WorldWideScience

Sample records for extreme loading conditions

  1. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    Science.gov (United States)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  2. Rational Calibration of Four IEC 61400-1 Extreme External Conditions

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2008-01-01

    Based on a set of asymptotic statistical models on closed form this paper presents a rational and consistent calibration of four extreme external conditions defined in the International Electrotechnical Commission (IEC) 61400-1 standard: extreme operating gust, extreme wind shear, extreme coheren...... and proposed specifications of the magnitudes of the extreme external wind conditions are highlighted and discussed using an illustrative example based on two selected terrain types. Copyright © 2008 John Wiley & Sons, Ltd....... gust with direction change and extreme wind direction change. These four extreme external conditions are used in the definition of six of the IEC 61400-1 ultimate load cases. The statistical models are based on simple and easily accessible mean wind speed and turbulence characteristics...

  3. Hydrogen ion induced ultralow wear of PEEK under extreme load

    Science.gov (United States)

    Yan, Shuai; Wang, Anying; Fei, Jixiong; Wang, Zhenyang; Zhang, Xiaofeng; Lin, Bin

    2018-03-01

    As a high-performance engineering polymer, poly(ether ether ketone) (PEEK) is a perfect candidate material for applications under extreme working conditions. However, its high wear rate greatly shortens its service life. In this study, ultralow friction and wear between PEEK and silicon nitride (Si3N4) under extreme-load conditions (with a mean contact pressure above 100 MPa) are found in acid lubricating solutions. Both friction and wear decrease sharply with decreasing pH. At pH = 1, the friction coefficient decreases by an order of magnitude and the wear rate of the PEEK decreases by two orders of magnitude compared to the results with water lubrication. These reductions in friction and wear occur for different speed, load, and surface roughness conditions. The underlying mechanism can be attributed to the formation of hydrogen-ion-induced electrical double layers on the surfaces of PEEK and Si3N4. The combined effect of the resulting repulsive force, electro-viscosity, and low shear strength of the water layer dramatically reduces both friction and wear.

  4. Validation of nonlinear FEA models of a thin-walled elbow under extreme loading conditions for Sodium-cooled Fast Reactors

    International Nuclear Information System (INIS)

    Watakabe, Tomoyoshi; Wakai, Takashi; Jin, Chuanrong; Usui, Yoshiya; Sakai, Shinkichi; Ooshika, Junji; Tsukimori, Kazuyuki

    2015-01-01

    For the purpose of confirming failure modes and safety margin, some studies on the ultimate strength of thin-walled piping components for Sodium-cooled Fast Reactors (SFRs) under extreme loading conditions such as large earthquakes have been reported these several years. Nonlinear finite element analysis has been applied in these studies to simulate buckling and yielding with large deformation, whose accuracy is dependent on the element type, the mesh size, the elasto-plastic model and so on. It is important to check the validation of a finite element model for nonlinear analysis especially under extreme loading conditions. This paper presents static and dynamic analyses of a thin-walled elbow with large deformation under large seismic loading, and discusses the validation of the FEA models comparing with experimental results. The finite element analysis models in this study are generated by shell elements for a stainless steel pipe elbow of diameter-to-thickness ratio 59:1 similar to the main pipe of SFRs, which is used for shaking table tests. At first, a static analysis is carried out for an in-plane monotonic bending test, in order to confirm that the shell element is appropriate to the large deformation analysis and the material parameters are proper for the strain level in the experiments. And then, a dynamic in-plane bending test with the maximum acceleration of 11.7G is simulated by the nonlinear FEA with stiffness-proportional damping. The influence of mesh sizes on results is investigated, to determine proper mesh sizes and reduce the computational cost. Finally, comparing the results of the FEM analyses with those of experiments, it is concluded that the appropriately generated FEA models are effective and give accurate results for nonlinear analyses of the thin-walled elbow under large seismic loading. (author)

  5. Specific gas turbines for extreme peak-load

    International Nuclear Information System (INIS)

    Bellot, C.

    1992-12-01

    As with other European countries, in France peak consumption of electricity occurs during winter. Due to the increasing use of electricity for domestic heating, outside temperature greatly influences consumption (1 200 MW for a drop of 1 deg C). To meet requirements during cold spells, EDF has sought to determine which special facilities are best suited for extreme peak load conditions (i.e. offering short lifespan and minimum capital cost) and has studied the possibility of installing generation means in transformer substations (20 kV). This solution does not require extension of networks since these means are scattered near consumption areas. An experiment conducted on 3 Diesel generators of 800 kWe each at Senlis revealed some of the disadvantages of Diesel (maintenance requirements, polluting emissions and noise). EDF then examined, for this same application, the use of gas turbines, for which these drawbacks are significantly less. A study carried out under an EDF contract by the French manufacturer TURBOMECA showed that it is possible to design a small capacity gas turbine that can compete with Diesel generators, and that capital costs could be minimized by simplifying the machine, adapting its lifespan to extreme peak load needs, and taking advantage of lower cost provided by mass production. TURBOMECA defined the machine's characteristics (2 MW, 6 000 hours lifespan) and aerodynamic flow. It also estimated the cost of packaging. In terms of overall cost (including initial investment, maintenance and fuel) the gas turbine appears cheaper than Diesel generators for annual operation times of less than one hundred hours, which corresponds closely with extreme peak load use. The lower maintenance costs and the better availability counterbalance the higher capital cost (+6%) and the greater consumption (+50%). (author). 7 figs

  6. Mitigating the Long term Operating Extreme Load through Active Control

    International Nuclear Information System (INIS)

    Koukoura, Christina; Natarajan, Anand

    2014-01-01

    The parameters influencing the long term extreme operating design loads are identified through the implementation of a Design of Experiment (DOE) method. A function between the identified critical factors and the ultimate out-of-plane loads on the blade is determined. Variations in the initial blade azimuth location are shown to affect the extreme blade load magnitude during operation in normal turbulence wind input. The simultaneously controlled operation of generator torque variation and pitch variation at low blade pitch angles is detected to be responsible for very high loads acting on the blades. Through gain scheduling of the controller (modifications of the proportional Kp and the integral K gains) the extreme loads are mitigated, ensuring minimum instantaneous variations in the power production for operation above rated wind speed. The response of the blade load is examined for different values of the integral gain as resulting in rotor speed error and the rate of change of rotor speed. Based on the results a new load case for the simulation of extreme loads during normal operation is also presented

  7. Stochastic Extreme Load Predictions for Marine Structures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    1999-01-01

    Development of rational design criteria for marine structures requires reliable estimates for the maximum wave-induced loads the structure may encounter during its operational lifetime. The paper discusses various methods for extreme value predictions taking into account the non-linearity of the ......Development of rational design criteria for marine structures requires reliable estimates for the maximum wave-induced loads the structure may encounter during its operational lifetime. The paper discusses various methods for extreme value predictions taking into account the non......-linearity of the waves and the response. As example the wave-induced bending moment in the ship hull girder is considered....

  8. Analysis of Global Sensitivity of Landing Variables on Landing Loads and Extreme Values of the Loads in Carrier-Based Aircrafts

    Directory of Open Access Journals (Sweden)

    Jin Zhou

    2018-01-01

    Full Text Available When a carrier-based aircraft is in arrested landing on deck, the impact loads on landing gears and airframe are closely related to landing states. The distribution and extreme values of the landing loads obtained during life-cycle analysis provide an important basis for buffering parameter design and fatigue design. In this paper, the effect of the multivariate distribution was studied based on military standards and guides. By establishment of a virtual prototype, the extended Fourier amplitude sensitivity test (EFAST method is applied on sensitivity analysis of landing variables. The results show that sinking speed and rolling angle are the main influencing factors on the landing gear’s course load and vertical load; sinking speed, rolling angle, and yawing angle are the main influencing factors on the landing gear’s lateral load; and sinking speed is the main influencing factor on the barycenter overload. The extreme values of loads show that the typical condition design in the structural strength analysis is safe. The maximum difference value of the vertical load of the main landing gear is 12.0%. This research may provide some reference for structure design of landing gears and compilation of load spectrum for carrier-based aircrafts.

  9. Mitigating the Long term Operating Extreme Load through Active Control

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand

    2014-01-01

    blade azimuth location are shown to affect the extreme blade load magnitude during operation in normal turbulence wind input. The simultaneously controlled operation of generator torque variation and pitch variation at low blade pitch angles is detected to be responsible for very high loads acting...... on the blades. Through gain scheduling of the controller (modifications of the proportional Kp and the integral Ki gains) the extreme loads are mitigated, ensuring minimum instantaneous variations in the power production for operation above rated wind speed. The response of the blade load is examined...

  10. Response Load Extrapolation for Wind Turbines during Operation Based on Average Conditional Exceedance Rates

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan

    2011-01-01

    to cases where the Gumbel distribution is the appropriate asymptotic extreme value distribution. However, two extra parameters are introduced by which a more general and flexible class of extreme value distributions is obtained with the Gumbel distribution as a subclass. The general method is implemented...... within a hierarchical model where the variables that influence the loading are divided into ergodic variables and time-invariant non-ergodic variables. The presented method for statistical response load extrapolation was compared with the existing methods based on peak extrapolation for the blade out......The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted...

  11. Extreme and First-Passage Time of Ship Collision Loads

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Thoft-Christensen, Palle

    1983-01-01

    The paper outlines a general theory from which the distribution function of the extreme peak collision load encountered during a certain intended lifetime can be cal culated assuming the arrival of ship collisions to be specified by a Poisson counting proces s.......The paper outlines a general theory from which the distribution function of the extreme peak collision load encountered during a certain intended lifetime can be cal culated assuming the arrival of ship collisions to be specified by a Poisson counting proces s....

  12. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    OpenAIRE

    Barlas, Athanasios; Pettas, Vasilis; Gertz, Drew Patrick; Aagaard Madsen , Helge

    2016-01-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components o...

  13. Investigation of potential extreme load reduction for a two-bladed upwind turbine with partial pitch

    DEFF Research Database (Denmark)

    Kim, Taeseong; Larsen, Torben J.; Yde, Anders

    2015-01-01

    This paper presents a wind turbine concept with an innovative design combining partial pitch with a two-bladed (PP-2B) turbine configuration. Special emphasis is on extreme load reduction during storm situations at standstill, but operational loads are also investigated. In order to compare...... loads are reduced by approximately 20% for the PP-2B and 18% for the PP-3B compared with the 3B turbine for the parked condition in a storm situation. Moreover, a huge potential of 60% is observed for the reduction of the extreme tower bottom bending moment for the PP-2B turbine, when the wind direction...... is from ±90° to the turbine, but this also requires that the turbine is parked in a T-configuration. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd....

  14. Committee VI.1. Extreme Hull Girder Loading

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2000-01-01

    Committee Mandate. Evaluate and develop direct calculation procedures for extreme wawe loads on ship hull girders. Due consideration shall be given to stochastic and non-linear effects. The procedures shall be assessed by comparison with in-service experiences, model tests and more refined...

  15. Advances in the Assessment of Wind Turbine Operating Extreme Loads via More Efficient Calculation Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Peter; Damiani, Rick R.; Dykes, Katherine; Jonkman, Jason M.

    2017-01-09

    A new adaptive stratified importance sampling (ASIS) method is proposed as an alternative approach for the calculation of the 50 year extreme load under operational conditions, as in design load case 1.1 of the the International Electrotechnical Commission design standard. ASIS combines elements of the binning and extrapolation technique, currently described by the standard, and of the importance sampling (IS) method to estimate load probability of exceedances (POEs). Whereas a Monte Carlo (MC) approach would lead to the sought level of POE with a daunting number of simulations, IS-based techniques are promising as they target the sampling of the input parameters on the parts of the distributions that are most responsible for the extreme loads, thus reducing the number of runs required. We compared the various methods on select load channels as output from FAST, an aero-hydro-servo-elastic tool for the design and analysis of wind turbines developed by the National Renewable Energy Laboratory (NREL). Our newly devised method, although still in its infancy in terms of tuning of the subparameters, is comparable to the others in terms of load estimation and its variance versus computational cost, and offers great promise going forward due to the incorporation of adaptivity into the already powerful importance sampling concept.

  16. The Effects of Load Carriage and Muscle Fatigue on Lower-Extremity Joint Mechanics

    Science.gov (United States)

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L.

    2013-01-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. Purpose: To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Method: Eighteen men performed the following tasks: unloaded…

  17. Complex Plasma Research Under Extreme Conditions

    International Nuclear Information System (INIS)

    Ishihara, Osamu

    2008-01-01

    Complex plasma research under extreme conditions is described. The extreme conditions include low-dimensionality for self-organized structures of dust particles, dust magnetization in high magnetic field, criticality in phase transition, and cryogenic environment for Coulomb crystals and dust dynamics.

  18. Biomechanical loading on the upper extremity increases from single key tapping to directional tapping.

    Science.gov (United States)

    Qin, Jin; Trudeau, Matthieu; Katz, Jeffrey N; Buchholz, Bryan; Dennerlein, Jack T

    2011-08-01

    Musculoskeletal disorders associated with computer use span the joints of the upper extremity. Computing typically involves tapping in multiple directions. Thus, we sought to describe the loading on the finger, wrist, elbow and shoulder joints in terms of kinematic and kinetic difference across single key switch tapping to directional tapping on multiple keys. An experiment with repeated measures design was conducted. Six subjects tapped with their right index finger on a stand-alone number keypad placed horizontally in three conditions: (1) on single key switch (the number key 5); (2) left and right on number key 4 and 6; (3) top and bottom on number key 8 and 2. A force-torque transducer underneath the keypad measured the fingertip force. An active-marker infrared motion analysis system measured the kinematics of the fingertip, hand, forearm, upper arm and torso. Joint moments for the metacarpophalangeal, wrist, elbow, and shoulder joints were estimated using inverse dynamics. Tapping in the top-bottom orientation introduced the largest biomechanical loading on the upper extremity especially for the proximal joint, followed by tapping in the left-right orientation, and the lowest loading was observed during single key switch tapping. Directional tapping on average increased the fingertip force, joint excursion, and peak-to-peak joint torque by 45%, 190% and 55%, respectively. Identifying the biomechanical loading patterns associated with these fundamental movements of keying improves the understanding of the risks of upper extremity musculoskeletal disorders for computer keyboard users. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  20. Lower extremity kinematics that correlate with success in lateral load transfers over a low friction surface.

    Science.gov (United States)

    Catena, Robert D; Xu, Xu

    2015-01-01

    We previously studied balance during lateral load transfers, but were left without explanation of why some individuals were successful in novel low friction conditions and others were not. Here, we retrospectively examined lower extremity kinematics between successful (SL) and unsuccessful (UL) groups to determine what characteristics may improve low friction performance. Success versus failure over a novel slippery surface was used to dichotomise 35 healthy working-age individuals into the two groups (SL and UL). Participants performed lateral load transfers over three sequential surface conditions: high friction, novel low friction, and practiced low friction. The UL group used a wide stance with rotation mostly at the hips during the high and novel low friction conditions. To successfully complete the practiced low friction task, they narrowed their stance and pivoted both feet and torso towards the direction of the load, similar to the SL group in all conditions. This successful kinematic method potentially results in reduced muscle demand throughout the task. Practitioner Summary: The reason for this paper is to retrospectively examine the different load transfer strategies that are used in a low friction lateral load transfer. We found stance width to be the major source of success, while sagittal plane motion was altered to potentially maintain balance.

  1. Impact of extreme load requirements and quality assurance on nuclear power plant costs

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1993-01-01

    Definitive costs, applicable to nuclear power plant concrete structures, as a function of National Regulatory Requirements, standardization, the effect of extreme load design associated with both design basis accidents and extreme external events and quality assurance are difficult to develop since such effects are interrelated and not only differ widely from country to country, project to project but also vary in time. Table 1 shows an estimate of the of the overall plant cost effects of external event extreme load design on nuclear power plant design for the U.S -and selected foreign countries for which experience with LWRs exist- Germany is the most expensive primarily due to a military aircraft crash resistance. However, the German requirement for 4 safeguards trains rather than 2 and the containment design requirement to consider one Steam Generator blowdown concurrent with a RCS blowdown. This presentation will concentrate on the direct current impact extreme load design and quality assurance have on concrete structures, systems and components for nuclear plants. This presentation is considered timely due to the increased interest in the c potential backfit of Eastern European nuclear power stations of the WWER 440 and WWER 1000 types which typically did not consider the extreme loads identified in Table 1 and accident loads in Table 3 and quality assurance in Table 5 in their original design. Concrete structures in particular are highlighted because they typically form the last barrier to radioactive release from the containment and other Safety Related Structures

  2. Current summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1980-01-01

    The development of extreme load design criteria both as to rate and depth within any national jurisdiction as applied to nuclear power plant design is a function of several factors. The prime factor is the number of nuclear power plant facilities which are operating, under construction or planned in a given country. The second most important factor seems to be the degree of development of a domestic independent nuclear steam system supplier, NSSS vendor. Finally, countries whose domestic NSSS firms are active in the export market appear to have more active criteria development programs or at least they appear more visible to the foreign observer. For the purposes of this paper, extreme loads are defined as those loads having probability of occurence less than 10 -1 /yr and whose occurence could result in radiological consequences in excess of those permitted by national health standards. The specific loads considered include earthquake, extreme wind (tornado), airplane crash, detonation, and high energy system rupture. The paper identifies five national centers for extreme load criteria development; Canada, Great Britian, USA, USSR, and West Germany with both France and Japan also about to appear as independent centers of criteria development. Criteria under development by each national center are discussed in detail. (orig.)

  3. Hygienic diagnosis in extreme conditions

    International Nuclear Information System (INIS)

    Sofronov, G.A.

    1997-01-01

    Review for book by M.P. Zakharchenko, S.A. Lopatin, G.N. Novozhilov, V.I. Zakharov Hygienic diagnosis in extreme conditions is presented discussing the problem of people health preservation under extreme conditions. Hygienic diagnosis is considered illustrated by cases of hostilities (Afghan War), earthquake response in Armenia (1988) and Chernobyl accident response. Attention is paid to the estimation of radiation doses to people and characteristics of main types of dosimeters. The high scientific level of the book is marked

  4. Variability of Bed Load Components in Different Hydrological Conditions

    Directory of Open Access Journals (Sweden)

    Hossein Kheirfam

    2017-04-01

    New hydrological insights: We found that the amount of the minimum, the mean and the maximum bed load were 3 × 10−8, 6.15 × 10−4± 7.17 × 10−4 and 4.38 × 10−3 kg s−1, respectively. The minimum, the mean, and the maximum discharge were also 60, 334 ± 215.56 and 780 l s−1, respectively. In low discharge conditions during summer, the fine grain sediments had the largest amount of bed load sediment. Coarse and medium-grained sediment transportation was higher in autumn and the early winter consistent with the occurrence of extreme rainfall and flood flows.

  5. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Pettas, Vasilis; Gertz, Drew Patrick

    2016-01-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW...

  6. Influence of the control system on wind turbine loads during power production in extreme turbulence: Structural reliability

    DEFF Research Database (Denmark)

    Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard

    2016-01-01

    structural reliability are assessed when the extreme turbulence model is uncertain. The structural reliability is assessed for the wind turbine when three configurations of an industrial grade load alleviation control system of increasing complexity and performance are used. The load alleviation features......The wind energy industry is continuously researching better computational models of wind inflow and turbulence to predict extreme loading (the nature of randomness) and their corresponding probability of occurrence. Sophisticated load alleviation control systems are increasingly being designed...... and deployed to specifically reduce the adverse effects of extreme load events resulting in lighter structures. The main objective herein is to show that despite large uncertainty in the extreme turbulence models, advanced load alleviation control systems yield both a reduction in magnitude and scatter...

  7. Extreme Design Loads Calibration of Offshore Wind Turbine Blades through Real Time Measurements

    DEFF Research Database (Denmark)

    Natarajan, Anand; Vesth, Allan; Lamata, Rebeca Rivera

    2014-01-01

    Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset of the mea......Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset...... of the measurements over a week is taken as input to stochastic load extrapolation whereby the one year extrapolated design extreme is obtained, which are then compared with the maximum extremes obtained from direct measurements over a six month period to validate the magnification in the load levels for the blade...... root flap moment, edge moment obtained by extrapolation. The validation yields valuable information on prescribing the slope of the local extrapolation curve at each mean wind speed. As an alternative to determining the contemporaneous loads for each primary extrapolated load, the blade root resultant...

  8. Effects of normal and extreme turbulence spectral parameters on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Mann, Jakob

    2017-01-01

    the recommended values in the IEC 61400-1 Ed.3 that is used for wind turbine design. The present paper investigates the impact of Mann turbulence model parameter variations on the design loads envelope for 5 MW and 10 MW reference wind turbines. Specific focus is made on the blade root loads, tower top moments...... of design loads is investigated with a focus on the commonly used Mann turbulence model. Quantification of the Mann model parameters is made through wind measurements acquired from the Høvsøre site. The parameters of the Mann model fitted to site specific observations can differ significantly from...... and tower base loads under normal turbulence and extreme turbulence, whereby the change in operating extreme and fatigue design loads obtained through turbulence model parameter variations is compared with corresponding variations obtained from random seeds of turbulence. The investigations quantify...

  9. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  10. Performance of various types of containment support under quasi-static and dynamic loading conditions, Part I.

    CSIR Research Space (South Africa)

    Kuijpers, JS

    2002-05-01

    Full Text Available deformations. In this project, the effects of dynamic loading are therefore specifically addressed. In order to monitor the effects of extreme dynamic loading conditions on various tunnel support systems, a real scale physical model has been used... systems and allow the identification of shortcomings and potential improvements. A conceptual, analytical model representing the load deformation behaviour of strings (lacing and mesh) has been developed. This model does allow for a quantification...

  11. Assessment of extreme design loads for modern wind turbines using the probabilistic approach

    DEFF Research Database (Denmark)

    Abdallah, Imad

    There is a large drive to reduce the cost of energy of wind energy generators. Various tracks are being considered such as enhanced O&M strategies through condition monitoring, increased manufacturing efficiency through higher production volumes and increased automation, improved resource...... and drag coefficients showed (a) a tangible reduction in the load partial safety factor for a blade and (b) generally a larger impact on extreme loads during power production compared to stand-still. Therefore, the way forward is for wind turbine manufactures to further update the stochastic model...... assessment through turbine-mounted real-time site assessment technologies, improved components reliability by increased laboratory testing, increased number of prototype test turbines before serial production, larger rotor and tower concepts for both onshore and offshore installations, advanced drive train...

  12. Injuries in an Extreme Conditioning Program

    OpenAIRE

    Aune, Kyle T.; Powers, Joseph M.

    2016-01-01

    Background: Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. Hypothesis: The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occ...

  13. Summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1978-01-01

    An attempt is made to trace the development of extreme load criteria as it applies to earthquakes, extreme wind, high energy system rupture (LOCA), floods and other manmade and natural external hazards, from 1965 until the present, in the leading nuclear power nations throughout the world. (Author)

  14. Wave induced extreme hull girder loads on containerships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Pedersen, Preben Terndrup; Shi, Bill

    2009-01-01

    This paper provides simple but rational procedures for prediction of extreme wave – induced sectional hull girder forces with reasonable engineering accuracy. The procedures take into account main ship hull characteristics such as: length, breadth, draught, block coefficient, bow flare coefficient......, forward speed and hull flexibility. The vertical hull girder loads are evaluated for specific operational profiles. Firstly a quadratic strip theory is presented which can give separate predictions for the hogging and sagging bending moments and shear forces and for hull girder loads. Then this procedure...... is based on rational methods it can be applied for novel single hull ship types not presently covered by the rules of the classification societies or to account for specific operational profiles....

  15. Survey of extreme load design regulatory agency licensing requirements for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J D

    1976-04-01

    Since 1965, when extreme load requirements began to be considered explicitly in nuclear power plant design, there has been a gradual divergence in requirements imposed by national regulatory agencies. However, nuclear plant safety is an international problem because of the potential international effects of any postulated plant failure. For this reason this paper has been prepared in an attempt to highlight the differences in national criteria currently used in the extreme load design of nuclear plant facilities. No attempt has been made to evaluate the relative merit of the criteria established by the various national regulatory agencies. This paper presents the results of a recent survey made of national atomic energy regulatory agencies and major nuclear steam supply design agencies, which requested a summary of current licensing criteria associated with earthquake, extreme wind (tornado), flood, airplane crash and accident (pipe break) loads applicable within the various national jurisdictions. Also presented are a number of comparisons which are meant to illustrate the differences in national regulatory criteria.

  16. Survey of extreme load design regulatory agency licensing requirements for nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1976-01-01

    Since 1965, when extreme load requirements began to be considered explicitly in nuclear power plant design, there has been a gradual divergence in requirements imposed by national regulatory agencies. However, nuclear plant safety is an international problem because of the potential international effects of any postulated plant failure. For this reason this paper has been prepared in an attempt to highlight the differences in national criteria currently used in the extreme load design of nuclear plant facilities. No attempt has been made to evaluate the relative merit of the criteria established by the various national regulatory agencies. This paper presents the results of a recent survey made of national atomic energy regulatory agencies and major nuclear steam supply design agencies, which requested a summary of current licensing criteria associated with earthquake, extreme wind (tornado), flood, airplane crash and accident (pipe break) loads applicable within the various national jurisdictions. Also presented are a number of comparisons which are meant to illustrate the differences in national regulatory criteria. (Auth.)

  17. Wind simulation for extreme and fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Larsen, G.C.; Mann, J.; Ott, S.; Hansen, K.S.; Pedersen, B.J.

    2004-01-01

    Measurements of atmospheric turbulence have been studied and found to deviate from a Gaussian process, in particular regarding the velocity increments over small time steps, where the tails of the pdf are exponential rather than Gaussian. Principles for extreme event counting and the occurrence of cascading events are presented. Empirical extreme statistics agree with Rices exceedence theory, when it is assumed that the velocity and its time derivative are independent. Prediction based on the assumption that the velocity is a Gaussian process underpredicts the rate of occurrence of extreme events by many orders of magnitude, mainly because the measured pdf is non-Gaussian. Methods for simulation of turbulent signals have been developed and their computational efficiency are considered. The methods are applicable for multiple processes with individual spectra and probability distributions. Non-Gaussian processes are simulated by the correlation-distortion method. Non-stationary processes are obtained by Bezier interpolation between a set of stationary simulations with identical random seeds. Simulation of systems with some signals available is enabled by conditional statistics. A versatile method for simulation of extreme events has been developed. This will generate gusts, velocity jumps, extreme velocity shears, and sudden changes of wind direction. Gusts may be prescribed with a specified ensemble average shape, and it is possible to detect the critical gust shape for a given construction. The problem is formulated as the variational problem of finding the most probable adjustment of a standard simulation of a stationary Gaussian process subject to relevant event conditions, which are formulated as linear combination of points in the realization. The method is generalized for multiple correlated series, multiple simultaneous conditions, and 3D fields of all velocity components. Generalization are presented for a single non-Gaussian process subject to relatively

  18. Ultimate design load analysis of planetary gearbox bearings under extreme events

    DEFF Research Database (Denmark)

    Gallego Calderon, Juan Felipe; Natarajan, Anand; Cutululis, Nicolaos Antonio

    2017-01-01

    This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped-parameter approach....... Three extreme events are assessed: low-voltage ride through, emergency stop and normal stop. The analysis is focused on finding which event has the most negative impact on the bearing extreme radial loads. The two latter events are carried out following the guidelines of the International...

