WorldWideScience

Sample records for extreme nucleus-laser trapping

  1. A Penning trap for advanced studies with particles in extreme laser fields

    International Nuclear Information System (INIS)

    Vogel, M.; Quint, W.; Paulus, G.G.; Stöhlker, Th.

    2012-01-01

    We present a Penning trap as a tool for advanced studies of particles in extreme laser fields. Particularly, trap-specific manipulation techniques allow control over the confined particles’ localization and spatial density by use of trap electrodes as ‘electrostatic tweezers’ and by application of a ‘rotating wall’, respectively. It is thereby possible to select and prepare well-defined ion ensembles and to optimize the laser–particle interaction. Non-destructive detection of reaction educts and products with up to single-ion sensitivity supports advanced studies by maintaining the products for further studies at extended confinement times of minutes and above. The trap features endcaps with conical openings for applications with strongly focused lasers. We show that such a modification of a cylindrical trap is possible while harmonicity and tunability are maintained.

  2. A Penning trap for advanced studies with particles in extreme laser fields

    Science.gov (United States)

    Vogel, M.; Quint, W.; Paulus, G. G.; Stöhlker, Th.

    2012-08-01

    We present a Penning trap as a tool for advanced studies of particles in extreme laser fields. Particularly, trap-specific manipulation techniques allow control over the confined particles' localization and spatial density by use of trap electrodes as 'electrostatic tweezers' and by application of a 'rotating wall', respectively. It is thereby possible to select and prepare well-defined ion ensembles and to optimize the laser-particle interaction. Non-destructive detection of reaction educts and products with up to single-ion sensitivity supports advanced studies by maintaining the products for further studies at extended confinement times of minutes and above. The trap features endcaps with conical openings for applications with strongly focused lasers. We show that such a modification of a cylindrical trap is possible while harmonicity and tunability are maintained.

  3. Extreme ultra-violet emission spectroscopy of highly charged gadolinium ions with an electron beam ion trap

    International Nuclear Information System (INIS)

    Ohashi, Hayato; Nakamura, Nobuyuki; Sakaue, Hiroyuki A

    2013-01-01

    We present extreme ultra-violet emission spectra of highly charged gadolinium ions obtained with an electron beam ion trap at electron energies of 0.53–1.51 keV. The electron energy dependence of the spectra in the 5.7–11.3 nm range is compared with calculation with the flexible atomic code. (paper)

  4. Domain wall network as QCD vacuum and the chromomagnetic trap formation under extreme conditions

    International Nuclear Information System (INIS)

    Nedelko, Sergei N.; Voronin, Vladimir E.

    2015-01-01

    The ensemble of Euclidean gluon field configurations represented by the domain wall network is considered. A single domain wall is given by the sine-Gordon kink for the angle between chromomagnetic and chromoelectric components of the gauge field. The domain wall separates the regions with Abelian self-dual and anti-self-dual fields. The network of the domain wall defects is introduced as a combination of multiplicative and additive superpositions of kinks. The character of the spectrum and eigenmodes of color-charged fluctuations in the presence of the domain wall network is discussed. Conditions for the formation of a stable thick domain wall junction (the chromomagnetic trap) during heavy-ion collisions are discussed, and the spectrum of color-charged quasi-particles inside the trap is evaluated. An important observation is the existence of the critical size L c of a single trap stable against gluon tachyonic modes. The size L c is related to the value of gluon condensate left angle g 2 F 2 right angle. The growth of large lumps of merged chromomagnetic traps and the concept of the confinement-deconfinement transition in terms of the ensemble of domain wall networks are outlined. (orig.)

  5. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges.

    Science.gov (United States)

    McTee, Michael R; Mummey, Daniel L; Ramsey, Philip W; Hinman, Nancy W

    2016-01-01

    Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, Psoil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Butler, E., E-mail: eoin.butler@cern.ch [CERN, Physics Department (Switzerland); Andresen, G. B. [Aarhus University, Department of Physics and Astronomy (Denmark); Ashkezari, M. D. [Simon Fraser University, Department of Physics (Canada); Baquero-Ruiz, M. [University of California, Department of Physics (United States); Bertsche, W. [Swansea University, Department of Physics (United Kingdom); Bowe, P. D. [Aarhus University, Department of Physics and Astronomy (Denmark); Cesar, C. L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, S. [University of California, Department of Physics (United States); Charlton, M.; Deller, A.; Eriksson, S. [Swansea University, Department of Physics (United Kingdom); Fajans, J. [University of California, Department of Physics (United States); Friesen, T.; Fujiwara, M. C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, D. R. [TRIUMF (Canada); Gutierrez, A. [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, J. S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, W. N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayden, M. E. [Simon Fraser University, Department of Physics (Canada); Humphries, A. J. [Swansea University, Department of Physics (United Kingdom); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only {approx}1 T ({approx}0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be 'born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 10{sup 4} times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released-the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  7. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  8. Open trap with ambipolar mirrors

    International Nuclear Information System (INIS)

    Dimov, G.I.; Zakajdakov, V.V.; Kishinevskij, M.E.

    1977-01-01

    Results of numerical calculations on the behaviour of a thermonuclear plasma, allowing for α-particles in a trap with longitudinal confinement of the main ions by ambipolar electric fields are presented. This trap is formed by connecting two small-volume ''mirrortrons'' to an ordinary open trap. Into the extreme mirrortrons, approximately 1-MeV ions are introduced continuously by ionization of atomic beams on the plasma, and approximately 10-keV ions are similarly introduced into the main central region of the trap. By a suitable choice of injection currents, the plasma density established in the extreme mirrortrons is higher than in the central region. As a result of the quasi-neutrality condition, a longitudinal ambipolar field forming a potential well not only for electrons but also for the central ions is formed in the plasma. When the depth of the well for the central ions is much greater than their temperature, their life-time considerably exceeds the time of confinement by the magnetic mirrors. As a result, the plasma density is constant over the entire length of the central mirrortron, including the regions near the mirrors, and an ambipolar field is formed only in the extreme mirrortrons. The distribution of central ions and ambipolar potential in the extreme mirrortrons is uniquely determined by the density distribution of fast extreme ions. It is shown in the present study that an amplification coefficient Q as high as desired can, in principle, be reached in the trap under consideration, allowing for α-particles. However, this requires high magnetic fields in the mirrors and a sufficient length of the central mirrotron. It is shown that for moderate values of Q=3-8, it is desirable not to confine the central fast α-particles. To achieve a coefficient of Q=5, it is necessary to create fields of 250 kG in the mirrors, and the length of the trap must not be greater than 100 m. (author)

  9. Ripple Trap

    Science.gov (United States)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image. Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  10. (Anti)hydrogen recombination studies in a nested Penning trap

    International Nuclear Information System (INIS)

    Quint, W.; Kaiser, R.; Hall, D.; Gabrielse, G.

    1993-01-01

    Extremely cold antiprotons, stored in Penning trap at 4 K, open the way toward the production and study of cold antihydrogen. We have begun experimentally investigating the possibility to recombine cold positrons and antiprotons within nested Penning traps. Trap potentials are adjusted to allow cold trapped protons (and positive helium ions) to pass through cold trapped electrons. Electrons, protons and ions are counted by ejecting them to a cold channel plate and by nondestructive radiofrequency techniques. The effect of the space charge of one trapped species upon another trapped species passing through is clearly observed. (orig.)

  11. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  12. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  13. Trapped atoms along nanophotonic resonators

    Science.gov (United States)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  14. Globalisation Trapped

    Directory of Open Access Journals (Sweden)

    João Caraça

    2017-05-01

    Full Text Available The promise of making society progress through the direct applications of science was finally fulfilled in the mid-20th century. Science progressed immensely, propelled by the effects of the two world wars. The first science-based technologies saw the daylight during the 1940s and their transformative power was such that neither the military, nor subsequently the markets, allowed science to return intact to its curiosity-driven nest. Technoscience was born then and (being progressively pulled away from curiosity-driven science was able to grow enormously, erecting a formidable structure of networks of institutions that impacted decisively on the economy. It is a paradox, or maybe a trap, that the fulfillment of science’s solemn promise of ‘transforming nature’ means seeing ourselves and our Western societies entangled in crises after crises with no clear outcome in view. A redistribution of geopolitical power is under way, along with the deployment of information and communication technologies, forcing dominant structures to oscillate, as knowledge about organization and methods, marketing, design, and software begins to challenge the role of technoscience as the main vector of economic growth and wealth accumulation. What ought to be done?

  15. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  16. Trap-induced photoconductivity in singlet fission pentacene diodes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Xianfeng, E-mail: qiaoxianfeng@hotmail.com; Zhao, Chen; Chen, Bingbing; Luan, Lin [WuHan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wu Han 430074 (China)

    2014-07-21

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  17. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap......, our results indicate that pitfall traps are the most efficient for capturing shrews: not only do they have a higher efficiency (yield), but the taxonomic diversity of shrews is also higher when pitfall traps are used....

  18. St. Croix trap study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...

  19. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  20. Superfluorescence with cold trapped neon atoms

    International Nuclear Information System (INIS)

    Zachorowski, Jerzy

    2003-01-01

    A method for observation of superfluorescence in a cloud of cold metastable Ne atoms is proposed. Means of achieving a cold sample of trapped metastable atoms are discussed. The feasibility of obtaining conditions for a superfluorescence pulse is studied. The paper also discusses the prospects for obtaining intense pulses of extreme ultraviolet radiation

  1. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  2. Antihydrogen Formation, Dynamics and Trapping

    CERN Document Server

    Butler, Eoin; Charlton, Michael

    2011-01-01

    Antihydrogen, the simplest pure-antimatter atomic system, holds the promise of direct tests of matter-antimatter equivalence and CPT invariance, two of the outstanding unanswered questions in modern physics. Antihydrogen is now routinely produced in charged-particle traps through the combination of plasmas of antiprotons and positrons, but the atoms escape and are destroyed in a minuscule fraction of a second. The focus of this work is the production of a sample of cold antihydrogen atoms in a magnetic atom trap. This poses an extreme challenge, because the state-of-the-art atom traps are only approximately 0.5 K deep for ground-state antihydrogen atoms, much shallower than the energies of particles stored in the plasmas. This thesis will outline the main parts of the ALPHA experiment, with an overview of the important physical processes at work. Antihydrogen production techniques will be described, and an analysis of the spatial annihilation distribution to give indications of the temperature and binding ene...

  3. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    variations of ion traps, including (1) the cylindrically symmetric 3D ring trap; (2) the linear trap with a combination of cavity QED; (#) the symmetric...concepts of quantum information. The major demonstration has been the test of a Bell inequality as demonstrated by Rowe et al. [50] and a decoherence...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic- parabolic

  4. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  5. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  6. Versatile electrostatic trap

    NARCIS (Netherlands)

    van Veldhoven, J.; Bethlem, H.L.; Schnell, M.; Meijer, G.

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole, and hexapole field. A cold packet of ND315 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to

  7. Liquid metal cold trap

    International Nuclear Information System (INIS)

    Hundal, R.

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal is described. A hole between the incoming impure liquid metal and purified outgoing liquid metal acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly

  8. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  9. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  10. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  11. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  12. Trapping radioactive ions

    International Nuclear Information System (INIS)

    Kluge, H.-J.; Blaum, K.

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning

  13. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  14. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  15. Trapping and Probing Antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan [UC Berkeley and LBNL

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  16. EBIT trapping program

    International Nuclear Information System (INIS)

    Elliott, S.R.; Beck, B.; Beiersdorfer, P.; Church, D.; DeWitt, D.; Knapp, D.K.; Marrs, R.E.; Schneider, D.; Schweikhard, L.

    1993-01-01

    The LLNL electron beam ion trap provides the world's only source of stationary highly charged ions up to bare U. This unique capability makes many new atomic and nuclear physics experiments possible. (orig.)

  17. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  18. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Butler, Eoin; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ryugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Jorgensen, Lars V.; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  19. Atomic and nuclear physics with stored particles in ion traps

    CERN Document Server

    Kluge, H J; Herfurth, F; Quint, W

    2002-01-01

    Trapping and cooling techniques play an increasingly important role in many areas of science. This review concentrates on recent applications of ion traps installed at accelerator facilities to atomic and nuclear physics such as mass spectrometry of radioactive isotopes, weak interaction studies, symmetry tests, determination of fundamental constants, laser spectroscopy, and spectroscopy of highly-charged ions. In addition, ion traps are proven to be extremely efficient devices for (radioactive) ion beam manipulation as, for example, retardation, accumulation, cooling, beam cleaning, charge-breeding, and bunching.

  20. Physics with Trapped Antihydrogen

    Science.gov (United States)

    Charlton, Michael

    2017-04-01

    For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.

  1. Extreme sub-wavelength atom localization via coherent population trapping

    OpenAIRE

    Agarwal, Girish S.; Kapale, Kishore T.

    2005-01-01

    We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity ...

  2. Ion trap device

    Science.gov (United States)

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  3. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  4. WATER-TRAPPED WORLDS

    International Nuclear Information System (INIS)

    Menou, Kristen

    2013-01-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO 2 as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe

  5. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  6. WATER-TRAPPED WORLDS

    Energy Technology Data Exchange (ETDEWEB)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  7. Extreme negotiations.

    Science.gov (United States)

    Weiss, Jeff; Donigian, Aram; Hughes, Jonathan

    2010-11-01

    CEOs and other senior executives must make countless complex, high-stakes deals across functional areas and divisions, with alliance partners and critical suppliers, and with customers and regulators. The pressure of such negotiations may make them feel a lot like U.S. military officers in an Afghan village, fending off enemy fire while trying to win trust and get intelligence from the local populace. Both civilian and military leaders face what the authors call "dangerous negotiations," in which the traps are many and good advice is scarce. Although the sources of danger are quite different for executives and officers, they resort to the same kinds of behaviors. Both feel pressure to make quick progress, project strength and control (particularly when they have neither), rely on force rather than collaboration, trade resources for cooperation rather than build trust, and make unwanted compromises to minimize potential damage. The authors outline five core strategies that "in extremis" military negotiators use to resolve conflicts and influence others: maintaining a big-picture perspective; uncovering hidden agendas to improve collaboration; using facts and fairness to get buy-in; building trust; and focusing on process as well as outcomes. These strategies provide an effective framework that business executives can use to prepare for a negotiation and guide their moves at the bargaining table.

  8. [Trapping techniques for Solenopsis invicta].

    Science.gov (United States)

    Liang, Xiao-song; Zhang, Qiang; Zhuang, Yiong-lin; Li, Gui-wen; Ji, Lin-peng; Wang, Jian-guo; Dai, Hua-guo

    2007-06-01

    A field study was made to investigate the trapping effects of different attractants, traps, and wind directions on Solenopsis invicta. The results showed that among the test attractants, TB1 (50 g fishmeal, 40 g peptone, 10 ml 10% sucrose water solution and 20 ml soybean oil) had the best effect, followed by TB2 (ham), TB6 (100 g cornmeal and 20 ml soybean oil) and TB4 (10 ml 10% sucrose water solution, 100 g sugarcane powder and 20 ml soybean oil), with a mean capture efficiency being 77.6, 58.7, 29 and 7.7 individuals per trap, respectively. No S. invicta was trapped with TB3 (10 ml 10% sucrose water solution, 100 g cornmeal and 20 ml soybean oil) and TB5 (honey). Tube trap was superior to dish trap, with a trapping efficiency of 75.2 and 35 individuals per trap, respectively. The attractants had better effects in leeward than in windward.

  9. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  10. Escaping the tolerance trap

    International Nuclear Information System (INIS)

    Hammoudeh, S.; Madan, V.

    1994-01-01

    In order to examine the implications of the weakening of OPEC's responsiveness in adjusting its production levels, this paper explicitly incorporates rigidity in the quantity adjustment mechanism, thereby extending previous research which assumed smooth quantity adjustments. The rigidity is manifested in a tolerance range for the discrepancy between the declared target price and that of the market. This environment gives rise to a 'tolerance trap' which impedes the convergence process and inevitably brings the market to a standstill before its reaches the targeted price and revenue objectives. OPEC's reaction to the standstill has important implications for the achievement of the target-based equilibrium and for the potential collapse of the market price. This paper examines OPEC's policy options in the tolerance trap and reveals that the optional policy in order to break this impasse and move closer to the equilibrium point is gradually to reduce output and not to flood the market. (Author)

  11. Trapped Ion Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm

    2017-04-01

    Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].

  12. Sediment Trapping in Estuaries

    Science.gov (United States)

    Burchard, Hans; Schuttelaars, Henk M.; Ralston, David K.

    2018-01-01

    Estuarine turbidity maxima (ETMs) are generated by a large suite of hydrodynamic and sediment dynamic processes, leading to longitudinal convergence of cross-sectionally integrated and tidally averaged transport of cohesive and noncohesive suspended particulate matter (SPM). The relative importance of these processes for SPM trapping varies substantially among estuaries depending on topography, fluvial and tidal forcing, and SPM composition. The high-frequency dynamics of ETMs are constrained by interactions with the low-frequency dynamics of the bottom pool of easily erodible sediments. Here, we use a transport decomposition to present processes that lead to convergent SPM transport, and review trapping mechanisms that lead to ETMs at the landward limit of the salt intrusion, in the freshwater zone, at topographic transitions, and by lateral processes within the cross section. We use model simulations of example estuaries to demonstrate the complex concurrence of ETM formation mechanisms. We also discuss how changes in SPM trapping mechanisms, often caused by direct human interference, can lead to the generation of hyperturbid estuaries.

  13. Random-walk simulation of diffusion-controlled processes among static traps

    International Nuclear Information System (INIS)

    Lee, S.B.; Kim, I.C.; Miller, C.A.; Torquato, S.; Department of Mechanical and Aerospace Engineering and Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7910)

    1989-01-01

    We present computer-simulation results for the trapping rate (rate constant) k associated with diffusion-controlled reactions among identical, static spherical traps distributed with an arbitrary degree of impenetrability using a Pearson random-walk algorithm. We specifically consider the penetrable-concentric-shell model in which each trap of diameter σ is composed of a mutually impenetrable core of diameter λσ, encompassed by a perfectly penetrable shell of thickness (1-λ)σ/2: λ=0 corresponding to randomly centered or ''fully penetrable'' traps and λ=1 corresponding to totally impenetrable traps. Trapping rates are calculated accurately from the random-walk algorithm at the extreme limits of λ (λ=0 and 1) and at an intermediate value (λ=0.8), for a wide range of trap densities. Our simulation procedure has a relatively fast execution time. It is found that k increases with increasing impenetrability at fixed trap concentration. These ''exact'' data are compared with previous theories for the trapping rate. Although a good approximate theory exists for the fully-penetrable-trap case, there are no currently available theories that can provide good estimates of the trapping rate for a moderate to high density of traps with nonzero hard cores (λ>0)

  14. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    Science.gov (United States)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  15. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  16. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  17. Magnetic traps with a sperical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1979-11-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphesis on Tornado spiral coil configurations. The confinement and heating of static plasmas in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In additio, the mode of rotating plasma operation by crossed electric and magnetic fields is being described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps for the creation and containment of hot plasmas. (author)

  18. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  19. Characteristics of trapped electrons and electron traps in single crystals

    International Nuclear Information System (INIS)

    Budzinski, E.E.; Potter, W.R.; Potienko, G.; Box, H.C.

    1979-01-01

    Two additional carbohydrates are reported whose crystal structures trap electrons intermolecularly in single crystals x irradiated at low temperature, namely sucrose and rhamnose. Five carbohydrate and polyhydroxy compounds are now known which exhibit this phenomenon. The following characteristics of the phenomenon were investigated: (1) the hyperfine couplings of the electron with protons of the polarized hydroxy groups forming the trap; (2) the distances between these protons and the trapped electron; (3) the spin density of the electron at the protons and (4) the relative stabilities of the electron trapped in various crystal structures

  20. ATRAP - Progress Towards Trapped Antihydrogen

    International Nuclear Information System (INIS)

    Grzonka, D.; Goldenbaum, F.; Oelert, W.; Sefzick, T.; Zhang, Z.; Comeau, D.; Hessels, E.A.; Storry, C.H.; Gabrielse, G.; Larochelle, P.; Lesage, D.; Levitt, B.; Speck, A.; Haensch, T.W.; Pittner, H.; Walz, J.

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s-2s transition in the hydrogen and the antihydrogen atom.Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen.For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trapping tests of charged particles within a combined magnetic/Penning trap have started at ATRAP

  1. ATRAP Progress Towards Trapped Antihydrogen

    CERN Document Server

    Grzonka, D; Gabrielse, G; Goldenbaum, F; Hänsch, T W; Hessels, E A; Larochelle, P; Le Sage, D; Levitt, B; Oelert, W; Pittner, H; Sefzick, T; Speck, A; Storry, C H; Walz, J; Zhang, Z

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s‐2s transition in the hydrogen and the antihydrogen atom. Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen. For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trapping tests of charged particles within a combined magnetic/Penning trap have started at ATRAP.

  2. Calibration of optically trapped nanotools

    Energy Technology Data Exchange (ETDEWEB)

    Carberry, D M; Simpson, S H; Grieve, J A; Hanna, S; Miles, M J [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Wang, Y; Schaefer, H; Steinhart, M [Institute for Chemistry, University of Osnabrueck, Osnabrueck (Germany); Bowman, R; Gibson, G M; Padgett, M J, E-mail: m.j.miles@bristol.ac.uk [SUPA, Department of Physics and Astronomy, University of Glasgow, Science Road, Glasgow G12 8QQ (United Kingdom)

    2010-04-30

    Holographically trapped nanotools can be used in a novel form of force microscopy. By measuring the displacement of the tool in the optical traps, the contact force experienced by the probe can be inferred. In the following paper we experimentally demonstrate the calibration of such a device and show that its behaviour is independent of small changes in the relative position of the optical traps. Furthermore, we explore more general aspects of the thermal motion of the tool.

  3. Evaluation of capture techniques on lesser prairie-chicken trap injury and survival

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Mitchell, Natasia R.; Gicklhorn, Trevor S.; Borsdorf, Philip K.; Haukos, David A.; Dixon, Charles

    2015-01-01

    Ethical treatment of research animals is required under the Animal Welfare Act. This includes trapping methodologies that reduce unnecessary pain and duress. Traps used in research should optimize animal welfare conditions within the context of the proposed research study. Several trapping techniques are used in the study of lesser prairie-chickens, despite lack of knowledge of trap injury caused by the various methods. From 2006 to 2012, we captured 217, 40, and 144 lesser prairie-chickens Tympanuchus pallidicinctus using walk-in funnel traps, rocket nets, and drop nets, respectively, in New Mexico and Texas, to assess the effects of capture technique on injury and survival of the species. We monitored radiotagged, injured lesser prairie-chickens 7–65 d postcapture to assess survival rates of injured individuals. Injuries occurred disproportionately among trap type, injury type, and sex. The predominant injuries were superficial cuts to the extremities of males captured in walk-in funnel traps. However, we observed no mortalities due to trapping, postcapture survival rates of injured birds did not vary across trap types, and the daily survival probability of an injured and uninjured bird was ≥99%. Frequency and intensity of injuries in walk-in funnel traps are due to the passive nature of these traps (researcher cannot select specific individuals for capture) and incidental capture of individuals not needed for research. Comparatively, rocket nets and drop nets allow observers to target birds for capture and require immediate removal of captured individuals from the trap. Based on our results, trap injuries would be reduced if researchers monitor and immediately remove birds from walk-in funnels before they injure themselves; move traps to target specific birds and reduce recaptures; limit the number of consecutive trapping days on a lek; and use proper netting techniques that incorporate quick, efficient, trained handling procedures.

  4. Formation of Antihydrogen Rydberg atoms in strong magnetic field traps

    International Nuclear Information System (INIS)

    Pohl, T.; Sadeghpour, H. R.

    2008-01-01

    It is shown that several features of antihydrogen production in nested Penning traps can be described with accurate and efficient Monte Carlo simulations. It is found that cold deeply-bound Rydberg states of antihydrogen (H-bar) are produced in three-body capture in the ATRAP experiments and an additional formation mechanism -Rydberg charge transfer-, particular to the nested Penning trap geometry, is responsible for the observed fast (hot) H-bar atoms. Detailed description of the numerical propagation technique for following extreme close encounters is given. An analytic derivation of the power law behavior of the field ionization spectrum is provided

  5. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  6. Numerical evidences of universal trap-like aging dynamics

    Science.gov (United States)

    Cammarota, Chiara; Marinari, Enzo

    2018-04-01

    Trap models have been initially proposed as toy models for dynamical relaxation in extremely simplified rough potential energy landscapes. Their importance has recently grown considerably thanks to the discovery that the trap-like aging mechanism directly controls the out-of-equilibrium relaxation processes of more sophisticated spin models, that are considered as the solvable counterpart of real disordered systems. Further establishing the connection between these spin models, out-of-equilibrium behavior and the trap like aging mechanism could shed new light on the properties, which are still largely mysterious, for the activated out-of-equilibrium dynamics of disordered systems. In this work we discuss numerical evidence based on the computations of the permanence times of an emergent trap-like aging behavior in a variety of very simple disordered models—developed from the trap model paradigm. Our numerical results are backed by analytic derivations and heuristic discussions. Such exploration reveals some of the tricks needed to reveal the trap behavior in spite of the occurrence of secondary processes, of the existence of dynamical correlations and of strong finite system’s size effects.

  7. A live-trap and trapping technique for fossorial mammals

    African Journals Online (AJOL)

    mammals. G.C. Hickman. An effective live-trap was designed for Cryptomys hottentotus .... that there is an animal in the burrow system, and to lessen the likelihood of the .... the further testing and modification of existing trap types. Not only is it ...

  8. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  9. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  10. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  11. Detection of trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hydomako, Richard [Calgary Univ., AB (Canada). Dept. of Physics and Astronomy

    2013-02-01

    A landmark thesis describing the first ever trapping of antihydrogen atoms in CERN's ALPHA apparatus. Opens the way to crucial tests of fundamental theories. Nominated as an outstanding contribution by the University of Calgary. In 2010, the ALPHA collaboration achieved a first for mankind: the stable, long-term storage of atomic antimatter, a project carried out a the Antiproton Decelerator facility at CERN. A crucial element of this observation was a dedicated silicon vertexing detector used to identify and analyze antihydrogen annihilations. This thesis reports the methods used to reconstruct the annihilation location. Specifically, the methods used to identify and extrapolate charged particle tracks and estimate the originating annihilation location are outlined. Finally, the experimental results demonstrating the first-ever magnetic confinement of antihydrogen atoms are presented. These results rely heavily on the silicon detector, and as such, the role of the annihilation vertex reconstruction is emphasized.

  12. Flux trapping in superconducting cavities

    International Nuclear Information System (INIS)

    Vallet, C.; Bolore, M.; Bonin, B.; Charrier, J.P.; Daillant, B.; Gratadour, J.; Koechlin, F.; Safa, H.

    1992-01-01

    The flux trapped in various field cooled Nb and Pb samples has been measured. For ambient fields smaller than 3 Gauss, 100% of the flux is trapped. The consequences of this result on the behavior of superconducting RF cavities are discussed. (author) 12 refs.; 2 figs

  13. Injection into electron plasma traps

    International Nuclear Information System (INIS)

    Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.

    2003-01-01

    Computational studies and experimental measurements of plasma injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped electron density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped electrons. The simulations initially show strong two-stream interactions between the electrons emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As electrons are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the plasma potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory

  14. The ALPHA antihydrogen trapping apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC Canada, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Bowe, P.D. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Carpenter, P.T. [Department of Physics, Auburn University, Auburn, AL 36849-5311 (United States); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Escallier, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary AB, Canada, T2N 1N4 (Canada); Fujiwara, M.C.; Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z4 (Canada); and others

    2014-01-21

    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.

  15. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  16. Trapped surfaces in spherical stars

    International Nuclear Information System (INIS)

    Bizon, P.; Malec, E.; O'Murchadha, N.

    1988-01-01

    We give necessary and sufficient conditions for the existence of trapped surfaces in spherically symmetric spacetimes. These conditions show that the formation of trapped surfaces depends on both the degree of concentration and the average flow of the matter. The result can be considered as a partial validation of the cosmic-censorship hypothesis

  17. Spin resonance with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E [Institut fuer Laser-Physik, Universitaet Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2003-03-14

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped {sup 171}Yb{sup +}, we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states.

  18. Spin resonance with trapped ions

    International Nuclear Information System (INIS)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E

    2003-01-01

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped 171 Yb + , we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states

  19. Extremely Preterm Birth

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm Birth ... Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” or “ ...

  20. Atom Trap Trace Analysis for radiokrypton and radioargon dating

    Science.gov (United States)

    Williams, William; Jiang, Wei; Sun, Yun; Bailey, Kevin; Davis, Andrew; Hu, Shuiming; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas; Purtschert, Roland; Sturchio, Neil

    2011-05-01

    Atom Trap Trace Analysis (ATTA), a MOT-based atom counting method, is used to analyze three noble gas radioisotopes (81Kr, 85Kr, 39Ar) covering a wide range of geological ages and applications in the earth sciences. Their isotopic abundances are extremely low, in the range of 10-16 - 10-11. Yet, ATTA can trap and unmistakably detect these rare isotopes one atom at a time. The system is currently limited by the excitation efficiency of the RF discharge that produces the metastable atoms (Kr* & Ar*) needed for laser trapping. To further improve the MOT loading rate, we plan to replace the RF discharge with a photon excitation scheme that employs a VUV light source at 124 nm. The VUV source can be a lamp or a free electron laser. This work is supported by DOE, Office of Nuclear Physics and by NSF, Division of Earth Sciences.

  1. Trapping tsetse flies on water

    Directory of Open Access Journals (Sweden)

    Laveissière C.

    2011-05-01

    Full Text Available Riverine tsetse flies such as Glossina palpalis gambiensis and G. tachinoides are the vectors of human and animal trypanosomoses in West Africa. Despite intimate links between tsetse and water, to our knowledge there has never been any attempt to design trapping devices that would catch tsetse on water. In mangrove (Guinea one challenging issue is the tide, because height above the ground for a trap is a key factor affecting tsetse catches. The trap was mounted on the remains of an old wooden dugout, and attached with rope to nearby branches, thereby allowing it to rise and fall with the tide. Catches showed a very high density of 93.9 flies/”water-trap”/day, which was significantly higher (p < 0.05 than all the catches from other habitats where the classical trap had been used. In savannah, on the Comoe river of South Burkina Faso, the biconical trap was mounted on a small wooden raft anchored to a stone, and catches were compared with the classical biconical trap put on the shores. G. p. gambiensis and G. tachinoides densities were not significantly different from those from the classical biconical one. The adaptations described here have allowed to efficiently catch tsetse on the water, which to our knowledge is reported here for the first time. This represents a great progress and opens new opportunities to undertake studies on the vectors of trypanosomoses in mangrove areas of Guinea, which are currently the areas showing the highest prevalences of sleeping sickness in West Africa. It also has huge potential for tsetse control using insecticide impregnated traps in savannah areas where traps become less efficient in rainy season. The Guinean National control programme has already expressed its willingness to use such modified traps in its control campaigns in Guinea, as has the national PATTEC programme in Burkina Faso during rainy season.

  2. Status of THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-07-01

    THe-Trap (short for Tritium-{sup 3}He Trap) is a Penning-trap setup dedicated to measure the {sup 3}H to {sup 3}He mass-ratio with a relative uncertainty of better than 10{sup -11}. The ratio is of relevance for the KArlsruhe TRItium Neutrino experiment (KATRIN), which aims to measure the electron anti-neutrino mass, by measuring the shape of the β-decay energy spectrum close to its endpoint. An independent measurement of the {sup 3}H to {sup 3}He mass-ratio pins down this endpoint, and thus will help to determine the systematics of KATRIN. The trap setup consists of two Penning-traps: One trap for precision measurements, the other trap for ion storage. Ideally, the trap content will be periodically switched, which reduces the time between the measurements of the two ions' motional frequencies. In 2012, a mass ratio measurement of {sup 12}C{sup 4+} to {sup 14}N{sup 5+} was performed to characterize systematic effects of the traps. This measurement yielded a accuracy of 10{sup -9}. Further investigations revealed that a major reason for the modest accuracy is the large axial amplitude of ∼100 μm, compared to a ideal case of 3 μm at 4 K. In addition, relative magnetic fluctuations at a 3 x 10{sup -10} level on a 10 h timescale need to be significantly improved. In this contribution, the aforementioned findings and further systematic studies will be presented.

  3. Trapping Elusive Cats: Using Intensive Camera Trapping to Estimate the Density of a Rare African Felid.

    Science.gov (United States)

    Brassine, Eléanor; Parker, Daniel

    2015-01-01

    Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100 km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species.

