling a set of conditions regarding the central pressure and the pressure gradient, is applied to the northern hemisphere 6-hourly geopotential data at 1000 hPa from the 20th Century Reanalyses (20CRv2) project and from reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA Interim reanalyses. First, we assess the interannual variability and cyclone frequency trends for each of the datasets, for the 20th century and for the period between 1958 and 2002 using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 data. Results show that winter variability of storm paths, cyclone frequency and travel times is in agreement with the reported variability in a number of large-scale climate patterns (including the North Atlantic Oscillation, the East Atlantic Pattern and the Scandinavian Pattern). In addition, three storm-track databases are built spanning the common available extended winter seasons from October 1979 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions. This exercise is mostly focused on the key areas of cyclogenesis and cyclolysis and main cyclone characteristics over the northern

  3. La gran red: una era nueva entre la ciencia y el mito

    Directory of Open Access Journals (Sweden)

    María del Rosario Contepomi

    2007-03-01

    Full Text Available El propósito del trabajo es relacionar concepciones en torno al concepto red adoptadas por el movimiento espiritualista "Nueva Era" de la ciudad de Posadas, Misiones, Argentina, con aquellas planteadas por teóricos de la "Era de la Información y Comunicación" en el campo de las ciencias sociales. Dadas la complejidad y amplitud que se atribuye a esta noción, hemos denominado la Gran Red a esa construcción fáctica y virtual a la que se le asignan múltiples denominaciones: interconexión, interrelación, articulación. Estos complejos y heterogéneos vínculos se desarrollan entre elementos, dimensiones y niveles diferentes, tales como materialidad y espiritualidad, hombre y naturaleza, sociedad e individuo. Conforme a ello, nos preguntamos respecto a las creencias religiosas, creaciones ideológicas, producciones científicas o construcciones mitológicas que conforman el mundo-red de la cosmovisión la Nueva Era y la cultura-red de los enfoques socio-antropológicos.The purpose of this work is to relate conceptions around the concept of net adopted by the spiritualist movement "New Era" from the city of Posadas, Misiones, Argentina, with those considered by theorists of the "Era of Information and Communication" in the field of Social Sciences. Given the complexity and range that it is attributed to this notion we have designated the Great Net to that factual and virtual construction which is assigned multiple names: interconnection, interrelation, articulation. These complex and heterogeneous links develop among elements, dimensions and different levels, such as material nature and spirituality, man and nature, society and the individual. In accordance with that we ask ourselves regarding religious beliefs, ideological creations, scientific productions or mythological constructions that constitute the world-net of the view of the world of the New Era and the culture-net of the socio-anthropological approaches.

  4. A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Kwan-Liu [Univ. of California, Davis, CA (United States)

    2017-02-01

    efficient computation on an exascale computer. This project concludes with a functional prototype containing pervasively parallel algorithms that perform demonstratively well on many-core processors. These algorithms are fundamental for performing data analysis and visualization at extreme scale.

  5. CENTRAL BANKING IN THE NEW ERA

    Directory of Open Access Journals (Sweden)

    Bilal Bagis

    2017-12-01

    Full Text Available This paper analyzes the evolution of central banking, and in particular the American experience of central banking. It provides projections for the future of central banking in the new era of post 2008. The paper initially demonstrates recent improvements in the financial and banking sectors, regulations and different measures of monetary and financial rules both in the USA and the rest of the advanced economies. Then, it claims institutions, such as central banks, will gain new objectives and more significance in this new era and thus will be given new roles, over time and along with the improvements and deepening in the financial system. The paper argues centuries long central bank evolution is not complete yet and that more objectives should be expected to come forward. In that line, there is need for a shift in the conventional policy measures. New trends in central banking such as the helicopter money, popular nominal GDP targeting regime and the retro developmental central banking are all critically analyzed. The paper provides a breakdown of financial development and central banking activities in a historical context and provides a rationale and a new basis for possible future innovations.

  6. ERA-pankurite kohtusaaga lõpusirgel / Väinu Rozental

    Index Scriptorium Estoniae

    Rozental, Väinu, 1957-

    2004-01-01

    Tartu maakohus lõpetas üle kahe aasta kestnud ERA Panga kriminaalasja, kus panga juhile Andres Bergmannile määrati lihtmenetluse kokkulepe. Vastuseks vt. Kaire Hänilese art. 20.dets. Äripäevas lk. 18

  7. ERA-pankurid võivad pattu kahetseda / Nils Niitra

    Index Scriptorium Estoniae

    Niitra, Nils, 1975-

    2002-01-01

    Tartu maakohtu kohtunik andis ERA Grupi üheksa eksjuhi suurprotsessil riiklikule süüdistajale ja kohtualustele kaks nädalat aega protsessi lahendamiseks lihtmenetluse teel, kuid selleks peavad endised pankurid end süüdi tunnistama

  8. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Science.gov (United States)

    Toreti, A.; Xoplaki, E.; Maraun, D.; Kuglitsch, F. G.; Wanner, H.; Luterbacher, J.

    2010-05-01

    We present an analysis of daily extreme precipitation events for the extended winter season (October-March) at 20 Mediterranean coastal sites covering the period 1950-2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions

  9. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns

    Directory of Open Access Journals (Sweden)

    A. Toreti

    2010-05-01

    Full Text Available We present an analysis of daily extreme precipitation events for the extended winter season (October–March at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series. Three stations (one in the western Mediterranean and the others in the eastern basin have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous

  10. Sebaran Generalized Extreme Value (GEV dan Generalized Pareto (GP untuk Pendugaan Curah Hujan Ekstrim di Wilayah DKI Jakarta

    Directory of Open Access Journals (Sweden)

    Achi Rinaldi

    2016-06-01

    Full Text Available Extreme event such as extreme rainfall have been analyzed and most concern for the country all around the world. There are two common distribution for extreme value which are Generalized Extreme Value distribution and Generalized Pareto distribution. These two distribution have shown good performace to estimate the parameter of  extreme value. This research was aim to estimate parameter of extreme value using GEV distribution and GP distribution, and also to characterized effect of extreme event such as flood. The rainfall data was taken from BMKG for 5 location in DKI Jakarta. Both of distribution shown a good perfromance. The resut showed that Tanjung Priok station has biggest location parameter for GEV and also the biggest scale parameter for GP, that mean the biggest probability to take flood effect of the extreme rainfall.

  11. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    The aim of study is to analyze the parameters of precipitation extremes and inequality over Ukraine in recent climate epoch and their possible changes in the future. Data of observations from 28 hydrometeorological stations over Ukraine and output of GFDL-CM3 model (CMIP5) for XXI century were used in the study. The methods of concentration index (J. Martin-Vide, 2004) for the study of precipitation inequality while the extreme precipitation indices recommended by the ETCCDI - for the frequency of events. Results. Precipitation inequality on the annual and seasonal scales was studied using estimated CI series for 1951-2005. It was found that annual CI ranges vary from 0.58 to 0.64. They increase southward from the north-west (forest zone) and the north-east (forest steppe zone) of Ukraine. CI maxima are located in the coastal regions of the Black Sea and the Sea of Azov. Annual CI spatial distribution indicates that the contribution of extreme precipitation into annual totals is most significant at the boundary zone between steppe and marine regions. At the same time precipitation pattern at the foothill of Carpathian Mountains is more homogenous. The CI minima (0.54) are typical for the winter season in foothill of Ukrainian Carpathians. The CI maxima reach 0.71 in spring at the steppe zone closed to the Black Sea coast. It should be noted that the greatest ranges of CI maximum and CI minimum deviation are typical for spring. It is associated with patterns of cyclone trajectories in that season. The most territory is characterized by tendency to decrease the contribution of extreme precipitation into the total amount (CI linear trends are predominantly negative in all seasons). Decadal and interdecadal variability of precipitation inequality associated with global processes in ocean-atmosphere system are also studied. It was shown that precipitation inequality over Ukraine on 10 - 15 % stronger in negative phase of Pacific Decadal Oscillation and in positive phase

  12. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China

    Science.gov (United States)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi

    2018-04-01

    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide

  13. Family Health in an Era of Stress.

    Science.gov (United States)

    USA Today, 1979

    1979-01-01

    Summarizes major findings of a national survey, "The General Mills American Family Report 1978/79: Family Health in an Era of Stress," conducted by Yankelovich, Skelly and White. Topics covered include attitudes toward medical costs, mental illness, and good health practices, as well as expressed interest in health information. (SJL)

  14. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  15. 21st Century Changes in Precipitation Extremes Over the United States: Can Climate Analogues Help or Hinder?

    Science.gov (United States)

    Gao, X.; Schlosser, C. A.

    2013-12-01

    Global warming is expected to alter the frequency and/or magnitude of extreme precipitation events. Such changes could have substantial ecological, economic, and sociological consequences. However, climate models in general do not correctly reproduce the frequency and intensity distribution of precipitation, especially at the regional scale. In this study, gridded data from a dense network of surface precipitation gauges and a global atmospheric analysis at a coarser scale are combined to develop a diagnostic framework for the large-scale meteorological conditions (i.e. flow features, moisture supply) that dominate during extreme precipitation. Such diagnostic framework is first evaluated with the late 20th century simulations from an ensemble of climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and is found to produce more consistent (and less uncertain) total and interannaul number of extreme days with the observations than the model-based precipitation over the south-central United States and the Western United States examined in this study. The framework is then applied to the CMIP5 multi-model projections for two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5) to assess the potential future changes in the probability of precipitation extremes over the same study regions. We further analyze the accompanying circulation features and their changes that may be responsible for shifts in extreme precipitation in response to changed climate. The results from this study may guide hazardous weather watches and help society develop adaptive strategies for preventing catastrophic losses.