  19. Loading Conditions and Longitudinal Strength

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1995-01-01

    Methods for the calculation of the lightweight of the ship.Loading conditions satisfying draught, trim and intact stability requirements and analysis of the corresponding stillwater longitudinal strength.......Methods for the calculation of the lightweight of the ship.Loading conditions satisfying draught, trim and intact stability requirements and analysis of the corresponding stillwater longitudinal strength....

  20. Atomic collisions under extreme conditions in space

    International Nuclear Information System (INIS)

    Itikawa, Yukikazu

    1987-01-01

    In space, atoms and molecules are often placed under the extreme conditions which are very difficult to be realized on Earth. For instance, extremely hot and dense plasmas are found in and around various stellar objects (e.g., neutron stars) on one hand and extremely cold and diffuse gases prevail in interstellar space on the other. There is so strong a magnetic field that electron clouds in atoms and molecules are distorted. The study of atomic collisions under the extreme conditions is not only helpful in understanding the astrophysical environment but also reveals new aspects of the physics of atoms and molecules. This paper is an invitation to the study. (References are not exhaustive but only provide a clue with which more details can be found.) (author)

  1. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Neary, Vincent Sinclair [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lawon, Michael J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weber, Jochem [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consisted of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .

  2. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    Science.gov (United States)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  3. Predicting the Extreme Loads on a Wind Turbine Considering Uncertainty in Airfoil Data

    DEFF Research Database (Denmark)

    Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard

    2014-01-01

    The sources contributing to uncertainty in a wind turbine blade static airfoil data include wind tunnel testing, CFD calculations, 3D rotational corrections based on CFD or emprircal models, surface roughness corrections, Reynolds number corrections, expansion to the full 360-degree angle of attack...... range, validation by full scale measurements, and geometric distortions of the blade during manufacturing and under loading. In this paper a stochastic model of the static airfoil data is proposed to supplement the prediction of extreme loads effects for large wind turbines. It is shown...... that the uncertainty in airfoil data can have e significant impact on the prediction of extreme loads effects depending on the component, and the correlation along the span of the blade....

  4. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  5. Directional analysis of extreme winds under mixed climate conditions

    CSIR Research Space (South Africa)

    Kruger, A

    2013-07-01

    Full Text Available Directional statistics provide design engineers with the opportunity to realise considerable cost savings, but these are not yet provided for in the South African standard for wind loading. The development of the directional statistics of extreme...

  6. Investigating extreme event loading on coastal bridges using wireless sensor technology

    Science.gov (United States)

    Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.

    2017-04-01

    Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.

  7. The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels

    Science.gov (United States)

    Storhaug, Gaute

    2014-12-01

    Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.

  8. A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

    International Nuclear Information System (INIS)

    Kim, T; Petersen, M M; Larsen, T J

    2014-01-01

    This paper shows the load comparisons between the numerical simulation and the full-scale load measurement data. First part of this paper includes the comparisons of statistic load in terms of maximum, mean, and minimum values for the selected normal operation cases. The blade root bending moments and tower top bending moments are compared. Second part of this paper introduces the dynamic response comparisons during an extreme wind gust condition where the wind speed changed approximately 10 m/s during three seconds. The rotor speed and blade root flapwise and edgewise bending moment are compared. The nonlinear aeroelastic simulation code HAWC2 is used for the simulations. A very fine agreement between the simulated and the full-scale measured loads is seen for the both comparisons

  9. Effect of fuel assembly mechanical design changes on dynamic response of reactor pressure vessel system under extreme loadings

    International Nuclear Information System (INIS)

    Bhandari, D.R.; Hankinson, M.F.

    1993-01-01

    This paper presents the results of a study to assess the effect of fuel assembly mechanical design changes on the dynamic response of a pressurized water reactor vessel and reactor internals under Loss-Of-Coolant Accident (LOCA) conditions. The results of this study show that the dynamic response of the reactor vessel internals and the core under extreme loadings, such as LOCA, is very sensitive to fuel assembly mechanical design changes. (author)

  10. Variability of extreme flap loads during turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Ronold, K O [Det Norske Veritas, Hoevik (Norway); Larsen, G C [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The variability of extreme flap loads is of utmost importance for design of wind-turbine rotor blades. The flap loads of interest consist of the flap-wise bendin moment response at the blade root whose variability in the short-term, for a given wind climate, can be represented by a stationary process. A model for the short-term bending moment process is presented, and the distribution of its associated maxima is derived. A model for the wind climate is given in terms of the probability distributions for the 10-minute mean wind speed and the standard deviation of the arbitrary wind speed. This is used to establish the distribution of the largest flap-wise bending moment in a specific reference period, and it is outlined how a characteristic bending moment for use in design can be extracted from this distribution. The application of the presented distribution models is demonstrated by a numerical example for a site-specific wind turbine. (au)

  11. Response of Simple, Model Systems to Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Rodney C. [Univ. of Michigan, Ann Arbor, MI (United States); Lang, Maik [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO2, GeO2, CeO2, TiO2, HfO2, SnO2, ZnO and ZrO2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphization of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.

  12. Extreme conditions (p, T, H)

    Energy Technology Data Exchange (ETDEWEB)

    Mesot, J [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The aim of this paper is to summarize the sample environment which will be accessible at the SINQ. In order to illustrate the type of experiments which will be feasible under extreme conditions of temperature, magnetic field and pressure at the SINQ a few selected examples are also given. (author) 7 figs., 14 refs.

  13. Integrity of reinforced concrete cooling towers under extreme loads: Wind and earthquake

    International Nuclear Information System (INIS)

    Louhi, Amine

    2015-01-01

    The authorities have planned to increase the lifetime of currently operating nuclear power plants. The ageing of reinforced concrete structures such as cooling towers should be evaluated and its impact on the bearing capacity calculated. In the case of significant damage, the strengthening must be considered to ensure the sustainability of these towers facing the risk of storms and earthquakes becoming more and more frequent. This work aims to quantify the adverse effects that can generate concrete cracks and rebar section loss induced by corrosion, especially on the bearing capacity of nuclear power plant cooling towers under monotonic or cyclic extreme load conditions (wind and earthquake). These loads are certainly the most severe, since they take the structure into the nonlinear domain and can induce or amplify cracking damage. Numerical simulations are proposed to determine the quasi-static or dynamic response of the structure, taking into account appearance of concrete cracks and their evolution via an appropriate material concrete law and rebar's yielding. In the case of a seismic load, the responses are evaluated by three different methods; the nonlinear response history analysis (NLRHA), the response spectrum analysis and the modal response history analysis (MRHA) in order to compare the earthquake modeling approaches and to evaluate the robustness of the results. Parametric studies on damping, load combinations and structural configurations, are also performed. In the case of a wind load, the strengthening technique using composite materials, such as carbon fiber reinforced plastic (CFRP) is modeled. The behavior of the damaged structure with an advanced corrosion rate is estimated in the pre- and post-cracking regime, compared to the undamaged structure. The drop of bearing capacity is quantified, a reinforcement designed is proposed to restore the integrity and thus increase the lifetime of the structure. (author)

  14. Near-extreme system condition and near-extreme remaining useful time for a group of products

    International Nuclear Information System (INIS)

    Wang, Hai-Kun; Li, Yan-Feng; Huang, Hong-Zhong; Jin, Tongdan

    2017-01-01

    When a group of identical products is operating in field, the aggregation of failures is a catastrophe to engineers and customers who strive to develop reliable and safe products. In order to avoid a swarm of failures in a short time, it is essential to measure the degree of dispersion from different failure times in a group of products to the first failure time. This phenomenon is relevant to the crowding of system conditions near the worst one among a group of products. The group size in this paper represents a finite number of products, instead of infinite number or a single product. We evaluate the reliability of the product fleet from two aspects. First, we define near-extreme system condition and near-extreme failure time for offline solutions, which means no online observations. Second, we apply them to a continuous degradation system that breaks down when it reaches a soft failure threshold. By using particle filtering in the framework of prognostics and health management for a group of products, we aim to estimate near-extreme system condition and further predict the remaining useful life (RUL) using online solutions. Numerical examples are provided to demonstrate the effectiveness of the proposed method. - Highlights: • The aggregation of failures is measured for a group of identical products. • The crowding of failures is quantitated by the near-extreme evaluations. • Near-extreme system condition are given for offline solutions. • Near-extreme remaining useful time are provided for online solutions.

  15. Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions

    Science.gov (United States)

    Kumar, Prashant; Gulshan

    2017-12-01

    A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.

  16. Multivariate Modelling of Extreme Load Combinations for Wind Turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2015-01-01

    into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...

  17. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  18. Extreme Value Predictions using Monte Carlo Simulations with Artificially Increased Load Spectrum

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2011-01-01

    In the analysis of structures subjected to stationary stochastic load processes the mean out-crossing rate plays an important role as it can be used to determine the extreme value distribution of any response, usually assuming that the sequence of mean out-crossings can be modelled as a Poisson...... be scaled down to its actual value. In the present paper the usefulness of this approach is investigated, considering problems related to wave loads on marine structures. Here the load scale parameter is conveniently taken as the square of the significant wave height....... be found using the First Order Reliability Method (FORM). The FORM analysis also shows that the reliability index is strictly inversely proportional to the square root of the magnitude of the load spectrum, irrespectively of the non-linearity in the system. However, the FORM analysis only gives...

  19. Safety analysis of casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao, L.; Voelzke, H.; Wolff, D.; Droste, B.

    2004-01-01

    The determination of the inherent safety of casks under extreme impact conditions has been of increasing interest since the terrorist attacks of 11 September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid-seal system. This can be caused, for example, by a direct aircraft crash (or just its engine) as well as by an impact due to the collapse of a building, e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and-with respect to leak-tightness-relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for finite-element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft or fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like the ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected. (author)

  20. Safety analysis of casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao Linan; Voelzke, H.; Wolff, D.; Droste, B.

    2004-01-01

    The determination of the inherent safety of casks also under extreme impact conditions has been of increasing interest since the terrorist attacks from 11th September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid seal system. This can be caused e.g. by direct aircraft crash or its engine as well as by an impact due to the collapse of a building e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and - with respect to leak tightness - relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for Finite Element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft and fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected

  1. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study.

    Directory of Open Access Journals (Sweden)

    Jordane G Grenier

    Full Text Available Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context.The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics.Ten experienced infantrymen performed a 21-h simulated military mission (SMM in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE and plantar flexors (PF pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre-/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March.After the SMM, MVC declined by -10.2±3.6% for KE (P<0.01 and -10.7±16.1% for PF (P = 0.06. The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08. These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2 to post-SMM (15.9±2.1, P<0.01. The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either.this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not

  2. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study.

    Science.gov (United States)

    Grenier, Jordane G; Millet, Guillaume Y; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît

    2012-01-01

    Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre-/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. After the SMM, MVC declined by -10.2±3.6% for KE (P<0.01) and -10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter

  3. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  4. Stochastic Procedures for Extreme Wave Load Predictions- Wave Bending Moment in Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2009-01-01

    A discussion of useful stochastic procedures for stochastic wave load problems is given, covering the range from slightly linear to strongly non-linear (bifurcation) problems. The methods are: Hermite transformation, Critical wave episodes and the First Order Reliability Method (FORM). The proced......). The procedures will be illustrated by results for the extreme vertical wave bending moment in ships....

  5. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  6. Injuries in an Extreme Conditioning Program.

    Science.gov (United States)

    Aune, Kyle T; Powers, Joseph M

    2016-10-19

    Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occur to the shoulder and back. Cross-sectional study. Level 4. This is a retrospective survey of injuries reported by athletes participating in an ECP. An injury survey was sent to 1100 members of Iron Tribe Fitness, a gym franchise with 5 locations across Birmingham, Alabama, that employs exercises consistent with an ECP in this study. An injury was defined as a physical condition resulting from ECP participation that caused the athlete to either seek medical treatment, take time off from exercising, or make modifications to his or her technique to continue. A total of 247 athletes (22%) completed the survey. The majority (57%) of athletes were male (n = 139), and 94% of athletes were white (n = 227). The mean age of athletes was 38.9 years (±8.9 years). Athletes reported participation in the ECP for, on average, 3.6 hours per week (± 1.2 hours). Eighty-five athletes (34%) reported that they had sustained an injury while participating in the ECP. A total of 132 injuries were recorded, yielding an estimated incidence of 2.71 per 1000 hours. The shoulder or upper arm was the most commonly injured body site, accounting for 38 injuries (15% of athletes). Athletes with a previous shoulder injury were 8.1 times as likely to injure their shoulder in the ECP compared with athletes with healthy shoulders. The trunk, back, head, or neck (n = 29, 12%) and the leg or knee (n = 29, 12%) were the second most commonly injured sites. The injury incidence rate among athletes with study estimates the incidence of

  7. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  8. Application of Electro Chemical Machining for materials used in extreme conditions

    Science.gov (United States)

    Pandilov, Z.

    2018-03-01

    Electro-Chemical Machining (ECM) is the generic term for a variety of electrochemical processes. ECM is used to machine work pieces from metal and metal alloys irrespective of their hardness, strength or thermal properties, through the anodic dissolution, in aerospace, automotive, construction, medical equipment, micro-systems and power supply industries. The Electro Chemical Machining is extremely suitable for machining of materials used in extreme conditions. General overview of the Electro-Chemical Machining and its application for different materials used in extreme conditions is presented.

  9. CFD analysis of linear compressors considering load conditions

    Science.gov (United States)

    Bae, Sanghyun; Oh, Wonsik

    2017-08-01

    This paper is a study on computational fluid dynamics (CFD) analysis of linear compressor considering load conditions. In the conventional CFD analysis of the linear compressor, the load condition was not considered in the behaviour of the piston. In some papers, behaviour of piston is assumed as sinusoidal motion provided by user defined function (UDF). In the reciprocating type compressor, the stroke of the piston is restrained by the rod, while the stroke of the linear compressor is not restrained, and the stroke changes depending on the load condition. The greater the pressure difference between the discharge refrigerant and the suction refrigerant, the more the centre point of the stroke is pushed backward. And the behaviour of the piston is not a complete sine wave. For this reason, when the load condition changes in the CFD analysis of the linear compressor, it may happen that the ANSYS code is changed or unfortunately the modelling is changed. In addition, a separate analysis or calculation is required to find a stroke that meets the load condition, which may contain errors. In this study, the coupled mechanical equations and electrical equations are solved using the UDF, and the behaviour of the piston is solved considering the pressure difference across the piston. Using the above method, the stroke of the piston with respect to the motor specification of the analytical model can be calculated according to the input voltage, and the piston behaviour can be realized considering the thrust amount due to the pressure difference.

  10. Analysis of extreme wind events at Høvsøre and the effect on wind turbine loads

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Kelly, Mark C.; Mann, Jakob

    used to simulate wind turbine response in time domain. The simulations are made for the DTU 10 MW reference wind turbine. Load analysis shows that the maximum tilt moment on the tower yaw bearing correlates well with the wind shear of the measurements. When these loads are compared with the extreme...... wind shear load case of the IEC standards, it is seen that they are of similar magnitude and in one case even higher....

  11. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology

    Directory of Open Access Journals (Sweden)

    Pabulo Henrique Rampelotto

    2010-06-01

    Full Text Available In the last decades, substantial changes have occurred regarding what scientists consider the limits of habitable environmental conditions. For every extreme environmental condition investigated, a variety of microorganisms have shown that not only can they tolerate these conditions, but that they also often require these extreme conditions for survival. Microbes can return to life even after hundreds of millions of years. Furthermore, a variety of studies demonstrate that microorganisms can survive under extreme conditions, such as ultracentrifugation, hypervelocity, shock pressure, high temperature variations, vacuums, and different ultraviolet and ionizing radiation intensities, which simulate the conditions that microbes could experience during the ejection from one planet, the journey through space, as well as the impact in another planet. With these discoveries, our knowledge about the biosphere has grown and the putative boundaries of life have expanded. The present work examines the recent discoveries and the principal advances concerning the resistance of microorganisms to extreme environmental conditions, and analyzes its contributions to the development of the main themes of astrobiology: the origins of life, the search for extraterrestrial life, and the dispersion of life in the Universe.

  12. Injuries in an Extreme Conditioning Program

    Science.gov (United States)

    Aune, Kyle T.; Powers, Joseph M.

    2016-01-01

    Background: Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. Hypothesis: The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occur to the shoulder and back. Study Design: Cross-sectional study. Level of Evidence: Level 4. Methods: This is a retrospective survey of injuries reported by athletes participating in an ECP. An injury survey was sent to 1100 members of Iron Tribe Fitness, a gym franchise with 5 locations across Birmingham, Alabama, that employs exercises consistent with an ECP in this study. An injury was defined as a physical condition resulting from ECP participation that caused the athlete to either seek medical treatment, take time off from exercising, or make modifications to his or her technique to continue. Results: A total of 247 athletes (22%) completed the survey. The majority (57%) of athletes were male (n = 139), and 94% of athletes were white (n = 227). The mean age of athletes was 38.9 years (±8.9 years). Athletes reported participation in the ECP for, on average, 3.6 hours per week (± 1.2 hours). Eighty-five athletes (34%) reported that they had sustained an injury while participating in the ECP. A total of 132 injuries were recorded, yielding an estimated incidence of 2.71 per 1000 hours. The shoulder or upper arm was the most commonly injured body site, accounting for 38 injuries (15% of athletes). Athletes with a previous shoulder injury were 8.1 times as likely to injure their shoulder in the ECP compared with athletes with healthy shoulders. The trunk, back, head, or neck (n = 29, 12%) and the leg or knee (n = 29, 12%) were the second most commonly injured sites. The

  13. Experimental investigation of ultimate loads

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, S M; Larsen, G C; Antoniou, I; Lind, S O; Courtney, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    Verification of the structural integrity of a wind turbine involves analysis of fatigue loading as well as ultimate loading. With the trend of persistently growing turbines, the ultimate loading seems to become relatively more important. For wind turbines designed according to the wind conditions prescribed in the IEC-61400 code, the ultimate load is often identified as the leading load parameter. Exemplified by the use of an extensive measurement campaign a procedure for evaluation of the extreme flap-wise bending moments, occurring during normal operating of a wind turbine, is presented. The structural measurements are made on a NEG Micon 650 kW wind turbine erected at a complex high wind site in Oak Creek, California. The turbine is located on the top of a ridge. The prevailing wind direction is perpendicular to the ridge, and the annual mean wind speed is 9.5 m/s. The associated wind field measurement, are taken from two instrumented masts erected less than one rotor diameter in front of the turbine in direction of the prevailing wind direction. Both masts are instrumented at different heights in order to gain insight of the 3D-wind speed structure over the entire rotor plane. Extreme distributions, associated with a recurrence period of 10 minutes, conditioned on the mean wind speed and the turbulence intensity are derived. Combined with the wind climate model proposed in the IEC standard, these distributions are used to predict extreme distributions with recurrence periods equal to one and fifty years, respectively. The synthesis of the conditioned PDF`s and the wind climate model is performed by means of Monte Carlo simulation. (au)

  14. QCD under extreme conditions: an informal discussion

    CERN Document Server

    Fraga, E.S.

    2015-05-22

    We present an informal discussion of some aspects of strong interactions un- der extreme conditions of temperature and density at an elementary level. This summarizes lectures delivered at the 2013 and 2015 CERN – Latin-American Schools of High-Energy Physics and is aimed at students working in experi- mental high-energy physics.

  15. Containment bellows testing under extreme loads

    International Nuclear Information System (INIS)

    Splezter, B.L.; Lambert, L.D.; Parks, M.B.

    1993-01-01

    Sandia National Laboratories (SNL) is conducting several research programs to help develop validated methods for the prediction of the ultimate pressure capacity, at elevated temperatures, of light water reactor (LWR) containment structures. To help understand the ultimate pressure of the entire containment pressure boundary, each component must be evaluated. The containment pressure boundary consists of the containment shell and many access, piping, and electrical penetrations. The focus of the current research program is to study the ultimate behavior of flexible metal bellows that are used at piping penetrations. Bellows are commonly used at piping penetrations in steel containments; however, they have very few applications in concrete (reinforced or prestressed) containments. The purpose of piping bellows is to provide a soft connection between the containment shell and the pipe are attached while maintaining the containment pressure boundary. In this way, piping loads caused by differential movement between the piping and the containment shell are minimized. SNL is conducting a test program to determine the leaktight capacity of containment bellows when subjected to postulated severe accident conditions. If the test results indicate that containment bellows could be a possible failure mode of the containment pressure boundary, then methods will be developed to predict the deformation, pressure, and temperature conditions that would likely cause a bellows failure. Results from the test program would be used to validate the prediction methods. This paper provides a description of the use and design of bellows in containment piping penetrations, the types of possible bellows loadings during a severe accident, and an overview of the test program, including available test results at the time of writing

  16. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  17. Reliability and validity of a low load endurance strength test for upper and lower extremities in patients with fibromyalgia.

    Science.gov (United States)

    Munguía-Izquierdo, Diego; Legaz-Arrese, Alejandro

    2012-11-01

    To evaluate the reliability, standard error of the mean (SEM), clinical significant change, and known group validity of 2 assessments of endurance strength to low loads in patients with fibromyalgia syndrome (FS). Cross-sectional reliability and comparative study. University Pablo de Olavide, Seville, Spain. Middle-aged women with FS (n=95) and healthy women (n=64) matched for age, weight, and body mass index (BMI) were recruited for the study. Not applicable. The endurance strength to low loads tests of the upper and lower extremities and anthropometric measures (BMI) were used for the evaluations. The differences between the readings (tests 1 and 2) and the SDs of the differences, intraclass correlation coefficient (ICC) model (2,1), 95% confidence interval for the ICC, coefficient of repeatability, intrapatient SD, SEM, Wilcoxon signed-rank test, and Bland-Altman plots were used to examine reliability. A Mann-Whitney U test was used to analyze the differences in test values between the patient group and the control group. We hypothesized that patients with FS would have an endurance strength to low loads performance in lower and upper extremities at least twice as low as that of the healthy controls. Satisfactory test-retest reliability and SEMs were found for the lower extremity, dominant arm, and nondominant arm tests (ICC=.973-.979; P.05 for all). The Bland-Altman plots showed 95% limits of agreement for the lower extremity (4.7 to -4.5), dominant arm (3.8 to -4.4), and nondominant arm (3.9 to -4.1) tests. The endurance strength to low loads test scores for the patients with FS were 4-fold lower than for the controls in all performed tests (P<.001 for all). The endurance strength to low loads tests showed good reliability and known group validity and can be recommended for evaluating endurance strength to low loads in patients with FS. For individual evaluation, however, an improved score of at least 4 and 5 repetitions for the upper and lower extremities

  18. Physics of condensed matter at extreme conditions

    International Nuclear Information System (INIS)

    Ross, M.

    1988-01-01

    The study of matter under extreme conditions is a highly interdisciplinary subject with broad applications to materials science, geophysics and astrophysics. High-pressure properties are studied in the laboratory using static and dynamic techniques. The two differ drastically in the methods of generating and measuring pressure and in the fundamentally different nature of the final compressed state. This article covers a very broad range of conditions, intended to present an overview of important recent developments and to emphasize the behavior of materials and the kinds of properties now being studied

  19. Forecasting the condition of petroleum impregnated load bearing ...

    African Journals Online (AJOL)

    Petroleum products (PP) used in industrial processes systematically fall on the load-bearing CRC structures and gradually impregnate therein. Currently, available guidelines for the assessment of technical condition and reliability of load-bearing CRC structures do not fully take into account the effect of viscosity of PP that ...

  20. Low-Load Space Conditioning Needs Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2015-05-19

    Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.

  1. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load.

    Science.gov (United States)

    Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven

    2015-12-01

    Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Determination of Correlation for Extreme Metocean Variables

    Directory of Open Access Journals (Sweden)

    Nizamani Zafarullah

    2017-01-01

    Full Text Available Metocean environmental load includes wind, wave and currents. Offshore structures are designed for two environmental load design conditions i.e. extreme and operational load conditions of environmental loads are evaluated. The ccorrelation between load variables using Joint probability distribution, Pearson correlation coefficient and Spearman’s rank correlation coefficients methods in Peninsular Malaysia (PM, Sabah and Sarawak are computed. Joint probability distribution method is considered as a reliable method among three different methods to determine the relationship between load variables. The PM has good correlation between the wind-wave and wave-current; Sabah has both strong relationships of wind-wave and wind-current with 50 year return period; Sarawak has good correlation between wind and current in both 50 years and 100 years return period. Since Sabah has good correlation between the associated load variables, no matter in 50 years or 100 years of return period of load combination. Thus, method 1 of ISO 19901-1, specimen provides guideline for metocean loading conditions, can be adopted for design for offshore structure in Sabah. However, due to weak correlations in PM and Sarawak, this method cannot be applied and method 2, which is current practice in offshore industry, should continueto be used.

  3. Numerical optimization of composite hip endoprostheses under different loading conditions

    Science.gov (United States)

    Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.

    1992-01-01

    The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.

  4. Kinetics of Materials at Extreme Conditions: Understanding the Time Dependent Approach to Equilibrium at MaRIE

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mcnabb, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eggert, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Borg, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerreta, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dattelbaum, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Greeff, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolken, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    The National Nuclear Security Agency has recently recognized that a long-term need exists to establish a stronger scientific basis for the assessment and qualification of materials and manufacturing processes for the nuclear stockpile and other national security applications. These materials may have undergone substantial changes with age, or may represent new materials that are being introduced because of difficulties associated with reusing or recreating materials used in original stockpile components. Also, with advancements in manufacturing methods, the NNSA anticipates opportunities for an enhanced range of control over fabricated components, an enhanced pace of materials development, and enhanced functionality. The development of qualification standards for these new materials will require the ability to understand and control material characteristics that affect both mechanical and dynamic performance. A unique aspect for NNSA is that the performance requirements for materials are often set by system hydrodynamics, and these materials must perform in extreme environments and loading conditions. Thus, the scientific motivation is to understand “Matter-Radiation Interactions in Extremes (MaRIE).”