  4. Trapping Elusive Cats: Using Intensive Camera Trapping to Estimate the Density of a Rare African Felid

    Science.gov (United States)

    Brassine, Eléanor; Parker, Daniel

    2015-01-01

    Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus) numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9) cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100km²). While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200), no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration) is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species. PMID:26698574

  5. Trapping Elusive Cats: Using Intensive Camera Trapping to Estimate the Density of a Rare African Felid.

    Directory of Open Access Journals (Sweden)

    Eléanor Brassine

    Full Text Available Camera trapping studies have become increasingly popular to produce population estimates of individually recognisable mammals. Yet, monitoring techniques for rare species which occur at extremely low densities are lacking. Additionally, species which have unpredictable movements may make obtaining reliable population estimates challenging due to low detectability. Our study explores the effectiveness of intensive camera trapping for estimating cheetah (Acinonyx jubatus numbers. Using both a more traditional, systematic grid approach and pre-determined, targeted sites for camera placement, the cheetah population of the Northern Tuli Game Reserve, Botswana was sampled between December 2012 and October 2013. Placement of cameras in a regular grid pattern yielded very few (n = 9 cheetah images and these were insufficient to estimate cheetah density. However, pre-selected cheetah scent-marking posts provided 53 images of seven adult cheetahs (0.61 ± 0.18 cheetahs/100 km². While increasing the length of the camera trapping survey from 90 to 130 days increased the total number of cheetah images obtained (from 53 to 200, no new individuals were recorded and the estimated population density remained stable. Thus, our study demonstrates that targeted camera placement (irrespective of survey duration is necessary for reliably assessing cheetah densities where populations are naturally very low or dominated by transient individuals. Significantly our approach can easily be applied to other rare predator species.

  6. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  7. Subwavelength atom localization via coherent population trapping

    International Nuclear Information System (INIS)

    Agarwal, G S; Kapale, K T

    2006-01-01

    We present an atom localization scheme based on coherent population trapping. We consider atomic transitions in a Lambda configuration where the control field is a standing-wave field. The probe field and the control field produce coherence between the two ground states and prepare the atom in a pure state. We show that the population in one of the ground states has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of this population would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelength localization

  8. Urban fall traps

    Directory of Open Access Journals (Sweden)

    Vera Lucia de Almeida Valsecchi

    2007-06-01

    Full Text Available Objectives: To evaluate the repercussion of falls in the elderly peoplewho live in the city of São Paulo and address - though synthetically- some questions regarding the city and its relation to aging and thequality of life of the elderly. Methods: This is a qualitative study. As fordata collection, “in-depth individual interviews” were applied. Selectionof subjects was guided by a procedure named as “network”. Results:Ten interviews were performed, nine with elderly individuals who werevictims of falls and one with a public authority representative. Dataresulting from interviews confirmed that significant changes occurin live of the elderly, who are victims of what has been called “urbantraps”, and that, by extrapolating mobility and dependence contexts,invade feelings, emotions and desires. The inappropriate environmentprovided by the city of São Paulo is confirmed by absence of adequateurban planning and lack of commitment of public authorities. It alsorevealed that the particular way of being old and living an elderlylife, in addition to right to citizenship, is reflected by major or lesserdifficulties imposed to the elderly to fight for their rights and have theirpublic space respected. Conclusion: The city of São Paulo is not anideal locus for an older person to live in. To the traps that are found inpublic places one can add those that are found in private places andthat contribute to the hard experience of falls among the elderly, anexperience that is sometimes fatal. In Brazil, the attention is basicallyfocused on the consequences of falls and not on prevention, by meansof urban planning that should meet the needs of the most vulnerablegroups - the physically disabled and the elderly.

  9. Innovation: the classic traps.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2006-11-01

    these traps.

  10. Mini ion trap mass spectrometer

    Science.gov (United States)

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  11. Charged particle traps II applications

    CERN Document Server

    Werth, Günther; Major, Fouad G

    2009-01-01

    This, the second volume of Charged Particle Traps, is devoted to applications, complementing the first volume’s comprehensive treatment of the theory and practice of charged particle traps, their many variants and refinements. In recent years, applications of far reaching importance have emerged ranging from the ultra-precise mass determinations of elementary particles and their antiparticles and short-lived isotopes, to high-resolution Zeeman spectroscopy on multiply-charged ions, to microwave and optical spectroscopy, some involving "forbidden" transitions from metastable states of such high resolution that optical frequency standards are realized by locking lasers to them. Further the potential application of trapped ions to quantum computing is explored, based on the extraordinary quantum state coherence made possible by the particle isolation. Consideration is given to the Paul and Penning traps as potential quantum information processors.

  12. Holes in magneto electrostatic traps

    International Nuclear Information System (INIS)

    Jones, R.

    1996-01-01

    We observe that in magneto electrostatic confinement (MEC) devices the magnetic surfaces are not always equipotentials. The lack of symmetry in the equipotential surfaces can result in holes in MEC plasma traps. (author)

  13. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  14. Science, conservation, and camera traps

    Science.gov (United States)

    Nichols, James D.; Karanth, K. Ullas; O'Connel, Allan F.; O'Connell, Allan F.; Nichols, James D.; Karanth, K. Ullas

    2011-01-01

    Biologists commonly perceive camera traps as a new tool that enables them to enter the hitherto secret world of wild animals. Camera traps are being used in a wide range of studies dealing with animal ecology, behavior, and conservation. Our intention in this volume is not to simply present the various uses of camera traps, but to focus on their use in the conduct of science and conservation. In this chapter, we provide an overview of these two broad classes of endeavor and sketch the manner in which camera traps are likely to be able to contribute to them. Our main point here is that neither photographs of individual animals, nor detection history data, nor parameter estimates generated from detection histories are the ultimate objective of a camera trap study directed at either science or management. Instead, the ultimate objectives are best viewed as either gaining an understanding of how ecological systems work (science) or trying to make wise decisions that move systems from less desirable to more desirable states (conservation, management). Therefore, we briefly describe here basic approaches to science and management, emphasizing the role of field data and associated analyses in these processes. We provide examples of ways in which camera trap data can inform science and management.

  15. Status of THe-trap

    Energy Technology Data Exchange (ETDEWEB)

    Ketter, Jochen; Eronen, Tommi; Hoecker, Martin; Streubel, Sebastian; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2012-07-01

    Originally developed at the University of Washington and relocated to the Max-Planck-Institut fuer Kernphysik in 2008, the Penning-trap spectrometer THe-Trap is specially tailored for a {sup 3}H/{sup 3}He mass-ratio measurement, from which the Q-value of the beta-decay of {sup 3}H to {sup 3}He can be derived. Improving the current best value by at least an order of magnitude will provide an important independent test parameter for the determination of the electron-antineutrino's mass by the Karlsruhe Tritium Neutrino Experiment (KATRIN). However, Penning-trap mass spectrometry has to be pushed to its limits in a dedicated experiment for a sufficiently accurate mass-ratio measurement with a relative uncertainty of 10{sup -11}. Unlike the closed-envelope, single-trap predecessor, the new spectrometer features an external ion source, owing to the radioactive nature of tritium, and two traps in order to speed up the measurement cycle. While the double-trap technique holds great promise, it also calls for more intricate procedures, such as ion transfer. Details about the recent progress of the experiment are given.

  16. EFFECT OF DIFFERENT TRAPS ON CAPTURES OF ADULT CORN ROOTWORM BEETLES (Diabrotica virgifera virgifera LeConte IN EAST SLAVONIA

    Directory of Open Access Journals (Sweden)

    Marija Ivezić

    2002-12-01

    Full Text Available In 1995 the corn rootworm (Diabrotica virgifera virgifera LeConte was detected for the first time in east Slavonia, Croatia. Its expansion to the west part has been very fast and from year to year populations of the pest are higher, especially when corn is planted after corn. The aim of this investigation was to find the best trap for monitoring Diabrotica. The studies were conducted by using three types of traps: the USA Trece lure trap, Multigard yellow sticky trap and Hungarian pheromone trap. The treatments were replicated four times in a maize field located in the east of Croatia, very near to the Yugoslavia border. The traps were placed in the field on the 23rd of June and the experiment continued until the 15th of September. Pheromone and Multigard sticky traps were replaced with new ones each month. Traps were positioned 60 m apart within a row and 70 m apart across maize rows. Silking occurred from 30 June to 8 August (exposed silk thoroughly brown and dry. This year was extremely dry, and the first beetles were noticed on the 15th of June. It was 20 days earlier than in 1999. Adult rootworm beetles were removed from the traps once weekly. Pheromone traps captured the most beetles (2263, Multigard sticky traps caught the second most (214 and lure traps the fewest (182 for the whole period. After the replacement of pheromone and Multigard traps, the capture of beetles increased. Of the total number of beetles caught, 85.10% was caught by the pheromone traps, 8.05% by the Multigard sticky traps and 6.85% by the lure traps. Due to this year’s dryness (50% less rainfall than the 20 year average, the investigation should be continued in the future to get more precise results.

  17. Penning traps with unitary architecture for storage of highly charged ions

    International Nuclear Information System (INIS)

    Tan, Joseph N.; Guise, Nicholas D.; Brewer, Samuel M.

    2012-01-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  18. Penning traps with unitary architecture for storage of highly charged ions.

    Science.gov (United States)

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  19. Effects of oxide traps, interface traps, and ''border traps'' on metal-oxide-semiconductor devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Reber, R.A. Jr.; Meisenheimer, T.L.; Schwank, J.R.; Shaneyfelt, M.R.; Riewe, L.C.

    1993-01-01

    We have identified several features of the 1/f noise and radiation response of metal-oxide-semiconductor (MOS) devices that are difficult to explain with standard defect models. To address this issue, and in response to ambiguities in the literature, we have developed a revised nomenclature for defects in MOS devices that clearly distinguishes the language used to describe the physical location of defects from that used to describe their electrical response. In this nomenclature, ''oxide traps'' are simply defects in the SiO 2 layer of the MOS structure, and ''interface traps'' are defects at the Si/SiO 2 interface. Nothing is presumed about how either type of defect communicates with the underlying Si. Electrically, ''fixed states'' are defined as trap levels that do not communicate with the Si on the time scale of the measurements, but ''switching states'' can exchange charge with the Si. Fixed states presumably are oxide traps in most types of measurements, but switching states can either be interface traps or near-interfacial oxide traps that can communicate with the Si, i.e., ''border traps'' [D. M. Fleetwood, IEEE Trans. Nucl. Sci. NS-39, 269 (1992)]. The effective density of border traps depends on the time scale and bias conditions of the measurements. We show the revised nomenclature can provide focus to discussions of the buildup and annealing of radiation-induced charge in non-radiation-hardened MOS transistors, and to changes in the 1/f noise of MOS devices through irradiation and elevated-temperature annealing

  20. Trapping, self-trapping and the polaron family

    International Nuclear Information System (INIS)

    Stoneham, A M; Gavartin, J; Shluger, A L; Kimmel, A V; Ramo, D Munoz; Roennow, H M; Aeppli, G; Renner, C

    2007-01-01

    The earliest ideas of the polaron recognized that the coupling of an electron to ionic vibrations would affect its apparent mass and could effectively immobilize the carrier (self-trapping). We discuss how these basic ideas have been generalized to recognize new materials and new phenomena. First, there is an interplay between self-trapping and trapping associated with defects or with fluctuations in an amorphous solid. In high dielectric constant oxides, like HfO 2 , this leads to oxygen vacancies having as many as five charge states. In colossal magnetoresistance manganites, this interplay makes possible the scanning tunnelling microscopy (STM) observation of polarons. Second, excitons can self-trap and, by doing so, localize energy in ways that can modify the material properties. Third, new materials introduce new features, with polaron-related ideas emerging for uranium dioxide, gate dielectric oxides, Jahn-Teller systems, semiconducting polymers and biological systems. The phonon modes that initiate self-trapping can be quite different from the longitudinal optic modes usually assumed to dominate. Fourth, there are new phenomena, like possible magnetism in simple oxides, or with the evolution of short-lived polarons, like muons or excitons. The central idea remains that of a particle whose properties are modified by polarizing or deforming its host solid, sometimes profoundly. However, some of the simpler standard assumptions can give a limited, indeed misleading, description of real systems, with qualitative inconsistencies. We discuss representative cases for which theory and experiment can be compared in detail

  1. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  2. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  3. Particle trapping in stimulated scattering processes

    International Nuclear Information System (INIS)

    Karttunen, S.J.; Heikkinen, J.A.

    1981-01-01

    Particle trapping effects on stimulated Brillouin and Raman scattering are investigated. A time and space dependent model assumes a Maxwellian plasma which is taken to be homogeneous in the interaction region. Ion trapping has a rather weak effect on stimulated Brillouin scattering and large reflectivities are obtained even in strong trapping regime. Stimulated Raman scattering is considerably reduced by electron trapping. Typically 15-20 times larger laser intensities are required to obtain same reflectivity levels than without trapping. (author)

  4. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  5. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico.

    Science.gov (United States)

    Solórzano Kraemer, Mónica M; Kraemer, Mónica M Solórzano; Kraemer, Atahualpa S; Stebner, Frauke; Bickel, Daniel J; Rust, Jes

    2015-01-01

    All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measurements of the trapped arthropods, and guild distribution, that the amber trap is a complex entomological trap not comparable with a single artificial trap. At the order level, the most similar trap to amber is the sticky trap. However, in the case of Diptera, at the family level, the Malaise trap is also very similar to amber. Amber captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber from the Middle Miocene, a time of climate optimum, where temperature and humidity were probably higher than in modern Central America. We conclude that the size bias is qualitatively independent of the kind of trap for non-extreme values. We suggest that frequent specimens in amber were not necessarily the most frequent arthropods in the former amber forest. Selected taxa with higher numbers of specimens appear in amber because of their ecology and behavior, usually closely related with a tree-inhabiting life. Finally, changes of diversity from the Middle Miocene to Recent time in Central and South America can be analyzed by comparing the rich amber faunas from Mexico and the Dominican Republic with the fauna trapped using sticky and Malaise traps in Central America.

  6. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  7. Neutral atom traps of radioactives

    International Nuclear Information System (INIS)

    Behr, J.A.

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear β decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left up to other presenters

  8. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  9. Quantized motion of trapped ions

    International Nuclear Information System (INIS)

    Steinbach, J.

    1999-01-01

    This thesis is concerned with a theoretical and numerical study of the preparation and coherent manipulation of quantum states in the external and internal degrees of freedom of trapped ions. In its first part, this thesis proposes and investigates schemes for generating several nonclassical states for the quantized vibrational motion of a trapped ion. Based on dark state preparation specific laser excitation configurations are presented which, given appropriately chosen initial states, realize the desired motional states in the steady-state, indicated by the cessation of the fluorescence emitted by the ion. The focus is on the SU(1,1) intelligent states in both their single- and two-mode realization, corresponding to one- and two-dimensional motion of the ion. The presented schemes are also studied numerically using a Monte-Carlo state-vector method. The second part of the thesis describes how two vibrational degrees of freedom of a single trapped ion can be coupled through the action of suitably chosen laser excitation. Concentrating on a two-dimensional ion trap with dissimilar vibrational frequencies a variety of quantized two-mode couplings are derived. The focus is on a linear coupling that takes excitations from one mode to another. It is demonstrated how this can result in a state rotation, in which it is possible to coherently transfer the motional state of the ion between orthogonal directions without prior knowledge of that motional state. The third part of this thesis presents a new efficient method for generating maximally entangled internal states of a collection of trapped ions. The method is deterministic and independent of the number of ions in the trap. As the essential element of the scheme a mechanism for the realization of a controlled NOT operation that can operate on multiple ions is proposed. The potential application of the scheme for high-precision frequency standards is explored. (author)

  10. Ion trap architectures and new directions

    Science.gov (United States)

    Siverns, James D.; Quraishi, Qudsia

    2017-12-01

    Trapped ion technology has seen advances in performance, robustness and versatility over the last decade. With increasing numbers of trapped ion groups worldwide, a myriad of trap architectures are currently in use. Applications of trapped ions include: quantum simulation, computing and networking, time standards and fundamental studies in quantum dynamics. Design of such traps is driven by these various research aims, but some universally desirable properties have lead to the development of ion trap foundries. Additionally, the excellent control achievable with trapped ions and the ability to do photonic readout has allowed progress on quantum networking using entanglement between remotely situated ion-based nodes. Here, we present a selection of trap architectures currently in use by the community and present their most salient characteristics, identifying features particularly suited for quantum networking. We also discuss our own in-house research efforts aimed at long-distance trapped ion networking.

  11. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  12. Pumped helium system for cooling positron and electron traps to 1.2 K

    CERN Document Server

    Wrubel, J; Kolthammer, W S; Larochelle, P; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Borbely, J S; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J; Speck, A

    2011-01-01

    Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ((H) over bar) atoms. (H) over bar atoms that can be trapped must have an energy in temperature units that is below 0.5 K-the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, (H) over bar atoms have only been produced within traps whose electrode temperature is 4.2 K or higher. A lower temperature apparatus is desirable if usable numbers of atoms that can be trapped are to eventually be produced. This report is about the pumped helium apparatus that cooled the trap electrodes of an (H) ove...

  13. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    International Nuclear Information System (INIS)

    Quint, W.; Dilling, J.; Djekic, S.; Haeffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Valenzuela, T.; Verdu, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy

  14. Artificial covering on trap nests improves the colonization of trap-nesting wasps

    OpenAIRE

    Taki, Hisatomo; Kevan, Peter G.; Viana, Blandina Felipe; Silva, Fabiana O.; Buck, Matthias

    2008-01-01

    Acesso restrito: Texto completo. p. 225-229 To evaluate the role that a trap-nest cover might have on sampling methodologies, the abundance of each species of trap-nesting Hymenoptera and the parasitism rate in a Canadian forest were compared between artificially covered and uncovered traps. Of trap tubes exposed at eight forest sites in six trap-nest boxes, 531 trap tubes were occupied and 1216 individuals of 12 wasp species of four predatory families, Vespidae (Eumeninae), Crabronidae...

  15. Microfabricated linear Paul-Straubel ion trap

    Science.gov (United States)

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  16. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  17. Asymmetric Penning trap coherent states

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez, David J.

    2010-01-01

    By using a matrix technique, which allows to identify directly the ladder operators, the coherent states of the asymmetric Penning trap are derived as eigenstates of the appropriate annihilation operators. They are compared with those obtained through the displacement operator method.

  18. Indeterminacy, sunspots, and development traps

    Czech Academy of Sciences Publication Activity Database

    Slobodyan, Sergey

    2005-01-01

    Roč. 29, 1-2 (2005), s. 159-185 ISSN 0165-1889 Institutional research plan: CEZ:AV0Z70850503 Keywords : indeterminacy * development trap * stochastic stability Subject RIV: AH - Economics Impact factor: 0.691, year: 2005 http://dx.doi.org/10.1016/j.jedc.2003.04.011

  19. Efficiency of subaquatic light traps

    Czech Academy of Sciences Publication Activity Database

    Ditrich, Tomáš; Čihák, P.

    2017-01-01

    Roč. 38, č. 3 (2017), s. 171-184 ISSN 0165-0424 R&D Projects: GA ČR(CZ) GA14-29857S Institutional support: RVO:60077344 Keywords : Heteroptera * Diptera * light trap Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.524, year: 2016

  20. The rise of trapped populations

    Directory of Open Access Journals (Sweden)

    April T Humble

    2014-02-01

    Full Text Available As border security increases and borders become less permeable, cross-border migration is becoming increasingly difficult, selective and dangerous. Growing numbers of people are becoming trapped in their own countries or in transit countries, or being forced to roam border areas, unable to access legal protection or basic social necessities.

  1. Magnetic trapping of Rydberg atoms

    NARCIS (Netherlands)

    Niestadt, D.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2016-01-01

    Magnetic trapping is a well-established technique for ground state atoms. We seek to extend this concept to Rydberg atoms. Rydberg atoms are important for current visions of quantum simulators that will be used in the near future to simulate and analyse quantum problems. Current efforts in Amsterdam

  2. Quantum computing with trapped ions

    International Nuclear Information System (INIS)

    Haeffner, H.; Roos, C.F.; Blatt, R.

    2008-01-01

    Quantum computers hold the promise of solving certain computational tasks much more efficiently than classical computers. We review recent experimental advances towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme

  3. Self-Trapping Self-Repelling Random Walks

    Science.gov (United States)

    Grassberger, Peter

    2017-10-01

    Although the title seems self-contradictory, it does not contain a misprint. The model we study is a seemingly minor modification of the "true self-avoiding walk" model of Amit, Parisi, and Peliti in two dimensions. The walks in it are self-repelling up to a characteristic time T* (which depends on various parameters), but spontaneously (i.e., without changing any control parameter) become self-trapping after that. For free walks, T* is astronomically large, but on finite lattices the transition is easily observable. In the self-trapped regime, walks are subdiffusive and intermittent, spending longer and longer times in small areas until they escape and move rapidly to a new area. In spite of this, these walks are extremely efficient in covering finite lattices, as measured by average cover times.

  4. 50 CFR 697.19 - Trap limits and trap tag requirements for vessels fishing with lobster traps.

    Science.gov (United States)

    2010-10-01

    ... vessels fishing with lobster traps. 697.19 Section 697.19 Wildlife and Fisheries FISHERY CONSERVATION AND... requirements for vessels fishing with lobster traps. (a) Trap limits for vessels fishing or authorized to fish... management area designation certificate or valid limited access American lobster permit specifying one or...

  5. Scaling ion traps for quantum computing

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available The design, fabrication and preliminary testing of a chipscale, multi-zone, surface electrode ion trap is reported. The modular design and fabrication techniques used are anticipated to advance scalability of ion trap quantum computing architectures...

  6. Servo control of an optical trap.

    Science.gov (United States)

    Wulff, Kurt D; Cole, Daniel G; Clark, Robert L

    2007-08-01

    A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.

  7. Two-baffle trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2014-01-01

    In this work, properties of two-baffle macroparticle traps were investigated. These properties are needed for designing and optimization of vacuum arc plasma filters. The dependencies between trap geometry parameters and its ability to absorb macroparticles were found. Calculations made allow one to predict the behaviour of filtering abilities of separators containing such traps in their design. Recommendations regarding the use of two-baffle traps in filters of different builds are given

  8. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  9. Optimization with Extremal Dynamics

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Percus, Allon G.

    2001-01-01

    We explore a new general-purpose heuristic for finding high-quality solutions to hard discrete optimization problems. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. Extremal optimization successively updates extremely undesirable variables of a single suboptimal solution, assigning them new, random values. Large fluctuations ensue, efficiently exploring many local optima. We use extremal optimization to elucidate the phase transition in the 3-coloring problem, and we provide independent confirmation of previously reported extrapolations for the ground-state energy of ±J spin glasses in d=3 and 4

  10. Cavity sideband cooling of trapped molecules

    NARCIS (Netherlands)

    Kowalewski, Markus; Morigi, Giovanna; Pinkse, Pepijn Willemszoon Harry; de Vivie-Riedle, Regina

    2011-01-01

    The efficiency of cavity sideband cooling of trapped molecules is theoretically investigated for the case in which the infrared transition between two rovibrational states is used as a cycling transition. The molecules are assumed to be trapped either by a radiofrequency or optical trapping

  11. An Open Standard for Camera Trap Data

    NARCIS (Netherlands)

    Forrester, Tavis; O'Brien, Tim; Fegraus, Eric; Jansen, P.A.; Palmer, Jonathan; Kays, Roland; Ahumada, Jorge; Stern, Beth; McShea, William

    2016-01-01

    Camera traps that capture photos of animals are a valuable tool for monitoring biodiversity. The use of camera traps is rapidly increasing and there is an urgent need for standardization to facilitate data management, reporting and data sharing. Here we offer the Camera Trap Metadata Standard as an

  12. Universal Two-Body Spectra of Ultracold Harmonically Trapped Atoms in Two and Three Dimensions

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2012-01-01

    of the short-range interaction. The results in three dimensions are examplified for narrow s-wave Feshbach resonances and we show how effective range corrections can modify the rearrangement of the level structure. However, this requires extremely narrow resonances or very tight traps that are not currently...

  13. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  14. EUV spectrum of highly charged tungsten ions in electron beam ion trap

    International Nuclear Information System (INIS)

    Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N.

    2016-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra was investigated for electron energy from 540 to 1370 eV. Previously unreported lines were presented in the EUV range, and comparing the wavelengths with theoretical calculations identified them. (author)

  15. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers.

    Science.gov (United States)

    Lin, Yuan; Zhang, Zhongzhi

    2013-03-07

    The trapping process in polymer systems constitutes a fundamental mechanism for various other dynamical processes taking place in these systems. In this paper, we study the trapping problem in two representative polymer networks, Cayley trees and Vicsek fractals, which separately model dendrimers and regular hyperbranched polymers. Our goal is to explore the impact of trap location on the efficiency of trapping in these two important polymer systems, with the efficiency being measured by the average trapping time (ATT) that is the average of source-to-trap mean first-passage time over every staring point in the whole networks. For Cayley trees, we derive an exact analytic formula for the ATT to an arbitrary trap node, based on which we further obtain the explicit expression of ATT for the case that the trap is uniformly distributed. For Vicsek fractals, we provide the closed-form solution for ATT to a peripheral node farthest from the central node, as well as the numerical solutions for the case when the trap is placed on other nodes. Moreover, we derive the exact formula for the ATT corresponding to the trapping problem when the trap has a uniform distribution over all nodes. Our results show that the influence of trap location on the trapping efficiency is completely different for the two polymer networks. In Cayley trees, the leading scaling of ATT increases with the shortest distance between the trap and the central node, implying that trap's position has an essential impact on the trapping efficiency; while in Vicsek fractals, the effect of location of the trap is negligible, since the dominant behavior of ATT is identical, respective of the location where the trap is placed. We also present that for all cases of trapping problems being studied, the trapping process is more efficient in Cayley trees than in Vicsek fractals. We demonstrate that all differences related to trapping in the two polymer systems are rooted in their underlying topological structures.

  16. Fundamental physics in particle traps

    International Nuclear Information System (INIS)

    Quint, Wolfgang; Vogel, Manuel

    2014-01-01

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  17. Trapping and spectroscopy of hydrogen

    International Nuclear Information System (INIS)

    Cesar, Claudio Lenz

    1997-01-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 10 12 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 10 18 . While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen

  18. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  19. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    1995-03-01

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  20. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  1. Optical trapping for analytical biotechnology.

    Science.gov (United States)

    Ashok, Praveen C; Dholakia, Kishan

    2012-02-01

    We describe the exciting advances of using optical trapping in the field of analytical biotechnology. This technique has opened up opportunities to manipulate biological particles at the single cell or even at subcellular levels which has allowed an insight into the physical and chemical mechanisms of many biological processes. The ability of this technique to manipulate microparticles and measure pico-Newton forces has found several applications such as understanding the dynamics of biological macromolecules, cell-cell interactions and the micro-rheology of both cells and fluids. Furthermore we may probe and analyse the biological world when combining trapping with analytical techniques such as Raman spectroscopy and imaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Lift enhancement by trapped vortex

    Science.gov (United States)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  3. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme tha...

  4. Nonadiabatic transitions in electrostatically trapped ammonia molecules

    International Nuclear Information System (INIS)

    Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.

    2009-01-01

    Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.

  5. Sognenavne, Albertslund Kommune (3 artikler). trap.dk

    DEFF Research Database (Denmark)

    Kællerød, Lars-Jakob Harding

    2019-01-01

    Artikler til Trap Danmarks netpublikation trap.dk Sognenavnene Herstedvester, Herstedøster og Opstandelseskirkens Sogn......Artikler til Trap Danmarks netpublikation trap.dk Sognenavnene Herstedvester, Herstedøster og Opstandelseskirkens Sogn...

  6. Algae commensal community in Genlisea traps

    Directory of Open Access Journals (Sweden)

    Konrad Wołowski

    2011-01-01

    Full Text Available The community of algae occurring in Genlisea traps and on the external traps surface in laboratory conditions were studied. A total of 29 taxa were found inside the traps, with abundant diatoms, green algae (Chlamydophyceae and four morphotypes of chrysophytes stomatocysts. One morphotype is described as new for science. There are two ways of algae getting into Genlisea traps. The majority of those recorded inside the traps, are mobile; swimming freely by flagella or moving exuding mucilage like diatoms being ablate to colonize the traps themselves. Another possibility is transport of algae by invertebrates such as mites and crustaceans. In any case algae in the Genlisea traps come from the surrounding environment. Two dominant groups of algae (Chladymonas div. and diatoms in the trap environment, show ability to hydrolyze phosphomonoseters. We suggest that algae in carnivorous plant traps can compete with plant (host for organic phosphate (phosphomonoseters. From the spectrum and ecological requirements of algal species found in the traps, environment inside the traps seems to be acidic. However, further studies are needed to test the relations between algae and carnivorous plants both in laboratory conditions and in the natural environment. All the reported taxa are described briefly and documented with 74 LM and SEM micrographs.

  7. Ion traps fabricated in a CMOS foundry

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, K. K.; Ram, R. J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Eltony, A. M.; Chuang, I. L. [Center for Ultracold Atoms, Research Laboratory of Electronics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bruzewicz, C. D.; Sage, J. M., E-mail: jsage@ll.mit.edu; Chiaverini, J., E-mail: john.chiaverini@ll.mit.edu [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  8. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Growing a planet from a dust grain is hard work! A new study explores how vortices in protoplanetary disks can assist this process.When Dust Growth FailsTop: ALMA image of the protoplanetary disk of V1247 Orionis, with different emission components labeled. Bottom: Synthetic image constructed from the best-fit model. [Kraus et al. 2017]Gradual accretion onto a seed particle seems like a reasonable way to grow a planet from a grain of dust; after all, planetary embryos orbit within dusty protoplanetary disks, which provides them with plenty of fuel to accrete so they can grow. Theres a challenge to this picture, though: the radial drift problem.The radial drift problem acknowledges that, as growing dust grains orbit within the disk, the drag force on them continues to grow as well. For large enough dust grains perhaps around 1 millimeter the drag force will cause the grains orbits to decay, and the particles drift into the star before they are able to grow into planetesimals and planets.A Close-Up Look with ALMASo how do we overcome the radial drift problem in order to form planets? A commonly proposed mechanism is dust trapping, in which long-lived vortices in the disk trap the dust particles, preventing them from falling inwards. This allows the particles to persist for millions of years long enough to grow beyond the radial drift barrier.Observationally, these dust-trapping vortices should have signatures: we would expect to see, at millimeter wavelengths, specific bright, asymmetric structures where the trapping occurs in protoplanetary disks. Such disk structures have been difficult to spot with past instrumentation, but the Atacama Large Millimeter/submillimeter Array (ALMA) has made some new observations of the disk V1247 Orionis that might be just what were looking for.Schematic of the authors model for the disk of V1247 Orionis. [Kraus et al. 2017]Trapped in a Vortex?ALMAs observations of V1247 Orionis are reported by a team of scientists led by Stefan

  9. Trapped

    OpenAIRE

    Storvik, Pamela

    2012-01-01

    This study explores how the Muslim Sunni Women in the city of Tripoli- Lebanon perceive the the inequity in the rights of women in terms of those of men within the Personal Status codes practiced today in the Sunni Muslim Sharīʻa Courts in the country. Lebanese women and men in general are subject to an imbalanced patronage as a result of the patriarchal conditions dominating the Lebanese society and its various communities. This project further explores the factors that have led to the failu...

  10. Impacts of trapping and banding activities on productivity of Roseate Terns (Sterna Dougallii)

    Science.gov (United States)

    Zingo, James M.

    1998-01-01

    Although Roseate Terns (Sterna dougallii) habituate to many research activities, trapping and handling breeding adults, or repeatedly handling chicks, may affect reproductive success or chick growth. Protocols for trapping adult Roseate Terns that reduce the chances of nest desertion, neglect of chicks, and injury to adults were developed in the early 1980s, but neither short-term nor long-term effects of research activities on this endangered species have been fully investigated. Therefore, this study had the following main objectives: 1) examine long-term data (1978-1996) to determine if trapping activities have had a major effect on annual reproductive success of a Roseate Tern colony, 2) evaluate the effects of trapping adult terns on reproductive success and chick growth, and 3) evaluate the effects of handling chicks on their growth and survival. There were no significant correlations between measures of trapping disturbance and annual reproductive success in 1978-1996 for the Falkner Island (Stewart B. McKinney National Wildlife Refuge, Connecticut) colony, suggesting that trapping from late incubation through chick rearing using the field protocols described herein does not have a major effect on nesting success of Roseate Terns. In 1987-1996, adult trapping did not reduce prefledging survival of first-hatched chicks, and reduced survival of second-hatched chicks only in 1994 and 1995. Results of more detailed research in 1994-1996 suggest that Roseate Terns may be susceptible to trapping effects only when also faced with extreme conditions such as low food availability and/or high predation pressure. Trapping effects did not occur in most years under apparently average or typical conditions, and otherwise seem to be much less important than other factors affecting nesting success (e.g., predation and food availability). Analyses of chick growth data from 1987-1996 showed that while trapping significantly reduced early growth compared to untrapped controls

  11. Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap

    Science.gov (United States)

    Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.

    2016-06-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  12. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  13. Portable Pbars, traps that travel

    International Nuclear Information System (INIS)

    Howe, S.D.; Hynes, M.V.; Picklesimer, A.