  16. Future Simulated Intensification of Precipitation Extremes, CMIP5 Model Uncertainties and Dependencies

    Science.gov (United States)

    Bador, M.; Donat, M.; Geoffroy, O.; Alexander, L. V.

    2017-12-01

    Precipitation intensity during extreme events is expected to increase with climate change. Throughout the 21st century, CMIP5 climate models project a general increase in annual extreme precipitation in most regions. We investigate how robust this future increase is across different models, regions and seasons. We find that there is strong similarity in extreme precipitation changes between models that share atmospheric physics, reducing the ensemble of 27 models to 14 independent projections. We find that future simulated extreme precipitation increases in most models in the majority of land grid cells located in the dry, intermediate and wet regions according to each model's precipitation climatology. These increases significantly exceed the range of natural variability estimated from long equilibrium control runs. The intensification of extreme precipitation across the entire spectrum of dry to wet regions is particularly robust in the extra-tropics in both wet and dry season, whereas uncertainties are larger in the tropics. The CMIP5 ensemble therefore indicates robust future intensification of annual extreme rainfall in particular in extra-tropical regions. Generally, the CMIP5 robustness is higher during the dry season compared to the wet season and the annual scale, but inter-model uncertainties in the tropics remain important.

  17. The Analysis of RDF Semantic Data Storage Optimization in Large Data Era

    Science.gov (United States)

    He, Dandan; Wang, Lijuan; Wang, Can

    2018-03-01

    With the continuous development of information technology and network technology in China, the Internet has also ushered in the era of large data. In order to obtain the effective acquisition of information in the era of large data, it is necessary to optimize the existing RDF semantic data storage and realize the effective query of various data. This paper discusses the storage optimization of RDF semantic data under large data.

  18. Report from the 3rd Workshop on Extremely Large Databases

    Directory of Open Access Journals (Sweden)

    Jacek Becla

    2010-02-01

    Full Text Available Academic and industrial users are increasingly facing the challenge of petabytes of data, but managing and analyzing such large data sets still remains a daunting task. Both the database and the map/reduce communities worldwide are working on addressing these issues. The 3rdExtremely Large Databases workshop was organized to examine the needs of scientific communities beginning to face these issues, to reach out to European communities working on extremely large scale data challenges, and to brainstorm possible solutions. The science benchmark that emerged from the 2nd workshop in this series was also debated. This paper is the final report of the discussions and activities at this workshop.

  19. Regional trends in short-duration precipitation extremes: a flexible multivariate monotone quantile regression approach

    Science.gov (United States)

    Cannon, Alex

    2017-04-01

    Estimating historical trends in short-duration rainfall extremes at regional and local scales is challenging due to low signal-to-noise ratios and the limited availability of homogenized observational data. In addition to being of scientific interest, trends in rainfall extremes are of practical importance, as their presence calls into question the stationarity assumptions that underpin traditional engineering and infrastructure design practice. Even with these fundamental challenges, increasingly complex questions are being asked about time series of extremes. For instance, users may not only want to know whether or not rainfall extremes have changed over time, they may also want information on the modulation of trends by large-scale climate modes or on the nonstationarity of trends (e.g., identifying hiatus periods or periods of accelerating positive trends). Efforts have thus been devoted to the development and application of more robust and powerful statistical estimators for regional and local scale trends. While a standard nonparametric method like the regional Mann-Kendall test, which tests for the presence of monotonic trends (i.e., strictly non-decreasing or non-increasing changes), makes fewer assumptions than parametric methods and pools information from stations within a region, it is not designed to visualize detected trends, include information from covariates, or answer questions about the rate of change in trends. As a remedy, monotone quantile regression (MQR) has been developed as a nonparametric alternative that can be used to estimate a common monotonic trend in extremes at multiple stations. Quantile regression makes efficient use of data by directly estimating conditional quantiles based on information from all rainfall data in a region, i.e., without having to precompute the sample quantiles. The MQR method is also flexible and can be used to visualize and analyze the nonlinearity of the detected trend. However, it is fundamentally a

  20. Towards improved hydrologic predictions using data assimilation techniques for water resource management at the continental scale

    Science.gov (United States)

    Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan

    2017-04-01

    More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.

  1. Victorian era esthetic and restorative dentistry: an advertising trade card gallery.

    Science.gov (United States)

    Croll, Theodore P; Swanson, Ben Z

    2006-01-01

    A chief means of print advertising in the Victorian era was the "trade card." Innumerable products, companies, and services were highlighted on colorful chromolithographic trade cards, and these became desirable collectible objects which were pasted into scrapbooks and enjoyed by many families. Dentistry- and oral health-related subjects were often depicted on Victorian trade cards, and esthetic and restorative dentistry themes were featured. This review describes the history of advertising trade cards and offers a photographic gallery of dentistry-related cards of the era.

  2. The Nomadic Existence of the Eternal Improviser and Diasporic Co-Poiesis in the Era of Mega-Speed

    Science.gov (United States)

    Gurze'ev, Ilan

    2010-01-01

    The history of transcendence and nomadism in face of the call for "home-returning" is marked figuratively by four milestones: (1) the "era" of immanence and dwelling in total harmony as a manifestation of self-sustained holiness; (2) the "era" of relating to holiness by mediation of God, especially in the monotheistic religions; (3) the "era" of…

  3. Further outlooks: extremely uncomfortable; Die weiteren Aussichten: extrem ungemuetlich

    Energy Technology Data Exchange (ETDEWEB)

    Resenhoeft, T.

    2006-07-01

    Climate is changing extremely in the last decades. Scientists dealing with extreme weather, should not only stare at computer simulations. They have also to turn towards psyche, seriously personal experiences, knowing statistics, relativise supposed sensational reports and last not least collecting more data. (GL)

  4. Water scaling in the North Sea oil and gas fields and scale prediction: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, M

    1997-12-31

    Water-scaling is a common and major production chemistry problem in the North Sea oil and gas fields and scale prediction has been an important means to assess the potential and extent of scale deposition. This paper presents an overview of sulphate and carbonate scaling problems in the North Sea and a review of several widely used and commercially available scale prediction software. In the paper, the water chemistries and scale types and severities are discussed relative of the geographical distribution of the fields in the North Sea. The theories behind scale prediction are then briefly described. Five scale or geochemical models are presented and various definitions of saturation index are compared and correlated. Views are the expressed on how to predict scale precipitation under some extreme conditions such as that encountered in HPHT reservoirs. 15 refs., 7 figs., 9 tabs.

  5. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    Science.gov (United States)

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  6. Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868

    International Nuclear Information System (INIS)

    Stucki, Peter; Rickli, Ralph; Broennimann, Stefan; Martius, Olivia; Wanner, Heinz; Bern Univ.; Grebner, Dietmar; Luterbacher, Juerg

    2012-01-01

    The generation of 24 extreme floods in large catchments of the central Alps is analyzed from instrumental and documentary data, newly digitized observations of precipitation (DigiHom) and 20 th Century Reanalysis (20CR) data. Extreme floods are determined by the 95 th percentile of differences between an annual flood and a defined contemporary flood. For a selection of six events between 1868 and 1910, we describe preconditioning elements such as precipitation, temperature, and snow cover anomalies. Specific weather patterns are assessed through a subjective analysis of three-dimensional atmospheric circulation. A focus is placed on synoptic-scale features including mid-tropospheric ascent, low-level moisture transport, propagation of cyclones, and temperature anomalies. We propose a hydro-meteorological classification of all 24 investigated events according to flood-generating weather conditions. Key elements of the upper-level synoptic-scale flow are summarized by five types: (i) pivoting cut-off lows, (ii) elongated cut-off lows, (iii) elongated troughs, (iv) waves (with a kink), and (v) approximately zonal flow over the Alpine region. We found that the most extreme floods (as above, but ≥ 98 th percentile) in Switzerland since 1868 were caused by the interaction of severe hydro-climatologic conditions with a flood-inducing weather situation. The 20CR data provide plausible synoptic-scale meteorological patterns leading to heavy precipitation. The proposed catalogue of weather patterns and hydro-climatologic precursors can give direction when anticipating the possibility of severe floods in the Alpine region. (orig.)

  7. Evaluation of Extremal Hypotheses as a Criterion to Resolve Channel Indeterminacy

    Science.gov (United States)

    Tranmer, A.