  5. Extending wind turbine operational conditions; a comparison of set point adaptation and LQG individual pitch control for highly turbulent wind

    International Nuclear Information System (INIS)

    Engels, W P; Subhani, S; Zafar, H; Savenije, F

    2014-01-01

    Extreme wind conditions can cause excessive loading on the turbine. This not only results in higher design loads, but when these conditions occur in practice, will also result in higher maintenance cost. Although there are already effective methods of dealing with gusts, other extreme conditions should also be examined. More specifically, extreme turbulence conditions (e.g. those specified by design load case 1.3 in IEC61400-1 ed. 3) require special attention as they can lead to design-driving extreme loads on blades, tower and other wind turbine components. This paper examines two methods to deal with extreme loads in a case of extreme turbulent wind. One method is derating the turbine, the other method is an individual pitch control (IPC) algorithm. Derating of the turbine can be achieved in two ways, one is changing the rated torque, the other is changing the rated rotor speed. The effect of these methods on fatigue loads and extreme loads is examined. Non-linear aero-elastic simulations using Phatas, show that reducing the rated rotor speed is far more effective at reducing the loads than reducing torque. Then, the IPC algorithm is proposed. This algorithm is a linear quadratic Gaussian (LQG) controller based on a time invariant model, defined in the fixed reference frame that includes the first tower and blade modes. Because this method takes the dynamics of the system into account more than conventional IPC control, it is expected that these loads dealt with more effectively, when they are particularly relevant. It is expected that in extreme turbulent the blade and tower dynamics are indeed more relevant. The effect of this algorithm on fatigue loads and pitch effort is examined and compared with the fatigue loads and pitch effort of reference IPC. Finally, the methods are compared in non-linear aero-elastic simulations with extreme turbulent wind

  6. Instantaneous angular speed monitoring of gearboxes under non-cyclic stationary load conditions

    Science.gov (United States)

    Stander, C. J.; Heyns, P. S.

    2005-07-01

    Recent developments in the condition monitoring and asset management market have led to the commercialisation of online vibration-monitoring systems. These systems are primarily utilised to monitor large mineral mining equipment such as draglines, continuous miners and hydraulic shovels. Online monitoring systems make diagnostic information continuously available for asset management, production outsourcing and maintenance alliances with equipment manufacturers. However, most online vibration-monitoring systems are based on conventional vibration-monitoring technologies, which are prone to giving false equipment deterioration warnings on gears that operate under fluctuating load conditions. A simplified mathematical model of a gear system was developed to illustrate the feasibility of monitoring the instantaneous angular speed (IAS) as a means of monitoring the condition of gears that are subjected to fluctuating load conditions. A distinction is made between cyclic stationary load modulation and non-cyclic stationary load modulation. It is shown that rotation domain averaging will suppress the modulation caused by non-cyclic stationary load conditions but will not suppress the modulation caused by cyclic stationary load conditions. An experimental investigation on a test rig indicated that the IAS of a gear shaft could be monitored with a conventional shaft encoder to indicate a deteriorating gear fault condition.

  7. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  8. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-08-07

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

  9. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Rymantas Kazys

    2015-08-01

    Full Text Available An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%.

  10. Conditional Stochastic Processes Applied to Wave Load Predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    The concept of conditional stochastic processes provides a powerful tool for evaluation and estimation of wave loads on ships and offshore structures. This article first considers conditional waves with a focus on critical wave episodes. Then the inherent uncertainty in the results is illustrated...

  11. What are extreme environmental conditions and how do organisms cope with them?

    Directory of Open Access Journals (Sweden)

    John C. WINGFIELD, J. Patrick KELLEY, Frédéric ANGELIER

    2011-06-01

    Full Text Available Severe environmental conditions affect organisms in two major ways. The environment may be predictably severe such as in deserts, polar and alpine regions, or individuals may be exposed to temporarily extreme conditions through weather, presence of predators, lack of food, social status etc. Existence in an extreme environment may be possible, but then to breed or molt in addition can present major bottlenecks that have resulted in the evolution of hormone-behavior adaptations to cope with unpredictable events. Examples of hormone-behavior adaptations in extreme conditions include attenuated testosterone secretion because territoriality and excess courtship may be too costly when there is one opportunity to reproduce. The individual may even become insensitive to testosterone when target areas of the brain regulating reproductive behavior no longer respond to the hormone. A second example is reduced sensitivity to glucocorticoids following acute stress during the breeding season or molt that allows successful reproduction and/or a vital renewal of the integument to endure extreme conditions during the rest of the year. Reduced sensitivity could involve: (a modulated response of the hypothalamo-pituitary-adrenal axis, (b reduced sensitivity to high glucocorticoid levels, or (c a combination of (a and (b. Moreover, corticosteroid binding proteins (CBP buffer responses to stress by reducing the movement of glucocorticoids into target cells. Finally, intracellular enzymes (11b-hydroxysteroid dehydrogenase and variants can deactivate glucocorticoids entering cells thus reducing interaction with receptors. These mechanisms have important implications for climate change and increasing extremes of weather [Current Zoology 57 (3: 363–374, 2011].

  12. Deterministic and Probabilistic Analysis of NPP Communication Bridge Resistance Due to Extreme Loads

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-12-01

    Full Text Available This paper presents the experiences from the deterministic and probability analysis of the reliability of communication bridge structure resistance due to extreme loads - wind and earthquake. On the example of the steel bridge between two NPP buildings is considered the efficiency of the bracing systems. The advantages and disadvantages of the deterministic and probabilistic analysis of the structure resistance are discussed. The advantages of the utilization the LHS method to analyze the safety and reliability of the structures is presented

  13. User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data

    Science.gov (United States)

    2018-04-01

    ARL-TN-0876 ● MAR 2018 US Army Research Laboratory User-Defined Meteorological (MET) Profiles from Climatological and Extreme...needed. Do not return it to the originator. ARL-TN-0876 ● MAR 2018 US Army Research Laboratory User-Defined Meteorological (MET...User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  14. Creep of concrete under various temperature, moisture, and loading conditions

    International Nuclear Information System (INIS)

    McDonald, J.E.

    1976-01-01

    An investigation was conducted to obtain information on the time-dependent deformation behavior of concrete in the presence of temperature, moisture, and loading conditions similar to those encountered in a prestressed concrete reactor vessel (PCRV). Variables included concrete strength, aggregate types, curing history, temperature, and types of loading (uniaxial, hydrostatic, biaxial, and triaxial). There were 66 test conditions for creep tests and 12 test conditions for unloaded or control specimens. Experimental results are presented and discussed. Comparisons are made concerning the effect of the various test conditions on the behavior of concrete, and general conclusions are formulated

  15. A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-05-01

    Full Text Available Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM, which combines k-Nearest Neighbor (KNN and Extreme Learning Machine (ELM based on a wavelet denoising technique is proposed for short-term load forecasting. The proposed hybrid model decomposes the time series into a low frequency-associated main signal and some detailed signals associated with high frequencies at first, then uses KNN to determine the independent and dependent variables from the low-frequency signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the final prediction result for the electric load. Compared with three other models, Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EKM, Wavelet Denoising-Extreme Learning Machine (WKM and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest Neighbor Regression (WNNM, the model proposed in this paper can improve the accuracy efficiently. New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict electric demand for that region. The accurate prediction has a significant meaning.

  16. Proceedings of the second symposium on science of hadrons under extreme conditions

    International Nuclear Information System (INIS)

    Chiba, Satoshi

    2000-08-01

    The second symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on January 24 to 26, 2000. The symposium was devoted for discussions and presentations of research results in wide variety of fields such as nuclear matter, high-energy nuclear reactions, quantum chromodynamics, supernovae and nucleosynthesis to understand various aspects of hadrons under extreme conditions. The 26 of the presented papers are indexed individually. (J.P.N.)

  17. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  18. Behavior under Extreme Conditions: The Titanic Disaster

    OpenAIRE

    Bruno S. Frey; David A. Savage; Benno Torgler

    2011-01-01

    During the night of April 14, 1912, the RMS Titanic collided with an iceberg on her maiden voyage. Two hours and 40 minutes later she sank, resulting in the loss of 1,501 lives—more than two-thirds of her 2,207 passengers and crew. This remains one of the deadliest peacetime maritime disasters in history and by far the most famous. For social scientists, evidence about how people behaved as the Titanic sunk offers a quasi-natural field experiment to explore behavior under extreme conditions o...

  19. How to Secure UPS Operation And Supply of Safety Critical Load During Abnormal Conditions in Upstream Supply

    International Nuclear Information System (INIS)

    Andersen, Gert; Kissling, Silvan; Laaser, Joerg

    2015-01-01

    UPS system design margins are usually given by manufacturer, but the events in Forsmark showed that these margins are not sufficient to protect UPS equipment and secure supply to critical loads. To withstand such events, it is not enough just to define margins for particular equipment. The overall plant design including environmental influences must be taken into consideration. For extreme environmental conditions, a UPS must include protection which design is matching to the upstream plant equipment. Immunity against abnormal conditions can not be finally guaranteed by higher margins. A limitation that excludes such influences must be implemented into the design. This presentation discusses possibilities to specify design margins, for rectifiers and inverters based on GUTOR thyristor and IGBT technology. It shows protection features to resist and solutions to limit overvoltages. (authors)

  20. Distribution patterns of terricolous and saxicolous lichens in extreme desert conditions

    Science.gov (United States)

    Temina, M.

    2012-04-01

    The investigation of biodiversity in stressful habitats is of great interest because it elucidates relationships between organisms and their environment, as well as revealing the mechanisms of their survival and adaptation to extreme conditions. Deserts represent such stressful habitats where harsh climate and limited resources greatly influence the formation of biota. In order to understand the link between microscale environmental variability in extreme arid conditions and lichen biodiversity patterns, we conducted the present study. For this purpose, the structure and distribution of lichen communities on soil and cobbles at six stations at "Evolution Canyon" III (EC III), Nahal Shaharut, in the extreme southern Negev, Israel, were examined. The opposite slopes of the canyon represented specific ecological niches characterized by sharply different microclimatic conditions. The following characteristics of lichen communities were studied: species richness, systematic diversity, biogeographical elements, frequencies and distribution of species, their morphological and anatomical characteristics, reproductive strategy, and ecological peculiarities. In the research site three environmental variables were evaluated: soil moisture, and temperatures of soil and cobbles. The Canonical Correspondence Analysis was used to study the influence of these ecological variables on the distribution of lichen species. The lichen diversity of EC III was very poor and comprised 12 species (3 cyanoliches on soil vs. 9 phycolichens on cobbles). Most of them belong to a specific group of arid endemic elements, adapted to survive in extreme arid conditions in the deserts of the Levant. The harsh desert conditions of the canyon negatively influence the reproductive ability of lichens. This influence is expressed in the decreased sizes of fruit bodies in some species, and the frequent occurrence of sterile specimens among lichens found in the canyon. A comparative analysis of structure

  1. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees.

    Science.gov (United States)

    Morgenroth, David C; Segal, Ava D; Zelik, Karl E; Czerniecki, Joseph M; Klute, Glenn K; Adamczyk, Peter G; Orendurff, Michael S; Hahn, Michael E; Collins, Steven H; Kuo, Art D

    2011-10-01

    Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope=-.72±.22; p=.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope=-.34±.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. Published by Elsevier B.V.

  2. Beryllium armoured target for extreme heat and neutron loading conditions

    International Nuclear Information System (INIS)

    Mazul, I.; Gervash, A.; Giniyatulin, R.

    2004-01-01

    Beryllium is a primary candidate as a target material for high-energy protons conversion into neutrons used for different applications. In order to get higher neutron flux the conversion area has to be minimized - in our case the target is limited by 1-2 liter volume. This target generates about 5·10 13 fast neutrons per second and removes of 150 kW thermal power deposited by proton beam (30 mA, 5 MeV), coming from linac. The operational condition of the converter is close to the condition of Be-armored components in fusion reactors: high thermal and neutron fluxes and active cooling. Therefore achievements in development of water-cooled high heat flux components for fusion application can be used for design of Be converter and vice versa. However for medical application the using of high-activated heat sink materials such as Cu and SS is strongly limited. So, new materials (Be, Al, Zr) and new joining technologies in comparison with the achievements in fusion area have to be used for construction of such Be converter. In order to reduce amount of heat sink materials in the target saddle-block geometry for Be armor is suggested and developed. Results of R and D works on the development of water cooled Be target for converter are presented, including data on selected materials, technological trials and mockups high heat flux testing. Preliminary design of Be neutron converter for medical applications based on R and D results is presented. (author)

  3. Model of analysis of maximum loads in wind generators produced by extreme winds

    International Nuclear Information System (INIS)

    Herrera – Sánchez, Omar; Schellong, Wolfgang; González – Fernández, Vladimir

    2010-01-01

    The use of the wind energy by means of the wind turbines in areas of high risk of occurrence of Hurricanes comes being an important challenge for the designers of wind farm at world for some years. The wind generator is not usually designed to support this type of phenomena, for this reason the areas of high incidence of tropical hurricanes of the planning are excluded, that which, in occasions disables the use of this renewable source of energy totally, either because the country is very small, or because it coincides the area of more potential fully with that of high risk. To counteract this situation, a model of analysis of maxims loads has been elaborated taken place the extreme winds in wind turbines of great behavior. This model has the advantage of determining, in a chosen place, for the installation of a wind farm, the micro-areas with higher risk of wind loads above the acceptable for the standard classes of wind turbines. (author)

  4. Tolerances of microorganisms to extreme environmental conditions

    International Nuclear Information System (INIS)

    West, J.M.; Arme, S.C.

    1985-03-01

    Microbial isolates from sites relevant to the disposal of radioactive wastes have been subjected to extreme environmental conditions in order to ascertain their tolerance ability. Two groups were chosen, sulphate reducing bacteria and sulphur oxidising bacteria, because of their potential effects on waste containment. They have been subjected to high temperatures, pressures and radiation (delta-emissions) in optimal media conditions and their ability to tolerate the conditions has been ascertained by epifluorescence microscopy and adenosine tri-phosphate (ATP) analysis followed by 'culture-on' to assess post experimental viability. Results indicate that the sulphate reducers in general, are more tolerant to these conditions than the sulphur oxidisers, some proving to be thermophilic. The sulphate reducer showed increased growth rates, as determined by population numbers, at 50 0 C and survived at 80 0 C, 4,500 psig (310 bar) with no subsequent loss in viability. Gamma irradiation of this group and an isolate of 10 5 rad over 4 hours had no effect on population numbers or viability. Such resistances are not apparent with the sulphur oxidisers whose numbers decreased with increasing radiation dose and are destroyed with pressure. (author)

  5. Thermal oxidation of cesium loaded Prussian blue as a precaution for exothermic phase change in extreme conditions

    International Nuclear Information System (INIS)

    Parajuli, Durga; Tanaka, Hisashi; Takahashi, Akira; Kawamoto, Tohru

    2013-01-01

    Cesium adsorbed Prussian blue is studied for the thermal oxidation. The TG-DTA shows exothermic phase change of micro aggregates of nano-PB at above 270°C. For this reason, Cs loaded PB was heated between 180 to 260°C. Heating at 180 removed only the water. Neither the oxidation of Iron nor the removal of cyanide is observed at this temperature. Oxidation of cyanide is observed upon heating above 200°C while loaded Cs is released after heating at >250°C followed by washing with water. Thermal oxidation between 200 to 220°C for more than 2 h showed control on exothermic phase change and loaded Cs is also not solubilized. (author)

  6. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  7. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Chou, S.K.; Chua, K.J.

    2012-01-01

    Highlights: ► Impact of engine load on engine’s performance, combustion and emission characteristics. ► The brake specific fuel consumption (BSFC) increases significantly at partial load conditions. ► The brake thermal efficiency (BTE) drops at lower engine loads, and increases at higher loads. ► The partial load also influences the trend of CO emissions. -- Abstract: This paper investigated the performance, combustion and emission characteristics of diesel engine fueled by biodiesel at partial load conditions. Experiments were conducted on a common-rail fuel injection diesel engine using ultra low sulfur diesel, biodiesel (B100) and their blend fuels of 10%, 20%, 50% (denoted as B10, B20 and B50 respectively) under various loads. The results show that biodiesel/blend fuels have significant impacts on the engine’s brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) at partial load conditions. The increase in BSFC for B100 is faster than that of pure diesel with the decrease of engine load. A largest increase of 28.1% in BSFC is found at 10% load. Whereas for BTE, the results show that the use of biodiesel results in a reduced thermal efficiency at lower engine loads and improved thermal efficiency at higher engine loads. Furthermore, the characteristics of carbon monoxide (CO) emissions are also changed at partial load conditions. When running at lower engine loads, the CO emission increases with the increase of biodiesel blend ratio and the decrease of engine speed. However, at higher engine loads, an opposite trend is obtained.

  8. Lie construction affects information storage under high memory load condition.

    Directory of Open Access Journals (Sweden)

    Yuqiu Liu

    Full Text Available Previous studies indicate that lying consumes cognitive resources, especially working memory (WM resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA, a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.

  9. Lie construction affects information storage under high memory load condition.

    Science.gov (United States)

    Liu, Yuqiu; Wang, Chunjie; Jiang, Haibo; He, Hongjian; Chen, Feiyan

    2017-01-01

    Previous studies indicate that lying consumes cognitive resources, especially working memory (WM) resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items) during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA), a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.

  10. Is muscle coordination affected by loading condition in ballistic movements?

    Science.gov (United States)

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: Ppush-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Extreme conditions over Europe and North America: role of the Atlantic Multidecadal Variability

    Science.gov (United States)

    Ruprich-Robert, Yohan; Msadek, Rym; Delworth, Tom

    2016-04-01

    The Atlantic Multidecadal Variability (AMV) is the result and possibly the source of marked modulations of the climate over many areas of the globe. For instance, the relatively warm and dry climate of North America throughout the 30-yr interval of 1931-60, during which the Dust Bowl and the 1950's drought occurred, has been linked to the concomitant warm phase of the AMV. During this period relative warm and wet conditions prevailed over Europe. After 1960, the Atlantic began to cool, and for almost three decades the North American climate turned wetter and cooler whereas Europe experienced cooler and dryer conditions. However, the shortness of the historical observations compared to the AMV period suggested by longer proxy (~60-80yr) does not allow to firmly conclude on the causal effect of the AMV. We use a model approach to isolate the causal role of the AMV on the occurrence of extreme events over Europe and North America. We present experiments based on two GFDL global climate models, a low resolution version, CM2.1 and a higher resolution model for the atmospheric component, FLOR. In both model experiments sea surface temperatures in the North Atlantic sector are restored to the observed AMV pattern, while the other basins are left fully coupled. In order to explore and robustly isolate the AMV impacts on extreme events, we use large ensemble simulations (100 members for CM2.1 and 50 for FLOR) that we run for 20 years. We find that a positive phase of the AMV increases the frequency of occurrence of drought over North America and of extremely cold/warm conditions over Northern/Central Europe during winter/summer. Interestingly, we find that the AMV impacts on these extreme conditions are modulated by the Pacific response to the AMV itself. Members that develop a weak Pacific response show more extreme events over Europe whereas those that develop a strong Pacific response show more extreme events over North America.

  12. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... a three parameter Weibull distribution to the measured on-shore and off-shore data for wind speed variations. Specific recommendations on off-shore design turbulence intensities are lacking in the presentIEC-code. Based on the present analysis of the off-shore wind climate on two shallow water sites...

  13. A rational evaluation of structural design loads

    International Nuclear Information System (INIS)

    Tasaka, S.

    1993-01-01

    The reliability-based seismic design of structures is a design method ensuring that the structural seismic capacity is not less than the maximum seismic load or load effect for a prescribed value of the reliability index, wherein the design reference period, n, is used to specify the n-year maximum load. In the conventional Load and Resistance Factor Design (LRFD) method the design load is commonly determined on the basis of the n-year maximum the probability distribution of which may be given in some different ways. However, in contrast with the structural capacity the n-year maximum load usually involves much larger variabilities. The effort to decrease the variability would, hence, be effective for the purpose of avoiding nuclear power plant (NPP) structures having unnecessarily large capacities. A possible way to do this is to consider the joint probability distribution of the n-year 1st and 2nd maxima of the seismic load derived from the formula of extreme order statistics. Since the reliability index is conventionally associated with the n-year 1st maximum, the conditional probability distribution rather than the joint one of the n-year 1st maximum given a value of the n-year 2nd one will be considered. Three conditional extreme value distributions, which correspond to the usual extreme value distributions of Types I, II and III, and their statistical moments up to the second order are presented. Within the framework of the first-order second moment method, the conditional statistical moments are utilized to calculate the reliability index as well as the design value of the seismic load. The seismic load considered herein is represented by the peak ground acceleration (PGA) in n years. The present scheme is applied to evaluate the design PGA's at II sites in Japan where samples of the annual 1st and 2nd PGA's have been obtained by using historical seismic data. In this application the following two points are of our interest: (a) Define the reliability

  14. Random accumulated damage evaluation under multiaxial fatigue loading conditions

    Directory of Open Access Journals (Sweden)

    V. Anes

    2015-07-01

    Full Text Available Multiaxial fatigue is a very important physical phenomenon to take into account in several mechanical components; its study is of utmost importance to avoid unexpected failure of equipment, vehicles or structures. Among several fatigue characterization tools, a correct definition of a damage parameter and a load cycle counting method under multiaxial loading conditions show to be crucial to estimate multiaxial fatigue life. In this paper, the SSF equivalent stress and the virtual cycle counting method are presented and discussed, regarding their physical foundations and their capability to characterize multiaxial fatigue damage under complex loading blocks. Moreover, it is presented their applicability to evaluate random fatigue damage.

  15. Conditional load and store in a shared memory

    Science.gov (United States)

    Blumrich, Matthias A; Ohmacht, Martin

    2015-02-03

    A method, system and computer program product for implementing load-reserve and store-conditional instructions in a multi-processor computing system. The computing system includes a multitude of processor units and a shared memory cache, and each of the processor units has access to the memory cache. In one embodiment, the method comprises providing the memory cache with a series of reservation registers, and storing in these registers addresses reserved in the memory cache for the processor units as a result of issuing load-reserve requests. In this embodiment, when one of the processor units makes a request to store data in the memory cache using a store-conditional request, the reservation registers are checked to determine if an address in the memory cache is reserved for that processor unit. If an address in the memory cache is reserved for that processor, the data are stored at this address.

  16. Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.

    Science.gov (United States)

    An, Gyubaek; Jeong, Se-Min; Park, Jeongung

    2018-03-01

    Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.

  17. EMA beamline at SIRIUS: extreme condition X-ray methods of analysis

    International Nuclear Information System (INIS)

    Souza Neto, Narcizo

    2016-01-01

    Full text: The EMA beamline (Extreme condition X-ray Methods of Analysis) is one of the hard x-ray undulator beamlines within the first phase of the new synchrotron source in Brazil (Sirius project). This beamline is thought to make a difference where a high brilliance (high flux of up to 2 x 10 14 photons/sec with beam size down to 0.5 x 0.5 μm 2 ) is essential, which is the case for extreme pressures that require small focus and time-resolved that require high photon flux. With that in mind we propose the beamline to have two experimental hutches to cover most of the extreme condition techniques today employed at synchrotron laboratories worldwide. These two stations are thought to provide the general infrastructure for magnets and lasers experiments, which may evolve as new scientific problems appear. In addition to the hutches, support laboratories will be strongly linked and supportive to the experiments at the beamline, covering high pressure instrumentations using diamond anvil cells and pump-and-probe requirements for ultrafast and high power lasers. Along these lines, we will describe the following techniques covered at this beamline: magnetic spectroscopy (XMCD) and scattering (XRMS) under high pressure and very low temperature in order to fully probe both ferromagnetic and antiferromagnetic materials and the dependence with pressure; extreme pressure and temperature XRD and XAS experiments using very small diamond culet anvils and high power lasers. (author)

  18. EMA beamline at SIRIUS: extreme condition X-ray methods of analysis

    Energy Technology Data Exchange (ETDEWEB)

    Souza Neto, Narcizo, E-mail: narcizo.souza@lnls.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil)

    2016-07-01

    Full text: The EMA beamline (Extreme condition X-ray Methods of Analysis) is one of the hard x-ray undulator beamlines within the first phase of the new synchrotron source in Brazil (Sirius project). This beamline is thought to make a difference where a high brilliance (high flux of up to 2 x 10{sup 14} photons/sec with beam size down to 0.5 x 0.5 μm{sup 2}) is essential, which is the case for extreme pressures that require small focus and time-resolved that require high photon flux. With that in mind we propose the beamline to have two experimental hutches to cover most of the extreme condition techniques today employed at synchrotron laboratories worldwide. These two stations are thought to provide the general infrastructure for magnets and lasers experiments, which may evolve as new scientific problems appear. In addition to the hutches, support laboratories will be strongly linked and supportive to the experiments at the beamline, covering high pressure instrumentations using diamond anvil cells and pump-and-probe requirements for ultrafast and high power lasers. Along these lines, we will describe the following techniques covered at this beamline: magnetic spectroscopy (XMCD) and scattering (XRMS) under high pressure and very low temperature in order to fully probe both ferromagnetic and antiferromagnetic materials and the dependence with pressure; extreme pressure and temperature XRD and XAS experiments using very small diamond culet anvils and high power lasers. (author)

  19. Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments

    International Nuclear Information System (INIS)

    Aktacir, Mehmet Azmi; Bueyuekalaca, Orhan; Bulut, Huesamettin; Yilmaz, Tuncay

    2008-01-01

    Outdoor design conditions are important parameters for energy efficiency of buildings. The result of incorrect selection of outdoor design conditions can be dramatic in view of comfort and energy consumption. In this study, the influence of different outdoor design conditions on air conditioning systems is investigated. For this purpose, cooling loads and capacities of air conditioning equipments for a sample building located in Adana, Turkey are calculated using different outdoor design conditions recommended by ASHRAE, the current design data used in Turkey and the daily maximum dry and wet bulb temperatures of July 21st, which is generally accepted as the design day. The cooling coil capacities obtained from the different outdoor design conditions considered in this study are compared with each other. The cost analysis of air conditioning systems is also performed. It is seen that the selection of outdoor design conditions is a very critical step in calculation of the building cooling loads and design capacities of air conditioning equipments

  20. A model for Quick Load Analysis for monopile-type offshore wind turbine substructures

    DEFF Research Database (Denmark)

    Schløer, Signe; Castillo, Laura Garcia; Fejerskov, Morten

    2016-01-01

    A model for Quick Load Analysis, QuLA, of an offshore wind turbine substructure is presented. The aerodynamic rotor loads and damping are precomputed for a load-based configuration. The dynamic structural response is represented by the first global fore-aft mode only and is computed...... in the frequency domain using the equation of motion. The model is compared against the state of the art aeroelastic code, Flex5, and both life time fatigue and extreme loads are considered in the comparison. In general there is good similarity between the two models. Some derivation for the sectional forces...... are explained in terms of the model simplifications. The difference in the sectional moments are found to be within 14% for the fatigue load case and 10% for the extreme load condition....