    1987-10-01

    The advent of antiproton research utilizing relatively small scale storage devices for very large numbers of these particles opens the possibility of transporting these devices to a research site removed from the accelerator center that produced the antiprotons. Such a portable source of antiprotons could open many new areas of research and make antiprotons available to a new research community. At present antiprotons are available at energies down to 1 MeV. From a portable source these particles can be made available at energies ranging from several tens of kilovolts down to a few millielectron volts. These low energies are in the domain of interest to the atomic and condensed matter physicist. In addition such a source can be used as an injector for an accelerator which could increase the energy domain even further. Moreover, the availability of such a source at a university will open research with antiprotons to a broader range of students than possible at a centralized research facility. This report focuses on the use of ion traps, in particular cylindrical traps, for the antiproton storage device. These devices store the charged antiprotons in a combination of electric and magnet fields. At high enough density and low enough temperature the charged cloud will be susceptible to plasma instabilities. Present day ion trap work is just starting to explore this domain. Our assessment of feasibility is based on what could be done with present day technology and what future technology could achieve. We conclude our report with a radiation safety study that shows that about 10 11 antiprotons can be transported safely, however the federal guidelines for this transport must be reviewed in detail. More antiprotons than this will require special transportation arrangements. 28 refs., 8 figs

  14. Trapping molecules in two and three dimensions

    International Nuclear Information System (INIS)

    Pinkse, PW.H.; Junglen, T.; Rieger, T.; Rangwala, S.A.; Windpassinger, P.; Rempe, G.

    2005-01-01

    Full text: Cold molecules offer a new testing ground for quantum-physical effects in nature. For example, producing slow beams of large molecules could push experiments studying the boundary between quantum interference and classical particles up towards ever heavier particles. Moreover, cold molecules, in particular YbF, seem an attractive way to narrow down the constraints on the value of the electron dipole moment and finally, quantum information processing using chains of cold polar molecules or vibrational states in molecules have been proposed. All these proposals rely on advanced production and trapping techniques, most of which are still under development. Therefore, novel production and trapping techniques for cold molecules could offer new possibilities not found in previous methods. Electric traps hold promise for deep trap potentials for neutral molecules. Recently we have demonstrated two-dimensional trapping of polar molecules in a four-wire guide using electrostatic and electrodynamic trapping techniques. Filled from a thermal effusive source, such a guide will deliver a beam of slow molecules, which is an ideal source for interferometry experiments with large molecules, for instance. Here we report about the extension of this work to three-dimensional trapping. Polar molecules with a positive Stark shift can be trapped in the minimum of an electrostatic field. We have successfully tested a large volume electrostatic trap for ND3 molecules. A special feature of this trap is that it can be loaded continuously from an electrostatic guide, at a temperature of a few hundred mK. (author)

  15. Natural Hazards, Poverty Traps versus Economic Growth

    Science.gov (United States)

    Netti, Dr.

    2012-04-01

    Governments, even in developed countries, devote too scarce resources to coping (ex-ante) with natural hazards; as a consequence of this short-sightedness, (ex-post) direct and indirect effects of catastrophic events deeply compromise the economic growth. Protective measures against natural hazards mean complex choices involving the opinions of multidisciplinary groups of experts in the fields of ecology, civic and geotechnical engineering, geology, meteorology, law and economics. Moreover, tools and choices affect different stakeholders: politicians, producers, consumers, taxpayers and voters. Complementarity between informed rationality and democracy need to be recognized and guaranteed as too often the perceptions of the majority of the stakeholders involved about natural hazards are not consistent with any objective information about the catastrophic event. The interaction between strict budget constraints, extremely high degrees of uncertainty, risk-aversion and credit rationing, trade-off between democracy and rationality, are the main causes of potential 'poverty traps'. First of all we believe that the 'reconstruction output' to be included in GDP as an ex-post effect of a natural hazard is a forced investment much more effective in crowding-out other consumption and investment and less effective for growth than investments aiming at increasing, ex-ante, the resiliency of the economy. Keynes' 'Animal Spirits' are embedded in positive expectation for future gains especially if not concentrated in reconstruction procurement sectors but spread across different sectors of the economy. The increased demand for reconstruction goods and services may act in both directions depending on the phase of the business cycles in which the economy is. Risk premiums for risk-averter investors increase in consequence of a natural hazard event; this restrict budget constraints and strengthen credit rationing. A mere replacement effect of the destroyed capital by a more

  16. Introduced species as evolutionary traps

    Science.gov (United States)

    Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.

    2005-01-01

    Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.

  17. Gyrotactic trapping: A numerical study

    Science.gov (United States)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  18. Telomerase Repeated Amplification Protocol (TRAP).

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  19. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  20. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.; Huser, Raphaë l

    2015-01-01

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event

  1. Analysis of extreme events

    CSIR Research Space (South Africa)

    Khuluse, S

    2009-04-01

    Full Text Available ) determination of the distribution of the damage and (iii) preparation of products that enable prediction of future risk events. The methodology provided by extreme value theory can also be a powerful tool in risk analysis...

  2. Acute lower extremity ischaemia

    African Journals Online (AJOL)

    Acute lower extremity ischaemia. Acute lower limb ischaemia is a surgical emergency. ... is ~1.5 cases per 10 000 persons per year. Acute ischaemia ... Table 2. Clinical features discriminating embolic from thrombotic ALEXI. Clinical features.

  3. Progress at THe-trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, Martin; Eronen, Tommi; Ketter, Jochen; Schuh, Marc; Streubel, Sebastian; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States)

    2014-07-01

    THe-Trap is a Penning-trap mass spectrometry experiment that is currently being set up to measure the atomic mass ratio of tritium and helium-3 with a relative uncertainty of 10{sup -11}. In 2013, the experiment's first high-precision mass ratio measurement was performed on the ions {sup 12}C{sup 4+} and {sup 16}O{sup 5+}. The carbon-12/oxygen-16 mass ratio is one of the most precisely determined mass ratios and serves as a benchmark for the experiment. This measurement reached a statistical uncertainty of 6.3 . 10{sup -11} and was limited by systematic frequency shifts due to too high motional amplitudes. In the following service cycle, the experiment was modified to address the shortcomings that were discovered in the 2013 ratio measurements. This talk summarizes the results of the 2013 measurements and introduces the upgrades to the experiment, including a new amplifier, a modified ion source, and an improved vacuum system.

  4. Dynamic array of dark optical traps

    DEFF Research Database (Denmark)

    Daria, V.R.; Rodrigo, P.J.; Glückstad, J.

    2004-01-01

    A dynamic array of dark optical traps is generated for simultaneous trapping and arbitrary manipulation of multiple low-index microstructures. The dynamic intensity patterns forming the dark optical trap arrays are generated using a nearly loss-less phase-to-intensity conversion of a phase......-encoded coherent light source. Two-dimensional input phase distributions corresponding to the trapping patterns are encoded using a computer-programmable spatial light modulator, enabling each trap to be shaped and moved arbitrarily within the plane of observation. We demonstrate the generation of multiple dark...... optical traps for simultaneous manipulation of hollow "air-filled" glass microspheres suspended in an aqueous medium. (C) 2004 American Institute of Physics....

  5. Single trapped cold ions: a testing ground for quantum mechanics

    International Nuclear Information System (INIS)

    Maniscalco, S

    2005-01-01

    In this article I review some results obtained during my PhD work in the group of Professor Messina, at the University of Palermo. I discuss some proposals aimed at exploring fundamental issues of quantum theory, e.g. entanglement and quantum superpositions, in the context of single trapped ions. This physical context turns out to be extremely well suited both for studying fundamental features of quantum mechanics, such as the quantum-classical border, and for technological applications such as quantum logic gates and quantum registers. I focus on some procedures for engineering nonclassical states of the vibrational motion of the centre of mass of the ion. I consider both the case in which the ion interacts with classical laser beams and the case of interaction with a quantized mode of light. In particular, I discuss the generation of Schroedinger cat-like states, Bell states and Greenberger-Horn-Zeilinger states. The schemes for generating nonclassical states stem from two different quantum processes: the parity effect and the quantum state manipulation via quantum non-demolition measurement. Finally, I consider a microscopic theory of the interaction of a quantum harmonic oscillator (the centre of mass of the ion in the trapped ion context) with a bosonic thermal environment. Using an exact approach to the dynamics, I discuss a quantum theory of heating of trapped ions able to describe both the short time non-Markovian regime and the thermalization process. I conclude showing briefly how the trapped ion systems can be used as simulators of key models of open quantum systems such as the Caldeira-Leggett model. (phd tutorial)

  6. Fast quantum logic by selective displacement of hot trapped ions

    International Nuclear Information System (INIS)

    Sasura, Marek; Steane, Andrew M.

    2003-01-01

    The 'pushing gate' proposed by Cirac and Zoller for quantum logic in ion traps is discussed, in which a force is used to give a controlled push to a pair of trapped ions and thus realize a phase gate. The original proposal had a weakness in that it involved a hidden extreme sensitivity to the size of the force. Also, the physical origin of this force was not fully addressed. Here, we discuss the sensitivity and present a way to avoid it by choosing the spatial form of the pushing force in an optimal way. We also analyze the effect of imperfections in a pair of π pulses which are used to implement a 'spin echo' to cancel correlated errors. We present a physical model for the force, namely, the dipole force, and discuss the impact of unwanted photon scattering, and of finite temperature of the ions. The main effect of the temperature is to blur the phase of the gate owing to the ions exploring a range of values of the force. When the distance scale of the force profile is smaller than the ion separation, this effect is more important than the high-order terms in the Coulomb repulsion which were originally discussed. Overall, we find that whereas the pushing gate is not as resistant to imperfection as was supposed, it remains a significant candidate for ion trap quantum computing since it does not require ground-state cooling, and in some cases it does not require the Lamb-Dicke limit, while the gate rate is fast, close to (rather than small compared to) the trap vibrational frequency

  7. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  8. Diffusion to finite-size traps

    International Nuclear Information System (INIS)

    Richards, P.M.

    1986-01-01

    The survival probability of a random-walking particle is derived for hopping in a random distribution of traps of arbitrary radius and concentration. The single-center approximation is shown to be valid for times of physical interest even when the fraction of volume occupied by traps approaches unity. The theory is based on computation of the number of different potential trap regions sampled in a random walk and is confirmed by simulations on a simple-cubic lattice

  9. Extreme Programming: Maestro Style

    Science.gov (United States)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  10. An application of random field theory to analysis of electron trapping sites in disordered media

    International Nuclear Information System (INIS)

    Hilczer, M.; Bartczak, W.M.

    1993-01-01

    The potential energy surface in a disordered medium is considered a random field and described using the concepts of the mathematical theory of random fields. The preexisting traps for excess electrons are identified with certain regions of excursion (extreme regions) of the potential field. The theory provides an analytical method of statistical analysis of these regions. Parameters of the cavity-averaged potential field, which are provided by computer simulation of a given medium, serve as input data for the analysis. The statistics of preexisting traps are obtained for liquid methanol as a numerical example of the random field method. 26 refs., 6 figs

  11. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  12. Active stabilization of ion trap radiofrequency potentials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.; Landsman, K. A.; Neyenhuis, B.; Mizrahi, J.; Monroe, C. [Joint Quantum Institute and University of Maryland Department of Physics, College Park, Maryland 20742 (United States)

    2016-05-15

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  13. How to detect trap cluster systems?

    International Nuclear Information System (INIS)

    Mandowski, Arkadiusz

    2008-01-01

    Spatially correlated traps and recombination centres (trap-recombination centre pairs and larger clusters) are responsible for many anomalous phenomena that are difficult to explain in the framework of both classical models, i.e. model of localized transitions (LT) and the simple trap model (STM), even with a number of discrete energy levels. However, these 'anomalous' effects may provide a good platform for identifying trap cluster systems. This paper considers selected cluster-type effects, mainly relating to an anomalous dependence of TL on absorbed dose in the system of isolated clusters (ICs). Some consequences for interacting cluster (IAC) systems, involving both localized and delocalized transitions occurring simultaneously, are also discussed

  14. Laser induced fluorescence of trapped molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references.

  15. Optical Trapping of Ion Coulomb Crystals

    Science.gov (United States)

    Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2018-04-01

    The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  16. High Optical Access Trap 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-26

    The High Optical Access (HOA) trap was designed in collaboration with the Modular Universal Scalable Ion-trap Quantum Computer (MUSIQC) team, funded along with Sandia National Laboratories through IARPA's Multi Qubit Coherent Operations (MQCO) program. The design of version 1 of the HOA trap was completed in September 2012 and initial devices were completed and packaged in February 2013. The second version of the High Optical Access Trap (HOA-2) was completed in September 2014 and is available at IARPA's disposal.

  17. Laser cooling and trapping of atoms

    International Nuclear Information System (INIS)

    Chu, S.

    1995-01-01

    The basic ideas of laser cooling and atom trapping will be discussed. These techniques have applications in spectroscopy, metrology, nuclear physics, biophysics, geophysics, and polymer science. (author)

  18. Laser-cooling and electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.; Migdall, A.L.; Metcalf, H.J.

    1986-01-01

    Until recently it has been impossible to confine and trap neutral atoms using electromagnetic fields. While many proposals for such traps exist, the small potential energy depth of the traps and the high kinetic energy of available atoms prevented trapping. We review various schemes for atom trapping, the advances in laser cooling of atomic beams which have now made trapping possible, and the successful magnetic trapping of cold sodium atoms

  19. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  20. Acclimatization to extreme heat

    Science.gov (United States)

    Warner, M. E.; Ganguly, A. R.; Bhatia, U.

    2017-12-01

    Heat extremes throughout the globe, as well as in the United States, are expected to increase. These heat extremes have been shown to impact human health, resulting in some of the highest levels of lives lost as compared with similar natural disasters. But in order to inform decision makers and best understand future mortality and morbidity, adaptation and mitigation must be considered. Defined as the ability for individuals or society to change behavior and/or adapt physiologically, acclimatization encompasses the gradual adaptation that occurs over time. Therefore, this research aims to account for acclimatization to extreme heat by using a hybrid methodology that incorporates future air conditioning use and installation patterns with future temperature-related time series data. While previous studies have not accounted for energy usage patterns and market saturation scenarios, we integrate such factors to compare the impact of air conditioning as a tool for acclimatization, with a particular emphasis on mortality within vulnerable communities.

  1. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  2. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.

    2015-04-10

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas. © 2015 by Annual Reviews. All rights reserved.

  3. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Science.gov (United States)

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  4. Adventure and Extreme Sports.

    Science.gov (United States)

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  6. Inelastic collision rates of trapped metastable hydrogen

    NARCIS (Netherlands)

    Landhuis, D; Matos, L; Moss, SC; Steinberger, JK; Vant, K; Willmann, L; Greytak, TJ; Kleppner, D

    We report the first detailed decay studies of trapped metastable (2S) hydrogen. By two-photon excitation of ultracold H samples, we have produced clouds of at least 5x10(7) magnetically trapped 2S atoms at densities greater than 4x10(10) cm(-3) and temperatures below 100 muK. At these densities and

  7. Insects in IBL-4 pine weevil traps

    Science.gov (United States)

    I. Skrzecz

    2003-01-01

    Pipe traps (IBL-4) are used in Polish coniferous plantations to monitor and control the pine weevil (Hylobius abietis L.). This study was conducted in a one-year old pine plantation established on a reforested clear-cut area in order to evaluate the impact of these traps on non-target insects. Evaluation of the catches indicated that species of

  8. Modes of oscillation in radiofrequency Paul traps

    DEFF Research Database (Denmark)

    Landa, H.; Reznik, B.; Drewsen, M.

    2012-01-01

    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general threedimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We analytically derive the micromotion amplitude of the ions...

  9. Spin polarized atom traps and fundamental symmetries

    International Nuclear Information System (INIS)

    Haeusser, O.

    1994-10-01

    Plans are described to couple a neutral atom trap to an upgraded version of TRIUMF's TISOL on-line mass separator. The unique properties of trapped and cooled atoms promise improvements of some symmetry tests of the Standard Model of the electroweak and strong interactions. (author). 33 refs., 3 figs

  10. Astroturf seed traps for studying hydrochory

    NARCIS (Netherlands)

    Wolters, M; Geertsema, J; Chang, ER; Veeneklaas, RM; Carey, PD; Bakker, JP

    1. Astroturf mats can effectively trap diaspores dispersed by tidal water. 2. Within four tidal inundations, up to 745 propagules per m(2) and between three and eight different species per astroturf mat were trapped. Overall, 15 different species were collected on the astroturf mats, 10 of which

  11. An Experimental Analysis of Social Traps

    Science.gov (United States)

    Brechner, Kevin C.

    1977-01-01

    Social traps, such as the overgrazing of pasturelands, overpopulation, and the extinction of species, are situations where individuals in a group respond for their own advantage in a manner damaging to the group. Alaboratory analog was devised to simulate conditions that produce social traps. The intent was to cause an immediate positive…

  12. Effect of trapping on transport coherence

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1990-10-01

    Influence of a trap (sink) on an exciton transfer in molecular aggregates is investigated. Memory functions entering the generalized master equations are calculated. The presence of the sink changes their analytical form. We used the sink in trimer as example to show that for large trapping rate parameters the rest of the system is decoupled from the sink. (author). 8 refs, 2 figs

  13. Compression of Antiproton Clouds for Antihydrogen Trapping

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  14. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  15. Lobster trap detection at the Saba Bank

    NARCIS (Netherlands)

    Beek, van I.J.M.

    2012-01-01

    According to previous studies and anecdotal evidence there are a lot of lost lobster traps at the Saba Bank. One study estimated the loss to be between 210 and 795 lobster traps per year. The Saba Bank is an approximately 2,200 km2 submerged area and spiny lobster (Panulirus argus) is one of the

  16. Cryptography, quantum computation and trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard J.

    1998-03-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  17. Review of statistical analysis of trapped gas

    International Nuclear Information System (INIS)

    Schmittroth, F.A.

    1996-01-01

    A review was conducted of trapped gas estimates in Hanford waste tanks. Tank waste levels were found to correlate with barometric pressure changes giving the possibility to infer amounts of trapped gas. Previous models of the tank waste level were extended to include other phenomena such as evaporation in a more complete description of tank level changes

  18. Influence of trap construction on mosquito capture

    Czech Academy of Sciences Publication Activity Database

    Šebesta, Oldřich; Peško, Juraj; Gelbič, Ivan

    2012-01-01

    Roč. 6, č. 2 (2012), s. 209-215 ISSN 1934-7391 R&D Projects: GA MŠk 2B08003 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:68081766 ; RVO:60077344 Keywords : CDC miniature light traps * baited lard-can traps * mosquitoes Subject RIV: EG - Zoology

  19. Effect of trap position on the efficiency of trapping in treelike scale-free networks

    International Nuclear Information System (INIS)

    Zhang Zhongzhi; Lin Yuan; Ma Youjun

    2011-01-01

    The conventional wisdom is that the role and impact of nodes on dynamical processes in scale-free networks are not homogenous, because of the presence of highly connected nodes at the tail of their power-law degree distribution. In this paper, we explore the influence of different nodes as traps on the trapping efficiency of the trapping problem taking place on scale-free networks. To this end, we study in detail the trapping problem in two families of deterministically growing scale-free networks with treelike structure: one family is non-fractal, the other is fractal. In the first part of this work, we attack a special case of random walks on the two network families with a perfect trap located at a hub, i.e. node with the highest degree. The second study addresses the case with trap distributed uniformly over all nodes in the networks. For these two cases, we compute analytically the mean trapping time (MTT), a quantitative indicator characterizing the trapping efficiency of the trapping process. We show that in the non-fractal scale-free networks the MTT for both cases follows different scalings with the network order (number of network nodes), implying that trap's position has a significant effect on the trapping efficiency. In contrast, it is presented that for both cases in the fractal scale-free networks, the two leading scalings exhibit the same dependence on the network order, suggesting that the location of trap has no essential impact on the trapping efficiency. We also show that for both cases of the trapping problem, the trapping efficiency is more efficient in the non-fractal scale-free networks than in their fractal counterparts.

  20. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  1. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  2. Extremity perfusion for sarcoma

    NARCIS (Netherlands)

    Hoekstra, Harald Joan

    2008-01-01

    For more than 50 years, the technique of extremity perfusion has been explored in the limb salvage treatment of local, recurrent, and multifocal sarcomas. The "discovery" of tumor necrosis factor-or. in combination with melphalan was a real breakthrough in the treatment of primarily irresectable

  3. Statistics of Local Extremes

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Bierbooms, W.; Hansen, Kurt Schaldemose

    2003-01-01

    . A theoretical expression for the probability density function associated with local extremes of a stochasticprocess is presented. The expression is basically based on the lower four statistical moments and a bandwidth parameter. The theoretical expression is subsequently verified by comparison with simulated...

  4. Modified semiclassical approximation for trapped Bose gases

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    2005-01-01

    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The result of the modified approach is shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. The effective thermodynamic limit is defined for any confining dimension. The behavior of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed

  5. Magnetic trapping of cold bromine atoms.

    Science.gov (United States)

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  6. Cold trap disposed within a tank

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru.

    1983-01-01

    Purpose: To improve the reliability and the durability of cold traps by simplifying the structure and recycling liquid metals without using electromagnetic pumps. Constitution: The reactor container is partitioned by an intermediate container enhousing primary recycling pumps and cold traps. The inlet and the exit for the liquid metal of each cold trap are opened to the outside and the inside of the intermediate container respectively. In such a structure, the pressure difference between the inside and the outside of the intermediate container is exerted on the cold traps due to the exhaust pressure of the recycling pumps in which the liquid metal flowing into the cold traps is purified through filters, cooled and then discharged from the exit to the cold plenum. In this way, liquid metal can be recycled without using an electromagnetic pump whose reliability has not yet been established. (Kamimura, M.)

  7. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...... Thesis (2008). [2] R.J. Hendricks, D.M. Grant, P.F. Herskind, A. Dantan and M. Drewsen, An all-optical ion-loading technique for scalable microtrap architectures, Applied Physics B, 88, 507 (2007)....

  8. The hidden traps in decision making.

    Science.gov (United States)

    Hammond, J S; Keeney, R L; Raiffa, H

    1998-01-01

    Bad decisions can often be traced back to the way the decisions were made--the alternatives were not clearly defined, the right information was not collected, the costs and benefits were not accurately weighted. But sometimes the fault lies not in the decision-making process but rather in the mind of the decision maker. The way the human brain works can sabotage the choices we make. John Hammond, Ralph Keeney, and Howard Raiffa examine eight psychological traps that are particularly likely to affect the way we make business decisions: The anchoring trap leads us to give disproportionate weight to the first information we receive. The statusquo trap biases us toward maintaining the current situation--even when better alternatives exist. The sunk-cost trap inclines us to perpetuate the mistakes of the past. The confirming-evidence trap leads us to seek out information supporting an existing predilection and to discount opposing information. The framing trap occurs when we misstate a problem, undermining the entire decision-making process. The overconfidence trap makes us overestimate the accuracy of our forecasts. The prudence trap leads us to be overcautious when we make estimates about uncertain events. And the recallability trap leads us to give undue weight to recent, dramatic events. The best way to avoid all the traps is awareness--forewarned is forearmed. But executives can also take other simple steps to protect themselves and their organizations from the various kinds of mental lapses. The authors show how to take action to ensure that important business decisions are sound and reliable.

  9. Nonlinear spectroscopy of trapped ions

    Science.gov (United States)

    Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas

    2014-08-01

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  10. Laser trapping of radioactive francium atoms

    International Nuclear Information System (INIS)

    Sprouse, G.D.; Orozco, L.A.; Simsarian, J.E.; Shi, W.; Zhao, W.Z.

    1997-01-01

    The difficult problem of quickly slowing and cooling nuclear reaction products so that they can be injected into a laser trap has been solved by several groups and there are now strong efforts to work with the trapped atoms. The atoms are confined in the trap to a small spatial volume of the order of 1 mm 3 , but more importantly, they are also confined in velocity, which makes them an ideal sample for spectroscopic measurements with other lasers. We have recently trapped radioactive francium and have embarked on a program to further study the francium atom as a prelude to a test of the Standard Model analogous to previous work with Cs. Our sample of 3 min 210 Fr now contains over 20 000 atoms, and is readily visible with an ordinary TV camera. We work on-line with the accelerator, and continuously load the trap to replace losses due to decay and collisions with background gas. We have maintained a sample of Fr atoms in the trap for over 10 hours, with occasional adjustment of the trapping laser frequency to account for drifts. The proposed test of the Standard Model will require accurate calculation of its atomic properties. We are currently testing these calculations by measuring other predicted quantities. (orig.)

  11. An Open Standard for Camera Trap Data

    Directory of Open Access Journals (Sweden)

    Tavis Forrester

    2016-12-01

    Full Text Available Camera traps that capture photos of animals are a valuable tool for monitoring biodiversity. The use of camera traps is rapidly increasing and there is an urgent need for standardization to facilitate data management, reporting and data sharing. Here we offer the Camera Trap Metadata Standard as an open data standard for storing and sharing camera trap data, developed by experts from a variety of organizations. The standard captures information necessary to share data between projects and offers a foundation for collecting the more detailed data needed for advanced analysis. The data standard captures information about study design, the type of camera used, and the location and species names for all detections in a standardized way. This information is critical for accurately assessing results from individual camera trapping projects and for combining data from multiple studies for meta-analysis. This data standard is an important step in aligning camera trapping surveys with best practices in data-intensive science. Ecology is moving rapidly into the realm of big data, and central data repositories are becoming a critical tool and are emerging for camera trap data. This data standard will help researchers standardize data terms, align past data to new repositories, and provide a framework for utilizing data across repositories and research projects to advance animal ecology and conservation.

  12. Single-molecule dynamics in nanofabricated traps

    Science.gov (United States)

    Cohen, Adam

    2009-03-01

    The Anti-Brownian Electrokinetic trap (ABEL trap) provides a means to immobilize a single fluorescent molecule in solution, without surface attachment chemistry. The ABEL trap works by tracking the Brownian motion of a single molecule, and applying feedback electric fields to induce an electrokinetic motion that approximately cancels the Brownian motion. We present a new design for the ABEL trap that allows smaller molecules to be trapped and more information to be extracted from the dynamics of a single molecule than was previously possible. In particular, we present strategies for extracting dynamically fluctuating mobilities and diffusion coefficients, as a means to probe dynamic changes in molecular charge and shape. If one trapped molecule is good, many trapped molecules are better. An array of single molecules in solution, each immobilized without surface attachment chemistry, provides an ideal test-bed for single-molecule analyses of intramolecular dynamics and intermolecular interactions. We present a technology for creating such an array, using a fused silica plate with nanofabricated dimples and a removable cover for sealing single molecules within the dimples. With this device one can watch the shape fluctuations of single molecules of DNA or study cooperative interactions in weakly associating protein complexes.

  13. Residual CO2 trapping in Indiana limestone.

    Science.gov (United States)

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-02

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  14. Extremes in nature

    CERN Document Server

    Salvadori, Gianfausto; Kottegoda, Nathabandu T

    2007-01-01

    This book is about the theoretical and practical aspects of the statistics of Extreme Events in Nature. Most importantly, this is the first text in which Copulas are introduced and used in Geophysics. Several topics are fully original, and show how standard models and calculations can be improved by exploiting the opportunities offered by Copulas. In addition, new quantities useful for design and risk assessment are introduced.

  15. Optical Trapping of Ion Coulomb Crystals

    Directory of Open Access Journals (Sweden)

    Julian Schmidt

    2018-05-01

    Full Text Available The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  16. Laser trapping of 21Na atoms

    International Nuclear Information System (INIS)

    Lu, Zheng-Tian.

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive 21 Na (t l/2 = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped 21 Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of 21 Na → 21 Ne + Β + + v e , which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, 21 Na atoms were produced by bombarding 24 Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The 21 Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined

  17. Rhabdomyosarcoma of the extremity

    International Nuclear Information System (INIS)

    Rao, Bhaskar N

    1997-01-01

    Rhabdomyosarcoma is the most common soft tissue sarcoma accounting for almost 55%. These tumors arise from unsegmented mesoderm or primitive mesenchyma, which have the capacity to differentiate into muscle. Less than 5% occur in the first year of life. Extremity rhabdomyosarcoma are mainly seen in the adolescent years. The most common histologic subtype is the alveolar variant. Other characteristics of extremity rhabdomyosarcoma include a predilection for lymph node metastasis, a high local failure, and a relatively low survival rate. They often present as slow painless masses; however, lesions in the hand and foot often present as painful masses and imaging studies may show invasion of the bone. Initial diagnostic approaches include needle biopsy or incisional biopsy for larger lesions. Excisional biopsy is indicated preferably for lesions less than 2.5 cm. following this in most instances therapy is initiated with multi agent chemotherapy depending upon response, the next modality may be either surgery with intent to cure or radiation therapy. Amputation of an extremity for local control is not considered in most instances. Prognostic factors that have been determined over the years to be of significance by multi variant analysis have included age, tumor size, invasiveness, presence of either nodal or distant metastasis, and complete excision whenever feasible, with supplemental radiation therapy for local control

  18. Biases in Drosophila melanogaster protein trap screens

    Directory of Open Access Journals (Sweden)

    Müller Ilka

    2009-05-01

    Full Text Available Abstract Background The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. Results We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p -4. Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Conclusion Our analyses suggest that the

  19. An atom trap relying on optical pumping

    International Nuclear Information System (INIS)

    Bouyer, P.; Lemonde, P.; Ben Dahan, M.; Michaud, A.; Salomon, C.; Dalibard, J.

    1994-01-01

    We have investigated a new radiation pressure trap which relies on optical pumping and does not require any magnetic field. It employs six circularly polarized divergent beams and works on the red of a J g →J e = J g + 1 atomic transition with J g ≥1/2. We have demonstrated this trap with cesium atoms from a vapour cell using the 852 nm J g = 4→J e = 5 resonance transition. The trap contained up to 3.10 7 atoms in a cloud of 1/√e radius of 330 μm. (orig.)

  20. Medfly female attractant trapping studies in Guatemala

    International Nuclear Information System (INIS)

    Jeronimo, F.; Rendon, P.; Villatoro, C.

    1999-01-01

    Experiments were conducted from 1994 - 1998 to test the attractiveness of combinations of food-based chemicals for C. capitata (medfly) in Guatemala. Most studies were done in coffee. The 1995 studies, using the FA-2 attractants (ammonium acetate and putrescine) showed that this combination was attractive for females and had potential for use in conjunction with a SIT program. The 1996 studies at three elevations demonstrated that, in general, these attractants, when used in either the Open Bottom Dry Trap (OBDT), Closed Bottom Dry Trap (CBDT), or International Pheromone's McPhail Trap (IPMT) performed better than the Jumbo McPhail trap (JMT) baited with NuLure and borax (NU+B) for capture of feral females. At the high elevation (1400 m), the IPMT with FA-2 and OBDT with FA-2 were best; at the middle elevation (1100 m), the ORDT, IPMT, and CBDT with FA-2 were best; and at low elevations (659 m), the IPMT with FA-2, JMT with NU+B and ORDT with FA-2 were equal in performance. At the middle elevation, using sterile flies, the OBDT with FA-2 worked best. When experiments were carried out in pear, the traps using the FA-2 attractants captured more female flies than the JMT, NU+B, but not significantly more. During the 1997 trials, a third component, trimethylamine was added to the two component lure (FA-3). This attractant was tested in a number of locally produced traps using 2 I soft drink bottles with different color bottoms. The dry versions of the traps contained a yellow sticky insert. All study sites were at low elevation 600 - 650 m, in coffee, testing both sterile and feral flies. With the feral flies during the first phase of the study at finca San Carlos, there were no significant differences between treatments, at finca San Luis, the clear local trap with sticky insert and the green local trap with sticky insert were best, and at finca Valapraiso, the green local trap with yellow sticky insert and yellow local trap with sticky insert captured more flies

  1. Towards scaling up trapped ion quantum information processing

    International Nuclear Information System (INIS)

    Leibfried, D.; Wineland, D. J.; Blakestad, R. B.; Bollinger, J. J.; Britton, J.; Chiaverini, J.; Epstein, R. J.; Itano, W. M.; Jost, J. D.; Knill, E.; Langer, C.; Ozeri, R.; Reichle, R.; Seidelin, S.; Shiga, N.; Wesenberg, J. H.

    2007-01-01

    Recent theoretical advances have identified several computational algorithms that can be implemented utilizing quantum information processing (QIP), which gives an exponential speedup over the corresponding (known) algorithms on conventional computers. QIP makes use of the counter-intuitive properties of quantum mechanics, such as entanglement and the superposition principle. Unfortunately it has so far been impossible to build a practical QIP system that outperforms conventional computers. Atomic ions confined in an array of interconnected traps represent a potentially scalable approach to QIP. All basic requirements have been experimentally demonstrated in one and two qubit experiments. The remaining task is to scale the system to many qubits while minimizing and correcting errors in the system. While this requires extremely challenging technological improvements, no fundamental roadblocks are currently foreseen.

  2. Plasmas in compact traps: From ion sources to multidisciplinary research

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Galatà, A.; Romano, F. P.; Gammino, S.