    2012-12-01

    Design criteria for river restoration and sustainable development have significantly advanced in recent decades, yet complete deterministic formulations to address channel form and sinuosity still prove elusive. Many hypotheses have been presented to ascertain the dynamic-equilibrium of a stream at both the cross sectional and reach level. These efforts to better understand the functioning of alluvial systems include regime theory, stability theory, perturbation analysis, threshold theory, reference reach comparison, downstream hydraulic geometry, and extremal hypotheses. The latter of these theories, the extremal hypothesis, is based on optimizing one variable or criterion in the alluvial system in order to find closure to the channel design problem. Currently, there is no method to directly compare the various hypotheses at the system scale, understanding of their sensitivity to the various formulae employed or consensus regarding which hypothesis is most appropriate. This study analyzed the various extremal hypotheses in as close to a pristine environment as exists (a remote part of Patagonia, Chile), in order to assess which hypothesis (or collective hypotheses) is most appropriate for channel design. Extremal hypotheses were applied in the longitudinal direction, under the assumption of a space-for-time substitution, to evaluate the geomorphic trends of a river evolving during deglaciation. The space-for-time model assumes the watershed reaches stable, dynamic-equilibrium in its lower meandering reaches and the point of equilibrium extends upstream through its braiding reaches as the watershed adapts to new climatic and environmental conditions. Extremal hypotheses applied in a downstream fashion are then expected to predict chaotic and oversized channel characteristics in the upstream reaches and trend towards a point of equilibrium (minimum/maximum of tested hypothesis). Initial findings indicate that many hypotheses predict similar geometry and sinuosity

  8. Population-based outcomes after brain radiotherapy in patients with brain metastases from breast cancer in the Pre-Trastuzumab and Trastuzumab eras

    International Nuclear Information System (INIS)

    Karam, Irene; Hamilton, Sarah; Nichol, Alan; Woods, Ryan; Speers, Caroline; Kennecke, Hagen; Tyldesley, Scott

    2013-01-01

    To evaluate the survival of patients with human epidermal growth factor receptor 2 (HER2) positive and negative metastatic breast cancer irradiated for brain metastases before and after the availability of trastuzumab (T). Women diagnosed with brain metastasis from breast cancer in two eras between 2000 and 2007 (T-era, n = 441) and 1986 to 1992 (PreT-era, n = 307), treated with whole brain radiotherapy (RT) were identified. In the T-era, HER2 testing was part of routine clinical practice, and in the preT-era 128/307 (42%) cases had HER2 testing performed retrospectively on tissue microarrays. Overall survival (OS) was estimated using the Kaplan-Meier method and comparisons between eras used log-rank tests. In the preT- and T-era cohorts, the rate of HER2 positivity was 40% (176/441) and 26% (33/128) (p < 0.001). The median time from diagnosis to brain RT was longer in the preT-era (3.3 years versus 2.3 years, p < 0.001). Survival after brain RT was improved in the T-era compared to the preT-era (1-year OS 26% versus 12%, p < 0.001). The 1-year OS rate for HER2 negative patients was 20% in both eras (p = 0.97). Among HER2 positive patients, the 1-year OS in the preT-era was 5% compared to 40% in the T-era (p < 0.001). Distinct from patients with HER2 negative disease in whom no difference in survival after brain RT was observed over time, patients with HER2 positive brain metastases experienced significantly improved survival subsequent to the availability of trastuzumab

  9. A comparison of extreme rainfall characteristics in the Brazilian Amazon derived from two gridded data sets and a national rain gauge network

    Science.gov (United States)

    Clarke, Robin T.; Bulhoes Mendes, Carlos Andre; Costa Buarque, Diogo

    2010-07-01

    Two issues of particular importance for the Amazon watershed are: whether annual maxima obtained from reanalysis and raingauge records agree well enough for the former to be useful in extending records of the latter; and whether reported trends in Amazon annual rainfall are reflected in the behavior of annual extremes in precipitation estimated from reanalyses and raingauge records. To explore these issues, three sets of daily precipitation data (1979-2001) from the Brazilian Amazon were analyzed (NCEP/NCAR and ERA-40 reanalyses, and records from the raingauge network of the Brazilian water resources agency - ANA), using the following variables: (1) mean annual maximum precipitation totals, accumulated over one, two, three and five days; (2) linear trends in these variables; (3) mean length of longest within-year "dry" spell; (4) linear trends in these variables. Comparisons between variables obtained from all three data sources showed that reanalyses underestimated time-trends and mean annual maximum precipitation (over durations of one to five days), and the correlations between reanalysis and spatially-interpolated raingauge estimates were small for these two variables. Both reanalyses over-estimated mean lengths of dry period relative to the mean length recorded by the raingauge network. Correlations between the trends calculated from all three data sources were small. Time-trends averaged over the reanalysis grid-squares, and spatially-interpolated time trends from raingauge data, were all clustered around zero. In conclusion, although the NCEP/NCAR and ERA-40 gridded data-sets may be valuable for studies of inter-annual variability in precipitation totals, they were found to be inappropriate for analysis of precipitation extremes.

  10. Semi-supervised tracking of extreme weather events in global spatio-temporal climate datasets

    Science.gov (United States)

    Kim, S. K.; Prabhat, M.; Williams, D. N.

    2017-12-01

    Deep neural networks have been successfully applied to solve problem to detect extreme weather events in large scale climate datasets and attend superior performance that overshadows all previous hand-crafted methods. Recent work has shown that multichannel spatiotemporal encoder-decoder CNN architecture is able to localize events in semi-supervised bounding box. Motivated by this work, we propose new learning metric based on Variational Auto-Encoders (VAE) and Long-Short-Term-Memory (LSTM) to track extreme weather events in spatio-temporal dataset. We consider spatio-temporal object tracking problems as learning probabilistic distribution of continuous latent features of auto-encoder using stochastic variational inference. For this, we assume that our datasets are i.i.d and latent features is able to be modeled by Gaussian distribution. In proposed metric, we first train VAE to generate approximate posterior given multichannel climate input with an extreme climate event at fixed time. Then, we predict bounding box, location and class of extreme climate events using convolutional layers given input concatenating three features including embedding, sampled mean and standard deviation. Lastly, we train LSTM with concatenated input to learn timely information of dataset by recurrently feeding output back to next time-step's input of VAE. Our contribution is two-fold. First, we show the first semi-supervised end-to-end architecture based on VAE to track extreme weather events which can apply to massive scaled unlabeled climate datasets. Second, the information of timely movement of events is considered for bounding box prediction using LSTM which can improve accuracy of localization. To our knowledge, this technique has not been explored neither in climate community or in Machine Learning community.

  11. Making the transition to the third era of natural resources management

    Science.gov (United States)

    Stephenson, Nathan L.

    2015-01-01

    We are entering the third era of National Park Service (NPS) natural resources management— an era defined by rapid and unprecedented global changes. This third era promises to overturn not only some of our most fundamental assumptions about parks and protected areas, but also many of the ideals we currently hold dear. A common initial reaction to the diverse challenges of this transition is to feel overwhelmed and adrift; I have certainly had such feelings myself. But these feelings carry the risk of reducing our effectiveness as resource stewards right when we can least afford to be less effective: during a transition that is demanding us to be particularly clear-headed and far-seeing. Here I briefly examine some of the challenges of this new era, focusing on those that can most often elicit feelings of discouragement. When we examine the challenges individually, they begin to lose some of their ability to cast gloom—especially when we consider them in the light of lessons from an earlier fundamental transition in NPS natural resources management, beginning a half-century ago. My perspective is shaped by my 35 years as a place-based scientist stationed in a large national park (Sequoia and Kings Canyon), and by my passion for national parks in general. While the discussion that follows is most relevant to large national parks set aside primarily for their natural features, several of the ideas are also relevant to other park units.

  12. The Molecular Era of Surfactant Biology

    OpenAIRE

    Whitsett, Jeffrey A.

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  13. Flavour physics in the LHC era

    CERN Document Server

    Gershon, Tim

    2014-01-01

    These lectures give a topical review of heavy flavour physics, in particular \\CP violation and rare decays, from an experimental point of view. They describe the ongoing motivation to study heavy flavour physics in the LHC era, the current status of the field emphasising key results from previous experiments, some selected topics in which new results are expected in the near future, and a brief look at future projects.

  14. A New Era for Jefferson Lab

    International Nuclear Information System (INIS)

    McKeown, R. D.; Montgomery, H. E.; Pennington, M. R.

    2016-01-01

    On a cool Saturday morning in late April a seemingly endless stream of cars turned off Jefferson Avenue in Newport News, Virginia, bringing 12,000 people ages 1 to 91 to the Open House to learn more about “the new era in science” at the Thomas Jefferson National Accelerator Facility. Here, the visitors were dazzled by the complex equipment, the enthusiastic staff, and the advanced technology at the Laboratory.

  15. The Struggles of Women Industrial Workers To Improve Work Conditions in the Progressive Era.

    Science.gov (United States)

    Barrett, Nancy J.