  1. Wireless pilot monitoring system for extreme race conditions.

    Science.gov (United States)

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  2. Determination of the boundary conditions of the grinding load in ball mills

    Science.gov (United States)

    Sharapov, Rashid R.

    2018-02-01

    The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.

  3. Triticale in the years with extreme weather conditions

    Directory of Open Access Journals (Sweden)

    Nožinić Miloš

    2009-01-01

    Full Text Available Unlike other grain crops, the area under triticale in the Republic of Srpska has been expanding every year. Since the introduction of this plant species in the broad production began a few years ago, the finding of the optimal variety agrotechnique in different environmental conditions has great importance. This paper deals with the results of the trials from seven locations in two very extreme vegetation seasons (2002/03, 2006/07. High yield of triticale on the location Banja Luka (150 m alt. with five triticale varieties in four sowing rates in the replication trial in very unfavorable weather conditions in 2003, points to emphasized triticale tolerance to high temperatures and drought. High grain yield of triticale in the trials on the locations Banja Luka, Butmir (460 m alt. and Živince (230 m alt. was obtained in 2007 too, when all vegetation months had higher mean temperature than long term average, what is a unique appearance in the entire 'meteorological history'. In the paper the appearance of the earliest triticale heading is described and explained. It happened at one production trial on Manjača (250 m alt. in the first decade of March in 2007. On the another location on Manjača (450 m alt., in the macrotrial, rye showed much higher tolerance to extreme soil acidity, than triticale. Obtained results and unusual appearances on triticale are helpful for the further research of the stability and adaptability of more important triticale traits. .

  4. CFD-based design load analysis of 5MW offshore wind turbine

    Science.gov (United States)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  5. Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform

    Directory of Open Access Journals (Sweden)

    Ji Li

    2018-05-01

    Full Text Available Evaporative cooling is a green, energy-efficient cooling technology adopted in hot and dry regions, which has wider application in the field of air-conditioning systems. Outdoor meteorological parameters have a great influence on the operation mode and control strategy of evaporative cooling air-conditioning systems, and the system load distribution and system configuration will be affected. This paper aims at investigating the load distribution of semi-central evaporative cooling air-conditioning systems under the condition of hourly outdoor meteorological parameters. Firstly, this paper introduced the design partition, operation mode, controlling strategy and load distribution method on semi-central evaporative cooling air-conditioning system. Then, taking an office building in Lanzhou (China as an example, the evaporative cooling air-conditioning system was divided into five regions and the load distribution was simulated by TRNSYS (The Transient Energy System Simulation Tool under the condition of hourly outdoor meteorological parameters. Finally, the results have shown that the evaporative cooling air-conditioning system can provide 25.46% of the building loads, which was of great significance to reduce the energy consumption of air-conditioning system.

  6. Gearbox Fatigue Load Estimation for Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    control and data acquisition (SCADA) system. Estimated loads can be further used for prediction of remaining operating lifetime of turbine components, detection of high stress level or fault detection. An augmented Kalman filter is chosen as the fatigue load estimator because its characteristics well suit......The focus of the paper is on a design of a fatigue load estimator for predictive condition monitoring systems (CMS) of wind turbines. In order to avoid high-price measurement equipment required for direct load measuring, an indirect approach is suggested using only measurements from supervisory...... for the real time application. This paper presents results of the estimation of the gearbox fatigue load, often called shaft torque, using simulated data of wind turbine. Noise sensitivity of the algorithm is investigated by assuming different levels of measurement noise. Shaft torque estimations are compared...

  7. Outlier robustness for wind turbine extrapolated extreme loads

    DEFF Research Database (Denmark)

    Natarajan, Anand; Verelst, David Robert

    2012-01-01

    . Stochastic identification of numerical artifacts in simulated loads is demonstrated using the method of principal component analysis. The extrapolation methodology is made robust to outliers through a weighted loads approach, whereby the eigenvalues of the correlation matrix obtained using the loads with its...

  8. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions

    International Nuclear Information System (INIS)

    Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.; Zawislak, F. C.; Oliviero, E.; Fichtner, P. F. P.

    2016-01-01

    The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems under extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors

  9. Evaluation and visualization of multiaxial fatigue behavior under random non-proportional loading condition

    Directory of Open Access Journals (Sweden)

    Takahiro Morishita

    2017-07-01

    Full Text Available In cyclic multiaxial stress/strain condition under nonproportional loading in which principal direction of stress/strain are changed in a cycle, it becomes difficult to analyze stress/strain ranges because of complexity of multiaxial stress/strain states depending on time in cycles. In order to evaluate stress/strain simply and suitably under non-proportional loading, Itoh and Sakane have proposed a method called as IS-method and a strain parameter for life evaluation under non-proportional loading NP. In the method, 6-components of stress/strain are converted to an equivalent stress/strain indicating the amplitude and the direction of principal stress/strain as a function of time as well as an intensity of loading nonproportionality fNP. Based on IS-method, the authors also have developed a tool which enables to analyze multiaxial stress/strain condition with the nonproportionality of loading history and evaluate failure life under nonproportional multiaxial loading. The tool indicates the analyzed results on monitor and users can understand visually not only variation of the stress/strain conditions but also non-proportionality during the cycle, which helps the design of material strength.

  10. Transformation condition in a Fe-based shape memory alloy under thermomechanical loadings

    International Nuclear Information System (INIS)

    Nishimura, F.; Watanabe, T.; Tanaka, K.

    2000-01-01

    The martensitic transformation start conditions in an Fe-9%Cr-5%Ni-14%Mn-6%Si polycrystalline shape memory alloy (SMA) are studied in the stress-temperature space. The martensite start condition is represented by an oval cone, which is not governed by the von Mises type condition. The subsequent martensite start condition is also investigated. The martensite start stress increases both in the initial loading and in the subsequent loading, with the progress of prior martensitic transformation. The concept of linear hardening in plasticity explains well the experimental results. On the contrary, the subsequent martensite start stress returns to the initial value with the progress of the reverse transformation. (orig.)

  11. Proceedings of the third symposium on science of hadrons under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The third symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on January 29 to 31, 2001. The symposium was devoted for discussions and presentations of research results in wide variety of hadron physics such as nuclear matter, high-energy nuclear reactions, quantum chromodynamics, neutron stars, supernovae, nucleosynthesis as well as finite nuclei to understand various aspects of hadrons under extreme conditions. Twenty two papers on these topics presented at the symposium, including a special talk on the present status of JAERI-KEK joint project on high-intensity proton accelerator, aroused lively discussions among approximately 40 participants. The 20 of the presented papers are indexed individually. (J.P.N.)

  12. Association between increase in vertical ground reaction force loading rate and pain level in women with patellofemoral pain after a patellofemoral joint loading protocol.

    Science.gov (United States)

    Briani, Ronaldo Valdir; Pazzinatto, Marcella Ferraz; Waiteman, Marina Cabral; de Oliveira Silva, Danilo; de Azevedo, Fábio Mícolis

    2018-04-11

    The etiology of patellofemoral pain (PFP) is thought to be the result of increased patellofemoral joint (PFJ) load and aberrant lower extremity mechanics, including altered vertical ground reaction forces (VGRF). However, few studies have investigated the association between an increase in pain and VGRF loading rates in the context of PFP. Thus, this study aimed to investigate the immediate effects of PFJ loading on pain and VGRF loading rate, and to see if there is a link between modification of both pain and VGRF loading rate during stair negotiation. Thirty-four women with PFP underwent VGRF analysis during stair negotiation under two conditions: with (condition 2) and without (condition 1) being previously submitted to a PFJ loading protocol in order to or not to exacerbate their knee pain, respectively. The VGRF loading rates were significantly higher in condition 2 (Mean ± standard deviation (SD)=4.0±0.6N/s) compared to condition 1 (Mean±SD=3.6±0.5N/s) during stair ascent and during stair descent (Mean±SD: condition 1=6.3±1.1N/s; condition 2=7.0±1.4N/s). In addition, VGRF loading rates were higher during stair descent compared to stair ascent in both conditions. There were significant correlations between the increase in pain and VGRF loading rate during both tasks. There seemed to be an important relation between the increase in pain and VGRF loading rates in women with PFP. Based on these findings, interventions aimed at reducing VGRF loading rates are important in the context of PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation

    Directory of Open Access Journals (Sweden)

    Chan-Uk Yeom

    2017-10-01

    Full Text Available This paper discusses short-term electricity-load forecasting using an extreme learning machine (ELM with automatic knowledge representation from a given input-output data set. For this purpose, we use a Takagi-Sugeno-Kang (TSK-based ELM to develop a systematic approach to generating if-then rules, while the conventional ELM operates without knowledge information. The TSK-ELM design includes a two-phase development. First, we generate an initial random-partition matrix and estimate cluster centers for random clustering. The obtained cluster centers are used to determine the premise parameters of fuzzy if-then rules. Next, the linear weights of the TSK fuzzy type are estimated using the least squares estimate (LSE method. These linear weights are used as the consequent parameters in the TSK-ELM design. The experiments were performed on short-term electricity-load data for forecasting. The electricity-load data were used to forecast hourly day-ahead loads given temperature forecasts; holiday information; and historical loads from the New England ISO. In order to quantify the performance of the forecaster, we use metrics and statistical characteristics such as root mean squared error (RMSE as well as mean absolute error (MAE, mean absolute percent error (MAPE, and R-squared, respectively. The experimental results revealed that the proposed method showed good performance when compared with a conventional ELM with four activation functions such sigmoid, sine, radial basis function, and rectified linear unit (ReLU. It possessed superior prediction performance and knowledge information and a small number of rules.

  14. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  15. Angiographic assessment of atherosclerotic load at the lower extremity in patients with diabetic foot and charcot neuro-arthropathy.

    Science.gov (United States)

    Çildağ, Mehmet B; Ertuğrul, Bülent M; Köseoğlu, Ömer Fk; Çildağ, Songül; Armstrong, David G

    2018-06-01

    The aim of this study was to investigate atherosclerotic load at the lower extremity in patients with diabetic foot and charcot neuro-arthropathy and compare them with patients with diabetic foot without charcot neuro-arthropathy. This retrospective study consists of 78 patients with diabetic foot who had lower extremity angiography with antegrade approach. All patients were classified into two groups; neuro ischemic wounds with charcot neuro-arthropathy (30/78) and without charcot neuro-arthropathy (48/78).Atherosclerotic load at the side of diabetic foot was determined by using the Bollinger angiogram scoring method. Comparison of atherosclerotic load between the two groups was performed. The mean of total and infrapopliteal level angiogram scoring of all patients was 33.3 (standard deviation, sd:±17.2) and 29.3 (sd:±15.6), respectively. The mean of total and infrapopliteal level angiogram scoring of neuroischemic wounds with charcot neuro-arthropathy group was 18.1 (sd:±11.6) and 15.7 (sd:±10.4), respectively. The mean of total and infrapopliteal level angiogram scoring of neuroischemic wounds without charcot neuro-arthropathy group was 42.8 (sd:±12.7) and 37.7 (sd:±12.0), respectively. There was a statistically significant difference between the two groups of mean total and infrapopliteal angiogram scoring (p diabetic foot and chronic charcot neuro-arthropathy is significantly less than in patients with neuroischemic diabetic foot wounds without chronic charcot neuro-arthropathy. Copyright © 2017. Published by Elsevier Taiwan LLC.

  16. Proceedings of the workshop on scattering experiments under extreme conditions

    International Nuclear Information System (INIS)

    Sakai, N.; Ikeda, H.; Ando, M.

    1991-10-01

    In the National Laboratory for High Energy Physics (KEK), as the research facilities, there are Photon Factory, the facility for utilizing the booster and University of Tokyo Meson Science Research Center. For the research on physical properties, it is very important to do structural analysis in a broad sense and to observe the behavior of quasiparticles in solids. The X-ray and pulsed neutrons required for these researches can be obtained in a single laboratory in KEK, and it is rare in the world. At this opportunity of the workshop on scattering experiments under extreme conditions, it is hoped that the positive interchange between both PF and booster groups will be carried out. The research on magnetic substances using X-ray is a most noteworthy utilization of synchrotron radiation. The discovery of X-ray resonance magnetic scattering by K. Namikawa is one of the remarkable researches using synchrotron radiation in the world. When the extreme conditions around samples are prepared, the quality of signals for the research on physical properties is to be heightened. In this report, the researches on physical properties under ultrahigh pressure and ultralow temperature are reported. (K.I.)

  17. The Atlas load protection switch

    CERN Document Server

    Davis, H A; Dorr, G; Martínez, M; Gribble, R F; Nielsen, K E; Pierce, D; Parsons, W M

    1999-01-01

    Atlas is a high-energy pulsed-power facility under development to study materials properties and hydrodynamics experiments under extreme conditions. Atlas will implode heavy liner loads (m~45 gm) with a peak current of 27-32 MA delivered in 4 mu s, and is energized by 96, 240 kV Marx generators storing a total of 23 MJ. A key design requirement for Atlas is obtaining useful data for 95601130f all loads installed on the machine. Materials response calculations show current from a prefire can damage the load requiring expensive and time consuming replacement. Therefore, we have incorporated a set of fast-acting mechanical switches in the Atlas design to reduce the probability of a prefire damaging the load. These switches, referred to as the load protection switches, short the load through a very low inductance path during system charge. Once the capacitors have reached full charge, the switches open on a time scale short compared to the bank charge time, allowing current to flow to the load when the trigger pu...

  18. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  19. Data characteristic analysis of air conditioning load based on fast Fourier transform

    Science.gov (United States)

    Li, Min; Zhang, Yanchi; Xie, Da

    2018-04-01

    With the development of economy and the improvement of people's living standards, air conditioning equipment is more and more popular. The influence of air conditioning load for power grid is becoming more and more serious. In this context it is necessary to study the characteristics of air conditioning load. This paper analyzes the data of air conditioning power consumption in an office building. The data is used for Fast Fourier Transform by data analysis software. Then a series of maps are drawn for the transformed data. The characteristics of each map were analyzed separately. The hidden rules of these data are mined from the angle of frequency domain. And these rules are hard to find in the time domain.

  20. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  1. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  2. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    Science.gov (United States)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  3. Estimated Muscle Loads During Squat Exercise in Microgravity Conditions

    Science.gov (United States)

    Fregly, Christopher D.; Kim, Brandon T.; Li, Zhao; DeWitt, John K.; Fregly, Benjamin J.

    2012-01-01

    Loss of muscle mass in microgravity is one of the primary factors limiting long-term space flight. NASA researchers have developed a number of exercise devices to address this problem. The most recent is the Advanced Resistive Exercise Device (ARED), which is currently used by astronauts on the International Space Station (ISS) to emulate typical free-weight exercises in microgravity. ARED exercise on the ISS is intended to reproduce Earth-level muscle loads, but the actual muscle loads produced remain unknown as they cannot currently be measured directly. In this study we estimated muscle loads experienced during squat exercise on ARED in microgravity conditions representative of Mars, the moon, and the ISS. The estimates were generated using a subject-specific musculoskeletal computer model and ARED exercise data collected on Earth. The results provide insight into the capabilities and limitations of the ARED machine.

  4. Effective interactions for extreme isospin conditions; Interactions effectives pour des conditions extremes d`isospin

    Energy Technology Data Exchange (ETDEWEB)

    Chabanat, E.

    1995-01-01

    One of the main goal in nuclear physics research is the study of nuclei in extreme conditions of spin and isospin. The more performing tools for theoretical predictions in this field are microscopic methods such as the Hartree-Fock one based on independent particle approximation. The main ingredient for such an approach is the effective nucleon-nucleon interaction. The actual trend being the study of nuclei more and more far from the stability valley, it is necessary to cast doubt over the validity of usual effective interaction. This work constitute a study on the way one can construct a new interaction allowing some theoretical predictions on nuclei far from the stability. We have thus made a complete study of symmetric infinite nuclear matter and asymmetric one up to pure neutron matter. One shows that the asymmetry coefficient, which was considered until now as fixing isospin properties, is not sufficient to have a correct description of very exotic isospin states. A new type of constraint is shown for fixing this degree of freedom: the neutron matter equation of state. One include this equation of state, taken from a theoretical model giving a good description of radii and masses of neutron stars. One can thus expect to build up new Skyrme interaction with realistic properties of ground state of very neutron-rich nuclei. (author). 63 refs., 68 figs., 15 tabs.

  5. Effect of load carriage and natural terrain conditions on cognitive performance in desert environments.

    Science.gov (United States)

    Bhattacharyya, Debojyoti; Pal, Madhusudan; Chatterjee, Tirthankar; Majumdar, Dhurjati

    2017-10-01

    Correct decision making is a critical component of cognitive performance of a soldier, which may be influenced by the load carriage and terrain conditions during their deployment in desert environment. The present study was aimed to investigate the effects of loads and terrain conditions on the cognitive performance in a group of twelve healthy heat acclimatized infantry soldiers under natural desert environment. The soldiers participated in a 10min walking trial during carrying no load and also carrying 10.7, 21.4 and 30kg at two terrain conditions viz., sandy and hard. We studied attention, memory and executive function, which are having immense functional importance in military operations. Standardized cognitive test battery was applied to the participants after carrying each magnitude of load at each terrain. Baseline cognitive performance was recorded on a separate day and was compared with the performances recorded after the load carriage trials. An attempt was made to reveal the relationship between physiological workload (relative workload) and cognitive performance at the point of completion of load carriage trials. Load, terrains and load×terrain interaction did not produce any significant effect (p>0.05) on the cognitive performance. Attention and relative workload were found significantly correlated at hard terrain under no load, 21.4kg and 30kg. Significant correlation was found between executive function and relative workload at hard terrain under no load. Carrying upto 30kg load for 10min at 3.5-4kmph walking speed resulted in improvement in attention at sandy terrain, decrement in memory at both sandy and hard terrains and improvement in executive function at sandy terrain. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Organizing of medical ensurance of human population under extreme conditions. Summaries of reports of scientific-practical conference

    International Nuclear Information System (INIS)

    1994-01-01

    Summary of reports are presented of Scientific-Practical conference on the organizing of medical ensurance of human population under extreme conditions including radiation accidents. The conference held in Moscow in October, 1994. It covered problems of organizing medical ensurance of population, medical surveillance problems, sanitary-hygienic and epidemiological problems (including radiation protection), and medical provision problems under extreme conditions

  7. A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions

    International Nuclear Information System (INIS)

    Kavuri, Chaitanya; Paz, Jordan; Kokjohn, Sage L.

    2016-01-01

    strategy, the longer ignition delay of the gasoline fuel allowed for more air entrainment, causing lower soot emissions while giving reasonable control over combustion. Cyclic variability can be problematic at the load extremes; accordingly, the sensitivity to fluctuations in operating conditions was evaluated. Both strategies were found to be most sensitive to fluctuations in exhaust gas recirculation (EGR) rate. The GCI strategy was more sensitive to small changes in the charge conditions than the RCCI strategy, indicating that cyclic variability may be more problematic for GCI operation.

  8. Literature review for Texas Department of Transportation Research Project 0-4695: Guidance for design in areas of extreme bed-load mobility, Edwards Plateau, Texas

    Science.gov (United States)

    Heitmuller, Franklin T.; Asquith, William H.; Fang, Xing; Thompson, David B.; Wang, Keh-Han

    2005-01-01

    A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0–4695: Guidance for Design in Areas of Extreme Bed-Load Mobility. The study area comprises the western half of the Edwards Plateau in central Texas. Three primary foci of the literature review are journal articles, edited volumes, and government publications. Major themes within the body of literature include deterministic sediment transport theory and equations, development of methods to measure and analyze fluvial sediment, applications and development of theory in natural channels and flume experiments, and recommendations for river management and structural design. The literature review provides an outline and foundation for the research project to characterize extreme bed-load mobility in rivers and streams across the study area. The literature review also provides a basis upon which potential modifications to low-water stream-crossing design in the study area can be made.

  9. Influence of the emotional state on behavior in extreme conditions of competitive sports activities

    Directory of Open Access Journals (Sweden)

    V.A. Malakhov

    2014-04-01

    Full Text Available Purpose : establish a communication pattern of emotional intensity and level of extreme environment in which activity is performed. Materials : in the study involved 600 men aged 18-22 years. Results : the effect of the emotional state on the efficiency of the motor activity that flowed under extreme conditions. Set individual characteristics flow sports activities in extreme conditions. First used in the special semantic space for the orderly presentation of research results parachute jumps. The monogram built in semantic fields allows to establish the frequency response range of individual heartbeats and the optimal frequency for maximum performance. On the basis of established regularities of the "reflex of readiness" assessment methodology given emotional stress, which reflects the readiness of an individual to perform a parachute jump. An objective indicator of preparedness measures is a violation of the symmetry of the flow and haptic reflex and serial dynamometry. Conclusions : in using semantic spaces reflects the flowing of reflex of biological caution and accompaniment reflex. In the basis of constructing estimates of emotional stress are the regularities of mean arterial pressure as nonspecific reactions. Measure of extent of confused is estimated by variability of accompaniment reflex. Breach of symmetry in mean arterial pressure and the amplitude - frequency response accompaniment reflex, determine the validity of staying in extreme conditions. Introduction of the measure in using semantic spaces allows by selective data to establish the overall structure of the studied process.

  10. Influence of the emotional state on behavior in extreme conditions of competitive sports activities

    Directory of Open Access Journals (Sweden)

    Malakhov V.A.

    2014-03-01

    Full Text Available Purpose : establish a communication pattern of emotional intensity and level of extreme environment in which activity is performed. Materials : in the study involved 600 men aged 18-22 years. Results : the effect of the emotional state on the efficiency of the motor activity that flowed under extreme conditions. Set individual characteristics flow sports activities in extreme conditions. First used in the special semantic space for the orderly presentation of research results parachute jumps. The monogram built in semantic fields allows to establish the frequency response range of individual heartbeats and the optimal frequency for maximum performance. On the basis of established regularities of the "reflex of readiness" assessment methodology given emotional stress, which reflects the readiness of an individual to perform a parachute jump. An objective indicator of preparedness measures is a violation of the symmetry of the flow and haptic reflex and serial dynamometry. Conclusions : in using semantic spaces reflects the flowing of reflex of biological caution and accompaniment reflex. In the basis of constructing estimates of emotional stress are the regularities of mean arterial pressure as nonspecific reactions. Measure of extent of confused is estimated by variability of accompaniment reflex. Breach of symmetry in mean arterial pressure and the amplitude - frequency response accompaniment reflex, determine the validity of staying in extreme conditions. Introduction of the measure in using semantic spaces allows by selective data to establish the overall structure of the studied process.

  11. Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Kim, Beomgeun; Seo, Dong-Jun; Noh, Seong Jin; Prat, Olivier P.; Nelson, Brian R.

    2018-01-01

    A new technique for merging radar precipitation estimates and rain gauge data is developed and evaluated to improve multisensor quantitative precipitation estimation (QPE), in particular, of heavy-to-extreme precipitation. Unlike the conventional cokriging methods which are susceptible to conditional bias (CB), the proposed technique, referred to herein as conditional bias-penalized cokriging (CBPCK), explicitly minimizes Type-II CB for improved quantitative estimation of heavy-to-extreme precipitation. CBPCK is a bivariate version of extended conditional bias-penalized kriging (ECBPK) developed for gauge-only analysis. To evaluate CBPCK, cross validation and visual examination are carried out using multi-year hourly radar and gauge data in the North Central Texas region in which CBPCK is compared with the variant of the ordinary cokriging (OCK) algorithm used operationally in the National Weather Service Multisensor Precipitation Estimator. The results show that CBPCK significantly reduces Type-II CB for estimation of heavy-to-extreme precipitation, and that the margin of improvement over OCK is larger in areas of higher fractional coverage (FC) of precipitation. When FC > 0.9 and hourly gauge precipitation is > 60 mm, the reduction in root mean squared error (RMSE) by CBPCK over radar-only (RO) is about 12 mm while the reduction in RMSE by OCK over RO is about 7 mm. CBPCK may be used in real-time analysis or in reanalysis of multisensor precipitation for which accurate estimation of heavy-to-extreme precipitation is of particular importance.

  12. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  13. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    Science.gov (United States)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  14. Method of bringing nuclear power plant to fractional electrical load conditions

    International Nuclear Information System (INIS)

    Iljunin, V.G.; Kuznetsoy, I.A.; Murogov, V.M.; Shmelev, A.N.

    1978-01-01

    A method is described of bringing a nuclear power plant to fractional electric load conditions, which power plant comprises at least two nuclear reactors, at least one nuclear reactor being a breeder and both reactors transferring heat to the turbine working substance, consisting in that the consumption of the turbine working substance is reduced in accordance with a predetermined fractional load. At the same time, the amount of heat being transferred from the nuclear reactors to the turbine working substance is reduced, for which purpose the reactors are included in autonomous cooling circuits to successively transfer heat to the turbine working substance. The breeding reactor is included in the cooling circuit with a lower coolant temperature, the temperature of the coolant at the inlet and outlet of the breeder being reduced to a level ensuring the operation of the nuclear power plant in predetermined fractional load conditions, due to which the power of the breeder is increased, and afterheat is removed

  15. Consideration of loading conditions initiated by thermal transients in PWR pressure vessels

    International Nuclear Information System (INIS)

    Azodi; Glahn; Kersting; Schulz; Jansky.

    1983-01-01

    This report describes the present state of PWR-plants in the Federal Republic of Germany with respect to - the design of the primary pressure boundary - the analysis of thermal transients and resulting loads - the material conditions and neutron fluence - the requirements for protection against fast fracture. The experimental and analytical research and development programs are delineated together with some foreign R and D programs. It is shown that the parameters investigated (loading condition, crack shape and orientation etc.) cover a broad range. Extensive analytical investigations are emphasized. (orig./RW) [de

  16. 78 FR 67323 - Special Conditions: Airbus, Model A350-900 Series Airplane; Transient Engine Failure Loads

    Science.gov (United States)

    2013-11-12

    ... feature. These proposed special conditions contain the additional safety standards that the Administrator... these conditions would be considered as ultimate loads, with an additional safety factor applied to the... ARAC Loads and Dynamics Harmonization Working Group. The proposed special condition reflects the ARAC...