    2017-09-01

    In linear (minimum-B) magneto-static traps dense and hot plasmas are heated by electromagnetic radiation in the GHz domain via the Electron Cyclotron Resonance (ECR). The values of plasma density, temperature and confinement times ( n_eτ_i>10^{13} cm ^{-3} s; T_e>10 keV) are similar to the ones of thermonuclear plasmas. The research in this field -devoted to heating and confinement optimization- has been supported by numerical modeling and advanced diagnostics, for probing the plasma especially in a non-invasive way. ECR-based systems are nowadays able to produce extremely intense (tens or hundreds of mA) beams of light ions (p, d, He), and relevant currents of heavier elements (C, O, N) up to heavy ions like Xe, Pb, U. Such beams can be extracted from the trap by a proper electrostatic system. The above-mentioned properties make these plasmas very attractive for interdisciplinary researches also, such as i) nuclear decays rates measurements in stellar-like conditions, ii) energy conversion studies, being exceptional sources of short-wavelength electromagnetic radiation (EUV, X-rays, hard X-rays and gammas, useful in material science and archaeometry), iii) environments allowing precise spectroscopical measurements as benchmarks for magnetized astrophysical plasmas. The talk will give an overview about the state-of-the-art in the field of intense ion sources, and some new perspectives for interdisciplinary research, with a special attention to the developments based at INFN-LNS.

  3. Quantum versus semiclassical description of self-trapping: Anharmonic effects

    International Nuclear Information System (INIS)

    Raghavan, S.; Bishop, A.R.; Kenkre, V.M.

    1999-01-01

    Self-trapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum-mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that self-trapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement, with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. copyright 1999 The American Physical Society

  4. Separation of effects of oxide-trapped charge and interface-trapped charge on mobility in irradiated power MOSFETs

    International Nuclear Information System (INIS)

    Zupac, D.; Galloway, K.F.; Khosropour, P.; Anderson, S.R.; Schrimpf, R.D.

    1993-01-01

    An effective approach to separating the effects of oxide-trapped charge and interface-trapped charge on mobility degradation in irradiated MOSFETs is demonstrated. It is based on analyzing mobility data sets which have different functional relationships between the radiation-induced-oxide-trapped charge and interface-trapped charge. Separation of effects of oxide-trapped charge and interface-trapped charge is possible only if these two trapped charge components are not linearly dependent. A significant contribution of oxide-trapped charge to mobility degradation is demonstrated and quantified

  5. Radionuclide trap for liquid metal cooled reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.; Brehm, W.F.

    1978-10-01

    At liquid metal cooled reactor operating temperatures, radioactive corrosion product transport and deposition in the primary system will be sufficiently high to limit access time for maintenance of system components. A radionuclide trap has been developed to aid in controlling radioactivity transport. This is a device which is located above the reactor core and which acts as a getter, physically immobilizing radioactive corrosion products, particularly 54 Mn. Nickel is the getter material used. It is most effective at temperatures above 450 0 C and effectiveness increases with increasing temperature. Prototype traps have been tested in sodium loops for 40,000 hours at reactor primary temperatures and sodium velocities. Several possible in-reactor trap sites were considered but a location within the top of each driver assembly was chosen as the most convenient and effective. In this position the trap is changed each time fuel is changed

  6. Comments on 'Generation of Deccan Trap magmas'

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    Comments on 'Generation of Deccan Trap magmas' by Gautam Sen ... Department of Geology & Geophysics, School of Ocean & Earth Science & Technology (SOEST), University of .... Mahoney J J, Sheth H C, Chandrasekharan D and Peng Z.

  7. AEgIS antihydrogen production trap

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    During technical stop 2017 the AEgIS experiment was open for upgrades and maintenance. We had the opportunity to take some 360 images from inside and see where antiprotons are ¨trapped¨ and anti-Hydrogen produced.

  8. Vapour trap development and operational experience

    International Nuclear Information System (INIS)

    Jansing, W.; Kirchner, G.; Menck, J.

    1977-01-01

    Sodium aerosols have the unpleasant characteristic that they deposit at places with low temperature level. This effect can be utilized when sodium aerosols are to be trapped at places which are determined beforehand. Thus vapour traps were developed which can filter sodium vapour from the cover gas. By this means the necessity was eliminated to heat all gas lines and gas systems with trace heaters just as all sodium lines are heated. It was of special interest for the INTERATOM to develop vapour traps which must not be changed or cleaned after a certain limited operating period. The vapour traps were supposed to enable maintenance free operation, i.e. they were to operate 'self cleaning'

  9. ATRAP on the way to trapped Antihydrogen

    CERN Document Server

    Grzonka, D; Gabrielse, G; Goldenbaum, F; Hänsch, T W; Hessels, E A; Larochelle, P; Le Sage, D; Levitt, B; Oelert, W; Pittner, H; Sefzick, T; Speck, A; Storry, C H; Walz, J; Zhang, Z

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s‐2s transition in the hydrogen and the antihydrogen atom. Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen. The shape parameters of the antiproton and positron clouds, the n‐state distribution of the produced Rydberg antihydrogen atoms and the antihydrogen velocity have been studied. Furthermore an alternative method of laser controlled antihydrogen production was successfully applied. For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trappi...

  10. Defect trapping of deuterium implanted in aluminium

    International Nuclear Information System (INIS)

    Kido, Y.; Kakeno, M.; Yamada, K.; Hioki, T.; Kawamoto, J.

    1982-01-01

    The behaviour of deuterium implanted in Al was studied by the D( 3 He,p) 4 He and the D(d,p)T nuclear reactions. Changes of the depth profiles of the deuterium after heat treatments indicated that the implanted deuterium was trapped by the defect produced during the deuterium implantation and the release probability of the trapped deuterium increased as the specimen temperature was raised. Assuming a thermal equilibrium locally in the region of high defect concentration, the trapping energy of deuterium in Al was determined to be 0.12eV. Since the release probability for the single crystal was considerably larger than that for the polycrystal specimens, the deuterium was considered to be strongly trapped in the grain boundaries. Distributions of displaced Al atoms and the recovery of the lattice damage by annealing were measured by the channelling technique. (author)

  11. Curious behavior of optically trapped neutral atoms

    International Nuclear Information System (INIS)

    Wieman, C.; Walker, T.; Sesko, D.; Monroe, C.

    1991-01-01

    We have studied the behavior of clouds of neutral atoms contained in a spontaneous force optical trap. Because of the low temperatures of the atoms ( 5 atoms. These include the expansion of the cloud as the number is increased and dramatic changes in the distribution of the atoms at higher numbers. We can explain much of the collective behavior using a simple model that includes a 1/r 2 force between the atoms arising from the multiple scattering of photons. Finally, we discuss the optical trapping of atoms directly from a low pressure vapor in a small glass cell. We have used these optically trapped atoms to load a magnetostatic trap in the same cell. This provided a high density sample of atoms with a temperature of less than 2 μK

  12. Whistler wave trapping in a density crest

    International Nuclear Information System (INIS)

    Sugai, H.; Niki, H.; Inutake, M.; Takeda, S.

    1979-11-01

    The linear trapping process of whistler waves in a field-aligned density crest is investigated theoretically and experimentally below ω = ωsub(c)/2 (half gyrofrequency). The conditions of the crest trapping are derived in terms of the frequency ω/ωsub(c), the incident wave-normal angle theta sub(i), and the density ratio n sub(i)/n sub(o), where n sub(i) and n sub(o) denote the density at the incident point and that at the ridge, respectively. The oscillation length of the trapped ray path is calculated for a parabolic density profile. The experiment on antenna-excited whistler wave has been performed in a large magnetized plasma with the density crest. The phase and amplitude profile of the whistler wave is measured along and across the crest. The measurement has verified characteristic behaviors of the crest trapping. (author)

  13. Methods in mooring deep sea sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Fernando, V.; Rajaraman, V.S.; Janakiraman, G.

    The experience gained during the process of deployment and retrieval of nearly 39 sets of deep sea sediment trap moorings on various ships like FS Sonne, ORV Sagarkanya and DSV Nand Rachit are outlined. The various problems encountered...

  14. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1980-06-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass-transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile can be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments. Mass-transfer coefficients ranging upward from 6 x 10 -5 m/s were measured in both packless and packed traps. As much as a fourfold increase in precipitation surface area was observed with increasing amount of NaH deposited. 11 figures, 2 tables

  15. Traps in Zirconium Alloys Oxide Layers

    Directory of Open Access Journals (Sweden)

    Helmar Frank

    2005-01-01

    Full Text Available Oxide films long-time grown on tubes of three types of zirconium alloys in water and in steam were investigated, by analysing I-V characteristic measured at constant voltages with various temperatures. Using theoretical concepts of Rose [3] and Gould [5], ZryNbSn(Fe proved to have an exponential distribution of trapping centers below the conduction band edge, wheras Zr1Nb and IMP Zry-4 proved to have single energy trap levels.

  16. Coherent states approach to Penning trap

    International Nuclear Information System (INIS)

    Fernandez, David J; Velazquez, Mercedes

    2009-01-01

    By using a matrix technique, which allows us to identify directly the ladder operators, the Penning trap coherent states are derived as eigenstates of the appropriate annihilation operators. These states are compared with those obtained through the displacement operator. The associated wavefunctions and mean values for some relevant operators in these states are also evaluated. It turns out that the Penning trap coherent states minimize the Heisenberg uncertainty relation

  17. The ALPHA Experiment a Cold Antihydrogen Trap

    CERN Document Server

    Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D; Gomberoff, K; Grote, D P; Hangst, J S; Hayano, R S; Jenkins, M; Jørgensen, L V; Madsen, N; Miranda, D; Nolan, P; Ochanski, K; Olin, A; Page, R D; Posada, L G C; Robicheaux, F; Sarid, E; Telle, H H; Vay, J L; Wurtele, J; van der Werf, D P; Yamazaki, Y

    2005-01-01

    The ALPHA experiment aims to trap antihydrogen as the next crucial step towards a precise CPT test, by a spectroscopic comparison of antihydrogen with hydrogen. The experiment will retain the salient techniques developed by the ATHENA collaboration during the previous phase of antihydrogen experiments at the antiproton decelerator (AD) at CERN. The collaboration has identified the key problems in adding a neutral antiatom trap to the previously developed experimental configuration. The solutions identified by ALPHA are described in this paper.

  18. Extreme Programming Pocket Guide

    CERN Document Server

    Chromatic

    2003-01-01

    Extreme Programming (XP) is a radical new approach to software development that has been accepted quickly because its core practices--the need for constant testing, programming in pairs, inviting customer input, and the communal ownership of code--resonate with developers everywhere. Although many developers feel that XP is rooted in commonsense, its vastly different approach can bring challenges, frustrations, and constant demands on your patience. Unless you've got unlimited time (and who does these days?), you can't always stop to thumb through hundreds of pages to find the piece of info

  19. Upper extremity golf injuries.

    Science.gov (United States)

    Cohn, Michael A; Lee, Steven K; Strauss, Eric J

    2013-01-01

    Golf is a global sport enjoyed by an estimated 60 million people around the world. Despite the common misconception that the risk of injury during the play of golf is minimal, golfers are subject to a myriad of potential pathologies. While the majority of injuries in golf are attributable to overuse, acute traumatic injuries can also occur. As the body's direct link to the golf club, the upper extremities are especially prone to injury. A thorough appreciation of the risk factors and patterns of injury will afford accurate diagnosis, treatment, and prevention of further injury.

  20. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  1. The Use of Camera Traps in Wildlife

    Directory of Open Access Journals (Sweden)

    Yasin Uçarlı

    2013-11-01

    Full Text Available Camera traps are increasingly used in the abundance and density estimates of wildlife species. Camera traps are very good alternative for direct observation in case, particularly, steep terrain, dense vegetation covered areas or nocturnal species. The main reason for the use of camera traps is eliminated that the economic, personnel and time loss in a continuous manner at the same time in different points. Camera traps, motion and heat sensitive, can take a photo or video according to the models. Crossover points and feeding or mating areas of the focal species are addressed as a priority camera trap set locations. The population size can be finding out by the images combined with Capture-Recapture methods. The population density came out the population size divided to effective sampling area size. Mating and breeding season, habitat choice, group structures and survival rates of the focal species can be achieved from the images. Camera traps are very useful to obtain the necessary data about the particularly mysterious species with economically in planning and conservation efforts.

  2. The Electronic McPhail Trap

    Science.gov (United States)

    Potamitis, Ilyas; Rigakis, Iraklis; Fysarakis, Konstantinos

    2014-01-01

    Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it. PMID:25429412

  3. The Electronic McPhail Trap

    Directory of Open Access Journals (Sweden)

    Ilyas Potamitis

    2014-11-01

    Full Text Available Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi, that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect’s wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it.

  4. Achieving Translationally Invariant Trapped Ion Rings

    Science.gov (United States)

    Urban, Erik; Li, Hao-Kun; Noel, Crystal; Hemmerling, Boerge; Zhang, Xiang; Haeffner, Hartmut

    2017-04-01

    We present the design and implementation of a novel surface ion trap design in a ring configuration. By eliminating the need for wire bonds through the use of electrical vias and using a rotationally invariant electrode configuration, we have realized a trap that is able to trap up to 20 ions in a ring geometry 45um in diameter, 400um above the trap surface. This large trapping height to ring diameter ratio allows for global addressing of the ring with both lasers and electric fields in the chamber, thereby increasing our ability to control the ring as a whole. Applying compensating electric fields, we measure very low tangential trap frequencies (less than 20kHz) corresponding to rotational barriers down to 4mK. This measurement is currently limited by the temperature of the ions but extrapolation indicates the barrier can be reduced much further with more advanced cooling techniques. Finally, we show that we are able to reduce this energy barrier sufficiently such that the ions are able to overcome it either through thermal motion or rotational motion and delocalize over the full extent of the ring. This work was funded by the Keck Foundation and the NSF.

  5. On-chip particle trapping and manipulation

    Science.gov (United States)

    Leake, Kaelyn Danielle

    The ability to control and manipulate the world around us is human nature. Humans and our ancestors have used tools for millions of years. Only in recent years have we been able to control objects at such small levels. In order to understand the world around us it is frequently necessary to interact with the biological world. Optical trapping and manipulation offer a non-invasive way to move, sort and interact with particles and cells to see how they react to the world around them. Optical tweezers are ideal in their abilities but they require large, non-portable, and expensive setups limiting how and where we can use them. A cheap portable platform is required in order to have optical manipulation reach its full potential. On-chip technology offers a great solution to this challenge. We focused on the Liquid-Core Anti-Resonant Reflecting Optical Waveguide (liquid-core ARROW) for our work. The ARROW is an ideal platform, which has anti-resonant layers which allow light to be guided in liquids, allowing for particles to easily be manipulated. It is manufactured using standard silicon manufacturing techniques making it easy to produce. The planner design makes it easy to integrate with other technologies. Initially I worked to improve the ARROW chip by reducing the intersection losses and by reducing the fluorescence and background on the ARROW chip. The ARROW chip has already been used to trap and push particles along its channel but here I introduce several new methods of particle trapping and manipulation on the ARROW chip. Traditional two beam traps use two counter propagating beams. A trapping scheme that uses two orthogonal beams which counter to first instinct allow for trapping at their intersection is introduced. This scheme is thoroughly predicted and analyzed using realistic conditions. Simulations of this method were done using a program which looks at both the fluidics and optical sources to model complex situations. These simulations were also used to

  6. Bait preference in basket trap fishing operation and heavy metal ...

    African Journals Online (AJOL)

    The bait preference of basket traps fishing operation and heavy metal contamination in the trap catches from Lagos Lagoon were carried out between January and June 2011. Sixty baskets traps were used for the fishing operation, twenty basket traps were baited each with soap, coconut and maize. Clibanarius africanus ...

  7. Evaluation of Sediment Trap Efficiency in an Estuarine Environment

    National Research Council Canada - National Science Library

    Stoddard, Daniel

    2001-01-01

    .... A second trap of same dimensions was also incorporated 420 m upstream. Trap efficiency was calculated as a sediment removal ratio, or the percentage by which influent sediment load to the trap is reduced in the effluent load from the trap...

  8. Description of the IMR Standard Light Trap and the Vertical ...

    African Journals Online (AJOL)

    The construction of different versions of a cheap, robust, and easy to operate light trap for catching various aquatic organisms is shown. The trap can be used to > 300 m depth and meets a number of criteria. Small-scale vertical distribution of decapod larvae was investigated during trap trials. The traps (6-10) were set for 24 ...

  9. 21 CFR 868.5995 - Tee drain (water trap).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  10. Deuterium trapping in carbon fiber composites under high fluence

    International Nuclear Information System (INIS)

    Airapetov, A.A.; Begrambekov, L.B.; Kuzmin, A.A.; Shigin, P.A.; Zakharov, A.M.

    2010-01-01

    The paper is devoted to investigation of deuterium trapping in CFC, dance graphite MPG-8 and pyrolytic graphite (PG) under plasma ion- and electron irradiation. Number of specific features of deuterium trapping and retention under plasma ion and electron irradiation is presented and discussed. In particular it is shown that 1) deuterium trapping takes place even when energy of impinging ions approaches zero; 2) deuterium is trapped under irradiation by plasma electrons; 3) under irradiation at equal fluences deuterium trapping is higher, when ion flux is smaller. High energy ion penetrating the surfaces are trapped in the traps created at the expense of their kinetic energy. The process may be named 'kinetic trapping'. Under low energy (smaller than 200 eV) electron and/or ion irradiation the energy of inelastic interaction on the surface provides creation of active centers, which initiate dissociation of deuterium sorbed on the surface, penetration of deuterium atoms into graphite and their trapping in specific low energy traps. The term 'potential trapping' is proposed for this type of trapping. Under high energy irradiation such atoms can fill the traps formed through kinetic mechanism. Origination of moveable deuterium atoms from the layer of surface sorption seems to be time dependent process and it is a reason of increase of trapping along with irradiation time. New features of deuterium trapping and retention in graphite evaluated in this study offer new opportunities for analysis and correct estimation of hydrogen isotope trapping and retention in tokamaks having graphite tiles. (authors)

  11. Tightly confined atoms in optical dipole traps

    International Nuclear Information System (INIS)

    Schulz, M.

    2002-12-01

    This thesis reports on the design and setup of a new atom trap apparatus, which is developed to confine few rubidium atoms in ultrahigh vacuum and make them available for controlled manipulations. To maintain low background pressure, atoms of a vapour cell are transferred into a cold atomic beam by laser cooling techniques, and accumulated by a magneto-optic trap (MOT) in a separate part of the vacuum system. The laser cooled atoms are then transferred into dipole traps made of focused far-off-resonant laser fields in single- or crossed-beam geometry, which are superimposed with the center of the MOT. Gaussian as well as hollow Laguerre-Gaussian (LG$ ( 01)$) beam profiles are used with red-detuned or blue-detuned light, respectively. Microfabricated dielectric phase objects allow efficient and robust mode conversion of Gaussian into Laguerre-Gaussian laser beams. Trap geometries can easily be changed due to the highly flexible experimental setup. The dipole trap laser beams are focused to below 10 microns at a power of several hundred milliwatts. Typical trap parameters, at a detuning of several ten nanometers from the atomic resonance, are trag depths of few millikelvin, trap frequencies near 30-kHz, trap light scattering rates of few hundred photons per atom and second, and lifetimes of several seconds. The number of dipole-trapped atoms ranges from more than ten thousand to below ten. The dipole-trapped atoms are detected either by a photon counting system with very efficient straylight discrimination, or by recapture into the MOT, which is imaged onto a sensitive photodiode and a CCD-camera. Due to the strong AC-Stark shift imposed by the high intensity trapping light, energy-selective resonant excitation and detection of the atoms is possible. The measured energy distribution is consistent with a harmonic potential shape and allows the determination of temperatures and heating rates. In first measurements, the thermal energy is found to be about 10 % of the

  12. Optimising camera traps for monitoring small mammals.

    Directory of Open Access Journals (Sweden)

    Alistair S Glen

    Full Text Available Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1 trigger speed, 2 passive infrared vs. microwave sensor, 3 white vs. infrared flash, and 4 still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea, feral cats (Felis catus and hedgehogs (Erinaceuseuropaeus. Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  13. Flux trapping and shielding in irreversible superconductors

    International Nuclear Information System (INIS)

    Frankel, D.J.

    1978-05-01

    Flux trappings and shielding experiments were carried out on Pb, Nb, Pb-Bi, Nb-Sn, and Nb-Ti samples of various shapes. Movable Hall probes were used to measure fields near or inside the samples as a function of position and of applied field. The trapping of transverse multipole magnetic fields in tubular samples was accomplished by cooling the samples in an applied field and then smoothly reducing the applied field to zero. Transverse quadrupole and sextupole fields with gradients of over 2000 G/cm were trapped with typical fidelity to the original impressed field of a few percent. Transverse dipole fields of up to 17 kG were also trapped with similar fidelity. Shielding experiments were carried out by cooling the samples in zero field and then gradually applying an external field. Flux trapping and shielding abilities were found to be limited by two factors, the pinning strength of the material, and the susceptibility of a sample to flux jumping. The trapping and shielding behavior of flat disk samples in axial fields and thin-walled tubular samples in transverse fields was modeled. The models, which were based on the concept of the critical state, allowed a connection to be made between the pinning strength and critical current level, and the flux trapping and shielding abilities. Adiabatic and dynamic stability theories are discussed and applied to the materials tested. Good qualitative, but limited quantitative agreement was obtained between the predictions of the theoretical stability criteria and the observed flux jumping behavior

  14. Quantum information processing with trapped ions

    International Nuclear Information System (INIS)

    Haeffner, H.; Haensel, W.; Rapol, U.; Koerber, T.; Benhelm, J.; Riebe, M.; Chek-al-Kar, D.; Schmidt-Kaler, F.; Becher, C.; Roos, C.; Blatt, R.

    2005-01-01

    Single Ca + ions and crystals of Ca + ions are confined in a linear Paul trap and are investigated for quantum information processing. Here we report on recent experimental advancements towards a quantum computer with such a system. Laser-cooled trapped ions are ideally suited systems for the investigation and implementation of quantum information processing as one can gain almost complete control over their internal and external degrees of freedom. The combination of a Paul type ion trap with laser cooling leads to unique properties of trapped cold ions, such as control of the motional state down to the zero-point of the trapping potential, a high degree of isolation from the environment and thus a very long time available for manipulations and interactions at the quantum level. The very same properties make single trapped atoms and ions well suited for storing quantum information in long lived internal states, e.g. by encoding a quantum bit (qubit) of information within the coherent superposition of the S 1/2 ground state and the metastable D 5/2 excited state of Ca + . Recently we have achieved the implementation of simple algorithms with up to 3 qubits on an ion-trap quantum computer. We will report on methods to implement single qubit rotations, the realization of a two-qubit universal quantum gate (Cirac-Zoller CNOT-gate), the deterministic generation of multi-particle entangled states (GHZ- and W-states), their full tomographic reconstruction, the realization of deterministic quantum teleportation, its quantum process tomography and the encoding of quantum information in decoherence-free subspaces with coherence times exceeding 20 seconds. (author)

  15. Experimental apparatus to test air trap valves

    Science.gov (United States)

    Lemos De Lucca, Y. de F.; de Aquino, G. A.; Filho, J. G. D.

    2010-08-01

    It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through "air trap valves". In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the "air trap valves". The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where "air trap valves" are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test "air trap valves". The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.

  16. Experimental apparatus to test air trap valves

    Energy Technology Data Exchange (ETDEWEB)

    Lemos De Lucca, Y de F [CTH-DAEE-USP/FAAP/UNICAMP (Brazil); Aquino, G A de [SABESP/UNICAMP (Brazil); Filho, J G D, E-mail: yvone.lucca@gmail.co [Water Resources Department, University of Campinas-UNICAMP, Av. Albert Einstein, 951, Cidade Universitaria-Barao Geraldo-Campinas, S.P., 13083-852 (Brazil)

    2010-08-15

    It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through 'air trap valves'. In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the 'air trap valves'. The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where 'air trap valves' are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test 'air trap valves'. The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.

  17. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    Science.gov (United States)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  18. Optimization of multifunnel traps for emerald ash borer (Coleoptera: Buprestidae): influence of size, trap coating, and color.

    Science.gov (United States)

    Francese, Joseph A; Rietz, Michael L; Mastro, Victor C

    2013-12-01

    Field assays were conducted in southeastern and south-central Michigan in 2011 and 2012 to optimize green and purple multifunnel (Lindgren funnel) traps for use as a survey tool for the emerald ash borer, Agrilus planipennis Fairmaire. Larger sized (12- and 16-unit) multifunnel traps caught more beetles than their smaller-sized (4- and 8-unit) counterparts. Green traps coated with untinted (white) fluon caught almost four times as many adult A. planipennis as Rain-X and tinted (green) fluon-coated traps and almost 33 times more beetles than untreated control traps. Purple multifunnel traps generally caught much lower numbers of A. planipennis adults than green traps, and trap catch on them was not affected by differences in the type of coating applied. However, trap coating was necessary as untreated control purple traps caught significantly less beetles than traps treated with Rain-X and untinted or tinted (purple) fluon. Proportions of male beetles captured were generally much higher on green traps than on purple traps, but sex ratios were not affected by trap coating. In 2012, a new shade of purple plastic, based on a better color match to an attractive purple paint than the previously used purple, was used for trapping assays. When multifunnel traps were treated with fluon, green traps caught more A. planipennis adults than both shades of purple and a prism trap that was manufactured based on the same color match. Trap catch was not affected by diluting the fluon concentration applied to traps to 50% (1:1 mixture in water). At 10%, trap catch was significantly lowered.

  19. Trapping and dark current in plasma-based accelerators

    International Nuclear Information System (INIS)

    Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

    2004-01-01

    The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed

  20. Trapping and Evolution Dynamics of Ultracold Two-Component Plasmas

    International Nuclear Information System (INIS)

    Choi, J.-H.; Knuffman, B.; Zhang, X. H.; Povilus, A. P.; Raithel, G.

    2008-01-01

    We demonstrate the trapping of a strongly magnetized, quasineutral ultracold plasma in a nested Penning trap with a background field of 2.9 T. Electrons remain trapped in this system for several milliseconds. Early in the evolution, the dynamics are driven by a breathing-mode oscillation in the ionic charge distribution, which modulates the electron trap depth. Over longer times scales, the electronic component undergoes cooling. Trap loss resulting from ExB drift is characterized

  1. Dynamic analysis of trapping and escaping in dual beam optical trap

    Science.gov (United States)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  2. Spatial mismatch between sea lamprey behaviour and trap location explains low success at trapping for control

    Science.gov (United States)

    Rous, Andrew M.; McLean, Adrienne R.; Barber, Jessica; Bravener, Gale; Castro-Santos, Theodore; Holbrook, Christopher M.; Imre, Istvan; Pratt, Thomas C.; McLaughlin, Robert L.

    2017-01-01

    Crucial to the management of invasive species is understanding space use and the environmental features affecting space use. Improved understanding of space use by invasive sea lamprey (Petromyzon marinus) could help researchers discern why trap success in large rivers is lower than needed for effective control. We tested whether manipulating discharge nightly could increase trap success at a hydroelectric generating station on the St. Marys River. We quantified numbers of acoustically tagged sea lampreys migrating up to, and their space use at, the hydroelectric generating station. In 2011 and 2012, 78% and 68%, respectively, of tagged sea lampreys reached the generating station. Sea lampreys were active along the face, but more likely to occur at the bottom and away from the traps near the surface, especially when discharge was high. Our findings suggest that a low probability of encountering traps was due to spatial (vertical) mismatch between space use by sea lamprey and trap locations and that increasing discharge did not alter space use in ways that increased trap encounter. Understanding space use by invasive species can help managers assess the efficacy of trapping and ways of improving trapping success.

  3. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    International Nuclear Information System (INIS)

    Charles Doret, S; Amini, Jason M; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C-S; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains. (paper)

  4. Trapping for invasive crayfish: comparisons of efficacy and selectivity of baited traps versus novel artificial refuge traps

    Directory of Open Access Journals (Sweden)

    Green Nicky

    2018-01-01

    Full Text Available Non-native crayfish can dominate the invertebrate biomass of invaded freshwaters, with their high ecological impacts resulting in their populations being controlled by numerous methods, especially trapping. Although baited funnel traps (BTs are commonly used, they tend to be selective in mainly catching large-bodied males. Here, the efficacy and selectivity of BTs were tested against an alternative trapping method based on artificial refuges (ARTs that comprised of a metal base with several tubes (refuges attached. The target species was signal crayfish Pacifastacus leniusculus in an upland river in southwest England. Trapping was completed in April to October over two consecutive years. In total, 5897 crayfish were captured, with 87% captured in ARTs. Comparison of the catch per unit effort (CPUE between the trapping methods in the same 24 hour periods revealed significantly higher CPUE in ARTs than of BTs. ARTs fished for 6 consecutive days had higher catches than both methods over 24 hours. Whilst catches in BTs were significantly dominated by males (1.49M:1F, the sex ratio of catches in ARTs was 0.99M:1F. The mean carapace length of crayfish was also significantly larger in BTs (43.2 ± 0.6 mm than in ARTs (33.6 ± 0.2 mm. Thus, ARTs had higher CPUE over 24 hour and 6 day periods versus BTs and also captured a greater proportion of smaller and female individuals. These results indicate that when trapping methods are deployed for managing invasions, the use of ARTs removes substantial numbers of crayfish of both sexes and of varying body sizes.

  5. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  6. Experimental pseudo-symmetric trap EPSILON

    International Nuclear Information System (INIS)

    Skovoroda, A.A.; Arsenin, V.V.; Dlougach, E.D.; Kulygin, V.M.; Kuyanov, A.Yu.; Timofeev, A.V.; Zhil'tsov, V.A.; Zvonkov, A.V.

    2001-01-01

    Within the framework of the conceptual project 'Adaptive Plasma EXperiment' a trap with the closed magnetic field lines 'Experimental Pseudo-Symmetric trap' is examined. The project APEX is directed at the theoretical and experimental development of physical foundations for stationary thermonuclear reactor on the basis of an alternative magnetic trap with tokamak-level confinement of high β plasma. The fundamental principle of magnetic field pseudosymmetry that should be satisfied for plasma to have tokamak-like confinement is discussed. The calculated in paraxial approximation examples of pseudosymmetric curvilinear elements with poloidal direction of B isolines are adduced. The EPSILON trap consisting of two straight axisymmetric mirrors linked by two curvilinear pseudosymmetric elements is considered. The plasma currents are short-circuited within the curvilinear element what increases the equilibrium β. The untraditional scheme of MHD stabilization of a trap with the closed field lines by the use of divertor inserted into axisymmetric mirror is analyzed. The experimental installation EPSILON-OME that is under construction for experimental check of divertor stabilization is discussed. The possibility of ECR plasma production in EPSILON-OME under conditions of high density and small magnetic field is examined. (author)

  7. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  8. Geomagnetically trapped carbon, nitrogen, and oxygen nuclei.

    Science.gov (United States)

    Mogro-Campero, A.

    1972-01-01

    Results of measurements carried out with the University of Chicago nuclear composition telescope on the Ogo 5 satellite, establishing the presence of 13- to 33-MeV/nucleon geomagnetically trapped C and O nuclei, with some evidence for N nuclei. These trapped nuclei were found at L less than or equal to 5 and near the geomagnetic equator. The data cover the period from Mar. 3, 1968, to Dec. 31, 1969. The distribution of CNO flux as a function of L is given. No change in the intensity of the average trapped CNO flux was detected by comparing data for 1968 and 1969. The results reported set a new value for the observed high energy limit of trapping as described by the critical adiabaticity parameter. The penetration of solar flare CNO up to L = 4 was observed twice in 1968, in disagreement with Stormer theory predictions. The effects of these results on some models for the origin of the trapped radiation are discussed.

  9. Two-species mixing in a nested Penning trap for antihydrogen trapping

    International Nuclear Information System (INIS)

    Ordonez, C. A.; Weathers, D. L.

    2008-01-01

    There exists an international quest to trap neutral antimatter in the form of antihydrogen for scientific study. One method that is being developed for trapping antihydrogen employs a nested Penning trap. Such a trap serves to mix positrons and antiprotons so as to produce low energy antihydrogen atoms. Mixing is achieved when the confinement volumes of the two species overlap one another. In the work presented here, a theoretical understanding of the mixing process is developed by analyzing a mixing scheme that was recently reported [G. Gabrielse et al., Phys. Rev. Lett. 100, 113001 (2008)]. The results indicate that positron space charge or collisions among antiprotons may substantially reduce the fraction of antiprotons that have an energy suitable for antihydrogen trapping

  10. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    Science.gov (United States)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  11. Quasi-conical centrifugal ion trap

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Solov'ev, K.V.; Grigor'ev, D.V.; Flegontova, E.Yu.

    1999-01-01

    This paper describes a new excellent ion trap that principally differs from the classic hyperbolic one by its action. The action is based on the axisymmetric electrostatic quasi-conical field with the following potential type: F=F 0 [ln r - r 2 /2+z 2 ], where r, z are cylindrical dimensionless coordinates. The radial potential run (f=ln r-r 2 /2), in this case, is exactly presented by the approximation function f a =ar 2 +b/r 2 +c. In addition, there are some ranges of r (for example, 0.6< r<0.35), in which the concurrence accuracy value is above 0.5%. The paper presents the theory of particles dynamics in the centrifugal trap. Basic correlation for resolution ratios and sensitivity values are developed. Recommendations on the centrifugal trap design implementation, including the recording system, are given

  12. Spectroscopy of a Synthetic Trapped Ion Qubit

    Science.gov (United States)

    Hucul, David; Christensen, Justin E.; Hudson, Eric R.; Campbell, Wesley C.