    1999-01-01

    Offers a lesson plan that addresses the working conditions endured by women in the Progressive Era and their struggles for womens rights in the workplace. Strives to demonstrate the similarities between the plights of the Progressive Era women to those of women workers in the 1990s. (CMK)

  16. Prediction of extreme floods in the Central Andes by means of Complex Networks

    Science.gov (United States)

    Boers, Niklas; Bookhagen, Bodo; Barbosa, Henrique; Marwan, Norbert; Kurths, Jürgen; Marengo, Jose

    2014-05-01

    Based on a non-linear synchronisation measure and complex network theory, we present a novel framework for the prediction of extreme events of spatially embedded, interrelated time series. This method is general in the sense that it can be applied to any type of spatially sampled time series with significant interrelations, ranging from climate observables to biological or stock market data. In this presentation, we apply our method to extreme rainfall in South America and show how this leads to the prediction of more than 60% (90% during El Niño conditions) of extreme rainfall events in the eastern Central Andes of Bolivia and northern Argentina, with only 1% false alarms. From paleoclimatic to decadal time scales, the Central Andes continue to be subject to pronounced changes in climatic conditions. In particular, our and past work shows that frequency as well as magnitudes of extreme rainfall events have increased significantly during past decades, calling for a better understanding of the involved climatic mechanisms. Due to their large spatial extend and occurrence at high elevations, these extreme events often lead to severe floods and landslides with disastrous socioeconomic impacts. They regularly affect tens of thousands of people and produce estimated costs of the order of several hundred million USD. Alongside with the societal value of predicting natural hazards, our study provides insights into the responsible climatic features and suggests interactions between Rossby waves in polar regions and large scale (sub-)tropical moisture transport as a driver of subseasonal variability of the South American monsoon system. Predictable extreme events result from the propagation of extreme rainfall from the region of Buenos Aires towards the Central Andes given characteristic atmospheric conditions. Our results indicate that the role of frontal systems originating from Rossby waves in polar latitudes is much more dominant for controlling extreme rainfall in

  17. Generación Hashtag. Los movimientos juveniles en la era

    Directory of Open Access Journals (Sweden)

    carles Feixa

    2016-02-01

    Full Text Available El presente texto plantea una reflexión sobre la metamorfosis de los movimientos juveniles en la transición de la era digital a lo que podemos denominar era hiperdigital (es decir, la era de la web social. Dicha transición se sintetiza en un cambio terminológico: Generación @ o Arroba versus Generación # o Hashtag. El artículo se organiza en dos partes. En la primera se retoma lo expuesto en un artículo publicado hace quince años (Feixa, 2000 y se compara las diferencias entre una y otra generación en los siguientes aspectos: historia de los significantes (es decir, de los signos @ y # y el significado de ambos términos. En la segunda, a partir del análisis comparativo de los dilemas de cada generación, se exponen las transiciones y los rasgos teóricos de la actual Generación hiperdigital o Generación #. Los movimientos sociales, protagonizados en muchos casos por jóvenes, son el lugar donde las transiciones aquí teorizadas se manifiestan en todo su esplendor

  18. Satisfaction with upper extremity surgery in individuals with tetraplegia

    DEFF Research Database (Denmark)

    Gregersen, Hanne; Lybæk, Mille; Lauge Johannesen, Inger

    2015-01-01

    OBJECTIVE: To supplement the scant information available regarding the satisfaction of patients with tetraplegia following upper extremity reconstructive surgery for such individuals with spinal cord injury (SCI). STUDY DESIGN: Retrospective study with questionnaire follow-up. SETTING: The Danish...... to strongly disagree regarding satisfaction. Forty patients completed the questionnaire. RESULTS: Median time from first surgery was 13 years (2-36). Sixty-five percent of the sample had a C5-C6 SCI, with 64% experiencing complete injury. Initially, 76% of the sample expressed general satisfaction with life...... Spinal Cord Injury Centers. MATERIAL AND METHODS: In the initial review period, 119 upper extremity surgeries were performed on patients with tetraplegia (n = 49). Seven died and the remaining 42 were invited to complete a follow-up questionnaire with a five-level scale ranging from strongly agree...

  19. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    Science.gov (United States)

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  20. Multifractal rainfall extremes: Theoretical analysis and practical estimation

    International Nuclear Information System (INIS)

    Langousis, Andreas; Veneziano, Daniele; Furcolo, Pierluigi; Lepore, Chiara

    2009-01-01

    We study the extremes generated by a multifractal model of temporal rainfall and propose a practical method to estimate the Intensity-Duration-Frequency (IDF) curves. The model assumes that rainfall is a sequence of independent and identically distributed multiplicative cascades of the beta-lognormal type, with common duration D. When properly fitted to data, this simple model was found to produce accurate IDF results [Langousis A, Veneziano D. Intensity-duration-frequency curves from scaling representations of rainfall. Water Resour Res 2007;43. (doi:10.1029/2006WR005245)]. Previous studies also showed that the IDF values from multifractal representations of rainfall scale with duration d and return period T under either d → 0 or T → ∞, with different scaling exponents in the two cases. We determine the regions of the (d, T)-plane in which each asymptotic scaling behavior applies in good approximation, find expressions for the IDF values in the scaling and non-scaling regimes, and quantify the bias when estimating the asymptotic power-law tail of rainfall intensity from finite-duration records, as was often done in the past. Numerically calculated exact IDF curves are compared to several analytic approximations. The approximations are found to be accurate and are used to propose a practical IDF estimation procedure.

  1. PERLINDUNGAN HUKUM TERHADAP ANAK DI ERA GLOBALISASI Antara Ide dan Realita

    Directory of Open Access Journals (Sweden)

    Layyin Mahfiana

    2013-12-01

    Full Text Available Globalisasi merupakan perkembangan dunia yang tidak bisa terelakkan lagi. Setiap warga negara harus siap menghadapi era globalisasi ini begitu juga anak. Ada banyak aspek positif yang dapat dimanfaatkan oleh anak-anak untuk menunjang tumbuh kembang dan belajar mereka, akan tetapi banyak juga aspek negatif yang harus diwaspadai. Aturan hukum tentang perlindungan anak di era globalisasi ini sudah ditetapkan, oleh karena itu penegakan hukumnya dibutuhkan peran orang tua, masyarakat, sekolah, pemerintah untuk mewujudkan lingkungan yang layak terhadap perkembangan jiwa anak. Kata kunci: Hak-Hak Anak, Eksploitasi, Layak anak.

  2. Committed Vulnerability to Extreme Weather Events in the United States (Invited)

    Science.gov (United States)

    Preston, B. L.

    2013-12-01

    Despite improvements in disaster risk management in the United States, a trend toward increasing economic losses from extreme weather events has been observed. This trend has been attributed to growth in socioeconomic exposure to extremes driven by the concentration of population and wealth on hazardous landscapes. As geographic patterns of demography and economic development are associated with strong path dependence, the United States is ';locked-in' to future increases in exposure and associated economic losses in the decades ahead, irrespective of the influence of climate change. To understand the influence of path dependence on past and future losses, an index of potential socioeconomic exposure was developed at the U.S. county level based upon population size and inflation-adjusted wealth proxies. Since 1960, exposure has increased preferentially in the U.S. Southeast, particularly coastal and urban counties and Southwest relative to the Great Plains and Northeast. Projected changes in exposure from 2009 to 2054 based upon scenarios of future demographic and economic change suggest a long-term commitment to increasing, but spatially heterogeneous, exposure to extremes, independent of climate change. The implications of this path dependence are examined in the context of several natural hazards. Annualized county-level losses from 1960-2008 for five climate-related natural hazards were normalized to 2009 values and then scaled based upon projected changes in exposure and two different estimates of the exposure elasticity of losses. Results indicate that losses from extreme events will grow by a factor of 1.3-1.7 and 1.8-3.9 by 2025 and 2050, respectively, with the exposure elasticity representing a major source of uncertainty. At more local scales, however, such as rapidly growing metropolitan areas, losses are anticipated to grow more rapidly. As such, improving understanding of the societal implications of the extreme weather events of the future

  3. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  4. Report from the 5th Workshop on Extremely Large Databases

    Directory of Open Access Journals (Sweden)

    Jacek Becla

    2012-03-01

    Full Text Available The 5th XLDB workshop brought together scientific and industrial users, developers, and researchers of extremely large data and focused on emerging challenges in the healthcare and genomics communities, spreadsheet-based large scale analysis, and challenges in applying statistics to large scale analysis, including machine learning. Major problems discussed were the lack of scalable applications, the lack of expertise in developing solutions, the lack of respect for or attention to big data problems, data volume growth exceeding Moore's Law, poorly scaling algorithms, and poor data quality and integration. More communication between users, developers, and researchers is sorely needed. A variety of future work to help all three groups was discussed, ranging from collecting challenge problems to connecting with particular industrial or academic sectors.

  5. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings

    DEFF Research Database (Denmark)

    Willems, P.; Arnbjerg-Nielsen, Karsten; Olsson, J.

    2012-01-01

    Cities are becoming increasingly vulnerable to flooding because of rapid urbanization, installation of complex infrastructure, and changes in the precipitation patterns caused by anthropogenic climate change. The present paper provides a critical review of the current state-of-the-art methods...... for assessing the impacts of climate change on precipitation at the urban catchment scale. Downscaling of results from global circulation models or regional climate models to urban catchment scales are needed because these models are not able to describe accurately the rainfall process at suitable high temporal...... and spatial resolution for urban drainage studies. The downscaled rainfall results are however highly uncertain, depending on the models and downscaling methods considered. This uncertainty becomes more challenging for rainfall extremes since the properties of these extremes do not automatically reflect those...

  6. Modeling the Pineapple Express phenomenon via Multivariate Extreme Value Theory

    Science.gov (United States)

    Weller, G.; Cooley, D. S.