  17. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    Science.gov (United States)

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (edge-loading conditions generated particles that ranged from Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  18. Socket weld integrity in nuclear piping under fatigue loading condition

    International Nuclear Information System (INIS)

    Choi, Young Hwan; Choi, Sun Yeong

    2007-01-01

    The purpose of this paper is to evaluate the integrity of socket weld in nuclear piping under the fatigue loading. The integrity of socket weld is regarded as a safety concern in nuclear power plants because many failures have been world-widely reported in the socket weld. Recently, socket weld failures in the chemical and volume control system (CVCS) and the primary sampling system (PSS) were reported in Korean nuclear power plants. The root causes of the socket weld failures were known as the fatigue due to the pressure and/or temperature loading transients and the vibration during the plant operation. The ASME boiler and pressure vessel (B and PV) Code Sec. III requires 1/16 in. gap between the pipe and fitting in the socket weld with the weld leg size of 1.09 x t 1 , where t 1 is the pipe wall thickness. Many failure cases, however, showed that the gap requirement was not satisfied. In addition, industry has demanded the reduction of weld leg size from 1.09 x t 1 to 0.75 x t 1 . In this paper, the socket weld integrity under the fatigue loading was evaluated using three-dimensional finite element analysis considering the requirements in the ASME Code. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P = 0 to 15.51 MPa, and the thermal transient ranging from T = 25 to 288 deg. C were considered. The results are as follows; (1) the socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) code. (2) The effect of pressure or temperature transient load on socket weld in CVCS and PSS is not significant owing to the low frequency of transient during plant operation. (3) 'No gap' is very risky to the socket weld integrity for the systems having the vibration condition to exceed the requirement specified in the ASME OM Code and/or the transient loading condition from P = 0 and T = 25 deg. C to P = 15.51 MPa and T = 288 deg. C. (4

  19. Assessment of Gearbox Operational Loads and Reliability under High Mean Wind Speeds

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Natarajan, Anand

    2015-01-01

    wind turbine that operates in storm conditions with mean wind speeds less than 30 m/s is presented. In the study, normal shut-downs of a wind turbine in storm conditions were investigated. The analysis were conducted for two storm control strategies and different wind conditions from an extreme...... operating gust, normal turbulence model and extreme turbulence model. In the paper, loads in the planetary gear are quantified as well as the torsional moments in the main shaft. On the basis of simulation results the annual probability of failure of the gearbox in a wind turbine with soft storm controller...... is calculated, and compared with the one had the gearbox working in a wind turbine operating with hard storm controller. In the study, it was found that normal shut-downs do not have a significant influence on the ultimate loads in the gearbox, since they are related mostly to the gusts occurring during...

  20. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  1. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    Directory of Open Access Journals (Sweden)

    Jairo Vázquez-Guerrero

    Full Text Available The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010 and peak force output differed between all loads for each condition (P < 0.045. Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001. There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.

  2. Turbulence and turbulence-generated structural loading in wind turbine clusters

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs

    2007-01-01

    of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms......Turbulence - in terms of standard deviation of wind speed fluctuations - and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to “wind farm flow......”. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence...

  3. An Efficient Topology for Wireless Power Transfer over a Wide Range of Loading Conditions

    Directory of Open Access Journals (Sweden)

    Tianqing Li

    2018-01-01

    Full Text Available Although an inductive power transfer (IPT system can transfer power efficiently in full-load conditions, its efficiency obviously decreases in light-load conditions. To solve this problem, based on a two-coil IPT system with a series-series compensation topology, a single-ended primary-inductor converter is introduced at the secondary side. By adjusting the set effective value of the current in the primary coil, the converter input voltage changes to maintain the equivalent input resistance of the converter in an optimal condition. The system can then transfer the power efficiently with the wide load conditions. Moreover, the system operates at a constant resonance frequency with a high power factor. Both the simulation and experimentation of a prototype with a 10 W IPT system demonstrate the effectiveness of the proposed topology for wireless power transfer.

  4. Life under Multiple Extreme Conditions: Diversity and Physiology of the Halophilic Alkalithermophiles

    Science.gov (United States)

    Wiegel, Juergen

    2012-01-01

    Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth. PMID:22492435

  5. Lumbopelvic muscle activation patterns in three stances under graded loading conditions: Proposing a tensegrity model for load transfer through the sacroiliac joints.

    Science.gov (United States)

    Pardehshenas, Hamed; Maroufi, Nader; Sanjari, Mohammad Ali; Parnianpour, Mohamad; Levin, Stephen M

    2014-10-01

    According to the conventional arch model of the pelvis, stability of the sacroiliac joints may require a predominance of form and force closure mechanisms: the greater the vertical shear force at the sacroiliac joints, the greater the reliance on self-bracing by horizontally or obliquely oriented muscles (such as the internal oblique). But what happens to the arch model when a person stands on one leg? In such cases, the pelvis no longer has imposts, leaving both the arch, and the arch model theory, without support. Do lumbopelvic muscle activation patterns in one-legged stances under load suggest compatibility with a different model? This study compares lumbopelvic muscle activation patterns in two-legged and one-legged stances in response to four levels of graded trunk loading in order to further our understanding the stabilization of the sacroiliac joints. Thirty male subjects experienced four levels of trunk loading (0%, 5%, 10% and 15% of body weight) by holding a bucket at one side, at three conditions: 1) two-legged standing with the bucket in the dominant hand, 2) ipsilateral loading: one-legged standing with the bucket in the dominant hand while using the same-side leg, and 3) contralateral loading: one-legged standing using the same leg used in condition 2, but with the bucket in the non-dominant hand. During these tasks, EMG signals from eight lumbopelvic muscles were collected. ANOVA with repeated design was performed on normalized EMG's to test the main effect of load and condition, and interaction effects of load by condition. Latissimus dorsi and erector spinae muscles showed an antagonistic pattern of activity toward the direction of load which may suggest these muscles as lateral trunk stabilizers. Internal oblique muscles showed a co-activation pattern with increasing task demand, which may function to increase lumbopelvic stability (P sacroiliac joint dysfunctions must be taken into consideration. Our hypothetical model may initiate thinking and

  6. "On-off-on" switchable sensor: a fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications.

    Science.gov (United States)

    Wan, Shulin; Zheng, Yang; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2014-11-26

    A novel spiropyran that responds to both extreme acid and extreme alkali and has an "on-off-on" switch is reported. Benzoic acid at the indole N-position and carboxyl group at the indole 6-position contribute to the extreme acid response. The ionizations of carboxyl and phenolic hydroxyl groups cause the extreme alkali response. Moreover, the fluorescent imaging in bacterial cells under extreme pH conditions supports the mechanism of pH response.

  7. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  8. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-02-17

    "Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.

  9. The extreme condition analyzing for NEMPI shielding of electronic system in high-intensity pulsed radiation diagnosing

    International Nuclear Information System (INIS)

    Cheng Xiaolei; Liu Fang; Ouyang Xiaoping

    2012-01-01

    The difficulty for estimating the NEMPI (electromagnetic pulsed interference caused by the nuclear reaction) on the electronic system in high-intensity pulsed radiation diagnosing is analyzed in this article. To solve the difficulty, a method called 'Extreme Condition Analyzing' is presented for estimating the NEMPI conservatively and reliably. Through an extreme condition hypothesizing which could be described as 'Entire Coupling of Electric Field Energy', the E max (maximum electric field intensity which could be endured by the electronic system in the high-intensity pulsed radiation) could be figured out without any other information of the EMP caused by the nuclear reaction. Then a feasibility inspection is introduced, to confirm that the EMPI shielding request according to E max is not too extreme to be achieved. (authors)

  10. Vibration condition monitoring of planetary gearbox under varying external load

    Energy Technology Data Exchange (ETDEWEB)

    Bartelmus, W.; Zimroz, R. [Wroclaw University of Technology, Wroclaw (Poland)

    2009-01-15

    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time-frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered.

  11. Surface crack behavior in socket weld of nuclear piping under fatigue loading condition

    International Nuclear Information System (INIS)

    Choi, Y.H.; Kim, J.S.; Choi, S.Y.

    2005-01-01

    The ASME B and PV Code Sec. III allows the socket weld for the nuclear piping in spite of the weakness on the weld integrity. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because many failures and leaks have been reported in the socket weld. OPDE (OECD Piping Failure Data Exchange) database lists 108 socket weld failures among 2,399 nuclear piping failure cases during 1970 to 2001. Eleven failures in the socket weld were also reported in Korean NPPs. Many failure cases showed that the root cause of the failure is the fatigue and the gap requirement for the socket weld given in ASME Code was not satisfied. The purpose of this paper is to evaluate the fatigue crack behavior of a surface crack in the socket weld under fatigue loading condition considering the gap effect. Three-dimensional finite element analysis was performed to estimate the fatigue crack behavior of the surface crack. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P=0 to 15.51 MPa, and the thermal transient ranging from T=25 C to 288 C were considered. The results are as follows; 1) The socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) Code. 2) The effect of pressure or temperature transient load on the socket weld integrity is not significant. 3) No-gap condition gives very high possibility of the crack initiation at the socket weld under vibration loading condition. 4) For the specific systems having the vibration condition to exceed the requirement in the ASME Code OM and/or the transient loading condition from P=0 and T=25 C to P=15.51 MPa and T=288 C, radiographic examination to examine the gap during the construction stage is recommended. (orig.)

  12. Molecular Mechanisms of Survival Strategies in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Federica Migliardo

    2012-12-01

    Full Text Available Today, one of the major challenges in biophysics is to disclose the molecular mechanisms underlying biological processes. In such a frame, the understanding of the survival strategies in extreme conditions received a lot of attention both from the scientific and applicative points of view. Since nature provides precious suggestions to be applied for improving the quality of life, extremophiles are considered as useful model-systems. The main goal of this review is to present an overview of some systems, with a particular emphasis on trehalose playing a key role in several extremophile organisms. The attention is focused on the relation among the structural and dynamic properties of biomolecules and bioprotective mechanisms, as investigated by complementary spectroscopic techniques at low- and high-temperature values.

  13. Prognostic factors for specific lower extremity and spinal musculoskeletal injuries identified through medical screening and training load monitoring in professional football (soccer): a systematic review

    Science.gov (United States)

    Sergeant, Jamie C; Parkes, Matthew J; Callaghan, Michael J

    2017-01-01

    Background Medical screening and load monitoring procedures are commonly used in professional football to assess factors perceived to be associated with injury. Objectives To identify prognostic factors (PFs) and models for lower extremity and spinal musculoskeletal injuries in professional/elite football players from medical screening and training load monitoring processes. Methods The MEDLINE, AMED, EMBASE, CINAHL Plus, SPORTDiscus and PubMed electronic bibliographic databases were searched (from inception to January 2017). Prospective and retrospective cohort studies of lower extremity and spinal musculoskeletal injury incidence in professional/elite football players aged between 16 and 40 years were included. The Quality in Prognostic Studies appraisal tool and the modified Grading of Recommendations Assessment, Development and Evaluation synthesis approach was used to assess the quality of the evidence. Results Fourteen studies were included. 16 specific lower extremity injury outcomes were identified. No spinal injury outcomes were identified. Meta-analysis was not possible due to heterogeneity and study quality. All evidence related to PFs and specific lower extremity injury outcomes was of very low to low quality. On the few occasions where multiple studies could be used to compare PFs and outcomes, only two factors demonstrated consensus. A history of previous hamstring injuries (HSI) and increasing age may be prognostic for future HSI in male players. Conclusions The assumed ability of medical screening tests to predict specific musculoskeletal injuries is not supported by the current evidence. Screening procedures should currently be considered as benchmarks of function or performance only. The prognostic value of load monitoring modalities is unknown. PMID:29177074

  14. An Invariant-Preserving ALE Method for Solids under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Christon, Mark A [Los Alamos National Laboratory

    2012-07-17

    We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore

  15. Concrete under severe conditions. Environment and loading

    International Nuclear Information System (INIS)

    2007-01-01

    The objective of the CONSEC Conferences is to focus on concrete infrastructures, either subjected to severe environment or severe loading, or any combination of severe conditions. Experience from the performance of existing concrete structures, and especially under severe environmental conditions, severe accidental loading or extended lifespan, has demonstrated the need for better integration of structural and durability design, new design concepts including reliability-based durability design, performance-based material requirements, structural robustness, and an improved basis for documentation of obtained construction quality and durability properties during concrete construction. An improved basis for operation and preventive maintenance of concrete structures including repairs and retrofitting is also very important. Premature corrosion of reinforcing steel, inadequate structural design for seismic or blast loading, are examples of reduced service life of concrete structures that not only represent technical and economical problems, but also a huge waste of natural resources and hence also, an environmental and ecological problem. Experience of structures effectively submitted to severe conditions represents a unique benchmark for quantifying the actual safety and durability margin of concrete structures. In fact for several reasons, most concrete design codes, job specifications and other requirements for concrete structures have frequently shown to yield insufficient and unsatisfactory results and ability to solve the above problems, as well as issues raised by specific very long-term or very severe requirements for nuclear and industrial waste management, or civil works of strategic relevance. Recently available high to ultra-high performance concrete may find rational and valuable application in such cases. It is very important, therefore, to bring people with different professional backgrounds together to exchange experience and develop multi

  16. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  17. Hydraulic Soft Yaw System Load Reduction and Prototype Results

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Markussen, Kristian

    2013-01-01

    Introducing a hydraulic soft yaw concept for wind turbines leads to significant load reductions in the wind turbine structure. The soft yaw system operates as a shock absorption system on a car, hence absorbing the loading from turbulent wind conditions instead of leading them into the stiff wind...... turbine structure. Results presented shows fatigue reductions of up to 40% and ultimate load reduction of up to 19%. The ultimate load reduction increases even more when the over load protection system in the hydraulic soft yaw system is introduced and results show how the exact extreme load cut off...... operates. Further it is analyzed how the soft yaw system influence the power production of the turbine. It is shown that the influence is minimal, but at larger yaw errors the effect is possitive. Due to the implemeted functions in the hydraulic soft yaw system such as even load distribution on the pinions...

  18. Extrapolation of extreme response for different mooring line systems of floating wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard

    2014-01-01

    Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... measurements from lab-scaled WEPTOS WEC are taken. Different catenary anchor leg mooring (CALM) systems as well as single anchor legmooring (SALM)mooring systemsare implemented for a dynamic simulation with different number of mooring lines. Extreme tension loads with a return period of 50 years are assessed...... for the hawser as well as at the different mooring lines. Furthermore, the extreme load impact given failure of one mooring line is assessed and compared with extreme loads given no system failure....

  19. Real-time visual biofeedback during weight bearing improves therapy compliance in patients following lower extremity fractures.

    Science.gov (United States)

    Raaben, Marco; Holtslag, Herman R; Leenen, Luke P H; Augustine, Robin; Blokhuis, Taco J

    2018-01-01

    Individuals with lower extremity fractures are often instructed on how much weight to bear on the affected extremity. Previous studies have shown limited therapy compliance in weight bearing during rehabilitation. In this study we investigated the effect of real-time visual biofeedback on weight bearing in individuals with lower extremity fractures in two conditions: full weight bearing and touch-down weight bearing. 11 participants with full weight bearing and 12 participants with touch-down weight bearing after lower extremity fractures have been measured with an ambulatory biofeedback system. The participants first walked 15m and the biofeedback system was only used to register the weight bearing. The same protocol was then repeated with real-time visual feedback during weight bearing. The participants could thereby adapt their loading to the desired level and improve therapy compliance. In participants with full weight bearing, real-time visual biofeedback resulted in a significant increase in loading from 50.9±7.51% bodyweight (BW) without feedback to 63.2±6.74%BW with feedback (P=0.0016). In participants with touch-down weight bearing, the exerted lower extremity load decreased from 16.7±9.77kg without feedback to 10.27±4.56kg with feedback (P=0.0718). More important, the variance between individual steps significantly decreased after feedback (P=0.018). Ambulatory monitoring weight bearing after lower extremity fractures showed that therapy compliance is low, both in full and touch-down weight bearing. Real-time visual biofeedback resulted in significantly higher peak loads in full weight bearing and increased accuracy of individual steps in touch-down weight bearing. Real-time visual biofeedback therefore results in improved therapy compliance after lower extremity fractures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Load monitoring of aerospace structures utilizing micro-electro-mechanical systems for static and quasi-static loading conditions

    International Nuclear Information System (INIS)

    Martinez, M; Rocha, B; Li, M; Shi, G; Beltempo, A; Rutledge, R; Yanishevsky, M

    2012-01-01

    The National Research Council Canada (NRC) has worked on the development of structural health monitoring (SHM) test platforms for assessing the performance of sensor systems for load monitoring applications. The first SHM platform consists of a 5.5 m cantilever aluminum beam that provides an optimal scenario for evaluating the ability of a load monitoring system to measure bending, torsion and shear loads. The second SHM platform contains an added level of structural complexity, by consisting of aluminum skins with bonded/riveted stringers, typical of an aircraft lower wing structure. These two load monitoring platforms are well characterized and documented, providing loading conditions similar to those encountered during service. In this study, a micro-electro-mechanical system (MEMS) for acquiring data from triads of gyroscopes, accelerometers and magnetometers is described. The system was used to compute changes in angles at discrete stations along the platforms. The angles obtained from the MEMS were used to compute a second, third or fourth order degree polynomial surface from which displacements at every point could be computed. The use of a new Kalman filter was evaluated for angle estimation, from which displacements in the structure were computed. The outputs of the newly developed algorithms were then compared to the displacements obtained from the linear variable displacement transducers connected to the platforms. The displacement curves were subsequently post-processed either analytically, or with the help of a finite element model of the structure, to estimate strains and loads. The estimated strains were compared with baseline strain gauge instrumentation installed on the platforms. This new approach for load monitoring was able to provide accurate estimates of applied strains and shear loads. (paper)

  1. Mean versus extreme climate in the Mediterranean region and its sensitivity to future global warming conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, H.; Hense, A. [Meteorological Inst., Univ. Bonn (Germany)

    2005-06-01

    The Mediterranean region (MTR) has been supposed to be very sensitive to changes in land surface and atmospheric greenhouse-gas (GHG) concentrations. Particularly, an intensification of climate extremes may be associated with severe socio-economic implications. Here, we present an analysis of climate mean and extreme conditions in this subtropical area based on regional climate model experiments, simulating the present-day and possible future climate. The analysis of extreme values (EVs) is based on the assumption that the extremes of daily precipitation and near-surface temperature are well fitted by the Generalized Pareto distribution (GPD). Return values of extreme daily events are determined using the method of L-moments. Particular emphasis is laid on the evaluation of the return values with respect to the uncertainty range of the estimate as derived from a Monte Carlo sampling approach. During the most recent 25 years the MTR has become dryer in spring but more humid especially in the western part in autumn and winter. At the same time, the whole region has been subject to a substantial warming. The strongest rainfall extremes are simulated in autumn over the Mediterranean Sea around Italy. Temperature extremes are most pronounced over the land masses, especially over northern Africa. Given the large uncertainty of the EV estimate, only 1-year return values are further analysed. During recent decades, statistically significant changes in extremes are only found for temperature. Future climate conditions may come along with a decrease in mean and extreme precipitation during the cold season, whereas an intensification of the hydrological cycle is predicted in summer and autumn. Temperature is predominantly affected over the Iberian Peninsula and the eastern part of the MTR. In many grid boxes, the signals are blurred out due to the large amount of uncertainty in the EV estimate. Thus, a careful analysis is required when making inferences about the future

  2. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths.

    Science.gov (United States)

    Boyer, Elizabeth R; Derrick, Timothy R

    2018-03-01

    Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2-14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: -9.9 ± 0.9, hFF-FFS: -9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one's SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.

  3. 76 FR 44245 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Science.gov (United States)

    2011-07-25

    ... Conditions No. 25-441-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... for transport category airplanes. These design features include engine size and the potential torque... engine mounts and the supporting structures must be designed to withstand a ``limit engine torque load...

  4. Development of a high-resolution apparatus to monitor physiological state of a person undergoing extreme conditions

    Directory of Open Access Journals (Sweden)

    Kodermyatov Radik

    2016-01-01

    Full Text Available The present research has shown that ECG recordings and parameters of the body functional state are crucial for all kinds of the astronaut pre-flight preparations (centrifuge, thermal chamber, pressure chamber, pressure chamber with special equipment. It is, therefore, important to develop methods and tools for early detection of the preclinical forms of the functional state disorders in patients undergoing high-intensity loads of mixed character. The method based on the hardware-software compleх (HSC with nanosensors of high resolution has been proposed to measure the electrophysiological characteristics and bioelectrical impedance of the body tissues directly exposed to loading. The hardware-software compleх is subjected to clinical trials in Tomsk Research Institute for Cardiology. The obtained results show that the use of nanosensors of high resolution in the HSC without standard filters allows elimination of the power-line interference in ECG recordings. Monitoring of the tissue bioimpedance parameters under test loads enables the detection of preclinical (latent forms of various diseases. After clinical trials in Tomsk Institute for Cardiology the developed apparatus will be proposed for in-depth study of the cardiovascular system and the functional state of the body of astronauts and other persons exposed to extreme loads.

  5. Numerical investigations of rib fracture failure models in different dynamic loading conditions.

    Science.gov (United States)

    Wang, Fang; Yang, Jikuang; Miller, Karol; Li, Guibing; Joldes, Grand R; Doyle, Barry; Wittek, Adam

    2016-01-01

    Rib fracture is one of the most common thoracic injuries in vehicle traffic accidents that can result in fatalities associated with seriously injured internal organs. A failure model is critical when modelling rib fracture to predict such injuries. Different rib failure models have been proposed in prediction of thorax injuries. However, the biofidelity of the fracture failure models when varying the loading conditions and the effects of a rib fracture failure model on prediction of thoracic injuries have been studied only to a limited extent. Therefore, this study aimed to investigate the effects of three rib failure models on prediction of thoracic injuries using a previously validated finite element model of the human thorax. The performance and biofidelity of each rib failure model were first evaluated by modelling rib responses to different loading conditions in two experimental configurations: (1) the three-point bending on the specimen taken from rib and (2) the anterior-posterior dynamic loading to an entire bony part of the rib. Furthermore, the simulation of the rib failure behaviour in the frontal impact to an entire thorax was conducted at varying velocities and the effects of the failure models were analysed with respect to the severity of rib cage damages. Simulation results demonstrated that the responses of the thorax model are similar to the general trends of the rib fracture responses reported in the experimental literature. However, they also indicated that the accuracy of the rib fracture prediction using a given failure model varies for different loading conditions.

  6. Life at extreme conditions: neutron scattering studies of biological molecules suggest that evolution selected dynamics

    International Nuclear Information System (INIS)

    Zaccai, Joseph Giuseppe

    2008-01-01

    The short review concentrates on recent work performed at the neutrons in biology laboratories of the Institut Laue Langevin and Institut de Biologie Structurale in Grenoble. Extremophile organisms have been discovered that require extreme conditions of temperature, pressure or solvent environment for survival. The existence of such organisms poses a significant challenge in understanding the physical chemistry of their proteins, in view of the great sensitivity of protein structure and stability to the aqueous environment and to external conditions in general. Results of neutron scattering measurements on the dynamics of proteins from extremophile organisms, in vitro as well as in vivo, indicated remarkably how adaptation to extreme conditions involves forces and fluctuation amplitudes that have been selected specifically, suggesting that evolutionary macromolecular selection proceeded via dynamics. The experiments were performed on a halophilic protein, and membrane adapted to high salt, a thermophilic enzyme adapted to high temperature and its mesophilic (adapted to 37 degC) homologue; and in vivo for psychrophilic, mesophilic, thermophilic and hyperthermophilic bacteria, adapted respectively to temperatures of 4 degC, 37 degC, 75 degC and 85 degC. Further work demonstrated the existence of a water component of exceptionally low mobility in an extreme halophile from the Dead Sea, which is not present in mesophile bacterial cells. (author)

  7. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    Science.gov (United States)

    Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.

  8. Pressure measurements and high speed visualizations of the cavitation phenomena at deep part load condition in a Francis turbine

    International Nuclear Information System (INIS)

    Yamamoto, K; Müller, A; Favrel, A; Landry, C; Avellan, F

    2014-01-01

    In a hydraulic power plant, it is essential to provide a reliable, sustainable and flexible energy supply. In recent years, in order to cover the variations of the renewable electricity production, hydraulic power plants are demanded to operate with more extended operating range. Under these off-design conditions, a hydraulic turbine is subject to cavitating swirl flow at the runner outlet. It is well-known that the helically/symmetrically shaped cavitation develops at the runner outlet in part load/full load condition, and it gives severe damage to the hydraulic systems under certain conditions. Although there have been many studies about partial and full load conditions, contributions reporting the deep part load condition are limited, and the cavitation behaviour at this condition is not yet understood. This study aims to unveil the cavitation phenomena at deep part load condition by high speed visualizations focusing on the draft tube cone as well as the runner blade channel, and pressure fluctuations associated with the phenomena were also investigated

  9. Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions

    International Nuclear Information System (INIS)

    Choi, K.S.; Liu, W.N.; Sun, X.; Khaleel, M.A.

    2009-01-01

    We study the ultimate ductility and failure modes of a commercial transformation-induced plasticity (TRIP) 800 steel under different loading conditions with an advanced microstructure-based finite-element analysis. The representative volume element (RVE) for the TRIP 800 under examination is developed based on an actual microstructure obtained from scanning electron microscopy. The ductile failure of the TRIP 800 under different loading conditions is predicted in the form of plastic strain localization without any prescribed failure criteria for the individual phases. This indicates that the microstructure-level inhomogeneity of the various constituent phases can be the key factor influencing the final ductility of the TRIP 800 steel under different loading conditions. Comparisons of the computational results with experimental measurements suggest that the microstructure-based modeling approach accurately captures the overall macroscopic behavior of the TRIP 800 steel under different loading and boundary conditions.

  10. Thermoregulatory value of cracking-clay soil shelters for small vertebrates during extreme desert conditions.

    Science.gov (United States)

    Waudby, Helen P; Petit, Sophie

    2017-05-01

    Deserts exhibit extreme climatic conditions. Small desert-dwelling vertebrates have physiological and behavioral adaptations to cope with these conditions, including the ability to seek shelter. We investigated the temperature (T) and relative humidity (RH) regulating properties of the soil cracks that characterize the extensive cracking-clay landscapes of arid Australia, and the extent of their use by 2 small marsupial species: fat-tailed and stripe-faced dunnarts (Sminthopsis crassicaudata and Sminthopsis macroura). We measured hourly (over 24-h periods) the T and RH of randomly-selected soil cracks compared to outside conditions, during 2 summers and 2 winters. We tracked 17 dunnarts (8 Sminthopsis crassicaudata and 9 Sminthopsis macroura) to quantify their use of cracks. Cracks consistently moderated microclimate, providing more stable conditions than available from non-crack points, which often displayed comparatively dramatic fluctuations in T and RH. Both dunnart species used crack shelters extensively. Cracks constitute important shelter for small animals during extreme conditions by providing a stable microclimate, which is typically cooler than outside conditions in summer and warmer in winter. Cracks likely play a fundamental sheltering role by sustaining the physiological needs of small mammal populations. Globally, cracking-clay areas are dominated by agricultural land uses, including livestock grazing. Management of these systems should focus not only on vegetation condition, but also on soil integrity, to maintain shelter resources for ground-dwelling fauna. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  11. The speed control of DC motor under the load condition using PI and PID controllers

    Science.gov (United States)

    Corapsiz, Muhammed Reşit; Kahveci, Hakan

    2017-04-01

    In this study, it was aimed to compare PI (Proportional-Integral) and PID (Proportional-Integral-Derivative) controllers for speed control of Permanent Magnet Direct Current (PMDC) motor under both load and without load. For this purpose, firstly, the mathematical model was obtained from the dynamic equations of the PMDC motor and the obtained mathematical model was transferred to the simulation environment and modeled using Matlab/SIMULINK. Following the modeling process, PI and PID controller structures were formed, respectively. Secondly, after these structures were formed, the PMDC motor was run without any controller. Then, the control of the PMDC motor with no load was provided by using PI and PID controllers. Finally, the PMDC motor were loaded under the constant load (TL = 3 N.m.) for each condition and selected time period (t = 3 s). The obtained result for each control operations was comparatively given by observing effects of loading process on systems. When the obtained results were evaluated for each condition, it was observed that PID controller have the best performance with respect to PI controller.