    2017-09-01

    133Ba+ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1 /2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser cool the synthetic A =133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the 62P1 /2↔62S1 /2 and 62P1 /2↔52D3 /2 electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the 62P1 /2↔52D3 /2 electronic transition isotope shift for the rare A =130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.

  13. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  14. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  15. Highly charged ion trapping and cooling

    International Nuclear Information System (INIS)

    Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.

    1998-01-01

    In the past few years a cryogenic Penning trap (RETRAP) has been operational at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory. The combination of RETRAP and EBIT provides a unique possibility of producing and re-trapping highly charged ions and cooling them to very low temperatures. Due to the high Coulomb potentials in such an ensemble of cold highly charged ions the Coulomb coupling parameter (the ratio of Coulomb potential to the thermal energy) can easily reach values of 172 and more. To study such systems is not only of interest in astrophysics to simulate White Dwarf star interiors but opens up new possibilities in a variety of areas (e.g. laser spectroscopy), cold highly charged ion beams

  16. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  17. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1979-10-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile may be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments

  18. Screening the Hanford tanks for trapped gas

    International Nuclear Information System (INIS)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford's nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list

  19. Particle confinement in penning traps an introduction

    CERN Document Server

    Vogel, Manuel

    2018-01-01

    This book provides an introduction to the field of Penning traps and related experimental techniques. It serves both as a primer for those entering the field, and as a quick reference for those working in it. The book is motivated by the observation that often a vast number of different resources have to be explored to gain a good overview of Penning trap principles. This is especially true for students who experience additional difficulty due to the different styles of presentation and notation. This volume provides a broad introductory overview in unified notation.

  20. Towards Antihydrogen Trapping and Spectroscopy at ALPHA

    CERN Document Server

    Butler, Eoin; Ashkezari, Mohammad.D.; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D.; Bray, Crystal C.; Cesar, Claudio L.; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C.; Gill, David R.; Hangst, Jeffrey S.; Hardy, Walter N.; Hayano, Ruyugo S.; Hayden, Michael E.; Humphries, Andrew J.; Hydomako, Richard; Jonsell, Svante; Kurchaninov, Leonid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M.; So, Chukman; Storey, James W.; Thompson, Robert I.; van der Werf, Dirk P.; Wilding, Dean; Wurtele, Jonathan S.; Yamazaki, Yasunori

    2011-01-01

    Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN's Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.

  1. DIRECT TUNNELLING AND MOSFET BORDER TRAPS

    Directory of Open Access Journals (Sweden)

    Vladimir Drach

    2015-09-01

    Full Text Available The border traps, in particular slow border traps, are being investigated in metal-oxide-semiconductor structures, utilizing n-channel MOSFET as a test sample. The industrial process technology of test samples manufacturing is described. The automated experimental setup is discussed, the implementation of the experimental setup had made it possible to complete the entire set of measurements. The schematic diagram of automated experimental setup is shown. The charging time characteristic of the ID-VG shift reveals that the charging process is a direct tunnelling process and highly bias dependent.

  2. In situ viscometry by optical trapping interferometry

    DEFF Research Database (Denmark)

    Guzmán, C.; Flyvbjerg, Henrik; Köszali, R.

    2008-01-01

    We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency of the f......We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency...

  3. Antiparticle sources for antihydrogen production and trapping

    DEFF Research Database (Denmark)

    Charlton, M.; Bruun Andresen, Gorm; Ashkezari, M. D.

    2011-01-01

    Sources of positrons and antiprotons that are currently used for the formation of antihydrogen with low kinetic energies are reviewed, mostly in the context of the ALPHA collaboration and its predecessor ATHENA. The experiments were undertaken at the Antiproton Decelerator facility, which...... is located at CERN. Operations performed on the clouds of antiparticles to facilitate their mixing to produce antihydrogen are described. These include accumulation, cooling and manipulation. The formation of antihydrogen and some of the characteristics of the anti-atoms that are created are discussed....... Prospects for trapping antihydrogen in a magnetic minimum trap, as envisaged by the ALPHA collaboration, are reviewed....

  4. Antiparticle sources for antihydrogen production and trapping

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, M; Bertsche, W; Butler, E; Humphries, A J [Department of Physics, Swansea University, Swansea SA2 8PP (United Kingdom); Andresen, G B; Bowe, P D; Hangst, J S [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M D; Hayden, M E [Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6 (Canada); Baquero-Ruiz, M; Bray, C C; Chapman, S; Fajans, J [Department of Physics, University of California, Berkeley, CA 94720-7300 (United States); Cesar, C L [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Friesen, T; Hydomako, R [Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4 (Canada); Fujiwara, M C; Gill, D R [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 (Canada); Hardy, W N [Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z4 (Canada); Hayano, R S, E-mail: M.Charlton@Swansea.ac.uk [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-12-01

    Sources of positrons and antiprotons that are currently used for the formation of antihydrogen with low kinetic energies are reviewed, mostly in the context of the ALPHA collaboration and its predecessor ATHENA. The experiments were undertaken at the Antiproton Decelerator facility, which is located at CERN. Operations performed on the clouds of antiparticles to facilitate their mixing to produce antihydrogen are described. These include accumulation, cooling and manipulation. The formation of antihydrogen and some of the characteristics of the anti-atoms that are created are discussed. Prospects for trapping antihydrogen in a magnetic minimum trap, as envisaged by the ALPHA collaboration, are reviewed.

  5. Multipole traps for non-neutral plasmas

    International Nuclear Information System (INIS)

    Tiouririne, T.N.; Turner, L.; Lau, A.W.C.

    1994-01-01

    A multipolar generalization of the Penning trap is presented. The case of l=1 is that of standard Penning trap. For the case of a quadrupolar magnetic field, analytic solutions are presented for cold, confined, one-species plasmas with spheroidal or spherical boundaries; for higher l values analytic solutions are given only for spherically bounded plasmas. By virtue of the sheared flow present for solutions with l>1, the classical Brillouin ratio (stored rest energy of particles/stored magnetic energy) of unity is exceeded and attains a global limit of 2 at infinitely high l

  6. Liquidity Traps with Global Taylor Rules

    OpenAIRE

    Stephanie Schmitt-Grohe; Martin Uribe

    2000-01-01

    A key result of a recent literature that focuses on the global consequences of Taylor-type interest rate feedback rules is that such rules, in combination with the zero-bound on nominal interest rates, can lead to unintended liquidity traps. An immediate question posed by this result is whether the government could avoid liquidity traps by ignoring the zero-bound, that is, by threatening to set the nominal interest rate at a negative value should the inflation rate fall below a certain thresh...

  7. Pairing fluctuations in trapped Fermi gases

    International Nuclear Information System (INIS)

    Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario

    2004-01-01

    We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas

  8. The NSSDC trapped radiation model facility

    International Nuclear Information System (INIS)

    Gaffey, J.D. Jr.; Bilitza, D.

    1990-01-01

    The National Space Science Data Center (NSSDC) trapped radiation models calculate the integral and differential electron and proton flux for given values of the particle energy E, drift shell parameter L, and magnetic field strength B for either solar maximum or solar minimum. The most recent versions of the series of models, which have been developed and continuously improved over several decades by Dr. James Vette and coworkers at NSSDC, are AE-8 for electrons and AP-8 for protons. The present status of the NSSDC trapped particle models is discussed. The limits of validity of the models are described. 17 refs

  9. Trapped particles at a magnetic discontinuity

    Science.gov (United States)

    Stern, D. P.

    1972-01-01

    At a tangential discontinuity between two constant magnetic fields a layer of trapped particles can exist, this work examines the conditions under which the current carried by such particles tends to maintain the discontinuity. Three cases are examined. If the discontinuity separates aligned vacuum fields, the only requirement is that they be antiparallel. With arbitrary relative orientations, the field must have equal intensities on both sides. Finally, with a guiding center plasma on both sides, the condition reduces to a relation which is also derivable from hydromagnetic theory. Arguments are presented for the occurrence of such trapped modes in the magnetopause and for the non-existence of specular particle reflection.

  10. Effects of neutrino trapping on supernova explosions

    International Nuclear Information System (INIS)

    Takahara, Mariko; Sato, Katsuhiko

    1982-01-01

    Effects of neutrino trapping on the mass ejection from the stellar cores are investigated with the aid of a simplified equation of state under the assumption of adiabatic collapse. It is found that mass ejection becomes violent only if the ratio of the trapped leptons to baryons, Y sub(L), lies in an appropriate range. If the value of Y sub(L) lies out of this range, mass ejection is difficult. It is also shown that as the thermal stiffness of the shocked matter increases, the range necessary for the violent mass ejection becomes wider. Possibilities of supernova explosion are discussed on the basis of these results. (author)

  11. Are BALQSOs extreme accretors?

    Science.gov (United States)

    Yuan, M. J.; Wills, B. J.

    2002-12-01

    Broad Absorption Line (BAL) QSOs are QSOs with massive absorbing outflows up to 0.2c. Two hypothesis have been suggested in the past about the nature of BALQSOs: Every QSO might have BAL outflow with some covering factor. BALQSOs are those which happen to have outflow along our line of sight. BALQSOs have intrinsically different physical properties than non-BALQSOs. Based on BALQSO's optical emission properties and a large set of correlations linking many general QSO emission line and continuum properties, it has been suggested that BALQSOs might accrete at near Eddington limit with abundant of fuel supplies. With new BALQSO Hβ region spectroscopic observation conducted at UKIRT and re-analysis of literature data for low and high redshift non-BALQSOs, We confirm that BALQSOs have extreme Fe II and [O III] emission line properties. Using results derived from the latest QSO Hβ region reverberation mapping, we calculated Eddington ratios (˙ {M}/˙ {M}Edd) for our BAL and non-BALQSOs. The Fe II and [O III] strengths are strongly correlated with Eddington ratios. Those correlations link Eddington ratio to a large set of general QSO properties through the Boroson & Green Eigenvector 1. We find that BALQSOs have Eddington ratios close to 1. However, all high redshift, high luminosity QSOs have rather high Eddington ratios. We argue that this is a side effect from selecting the brightest objects. In fact, our high redshift sample might constitute BALQSO's high Eddington ratio orientation parent population.

  12. A Computer Model of Insect Traps in a Landscape

    Science.gov (United States)

    Manoukis, Nicholas C.; Hall, Brian; Geib, Scott M.

    2014-11-01

    Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level, spatially explicit model of trap networks, focused on detection, that incorporates variable attractiveness of traps and a movement model for insect dispersion. We describe the model and validate its behavior using field trap data on networks targeting two species, Ceratitis capitata and Anoplophora glabripennis. Our model will assist efforts to optimize trap networks by 1) introducing an accessible and realistic mathematical characterization of the operation of a single trap that lends itself easily to parametrization via field experiments and 2) allowing direct quantification and comparison of sensitivity between trap networks. Results from the two case studies indicate that the relationship between number of traps and their spatial distribution and capture probability under the model is qualitatively dependent on the attractiveness of the traps, a result with important practical consequences.

  13. A note on extreme sets

    Directory of Open Access Journals (Sweden)

    Radosław Cymer

    2017-10-01

    Full Text Available In decomposition theory, extreme sets have been studied extensively due to its connection to perfect matchings in a graph. In this paper, we first define extreme sets with respect to degree-matchings and next investigate some of their properties. In particular, we prove the generalized Decomposition Theorem and give a characterization for the set of all extreme vertices in a graph.

  14. Ball-grid array architecture for microfabricated ion traps

    Science.gov (United States)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-05-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40Ca+ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171Yb+ ions in a second BGA trap.

  15. Ball-grid array architecture for microfabricated ion traps

    International Nuclear Information System (INIS)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-01-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40 Ca + ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171 Yb + ions in a second BGA trap

  16. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  17. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaë l; Davison, Anthony C.; Genton, Marc G.

    2015-01-01

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  18. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaël

    2015-11-17

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  19. A cryogenic electrostatic trap for long-time storage of keV ion beams

    Science.gov (United States)

    Lange, M.; Froese, M.; Menk, S.; Varju, J.; Bastert, R.; Blaum, K.; López-Urrutia, J. R. Crespo; Fellenberger, F.; Grieser, M.; von Hahn, R.; Heber, O.; Kühnel, K.-U.; Laux, F.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Schröter, C. D.; Schwalm, D.; Shornikov, A.; Sieber, T.; Toker, Y.; Ullrich, J.; Wolf, A.; Zajfman, D.

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2×103 cm-3, which for a room temperature environment corresponds to a pressure in the 10-14 mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  20. A cryogenic electrostatic trap for long-time storage of keV ion beams.

    Science.gov (United States)

    Lange, M; Froese, M; Menk, S; Varju, J; Bastert, R; Blaum, K; López-Urrutia, J R Crespo; Fellenberger, F; Grieser, M; von Hahn, R; Heber, O; Kühnel, K-U; Laux, F; Orlov, D A; Rappaport, M L; Repnow, R; Schröter, C D; Schwalm, D; Shornikov, A; Sieber, T; Toker, Y; Ullrich, J; Wolf, A; Zajfman, D

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  1. Thermometry of levitated nanoparticles in a hybrid electro-optical trap

    Science.gov (United States)

    Aranas, E. B.; Fonseca, P. Z. G.; Barker, P. F.; Monteiro, T. S.

    2017-03-01

    There have been recent rapid developments in stable trapping of levitated nanoparticles in high vacuum. Cooling of nanoparticles, from phonon occupancies of 107 down to ≃ 100{--}1000 phonons, have already been achieved by several groups. Prospects for quantum ground-state cooling seem extremely promising. Cavity-cooling without added stabilisation by feedback cooling remains challenging, but trapping at high vacuum in a cavity is now possible through the addition of a Paul trap. However, the Paul trap has been found to qualitatively modify the cavity output spectrum, with the latter acquiring an atypical ‘split-sideband’ structure, of different form from the displacement spectrum, and which depends on N, the optical well at which the particle localises. In the present work we investigate the N-dependence of the dynamics, in particular with respect to thermometry: we show that in strong cooling regions N≳ 100, the temperature may still be reliably inferred from the cavity output spectra. We also explain the N-dependence of the mechanical frequencies and optomechanical coupling showing that these may be accurately estimated. We present a simple ‘fast-cavity’ model for the cavity output and test all our findings against full numerical solutions of the nonlinear stochastic equations of motion for the system.

  2. Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes

    Science.gov (United States)

    Redshaw, M.; Barquest, B. R.; Bollen, G.; Bustabad, S. E.; Campbell, C. M.; Ferrer, R.; Gehring, A.; Kwiatkowski, A. A.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Ringle, R.; Schwarz, S.

    2011-07-01

    The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.

  3. Technical developments for an upgrade of the LEBIT Penning trap mass spectrometry facility for rare isotopes

    International Nuclear Information System (INIS)

    Redshaw, M.; Barquest, B. R.; Bollen, G.; Bustabad, S. E.; Campbell, C. M.; Ferrer, R.; Gehring, A.; Kwiatkowski, A. A.; Lincoln, D. L.; Morrissey, D. J.; Pang, G. K.; Ringle, R.; Schwarz, S.

    2011-01-01

    The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.

  4. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    Science.gov (United States)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  5. Further outlooks: extremely uncomfortable; Die weiteren Aussichten: extrem ungemuetlich

    Energy Technology Data Exchange (ETDEWEB)

    Resenhoeft, T.

    2006-07-01

    Climate is changing extremely in the last decades. Scientists dealing with extreme weather, should not only stare at computer simulations. They have also to turn towards psyche, seriously personal experiences, knowing statistics, relativise supposed sensational reports and last not least collecting more data. (GL)

  6. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    extreme frequency); the average intensity of rainfall from extreme events ... frequency and extreme intensity indices, suggesting that extreme events are more frequent and intense during years with high rainfall. The proportion of total rainfall from ...

  7. The LPCTrap facility for in-trap decay experiments

    International Nuclear Information System (INIS)

    Rodriguez, D.; Ban, G.; Durand, D.; Duval, F.; Flechard, X.; Herbane, M.; Lienard, E.; Mauger, F.; Mery, A.; Naviliat-Cuncic, O.; Thomas, J.-C.

    2007-01-01

    The LPCTrap facility is coupled to the low-energy beam line LIRAT of the SPIRAL source at GANIL (France). The facility comprises an RFQ trap for beam preparation and a transparent Paul trap for in-trap decay studies. The system has been tested for several ion species. The Paul trap has been fully characterized for 6 Li + and 23 Na + ions. This characterization together with GEANT4 simulations of the in-trap decay setup (Paul trap and detection system) has permitted to predict the effect of the size of the ion cloud on the decay study of 6 He + .

  8. Investigation of two-frequency Paul traps for antihydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Leefer, Nathan; Krimmel, Kai, E-mail: kkrimmel@students.uni-mainz.de [Helmholtz-Institut Mainz (Germany); Bertsche, William [University of Manchester (United Kingdom); Budker, Dmitry [Helmholtz-Institut Mainz (Germany); Fajans, Joel [University of California at Berkeley, Department of Physics (United States); Folman, Ron [Ben-Gurion University of the Negev, Department of Physics (Israel); Häffner, Hartmut [University of California at Berkeley, Department of Physics (United States); Schmidt-Kaler, Ferdinand [Helmholtz-Institut Mainz (Germany)

    2017-11-15

    Radio-frequency (rf) Paul traps operated with multifrequency rf trapping potentials provide the ability to independently confine charged particle species with widely different charge-to-mass ratios. In particular, these traps may find use in the field of antihydrogen recombination, allowing antiproton and positron clouds to be trapped and confined in the same volume without the use of large superconducting magnets. We explore the stability regions of two-frequency Paul traps and perform numerical simulations of small samples of multispecies charged-particle mixtures of up to twelve particles that indicate the promise of these traps for antihydrogen recombination.

  9. Efficacy of multifunnel traps for capturing emerald ash borer (Coleoptera: Buprestidae): effect of color, glue, and other trap coatings.

    Science.gov (United States)

    Francese, Joseph A; Fraser, Ivich; Lance, David R; Mastro, Victor C

    2011-06-01

    Tens of thousands of adhesive-coated purple prism traps are deployed annually in the United States to survey for the invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). A reusable, more user-friendly trap is desired by program managers, surveyors, and researchers. Field assays were conducted in southeastern Michigan to ascertain the feasibility of using nonsticky traps as survey and detection tools for emerald ash borer. Three nonsticky trap designs, including multifunnel (Lindgren), modified intercept panel, and drainpipe (all painted purple) were compared with the standard purple prism trap; no statistical differences in capture of emerald ash borer adults were detected between the multifunnel design and the prism. In subsequent color comparison assays, both green- and purple-painted multifunnel traps (and later, plastic versions of these colors) performed as well or better than the prism traps. Multifunnel traps coated with spray-on adhesive caught more beetles than untreated traps. The increased catch, however, occurred in the traps' collection cups and not on the trap surface. In a separate assay, there was no significant difference detected between glue-coated traps and Rain-X (normally a glass treatment)-coated traps, but both caught significantly more A. planipennis adults than untreated traps.

  10. Soil conservation through sediment trapping: a review

    NARCIS (Netherlands)

    Getahun, M.M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.M.; Maroulis, J.

    2015-01-01

    Preventing the off-site effects of soil erosion is an essential part of good catchment management. Most efforts are in the form of on-site soil and water conservation measures. However, sediment trapping can be an alternative (additional) measure to prevent the negative off-site effects of soil

  11. Brilliant glyconanocapsules for trapping of bacteria.

    Science.gov (United States)

    Yan, Xibo; Sivignon, Adeline; Alcouffe, Pierre; Burdin, Béatrice; Favre-Bonté, Sabine; Bilyy, Rostyslav; Barnich, Nicolas; Fleury, Etienne; Ganachaud, François; Bernard, Julien

    2015-08-28

    Nanoprecipitation of miglyol into droplets surrounded by a functional glycopolymer generates nanocapsules of biointerest. Fluorophores are trapped in situ or post-grafted onto the crosslinked polymer shell for efficient imaging. The resulting colloids induce aggregation of bacteria through strong specific interactions and promote their facile removal.

  12. Brilliant glyconanocapsules for trapping of bacteria

    OpenAIRE

    Yan, Xibo; Sivignon, Adeline; Alcouffe, Pierre; Burdin, Béatrice; Favre-Bonté, Sabine; Bilyy, Rostyslav; Barnich, Nicolas; Fleury, Etienne; Ganachaud, François; Bernard, Julien

    2015-01-01

    Nanoprecipitation of miglyol into droplets surrounded by a functional glycopolymer generates nanocapsules of biointerest. Fluorophores are trapped in situ or post-grafted onto the crosslinked polymer shell for efficient imaging. The resulting colloids induce aggregation of bacteria through strong specific interactions and promote their facile removal.

  13. Microwave quantum logic gates for trapped ions.

    Science.gov (United States)

    Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J

    2011-08-10

    Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.

  14. Optical system for trapping particles in air.

    Science.gov (United States)

    Kampmann, R; Chall, A K; Kleindienst, R; Sinzinger, S

    2014-02-01

    An innovative optical system for trapping particles in air is presented. We demonstrate an optical system specifically optimized for high precision positioning of objects with a size of several micrometers within a nanopositioning and nanomeasuring machine (NPMM). Based on a specification sheet, an initial system design was calculated and optimized in an iterative design process. By combining optical design software with optical force simulation tools, a highly efficient optical system was developed. Both components of the system, which include a refractive double axicon and a parabolic ring mirror, were fabricated by ultra-precision turning. The characterization of the optical elements and the whole system, especially the force simulations based on caustic measurements, represent an important interim result for the subsequently performed trapping experiments. The caustic of the trapping beam produced by the system was visualized with the help of image processing techniques. Finally, we demonstrated the unique efficiency of the configuration by reproducibly trapping fused silica spheres with a diameter of 10 μm at a distance of 2.05 mm from the final optical surface.

  15. Self-trapped states in proteins?

    NARCIS (Netherlands)

    Austin, R. H.; Xie, A. H.; van der Meer, L.; Shinn, M.; Neil, G.

    2003-01-01

    We show here that the temperature dependence of the amide I band of myoglobin shows evidence for a low-lying S-elf-trapped state at 6.15 mum. We have conducted a careful set of picosecond pump-probe experiments providing results as a function of temperature. and wavelength and show that this

  16. Photoluminescence, trap states and thermoluminescence decay ...

    Indian Academy of Sciences (India)

    Administrator

    Photoluminescence, trap states and thermoluminescence decay process study of Ca2MgSi2O7 : Eu. 2+. , Dy. 3+ phosphor. RAVI SHRIVASTAVA*, JAGJEET KAUR, VIKAS DUBEY and BEENA JAYKUMAR. Govt. VYT PG Autonomous College, Durg 491 001, (C.G.) India. MS received 9 July 2013; revised 5 December 2013.

  17. Sawtooth stabilization by energetic trapped particles

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Colestock, P.; Bussac, M.N.

    1988-03-01

    Recent experiments involving high power radio-frequency heating of a tokamak plasma show strong suppression of the sawtooth oscillation. A high energy trapped particle population is shown to have a strong stabilizing effect on the internal resistive kink mode. Numerical calculations are in reasonable agreement with experiment. 13 refs., 2 figs

  18. Dissipative Solitons that Cannot be Trapped

    International Nuclear Information System (INIS)

    Pardo, Rosa; Perez-Garcia, Victor M.

    2006-01-01

    We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states

  19. Spectral intensity distribution of trapped fermions

    Indian Academy of Sciences (India)

    Trapped fermions; local density approximation; spectral intensity distribution function. ... Thus, cold atomic systems allow us to study interesting ... In fermions, synthetic non-Abelian gauge ... energy eigenstates of the isotropic harmonic oscillator [26–28]. ... d i=1. (ni + 1. 2. )ω0. In calculating the SIDF exactly these eigenfunc-.

  20. Low temperature delayed recombinationand trap tunneling

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Schulman, L. S.

    2015-01-01

    Roč. 27, č. 7 (2015), 1-8 ISSN 0953-8984 Grant - others:AVČR(CZ) M100101212 Institutional support: RVO:68378271 Keywords : scintillator * tunneling * traps Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  1. Condensate growth in trapped Bose gates

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate fromation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field efects in the condensed and the noncondensed parts of the gas.

  2. Condensate growth in trapped Bose gases

    NARCIS (Netherlands)

    Bijlsma, M.J.; Zaremba, E.; Stoof, H.T.C.

    2000-01-01

    We study the dynamics of condensate formation in an inhomogeneous trapped Bose gas with a positive interatomic scattering length. We take into account both the nonequilibrium kinetics of the thermal cloud and the Hartree-Fock mean-field effects in the condensed and the noncondensed parts of the gas.

  3. Iodide-trapping defect of the thyroid

    International Nuclear Information System (INIS)

    Pannall, P.R.; Steyn, A.F.; Van Reenen, O.

    1978-01-01

    We describe a grossly hypothyroid 50-year-old woman, mentally retarded since birth. On the basis of her history of recurrent goitre, absence of 131 I neck uptake and a low saliva/plasma 131 I ratio, congenital hypothyroidism due to a defect of the iodide-trapping mechanism was diagnosed. Other family members studied did not have the defect

  4. Hydrogen and deuterium trapping in iron

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H H; Lin, R W

    1981-02-01

    The research described is directed at present almost exclusively to hydrogen transport, including both chemical and physical trapping, in iron and iron-base alloys. Some attention is directed to isotope effects. Efforts are made to clarify and understand hydrogen-related phenomena which are believed to be of direct importance to practical performance.

  5. Trapped or Spurred by the Home Region?

    DEFF Research Database (Denmark)

    Laursen, Keld; Masciarelli, Francesca; Prencipe, Andrea

    2012-01-01

    for goods and technology, thereby enhancing firms’ involvement in those foreign markets. When potential social capital reaches a certain threshold, it may work to trap firms into operating only within their home regions, thus reducing involvement in foreign markets. We conjecture that firms’ research...

  6. A naturally occurring trap for antiprotons

    International Nuclear Information System (INIS)

    Eades, J.; Morita, N.; Ito, T.M.

    1993-05-01

    The phenomenon of delayed annihilation of antiprotons in helium is the first instance of a naturally occurring trap for antimatter in ordinary matter. Recent studies of this effect at CERN are summarized, and plans are described for laser excitation experiments to test its interpretation in terms of metastable exotic helium atom formation. (author)

  7. Colloquium: Quantum Networks with Trapped Ions

    Science.gov (United States)

    2010-04-28

    observed be- tween two ions held in the same trap Eichmann et al., 1993; DeVoe and Brewer, 1996. Type-II links have the advantage of being less sensitive...Childress, E. Jiang, J. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, 2007, Science 316, 1312. Eichmann , U., J. C. Bergquist

  8. Laser cooling and trapping of barium

    NARCIS (Netherlands)

    De, Subhadeep

    2008-01-01

    Laser cooling and trapping of heavy alkaline-earth element barium have been demonstrated for the first time ever. For any possible cycling transition in barium that could provide strong cooling forces, the excited state has a very large branching probability to metastable states. Additional lasers

  9. Laser cooling and trapping of neutral atoms

    International Nuclear Information System (INIS)

    Phillips, W.D.

    1998-01-01

    The article is a translation of the lecture given on the occasion of the 1997 Nobel Prize awarding ceremony. The history of the discovery of laser cooling and trapping of neutral atoms is described. An explanation of this phenomenon is presented and the author's personal contribution to the discovery is highlighted. The article is completed by Dr. Phillips' autobiography. (Z.J.)

  10. Traps for antimatter and antihydrogen production

    International Nuclear Information System (INIS)

    Holzscheiter, M.H.

    1994-01-01

    Even though positrons have been captured and stored in ion traps for precision measurements, the recent trapping and cooling of antiprotons may be considered as the beginning of a new era in antimatter research. For the first time all the ingredients to produce the first atom of the antimatter world, the antihydrogen atom, are at hand, and several groups have entered an active discussion on the feasibility of producing antihydrogen as well as on the possibility to perform precision tests on CPT and gravity. At the same time, the trapping of reasonable large numbers of antiprotons has opened up the way for a variety of exciting physics with ultra-low energy antiprotons, ranging from atomic physics issues to nuclear physics and medical applications. I will describe the current status of the work on trapping antiprotons and positrons, discuss possible physics applications of this technique, and describe the two most promising routes to produce antihydrogen for precision spectroscopy. Towards the end a few comments on storing the produced antihydrogen and on utilizing antihydrogen for gravity measurements and for CPT tests are given

  11. Management of the mangled extremity

    NARCIS (Netherlands)

    Prasarn, Mark L.; Helfet, David L.; Kloen, Peter

    2012-01-01

    The management of a mangled extremity continues to be a matter of debate. With modern advances in trauma resuscitation, microvascular tissue transfer, and fracture fixation, severe traumatic extremity injuries that would historically have been amputated are often salvaged. Even if preserving a

  12. A decade of weather extremes

    NARCIS (Netherlands)

    Coumou, Dim; Rahmstorf, Stefan

    The ostensibly large number of recent extreme weather events has triggered intensive discussions, both in- and outside the scientific community, on whether they are related to global warming. Here, we review the evidence and argue that for some types of extreme - notably heatwaves, but also

  13. Attitude extremity, consensus and diagnosticity

    NARCIS (Netherlands)

    van der Pligt, J.; Ester, P.; van der Linden, J.

    1983-01-01

    Studied the effects of attitude extremity on perceived consensus and willingness to ascribe trait terms to others with either pro- or antinuclear attitudes. 611 Ss rated their attitudes toward nuclear energy on a 5-point scale. Results show that attitude extremity affected consensus estimates. Trait

  14. High trapped fields in bulk YBCO superconductors

    Science.gov (United States)

    Fuchs, Günter; Gruss, Stefan; Krabbes, Gernot; Schätzle, Peter; Verges, Peter; Müller, Karl-Hartmut; Fink, Jörg; Schultz, Ludwig

    The trapped field properties of bulk melt-textured YBCO material were investigated at different temperatures. In the temperature range of liquid nitrogen, maximum trapped fields of 1.1 T were found at 77 K by doping of YBCO with small amounts of zinc. The improved pinning of zinc-doped YBa2Cu3O7-x (YBCO) results in a pronounced peak effect in the field dependence of the critical current density. the trapped field at lower temperatures increases due to the increasing critical current density, however, at temperatures around 50 K cracking of the material is observed which is exposed to considerably tensile stresses due to Lorentz forces. Very high trapped fields up to 14.4 T were achieved at 22.5 K for a YBCO disk pair by the addition of silver improving the tensile strength of YBCO and by using a bandage made of a steel tube. The steel tube produces a compressive stress on YBCO after cooling down from 300 K to the measuring temperature, which is due to the higher coeeficient of thermal expansion of steel compared with that of YBCO in the a,b plane. The application of superconducting permanent magnets with trapped fields of 10 T and more in superconducting bearings would allow to obtain very high levitation pressures up to 2500 N/cm2 which is two orders of magnitude higher than the levitation pressure achievable in superconducting bearings with conventional permanent magnets. The most important problem for the application of superconducting permanent magnets is the magnetizing procedure of the YBCO material. Results of magnetizing YBCO disks by using of pulsed magnetic fields will be presented.

  15. Resonant quantum transitions in trapped antihydrogen atoms.

    Science.gov (United States)

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  16. Utilization of the ion traps by SPIRAL

    International Nuclear Information System (INIS)

    Le Brun, C.; Lienard, E.; Mauger, F.; Tamain, B.

    1997-01-01

    An ion trap is a device capable of confine particles, ions or atoms in a well-controlled environment isolated from any exterior perturbations. There are different traps. They are utilized to collect or stock ions, to cool them after in order to subject them to high precision measurement of masses, magnetic moments, hyperfine properties, beta decay properties, etc. Some dozen of traps are currently used all over the world to study stable or radioactive ions.. SPIRAL has been designed and built to produce radioactive ions starting from various heavy ion beams. SPIRAL has the advantage that the projectile parameters, the target and the energy can be chosen to optimize the production in various regions of the nuclear chart. Also, in SPIRAL it is possible to extract more rapidly the radioactive ions formed in the targets. In addition, in SPIRAL the multicharged ion production in a ECR source is possible. The utilization of multicharged ions is indeed very useful for fast mass measurements or for the study of the interaction between the nucleus and the electronic cloud. Finally, utilization of a ion trap on SPIRAL can be designed first at the level of production target by installing a low energy output line. Than, the trap system could be up-graded and brought to its full utilization behind of the recoil spectrometer. It must be capable of selecting and slowing down the ions produced in the reactions (fusion transfer, very inelastic collisions, etc.) induced by the radioactive ions accelerated in CIME. At present, the collaboration is debating on the most favored subject to study and the most suited experimental setups. The following subjects were selected: ion capture, purification and manipulation; isomers (separation and utilization); mass measurements; hyperfine interactions; lifetimes, nuclear electric cloud; β decays; study of the N = Z nuclei close to the proton drip line; physical and chemical properties of transuranium systems

  17. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  18. Trapping technology for gaseous fission products from voloxidation process

    International Nuclear Information System (INIS)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S.