    2011-12-01

    The pineapple express (PE) phenomenon is responsible for producing extreme winter precipitation events in the coastal and mountainous regions of the western United States. Because the PE phenomenon is also associated with warm temperatures, the heavy precipitation and associated snowmelt can cause destructive flooding. In order to study impacts, it is important that regional climate models from NARCCAP are able to reproduce extreme precipitation events produced by PE. We define a daily precipitation quantity which captures the spatial extent and intensity of precipitation events produced by the PE phenomenon. We then use statistical extreme value theory to model the tail dependence of this quantity as seen in an observational data set and each of the six NARCCAP regional models driven by NCEP reanalysis. We find that most NCEP-driven NARCCAP models do exhibit tail dependence between daily model output and observations. Furthermore, we find that not all extreme precipitation events are pineapple express events, as identified by Dettinger et al. (2011). The synoptic-scale atmospheric processes that drive extreme precipitation events produced by PE have only recently begun to be examined. Much of the current work has focused on pattern recognition, rather than quantitative analysis. We use daily mean sea-level pressure (MSLP) fields from NCEP to develop a "pineapple express index" for extreme precipitation, which exhibits tail dependence with our observed precipitation quantity for pineapple express events. We build a statistical model that connects daily precipitation output from the WRFG model, daily MSLP fields from NCEP, and daily observed precipitation in the western US. Finally, we use this model to simulate future observed precipitation based on WRFG output driven by the CCSM model, and our pineapple express index derived from future CCSM output. Our aim is to use this model to develop a better understanding of the frequency and intensity of extreme

  7. Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean

    Science.gov (United States)

    Dayan, U.; Nissen, K.; Ulbrich, U.

    2015-11-01

    This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes that produce heavy rain storms. It distinguishes the western and eastern Mediterranean in order to point out specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger-scale circulations. The synoptic systems (tropical and extratropical) that account for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper synoptic-scale-level troughs, and mesoscale convective systems. Under tropical air-mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.

  8. O livro e a biblioteca, o documento e o arquivo na era digital

    Directory of Open Access Journals (Sweden)

    Diana Gonçalves Vidal

    2012-07-01

    Full Text Available  O artigo almeja refletir sobre o lugar do livro e do documento na era digital, defendendo a convivência das linguagens oral, escrita e digital e de seus produtos no presente e futuro e advogando a preservação dos vários suportes de informação. Propõe a elaboração de uma política de descarte afinada aos interesses da história da educação e aos princípios da arquivística que deve levar em conta os aportes das novas tecnologias.Palavras-chave: livro, biblioteca, documento, arquivo, era digital, história da educação.   Abstract The article aims to discuss the place of books and documents in the digital era. Defends the surviving of oral and written languages, as well as their products, in the digital world. Claims for the development of a preservation policy built upon the union of history of education and archivology interests made possible by using the new technology. Keywords: book, library, document, archive, digital era, history of education. 

  9. Interactions of Christians and Evangelists of Yazd with Muslims in the Qajar Era

    Directory of Open Access Journals (Sweden)

    Hamidreza Shams Esfandabadi

    2017-01-01

    Full Text Available The history of Yazd in Qajar era shows several political-social incidents in different periods which have greatly affected the social, cultural, economic and even physical historical-ancient life of the city. Investigating the interaction between Iranians and the residents from different religions during the aforementioned era is interest of the study. This interaction has experienced some fluctuations including peaceful friendships as well as brutal conflicts. The present research is a scientific-investigative effort to perform a historical, periodical, and at the same time documentary and analytical study on the extent, type and method of interactions of the majority of Yazd residents such as Shia Muslims, with the religious minority living in Yazd or non-local Christians temporary living in Yazd for the purpose of performing preaching and advertising programs in Yazd during the Qajar era. The researchers’ hypothesis is as follow: in the Qajar era there was a mutual communication, conflicts and correspondence between Christian minorities (evangelists and Shia Muslims in Yazd most of which proves a relationship and peaceful co-existence between them. This study applies a comparative-historical methodology as well as examines the academic literature and field studies.

  10. Molecular anthropology in the genomic era.

    Science.gov (United States)

    Destro-Bisol, Giovanni; Jobling, Mark A; Rocha, Jorge; Novembre, John; Richards, Martin B; Mulligan, Connie; Batini, Chiara; Manni, Franz

    2010-01-01

    Molecular Anthropology is a relatively young field of research. In fact, less than 50 years have passed since the symposium "Classification and Human Evolution" (1962, Burg Wartenstein, Austria), where the term was formally introduced by Emil Zuckerkandl. In this time, Molecular Anthropology has developed both methodologically and theoretically and extended its applications, so covering key aspects of human evolution such as the reconstruction of the history of human populations and peopling processes, the characterization of DNA in extinct humans and the role of adaptive processes in shaping the genetic diversity of our species. In the current scientific panorama, molecular anthropologists have to face a double challenge. As members of the anthropological community, we are strongly committed to the integration of biological findings and other lines of evidence (e.g. linguistic and archaeological), while keeping in line with methodological innovations which are moving the approach from the genetic to the genomic level. In this framework, the meeting "DNA Polymorphisms in Human Populations: Molecular Anthropology in the Genomic Era" (Rome, December 3-5, 2009) offered an opportunity for discussion among scholars from different disciplines, while paying attention to the impact of recent methodological innovations. Here we present an overview of the meeting and discuss perspectives and prospects of Molecular Anthropology in the genomic era.

  11. Eraõigusliku juriidilise isiku organi liikmete õigussuhted / Kalev Saare

    Index Scriptorium Estoniae

    Saare, Kalev, 1974-

    2010-01-01

    Eraõiguslike juriidiliste isikute organi mõistest aktsiaseltsi ja osaühingu näitel, organiliikmete sisesuhte tekkimisest ja tsiviilseadustiku üldosa seaduse poolt määratud sisesuhte sisusse kuuluvatest peamistest kohustustest

  12. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2017-01-01

    scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 10(7) times larger than steady-state currents in conventional STM are used to image...... terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.......Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz...

  13. SEAS-ERA: An overarching effort to coordinate marine research policies across Europe

    OpenAIRE

    Morales-Nin, Beatriz; Albaigés Riera, Joan

    2015-01-01

    © 2015 Elsevier Ltd. The aim of the SEAS-ERA initiative (2010-2014), developed within the European Union Framework Programme (EU FPVII) (contract 249552), was to coordinate the structure of national and regional marine and maritime research programs to empower and strengthen marine research all across Europe. A major goal was the development and implementation of common research strategies and programs related to European seas basins. To achieve this goal, SEAS-ERA was applied at two differen...

  14. Radiation oncology in the era of precision medicine

    DEFF Research Database (Denmark)

    Baumann, Michael; Krause, Mechthild; Overgaard, Jens

    2016-01-01

    with preservation of health-related quality of life can be achieved in many patients. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced...

  15. Using ERA-Interim reanalysis for creating datasets of energy-relevant climate variables

    Science.gov (United States)

    Jones, Philip D.; Harpham, Colin; Troccoli, Alberto; Gschwind, Benoit; Ranchin, Thierry; Wald, Lucien; Goodess, Clare M.; Dorling, Stephen

    2017-07-01

    The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim reanalysis is presented. A number of different, variable-dependent, bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting ERA-Interim based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed, and relative humidity. These are available on either 3 or 6 h timescales over the period 1979-2016. The resulting bias-adjusted dataset is available through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S) and can be accessed at present from climate.copernicus.eu" target="_blank">ftp://ecem.climate.copernicus.eu. The benefit of performing bias adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against gridded observational fields.

  16. CAPITALISM EMERGING ERA TAX SYSTEMS OF THE EUROPEAN COUNTRIES

    Directory of Open Access Journals (Sweden)

    Виктория Александровна Цокова

    2013-05-01

    Full Text Available Three phases should be distinguished in the development of tax systems:I. The Ancient World and Middle Ages (from the IV - III centuries. BC. till. XVII - XVIII centuries AD.II. The new time (from the XVII - XVIII centuries till the end of XIX century. - the era of the emerging capitalism.III. Modern History (from the XX century and up to the present time. The capitalism emerging era scientific ideas and tax systems research relevance (importance is caused by the emergence of the main distinct characteristics of any state, that is by the permanently increasing demand of that institution for money. This fact, in its turn, contributes to the formation of the state tax system, and, of course, the evolution of scientific views on taxation.Nowadays, some theoretical ideas in the field of taxation, clarifying the nature and the role of taxes in the European countries budget formation begin to appear in Europe, especially in theUK. The development of tax systems in England, France and Germany have  been analyzed;  and , basing on the  dialectical, historical and logical approaches, and the method of scientific abstraction, the authors identify the following common features of the  capitalism emerging era tax systems in the European countries: the taxation on a regular (permanent basis, the expansion of the tax-payers  range – all citizens of the state are becoming tax payers, the introduction of the income tax and the abolishment  of the revenue leasing – creation of government agencies system responsible for the administration of taxes, to establishing and collecting taxes only with the Parliament approval and permission.Classical theoretical and practical approaches to creation of tax systems of the states have been formulated in Europe in the era of nascent capitalism and they haven’t lost the relevance yet.DOI: http://dx.doi.org/10.12731/2218-7405-2013-4-55

  17. Evaluation of trends in high temperature extremes in north-western Europe in regional climate models

    International Nuclear Information System (INIS)