  12. Offshore wind turbine risk quantification/evaluation under extreme environmental conditions

    International Nuclear Information System (INIS)

    Taflanidis, Alexandros A.; Loukogeorgaki, Eva; Angelides, Demos C.

    2013-01-01

    A simulation-based framework is discussed in this paper for quantification/evaluation of risk and development of automated risk assessment tools, focusing on applications to offshore wind turbines under extreme environmental conditions. The framework is founded on a probabilistic characterization of the uncertainty in the models for the excitation, the turbine and its performance. Risk is then quantified as the expected value of some risk consequence measure over the probability distributions considered for the uncertain model parameters. Stochastic simulation is proposed for the risk assessment, corresponding to the evaluation of some associated probabilistic integral quantifying risk, as it allows for the adoption of comprehensive computational models for describing the dynamic turbine behavior. For improvement of the computational efficiency, a surrogate modeling approach is introduced based on moving least squares response surface approximations. The assessment is also extended to a probabilistic sensitivity analysis that identifies the importance of each of the uncertain model parameters, i.e. risk factors, towards the total risk as well as towards each of the failure modes contributing to this risk. The versatility and computational efficiency of the advocated approaches is finally exploited to support the development of standalone risk assessment applets for automated implementation of the probabilistic risk quantification/assessment. -- Highlights: ► A simulation-based risk quantification/assessment framework is discussed. ► Focus is on offshore wind turbines under extreme environmental conditions. ► Approach is founded on probabilistic description of excitation/system model parameters. ► Surrogate modeling is adopted for improved computational efficiency. ► Standalone risk assessment applets for automated implementation are supported

  13. Temporal variability in the suspended sediment load and streamflow of the Doce River

    Science.gov (United States)

    Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva

    2017-10-01

    Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.

  14. Low-Load Space Conditioning Needs Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-05-01

    With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment - thus facing penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of multifamily buildings and single-family homes market needs. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services on hundreds of housing projects and has accrued a large pool of data. CARB compiled and analyzed these data to see what the thermal load ranges are in various multifamily apartments and attached single-family home types (duplex and townhouse). In total, design loads from 941 dwellings from SWA's recent multifamily and attached single-family work across the Northeast and Mid-Atlantic were analyzed. Information on the dwelling characteristics, design loads, and the specifications of installed mechanical equipment were analyzed to determine any trends that exist within the dataset.

  15. Effects of multiaxial cyclic loading conditions on the evolution of porous defects

    Directory of Open Access Journals (Sweden)

    Mbiakop Armel

    2014-06-01

    Full Text Available Multiaxial loading conditions are one of the important parameters in estimating the lifetime of structure both in high and low cycle fatigue ([1 3]. In order to understand the coupling between the macroscopic multiaxial loading and the microscopic defects, we propose to investigate the evolution of an elasto-plastic porous material up to failure under low cycle fatigue conditions. The analysis is performed numerically, using finite elements, on a periodic 3D unit-cell under the assumption of finite strains and subjected to various stress triaxialities, translated as ratios between deviatoric, hydrostatic stress and Lode angles. The present discussion introduces several novel factors in the analysis: (i 3D geometry in cyclic loading (ii finite strains (iii free evolving void shape (iiii different hardening laws. That one of the important factors is the void shape and that its evolution during cyclic loading depends on its multiaxiality. Moreover, these factors will equally influence the apparent macroscopic hardening or softening of the material and the initiation of localized shear zones at the microscopic level. The Lode angle has a significant impact on the evolution of the aspect ratios and the ellipsoidicity of the pores, but has only a weak influence on the evolution of macroscopic variables such as the stress or the porosity. As a consequence, the results show that multiaxiality of the loading have an important on the evolution and growth of defects, pores in the present case problem, but are less important in the definition of the yield surface.

  16. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  17. Bridge Management Strategy Based on Extreme User Costs for Bridge Network Condition

    Directory of Open Access Journals (Sweden)

    Ladislaus Lwambuka

    2014-01-01

    Full Text Available This paper presents a practical approach for prioritization of bridge maintenance within a given bridge network. The maintenance prioritization is formulated as a multiobjective optimization problem where the simultaneous satisfaction of several conflicting objectives includes minimization of maintenance costs, maximization of bridge deck condition, and minimization of traffic disruption and associated user costs. The prevalence of user cost during maintenance period is twofold; the first case refers to the period of dry season where normally the traffic flow is diverted to alternative routes usually resurfaced to regain traffic access. The second prevalence refers to the absence of alternative routes which is often the case in the least developed countries; in this case the user cost referred to results from the waiting time while the traffic flow is put on hold awaiting accomplishment of the maintenance activity. This paper deals with the second scenario of traffic closure in the absence of alternative diversion routes which in essence results in extreme user cost. The paper shows that the multiobjective optimization approach remains valid for extreme cases of user costs in the absence of detour roads as often is the scenario in countries with extreme poor road infrastructure.

  18. Joint angles of the ankle, knee, and hip and loading conditions during split squats.

    Science.gov (United States)

    Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2014-06-01

    The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.

  19. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  20. Extreme wind conditions for a Danish offshore site

    DEFF Research Database (Denmark)

    Hansen, Kurt S.

    2000-01-01

    This paper presents an analysis of extreme wind speed gust values measured at a shallow water offshore site and at a coastal onshore site in Denmark. An estimate of 50-year extreme values has been evaluated using a new statistical method. In addition a mean gust shape is determined, based on a la...

  1. Wave Loadings on Seawave Slot-Cone Generator (SSG) at Kvitsøy Island

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Frigaard, Peter; Kofoed, Jens Peter

    This report presents results from a new research study performed to derive information on wave loadings acting on Wave Energy Convert (WEC) Seawave Slot-Cone Generator (SSG) exposed to extreme wave conditions. The SSG concept is based on the principle of overtopping and stores the wave energy...

  2. Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions

    International Nuclear Information System (INIS)

    Seo, Jin Ju; Yoon, Hanvit; Kim, Dong Yeon; Hong, Dong Pyo; Kim, Won Tae

    2011-01-01

    Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly

  3. Investigating the Effects of Simulated Space conditions on Novel Extremely Halophilic Archaea: Halovarius Luteus gen. nov., sp. nov.

    Science.gov (United States)

    Feshangsaz, Niloofar; Van Loon, ing.. Jack J. W. A.; Nazmi, Kamran; Semsarha, Farid

    2016-07-01

    Studying halophiles from different environments of Earth provide new insights into our search for life in the universe. Haloarchaea show some unique characteristics and physiological adaptations like acidic proteins against harsh environments such as natural brine with salt concentration approaching saturation (5 M) and regions with low active water. These properties make haloarchaea interesting candidate for astrobiological studies. Halovarius luteus gen. nov., sp. nov. a novel extremely halophilic archaeon from Urmia salt lake, in Iran has been chosen to explore its resistance against a series of extreme conditions. The aim of this study is to assess the resistance of strain DA50T under the effects of simulated space conditions like simulated microgravity, hypergravity, and desiccation. In this paper we will discuss the results of these studies where we specifically focus on changes in carotenoid pigments production and whole cell proteome. This is the first report of very novel Iranian archaea in response to extreme space conditions. The pigments were extracted by acetone and methanol. Pigments were analyzed by scanning the absorbance spectrum in the UV-VIS spectrophotometer. And they were separated by TLC. Whole protein from cell lysate supernatant was extracted after lysis with Bacterial Protein Extraction Reagent and fractionated by RP-HPLC using C18 column. Proteome analyzed by electrophoresis (SDS-PAGE), and MALDI-TOF. Carotenoid pigments are formed under different extreme conditions such as dry environment and gravitational changes. Also the protein composition exhibits alterations after exposure to the same conditions. Our conclusion is that pigments and proteins formation depend on the growth circumstances. Halophiles use this as an adaptation to survive under different environmental conditions.

  4. Extreme Loads on the Mooring Lines and Survivability Mode for the Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, E.

    2011-01-01

    Dragon aims at optimizing the power production by adapting the floating level to the incoming waves and by activating the hydro-turbines and regulating their working speed. In extreme conditions though, the control strategy could be changed in order to reduce the forces in the mooring system, lowering...

  5. The Impact of Climatological Conditions on Low Enriched Uranium Loading Station Operations for the HEU Blend Down Project

    International Nuclear Information System (INIS)

    Chang, R.C.

    2002-01-01

    A computer model was developed using COREsim to perform a time motion study for the Low Enriched Uranium (LEU) Loading Station operations. The project is to blend Highly Enriched Uranium (HEU) with Natural Uranium (NU) to produce LEU to be shipped to Tennessee Valley Authority (TVA) for further processing. To cope with a project cost reduction, the LEU Loading Station concept has changed from an enclosed building with air-conditioning to a partially enclosed building without air conditioning. The LEU Loading Station is within a radiological contaminated area; two pairs of coveralls and negative pressure respirator are required. As a result, inclement weather conditions, especially heat stress, will affect and impact the LEU loading operations. The purposes of the study are to determine the climatological impacts on LEU Loading operations, resources required for committed throughputs, and to find out the optimum process pathways for multi crews working simultaneously in the space-lim ited LEU Loading Station

  6. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient

  7. Ecological and biological systems under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, V S; Nenishkiene, V B

    1989-01-01

    The behaviour of biological and ecological systems under extreme conditions (high and low temperatures, electromagnetic fields of different frequencies, ultraviolet. X-ray and gamma radiation) is analyzed. The ecosystems of macro- and microalgae living in salt, brackinsh and fresh waters are considered in the evolutional aspect basing on their chemical and biochemical composition taking into account the mechanism of radionuclide uptake by water plant cells, osmotic regulation, water and ice structures, combined water in a living organism. The problems of life-support in cosmic flights and of mastering the planets of the Solar system, for instance Mars and Venus, utilizing some microalgae and bacteria with high adaptive properties are discussed. Abnormal water points and their role in the metabolism of a water plant cell are estimated. The 'life niches' are determined at the temperatures exceeding 100 deg C and the possibility of existence for living organisms in high pressure and temperature is grounded. Attempts are made to change the metabolism of the plant and animal cell by subjecting it to the action of electromagnetic and thermal fields, heavy water, chemical and pharmocological substances changing the structure of bound water. 333 refs.; 79 tabs.

  8. Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    extrapolation are presented. The first method is based on the same assumptions as the existing method but the statistical extrapolation is only performed for a limited number of mean wind speeds where the extreme load is likely to occur. For the second method the mean wind speeds are divided into storms which......The characteristic loads on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. These parameters must be taken into account in the assessment of the characteristic load. The characteristic load...... are assumed independent and the characteristic loads are determined from the extreme load in each storm....

  9. Drug Loading of Mesoporous Silicon

    Science.gov (United States)

    Moffitt, Anne; Coffer, Jeff; Wang, Mengjia

    2011-03-01

    The nanostructuring of crystalline solids with low aqueous solubilities by their incorporation into mesoporous host materials is one route to improve the bioavailability of such solids. Earlier studies suggest that mesoporous Si (PSi), with pore widths in the range of 5-50 nm, is a candidate for such an approach. In this presentation, we describe efforts to load curcumin into free-standing microparticles of PSi. Curcumin is a compound extracted from turmeric root, which is an ingredient of curry. Curucmin has shown activity against selected cancer cell lines, bacteria, and other medical conditions. However, curcumin has a very low bioavailability due to its extremely low water solubility (0.6 μ g/mL). Incorporation of curcumin was achieved by straightforward loading of the molten solid at 185circ; C. Loading experiments were performed using PSi particles of two different size ranges, 45-75 μ m and 150-250 μ m. Longer loading times and ratio of curcumin to PSi leads to a higher percentage of loaded curcumin in both PSi particle sizes (as determined by weight difference). The extent of curcumin crystallinity was assessed by x-ray diffraction (XRD). The solubility and release kinetics of loaded curcumin from the PSi was determined by extraction into water at 37circ; C, with analysis using UV-VIS spectrometry. NSF-REU and TCU.

  10. Numerical simulation of the shot peening process under previous loading conditions

    International Nuclear Information System (INIS)

    Romero-Ángeles, B; Urriolagoitia-Sosa, G; Torres-San Miguel, C R; Molina-Ballinas, A; Benítez-García, H A; Vargas-Bustos, J A; Urriolagoitia-Calderón, G

    2015-01-01

    This research presents a numerical simulation of the shot peening process and determines the residual stress field induced into a component with a previous loading history. The importance of this analysis is based on the fact that mechanical elements under shot peening are also subjected to manufacturing processes, which convert raw material into finished product. However, material is not provided in a virgin state, it has a previous loading history caused by the manner it is fabricated. This condition could alter some beneficial aspects of the residual stress induced by shot peening and could accelerate the crack nucleation and propagation progression. Studies were performed in beams subjected to strain hardening in tension (5ε y ) before shot peening was applied. Latter results were then compared in a numerical assessment of an induced residual stress field by shot peening carried out in a component (beam) without any previous loading history. In this paper, it is clearly shown the detrimental or beneficial effect that previous loading history can bring to the mechanical component and how it can be controlled to improve the mechanical behavior of the material

  11. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  12. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    Science.gov (United States)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen

  13. Numerical modelling of closed-cell aluminium foam under dynamic loading

    Science.gov (United States)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  14. Multiaxial creep of tubes from Incoloy 800 H and Inconel 617 under static and cyclic loading conditions

    International Nuclear Information System (INIS)

    Penkalla, H.J.; Nickel, H.; Schubert, F.

    1989-01-01

    At temperatures above 800 0 C the material behaviour under mechanical load is determined by creep. The service of heat exchanging components leads to multiaxial loading conditions. For design and inelastic analysis of the component behaviour time dependent design values and suitable constitutive equations are necessary. The present report gives a survey of the approaches to describing creep under multiaxial loading. Norton's law and v. Mises' theory are applied. The load combinations of internal pressure, tensile and torsional stress are studied more closely, cyclic stress superposition in the tensile-pulsating range is discussed and cases of partial relaxation are examined. Experimental results are presented for the loading conditions discussed, and satisfactory agreement between theory and experiment has been found up to now for these results. Regarding lifetime determination under multiaxial creep load, a more precise analysis of creep damage is presented suggesting a suitable deviatoric stress for evaluation in the long-time range. (orig.)

  15. Wear Behavior of Uncoated and Coated Tools under Complex Loading Conditions

    Directory of Open Access Journals (Sweden)

    M. Wieland

    2012-03-01

    Full Text Available In automotive industry crash relevant structures of the body in white are manufactured using the direct hot stamping process. Due to the high temperature difference between the hot blank and the cold tool surfaces and the relative movement between the blank and the tool surfaces during the forming operation, high thermal and mechanical loads are applied on the tool leading to excessive wear in terms of adhesion on the tool surfaces. One possibility to reduce wear of hot stamping tools is the application of tool coating systems. In the scope of this work uncoated and coated tools are characterized under complex loading conditions with respect to adhesive layer build-up.

  16. Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions

    International Nuclear Information System (INIS)

    Ayatollahi, M.R.; Shadlou, S.; Shokrieh, M.M.

    2011-01-01

    Research highlights: → Mode I and mode II fracture tests were conducted on epoxy/MWCNT nano-composites. → Addition of MWCNT to epoxy increased both K Ic and K IIc of nano-composites. → The improvement in K IIc was more pronounced than in K Ic . → Mode I and mode II fracture surfaces were studied by scanning electron microscopy. -- Abstract: The effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy/MWCNT nano-composites were studied with emphasis on fracture toughness under bending and shear loading conditions. Several finite element (FE) analyses were performed to determine appropriate shear loading boundary conditions for a single-edge notch bend specimen (SENB) and an equation was derived for calculating the shear loading fracture toughness from the fracture load. It was seen that the increase in fracture toughness of nano-composite depends on the type of loading. That is to say, the presence of MWCNTs had a greater effect on fracture toughness of nano-composites under shear loading compared with normal loading. To study the fracture mechanisms, several scanning electron microscopy (SEM) pictures were taken from the fracture surfaces. A correlation was found between the characteristics of fracture surface and the mechanical behaviors observed in the fracture tests.

  17. Connection and disconnection transients for micro-grids under unbalance load condition

    DEFF Research Database (Denmark)

    Rocabert, J.; Azevedo, Gustavo M.S.; Candela, I.

    2011-01-01

    in connection and disconnection transients. This paper focuses on the design of a method oriented to carry out a stable intentional disconnection, and later re-connection, of local grids from the main distribution grid in an intentional way; also under unbalance load condition. Seamless transfer between grid-connected......The recent grid integration of Distributed Energy Resources (DER) possibility the formation of intentional islands in the case of a grid fault conditions. For such island formation is required an active agent capable of governing the micro-grid connection state in a safe mode, especially...

  18. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  19. Establishment and performance of an experimental green roof under extreme climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M., E-mail: pkklein@ou.edu [School of Meteorology, University of Oklahoma, Norman, OK (United States); Coffman, Reid, E-mail: rcoffma4@kent.edu [College of Architecture and Environmental Design, Kent State University, Kent, OH (United States)

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  20. Establishment and performance of an experimental green roof under extreme climatic conditions

    International Nuclear Information System (INIS)

    Klein, Petra M.; Coffman, Reid

    2015-01-01

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  1. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    DEFF Research Database (Denmark)

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translatio...... of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions....

  2. A new simulation method for turbines in wake - Applied to extreme response during operation

    DEFF Research Database (Denmark)

    Thomsen, K.; Aagaard Madsen, H.

    2005-01-01

    The work focuses on prediction of load response for wind turbines operating in wind forms using a newly developed aeroelostic simulation method The traditionally used concept is to adjust the free flow turbulence intensity to account for increased loads in wind farms-a methodology that might......, the resulting extremes might be erroneous. For blade loads the traditionally used simplified approach works better than for integrated rotor loads-where the instantaneous load gradient across the rotor disc is causing the extreme loads. In the article the new wake simulation approach is illustrated...

  3. Studies in the statistical and thermal properties of hadronic matter under some extreme conditions

    International Nuclear Information System (INIS)

    Chase, K.C.; Mekjian, A.Z.; Bhattacharyya, P.

    1997-01-01

    The thermal and statistical properties of hadronic matter under some extreme conditions are investigated using an exactly solvable canonical ensemble model. A unified model describing both the fragmentation of nuclei and the thermal properties of hadronic matter is developed. Simple expressions are obtained for quantities such as the hadronic equation of state, specific heat, compressibility, entropy, and excitation energy as a function of temperature and density. These expressions encompass the fermionic aspect of nucleons, such as degeneracy pressure and Fermi energy at low temperatures and the ideal gas laws at high temperatures and low density. Expressions are developed which connect these two extremes with behavior that resembles an ideal Bose gas with its associated Bose condensation. In the thermodynamic limit, an infinite cluster exists below a certain critical condition in a manner similar to the sudden appearance of the infinite cluster in percolation theory. The importance of multiplicity fluctuations is discussed and some recent data from the EOS collaboration on critical point behavior of nuclei can be accounted for using simple expressions obtained from the model. copyright 1997 The American Physical Society

  4. Matter Under Extreme Conditions: The Early Years

    Science.gov (United States)

    Keeler, R. Norris; Gibson, Carl H.

    2012-03-01

    Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent ki- netic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >1025 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when infla- tion ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak tur- bulence until the plasma-gas transition give chains of protogalaxies with the morphology of tur- bulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Pro- togalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmologi- cal event.

  5. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Directory of Open Access Journals (Sweden)

    R. García-Herrera

    2005-02-01

    Full Text Available This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal and Madrid (Spain. Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid. The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP, 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air

  6. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Directory of Open Access Journals (Sweden)

    R. García-Herrera

    2005-02-01

    Full Text Available This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal and Madrid (Spain. Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid. The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value.

    The analysis of Sea Level Pressure (SLP, 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly

  7. Experimental evidence of inter-blade cavitation vortex development in Francis turbines at deep part load condition

    Science.gov (United States)

    Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.

    2017-10-01

    Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical

  8. Estimation of the mechanical loading of the shoulder joint in daily conditions

    NARCIS (Netherlands)

    De Vries, W.H.K.

    2015-01-01

    The goal of this thesis is to assemble a method to estimate shoulder joint reaction forces, in daily conditions, based on long term collection of ambulatory measurable variables, to obtain the desired long term mechanical load profile of the shoulder. Chapter 2 examines, and discusses one of the

  9. Hard-on-hard lubrication in the artificial hip under dynamic loading conditions.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available The tribological performance of an artificial hip joint has a particularly strong influence on its success. The principle causes for failure are adverse short- and long-term reactions to wear debris and high frictional torque in the case of poor lubrication that may cause loosening of the implant. Therefore, using experimental and theoretical approaches models have been developed to evaluate lubrication under standardized conditions. A steady-state numerical model has been extended with dynamic experimental data for hard-on-hard bearings used in total hip replacements to verify the tribological relevance of the ISO 14242-1 gait cycle in comparison to experimental data from the Orthoload database and instrumented gait analysis for three additional loading conditions: normal walking, climbing stairs and descending stairs. Ceramic-on-ceramic bearing partners show superior lubrication potential compared to hard-on-hard bearings that work with at least one articulating metal component. Lubrication regimes during the investigated activities are shown to strongly depend on the kinematics and loading conditions. The outcome from the ISO gait is not fully confirmed by the normal walking data and more challenging conditions show evidence of inferior lubrication. These findings may help to explain the differences between the in vitro predictions using the ISO gait cycle and the clinical outcome of some hard-on-hard bearings, e.g., using metal-on-metal.

  10. 76 FR 10213 - Special Conditions: Embraer Model EMB-135BJ (Legacy 650) Airplanes, Limit Engine Torque Loads for...

    Science.gov (United States)

    2011-02-24

    ... Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... torque load imposed by sudden engine-stoppage conditions. The applicable airworthiness regulations do not... incorporate novel or unusual design features involving engine size and the potential torque load imposed by...

  11. Numerical simulation of floating bodies in extreme free surface waves

    Directory of Open Access Journals (Sweden)

    Z. Z. Hu

    2011-02-01

    Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.

  12. Proceedings of the first symposium on science of hadrons under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi; Maruyama, Toshiki [eds.

    1999-08-01

    The first symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on March 11 and 12, 1999. The symposium was devoted for discussions and presentations of research results in wide variety of fields such as observation of X-ray pulsars, theoretical studies of nuclear matter, nuclear structure, low- and high-energy nuclear reactions and QCD. Thirty seven papers on these topics presented at the symposium are indexed individually. (J.P.N.)

  13. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    Science.gov (United States)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  14. Influence of Extreme Storage Conditions on Extra Virgin Olive Oil Parameters: Traceability Study

    Directory of Open Access Journals (Sweden)

    Alfredo Escudero

    2016-01-01

    Full Text Available This study reflects the effect of extreme storage conditions on several extra virgin olive oil (EVOO varieties (arbequina, hojiblanca, and picual. The conditions were simulated in the laboratory, by means of heating treatments in stove at different temperatures (40 and 60°C and times (two and three weeks. The aim is the evaluation of the deterioration of the quality parameters and minority components, which are responsible for the nutritional and therapeutic properties (fatty acids, polyphenols, pigments, and tocopherols, and organoleptic qualities. The quality criteria and limits used in this work are according to International Olive Council. The results contribute to the control of the traSceability for the commercialization of the EVOO.

  15. Effect of initial conditions on combustion generated loads

    International Nuclear Information System (INIS)

    Tieszen, S.R.

    1993-01-01

    This analytical study examines the effect of initial thermodynamic conditions on the loads generated by the combustion of homogeneous hydrogen-air-steam mixtures. The effect of initial temperature, pressure, hydrogen concentration, and steam concentration is evaluated for two cases, (1) constant volume and (2) constant initial pressure. For each case, the Adiabatic, Isochoric, Complete Combustion (AICC), Chapman-Jouguet (CJ), and normally reflected CJ pressures are calculated for a range of hydrogen and steam concentrations representative of the entire flammable regime. For detonation loads, pressure profiles and time-histories are also evaluated in one-dimensional Cartesian geometry. The results show that to a first approximation, the AICC and CJ pressures are directly proportional to the initial density. Increasing the hydrogen concentration up to stoichiometric concentrations significantly increases the AICC, CJ, and reflected CJ pressures. For the constant volume case, the AICC, CJ, and reflected CJ pressures increase with increasing hydrogen concentration on the rich side of stoichiometric concentrations. For the constant initial pressure case, the AICC, CJ, and reflected CJ pressures decrease with increasing hydrogen concentration on the rich side of stoichiometric values. The addition of steam decreases the AICC, CJ, and reflected CJ pressures for the constant initial pressure case, but increases them for the constant volume case. For detonations, the pressure time-histories can be normalized with the AICC pressure and the reverberation time for Cartesion geometry. (orig.)

  16. Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.

    Science.gov (United States)

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-09-01

    The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Evaluation of resilient abutment components on measured strain using dynamic loading conditions.

    Science.gov (United States)

    Morton, D; Stanford, C M; Aquilino, S A

    1998-07-01

    Complete abutments for the crosshead speed and ultimate loads evaluated. Results indicate the cadaver bone behaved in an elastic manner within the load range evaluated, and as such represents a viable in vitro experimental model. Under these conditions, polyoxymethylene abutment components do not affect measurable bone strain in response to variable loading when compared with titanium.

  18. Exertional Rhabdomyolysis after an Extreme Conditioning Competition: A Case Report

    Directory of Open Access Journals (Sweden)

    Ramires Alsamir Tibana

    2018-04-01

    Full Text Available This case report describes an instance of exercise-induced rhabdomyolysis caused by an extreme conditioning program (ECP competition. A 35-year-old female presented with abdominal pain and soreness, which began one day after she completed two days of ECPcompetition composed of five workouts. Three days after competition, creatine kinase (CK was 77,590 U/L accompanied by myalgia and abnormal liver function tests, while renal function was normal and this resulted in a diagnosis of rhabdomyolysis. A follow-up examination revealed that her serum level of CK was still elevated to 3034 U/L on day 10 and 1257 U/L on day 25 following the ECP competition. The subject reported myalgia even up to 25 days after the ECP competition. Exertional rhabdomyolysis can be observed in ECP athletes following competition and highlights a dangerous condition, which may be increasing in recent years due to the massive expansion of ECP popularity and a growing number of competitions. Future research should investigate the causes of rhabdomyolysis that occur as a result of ECP, especially training methods and/or tasks developed specifically for these competitions.