    2005-05-01

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, 14 C, Kr, Xe, I and 3 H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and 14 C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for 3 H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system

  19. Trapping technology for gaseous fission products from voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Jung, I. H.; Lee, H. H.; Kim, G. H.; Yang, M. S

    2005-05-15

    The objective of this report is to review the different technologies for trapping the gaseous wastes containing Cs, Ru, Tc, {sup 14}C, Kr, Xe, I and {sup 3}H from a voloxidation process. Based on literature reviews and KAERI's experimental results on the gaseous fission products trapping, appropriate trapping method for each fission product has been selected considering process reliability, simplicity, decontamination factor, availability, and disposal. Specifically, the most promising trapping method for each fission product has been proposed for the development of the INL off-gas trapping system. A fly ash filter is proposed as a trapping media for a cesium trapping unit. In addition, a calcium filter is proposed as a trapping media for ruthenium, technetium, and {sup 14}C trapping unit. In case of I trapping unit, AgX is proposed. For Kr and Xe, adsorption on solid is proposed. SDBC (Styrene Divinyl Benzene Copolymer) is also proposed as a conversion media to HTO for {sup 3}H. This report will be used as a useful means for analyzing the known trapping technologies and help selecting the appropriate trapping methods for trapping volatile and semi-volatile fission products, long-lived fission products, and major heat sources generated from a voloxidation process. It can also be used to design an off-gas treatment system.

  20. LGR adult trap data - Operation of the adult trap at Lower Granite Dam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Bonneville Power Administration (BPA) - funded project pays for NOAA staff to operate the adult salmon trap located in the fish ladder at Lower Granite Dam. The...

  1. Malaysian skills development and the middle-income trap

    DEFF Research Database (Denmark)

    Søborg, Henrik

    Education, human resource training, middle-income trap and the way towards a more knowledge-based economy......Education, human resource training, middle-income trap and the way towards a more knowledge-based economy...

  2. Design of a marine sediment trap and accessories

    Digital Repository Service at National Institute of Oceanography (India)

    Janakiraman, G.; Fernando, V.; Venkatesan, R.; Rajaraman, V.S.

    The marine sediment trap and the mooring accessories were developed indigenously and were used successfully for the collection of settling sediments in the Arabian Sea The experience gained in using sediment trap and further improvements...

  3. Continuous Arsine Detection Using a Peltier-Effect Cryogenic Trap To Selectively Trap Methylated Arsines.

    Science.gov (United States)

    Chen, Guoying; Lai, Bunhong; Mao, Xuefei; Chen, Tuanwei; Chen, Miaomiao

    2017-09-05

    Hydride generation (HG) is an effective technique that eliminates interfering matrix species and enables hydride separation. Arsenic speciation analysis can be fulfilled by cryogenic trapping (CT) based on boiling points of resulting arsines using liquid nitrogen (LN 2 ) as a coolant. In this work, LN 2 was replaced by the thermoelectric effect using a cryogenic trap that consisted of a polytetrafluoroethylene (PTFE) body sandwiched by two Peltier modules. After the trap was precooled, the arsines flew along a zigzag channel in the body and reached a sorbent bed of 0.2 g of 15% OV-3 on Chromosorb W-AW-DMCS imbedded near the exit of the trap. CH 3 AsH 2 and (CH 3 ) 2 AsH were trapped, while AsH 3 , that passed the trap unaffected, was detected by atomic fluorescence spectrometry. Continuous operation led to enhanced throughput. For inorganic As, the limit of detection (LOD) was 1.1 ng/g and recovery was 101.0 ± 1.1%. Monomethylarsonic acid and dimethylarsinic acid did not interfere with 0.2 ± 1.2% and -0.3 ± 0.5% recoveries, respectively.

  4. Possibilities for achieving antihydrogen recombination and trapping using a nested Penning trap and a magnetic well

    International Nuclear Information System (INIS)

    Ordonez, C.A.; Dolliver, D.D.; Chang Yongbin; Correa, J. R.

    2002-01-01

    A theoretical study is presented regarding some possibilities for achieving antihydrogen recombination and trapping using a nested Penning trap and a magnetic well. The work reported consists of a review, an extension, and applications of the relevant knowledge base. A nested Penning trap produces a magnetic field, which provides plasma confinement perpendicular to the magnetic field, and an electric field associated with a nested-well potential profile. The nested-well potential profile provides plasma confinement parallel to the magnetic field for oppositely signed plasma species that can have overlapping confinement regions. A configuration is considered in which the electric field is applied in two regions of uniform magnetic field that reside on opposite sides of a magnetic well region. The electric field confines overlapping positron and antiproton plasmas, which thread the magnetic well region. The magnetic well region would serve to trap a fraction of any antihydrogen atoms that are formed. Two different methods are considered for achieving overlap of positron and antiproton plasmas. For each, a set of conditions is predicted for achieving antihydrogen recombination and trapping. Although the study reported specifically considers simultaneous confinement of positron and antiproton plasmas in nested Penning traps, much of the information presented is also relevant to the prospect of merging other pairs of oppositely signed plasmas (e.g., electron and positron plasmas)

  5. Sognenavne, Lemvig Kommune (18 artikler). trap.dk

    DEFF Research Database (Denmark)

    Kællerød, Lars-Jakob Harding

    2017-01-01

    Artikler til Trap Danmarks netpublikation trap.dk Sognenavnene Bøvling, Dybe, Engbjerg, Fabjerg, Ferring, Fjaltring, Flynder, Gudum, Heldum, Hygum, Lomborg, Møborg, Nees, Nørlem, Rom, Trans, Tørring og Vandborg......Artikler til Trap Danmarks netpublikation trap.dk Sognenavnene Bøvling, Dybe, Engbjerg, Fabjerg, Ferring, Fjaltring, Flynder, Gudum, Heldum, Hygum, Lomborg, Møborg, Nees, Nørlem, Rom, Trans, Tørring og Vandborg...

  6. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  7. Evolution caused by extreme events.

    Science.gov (United States)

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  8. Colored Sticky Traps to Selectively Survey Thrips in Cowpea Ecosystem.

    Science.gov (United States)

    Tang, L D; Zhao, H Y; Fu, B L; Han, Y; Liu, K; Wu, J H

    2016-02-01

    The bean flower thrips, Megalurothrips usitatus (Bagrall) (Thysanoptera: Thripidae), is an important pest of legume crops in South China. Yellow, blue, or white sticky traps are currently recommended for monitoring and controlling thrips, but it is not known whether one is more efficient than the other or if selectivity could be optimized by trap color. We investigated the response of thrips and beneficial insects to different-colored sticky traps on cowpea, Vigna unguiculata. More thrips were caught on blue, light blue, white, and purple traps than on yellow, green, pink, gray, red, or black traps. There was a weak correlation on the number of thrips caught on yellow traps and survey from flowers (r = 0.139), whereas a strong correlation was found for blue traps and thrips' survey on flowers (r = 0.929). On commercially available sticky traps (Jiaduo®), two and five times more thrips were caught on blue traps than on white and yellow traps, respectively. Otherwise, capture of beneficial insects was 1.7 times higher on yellow than on blue traps. The major natural enemies were the predatory ladybird beetles (63%) and pirate bugs Orius spp. (29%), followed by a number of less representative predators and parasitoids (8%). We conclude the blue sticky trap was the best to monitor thrips on cowpea in South China.

  9. Trapping of Rydberg atoms in tight magnetic microtraps

    NARCIS (Netherlands)

    Boetes, A.Q.G.; Skannrup, R.V.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2018-01-01

    We explore the possibility to trap Rydberg atoms in tightly confining magnetic microtraps. The trapping frequencies for Rydberg atoms are expected to be influenced strongly by magnetic-field gradients. We show that there are regimes where Rydberg atoms can be trapped. Moreover, we show that

  10. Production of cold antihydrogen in a nested trap

    International Nuclear Information System (INIS)

    Fujiwara, Makoto

    2004-01-01

    The ATHENA experiment at CERN produced and detected the first cold antihydrogen atoms. Antiprotons and positrons are mixed in a double Penning trap, known as a nested trap. The production of antihydrogen atoms was identified by detecting their annihilations signatures at trap wall. With the ATHENA results subsequently confirmed by another CERN experiment, ATRAP, cold antihydrogen research is entering an exciting era. (author)

  11. Using Malaise traps to sample ground beetles (Coleoptera: Carabidae)

    Science.gov (United States)

    Michael D. Ulyshen; James L. Hanula; Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages...

  12. The LEBIT 9.4 T Penning trap system

    Energy Technology Data Exchange (ETDEWEB)

    Ringle, R.; Bollen, G.; Schury, P.; Sun, T. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Lawton, D.; Schwarz, S. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States)

    2005-09-01

    The initial experimental program with the Low-Energy Beam and Ion Trap Facility, or LEBIT, will concentrate on Penning trap mass measurements of rare isotopes, delivered by the Coupled Cyclotron Facility (CCF) of the NSCL. The LEBIT Penning trap system has been optimized for high-accuracy mass measurements of very short-lived isotopes. (orig.)

  13. The LEBIT 9.4 T Penning trap system

    International Nuclear Information System (INIS)

    Ringle, R.; Bollen, G.; Schury, P.; Sun, T.; Lawton, D.; Schwarz, S.

    2005-01-01

    The initial experimental program with the Low-Energy Beam and Ion Trap Facility, or LEBIT, will concentrate on Penning trap mass measurements of rare isotopes, delivered by the Coupled Cyclotron Facility (CCF) of the NSCL. The LEBIT Penning trap system has been optimized for high-accuracy mass measurements of very short-lived isotopes. (orig.)

  14. Calculated trapping curves of D in C and Si

    International Nuclear Information System (INIS)

    Eckstein, W.

    1980-10-01

    The trapping of deuterium in solids is investigated with the Monte Carlo program TRIM. The amount of deuterium trapped in amorphous carbon and silicon exposed to a plasma is calculated as a function of incident fluence and plasma temperature. These data can be used to obtain plasma parameters from measured trapping curves on probes exposed to a plasma. (orig.)

  15. 3D-Printed external light traps for solar cells

    NARCIS (Netherlands)

    van Dijk, L.; Paetzold, U.W.; Blab, Gerhard; Marcus, E.A.P.; Oostra, A.J.; van de Groep, J.; Polman, A.; Schropp, R.E.I.; Di Vece, M.

    2015-01-01

    We demonstrate a universally applicable 3D-printed external light trap for solar cells. We placed a macroscopic external light trap made of smoothened, silver coated plastic at the sun-facing surface of different types of solar cells. The trap consists of a reflective parabolic concentrator on top

  16. Characterization of a magnetic trap by polarization dependent Zeeman spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Carsten Vandel; Lyngsøe, Jens Kristian; Thorseth, Anders

    2008-01-01

    This paper demonstrates a detailed experimental study of our cloverleaf magnetic trap for sodium atoms. By using polarization dependent Zeeman spectroscopy of our atomic beam, passing the magnetic trap region, we have determined important trap parameters such as gradients, their curvatures...

  17. Ultrasonic trap for light scattering measurement

    Science.gov (United States)

    Barton, Petr; Pavlu, Jiri

    2017-04-01

    Light scattering is complex phenomenon occurring widely in space environments, including the dense dusty clouds, nebulas or even the upper atmosphere of the Earth. However, when the size of the dust (or of other scattering center) is close to the incident light wavelength, theoretical determination is difficult. In such case, Mie theory is to be used but there is a lack of the material constants for most space-related materials. For experimental measurement of light scattering, we designed unique apparatus, based on ultrasonic trap. Using acoustic levitation we are able to capture the dust grain in midair, irradiate it with laser, and observe scattering directly with goniometer-mounted photodiode. Advantage of this approach is ability to measure directly in the air (thus, no need for the carrier medium) and possibility to study non-spherical particles. Since the trap development is nearly finished and initial experiments are carried out, the paper presents first tests on water droplets.

  18. Towards antihydrogen trapping and spectroscopy at ALPHA

    International Nuclear Information System (INIS)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.

    2011-01-01

    Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN’s Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.

  19. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  20. Volume traps - a new retrospective radon monitor

    International Nuclear Information System (INIS)

    Oberstedt, S.; Vanmarcke, H.

    1994-11-01

    A new method to trace back average radon concentrations in dwellings over several decades in time has been developed. This retrospective radon monitor is based on the measurement of the alpha activity of 210 Po deposited in volume traps, for example spongy materials used for mattresses and cushions. Polyester samples with different densities have been exposed to radon-laden air. The exposures correspond to characteristic radon concentrations between 390 Bq/m 3 and 3.9 Bq/m 3 over a 20 years period. The precision in converting the 210 Po signal to the radon exposure has been improved by more than one order of magnitude compared to other common techniques. It is shown that this very sensitive method may be applied to almost all types of volume traps used in households

  1. Trapped Ion Quantum Computation by Adiabatic Passage

    International Nuclear Information System (INIS)

    Feng Xuni; Wu Chunfeng; Lai, C. H.; Oh, C. H.

    2008-01-01

    We propose a new universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

  2. Nonlinear PIC simulation in a Penning trap

    International Nuclear Information System (INIS)

    Lapenta, G.; Delzanno, G.L.; Finn, J. M.

    2002-01-01

    We study the nonlinear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids

  3. Scalable quantum search using trapped ions

    International Nuclear Information System (INIS)

    Ivanov, S. S.; Ivanov, P. A.; Linington, I. E.; Vitanov, N. V.

    2010-01-01

    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using adiabatic techniques. The inversion-about-average and oracle operators take the form of single off-resonant laser pulses. This is made possible by utilizing the physical symmetries of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This not only facilitates the implementation but also increases the overall fidelity of the algorithm.

  4. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  5. Ripple induced trapped particle loss in tokamaks

    International Nuclear Information System (INIS)

    White, R.B.

    1996-05-01

    The threshold for stochastic transport of high energy trapped particles in a tokamak due to toroidal field ripple is calculated by explicit construction of primary resonances, and a numerical examination of the route to chaos. Critical field ripple amplitude is determined for loss. The expression is given in magnetic coordinates and makes no assumptions regarding shape or up-down symmetry. An algorithm is developed including the effects of prompt axisymmetric orbit loss, ripple trapping, convective banana flow, and stochastic ripple loss, which gives accurate ripple loss predictions for representative Tokamak Fusion Test Reactor and International Thermonuclear Experimental Reactor equilibria. The algorithm is extended to include the effects of collisions and drag, allowing rapid estimation of alpha particle loss in tokamaks

  6. Trapping of light by metal arrays

    Science.gov (United States)

    Khardikov, Vyacheslav V.; Iarko, Ekaterina O.; Prosvirnin, Sergey L.

    2010-04-01

    The problem of the near-IR light reflection from and transmittance through a planar 2D periodic metal-dielectric structure with a square periodic cell of two complex-shaped asymmetric metal elements has been solved. Conditions of the light confinement by excitation of the trapped mode resonances in certain structures, both polarization-sensitive and polarization-insensitive, were studied. For the first time, the existence of a high-order trapped mode resonance with the greater quality factor than that of the lowest one has been shown. It was ascertained that the Babinet principle provides a good prediction of the resonance properties of the complementary structures, despite the very high Joule losses in the metal strips in near-IR, a finite thickness of the metal elements and the presence of a dielectric substrate.

  7. Trapping of light by metal arrays

    International Nuclear Information System (INIS)

    Khardikov, Vyacheslav V; Iarko, Ekaterina O; Prosvirnin, Sergey L

    2010-01-01

    The problem of the near-IR light reflection from and transmittance through a planar 2D periodic metal–dielectric structure with a square periodic cell of two complex-shaped asymmetric metal elements has been solved. Conditions of the light confinement by excitation of the trapped mode resonances in certain structures, both polarization-sensitive and polarization-insensitive, were studied. For the first time, the existence of a high-order trapped mode resonance with the greater quality factor than that of the lowest one has been shown. It was ascertained that the Babinet principle provides a good prediction of the resonance properties of the complementary structures, despite the very high Joule losses in the metal strips in near-IR, a finite thickness of the metal elements and the presence of a dielectric substrate

  8. Progress towards microwave spectroscopy of trapped antihydrogen

    CERN Document Server

    Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jonsell, S; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision comparisons of hyperfine intervals in atomic hydrogen and antihydrogen are expected to yield experimental tests of the CPT theorem. The CERN-based ALPHA collaboration has initiated a program of study focused on microwave spectroscopy of trapped ground-state antihydrogen atoms. This paper outlines some of the proposed experiments, and summarizes measurements that characterize microwave fields that have been injected into the ALPHA apparatus.

  9. Progress towards microwave spectroscopy of trapped antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ashkezari, Mohammad D., E-mail: mdehghan@cern.ch [Simon Fraser University, Department of Physics (Canada); Andresen, Gorm B. [Aarhus University, Department of Physics and Astronomy (Denmark); Baquero-Ruiz, Marcelo [University of California, Department of Physics (United States); Bertsche, Wil [Swansea University, Department of Physics (United Kingdom); Bowe, Paul D. [Aarhus University, Department of Physics and Astronomy (Denmark); Butler, Eoin [CERN, Physics Department (Switzerland); Cesar, Claudio L. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Chapman, Steve [University of California, Department of Physics (United States); Charlton, Michael; Deller, Adam; Eriksson, Stefan [Swansea University, Department of Physics (United Kingdom); Fajans, Joel [University of California, Department of Physics (United States); Friesen, Tim; Fujiwara, Makoto C. [University of Calgary, Department of Physics and Astronomy (Canada); Gill, Dave R. [TRIUMF (Canada); Gutierrez, Andrea [University of British Columbia, Department of Physics and Astronomy (Canada); Hangst, Jeffrey S. [Aarhus University, Department of Physics and Astronomy (Denmark); Hardy, Walter N. [University of British Columbia, Department of Physics and Astronomy (Canada); Hayano, Ryugo S. [University of Tokyo, Department of Physics (Japan); Hayden, Michael E. [Simon Fraser University, Department of Physics (Canada); Collaboration: ALPHA Collaboration; and others

    2012-12-15

    Precision comparisons of hyperfine intervals in atomic hydrogen and antihydrogen are expected to yield experimental tests of the CPT theorem. The CERN-based ALPHA collaboration has initiated a program of study focused on microwave spectroscopy of trapped ground-state antihydrogen atoms. This paper outlines some of the proposed experiments, and summarizes measurements that characterize microwave fields that have been injected into the ALPHA apparatus.

  10. Quantum Information Processing with Trapped Ions

    International Nuclear Information System (INIS)

    Barrett, M.D.; Schaetz, T.; Chiaverini, J.; Leibfried, D.; Britton, J.; Itano, W.M.; Jost, J.D.; Langer, C.; Ozeri, R.; Wineland, D.J.; Knill, E.

    2005-01-01

    We summarize two experiments on the creation and manipulation of multi-particle entangled states of trapped atomic ions - quantum dense coding and quantum teleportation. The techniques used in these experiments constitute an important step toward performing large-scale quantum information processing. The techniques also have application in other areas of physics, providing improvement in quantum-limited measurement and fundamental tests of quantum mechanical principles, for example

  11. Designing of a Quadrupole Paul Ion Trap

    Science.gov (United States)

    Kiyani, Abouzar; Abdollahzadeh, M.; Sadat Kiai, S. M.; Zirak, A. R.

    2011-08-01

    The ion motion equation in a Paul ion trap known as Mathieu differential equation has been solved for the first time by using Runge-Kutta methods with 4th, 6th, and 8th orders. The first stability regions in az - qz plane and the corresponding qmax values were determined and compared. Also, the first stability regions of , , , ions in the Vdc - Vac plane were drown, and the threshold voltages for the ion separation was investigated.

  12. Liquidity Trap and Stability of Taylor Rules

    OpenAIRE

    Le Riche , Antoine; Magris , Francesco; Parent , Antoine

    2016-01-01

    We study a productive economy with fractional cash-in-advance constraint on consumption expenditures. Government issues safe bonds and levies taxes to finance public expenditures, while the Central Bank follows a feedback Taylor rules by pegging the nominal interest rate. We show that when the nominal interest rate is bound to be non-negative, under active policy rules a Liquidity Trap steady state does emerge besides the Leeper (1991) equilibrium. The stability of the two steady states depen...

  13. An EPR study of positive hole transfer and trapping in irradiated frozen solutions containing aromatic traps

    International Nuclear Information System (INIS)

    Egorov, A.V.; Zezin, A.A.; Feldman, V.I.

    2002-01-01

    Complete text of publication follows. Processes of positive hole migration and trapping are of basic significance for understanding of the primary events in the radiation chemistry of solid molecular systems. Specific interest is concerned with the case, when ionization energies of 'hole traps' are rather close, so one may expect 'fine tuning' effects resulting from variations in conformation, weak interactions, molecular packing, etc. In this contribution we report the results of EPR study of formation of radical cations in irradiated frozen halocarbon solutions containing aromatic molecules of different structure. Using the 'two-trap' model made it possible to obtain an evidence for efficient long-range trap-to-trap positive hole transfer between alkyl benzene molecules with close ionization energies distributed in the matrices with high ionization potentials. The distance of transfer was found to be 2-4 nm. In the case of frozen solutions containing ethylbenzene and toluene, it was found that the efficiency and direction of hole transfer was controlled by the conformation of ethylbenzene radical cation. The study of positive hole localization in 'bridged' diphenyls of Ph(CH 2 ) n Ph type revealed that the structure of radical cations of these species was affected by local environment (type of halocarbon matrix) and the conformational flexibility of 'bridge'. In summary, we may conclude that migration and localization of positive hole in rigid systems containing aromatic 'traps' is quite sensitive to rather subtle effects. This conclusion may be of common significance for the radiation chemistry of systems with physical dispersion of the traps of similar chemical structure (e.g. macromolecules, adsorbed molecules, etc.)

  14. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  15. Racial Extremism in the Army

    National Research Council Canada - National Science Library

    Hudson, Walter M

    1998-01-01

    ... modem phenomenon of "skinheads." I then discuss the history of white supremacist extremism in the Army, culminating in the December, 1995 murders of two black civilians by soldiers assigned to the 82d Airborne Division at Fort Bragg, North Carolina...

  16. Selective particle trapping using an oscillating microbubble.

    Science.gov (United States)

    Rogers, Priscilla; Neild, Adrian

    2011-11-07

    The ability to isolate and sort analytes within complex microfluidic volumes is essential to the success of lab-on-a-chip (LOC) devices. In this study, acoustically-excited oscillating bubbles are used to selectively trap particles, with the selectivity being a function of both particle size and density. The operating principle is based on the interplay between the strong microstreaming-induced drag force and the attractive secondary Bjerknes force. Depending upon the size of the bubble, and thus its resonant frequency, it is possible to cause one force to dominate over the other, resulting in either particle attraction or repulsion. A theoretical analysis reveals the extent of the contribution of each force for a given particle size; in close agreement with experimental findings. Density-based trapping is also demonstrated, highlighting that denser particles experience a larger secondary Bjerknes force resulting in their attraction. This study showcases the excellent applicability and versatility of using oscillating bubbles as a trapping and sorting mechanism within LOC devices. This journal is © The Royal Society of Chemistry 2011

  17. Trapped particle stability for the kinetic stabilizer

    Science.gov (United States)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  18. Cryogenic setup for trapped ion quantum computing.

    Science.gov (United States)

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  19. Protein unfolding with a steric trap.

    Science.gov (United States)

    Blois, Tracy M; Hong, Heedeok; Kim, Tae H; Bowie, James U

    2009-10-07

    The study of protein folding requires a method to drive unfolding, which is typically accomplished by altering solution conditions to favor the denatured state. This has the undesirable consequence that the molecular forces responsible for configuring the polypeptide chain are also changed. It would therefore be useful to develop methods that can drive unfolding without the need for destabilizing solvent conditions. Here we introduce a new method to accomplish this goal, which we call steric trapping. In the steric trap method, the target protein is labeled with two biotin tags placed close in space so that both biotin tags can only be bound by streptavidin when the protein unfolds. Thus, binding of the second streptavidin is energetically coupled to unfolding of the target protein. Testing the method on a model protein, dihydrofolate reductase (DHFR), we find that streptavidin binding can drive unfolding and that the apparent binding affinity reports on changes in DHFR stability. Finally, by employing the slow off-rate of wild-type streptavidin, we find that DHFR can be locked in the unfolded state. The steric trap method provides a simple method for studying aspects of protein folding and stability in native solvent conditions, could be used to specifically unfold selected domains, and could be applicable to membrane proteins.

  20. Iodine Gas Trapping using Granular Porous Bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    {sup 129}I is a radionuclide with a very long half-life of 1.57 Χ 10{sup 7} years and has negative health effects to the human body. Therefore, the emission of {sup 129}I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous {sup 129}I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing {sup 129}I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping {sup 129}I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling.

  1. Iodine Gas Trapping using Granular Porous Bismuth

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il; Yim, Mansung

    2014-01-01

    129 I is a radionuclide with a very long half-life of 1.57 Χ 10 7 years and has negative health effects to the human body. Therefore, the emission of 129 I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous 129 I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing 129 I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping 129 I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling

  2. Impurity Trapping of Positive Muons in Metals

    CERN Multimedia

    2002-01-01

    Polarized positive muons are implanted into metal samples. In an applied magnetic field the muon spin precession is studied. The line width in the precession frequency spectrum gives information about the static and dynamic properties of muons in a metal lattice. At temperatures where the muon is immobile within its lifetime the line width gives information about the site of location. At temperatures where the muon is mobile, the line width gives information on the diffusion process. It is known from experiments on quasi-elastic neutron scattering on hydrogen in niobium that interstitial impurities like nitrogen tend to act as traps for hydrogen. These trapping effects have now been studied systematically for muons in both f.c.c. metals (aluminium and copper) and b.c.c. metals (mainly niobium). Direct information on the trapping rates and the nature of the diffusion processes can be obtained since the muonic lifetime covers a time range where many of these processes occur.\\\\ \\\\ Mathematical models are set up ...

  3. Free radicals trapped in polyethylene matrix

    International Nuclear Information System (INIS)

    Shimada, S.; Maeda, M.; Hori, Y.; Kashiwabara, H.

    1977-01-01

    Two types of alkyl radicals were found to be trapped in irradiated crystals grown from polyethylene solution. One of them corresponds to the broad sextet pattern of the e.s.r. spectrum and the other corresponds to the sharp sextet pattern. The free radicals attributed to the broad sextet began to disappear at a lower temperature than the temperature at which the free radicals attributed to the sharp sextet disappeared. When butadiene molecules were brought into contact with the specimen, the decay of the free radicals corresponding to the broad sextet was accelerated. When the specimen was subjected to fuming nitric acid treatment, no broad sextet was observed. The mat of the crystals was aligned so that the c-axes of its crystallites were perpendicular to its surface. The broad sextet showed no anisotropy when the angle between the direction of applied magnetic field and that of the c-axis of the crystallite was varied. On the other hand, the sharp component of the spectrum showed apparent anisotropy. It can be concluded that the broad component comes from the free radicals trapped in the lamellar surface and the sharp component is attributed to the free radicals trapped in the inner part of the crystallite. (author)

  4. SURVEY OF THE ENTOMOFAUNA THROUGH LUMINOUS TRAP

    Directory of Open Access Journals (Sweden)

    V. R. Andrade Neto

    2014-09-01

    Full Text Available The demand for forest-based raw materials for energy, construction, paper pulp and the pressure to comply with legal requirements concerning environmental legislation, for example, the replacement of the permanent preservation area, legal reserve and recovery of degraded area, leads to encourage the production of healthy seedlings in a health status to do not compromise their future production. The present study aimed to survey the entomofauna population using the “Luiz de Queiroz” model of luminous trap, with white and red fluorescent lamps. The experiment was conducted at the nursery “Flora Sinop” in Sinop – MT. The survey was conducted weekly between the months of April to July 2010, totaling 4 months sand, 32 samples collected. The orders Hemiptera and Coleoptera showed the highest number of individuals captured, either in attraction with white or red light. It was captured 10.089 individuals, 9.339 collected under the influence of white light, representing 92,56%, and 750 with red light, only 7,44% of the total. The white light luminous trap possessed greater efficiency in the attraction of insects when compared with the red light trap.

  5. Magnetic field stabilization in THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2012-07-01

    THe-Trap is a Penning trap mass spectrometer dedicated to measure the {sup 3}H to {sup 3}He mass ratio aiming to a relative mass uncertainty better than 10{sup -11}. The most vital prerequisite for this measurement is a stable magnetic field: The relative temporal fluctuations during a measurement cycle of typically 1 hour, should be better than 10{sup -11}. The 5.26 T field is provided by a superconducting magnet. Unfortunately, the materials within the cryostat have a temperature-dependent susceptibility which necessitates a temperature stabilization. The stabilization is achieved by controlling the liquid helium level above the traps, and by keeping the pressure of the liquid helium constant. An important part of the system is the pressure reference, which is stable at a 0.04 Pa level. In addition to the stabilization of the field fluctuations within the cryostat itself, a system to cancel external fluctuations is set up consisting of a passive coil with a shielding factor of up to 180 build into the cryostat. Furthermore, a Helmholtz coil pair is placed around the cryostat. The compensation signal is provided by a custom-built flux-gate magnetometer. Technical details about the stabilization systems are given.

  6. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    Science.gov (United States)

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  7. Positron-trapping mechanism at dislocations in Zn

    DEFF Research Database (Denmark)

    Hidalgo, Carlos; Linderoth, Søren; Diego, Nieves de

    1987-01-01

    the average lifetime and the intensity of the long component decrease with increasing temperature. The experimental results are very well described in terms of a generalized trapping model where it is assumed that positrons become trapped in deep traps (jogs) via shallow traps (dislocation lines......). The temperature dependence of the positron-lifetime spectra below 120 K is attributed to the temperature dependence of the trapping rate to the dislocation line. The experimental results have demonstrated that detrapping processes from the dislocation line take place above 120 K. The positron binding energy...

  8. A Rotating-Bears Optical Dipole Trap for Cold Aatoms

    International Nuclear Information System (INIS)

    Friedman, N.; Ozeri, R.; Khaykovich, L.; Davidson, N.

    1999-01-01

    In the last few years, several optical dipole traps for cold atoms were demonstrated and used to study cold atomic collisions, long atomic coherence times and quantum collective effects. Blue-detuned dipole traps, where repulsive light forces confines atoms mostly in dark, offer long storage, and photon-scattering times, combined with strong confinement forces. Unfortunately, such blue-detuned dipole traps involve complicated light intensity distributions that require either multiple laser beams or complicated phase elements. Here, we propose and demonstrate a novel configuration for a single-beam blue-detuned dipole trap, which enables larger trapping volume, and fast temporal changes in the trap size and shape. Our trap consists of a tightly-focused laser beam which is rapidly rotated (with rotation frequency up to 400 khz) with two orthogonal acousto optical scanners. For very high rotation frequencies the atoms feel a time-averaged static dipole potential. Therefore, when the radius of rotation is larger than the beam size, a dark volume which is completely surrounded by light is obtained around the focal region. By changing the rotation radius and the trapping laser intensity and detuning, the trap dimensions and oscillation frequency could be changed over a large parameter range. In particular trap diameters were changed between 50 to 220 microns and trap length was changed between 3.5 to 16 mm. ∼10 6 atoms were loaded into the rotating-beam dipole trap from a magneto optical trap. The density of the trapped atoms was 4x10 10 atoms/cm 3 ,their temperature was -6 pK. and the trap (1/e) lifetime was 0.65 sec, limited by collisions with background atoms. When the rotation frequency was decreased below the oscillation frequency of the atoms in the trap, the trap became unstable, and a sharp reduction of the trap lifetime was observed, in agreement with our theoretical analysis. Finally, we demonstrated adiabatic compression of atoms in the trap by decreasing

  9. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  10. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  11. Global predictability of temperature extremes

    Science.gov (United States)

    Coughlan de Perez, Erin; van Aalst, Maarten; Bischiniotis, Konstantinos; Mason, Simon; Nissan, Hannah; Pappenberger, Florian; Stephens, Elisabeth; Zsoter, Ervin; van den Hurk, Bart

    2018-05-01

    Extreme temperatures are one of the leading causes of death and disease in both developed and developing countries, and heat extremes are projected to rise in many regions. To reduce risk, heatwave plans and cold weather plans have been effectively implemented around the world. However, much of the world’s population is not yet protected by such systems, including many data-scarce but also highly vulnerable regions. In this study, we assess at a global level where such systems have the potential to be effective at reducing risk from temperature extremes, characterizing (1) long-term average occurrence of heatwaves and coldwaves, (2) seasonality of these extremes, and (3) short-term predictability of these extreme events three to ten days in advance. Using both the NOAA and ECMWF weather forecast models, we develop global maps indicating a first approximation of the locations that are likely to benefit from the development of seasonal preparedness plans and/or short-term early warning systems for extreme temperature. The extratropics generally show both short-term skill as well as strong seasonality; in the tropics, most locations do also demonstrate one or both. In fact, almost 5 billion people live in regions that have seasonality and predictability of heatwaves and/or coldwaves. Climate adaptation investments in these regions can take advantage of seasonality and predictability to reduce risks to vulnerable populations.

  12. Towards the development of an autocontamination trap system to manage populations of emerald ash borer (Coleoptera: Buprestidae) with the native entomopathogenic fungus, Beauveria bassiana.