    Min, E; Hazeleger, W; Van Oldenborgh, G J; Sterl, A

    2013-01-01

    Projections of future changes in weather extremes on the regional and local scale depend on a realistic representation of trends in extremes in regional climate models (RCMs). We have tested this assumption for moderate high temperature extremes (the annual maximum of the daily maximum 2 m temperature, T ann.max ). Linear trends in T ann.max from historical runs of 14 RCMs driven by atmospheric reanalysis data are compared with trends in gridded station data. The ensemble of RCMs significantly underestimates the observed trends over most of the north-western European land surface. Individual models do not fare much better, with even the best performing models underestimating observed trends over large areas. We argue that the inability of RCMs to reproduce observed trends is probably not due to errors in large-scale circulation. There is also no significant correlation between the RCM T ann.max trends and trends in radiation or Bowen ratio. We conclude that care should be taken when using RCM data for adaptation decisions. (letter)

  18. A global multiproxy database for temperature reconstructions of the Common Era

    Science.gov (United States)

    Emile-Geay, Julian; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A.J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, T.; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A. N.; Bjorklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, Ed; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, M.; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Koc, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, K.M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, X.; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St. George, Scott; St. Jacques, Jeannine-Marie; Thamban, Meloth; Thapa, Udya Kuwar; Thomas, E.; Turney, Chris; Uemura, Ryu; Viau, A.E.; Vladimirova, Diana O.; Wahl, Eugene; White, James W. C.; Yu, Z.; Zinke, Jens

    2017-01-01

    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

  19. Perioperative Optimization of Geriatric Lower Extremity Bypass in the Era of Increased Performance Accountability.

    Science.gov (United States)

    Adkar, Shaunak S; Turley, Ryan S; Benrashid, Ehsan; Lagoo, Sandhya; Shortell, Cynthia K; Mureebe, Leila

    2017-01-01

    The initiation of bundled payment for care improvement by Centers for Medicare and Medicaid Services (CMS) has led to increased financial and performance accountability. As most vascular surgery patients are elderly and reimbursed via CMS, improving their outcomes will be critical for durable financial stability. As a first step in forming a multidisciplinary pathway for the elderly vascular patients, we sought to identify modifiable perioperative variables in geriatric patients undergoing lower extremity bypass (LEB). The 2011-2013 LEB-targeted American College of Surgeons National Surgical Quality Improvement Program database was used for this analysis (n = 5316). Patients were stratified by age <65 (n = 2171), 65-74 (n = 1858), 75-84 (n = 1190), and ≥85 (n = 394) years. Comparisons of patient- and procedure-related characteristics and 30-day postoperative outcomes stratified by age groups were performed with Pearson χ 2 tests for categorical variables and Wilcoxon rank-sum tests for continuous variables. During the study period, 5316 total patients were identified. There were 2171 patients aged <65 years, 1858 patients in the 65-74 years age group, 1190 patients in the 75-84 years age group, and 394 patients in the ≥85 years age group. Increasing age was associated with an increased frequency of cardiopulmonary disease (P < 0.001) and a decreased frequency of diabetes, tobacco use, and prior surgical intervention (P < 0.001). Only 79% and 68% of all patients were on antiplatelet and statin therapies, respectively. Critical limb ischemia occurred more frequently in older patients (P < 0.001). Length of hospital stay, transfusion requirements, and discharge to a skilled nursing facility increased with age (P < 0.001). Thirty-day amputation rates did not differ significantly with age (P = 0.12). Geriatric patients undergoing LEB have unique and potentially modifiable perioperative factors that may improve postoperative outcomes. These

  20. Enforcing patents in the era of 3D printing

    DEFF Research Database (Denmark)

    Ballardini, Rosa Maria; Norrgård, Marcus; Minssen, Timo

    2015-01-01

    This article explores relevant laws and doctrines of patent infringement in Europe with a special emphasis on 3D printing (3DP) technologies. Considering the difficulties that patent owners might face in pursuing direct patent infringement actions in the rapidly evolving era of 3DP, we suggest...... of IP law. Enforcing patents in the era of 3D printing Rosa Maria Ballardini, Marcus Norrgård, and Timo Minssen Journal of Intellectual Property Law & Practice 2015 10: 850-866......, although the internet platforms and CAD files repositories will play a major role in the development and spreading of the 3DP technology, they will likely to be at the center of major law disputes unless they carefully consider the scope of their activities (host and/or customize and/or print) in light...

  1. The Anthropocene era. The Earth, the history and us

    International Nuclear Information System (INIS)

    Bonneuil, Christophe; Fressoz, Jean-Baptiste

    2013-01-01

    As some scientists state that the Earth entered the Anthropocene era which is an anthropogenic geological revolution: the traces of our urban, consumption, chemical and nuclear era will remain in the planet geological archives for thousands and even millions of years, and will result in huge difficulties for human societies. Between science and history, the authors give an overview of a development model which has become unsustainable: studies which highlighted the impossibility of an indefinite growth in the 1970's have been ignored, and instead of taking the three dimensions involved in sustainable development (economy, social, environment), into account, environment tends to become only a new item in firm accounting (markets of eco-systemic services, the biosphere, hydrosphere and atmosphere about to become simple subsystems of the financial and merchandising sphere)

  2. A Black Swan and Sub-continental Scale Dynamics in Humid, Late-Holocene Broadleaf Forests

    Science.gov (United States)

    Pederson, N.; Dyer, J.; McEwan, R.; Hessl, A. E.; Mock, C. J.; Orwig, D.; Rieder, H. E.; Cook, B. I.

    2012-12-01

    In humid regions with dense broadleaf-dominated forests where gap-dynamics is the prevailing disturbance regime, paleoecological evidence shows regional-scale changes in forest composition associated with climatic change. To investigate the potential for regional events in late-Holocene forests, we use tree-ring data from 76 populations covering 840,000 km2 and 5.3k tree recruitment dates spanning 1.4 million km2 in the eastern US to investigate the occurrence of simultaneous forest dynamics across a humid region. We compare regional forest dynamics with an independent set of annually-resolved tree ring record of hydroclimate to examine whether climate dynamics might drive forest dynamics in this humid region. In forests where light availability is an important limitation for tree recruitment, we document a pulse of tree recruitment during the mid- to late-1600s across the eastern US. This pulse, which can be inferred as large-scale canopy opening, occurred during an era that multiple proxies indicate as extended drought between two intense pluvial. Principal component analysis of the 76 populations indicates a step-change increase in average ring width during the late-1770s resembling a potential canopy accession event over 42,800 km2 of the southeastern US. Growth-release analysis of populations loading strongly on this eigenvector indicates severe canopy disturbance from 1775-1779 that peaked in 1776. The 1776 event follows a period with extended droughts and severe large-scale frost event. We hypothesize these climatic events lead to elevated tree mortality in the late-1770s and canopy accession for understory trees. Superposed epoch analysis reveals that spikes of elevated canopy disturbance from 1685-1850 CE are significantly associated with drought. Extreme value theory statistics indicates the 1776 event lies beyond the 99.9 quantile and nearly 7 sigmas above the 1685-1850 mean rate of disturbance. The time-series of canopy disturbance from 1685-1850 is so

  3. Experiments on extreme states of matter towards HIF at FAIR

    International Nuclear Information System (INIS)

    Sharkov, B.; Varentsov, D.

    2013-01-01

    The Facility for Antiproton and Ion Research in Europe (FAIR) will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented frontier research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in plasma, nuclear, atomic, hadron and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of extreme state of matter on both a microscopic and on a cosmic scale. (authors)

  4. Large-scale coastal impact induced by a catastrophic storm

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Johannessen, Peter N

    breaching. Our results demonstrate that violent, millennial-scale storms can trigger significant large-scale and long-term changes on barrier coasts, and that coastal changes assumed to take place over centuries or even millennia may occur in association with a single extreme storm event....

  5. Visualizing estrogen receptor-a-expressing neurons using a new ERa-ZsGreen reporter mouse line

    Science.gov (United States)

    A variety of biological functions of estrogens, including regulation of energy metabolism, are mediated by neurons expressingestrogen receptor-a (ERa) in the brain. However, complex intracellular processes in these ERa-expressing neurons are difficult to unravel, due to the lack of strategy to visua...