  19. Loads in wind farms under non-neutral ABL stability conditions: A full-scale validation study of the DWM model

    DEFF Research Database (Denmark)

    The purpose of this study is twofold: To validate a generalized version of the DWM approach for load prediction under non-neural atmospheric stability conditions, and to demonstrate the importance of atmospheric stability for wind turbines operating in wind farm conditions.......The purpose of this study is twofold: To validate a generalized version of the DWM approach for load prediction under non-neural atmospheric stability conditions, and to demonstrate the importance of atmospheric stability for wind turbines operating in wind farm conditions....

  20. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  1. Extreme hydrothermal conditions at an active plate-bounding fault

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  2. Extreme hydrothermal conditions at an active plate-bounding fault.

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  3. Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads

    Science.gov (United States)

    Parlos, Alexander G.; Toliyat, Hamid A.

    2005-01-01

    An end-of-life prediction system developed for electric machines and their loads could be used in integrated vehicle health monitoring at NASA and in other government agencies. This system will provide on-line, real-time condition assessment and end-of-life prediction of electric machines (e.g., motors, generators) and/or their loads of mechanically coupled machinery (e.g., pumps, fans, compressors, turbines, conveyor belts, magnetic levitation trains, and others). In long-duration space flight, the ability to predict the lifetime of machinery could spell the difference between mission success or failure. Therefore, the system described here may be of inestimable value to the U.S. space program. The system will provide continuous monitoring for on-line condition assessment and end-of-life prediction as opposed to the current off-line diagnoses.

  4. Simulation of the transient processes of load rejection under different accident conditions in a hydroelectric generating set

    Science.gov (United States)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Peng, Z. Y.; Zhang, Y.; Chen, C. C.

    2016-11-01

    Load rejection test is one of the essential tests that carried out before the hydroelectric generating set is put into operation formally. The test aims at inspecting the rationality of the design of the water diversion and power generation system of hydropower station, reliability of the equipment of generating set and the dynamic characteristics of hydroturbine governing system. Proceeding from different accident conditions of hydroelectric generating set, this paper presents the transient processes of load rejection corresponding to different accident conditions, and elaborates the characteristics of different types of load rejection. Then the numerical simulation method of different types of load rejection is established. An engineering project is calculated to verify the validity of the method. Finally, based on the numerical simulation results, the relationship among the different types of load rejection and their functions on the design of hydropower station and the operation of load rejection test are pointed out. The results indicate that: The load rejection caused by the accident within the hydroelectric generating set is realized by emergency distributing valve, and it is the basis of the optimization for the closing law of guide vane and the calculation of regulation and guarantee. The load rejection caused by the accident outside the hydroelectric generating set is realized by the governor. It is the most efficient measure to inspect the dynamic characteristics of hydro-turbine governing system, and its closure rate of guide vane set in the governor depends on the optimization result in the former type load rejection.

  5. Effects of the loading conditions on fracturing near the shot hole

    International Nuclear Information System (INIS)

    Nakamura, Yuichi; Tanishi, Hiroyuki; Maruta, Yuji; Nakashima, Yukitoshi; Inoue, Masayasu.

    1984-01-01

    As the blasting method controlling the energy emission of explosives, there is cushion blasting method, and recently, attention has been paid to it as the dismantling technique in the decommissioning of nuclear reactors. The objective of this method is to obtain smooth finished surfaces by reducing the damage of natural ground behind fracture surfaces, but it is expected that the state of breaking near a shot hole changes largely by the condition of loading explosives. In the cushion blasting method, it is intended to utilize the dynamic effect of stress waves in media and the static effect of explosion gas by the action of the gap provided around a charge, called decoupling effect. In this study, in order to visually grasp the behavior of stress waves near an explosion source and the progress of breaking, experiment was carried out with acrylic blocks, and the explosion phenomena were observed using a high speed camera, at the same time, the pressure history of the stress waves generated during the explosion was measured with piezo-electric gauges. Moreover, pressure measurement was carried out in the blasting of mortar blocks. The form of specimens and the loading condition, the measurement of the pressure history, the measuring system and the experimenal results are reported. (Kako, I.)

  6. Defense plan of Hydro-Quebec for extreme contingencies

    International Nuclear Information System (INIS)

    Trudel, Guilles; Bernard, Serge; Portales, Esteban

    2000-01-01

    In the last years, Hydro-Quebec it undertook an important program to improve the dependability of their net of energy transport. They concentrated the efforts on increasing the capacity of the net resist in the event of carries to an extreme contingency caused in general by multiple incidents or for successive disconnection of the lines of energy transport. To neutralize these contingencies, Hydro-Quebec it adopted a series of special measures that are contained under the general title of Plan of Defense for Extreme Contingencies. The objective of this plan is to detect the incidents that surpass the capacity of the net. It is completely automatic and it is based mainly in: A system of automatic disconnection of generation and tele-shot of loads; A system of automatic maneuver (opening and closing) of inductances shunt of 735 kw; A system of disconnection of loads for low voltage; A system of disconnection of loads for low frequency. The present document summarizes the orientations that there is taking Hydro-Quebec to protect its net in the event of extreme contingencies and it describes the different automatism that they are adopts, in particular the system automatic disconnection of generation and tele-shot of loads (RPTC) that is one of the main components of the defense plan. The system RPTC detects the simultaneous loss of several lines directly in 15 substations of 735 kw. It understands four places of automatic disconnection of generation and a centralized system of tele-shot of loads

  7. Experimental and theoretical study of electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Festa, Floriane

    2013-01-01

    Matter in extreme conditions belongs to Warm Dense Matter regime which lays between dense plasma regime and condensed matter. This regime is still not well known, indeed it is very complex to generate such plasma in the laboratory to get experimental data and validate models. The goal of this thesis is to study electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy. Experimentally aluminum has reached high densities and high temperatures, up to now unexplored. An X-ray source has also been generated to probe highly compressed aluminum. Two spectrometers have recorded aluminum absorption spectra and aluminum density and temperature conditions have been deduced thanks to optical diagnostics. Experimental spectra have been compared to ab initio spectra, calculated in the same conditions. The theoretical goal was to validate the calculation method in high densities and high temperatures regime with the study of K-edge absorption modifications. We also used absorption spectra to study the metal-non metal transition which takes place at low density (density ≤ solid density). This transition could be study with electronic structure modifications of the system. (author) [fr

  8. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy-dispersive...

  9. Heavy fermions and extreme conditions

    International Nuclear Information System (INIS)

    Cheikine, Ilia

    2000-01-01

    Three heavy electron systems, CeCu 2 Si 2 , CePd 2 Si 2 and UGe 2 , were investigated by transport, quantum oscillations (CePd 2 Si 2 ) and neutron diffraction (UGe 2 ) measurements. The experiments were performed under extreme conditions of very low temperature, high magnetic field and hydrostatic pressure. In the case of CeCu 2 Si 2 , we followed the evolution of the magnetic A-phase that is found to collapse rapidly under pressure. We found evidence for a relation between the A-phase and the presence of a maximum in the temperature dependence of H c2 . Our analysis showed that at low pressure, the sign of the exchange integral should be negative, thus superconductivity is enhanced by an increase in the paramagnetic susceptibility as in the Jaccarino-Peter effect. The anisotropy of the initial slope of H c2 and therefore that of the effective mass was found to change under pressure. For CePd 2 Si 2 , both the de Haas-van Alphen effect at ambient pressure and the electrical resistivity under pressure were studied. The latter reveals a non-Fermi liquid behavior in the vicinity of the antiferromagnetic quantum critical point, P c ∼ kbar. The analysis of H c2 at P c shows that the superconducting state is well described by a weak coupling, clean limit model with a slightly anisotropic orbital limit and a strongly anisotropic paramagnetic one. UGe 2 is shown to demonstrate the coexistence of ferromagnetism and superconductivity that develops just below the ferromagnetic quantum critical point, P c ∼16 kbar. The measurements of the resistivity under pressure point to a possible existence of another phase boundary and thus another quantum critical point, P x ∼ 12 kbar, within the ferromagnetic state. The P-T phase diagram containing both P c and P x was sketched, and a possible relation between P x and the development of superconductivity was discussed. The temperature dependence of H c2 demonstrates a variety of novel behaviors, which cannot be understood within

  10. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    Science.gov (United States)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  11. Load Dependency of Postural Control--Kinematic and Neuromuscular Changes in Response to over and under Load Conditions.

    Science.gov (United States)

    Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert

    2015-01-01

    Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Balance performance was recorded under normal loading (NL, 1 g), UL (0.16 g 0.38 g) and OL (1.8 g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5 Hz (LF), medium 0.5-2 Hz (MF), high 2-6 Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of

  12. Load Dependency of Postural Control - Kinematic and Neuromuscular Changes in Response to over and under Load Conditions

    Science.gov (United States)

    Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert

    2015-01-01

    Introduction Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Methods Balance performance was recorded under normal loading (NL, 1g), UL (0.16g; 0.38g) and OL (1.8g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5Hz (LF), medium 0.5-2Hz (MF), high 2-6Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Results Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Conclusion Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal

  13. Load Dependency of Postural Control--Kinematic and Neuromuscular Changes in Response to over and under Load Conditions.

    Directory of Open Access Journals (Sweden)

    Ramona Ritzmann

    Full Text Available Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL and under loading (UL used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms.Balance performance was recorded under normal loading (NL, 1 g, UL (0.16 g 0.38 g and OL (1.8 g in monopedal stance. Center of pressure (COP displacement and frequency distribution (low 0.15-0.5 Hz (LF, medium 0.5-2 Hz (MF, high 2-6 Hz (HF as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios.Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL.Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of

  14. A joint analysis of wave and surge conditions for past and present extrem events in the south-western Baltic Sea

    Science.gov (United States)

    Groll, Nikolaus; Gaslikova, Lidia

    2017-04-01

    Extreme marine events in the south-western Baltic Sea like the historic storm in 1872 are rare, but have large impacts on human safety and coastal infrastructure. The aforementioned extreme storm event of 1872 and has cost over 250 human lives, left severely damaged infrastructure and caused land loss due to coastal erosion. Recent extreme events also result in drastic impacts to coastal regions. Using results from numerical wave and hydrodynamic model simulations we will present a joint analysis of wave and water level conditions for selected extreme events. For the historic event the numerical models have been forced by reconstructed wind and pressure fields from pressure readings. Simulated atmospheric conditions from reanalysis have been used for the more recent events. The height of the water level due to the possible previous inflow of water masses in the Baltic Sea basin, as well as possible seiches and swell effects have been incorporated in the simulations. We will discuss similarities and differences between the historic and the more recent marine hazard events.

  15. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    International Nuclear Information System (INIS)

    Facheris, G.

    2014-01-01

    is induced with respect to the equivalent uniaxial LCF test. An additional hardening is also noticed in multiaxial tests, when a non-proportional loading history is imposed. The experimental results show that this additional hardening is accompanied by a lifetime reduction. Further experiments are carried out to investigate the loading-rate influence on the mechanical response of the 316L under strain- and stress-control and to determine the necessity to implement a time-dependent constitutive model. A set of interrupted tests has been also performed to retrieve samples suitable for the characterization of the microstructural evolution of 316L subjected to ratcheting conditions. The microstructural characterization has been carried out by means of a Transmission Electron Microscope (TEM) in a collaboration with the High Temperature Integrity Group at the Swiss Federal Laboratories for Material Science and Technology (EMPA, Duebendorf, Switzerland). The experimental observations reported in the first part of the current dissertation inspired the formulation of a novel constitutive law consisting in a modification of the well known Chaboche model. In this formulation named '5DChabEP', the model's parameters are not constant but are allowed to vary as a function of 5 internal variables. The proposed constitutive model is implemented in the commercial Finite Element code ABAQUS and an automatized procedure is developed to calibrate the material parameters. The descriptive and predictive capabilities of the constitutive model, coupled with an advanced multiaxial damage criterion, are evaluated under several loading conditions using, as references, experimental data and simulations performed by means of the original Chaboche formulation. In general, the possibility to vary the material parameters as a function of a set of internal variables is found to be an extremely efficient approach to provide accurate stress calculations and lifetime predictions enhancing

  16. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G.

    2014-07-01

    is induced with respect to the equivalent uniaxial LCF test. An additional hardening is also noticed in multiaxial tests, when a non-proportional loading history is imposed. The experimental results show that this additional hardening is accompanied by a lifetime reduction. Further experiments are carried out to investigate the loading-rate influence on the mechanical response of the 316L under strain- and stress-control and to determine the necessity to implement a time-dependent constitutive model. A set of interrupted tests has been also performed to retrieve samples suitable for the characterization of the microstructural evolution of 316L subjected to ratcheting conditions. The microstructural characterization has been carried out by means of a Transmission Electron Microscope (TEM) in a collaboration with the High Temperature Integrity Group at the Swiss Federal Laboratories for Material Science and Technology (EMPA, Duebendorf, Switzerland). The experimental observations reported in the first part of the current dissertation inspired the formulation of a novel constitutive law consisting in a modification of the well known Chaboche model. In this formulation named '5DChabEP', the model's parameters are not constant but are allowed to vary as a function of 5 internal variables. The proposed constitutive model is implemented in the commercial Finite Element code ABAQUS and an automatized procedure is developed to calibrate the material parameters. The descriptive and predictive capabilities of the constitutive model, coupled with an advanced multiaxial damage criterion, are evaluated under several loading conditions using, as references, experimental data and simulations performed by means of the original Chaboche formulation. In general, the possibility to vary the material parameters as a function of a set of internal variables is found to be an extremely efficient approach to provide accurate stress calculations and lifetime predictions

  17. Russian standards and design practice of ensuring NPP reliability under severe external loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Birbraer, A N [St. Petersburg Research and Design Institute Atomenergoproject, St. Petersburt (Russian Federation)

    1993-07-01

    Russian Standards and design practice of ensuring NPP reliability under severe external loading conditions are described. The main attention is paid to the seismic design requirements. Explosions, aircraft impact, and tornado are briefly examined too (author)

  18. Russian standards and design practice of ensuring NPP reliability under severe external loading conditions

    International Nuclear Information System (INIS)

    Birbraer, A.N.

    1993-01-01

    Russian Standards and design practice of ensuring NPP reliability under severe external loading conditions are described. The main attention is paid to the seismic design requirements. Explosions, aircraft impact, and tornado are briefly examined too (author)

  19. Loads on small muscle groups as a risk of hypertensive conditions

    Directory of Open Access Journals (Sweden)

    Olga G. Kourova

    2017-12-01

    Full Text Available Background ― Hypertension is a widespread condition nowadays. Changes in physical activity patterns of the population, namely, sedentary lifestyle and increased loads on small muscle groups, are the key factors behind the development of hypertension. Although science has amassed sufficient amounts of facts about a hypertensive effect of local loads, the very mechanisms underlying adaptive reactions of the circulatory system have not received comprehensive study. Material and Methods ― We studied adaptive reactions to local muscle work in 108 adult subjects groups aged between 18 and 20, 30 and 35, and 60 and 74 respectively by means of a Mosso’s ergograph until the onset of fatigue with all the three age groups receiving medium loads. We have analyzed their work performance, including static and dynamic stamina. We took blood pressure measurements, electrocardiograms (ECGs and electroencephalograms (EEGs before and after the test. Results ― We discovered increased heartbeat rates, systolic blood pressure, and diastolic blood pressure in all of the subjects, as they were doing local load tests, while their ECGs showed shortened electric diastole time, which was indicative of heart functional tension, especially in the subjects aged between 18 and, and 60 and 74. Adverse heart reactions were more pronounced while the subjects were doing static tests rather than dynamic tests, and their EEGs showed increased slow-wave activity within alpha- and theta-ranges, with regularly recurrent alpha wave synchronizations. Conclusion ― Our research shows that central mechanisms underlie hypertensive reactions of the cardiovascular system to local loads with the participation of metabolic receptors of muscles. We have also justified the necessity of preventive campaigns against hypertensions in individuals receiving increased amounts of local muscle work in the motor mode.

  20. Active-sensing based damage monitoring of airplane wings under low-temperature and continuous loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun Young; Jung, Hwee Kwon; Park, Gyu Hae [Dept. of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Ha, Jae Seok; Park, Chan Yik [7th R and D Institute, Agency for Denfense Development, Yuseong (Korea, Republic of)

    2016-10-15

    As aircrafts are being operated at high altitude, wing structures experience various fatigue loadings under cryogenic environments. As a result, fatigue damage such as a crack could be develop that could eventually lead to a catastrophic failure. For this reason, fatigue damage monitoring is an important process to ensure efficient maintenance and safety of structures. To implement damage detection in real-world flight environments, a special cooling chamber was built. Inside the chamber, the temperature was maintained at the cryogenic temperature, and harmonic fatigue loading was given to a wing structure. In this study, piezoelectric active-sensing based guided waves were used to detect the fatigue damage. In particular, a beam forming technique was applied to efficiently measure the scattering wave caused by the fatigue damage. The system was used for detection, growth monitoring, and localization of a fatigue crack. In addition, a sensor diagnostic process was also applied to ensure the proper operation of piezoelectric sensors. Several experiments were implemented and the results of the experiments demonstrated that this process could efficiently detect damage in such an extreme environment.

  1. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  2. Quantitative evaluation of the mitochondrial proteomes of Drosophila melanogaster adapted to extreme oxygen conditions.

    Directory of Open Access Journals (Sweden)

    Songyue Yin

    Full Text Available Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively, examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ. A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.

  3. State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal.

    Science.gov (United States)

    Li, Haijiang; Tian, Pengyi; Lu, Hongyu; Jia, Wenpeng; Du, Haodong; Zhang, Xiangjun; Li, Qunyang; Tian, Yu

    2017-02-15

    Sliding between two objects under very high load generally involves direct solid-solid contact at molecular/atomic level, the mechanism of which is far from clearly disclosed yet. Those microscopic solid-solid contacts could easily lead to local melting of rough surfaces. At extreme conditions, this local melting could propagate to the seizure and welding of the entire interface. Traditionally, the microscopic solid-solid contact is alleviated by various lubricants and additives based on their improved mechanical properties. In this work, we realized the state-of-the-art of extreme pressure lubrication by utilizing the high thermal diffusivity of liquid metal, 2 orders of magnitude higher than general organic lubricants. The extreme pressure lubrication property of gallium based liquid metal (GBLM) was compared with gear oil and poly-α-olefin in a four-ball test. The liquid metal lubricates very well at an extremely high load (10 kN, the maximum capability of a four-ball tester) at a rotation speed of 1800 rpm for a duration of several minutes, much better than traditional organic lubricants which typically break down within seconds at a load of a few kN. Our comparative experiments and analysis showed that this superextreme pressure lubrication capability of GBLM was attributed to the synergetic effect of the ultrafast heat dissipation of GBLM and the low friction coefficient of FeGa 3 tribo-film. The present work demonstrated a novel way of improving lubrication capability by enhancing the lubricant thermal properties, which might lead to mechanical systems with much higher reliability.

  4. On the Performance of Carbon Nanotubes in Extreme Conditions and in the Presence of Microwaves

    Science.gov (United States)

    2013-01-01

    been considered for use as transparent conductors include: transparent conducting oxides (TCOs), intrinsically conducting polymers (ICPs), graphene ...optical transmission properties, but are extremely sensitive to environmental conditions (such as temperature and humidity). Graphene has recently...during the dicing procedure, silver paint was applied to the sample to serve as improvised contact/probe-landing points. Figure 1 shows the CNT thin

  5. The Extreme Male Brain Theory and Gender Role Behaviour in Persons with an Autism Spectrum Condition

    Science.gov (United States)

    Stauder, J. E. A.; Cornet, L. J. M.; Ponds, R. W. H. M.

    2011-01-01

    According to the Extreme Male Brain theory persons with autism possess masculinised cognitive traits. In this study masculinisation of gender role behaviour is evaluated in 25 persons with an autism spectrum condition (ASC) and matched controls with gender role behaviour as part of a shortened version of the Minnesota Multiphasic Personality…

  6. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    Science.gov (United States)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  7. Sensitivity studies of a PCV under earthquake loading conditions

    International Nuclear Information System (INIS)

    Maraslioglu, B.; Shamshiri, I.

    1987-01-01

    The results point out the special sensitivity of the modeling and the time history method analyses. Due to the lack of more precise general statements in literature and regulations which should help to find an otpimal design, the analyst is challenged to make much efforts in finding realistic, conservative, not overestimated results. For the purpose of more precise data due to the temporal combination in time history method he has to abandon the security supplied by enveloped, smoothed and broadened spectra in response spectrum method analysis (RSMA). It is therefore advisable to prefer RSMA or to perform several calculations with variations of frequency, ground shear modulus and earthquake loading condition. (orig./HP)

  8. Performance of PICS bags under extreme conditions in the sahel zone of Niger.

    Science.gov (United States)

    Baoua, Ibrahim B; Bakoye, Ousmane; Amadou, Laouali; Murdock, Larry L; Baributsa, Dieudonne

    2018-03-01

    Experiments in Niger assessed whether extreme environmental conditions including sunlight exposure affect the performance of triple-layer PICS bags in protecting cowpea grain against bruchids. Sets of PICS bags and woven polypropylene bags as controls containing 50 kg of naturally infested cowpea grain were held in the laboratory or outside with sun exposure for four and one-half months. PICS bags held either inside or outside exhibited no significant increase in insect damage and no loss in weight after 4.5 months of storage compared to the initial values. By contrast, woven bags stored inside or outside side by side with PICS bags showed several-fold increases in insects present in or on the grain and significant losses in grain weight. Grain stored inside in PICS bags showed no reduction in germination versus the initial value but there was a small but significant drop in germination of grain in PICS bags held outside (7.6%). Germination rates dropped substantially more in grain stored in woven bags inside (16.1%) and still more in woven bags stored outside (60%). PICS bags held inside and outside retained their ability to maintain internal reduced levels of oxygen and elevated levels of carbon dioxide. Exposure to extreme environmental conditions degraded the external polypropylene outer layer of the PICS triple-layer bag. Even so, the internal layers of polyethylene were more slowly degraded. The effects of exposure to sunlight, temperature and humidity variation within the sealed bags are described.

  9. Cognitive load and task condition in event- and time-based prospective memory: an experimental investigation.

    Science.gov (United States)

    Khan, Azizuddin; Sharma, Narendra K; Dixit, Shikha

    2008-09-01

    Prospective memory is memory for the realization of delayed intention. Researchers distinguish 2 kinds of prospective memory: event- and time-based (G. O. Einstein & M. A. McDaniel, 1990). Taking that distinction into account, the present authors explored participants' comparative performance under event- and time-based tasks. In an experimental study of 80 participants, the authors investigated the roles of cognitive load and task condition in prospective memory. Cognitive load (low vs. high) and task condition (event- vs. time-based task) were the independent variables. Accuracy in prospective memory was the dependent variable. Results showed significant differential effects under event- and time-based tasks. However, the effect of cognitive load was more detrimental in time-based prospective memory. Results also revealed that time monitoring is critical in successful performance of time estimation and so in time-based prospective memory. Similarly, participants' better performance on the event-based prospective memory task showed that they acted on the basis of environment cues. Event-based prospective memory was environmentally cued; time-based prospective memory required self-initiation.

  10. A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kalogeri, Christina; Galanis, George

    2015-01-01

    and post-process outputs from a high resolution numerical wave modeling system for extreme wave estimation based on the significant wave height. This approach is demonstrated through the data analysis at a relatively deep water site, FINO 1, as well as a relatively shallow water area, coastal site Horns...... as a characteristic index of extreme wave conditions. The results from the proposed methodology seem to be in a good agreement with the measurements at both the relatively deep, open water and the shallow, coastal water sites, providing a potentially useful tool for offshore renewable energy applications. © 2015...... Rev, which is located in the North Sea, west of Denmark. The post-processing targets at correcting the modeled time series of the significant wave height, in order to match the statistics of the corresponding measurements, including not only the conventional parameters such as the mean and standard...

  11. Allostasis and allostatic load: implications for neuropsychopharmacology.

    Science.gov (United States)

    McEwen, B S

    2000-02-01

    The primary hormonal mediators of the stress response, glucocorticoids and catecholamines, have both protective and damaging effects on the body. In the short run, they are essential for adaptation, maintenance of homeostasis, and survival (allostasis). Yet, over longer time intervals, they exact a cost (allostatic load) that can accelerate disease processes. The concepts of allostasis and allostatic load center around the brain as interpreter and responder to environmental challenges and as a target of those challenges. In anxiety disorders, depressive illness, hostile and aggressive states, substance abuse, and post-traumatic stress disorder (PTSD), allostatic load takes the form of chemical imbalances as well as perturbations in the diurnal rhythm, and, in some cases, atrophy of brain structures. In addition, growing evidence indicates that depressive illness and hostility are both associated with cardiovascular disease (CVD) and other systemic disorders. A major risk factor for these conditions is early childhood experiences of abuse and neglect that increase allostatic load later in life and lead individuals into social isolation, hostility, depression, and conditions like extreme obesity and CVD. Animal models support the notion of lifelong influences of early experience on stress hormone reactivity. Whereas, depression and childhood abuse and neglect tend to be more prevalent in individuals at the lower end of the socioeconomic ladder, cardiovascular and other diseases follow a gradient across the full range of socioeconomic status (SES). An SES gradient is also evident for measures of allostatic load. Wide-ranging SES gradients have also been described for substance abuse and affective and anxiety disorders as a function of education. These aspects are discussed as important, emerging public health issues where the brain plays a key role.

  12. Training mode's influences on the relationships between training-load models during basketball conditioning.

    Science.gov (United States)

    Scanlan, Aaron T; Wen, Neal; Tucker, Patrick S; Borges, Nattai R; Dalbo, Vincent J

    2014-09-01

    To compare perceptual and physiological training-load responses during various basketball training modes. Eight semiprofessional male basketball players (age 26.3 ± 6.7 y, height 188.1 ± 6.2 cm, body mass 92.0 ± 13.8 kg) were monitored across a 10-wk period in the preparatory phase of their training plan. Player session ratings of perceived exertion (sRPE) and heart-rate (HR) responses were gathered across base, specific, and tactical/game-play training modes. Pearson correlations were used to determine the relationships between the sRPE model and 2 HR-based models: the training impulse (TRIMP) and summated HR zones (SHRZ). One-way ANOVAs were used to compare training loads between training modes for each model. Stronger relationships between perceptual and physiological models were evident during base (sRPE-TRIMP r = .53, P training load than the TRIMP (15-65 AU) and SHRZ models (27-170 AU) transitioning between training modes. While the training-load models were significantly correlated during each training mode, weaker relationships were observed during specific conditioning. Comparisons suggest that the HR-based models were less effective in detecting periodized increases in training load, particularly during court-based, intermittent, multidirectional drills. The practical benefits and sensitivity of the sRPE model support its use across different basketball training modes.