    Science.gov (United States)

    Lyons, D Barry; Iavallée, Robert; Kyei-Poku, George; Van Frankenhuyzen, Kees; Johny, Shajahan; Guertin, Claude; Francese, Joseph A; Jones, Gene C; Blais, Martine

    2012-12-01

    Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive species from Asia that was discovered in North America Canada, in 2002. Herein, we describe studies to develop an autocontamination trapping system to disseminate Beauveria bassiana to control beetle populations. The standard trap for emerald ash borer in Canada is a light green prism trap covered in an insect adhesive and baited with (Z)-3-hexenol. We compared of green multifunnel traps, green intercept panel traps (both with and without fluon coating) and green prism traps for capturing emerald ash borer in a green ash plantation. The coated green multifunnel traps captured significantly more males and more females than any other trap design. We examined the efficacy of two native B. bassiana isolates, INRS-CFL and L49-1AA. In a field experiment the INRS-CFL isolate attached to multifunnel traps in autocontamination chambers retained its pathogenicity to emerald ash borer adults for up to 43 d of outdoor exposure. Conidia germination of the INRS-CFL isolate was >69% after outdoor exposure in the traps for up to 57 d. The L49-1AA isolate was not pathogenic in simulated trap exposures and the germination rate was extremely low (<5.3%). Mean (+/- SEM) conidia loads on ash borer adults after being autocontaminated in the laboratory using pouches that had been exposed in traps out of doors for 29 d were 579,200 (+/- 86,181) and 2,400 (+/- 681) for the INRS-CFL and the LA9-1AA isolates, respectively. We also examined the fungal dissemination process under field conditions using the L49-1AA isolate in a green ash plantation. Beetles were lured to baited green multifunnel traps with attached autocontamination chambers. Beetles acquired fungal conidia from cultures growing on pouches in the chambers and were recaptured on Pestick-coated traps. In total, 2,532 beetles were captured of which 165 (6.5%) had fungal growth that resembled B. bassiana. Of these 25 beetles were positive for

  13. An Exit for the Human Product: A Comparative Study of Extreme Literature

    Directory of Open Access Journals (Sweden)

    Amelia Ying Qin

    2014-04-01

    Full Text Available This paper examines from a comparative perspective six novels telling stories of extreme life experiences set in both Western and oriental cultures. The paper argues that in these extreme cases, the characters, subjected to absolute power domination, lose their individual identities and are transformed into “human products.” Their struggles for power will always remain futile unless they find a way to reverse the power relationships they are trapped in. Such a reversal allows the hope of an exit for the “human products” to escape the hopeless situation of perpetuated social, sexual, and mental enslavement.

  14. Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

    International Nuclear Information System (INIS)

    Biedermann, C; Radtke, R; Fussmann, G; Allen, F I

    2007-01-01

    Extreme ultraviolet radiation from highly charged argon was investigated at the Berlin Electron Beam Ion Trap with a 2 m grazing incidence spectrometer. Lines in the wavelength range 150 to 660 A originating from C-like Ar 12+ to Li-like Ar 15+ ions have been identified and are compared with database information from solar line lists and predictions. Line ratios for the observed resonance, intercombination and forbidden lines offer important diagnostic capabilities for low density, hot plasmas

  15. Electron trapping during irradiation in reoxidized nitrided oxide

    International Nuclear Information System (INIS)

    Mallik, A.; Vasi, J.; Chandorkar, A.N.

    1993-01-01

    Isochronal detrapping experiments have been performed following irradiation under different gate biases in reoxidized nitrided oxide (RNO) MOS capacitors. These show electron trapping by the nitridation-induced electron traps at low oxide fields during irradiation. A difference in the detrapping behavior of trapped holes and electrons is observed, with trapped holes being detrapped at relatively lower temperatures compared to trapped electrons. Electron trapping shows a strong dependence on tile magnitude of the applied gate bias during irradiation but is independent of its polarity. Conventional oxide devices, as expected, do not show any electron trapping during irradiation by the native electron traps. Finally, a comparison of the isochronal detrapping behavior following irradiation and following avalanche injection of electrons has been made to estimate the extent of electron trapping. The results show that electron trapping by the nitridation-induced electron traps does not play the dominant role in improving radiation performance of RNO, though its contribution cannot be completely neglected for low oxide field irradiations

  16. High-fidelity operations in microfabricated surface ion traps

    Science.gov (United States)

    Maunz, Peter

    2017-04-01

    Trapped ion systems can be used to implement quantum computation as well as quantum simulation. To scale these systems to the number of qubits required to solve interesting problems in quantum chemistry or solid state physics, the use of large multi-zone ion traps has been proposed. Microfabrication enables the realization of surface electrode ion traps with complex electrode structures. While these traps may enable the scaling of trapped ion quantum information processing (QIP), microfabricated ion traps also pose several technical challenges. Here, we present Sandia's trap fabrication capabilities and characterize trap properties and shuttling operations in our most recent high optical access trap (HOA-2). To demonstrate the viability of Sandia's microfabricated ion traps for QIP we realize robust single and two-qubit gates and characterize them using gate set tomography (GST). In this way we are able to demonstrate the first single qubit gates with a diamond norm of less than 1 . 7 ×10-4 , below a rigorous fault tolerance threshold for general noise of 6 . 7 ×10-4. Furthermore, we realize Mølmer-Sørensen two qubit gates with a process fidelity of 99 . 58(6) % also characterized by GST. These results demonstrate the viability of microfabricated surface traps for state of the art quantum information processing demonstrations. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  17. Fast and slow border traps in MOS devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.

    1996-01-01

    Convergent lines of evidence are reviewed which show that near-interfacial oxide traps (border traps) that exchange charge with the Si can strongly affect the performance, radiation response, and long-term reliability of MOS devices. Observable effects of border traps include capacitance-voltage (C-V) hysteresis, enhanced l/f noise, compensation of trapped holes, and increased thermally stimulated current in MOS capacitors. Effects of faster (switching times between ∼10 -6 s and ∼1 s) and slower (switching times greater than ∼1 s) border traps have been resolved via a dual-transistor technique. In conjunction with studies of MOS electrical response, electron paramagnetic resonance and spin dependent recombination studies suggest that E' defects (trivalent Si centers in SiO 2 associated with O vacancies) can function as border traps in MOS devices exposed to ionizing radiation or high-field stress. Hydrogen-related centers may also be border traps

  18. Comparative kinematical analyses of Venus flytrap (Dionaea muscipula snap traps

    Directory of Open Access Journals (Sweden)

    Simon Poppinga

    2016-05-01

    Full Text Available Although the Venus flytrap (Dionaea muscipula can be considered as one of the most extensively investigated carnivorous plants, knowledge is still scarce about diversity of the snap-trap motion, the functionality of snap traps under varying environmental conditions, and their opening motion. By conducting simple snap-trap closure experiments in air and under water, we present striking evidence that adult Dionaea snaps similarly fast in aerial and submersed states and, hence, is potentially able to gain nutrients from fast aquatic prey during seasonal inundation. We reveal three snapping modes of adult traps, all incorporating snap buckling, and show that millimeter-sized, much slower seedling traps do not yet incorporate such elastic instabilities. Moreover, opening kinematics of young and adult Dionaea snap traps reveal that reverse snap buckling is not performed, corroborating the assumption that growth takes place on certain trap lobe regions. Our findings are discussed in an evolutionary, biomechanical, functional–morphological and biomimetic context.

  19. Antimatter Plasmas in a Multipole Trap for Antihydrogen

    CERN Document Server

    Andresen, G B; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2007-01-01

    We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.

  20. Novel Ion Trap Design for Strong Ion-Cavity Coupling

    Directory of Open Access Journals (Sweden)

    Alejandro Márquez Seco

    2016-04-01

    Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.

  1. HPLC-ESR techniques for detection of complex trapped radicals

    International Nuclear Information System (INIS)

    Tu Tiecheng; Dong Jirong; Lin Nianyun; Xie Leidong; Liu Rengzhong

    1992-01-01

    High performance liquid chromatography (HPLC) and ESR combined examination of radical species is an advanced techniques for separation and identification of complex radical species. At SRCL, Waters 990 HPLC has been used to separate the complex trapped radicals and Varian E-112 ESR spectrometer to record the spectra of single trapped radicals after HPLC separation. The advantages of the combined techniques are described as bellow: HPLC is used to separate the long-lived complex trapped radicals derived from reaction of short-lived radicals with spin trap. ESR spectra from single trapped radicals, obtained following HPLC separation of complex trapped radicals, are recorded one by one and well resolved. The structures of short-lived radicals can be inferred from the ESR spectra of the long-lived trapped radicals

  2. Antimatter plasmas in a multipole trap for antihydrogen.

    Science.gov (United States)

    Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2007-01-12

    We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.

  3. Ideologies and Discourses: Extreme Narratives in Extreme Metal Music

    Directory of Open Access Journals (Sweden)

    Bojana Radovanović

    2016-10-01

    Full Text Available Historically speaking, metal music has always been about provoking a strong reaction. Depending on the characteristics of different sub-genres, one can focus on the sound, technique, visual appearance, and furthermore, the ideologies and ideas that are the foundation for each of the sub-genres. Although the majority of the metal community rejects accusations of being racially intolerant, some ideologies of extreme sub-genres (such as black metal are in fact formed around the ideas of self-conscious elitism expressed through interest in pagan mythology, racism, Nazism and fascism. There has been much interest in the Nazi era within the extreme metal scene thus influencing other sub-genres and artists. The aim of this paper is to examine various appearances of extreme narratives such as Nazism and racism in  different sub-genres of metal, bearing in mind variations dependent on geographical, political, and other factors.

  4. Geometric light trapping with a V-trap for efficient organic solar cells

    KAUST Repository

    Kim, Soo Jin

    2013-03-14

    The efficiency of today’s most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies exceeding 90% are common, the external quantum efficiency rarely exceeds 70%. Light trapping techniques that increase the ability of a given active layer to absorb light are common in inorganic solar cells but have only been applied to organic solar cells with limited success. Here, we analyze the light trapping mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC70BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29%, in agreement with model predictions, and the power conversion efficiency increases to 7.2%, a 35% improvement over the performance in the absence of a light trap.

  5. Trapped ion depletion by anomalous diffusion due to the dissipative trapped ion instability

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1975-07-01

    At high temperatures the KADOMTSEV-POGUTSE diffusion in tokamaks can become so large as to cause depletion of trapped ions if these are replaced with free ions by means of collisions rather than being directly recycled or injected. Modified KADOMTSEV-POGUTSE diffusion formulas are employed in order to estimate this effect in the cases of classical and anomalous collisions. The maximum trapped-ion depletion is estimated from the PENROSE stability condition. For anomalous collisions a BOHM-type diffusion is derived. Numerical examples are given for JET-like parameters (JET = Joint European Torus). Depletion is found to reduce diffusion by factors of up to 10 and more. (orig.) [de

  6. The Formation of Charon's Red Poles from Seasonally Cold-Trapped Volatiles

    Science.gov (United States)

    Grundy, W. M.; Cruikshank, D. P.; Gladstone, D. R.; Howett, C. J. A.; Lauer, T. R.; Spencer, J. R.; Summers, M. E.; Buie, M. W.; Earle, A. M.; Ennico, K.; hide

    2016-01-01

    A unique feature of Plutos large satellite Charon is its dark red northern polar cap. Similar colours on Plutos surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charons high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

  7. Cryogenic trapping of keV ion beams at the CSR prototype

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Blaum, Klaus; Froese, Michael; Grieser, Manfred; Lange, Michael; Orlov, Dimitry; Sieber, Thomas; Hahn, Robert von; Varju, Jozef; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Heber, Oded; Rappaport, Michael; Zajfman, Daniel [Weizmann Institut of Science, Rehovot (Israel)

    2009-07-01

    A Cryogenic Trap for Fast ion beams (CTF) was built to explore cooling techniques and test thermal decoupling of ion optics for the development of the electrostatic Cryogenic Storage Ring (CSR). These challenging projects will lead to a new experimental field of atomic and molecular physics with keV ion beams. The cold conditions of 2-10 K minimize the blackbody radiation field and are expected to lead to extremely low restgas densities (equivalent pressure at room temperature {approx}10{sup -13} mbar) which result in long storage lifetimes and for molecular ions to radiative cooling to their ro-vibrational ground states. The CTF consists of two stacks of electrostatic mirror electrodes allowing the storage of up to 20 keV ion beams. Cryogenic ion beam storage has been realized with this device using a liquid helium refrigeration system to cool down the experimental trapping area to few-Kelvin cryogenic temperatures and experiments with cryogenically trapped molecular nitrogen ions have been performed to verify the low vacuum conditions by measuring their storage lifetimes.

  8. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum.

    Science.gov (United States)

    Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W; D'Urso, Brian

    2016-07-22

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.

  9. Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping

    Directory of Open Access Journals (Sweden)

    B. Deng

    2014-01-01

    Full Text Available Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.

  10. Optimization and simulation of MEMS rectilinear ion trap

    Directory of Open Access Journals (Sweden)

    Huang Gang

    2015-04-01

    Full Text Available In this paper, the design of a MEMS rectilinear ion trap was optimized under simulated conditions. The size range of the MEMS rectilinear ion trap’s electrodes studied in this paper is measured at micron scale. SIMION software was used to simulate the MEMS rectilinear ion trap with different sizes and different radio-frequency signals. The ion-trapping efficiencies of the ion trap under these different simulation conditions were obtained. The ion-trapping efficiencies were compared to determine the performance of the MEMS rectilinear ion trap in different conditions and to find the optimum conditions. The simulation results show that for the ion trap at micron scale or smaller, the optimized length–width ratio was 0.8, and a higher frequency of radio-frequency signal is necessary to obtain a higher ion-trapping efficiency. These results have a guiding role in the process of developing MEMS rectilinear ion traps, and great application prospects in the research fields of the MEMS rectilinear ion trap and the MEMS mass spectrometer.

  11. Stability of trapped electrons in SiO2

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Flament, O.; Leray, J.L.

    1998-01-01

    Electron trapping near the Si/SiO 2 interface plays a crucial role in mitigating the response of MOS devices to ionizing radiation or high-field stress. These electrons offset positive charge due to trapped holes, and can be present at densities exceeding 10 12 cm -2 in the presence of a similar density of trapped positive charge. The nature of the defects that serve as hosts for trapped electrons in the near-interfacial SiO 2 is presently unknown, although there is compelling evidence that these defects are often intimately associated with trapped holes. This association is depicted most directly in the model of Lelis et al., which suggests that trapped electrons and holes occupy opposite sides of a compensated E center in SiO 2 . Charge exchange between electron traps and the Si can occur over a wide range of time scales, depending on the trap depth and location relative to the Si/SiO 2 interface. Here the authors report a detailed study of the stability of electron traps associated with trapped holes near the Si/SiO 2 interface

  12. Seasonal temperature extremes in Potsdam

    Science.gov (United States)

    Kundzewicz, Zbigniew; Huang, Shaochun

    2010-12-01

    The awareness of global warming is well established and results from the observations made on thousands of stations. This paper complements the large-scale results by examining a long time-series of high-quality temperature data from the Secular Meteorological Station in Potsdam, where observation records over the last 117 years, i.e., from January 1893 are available. Tendencies of change in seasonal temperature-related climate extremes are demonstrated. "Cold" extremes have become less frequent and less severe than in the past, while "warm" extremes have become more frequent and more severe. Moreover, the interval of the occurrence of frost has been decreasing, while the interval of the occurrence of hot days has been increasing. However, many changes are not statistically significant, since the variability of temperature indices at the Potsdam station has been very strong.

  13. Lymphoscintigraphy of the lower extremity

    International Nuclear Information System (INIS)

    Abbasi, N.Z.

    1990-01-01

    Fifty one lower extremities of 26 normal healthy volunteers and 26 extremities of 13 patients with oedema have been studied. Dynamic quantitative lymphoscintigraphy using 99Tc-m antimony sulphide colloid during passive exercise as well as before and after active exercise was performed. parameters of lymphatic function including percentage of radioactivity cleared from the injection site, the percentage uptake by the inguinal lymph nodes, the time of arrival of activity at the regional lymph nodes and the lymphatic reserve index have been evaluated. The percentage clearance of activity from the injection site was found technically difficult to standardize and proved to be an unreliable parameter of lymphatic function. However, the quantitation of nodal uptake, the lymphatic transit time and the lymphatic reserve capacity accurately depicted the lymphatic functional status of an individual. The physiologic parameters of lymphatic function of the contralateral lower extremities were compared and a physiologic difference in the lymphatic capacity of the two limbs was scintigraphically documented. (author)

  14. A small trapped-ion quantum register

    International Nuclear Information System (INIS)

    Kielpinski, D

    2003-01-01

    We review experiments performed at the National Institute of Standards and Technology on entanglement, Bell's inequality and decoherence-free subspaces (DFSs) in a quantum register of trapped 9 Be + ions. The group of Dr David Wineland has demonstrated entanglement of up to four ions using the technique of Molmer and Sorensen. This method produces the state (|↓↓> + |↑↑>)/√2 for two ions and the state (|↓↓↓↓> + |↑↑↑↑>)/√2 for four ions. The entanglement was generated deterministically in each shot of the experiment. Measurements on the two-ion entangled state violate Bell's inequality at the 8σ level. Because of the high detector efficiency of the apparatus, this experiment closes the detector loophole for Bell's inequality measurements for the first time. This measurement is also the first violation of Bell's inequality by massive particles that does not implicitly assume results from quantum mechanics. The group also demonstrated measurement of an interferometric phase with precision better than the shot-noise limit using a two-ion entangled state. A large-scale version of this scheme could improve the signal-to-noise ratio of atomic clocks by orders of magnitude. Further experiments demonstrated reversible encoding of an arbitrary qubit, originally contained in one ion, into a DFS of two ions. The DFS-encoded qubit resists applied collective dephasing noise and retains coherence under ambient conditions 3.6 times longer than does an unencoded qubit. The encoding method, which uses single-ion gates and the two-ion entangling gate, demonstrates all the elements required for two-qubit universal quantum logic. Finally, we describe an architecture for a large-scale ion trap quantum computer. By performing logic gates on small numbers of ions trapped in separate regions of the array, we take advantage of existing techniques for manipulating small trapped-ion quantum registers while enabling massively parallel gate operation. Encoding the

  15. Solute trapping: Comparison of theory with experiment

    International Nuclear Information System (INIS)

    Aziz, M.J.; Tsao, J.Y.; Thompson, M.O.; Peercy, P.S.; White, C.W.

    1986-01-01

    The dependence of the nonequilibrium partition coefficient k of Bi in Si upon solidification velocity v has been measured with sufficient accuracy to distinguish between proposed solute-trapping mechanisms. For the range of measured velocities, 2--14 m/s, we observe a much more gradual increase in k with increasing v than those previously reported and no evidence for a ''saturation'' effect, i.e., dk/dv→0 at k<1. The continuous-growth model of Aziz fits the data quite well; the Aziz stepwise-growth model and the two-level Baker model yield values of dk/dv that are too high

  16. Quasiparticle trapping and the quasiparticle multiplier

    International Nuclear Information System (INIS)

    Booth, N.E.

    1987-01-01

    Superconductors and in particular superconducting tunnel junctions can be used to detect phonons, electromagnetic radiation, x rays, and nuclear particles by the mechanism of Cooper-pair breaking to produce excess quasiparticles and phonons. We show that the sensitivity can be increased by a factor of 100 or more by trapping the quasiparticles in another superconductor of lower gap in the region of the tunnel junction. Moreover, if the ratio of the gap energies is >3 a multiplication process can occur due to the interaction of the relaxation phonons. This leads to the concept of the quasiparticle multiplier, a device which could have wider applications than the Gray effect transistor or the quiteron

  17. Sawteeth stabilization by energetic trapped ions

    International Nuclear Information System (INIS)

    Samain, A.; Edery, D.; Garbet, X.; Roubin, J.P.

    1991-01-01

    The analysis of a possible stabilization of sawteeth by a population of energetic ions is performed by using the Lagrangian of the electromagnetic perturbation. It is shown that the trapped component of such a population has a small influence compared to that of the passing component. The stabilization threshold is calculated assuming a non linear regime in the q=1 resonant layer. The energetic population must create a stable tearing structure if the average curvature effect on thermal particles in the layer is small. However, this effect decreases the actual threshold

  18. First Attempts at Antihydrogen Trapping in ALPHA

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wasilenko, L; Wurtele, J S; Yamazaki, Y; Fujiwara, M C

    2008-01-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.

  19. Are there Traps in Quantum Control Landscapes?

    International Nuclear Information System (INIS)

    Pechen, Alexander N.; Tannor, David J.

    2011-01-01

    There has been great interest in recent years in quantum control landscapes. Given an objective J that depends on a control field ε the dynamical landscape is defined by the properties of the Hessian δ 2 J/δε 2 at the critical points δJ/δε=0. We show that contrary to recent claims in the literature the dynamical control landscape can exhibit trapping behavior due to the existence of special critical points and illustrate this finding with an example of a 3-level Λ system. This observation can have profound implications for both theoretical and experimental quantum control studies.

  20. Ultraviolet safety assessments of insect light traps

    OpenAIRE

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315?400?nm), ?black-light,? electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV ?Black-light? ILTs were measured at...

  1. Neutron generator based on adiabatic trap

    International Nuclear Information System (INIS)

    Golovin, I.N.; Zhil'tsov, V.A.; Panov, D.A.; Skovoroda, A.A.; Shatalov, G.E.; Shcherbakov, A.G.

    1988-01-01

    A possibility of 14 MeV neutron generator (NG) production on the basis of axial-symmetric adiabatic trap with MHD cusped armature for the testing of materials and elements of the DT reactor first wall and blanket structure is discussed. General requirements to NG are formulated. It is shown that the NG variant discussed meets the requirements formulated. Approximate calculation of the NG parameters has shown that total energy consumption by the generator does not exceed 220 MW at neutron flux specific capacity of 2.5 MW/m 2 and radiation test area of 5-6 m 2

  2. Amphipol trapping of a functional CYP system

    DEFF Research Database (Denmark)

    Laursen, Tomas; Naur, Peter; Møller, Birger Lindberg

    2013-01-01

    backbone randomly grafted with hydrophobic side chains. An optimal ratio of 1:2 w/w of protein to APol (A8-35) was required for trapping the single transmembrane helices of CYP79A1, CYP71E1, and the electron partner cytochrome P450 oxidoreductase (POR). CYP79A1 and POR retained their individual activity......In plants, some enzymes of the cytochrome P450 (CYP) superfamily are thought to organize into transient dynamic metabolons to optimize the biosynthesis of bioactive natural products. Metabolon formation may facilitate efficient turnover of labile and toxic intermediates and prevent undesired...

  3. Isotopic abundance in atom trap trace analysis

    Science.gov (United States)

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  4. Optical trapping with Super-Gaussian beams

    CSIR Research Space (South Africa)

    Mc

    2013-04-01

    Full Text Available stream_source_info McLaren1_2013.pdf.txt stream_content_type text/plain stream_size 2236 Content-Encoding UTF-8 stream_name McLaren1_2013.pdf.txt Content-Type text/plain; charset=UTF-8 JT2A.34.pdf Optics in the Life... Sciences Congress Technical Digest © 2013 The Optical Society (OSA) Optical trapping with Super-Gaussian beams Melanie McLaren, Thulile Khanyile, Patience Mthunzi and Andrew Forbes* National Laser Centre, Council for Scientific and Industrial Research...

  5. Energy transfer in a mechanically trapped exciplex.

    Science.gov (United States)

    Klosterman, Jeremy K; Iwamura, Munetaka; Tahara, Tahei; Fujita, Makoto

    2009-07-15

    Host-guest complexes involving M(6)L(4) coordination cages can display unusual photoreactivity, and enclathration of the very large fluorophore bisanthracene resulted in an emissive, mechanically trapped intramolecular exciplex. Mechanically linked intramolecular exciplexes are important for understanding the dependence of energy transfer on donor-acceptor distance, orientation, and electronic coupling but are relatively unexplored. Steady-state and picosecond time-resolved fluorescence measurements have revealed that selective excitation of the encapsulated guest fluorophore results in efficient energy transfer from the excited guest to an emissive host-guest exciplex state.

  6. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress...... tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected...... examples of radical formation on proteins....

  7. High efficiency cyclotron trap assisted positron moderator

    OpenAIRE

    Gerchow, L.; Cooke, D. A.; Braccini, S.; Döbeli, M.; Kirch, K.; Köster, U.; Müller, A.; Van Der Meulen, N. P.; Vermeulen, C.; Rubbia, A.; Crivelli, P.

    2017-01-01

    We report the realisation of a cyclotron trap assisted positron tungsten moderator for the conversion of positrons with a broad keV- few MeV energy spectrum to a mono-energetic eV beam with an efficiency of 1.8(2)% defined as the ratio of the slow positrons divided by the $\\beta^+$ activity of the radioactive source. This is an improvement of almost two orders of magnitude compared to the state of the art of tungsten moderators. The simulation validated with this measurement suggests that usi...

  8. Applications of laser cooling and trapping

    International Nuclear Information System (INIS)

    Kasevich, M.; Moler, K.; Riis, E.; Sunderman, E.; Weiss, D.; Chu, S.

    1991-01-01

    Recent work done at Stanford in the manipulation of atoms and particles is summarized. Techniques to further increase our control of neutral particles such as atomic fountains, funnels, and trampolines have been demonstrated. These techniques are now being combined with a new type of velocity selection in order to study atom/surface interactions and to improve the limit on the charge neutrality of atoms. Trapping techniques have also allowed us to manipulate single molecules of DNA in aqueous solution while observing the molecules in fluorescence

  9. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  10. Automation Rover for Extreme Environments

    Science.gov (United States)

    Sauder, Jonathan; Hilgemann, Evan; Johnson, Michael; Parness, Aaron; Hall, Jeffrey; Kawata, Jessie; Stack, Kathryn

    2017-01-01

    Almost 2,300 years ago the ancient Greeks built the Antikythera automaton. This purely mechanical computer accurately predicted past and future astronomical events long before electronics existed1. Automata have been credibly used for hundreds of years as computers, art pieces, and clocks. However, in the past several decades automata have become less popular as the capabilities of electronics increased, leaving them an unexplored solution for robotic spacecraft. The Automaton Rover for Extreme Environments (AREE) proposes an exciting paradigm shift from electronics to a fully mechanical system, enabling longitudinal exploration of the most extreme environments within the solar system.

  11. Hygienic diagnosis in extreme conditions

    International Nuclear Information System (INIS)

    Sofronov, G.A.

    1997-01-01

    Review for book by M.P. Zakharchenko, S.A. Lopatin, G.N. Novozhilov, V.I. Zakharov Hygienic diagnosis in extreme conditions is presented discussing the problem of people health preservation under extreme conditions. Hygienic diagnosis is considered illustrated by cases of hostilities (Afghan War), earthquake response in Armenia (1988) and Chernobyl accident response. Attention is paid to the estimation of radiation doses to people and characteristics of main types of dosimeters. The high scientific level of the book is marked

  12. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  13. Moving in extreme environments: what's extreme and who decides?

    Science.gov (United States)

    Cotter, James David; Tipton, Michael J

    2014-01-01

    Humans work, rest and play in immensely varied extreme environments. The term 'extreme' typically refers to insufficiency or excess of one or more stressors, such as thermal energy or gravity. Individuals' behavioural and physiological capacity to endure and enjoy such environments varies immensely. Adverse effects of acute exposure to these environments are readily identifiable (e.g. heat stroke or bone fracture), whereas adverse effects of chronic exposure (e.g. stress fractures or osteoporosis) may be as important but much less discernable. Modern societies have increasingly sought to protect people from such stressors and, in that way, minimise their adverse effects. Regulations are thus established, and advice is provided on what is 'acceptable' exposure. Examples include work/rest cycles in the heat, hydration regimes, rates of ascent to and duration of stay at altitude and diving depth. While usually valuable and well intentioned, it is important to realise the breadth and importance of limitations associated with such guidelines. Regulations and advisories leave less room for self-determination, learning and perhaps adaptation. Regulations based on stress (e.g. work/rest cycles relative to WBGT) are more practical but less direct than those based on strain (e.g. core temperature), but even the latter can be substantively limited (e.g. by lack of criterion validation and allowance for behavioural regulation in the research on which they are based). Extreme Physiology & Medicine is publishing a series of reviews aimed at critically examining the issues involved with self- versus regulation-controlled human movement acutely and chronically in extreme environments. These papers, arising from a research symposium in 2013, are about the impact of people engaging in such environments and the effect of rules and guidelines on their safety, enjoyment, autonomy and productivity. The reviews will cover occupational heat stress, sporting heat stress, hydration, diving

  14. Ion bunch stacking in a Penning trap after purification in an electrostatic mirror trap

    CERN Document Server

    Rosenbusch, M; Blaum, K; Borgmann, Ch; Kreim, S; Lunney, D; Manea, V; Schweikhard, L; Wienholtz, F; Wolf, R N

    2014-01-01

    The success of many measurements in analytical mass spectrometry as well as in precision mass determinations for atomic and nuclear physics is handicapped when the ion sources deliver ``contaminations'', i.e., unwanted ions of masses similar to those of the ions of interest. In particular, in ion-trapping devices, large amounts of contaminant ions result in significant systematic errors-if the measurements are possible at all. We present a solution for such cases: The ions from a quasi-continuous source are bunched in a linear radio-frequency-quadrupole ion trap, separated by a multi-reflection time-of-flight section followed by a Bradbury-Nielsen gate, and then captured in a Penning trap. Buffer-gas cooling is used to damp the ion motion in the latter, which allows a repeated opening of the Penning trap for a stacking of mass-selected ion bunches. Proof-of-principle demonstrations have been performed with the ISOLTRAP setup at ISOLDE/CERN, both with Cs-133(+) ions from an off-line ion source and by applicati...

  15. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps

    Directory of Open Access Journals (Sweden)

    Xingfeng Si

    2014-05-01

    Full Text Available Camera traps is an important wildlife inventory tool for estimating species diversity at a site. Knowing what minimum trapping effort is needed to detect target species is also important to designing efficient studies, considering both the number of camera locations, and survey length. Here, we take advantage of a two-year camera trapping dataset from a small (24-ha study plot in Gutianshan National Nature Reserve, eastern China to estimate the minimum trapping effort actually needed to sample the wildlife community. We also evaluated the relative value of adding new camera sites or running cameras for a longer period at one site. The full dataset includes 1727 independent photographs captured during 13,824 camera days, documenting 10 resident terrestrial species of birds and mammals. Our rarefaction analysis shows that a minimum of 931 camera days would be needed to detect the resident species sufficiently in the plot, and c. 8700 camera days to detect all 10 resident species. In terms of detecting a diversity of species, the optimal sampling period for one camera site was c. 40, or long enough to record about 20 independent photographs. Our analysis of evaluating the increasing number of additional camera sites shows that rotating cameras to new sites would be more efficient for measuring species richness than leaving cameras at fewer sites for a longer period.

  16. Precision mass measurements at THe-trap and the FSU trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, Martin Juergen

    2016-07-26

    THe-Trap is a Penning-trap mass spectrometer at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, that aims to measure the T/{sup 3}He mass ratio with a relative uncertainty of 10{sup -11}. Improvements of the measurement technique, in particular the measurement of systematic shifts, enabled measurements of mass ratios with relative uncertainties of 7.10{sup -11}, as demonstrated by a cyclotron frequency ratio determination on {sup 12}C{sup 4+}/{sup 16}O{sup 5+}. This uncertainty was limited by the lineshape. An improved theoretical model based on a rotating wave approximation can be used to describe dynamical interactions between the detection system and the ion, in order to better understand the lineshape and to further reduce the uncertainty. The Florida State University trap is a Penning-trap mass spectrometer located in Tallahassee, Florida (USA). In the context of this thesis, three mass ratios were measured, and further 20 mass ratio measurements analyzed, which resulted in the publication of the masses of {sup 82,83}Kr, {sup 131,134}Xe, {sup 86-88}Sr, and {sup 170-174,176}Yb with relative uncertainties between (0.9 - 1.3).10{sup -10}. These masses serve as reference masses for other experiments and have applications in the determination of the fine-structure constant alpha via the photon-recoil method.

  17. Growth rate and trapping efficacy of nematode-trapping fungi under constant and fluctuating temperatures

    DEFF Research Database (Denmark)

    Fernandez, A.S.; Larsen, M.; Wolstrup, J.

    1999-01-01

    The effect of temperature on radial growth and predatory activity of different isolates of nematode-trapping fungi was assessed. Four isolates of Duddingtonia flagrans and one isolate of Arthrobotrys oligospora were inoculated on petri dishes containing either cornmeal agar (CMA) or faecal agar...

  18. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution

    DEFF Research Database (Denmark)

    Samuelsen, Camilla O; Baraznenok, Vera; Khorosjutina, Olga

    2003-01-01

    In Saccharomyces cerevisiae Mediator, a subgroup of proteins (Srb8, Srb9, Srb10, and Srb11) form a module, which is involved in negative regulation of transcription. Homologues of Srb10 and Srb11 are found in some mammalian Mediator preparations, whereas no clear homologues have been reported...... for Srb8 and Srb9. Here, we identify a TRAP240/ARC250 homologue in Schizosaccharomyces pombe and demonstrate that this protein, spTrap240, is stably associated with a larger form of Mediator, which also contains conserved homologues of Srb8, Srb10, and Srb11. We find that spTrap240 and Sch. pombe Srb8 (sp......Srb8) regulate the same distinct subset of genes and have indistinguishable phenotypic characteristics. Importantly, Mediator containing the spSrb8/spTrap240/spSrb10/spSrb11 subunits is isolated only in free form, devoid of RNA polymerase II. In contrast, Mediator lacking this module associates...