  6. Extreme cognitions are associated with diminished ability to use disconfirming evidence.

    Science.gov (United States)

    Haigh, Matthew; Dodd, Alyson L

    2017-03-01

    An Integrative Cognitive Model of mood swings and bipolar disorder proposes that cognitive styles characterized by extreme self-referent appraisals of internal states (e.g., 'If I have a bad night's sleep it means that I am about to have a breakdown') interfere with mood regulation. The aim of this study is to determine whether strong endorsement of such appraisals is predicted by a diminished ability to access disconfirming counterexamples. We examined whether the ability to access two different categories of counterexample (known as Disabling Conditions and Alternative Causes) would predict endorsement of extreme appraisals (measured by the Hypomanic Attitudes and Positive Predictions Inventory; HAPPI) and mania risk (measured by the Hypomanic Personality Scale; HPS). A non-clinical sample of 150 students completed the HAPPI, the HPS and a conditional reasoning task that indexed the ability to access Disabling Conditions and Alternative Causes. Current mood was controlled for using the Internal States Scale. The ability to make use of disabling counterexamples during the reasoning task was inversely related with scores on the HAPPI (r = -.19, p referent appraisals to a greater extent. There was no association between the use of alternative cause counterexamples and the HAPPI, and no association between either measure of counterexample generation and the HPS. A diminished ability to use disconfirming evidence when reasoning about the world may reinforce problematic cognitive styles such as extreme, personalized appraisals of experience, which can interfere with mood regulation. Problematic cognitive styles such as extreme, personalized appraisals of experience may be reinforced by the inability to produce or access evidence that disconfirms these maladaptive beliefs. This reasoning bias may be associated with cognitive styles underlying psychopathology. There may be clinical utility in exploring the use of disabler generation in psychological interventions, to

  7. The Role of Regional Therapies for in-Transit Melanoma in the Era of Improved Systemic Options

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Emmanuel [Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Skitzki, Joseph, E-mail: joseph.skitzki@roswellpark.org [Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States); Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263 (United States)

    2015-07-01

    The incidence of melanoma has been increasing at a rapid rate, with 4%–11% of all melanoma recurrences presenting as in-transit disease. Treatments for in-transit melanoma of the extremity are varied and include surgical excision, lesional injection, regional techniques and systemic therapies. Excision to clear margins is preferred; however, in cases of widespread disease, this may not be practical. Historically, intralesional therapies were generally not curative and were often used for palliation or as adjuncts to other therapies, but recent advances in oncolytic viruses may change this paradigm. Radiation as a regional therapy can be quite locally toxic and is typically relegated to disease control and symptom relief in patients with limited treatment options. Regional therapies such as isolated limb perfusion and isolated limb infusion are older therapies, but offer the ability to treat bulky disease for curative intent with a high response rate. These techniques have their associated toxicities and can be technically challenging. Historically, systemic therapy with chemotherapies and biochemotherapies were relatively ineffective and highly toxic. With the advent of novel immunotherapeutic and targeted small molecule agents for the treatment of metastatic melanoma, the armamentarium against in-transit disease has expanded. Given the multitude of options, many different combinations and sequences of therapies can be offered to patients with in-transit extremity melanoma in the contemporary era. Reported response and survival rates of the varied treatments may offer valuable information regarding treatment decisions for patients with in-transit melanoma and provide rationale for these decisions.

  8. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes

    International Nuclear Information System (INIS)

    Liu Guo; Liu Hongyan; Yin Yi

    2013-01-01

    Extremes in climate have significant impacts on ecosystems and are expected to increase under future climate change. Extremes in vegetation could capture such impacts and indicate the vulnerability of ecosystems, but currently have not received a global long-term assessment. In this study, a robust method has been developed to detect significant extremes (low values) in biweekly time series of global normalized difference vegetation index (NDVI) from 1982 to 2006 and thus to acquire a global pattern of vegetation extreme frequency. This pattern coincides with vegetation vulnerability patterns suggested by earlier studies using different methods over different time spans, indicating a consistent mechanism of regulation. Vegetation extremes were found to aggregate in Amazonia and in the semi-arid and semi-humid regions in low and middle latitudes, while they seldom occurred in high latitudes. Among the environmental variables studied, extreme low precipitation has the highest slope against extreme vegetation. For the eight biomes analyzed, these slopes are highest in temperate broadleaf forest and temperate grassland, suggesting a higher sensitivity in these environments. The results presented here contradict the hypothesis that vegetation in water-limited semi-arid and semi-humid regions might be adapted to drought and suggest that vegetation in these regions (especially temperate broadleaf forest and temperate grassland) is highly prone to vegetation extreme events under more severe precipitation extremes. It is also suggested here that more attention be paid to precipitation-induced vegetation changes than to temperature-induced events. (letter)

  9. Analysis of clinical characteristics and efficacy of chronic myeloid leukemia onset with extreme thrombocytosis in the era of tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Liu Z

    2017-07-01

    Full Text Available Zhihe Liu, Hongqiong Fan, Yuying Li, Chunshui Liu Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, People’s Republic of China Abstract: The aim of this study was to investigate the clinical characteristics and efficacy of chronic myeloid leukemia (CML onset with extreme thrombocytosis. A total of 121 newly diagnosed and untreated CML patients in chronic phase with complete clinical information from the First Hospital of Jilin University, from January 2010 to December 2014 were retrospectively recruited. Based on the platelet (PLT count, 22 patients were assigned into CML with thrombocytosis (CML-T group (PLT >1,000×109/L and 65 patients were classified into CML without extreme thrombocytosis (CML-N group (PLT ≤1,000×109/L. Fifty-four point five percent of patients in the CML-T group were female, which was higher than that in the CML-N group (27.7% (P=0.022. Except for gender, there was no significant difference for clinical information of patients between the two groups. For Sokal and Hasford scoring systems, the percentage of patients at high risk in the CML-T group were higher than those in the CML-N group, 95.5% vs 52.3% (P=0.000 and 68.2% vs 41.5% (P=0.031, respectively; however, there was no significant difference for European Treatment and Outcome Study (EUTOS score system between the two groups (P=0.213. In terms of major molecular response (MMR rate, the percent of patients with MMR in CML-T group was lower than that in CML-N group at 36 months after tyrosine kinase inhibitor therapy (P=0.037. Up until December 2016, the median of event-free survival was 21 months in the CML-T group, however, that was not reached in the CML-N group (P=0.027. The majority of CML patients with extreme thrombocytosis were females, and compared to patients in the CML-N group, the percentage of high risk patients based on the Sokal and Hasford scoring systems was higher in the CML-T group, and the median

  10. Haptic biofeedback for improving compliance with lower-extremity partial weight bearing.

    Science.gov (United States)

    Fu, Michael C; DeLuke, Levi; Buerba, Rafael A; Fan, Richard E; Zheng, Ying Jean; Leslie, Michael P; Baumgaertner, Michael R; Grauer, Jonathan N

    2014-11-01

    After lower-extremity orthopedic trauma and surgery, patients are often advised to restrict weight bearing on the affected limb. Conventional training methods are not effective at enabling patients to comply with recommendations for partial weight bearing. The current study assessed a novel method of using real-time haptic (vibratory/vibrotactile) biofeedback to improve compliance with instructions for partial weight bearing. Thirty healthy, asymptomatic participants were randomized into 1 of 3 groups: verbal instruction, bathroom scale training, and haptic biofeedback. Participants were instructed to restrict lower-extremity weight bearing in a walking boot with crutches to 25 lb, with an acceptable range of 15 to 35 lb. A custom weight bearing sensor and biofeedback system was attached to all participants, but only those in the haptic biofeedback group were given a vibrotactile signal if they exceeded the acceptable range. Weight bearing in all groups was measured with a separate validated commercial system. The verbal instruction group bore an average of 60.3±30.5 lb (mean±standard deviation). The bathroom scale group averaged 43.8±17.2 lb, whereas the haptic biofeedback group averaged 22.4±9.1 lb (Phaptic biofeedback group averaged 14.5±6.3% (Phaptic biofeedback to improve compliance with lower-extremity partial weight bearing, haptic biofeedback was superior to conventional physical therapy methods. Further studies in patients with clinical orthopedic trauma are warranted. Copyright 2014, SLACK Incorporated.

  11. Scalable Parallel Methods for Analyzing Metagenomics Data at Extreme Scale

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Jeffrey A. [Washington State Univ., Pullman, WA (United States)

    2015-05-01

    The field of bioinformatics and computational biology is currently experiencing a data revolution. The exciting prospect of making fundamental biological discoveries is fueling the rapid development and deployment of numerous cost-effective, high-throughput next-generation sequencing technologies. The result is that the DNA and protein sequence repositories are being bombarded with new sequence information. Databases are continuing to report a Moore’s law-like growth trajectory in their database sizes, roughly doubling every 18 months. In what seems to be a paradigm-shift, individual projects are now capable of generating billions of raw sequence data that need to be analyzed in the presence of already annotated sequence information. While it is clear that data-driven methods, such as sequencing homology detection, are becoming the mainstay in the field of computational life sciences, the algorithmic advancements essential for implementing complex data analytics at scale have mostly lagged behind. Sequence homology detection is central to a number of bioinformatics applications including genome sequencing and protein family characterization. Given millions of sequences, the goal is to identify all pairs of sequences that are highly similar (or “homologous”) on the basis of alignment criteria. While there are optimal alignment algorithms to compute pairwise homology, their deployment for large-scale is currently not feasible; instead, heuristic methods are used at the expense of quality. In this dissertation, we present the design and evaluation of a parallel implementation for conducting optimal homology detection on distributed memory supercomputers. Our approach uses a combination of techniques from asynchronous load balancing (viz. work stealing, dynamic task counters), data replication, and exact-matching filters to achieve homology detection at scale. Results for a collection of 2.56M sequences show parallel efficiencies of ~75-100% on up to 8K cores

  12. Scalable Parallel Methods for Analyzing Metagenomics Data at Extreme Scale

    International Nuclear Information System (INIS)

    Daily, Jeffrey A.