  19. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  20. Flow regimes in a trapped vortex cell

    Science.gov (United States)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  1. Vortex trapping by tilted columnar defects

    International Nuclear Information System (INIS)

    Baladie, I.; Buzdin, A.

    2000-01-01

    The irradiation of high-T c superconductors by inclined heavy-ion beam can create columnar defects (CD's) practically at any angle towards the crystal c axis. We calculate the energy of a tilted vortex trapped on an inclined columnar defect within the framework of an electromagnetic model. Under a weak perpendicular magnetic field, and if the CD radius is larger than the superconducting coherence length, vortices always prefer to be on a tilted CD than to be aligned along the external field. We calculate also the interaction energy between two tilted vortices and find that large attractive regions appear. In particular, in the plane defined by c axis and the CD axis, tilted vortices attract each other at long distances, leading to the formation of vortex chains. The equilibrium distance between vortices in a chain is of the order of the magnitude of the in-plane London penetration depth. The existence of the inclined trapped vortices could be revealed by torque measurements, and could also lead to the anisotropy of the in-plane resistivity and the critical current

  2. Trapped ion mode in toroidally rotating plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k τ ρ bi much-lt 1, where ρ bi is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

  3. Landau damping in trapped Bose condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2003-07-01

    We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.

  4. An optical trap for relativistic plasma

    International Nuclear Information System (INIS)

    Zhang Ping; Saleh, Ned; Chen Shouyuan; Sheng Zhengming; Umstadter, Donald

    2003-01-01

    The first optical trap capable of confining relativistic electrons, with kinetic energy ≤350 keV was created by the interference of spatially and temporally overlapping terawatt power, 400 fs duration laser pulses (≤2.4x10 18 W/cm 2 ) in plasma. Analysis and computer simulation predicted that the plasma density was greatly modulated, reaching a peak density up to 10 times the background density (n e /n 0 ∼10) at the interference minima. Associated with this charge displacement, a direct-current electrostatic field of strength of ∼2x10 11 eV/m was excited. These predictions were confirmed experimentally by Thomson and Raman scattering diagnostics. Also confirmed were predictions that the electron density grating acted as a multi-layer mirror to transfer energy between the crossed laser beams, resulting in the power of the weaker laser beam being nearly 50% increased. Furthermore, it was predicted that the optical trap acted to heat electrons, increasing their temperature by two orders of magnitude. The experimental results showed that the number of high energy electrons accelerated along the direction of one of the laser beams was enhanced by a factor of 3 and electron temperature was increased ∼100 keV as compared with single-beam illumination

  5. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2013-03-21

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers\\' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  6. Experiments on cold trap regeneration by NaH decomposition

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Skladzien, S.B.; Raue, D.J.

    1979-10-01

    Cold trap regeneration may be very important in future LMFBRs because of the expected high hydrogen source from the steam generators. This hydrogen precipitates as NaH in the cold trap and may fill the trap within one year of operation. Several methods of cold trap regeneration were considered, but the simplest and least expensive appears to be decomposition of NaH under vacuum at elevated temperatures. Experiments were done to assess the feasibility of this method for cold trap regeneration. Small-scale simulated cold traps (SCT) were located with NaH and NaH plus Na 2 O, and were heated both under vacuum and under a sweep gas at 100 kPa. The evolved hydrogen was converted to water by a CuO bed and collected in a weighting tube

  7. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.; Thon, S. M.; Ip, A. H.; Sargent, E. H.

    2013-01-01

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  8. Metastable self-trapping of positrons in MgO

    Science.gov (United States)

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1997-01-01

    Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.

  9. Trapped charged particles a graduate textbook with problems and solutions

    CERN Document Server

    Madsen, Niels; Thompson, Richard C

    2016-01-01

    At Les Houches in January 2015, experts in the field of particle trapping came together to discuss the fundamental physics of traps and the different types of applications. This textbook collates the lectures delivered there; the Second Winter School on Physics with Trapped Charged Particles. Taken as a whole, the book gives an overview of why traps for charged particles are important, how they work, their special features and limitations, and their application in areas such as precision measurements, mass spectrometry, optical clocks, plasma physics, antihydrogen creation, quantum simulation and quantum information processing. Chapters from various world experts include those on the basic properties of Penning traps, RF traps and particle accelerators, as well as those covering important practical aspects such as vacuum systems, detection techniques, and different types of particle cooling including laser cooling. Finally, individual chapters deal with the different areas of application listed above. Each ...

  10. Stability of Trapped Electrons in SiO(2)

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.

    1999-01-01

    Thermally stimulated current and capacitance voltage methods are used to investigate the thermal stability of trapped electrons associated with radiation-induced trapped positive charge in metal-oxide-semiconductor capacitors. The density of deeply trapped electrons in radiation-hardened 45 nm oxides exceeds that of shallow electrons by a factor of ∼3 after radiation exposure, and by up to a factor of 10 or more during biased annealing. Shallow electron traps anneal faster than deep traps, and seem to be at least qualitatively consistent with the model of Lelis et al. Deeper traps maybe part of a fundamentally distinct dipole complex, and/or have shifted energy levels that inhibit charge exchange with the Si

  11. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities.

    Science.gov (United States)

    Adlassnig, Wolfram; Peroutka, Marianne; Lendl, Thomas

    2011-02-01

    Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.

  12. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  13. Angiography of the upper extremity

    International Nuclear Information System (INIS)

    Janevski, B.K.

    1982-01-01

    This thesis provides a description of the technical and medical aspects of arteriography of the upper extremity and an extensive analysis of the angiographic anatomy and pathology of 750 selective studies performed in more than 500 patients. A short historical review is provided of angiography as a whole and of arteriography of the hand in particular. The method of percutaneous transfemoral catheterization of the arteries of the upper extremity and particularly the arteries of the hand is considered, discussing the problems the angiographer encounters frequently, describing the angiographic complications which may occur and emphasizing the measures to keep them to a minimum. The use of vasodilators in hand angiography is discussed. A short description of the embryological patterns persisting in the arteries of the arm is included in order to understand the congenital variations of the arteries of the upper extremity. The angiographic patterns and clinical aspects of the most common pathological processes involving the arteries of the upper extremities are presented. Special attention is paid to the correlation between angiography and pathology. (Auth.)

  14. Extreme conditions (p, T, H)

    Energy Technology Data Exchange (ETDEWEB)

    Mesot, J [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The aim of this paper is to summarize the sample environment which will be accessible at the SINQ. In order to illustrate the type of experiments which will be feasible under extreme conditions of temperature, magnetic field and pressure at the SINQ a few selected examples are also given. (author) 7 figs., 14 refs.

  15. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2011-01-01

    ‘‘Extreme Ocean Waves’’ is a collection of ten papers edited by Efim Pelinovsky and Christian Kharif that followed the April 2007 meeting of the General Assembly of the European Geosciences Union. A note on terminology: extreme waves in this volume broadly encompass different types of waves, includ- ing deep-water and shallow-water rogue waves (alternatively termed freak waves), storm surges from cyclones, and internal waves. Other types of waves such as tsunamis or rissaga (meteotsunamis) are not discussed in this volume. It is generally implied that ‘‘extreme’’ has a statistical connotation relative to the average or significant wave height specific to each type of wave. Throughout the book, in fact, the reader will find a combination of theoretical and statistical/ empirical treatment necessary for the complete examination of this subject. In the introduction, the editors underscore the importance of studying extreme waves, documenting several dramatic instances of damaging extreme waves that occurred in 2007. 

  16. Extreme Energy Events Monitoring report

    CERN Document Server

    Baimukhamedova, Nigina

    2015-01-01

    Following paper reflects the progress I made on Summer Student Program within Extreme Energy Events Monitor project I was working on. During 8 week period I managed to build a simple detector system that is capable of triggering events similar to explosions (sudden change in sound levels) and measuring approximate location of the event. Source codes are available upon request and settings described further.

  17. Astrobiology: Life in Extreme Environments

    Science.gov (United States)

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  18. Prophylactic Placement of an Inferior Vena Cava Filter During Aspiration Thrombectomy for Acute Deep Venous Thrombosis of the Lower Extremity.

    Science.gov (United States)

    Kwon, Se Hwan; Park, So Hyun; Oh, Joo Hyeong; Song, Myung Gyu; Seo, Tae-Seok

    2016-05-01

    To evaluate the effect of an inferior vena cava (IVC) filter during aspiration thrombectomy for acute deep vein thrombosis (DVT) in the lower extremity. From July 2004 to December 2013, a retrospective analysis of 106 patients with acute DVT was performed. All patients received an IVC filter and were treated initially with aspiration thrombectomy. Among the 106 patients, DVT extension into the IVC was noted in 27 but was not evident in 79. We evaluated the presence of trapped thrombi in the filters after the procedure. The sizes of the trapped thrombi were classified into 2 grades based on the ratio of the maximum transverse length of the trapped thrombus to the diameter of the IVC (Grades I [≤ 50%] and II [> 50%]). A trapped thrombus in the filter was detected in 46 (43%) of 106 patients on final venograms. The sizes of the trapped thrombi were grade I in 12 (26.1%) patients and grade II in 34 (73.9%). Among the 27 patients with DVT extension into the IVC, 20 (74.1%) showed a trapped thrombus in the filter, 75% (15 of 20) of which were grade II. Among the 79 patients without DVT extension into the IVC, 26 (32.9%) showed a trapped thrombus in the IVC filter, 73% (19 of 26) of which were grade II. Thrombus migration occurred frequently during aspiration thrombectomy of patients with acute DVT in the lower extremity. However, further studies are needed to establish a standard protocol for the prophylactic placement of an IVC filter during aspiration thrombectomy. © The Author(s) 2016.

  19. Trapping guidelines for area-wide fruit fly programmes

    International Nuclear Information System (INIS)

    2003-11-01

    Different traps and lures have been developed and used over decades to survey fruit fly populations. The first attractant for male fruit flies was methyl eugenol (ME) (for Bactrocera zonata, Howlett, 1912) followed by kerosene for Mediterranean fruit fly, Ceratitis capitata, (medfly), Severin and Severin, 1913. In 1956, Angelica seed oil was used to trap medfly (Steiner et al, 1957). Beroza et al. (1961) discovered trimedlure (TML) to be effective for the same purpose. Beroza and Green, 1963, demonstrated cuelure to be an effective attractant for Bactrocera cucurbitae. Food baits based on protein solutions, fermenting sugar solutions, fruit juices, and vinegar have been used since 1918 for the capture of females of several species. The McPhail trap was the first device to be used with protein baits (McPhail, 1929). Steiner traps were developed in 1957 (Steiner et al., 1957) and Jackson traps in 1971 for TML (Harris et al., 1971). These traps are currently used in various countries for fruit fly surveys in support of control activities and eradication campaigns. The combination of a McPhail trap with a protein attractant, Jackson trap with TML, and the Steiner trap with ME or cuelure (CUE), has remained unchanged for several decades. Global trends in increasing food quality, revenue sources, and fruit and vegetable trade, has resulted in an increased worldwide movement of fruit fly species and requires refinement of survey systems. After years of validating trapping technology through coordinated research programmes (CRP's) and extensive technical assistance to member countries, the Joint Division FAO/IAEA proposes the use of proven technologies in improving trap sensitivity in area-wide fruit fly control programmes (IAEA 1996 and IAEA 1998). These proven technologies include the use of synthetic food lures such as female attractants that can be used for several species of Anastrepha, Bactrocera and Ceratitis. Other citations of information on these developments are

  20. Trapping guidelines for area-wide fruit fly programmes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    Different traps and lures have been developed and used over decades to survey fruit fly populations. The first attractant for male fruit flies was methyl eugenol (ME) (for Bactrocera zonata, Howlett, 1912) followed by kerosene for Mediterranean fruit fly, Ceratitis capitata, (medfly), Severin and Severin, 1913. In 1956, Angelica seed oil was used to trap medfly (Steiner et al, 1957). Beroza et al. (1961) discovered trimedlure (TML) to be effective for the same purpose. Beroza and Green, 1963, demonstrated cuelure to be an effective attractant for Bactrocera cucurbitae. Food baits based on protein solutions, fermenting sugar solutions, fruit juices, and vinegar have been used since 1918 for the capture of females of several species. The McPhail trap was the first device to be used with protein baits (McPhail, 1929). Steiner traps were developed in 1957 (Steiner et al., 1957) and Jackson traps in 1971 for TML (Harris et al., 1971). These traps are currently used in various countries for fruit fly surveys in support of control activities and eradication campaigns. The combination of a McPhail trap with a protein attractant, Jackson trap with TML, and the Steiner trap with ME or cuelure (CUE), has remained unchanged for several decades. Global trends in increasing food quality, revenue sources, and fruit and vegetable trade, has resulted in an increased worldwide movement of fruit fly species and requires refinement of survey systems. After years of validating trapping technology through coordinated research programmes (CRP's) and extensive technical assistance to member countries, the Joint Division FAO/IAEA proposes the use of proven technologies in improving trap sensitivity in area-wide fruit fly control programmes (IAEA 1996 and IAEA 1998). These proven technologies include the use of synthetic food lures such as female attractants that can be used for several species of Anastrepha, Bactrocera and Ceratitis. Other citations of information on these developments are

  1. Magnet system of the ''AMBAL'' experimental trap with ambipolar mirrors

    International Nuclear Information System (INIS)

    Dimov, G.I.; Lysyanskij, P.B.; Tadber, M.V.; Timoshin, I.Ya.; Shrajner, K.K.

    1982-01-01

    A magnet system of the ''AMBAL'' ambipolar trap under construction is described. The trap magnetic field configuration, geometry of the main coils and diagram of the whole device magnet system are outlined. Drift surface cross sections in the equatorial plane of the ring mirror device, in the median plane and at different distances from the trap median plane are presented. The magnet system design is described in brief

  2. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    OpenAIRE

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor...

  3. Magnetic trapping of NH molecules with 20 s lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Tsikata, E; Campbell, W C; Hummon, M T; Lu, H-I; Doyle, J M, E-mail: tsikata@fas.harvard.ed [Department of Physics, Harvard University, Cambridge, MA (United States)

    2010-06-15

    Buffer gas cooling is used to trap NH molecules with 1/e lifetimes exceeding 20 s. Helium vapor generated by laser desorption of a helium film is employed to thermalize 10{sup 5} molecules at a temperature of 500 mK in a 3.9 T magnetic trap. Long molecule trapping times are attained through rapid pumpout of residual buffer gas. Molecules experience a helium background gas density below 1x10{sup 12} cm{sup -3}.

  4. A nonlinear bounce kinetic equation for trapped electrons

    International Nuclear Information System (INIS)

    Gang, F.Y.

    1990-03-01

    A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs

  5. Is There a Fiscal Free Lunch in a Liquidity Trap?

    OpenAIRE

    Jesper Linde; Christopher J. Erceg

    2010-01-01

    This paper uses a DSGE model to examine the effects of an expansion in government spending in a liquidity trap. If the liquidity trap is very prolonged, the spending multiplier can be much larger than in normal circumstances, and the budgetary costs minimal. But given this "fiscal free lunch," it is unclear why policymakers would want to limit the size of fiscal expansion. Our paper addresses this question in a model environment in which the duration of the liquidity trap is determined endoge...

  6. Nutrition security under extreme events

    Science.gov (United States)

    Martinez, A.

    2017-12-01

    Nutrition security under extreme events. Zero hunger being one of the Sustainable Development Goal from the United Nations, food security has become a trending research topic. However extreme events impact on global food security is not yet 100% understood and there is a lack of comprehension of the underlying mechanisms of global food trade and nutrition security to improve countries resilience to extreme events. In a globalized world, food is still a highly regulated commodity and a strategic resource. A drought happening in a net food-exporter will have little to no effect on its own population but the repercussion on net food-importers can be extreme. In this project, we propose a methodology to describe and quantify the impact of a local drought to human health at a global scale. For this purpose, nutrition supply and global trade data from FAOSTAT have been used with domestic food production from national agencies and FAOSTAT, global precipitation from the Climate Research Unit and health data from the World Health Organization. A modified Herfindahl-Hirschman Index (HHI) has been developed to measure the level of resilience of one country to a drought happening in another country. This index describes how a country is dependent of importation and how diverse are its importation. Losses of production and exportation due to extreme events have been calculated using yield data and a simple food balance at country scale. Results show that countries the most affected by global droughts are the one with the highest dependency to one exporting country. Changes induced by droughts also disturbed their domestic proteins, fat and calories supply resulting most of the time in a higher intake of calories or fat over proteins.

  7. Sodium removal and requalification of secondary loop cold trap

    International Nuclear Information System (INIS)

    Rajan, M.; Veerasamy, R.; Gurumoorthy, K.; Rajan, K.K.; Kale, R.D.

    1997-01-01

    The secondary loop cold trap of the Fast Breeder Test Reactor got plugged prematurely and was not removing impurities from the sodium. This cold trap was taken up for cleaning and modification of the internals. The cleaning operation was carried out successfully by hydride decomposition and vacuum distillation followed by steam cleaning method. Without dismantling, the cold trap internals were washed by circulating water. Subsequently the wire mesh was removed, examined and replaced, the internal modifications were carried (nit and the cold trap way qualified for reuse. The procedures followed and the experience gained are discussed. (author)

  8. Camera Traps Can Be Heard and Seen by Animals

    Science.gov (United States)

    Meek, Paul D.; Ballard, Guy-Anthony; Fleming, Peter J. S.; Schaefer, Michael; Williams, Warwick; Falzon, Greg

    2014-01-01

    Camera traps are electrical instruments that emit sounds and light. In recent decades they have become a tool of choice in wildlife research and monitoring. The variability between camera trap models and the methods used are considerable, and little is known about how animals respond to camera trap emissions. It has been reported that some animals show a response to camera traps, and in research this is often undesirable so it is important to understand why the animals are disturbed. We conducted laboratory based investigations to test the audio and infrared optical outputs of 12 camera trap models. Camera traps were measured for audio outputs in an anechoic chamber; we also measured ultrasonic (n = 5) and infrared illumination outputs (n = 7) of a subset of the camera trap models. We then compared the perceptive hearing range (n = 21) and assessed the vision ranges (n = 3) of mammals species (where data existed) to determine if animals can see and hear camera traps. We report that camera traps produce sounds that are well within the perceptive range of most mammals’ hearing and produce illumination that can be seen by many species. PMID:25354356

  9. Mosquito Traps: An Innovative, Environmentally Friendly Technique to Control Mosquitoes

    Directory of Open Access Journals (Sweden)

    Brigitte Poulin

    2017-03-01

    Full Text Available We tested the use of mosquito traps as an alternative to spraying insecticide in Camargue (France following the significant impacts observed on the non-target fauna through Bti persistence and trophic perturbations. In a village of 600 inhabitants, 16 Techno Bam traps emitting CO2 and using octenol lures were set from April to November 2016. Trap performance was estimated at 70% overall based on mosquitoes landing on human bait in areas with and without traps. The reduction of Ochlerotatus caspius and Oc. detritus, the two species targeted by Bti spraying, was, respectively, 74% and 98%. Traps were less efficient against Anopheles hyrcanus (46%, which was more attracted by lactic acid than octenol lures based on previous tests. Nearly 300,000 mosquitoes from nine species were captured, with large variations among traps, emphasizing that trap performance is also influenced by surrounding factors. Environmental impact, based on the proportion of non-target insects captured, was mostly limited to small chironomids attracted by street lights. The breeding success of a house martin colony was not significantly affected by trap use, in contrast to Bti spraying. Our experiment confirms that the deployment of mosquito traps can offer a cost-effective alternative to Bti spraying for protecting local populations from mosquito nuisance in sensitive natural areas.

  10. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Castro, J.C.; Li, M.S.; Zilio, S.C.

    1988-01-01

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.) [pt

  11. Sognenavne, Aabenraa Kommune (16 artikler). trap.dk

    DEFF Research Database (Denmark)

    Kællerød, Lars-Jakob Harding

    2019-01-01

    Artikler til Trap Danmarks netpublikation trap.dk Sognenavnene Bjolderup, Burkal, Bylderup, Egvad, Ensted, Genner, Hellevad, Hjordkær, Holbøl, Kliplev, Løjt, Ravsted, Rise, Uge, Varnæs og Øster Løgum......Artikler til Trap Danmarks netpublikation trap.dk Sognenavnene Bjolderup, Burkal, Bylderup, Egvad, Ensted, Genner, Hellevad, Hjordkær, Holbøl, Kliplev, Løjt, Ravsted, Rise, Uge, Varnæs og Øster Løgum...

  12. Controlling spin flips of molecules in an electromagnetic trap

    Science.gov (United States)

    Reens, David; Wu, Hao; Langen, Tim; Ye, Jun

    2017-12-01

    Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.

  13. Fueling profile sensitivities of trapped particle mode transport to TNS

    International Nuclear Information System (INIS)

    Mense, A.T.; Attenberger, S.E.; Houlberg, W.A.

    1977-01-01

    A key factor in the plasma thermal behavior is the anticipated existence of dissipative trapped particle modes. A possible scheme for controlling the strength of these modes was found. The scheme involves varying the cold fueling profile. A one dimensional multifluid transport code was used to simulate plasma behavior. A multiregime model for particle and energy transport was incorporated based on pseudoclassical, trapped electron, and trapped ion regimes used elsewhere in simulation of large tokamaks. Fueling profiles peaked toward the plasma edge may provide a means for reducing density-gradient-driven trapped particle modes, thus reducing diffusion and conduction losses

  14. Acoustic trapping in bubble-bounded micro-cavities

    Science.gov (United States)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  15. Electron Cooling of Protons in a Nested Penning Trap

    International Nuclear Information System (INIS)

    Hall, D.S.; Gabrielse, G.

    1996-01-01

    Trapped protons cool via collisions with trapped electrons at 4 K.This first demonstration of sympathetic cooling by trapped species of opposite sign of charge utilizes a nested Penning trap. The demonstrated interaction of electrons and protons at very low relative velocities, where recombination is predicted to be most rapid, indicates that this may be a route towards the study of low temperature recombination. The production of cold antihydrogen is of particular interest, and electron cooling of highly stripped ions may also be possible. copyright 1996 The American Physical Society

  16. Camera traps can be heard and seen by animals.

    Directory of Open Access Journals (Sweden)

    Paul D Meek

    Full Text Available Camera traps are electrical instruments that emit sounds and light. In recent decades they have become a tool of choice in wildlife research and monitoring. The variability between camera trap models and the methods used are considerable, and little is known about how animals respond to camera trap emissions. It has been reported that some animals show a response to camera traps, and in research this is often undesirable so it is important to understand why the animals are disturbed. We conducted laboratory based investigations to test the audio and infrared optical outputs of 12 camera trap models. Camera traps were measured for audio outputs in an anechoic chamber; we also measured ultrasonic (n = 5 and infrared illumination outputs (n = 7 of a subset of the camera trap models. We then compared the perceptive hearing range (n = 21 and assessed the vision ranges (n = 3 of mammals species (where data existed to determine if animals can see and hear camera traps. We report that camera traps produce sounds that are well within the perceptive range of most mammals' hearing and produce illumination that can be seen by many species.

  17. Simple atom trap in a conical hollow mirror: Numerical analysis

    International Nuclear Information System (INIS)

    Kim, J. A.; Lee, K. I.; Nha, H.; Noh, H. R.; Yoo, S. H.; Jhe, W

    1996-01-01

    We analyze the trap dynamic in a conical hollow (axicon) mirror system. Atom's trajectory is ring shaped if we move the coil (magnetic field) axis off the mirror axis and if we overlap these two axes trap cloud is ball shaped and it is consistent with experiment. We also make a simple comparison between 6-beam MOT and axicon MOT in the ball shaped case, and it shows that at low velocity limit the axicon MOT and typical 6-beam MOT have nearly same trap properties. The axicon trap may be useful as precooled atom source for many other atomic physics experiments such as cold atomic beam, atom funnel, and atom waveguide.

  18. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  19. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Directory of Open Access Journals (Sweden)

    Achmad Ariefiandy

    Full Text Available Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis, an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψand varied detection probabilities (p according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site, p (site survey; ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  20. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  1. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site*survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species. PMID:23527027

  2. Vortices trapped in discrete Josephson rings

    International Nuclear Information System (INIS)

    Van der Zanta, H.S.J.; Orlando, T.P.; Watanabe, Shinya; Strogatz, S.H.

    1994-01-01

    We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.))

  3. Vortices trapped in discrete Josephson rings

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zanta, H.S.J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Orlando, T.P. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Watanabe, Shinya [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Strogatz, S.H. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    1994-12-01

    We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.)).

  4. Light Trapping with Silicon Light Funnel Arrays

    Directory of Open Access Journals (Sweden)

    Ashish Prajapati

    2018-03-01

    Full Text Available Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase. This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  5. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-01-01

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  6. Switchable cell trapping using superparamagnetic beads

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M. T.; Smith, K. H.; Real, M. E.; Bashir, M. A.; Fry, P. W.; Fischer, P.; Im, M.-Y.; Schrefl, T.; Allwood, D. A.; Haycock, J. W.

    2010-04-30

    Ni{sub 81}Fe{sub 19} microwires are investigated as the basis of a switchable template for positioning magnetically-labeled neural Schwann cells. Magnetic transmission X-ray microscopy and micromagnetic modeling show that magnetic domain walls can be created or removed in zigzagged structures by an applied magnetic field. Schwann cells containing superparamagnetic beads are trapped by the field emanating from the domain walls. The design allows Schwann cells to be organized on a surface to form a connected network and then released from the surface if required. As aligned Schwann cells can guide nerve regeneration, this technique is of value for developing glial-neuronal co-culture models in the future treatment of peripheral nerve injuries.

  7. Trapped ion simulation of molecular spectrum

    Science.gov (United States)

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2016-05-01

    Boson sampling had been suggested as a classically intractable and quantum mechanically manageable problem via computational complexity theory arguments. Recently, Huh and co-workers proposed theoretically a modified version of boson sampling, which is designed to simulate a molecular problem, as a practical application. Here, we report the experimental implementation of the theoretical proposal with a trapped ion system. As a first demonstration, we perform the quantum simulation of molecular vibronic profile of SO2, which incorporates squeezing, rotation and coherent displacements operations, and the collective projection measurement on phonon modes. This work was supported by the National Basic Research Program of China 11CBA00300, 2011CBA00301, National Natural Science Foundation of China 11374178, 11574002. Basic Science Research Program of Korea NRF-2015R1A6A3A04059773.

  8. Solute trapping of Ge in Al

    International Nuclear Information System (INIS)

    Smith, P.M.; West, J.A.; Aziz, M.J.

    1992-01-01

    This paper reports on partitioning during rapid solidification of dilute Al-Ge alloys. Implanted thin films of Al have been pulsed-laser melted to obtain solidification at velocities in the range of 0.01 ms to 3.3 m/s, as measured by the transient conductance technique. Previous and subsequent Rutherford Backscattering depth profiling of the Ge solute in the Al alloys has been used to determine the nonequilibrium partition coefficient k. A significant degree of lateral film growth during solidification confines determination of k to the placing of an upper bound of 0.22 on k for solidification velocities in this range. The authors place a lower limit of 10 m/s on the diffusive velocity, which locates the transition from solute partitioning to solute trapping in the Continuous Growth Model

  9. Continuous magnetic trapping of laser cooled atoms

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Lafyatis, G.; Martin, A.G.; Raab, E.L.; Landry, J.; Ahmad-Bitar, R.N.; Pritchard, D.E.

    1987-01-01

    The authors present here initial results of the deceleration of a thermal atomic beam from -- 1000 to -- 100 m/s. The experiment was conducted in the 1.4-m long vertical superconducting solenoid which produced the slowing field. The fluorescence of the slowed atomic beam has been studied as a function of laser frequency. Figure 2 is a 12-GHz scan showing the fluorescence at a position 150 cm from the beginning of the solenoid. The wide peak corresponds to unslowed atoms with generally the initial velocity distribution. The second, narrower, peak corresponds to slowed atoms with a velocity of -- 150 m/s. Similar spectra have been obtained for various positions along the magnetic slower and trap. These data should allow better understanding of the cooling process and will be compared to computer models

  10. Lifetime measurement of trapped staus using ATLAS

    CERN Document Server

    Sibley, Logan

    I study the creation of long-lived staus at a 14 TeV centre of mass energy in proton-proton collisions at the LHC using both the ATLAS and ACME detectors. The ATLAS overburden or underburden, or even ATLAS itself, may trap the semi-stable staus at that place where they will remain until the time at which they decay, where the stau lifetime ranges between seven days and one year. Using a novel method, one may count the number of muons and pions originating from the stau decay using the standard ATLAS cosmic ray trigger. Using an idealized detector model, I find that this method can lead to measurements of the stau lifetime and SUSY cross-section to within statistical uncertainties of 6% and 1% of their actual values, respectively.

  11. Faradaic AC Electrokinetic Flow and Particle Traps

    Science.gov (United States)

    Ben, Yuxing; Chang, Hsueh-Chia

    2004-11-01

    Faradaic reaction at higher voltages can produce co-ion polarization at AC electrodes instead of counter-ion polarization due to capacitive charging from the bulk. The Faradaic co-ion polarization also does not screen the external field and hence can produce large net electro-kinetic flows at frequencies lower than the inverse RC time of the double layer. Due to the opposite polarization of capacitve and Faradaic charging, we can reverse the direction of AC flows on electrodes by changing the voltage and frequency. Particles and bacteria are trapped and then dispersed at stagnation lines, at locations predicted by our theory, by using these two flows sequentially. This technique offers a good way to concentrate and detect bacteria.

  12. Ultraviolet safety assessments of insect light traps.

    Science.gov (United States)

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  13. Classical region of a trapped Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Blakie, P Blair [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin (New Zealand); Davis, Matthew J [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia)

    2007-06-14

    The classical region of a Bose gas consists of all single particle modes that have a high average occupation and are well described by a classical field. Highly occupied modes only occur in massive Bose gases at ultra-cold temperatures, in contrast to the photon case where there are highly occupied modes at all temperatures. For the Bose gas the number of these modes is dependent on the temperature, the total number of particles and their interaction strength. In this paper, we characterize the classical region of a harmonically trapped Bose gas over a wide parameter regime. We use a Hartree-Fock approach to account for the effects of interactions, which we observe to significantly change the classical region as compared to the idealized case. We compare our results to full classical field calculations and show that the Hartree-Fock approach provides a qualitatively accurate description of a classical region for the interacting gas.

  14. Penning trap mass measurements on nobelium isotopes

    International Nuclear Information System (INIS)

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-01-01

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes 252-254 No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a 48 Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  15. Ion production and trapping in electron rings

    International Nuclear Information System (INIS)

    Gluckstern, R.C.; Ruggiero, A.G.

    1979-08-01

    The electron beam in the VUV and X-ray rings of NSLS will ionize residual gas by collisions. Positive ions will be produced with low velocity, and will be attracted by the electron beam to the beam axis. If they are trapped in stable (transverse) orbits, they may accumulate, thereby increasing the ν/sub x,z/ of the individual electrons. Since the accumulated ions are unlikely to be of uniform density, a spread in ν/sub x,z/ will also occur. Should these effects be serious, it may be necessary to introduce clearing electrodes, although this may increase Z/n in the rings, thereby adding to longitudinal instability problems. The seriousness of the above effect for the VUV and X-ray rings is estimated

  16. Pediatric lower extremity mower injuries.

    Science.gov (United States)

    Hill, Sean M; Elwood, Eric T

    2011-09-01

    Lawn mower injuries in children represent an unfortunate common problem to the plastic reconstructive surgeon. There are approximately 68,000 per year reported in the United States. Compounding this problem is the fact that a standard treatment algorithm does not exist. This study follows a series of 7 pediatric patients treated for lower extremity mower injuries by a single plastic surgeon. The extent of soft tissue injury varied. All patients were treated with negative pressure wound therapy as a bridge to definitive closure. Of the 7 patients, 4 required skin grafts, 1 required primary closure, 1 underwent a lower extremity amputation secondary to wounds, and 1 was repaired using a cross-leg flap. Function limitations were minimal for all of our patients after reconstruction. Our basic treatment algorithm is presented with initial debridement followed by the simplest method possible for wound closure using negative pressure wound therapy, if necessary.

  17. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Neary, Vincent Sinclair [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lawon, Michael J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weber, Jochem [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consisted of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .

  18. Extreme project. Progress report 2006

    International Nuclear Information System (INIS)

    Eyrolle, F.; Masson, O.; Charmasson, S.

    2007-01-01

    The E.X.T.R.E.M.E. project introduced in 2005 to the S.E.S.U.R.E. / L.E.R.C.M. has for objectives to acquire data on the consequences of the extreme climatic meteorological episodes on the distribution of the artificial radioisotopes within the various compartments of the geosphere. This report presents the synthesis of the actions developed in 2006 in positioning and in co financing of the project by means of regional or national research programs (C.A.R.M.A., E.X.T.R.E.M.A., E.C.C.O.R.E.V.I.), of data acquisition, valuation and scientific collaboration. (N.C.)

  19. On causality of extreme events

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2016-06-01

    Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.

  20. Extreme Nonlinear Optics An Introduction

    CERN Document Server

    Wegener, Martin

    2005-01-01

    Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The followi...