    2015-01-01

    The field of bioinformatics and computational biology is currently experiencing a data revolution. The exciting prospect of making fundamental biological discoveries is fueling the rapid development and deployment of numerous cost-effective, high-throughput next-generation sequencing technologies. The result is that the DNA and protein sequence repositories are being bombarded with new sequence information. Databases are continuing to report a Moore's law-like growth trajectory in their database sizes, roughly doubling every 18 months. In what seems to be a paradigm-shift, individual projects are now capable of generating billions of raw sequence data that need to be analyzed in the presence of already annotated sequence information. While it is clear that data-driven methods, such as sequencing homology detection, are becoming the mainstay in the field of computational life sciences, the algorithmic advancements essential for implementing complex data analytics at scale have mostly lagged behind. Sequence homology detection is central to a number of bioinformatics applications including genome sequencing and protein family characterization. Given millions of sequences, the goal is to identify all pairs of sequences that are highly similar (or 'homologous') on the basis of alignment criteria. While there are optimal alignment algorithms to compute pairwise homology, their deployment for large-scale is currently not feasible; instead, heuristic methods are used at the expense of quality. In this dissertation, we present the design and evaluation of a parallel implementation for conducting optimal homology detection on distributed memory supercomputers. Our approach uses a combination of techniques from asynchronous load balancing (viz. work stealing, dynamic task counters), data replication, and exact-matching filters to achieve homology detection at scale. Results for a collection of 2.56M sequences show parallel efficiencies of ~75-100% on up to 8K

  13. Comparative analysis of the scales of wind speed Saffir-Simpson y Rodriguez Ramirez

    International Nuclear Information System (INIS)

    Blanco Heredia, R.; Llanes Buron, C.

    2013-01-01

    The work consists on a comparative analysis of the scales of intensity of wind internationally well-known Saffir-Simpson and the proposed scale of the carbon investigator Dr. Mario E. Rodriguez Ramirez and their use in the studies of risks for extreme winds, carrying out, the authors a proposal of use of this scale modified that they make them more compatible with the practical reality for the work to architectonic scale. The importance of the article resides in that the carried out proposal tries of femonstrating the pertinent and effective that is the application of the Cuban scale, without gets lost the importance that has as international scale the Saffir-Simpson, in its application in the studies of risks for extreme winds in any region of the basin of Great Caribbean. (Author)

  14. Graviton production in the scaling of a long-cosmic-string network

    International Nuclear Information System (INIS)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Verdaguer, Enric

    2011-01-01

    In a previous paper [K. Kleidis, D. B. Papadopoulos, E. Verdaguer, and L. Vlahos, Phys. Rev. D 78, 024027 (2008).] we considered the possibility that (within the early-radiation epoch) there has been (also) a short period of a significant presence of cosmic strings. During this radiation-plus-strings stage the Universe matter-energy content can be modeled by a two-component fluid, consisting of radiation (dominant) and a cosmic-string fluid (subdominant). It was found that, during this stage, the cosmological gravitational waves--that had been produced in an earlier (inflationary) epoch--with comoving wave numbers below a critical value (which depends on the physics of the cosmic-string network) were filtered, leading to a distorsion in the expected (scale-invariant) cosmological gravitational wave power spectrum. In any case, the cosmological evolution gradually results in the scaling of any long-cosmic-string network and, hence, after a short time interval, the Universe enters into the late-radiation era. However, along the transition from an early-radiation epoch to the late-radiation era through the radiation-plus-strings stage, the time dependence of the cosmological scale factor is modified, something that leads to a discontinuous change of the corresponding scalar curvature, which, in turn, triggers the quantum-mechanical creation of gravitons. In this paper we discuss several aspects of such a process, and, in particular, the observational consequences on the expected gravitational-wave power spectrum.

  15. Extreme Precipitation, Stormwater, and Flooding in King County: Co-producing Research to Support Adaptation

    Science.gov (United States)

    Mauger, G. S.; Lorente-Plazas, R.; Salathe, E. P., Jr.; Mitchell, T. P.; Simmonds, J.; Lee, S. Y.; Hegewisch, K.; Warner, M.; Won, J.

    2017-12-01

    King County has experienced 12 federally declared flood disasters since 1990, and tens of thousands of county residents commute through, live, and work in floodplains. In addition to flooding, stormwater is a critical management challenge, exacerbated by aging infrastructure, combined sewer and drainage systems, and continued development. Even absent the effects of climate change these are challenging management issues. Recent studies clearly point to an increase in precipitation extremes for the Pacific Northwest (e.g., Warner et al. 2015). Yet very little information is available on the magnitude and spatial distribution of this change. Others clearly show that local-scale changes in extreme precipitation can only be accurately quantified with dynamical downscaling, i.e.: using a regional climate model. This talk will describe a suite of research and adaptation efforts developed in a close collaboration between King County and the UW Climate Impacts Group. Building on past collaborations, research efforts were defined in collaboration with King County managers, addressing three key science questions: (1) How are the mesoscale variations in extreme precipitation modulated by changes in large-scale weather conditions? (2) How will precipitation extremes change? This was assessed via two new high-resolution regional model projections using the Weather Research and Forecasting (WRF) mesoscale model (Skamarock et al. 2005). (3) What are the implications for stormwater and flooding in King County? This was assessed by both exploring the statistics of hourly precipitation extremes in the new projections, as well as new hydrologic modeling to assess the implications for river flooding. The talk will present results from these efforts, review the implications for King County planning and infrastructure, and synthesize lessons learned and opportunities for additional work.

  16. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    Science.gov (United States)

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  17. Extreme events as foundation of Levy walks with varying velocity

    International Nuclear Information System (INIS)

    Kutner, Ryszard

    2002-01-01

    In this work we study the role of extreme events [E.W. Montroll, B.J. West, in: J.L. Lebowitz, E.W. Montrell (Eds.), Fluctuation Phenomena, SSM, vol. VII, North-Holland, Amsterdam, 1979, p. 63; J.-P. Bouchaud, M. Potters, Theory of Financial Risks from Statistical Physics to Risk Management, Cambridge University Press, Cambridge, 2001; D. Sornette, Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer, Berlin, 2000] in determining the scaling properties of Levy walks with varying velocity. This model is an extension of the well-known Levy walks one [J. Klafter, G. Zumofen, M.F. Shlesinger, in M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (Eds.), Levy Flights and Related Topics ion Physics, Lecture Notes in Physics, vol. 450, Springer, Berlin, 1995, p. 196; G. Zumofen, J. Klafter, M.F. Shlesinger, in: R. Kutner, A. Pekalski, K. Sznajd-Weron (Eds.), Anomalous Diffusion. From Basics to Applications, Lecture Note in Physics, vol. 519, Springer, Berlin, 1999, p. 15] introduced in the context of chaotic dynamics where a fixed value of the walker velocity is assumed for simplicity. Such an extension seems to be necessary when the open and/or complex system is studied. The model of Levy walks with varying velocity is spanned on two coupled velocity-temporal hierarchies: the first one consisting of velocities and the second of corresponding time intervals which the walker spends between the successive turning points. Both these hierarchical structures are characterized by their own self-similar dimensions. The extreme event, which can appear within a given time interval, is defined as a single random step of the walker having largest length. By finding power-laws which describe the time-dependence of this displacement and its statistics we obtained two independent diffusion exponents, which are related to the above-mentioned dimensions and which characterize the extreme event kinetics. In this work we show the

  18. Along the Rainfall-Runoff Chain: From Scaling of Greatest Point Rainfall to Global Change Attribution

    Science.gov (United States)

    Fraedrich, K.

    2014-12-01

    Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.

  19. Early warnings of extreme winds using the ECMWF Extreme Forecast Index

    OpenAIRE

    Petroliagis, Thomas I.; Pinson, Pierre

    2014-01-01

    The European FP7 SafeWind Project aims at developing research towards a European vision of wind power forecasting, which requires advanced meteorological support concerning extreme wind events. This study is focused mainly on early warnings of extreme winds in the early medium-range. Three synoptic stations (airports) of North Germany (Bremen, Hamburg and Hannover) were considered for the construction of time series of daily maximum wind speeds. All daily wind extremes were found to be linked...

  20. Spatial and temporal patterns of bank failure during extreme flood events: Evidence of nonlinearity and self-organised criticality at the basin scale?

    Science.gov (United States)

    Thompson, C. J.; Croke, J. C.; Grove, J. R.

    2012-04-01

    Non-linearity in physical systems provides a conceptual framework to explain complex patterns and form that are derived from complex internal dynamics rather than external forcings, and can be used to inform modeling and improve landscape management. One process that has been investigated previously to explore the existence of self-organised critical system (SOC) in river systems at the basin-scale is bank failure. Spatial trends in bank failure have been previously quantified to determine if the distribution of bank failures at the basin scale exhibit the necessary power law magnitude/frequency distributions. More commonly bank failures are investigated at a small-scale using several cross-sections with strong emphasis on local-scale factors such as bank height, cohesion and hydraulic properties. Advancing our understanding of non-linearity in such processes, however, requires many more studies where both the spatial and temporal measurements of the process can be used to investigate the existence or otherwise of non-linearity and self-organised criticality. This study presents measurements of bank failure throughout the Lockyer catchment in southeast Queensland, Australia, which experienced an extreme flood event in January 2011 resulting in the loss of human lives and geomorphic channel change. The most dominant form of fluvial adjustment consisted of changes in channel geometry and notably widespread bank failures, which were readily identifiable as 'scalloped' shaped failure scarps. The spatial extents of these were mapped using high-resolution LiDAR derived digital elevation model and were verified by field surveys and air photos. Pre-flood event LiDAR coverage for the catchment also existed allowing direct comparison of the magnitude and frequency of bank failures from both pre and post-flood time periods. Data were collected and analysed within a GIS framework and investigated for power-law relationships. Bank failures appeared random and occurred