  13. Framing Failures in Wood-Frame Hip Roofs under Extreme Wind Loads

    Directory of Open Access Journals (Sweden)

    Sarah A. Stevenson

    2018-02-01

    Full Text Available Wood-frame residential roof failures are among the most common and expensive types of wind damage. Hip roofs are commonly understood to be more resilient during extreme wind in relation to gable roofs. However, inspection of damage survey data from recent tornadoes has revealed a previously unstudied failure mode in which hip roofs suffer partial failure of the framing structure. In the current study, evidence of partial framing failures and statistics of their occurrence are explored and discussed, while the common roof design and construction practice are reviewed. Two-dimensional finite element models are developed to estimate the element-level load effects on hip roof trusses and stick-frame components. The likelihood of failure in each member is defined based on relative demand-to-capacity ratios. Trussed and stick-frame structures are compared to assess the relative performance of the two types of construction. The present analyses verify the common understanding that toenailed roof-to-wall connections are likely to be the most vulnerable elements in the structure of a wood-frame hip roof. However, the results also indicate that certain framing members and connections display significant vulnerability under the same wind uplift, and the possibility of framing failure is not to be discounted. Furthermore, in the case where the roof-to-wall connection uses hurricane straps, certain framing members and joints become the likely points of failure initiation. The analysis results and damage survey observations are used to expand the understanding of wood-frame residential roof failures, as they relate to the Enhanced Fujita Scale and provide assessment of potential gaps in residential design codes.

  14. STUDIES OF ACOUSTIC EMISSION SIGNATURES FOR QUALITY ASSURANCE OF SS 316L WELDED SAMPLES UNDER DYNAMIC LOAD CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. V. RANGANAYAKULU

    2016-10-01

    Full Text Available Acoustic Emission (AE signatures of various weld defects of stainless steel 316L nuclear grade weld material are investigated. The samples are fabricated by Tungsten Inert Gas (TIG Welding Method have final dimension of 140 mm x 15 mm x 10 mm. AE signals from weld defects such as Pinhole, Porosity, Lack of Penetration, Lack of Side Fusion and Slag are recorded under dynamic load conditions by specially designed mechanical jig. AE features of the weld defects were attained using Linear Location Technique (LLT. The results from this study concluded that, stress release and structure deformation between the sections in welding area are load conditions major part of Acoustic Emission activity during loading.

  15. Diamonds on Diamond: structural studies at extreme conditions on the Diamond Light Source.

    Science.gov (United States)

    McMahon, M I

    2015-03-06

    Extreme conditions (EC) research investigates how the structures and physical and chemical properties of materials change when subjected to extremes of pressure and temperature. Pressures in excess of one million times atmospheric pressure can be achieved using a diamond anvil cell, and, in combination with high-energy, micro-focused radiation from a third-generation synchrotron such as Diamond, detailed structural information can be obtained using either powder or single-crystal diffraction techniques. Here, I summarize some of the research drivers behind international EC research, and then briefly describe the techniques by which high-quality diffraction data are obtained. I then highlight the breadth of EC research possible on Diamond by summarizing four examples from work conducted on the I15 and I19 beamlines, including a study which resulted in the first research paper from Diamond. Finally, I look to the future, and speculate as to the type of EC research might be conducted at Diamond over the next 10 years. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Turbulence and turbulence-generated structural loading in wind turbine clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Sten

    2007-01-15

    Turbulence, in terms of standard deviation of wind speed fluctuations, and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to 'wind farm flow'. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence and horizontal flow-shear also influence the dynamic response and thus fatigue loading. However, these parameters are typically negatively or positively correlated with the standard deviation of wind speed fluctuations, which therefore can, if need be, represent these other variables. Thus, models for spatially averaged turbulence intensity inside the wind farm and direct-wake turbulence intensity are being devised and a method to combine the different load situations is proposed. The combination of the load cases implies a weighting method involving the slope of the considered material's Woehler curve. In the context, this is novel and necessary to avoid excessive safety for fatigue estimation of the structure's steel components, and non-conservatism for fibreglass components. The proposed model offers significant reductions in computational efforts in the design process. The status for the implementation of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms are discussed. (au)

  17. A new fluorescent pH probe for extremely acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Jiang, Zheng [School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Xiao, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Bi, Fu-Zhen [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-04-01

    A new coumarin-based fluorescent probe can detect highly acidic conditions in both solution and bacteria with high selectivity and sensitivity. Highlights: • A new fluorescence probe for very low pH was synthesized and characterized. • The probe can monitor pH in solution and bacteria. • The two-step protonation of N atoms of the probe leads to fluorescence quenching. Abstract: A novel turn-off fluorescent probe based on coumarin and imidazole moiety for extremely acidic conditions was designed and developed. The probe with pKa = 2.1 is able to respond to very low pH value (below 3.5) with high sensitivity relying on fluorescence quenching at 460 nm in fluorescence spectra or the ratios of absorbance maximum at 380 nm to that at 450 nm in UV–vis spectra. It can quantitatively detect pH value based on equilibrium equation, pH = pKa -log[(Ix - Ib)/(Ia - Ix)]. It had very short response time that was less than 1 min, good reversibility and nearly no interference from common metal ions. Moreover, using ¹H NMR analysis and theoretical calculation of molecular orbital, we verified that a two-step protonation process of two N atoms of the probe leaded to photoinduced electron transfer (PET), which was actually the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. Furthermore, the probe was also applied to imaging strong acidity in bacteria, E.coli and had good effect. This work illustrates that the new probe could be a practical and ideal pH indicator for strongly acidic conditions with good biological significance.

  18. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K.; Majumdar, Saurin; Natesan, Krishnamurti

    2016-12-15

    Highlights: • Use of intermittent renewable-energy source in power grid is becoming a trend. • Gird load-following can leads to variable power demand from Nuclear power plant. • Reactor components can be stressed differently under gird load-following mode. • Estimation of stress–strain state under grid load-following condition is essential. - Abstract: In this paper, we present thermal–mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal–mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress–strain states are significantly higher in case of presence of crack than without crack. The stress–strain state under grid load following condition are more realistic compared to the stress–strain state estimated assuming simplified transients.

  19. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin; Natesan, Krishnamurti

    2016-01-01

    Highlights: • Use of intermittent renewable-energy source in power grid is becoming a trend. • Gird load-following can leads to variable power demand from Nuclear power plant. • Reactor components can be stressed differently under gird load-following mode. • Estimation of stress–strain state under grid load-following condition is essential. - Abstract: In this paper, we present thermal–mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal–mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress–strain states are significantly higher in case of presence of crack than without crack. The stress–strain state under grid load following condition are more realistic compared to the stress–strain state estimated assuming simplified transients.

  20. The need of the change of the conceptualisation of hydrologic processes under extreme conditions – taking reference evapotranspiration as an example

    Directory of Open Access Journals (Sweden)

    S. Liu

    2015-06-01

    Full Text Available What a hydrological model displays is the relationships between the output and input in daily, monthly, yearly and other temporal scales. In the case of climate change or other environment changes, the input of the hydrological model may show a gradual or abrupt change. There have been numerous documented studies to explore the response of output of the hydrological models to the change of the input with scenario simulation. Most of the studies assumed that the conceptualisation of hydrologic processes will remain, which may be true for the gradual change of the input. However, under extreme conditions the conceptualisation of hydrologic processes may be completely changed. Taking an example of the Allen's formula to calculate crop reference evapotranspiration (ET0 as a simple hydrological model, we analyze the alternation of the extreme in ET0 from 1955 to 2012 at the Chongling Experimental Station located in Hebei Province, China. The relationships between ET0 and the meteorological factors for the average values, minimum (maximum values at daily, monthly and annual scales are revealed. It is found the extreme of the output can follow the extreme of the input better when their relationship is more linear. For non-liner relationship, the extreme of the input cannot at all be reflected from the extreme of the output. Relatively, extreme event at daily scale is harder to be shown than that at monthly scale. The result implicates that a routine model may not be able to catch the response to extreme events and it is even more so as we extrapolate models to higher temperature/CO2 conditions in the future. Some possible choices for the improvements are suggested for predicting hydrological extremes.

  1. Forming Limits in Sheet Metal Forming for Non-Proportional Loading Conditions - Experimental and Theoretical Approach

    International Nuclear Information System (INIS)

    Ofenheimer, Aldo; Buchmayr, Bruno; Kolleck, Ralf; Merklein, Marion

    2005-01-01

    The influence of strain paths (loading history) on material formability is well known in sheet forming processes. Sophisticated experimental methods are used to determine the entire shape of strain paths of forming limits for aluminum AA6016-T4 alloy. Forming limits for sheet metal in as-received condition as well as for different pre-deformation are presented. A theoretical approach based on Arrieux's intrinsic Forming Limit Stress Curve (FLSC) concept is employed to numerically predict the influence of loading history on forming severity. The detailed experimental strain paths are used in the theoretical study instead of any linear or bilinear simplified loading histories to demonstrate the predictive quality of forming limits in the state of stress

  2. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    Science.gov (United States)

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  3. Comparative analysis of methods for modelling the short-term probability distribution of extreme wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2016-01-01

    We have tested the performance of statistical extrapolation methods in predicting the extreme response of a multi-megawatt wind turbine generator. We have applied the peaks-over-threshold, block maxima and average conditional exceedance rates (ACER) methods for peaks extraction, combined with four...... levels, based on the assumption that the response tail is asymptotically Gumbel distributed. Example analyses were carried out, aimed at comparing the different methods, analysing the statistical uncertainties and identifying the factors, which are critical to the accuracy and reliability...

  4. Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep-fatigue loading conditions

    International Nuclear Information System (INIS)

    Stoecker, C.; Zimmermann, M.; Christ, H.-J.; Zhan, Z.-L.; Cornet, C.; Zhao, L.G.; Hardy, M.C.; Tong, J.

    2009-01-01

    Mechanical behaviour of a nickel-based superalloy, RR1000, has been investigated at 650 deg. C under cyclic and dwell loading conditions. The microstructural characteristics of the alloy have been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the distribution patterns of the dislocations and slip planes have been compared between samples tested under fatigue and creep-fatigue loading conditions. Constitutive behaviour of the alloy was described by a unified constitutive model, where both cyclic plastic and viscoplastic strains were represented by one inelastic strain. The results show that the precipitation state is very stable at 650 deg. C and only minor differences exist in the dislocation arrangements formed under pure fatigue and combined creep and fatigue conditions. Hence, a unified constitutive model seems to be justified in describing and predicting the constitutive behaviour in both cases.

  5. A geometrical approach to determine reorientation start and continuation conditions in ferromagnetic shape memory alloys considering the effects of loading history

    International Nuclear Information System (INIS)

    Shirani, M; Kadkhodaei, M

    2014-01-01

    Ferromagnetic shape memory alloys (FSMAs) and magnetic shape memory alloys (MSMAs) are metallic alloys that can undergo inelastic responses when exposed to magnetic fields. Several constitutive models have been proposed so far to model the behaviors of FSMAs. In this work, the effects of loading history on reorientation start conditions are considered, and it is shown that reorientation start conditions are not fixed values; rather, they change with respect to the amount of loading history. To consider the effects of loading history on reorientation start conditions, an available phase diagram in stress-field space is generalized to reorientation surfaces in stress-field-loading history space. Correspondingly, kinetic laws are derived in a continuum framework to be used with the reorientation surfaces to determine the amount of the martensitic variant 2 volume fraction. Based on the geometry of the reorientation surfaces, conditions that must be satisfied to ensure the continuation of reorientations are obtained. Available experimental findings validate the proposed model and the reorientation surfaces. (paper)

  6. The influence of supercritical carbon dioxide (SC-CO2) processing conditions on drug loading and physicochemical properties.

    Science.gov (United States)

    Ahern, Robert J; Crean, Abina M; Ryan, Katie B

    2012-12-15

    Poor water solubility of drugs can complicate their commercialisation because of reduced drug oral bioavailability. Formulation strategies such as increasing the drug surface area are frequently employed in an attempt to increase dissolution rate and hence, improve oral bioavailability. Maximising the drug surface area exposed to the dissolution medium can be achieved by loading drug onto a high surface area carrier like mesoporous silica (SBA-15). The aim of this work was to investigate the impact of altering supercritical carbon dioxide (SC-CO(2)) processing conditions, in an attempt to enhance drug loading onto SBA-15 and increase the drug's dissolution rate. Other formulation variables such as the mass ratio of drug to SBA-15 and the procedure for combining the drug and SBA-15 were also investigated. A model drug with poor water solubility, fenofibrate, was selected for this study. High drug loading efficiencies were obtained using SC-CO(2), which were influenced by the processing conditions employed. Fenofibrate release rate was enhanced greatly after loading onto mesoporous silica. The results highlighted the potential of this SC-CO(2) drug loading approach to improve the oral bioavailability of poorly water soluble drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Tanabe, Tatsuhiko; Nakajima, Hajime

    1994-01-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000 C in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000 to 900 C. The trend observed in the tests from 900 to 1000 C can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900 C plays the role of the protective barrier against the boron dissipation into the environment. (orig.)

  8. Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities and extremality events

    International Nuclear Information System (INIS)

    Cattoen, Celine; Visser, Matt

    2005-01-01

    Until recently, the physically relevant singularities occurring in FRW cosmologies had traditionally been thought to be limited to the 'big bang', and possibly a 'big crunch'. However, over the last few years, the zoo of cosmological singularities considered in the literature has become considerably more extensive, with 'big rips' and 'sudden singularities' added to the mix, as well as renewed interest in nonsingular cosmological events such as 'bounces' and 'turnarounds'. In this paper we present an extensive catalogue of such cosmological milestones, both at the kinematical and dynamical level. First, using generalized power series, purely kinematical definitions of these cosmological events are provided in terms of the behaviour of the scale factor a(t). The notion of a 'scale-factor singularity' is defined, and its relation to curvature singularities (polynomial and differential) is explored. Second, dynamical information is extracted by using the Friedmann equations (without assuming even the existence of any equation of state) to place constraints on whether or not the classical energy conditions are satisfied at the cosmological milestones. We use these considerations to derive necessary and sufficient conditions for the existence of cosmological milestones such as bangs, bounces, crunches, rips, sudden singularities and extremality events. Since the classification is extremely general and, modulo certain technical assumptions, is complete, the corresponding results are to a high degree model independent: in particular, we provide a characterization of the class of bangs, crunches and sudden singularities for which the dominant energy condition is satisfied

  9. Criticality conditions of heterogeneous energetic materials under shock loading

    Science.gov (United States)

    Nassar, Anas; Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Shock interaction with the microstructural heterogeneities of energetic materials can lead to the formation of locally heated regions known as hot spots. These hot spots are the potential sites where chemical reaction may be initiated. However, the ability of a hot spot to initiate chemical reaction depends on its size, shape and strength (temperature). Previous study by Tarver et al. has shown that there exists a critical size and temperature for a given shape (spherical, cylindrical, and planar) of the hot spot above which reaction initiation is imminent. Tarver et al. assumed a constant temperature variation in the hot spot. However, the meso-scale simulations show that the temperature distribution within a hot spot formed from processes such as void collapse is seldom constant. Also, the shape of a hot spot can be arbitrary. This work is an attempt towards development of a critical hot spot curve which is a function of loading strength, duration and void morphology. To achieve the aforementioned goal, mesoscale simulations are conducted on porous HMX material. The process is repeated for different loading conditions and void sizes. The hot spots formed in the process are examined for criticality depending on whether they will ignite or not. The metamodel is used to obtain criticality curves and is compared with the critical hot spot curve of Tarver et al.

  10. Forecasting of flowrate under rolling motion flow instability condition based on on-line sequential extreme learning machine

    International Nuclear Information System (INIS)

    Chen Hanying; Gao Puzhen; Tan Sichao; Tang Jiguo; Hou Xiaofan; Xu Huiqiang; Wu Xiangcheng

    2015-01-01

    The coupling of multiple thermal-hydraulic parameters can result in complex flow instability in natural circulation system under rolling motion. A real-time thermal-hydraulic condition prediction is helpful to the operation of systems in such condition. A single hidden layer feedforward neural networks algorithm named extreme learning machine (ELM) is considered as suitable method for this application because of its extremely fast training time, good accuracy and simplicity. However, traditional ELM assumes that all the training data are ready before the training process, while the training data is received sequentially in practical forecasting of flowrate. Therefore, this paper proposes a forecasting method for flowrate under rolling motion based on on-line sequential ELM (OS-ELM), which can learn the data one by one or chunk-by-chunk. The experiment results show that the OS-ELM method can achieve a better forecasting performance than basic ELM method and still keep the advantage of fast training and simplicity. (author)

  11. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    Science.gov (United States)

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Uncertainty related to Environmental Data and Estimated Extreme Events

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    The design loads on rubble mound breakwaters are almost entirely determined by the environmental conditions, i.e. sea state, water levels, sea bed characteristics, etc. It is the objective of sub-group B to identify the most important environmental parameters and evaluate the related uncertainties...... including those corresponding to extreme estimates typically used for design purposes. Basically a design condition is made up of a set of parameter values stemming from several environmental parameters. To be able to evaluate the uncertainty related to design states one must know the corresponding joint....... Consequently this report deals mainly with each parameter separately. Multi parameter problems are briefly discussed in section 9. It is important to notice that the quantified uncertainties reported in section 7.7 represent what might be regarded as typical figures to be used only when no more qualified...

  13. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  14. Fission gas release behavior of MOX fuels under simulated daily-load-follow operation condition. IFA-554/555 test evaluation with FASTGRASS code

    International Nuclear Information System (INIS)

    Ikusawa, Yoshihisa; Ozawa, Takayuki

    2008-03-01

    IFA-554/555 load-follow tests were performed in HALDEN reactor (HBWR) to study the MOX fuel behavior under the daily-load-follow operation condition in the framework of ATR-MOX fuel development in JAEA. IFA-554/555 rig had the instruments of rod inner pressure, fuel center temperature, fuel stack elongation, and cladding elongation. Although the daily-load-follow operation in nuclear power plant is one of the available options for economical improvement, the power change in a short period in this operation causes the change of thermal and mechanical irradiation conditions. In this report, FP gas release behavior of MOX fuel rod was evaluated under the daily-load-follow operation condition with the examination data from IFA-554/555 by using the computation code 'FASTGRASS'. From the computation results of FASTGRASS code which could compute the FP gas release behavior under the transient condition, it could be concluded that FP gas was released due to the relaxation of fuel pellet inner stress and pellet temperature increase, which were caused by the cyclic power change during the daily-load-follow operation. In addition, since the amount of released FP gas decreased during the steady operation after the daily-load-follow, it could be mentioned that the total of FP gas release at the end of life with the daily-load-follow is not so much different from that without the daily-load-follow. (author)

  15. Directional Considerations for Extreme Wind Climatic Events in the ...

    African Journals Online (AJOL)

    This paper takes a look at the importance and role of probability concepts structural design of transmission line. The reliability of transmission structure is clearly a function of the maximum loads that may be imposed over the useful life of the structure. These loads are, more often than not, caused by the extreme atmospheric ...

  16. Experimental results from containment piping bellows subjected to severe accident conditions: Results from bellows tested in corroded conditions. Volume 2

    International Nuclear Information System (INIS)

    Lambert, L.D.; Parks, M.B.

    1995-10-01

    Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted at Sandia National Laboratories under the sponsorship of the US Nuclear Regulatory Commission. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of nineteen bellows have been tested. Thirteen bellows were tested in ''like-new'' condition (results reported in Volume 1), and six were tested in a corroded condition. The tests showed that bellows in ''like-new'' condition are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage, while those in a corroded condition did not perform as well, depending on the amount of corrosion. The corroded bellows test program and results are presented in this report

  17. Kaolin and commercial fcc catalysts in the cracking of loads of polypropylene under refinary conditions

    Directory of Open Access Journals (Sweden)

    A. M. Ribeiro

    2013-12-01

    Full Text Available The efficiency of Commercial FCC catalysts (low, medium and high activities was evaluated by the catalytic cracking process of combined feeds of polypropylene (PP and vaseline, using a microactivity test unit (M.A.T. for the production of fuel fractions (gasoline, diesel and residue. The PP/vaseline loads, at 2.0% and 4.0% wt, were processed under refinery conditions (load/catalyst ratio and temperature of process. For the PP/vaseline load (4.0% wt, the production of the gasoline fraction was favored by all catalysts, while the diesel fraction was favored by PP/vaseline load (2.0% wt, showing a preferential contact of the zeolite external surface with the end of the polymer chains for the occurrence of the catalytic cracking. All the loads produced a bigger quantity of the gaseous products in the presence of highly active commercial FCC catalyst. The improvement in the activity of the commercial FCC catalyst decreased the production of the liquid fractions and increased the quantity of the solid fractions, independent of the concentration of the loads. These results can be related to the difficulty of the polymer chains to access the catalyst acid sites, occurring preferentially end-chain scission at the external surface of the catalyst.

  18. The myoglobin of Emperor penguin (Aptenodytes forsteri): amino acid sequence and functional adaptation to extreme conditions.

    Science.gov (United States)

    Tamburrini, M; Romano, M; Giardina, B; di Prisco, G

    1999-02-01

    In the framework of a study on molecular adaptations of the oxygen-transport and storage systems to extreme conditions in Antarctic marine organisms, we have investigated the structure/function relationship in Emperor penguin (Aptenodytes forsteri) myoglobin, in search of correlation with the bird life style. In contrast with previous reports, the revised amino acid sequence contains one additional residue and 15 differences. The oxygen-binding parameters seem well adapted to the diving behaviour of the penguin and to the environmental conditions of the Antarctic habitat. Addition of lactate has no major effect on myoglobin oxygenation over a large temperature range. Therefore, metabolic acidosis does not impair myoglobin function under conditions of prolonged physical effort, such as diving.

  19. Collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linul, Emanoil, E-mail: emanoil.linul@upt.ro [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Marsavina, Liviu [Department of Mechanics and Strength of Materials, Politehnica University of Timisoara, 1 Mihai Viteazu Avenue, 300 222 Timisoara (Romania); Kováčik, Jaroslav [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava (Slovakia)

    2017-04-06

    The collapse mechanisms of metal foam matrix composites under static and dynamic loading conditions were experimentally and analytically investigated. Closed-cell aluminium foam AlSi10 with 325±10 kg/m{sup 3} density was used as core material, while stainless-steel-mesh is the faces materials. Prior to characterizing the composite sandwich structure, the stainless steel mesh face material and closed-cell aluminium foam were characterized by tensile testing and compression testing, respectively. Experimental tests were performed on sandwich beams using both High Speed Camera and Digital Image Correlation system for strain distribution. All experimental tests were performed at room temperature with constant crosshead speed of 1.67×10{sup −4} m/s for static tests and 2 m/s impact loading speed for dynamic tests. Two main deformation behaviours of investigated metal foam matrix composites were observed following post-failure collapse: face failure and core shear. It was showed that the initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical parameters.

  20. Creep of MDF panels under constant load and cyclic environmental conditions. Influence of surface coating

    OpenAIRE

    Fernández-Golfín Seco, J. I.; Díez Barra, M. Rafael

    1997-01-01

    Four different strategies of surface coating (based on 80 g m2 melamin impregnated papers) were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh). Three different levels of stress (20 %, 30 % and 40 %), based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system. For the same stress level, the relative creep of MDF panels was higher than that in par...

  1. Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.R.; Mori, Yasuhiro

    1993-01-01

    A probability-based methodology is being developed in support of the NRC Structural Aging Program to assist in evaluating the reliability of existing concrete structures in nuclear power plants under potential future operating loads and extreme evironmental and accidental events. The methodology includes models to predict structural deterioration due to environmental stressors, a database to support the use of these models, and methods for analyzing time-dependent reliability of concrete structural components subjected to stochastic loads. The methodology can be used to support a plant license extension application by providing evidence that safety-related concrete structures in their current (service) condition are able to withstand future extreme events with a level of reliability sufficient for public health and safety. (orig.)

  2. Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles

    2007-03-01

    During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

  3. Creep rupture properties under varying load/temperature conditions on a nickel-base heat-resistant alloy strengthened by boron addition

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Tanabe, Tatsuhiko.

    1993-09-01

    A series of constant load and temperature creep rupture tests and varying load and temperature creep rupture tests was carried out on Hastelloy XR whose boron content level is 60 mass ppm at 900 and 1000degC in order to examine the behavior of the alloy under varying load and temperature conditions. The life fraction rule completely fails in the prediction of the creep rupture life under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR whose boron content level is below 10 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the born content level of the alloy. The modified rule successfully predicts the creep rupture life under the test conditions from 1000degC to 900degC. The trend observed in the tests from 900degC to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (author)

  4. Flap controllers applied on the OffshoreWindChina (OWC) 5MW reference wind turbine for Chinese typhoon conditions

    DEFF Research Database (Denmark)

    Barlas, Athanasios

    The report describes the development of flap controllers applied on the OffshoreWindChina (OWC) 5MW reference wind turbine for Chinese typhoon conditions. Optimal flap controllers are designed and tuned based on linear aeroelastic models from HawcStab2. The controllers are evaluated in normal......, parked and storm conditions, targeting the alleviation of fatigue and extreme loads....

  5. Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions.

    Science.gov (United States)

    Schwager, Monika; Johst, Karin; Jeltsch, Florian

    2006-06-01

    Recent theoretical studies have shown contrasting effects of temporal correlation of environmental fluctuations (red noise) on the risk of population extinction. It is still debated whether and under which conditions red noise increases or decreases extinction risk compared with uncorrelated (white) noise. Here, we explain the opposing effects by introducing two features of red noise time series. On the one hand, positive autocorrelation increases the probability of series of poor environmental conditions, implying increasing extinction risk. On the other hand, for a given time period, the probability of at least one extremely bad year ("catastrophe") is reduced compared with white noise, implying decreasing extinction risk. Which of these two features determines extinction risk depends on the strength of environmental fluctuations and the sensitivity of population dynamics to these fluctuations. If extreme (catastrophic) events can occur (strong noise) or sensitivity is high (overcompensatory density dependence), then temporal correlation decreases extinction risk; otherwise, it increases it. Thus, our results provide a simple explanation for the contrasting previous findings and are a crucial step toward a general understanding of the effect of noise color on extinction risk.

  6. Analysis of the Impact of Urban Microclimate on Air Conditioning Load Control

    Directory of Open Access Journals (Sweden)

    Hu Xiaoqing

    2016-01-01

    Full Text Available Due to the presence of urban heat island effect (UHIE, high humidity and other urban microclimate, temperature of city central area rises. This causes that the actual air-conditioning energy consumption (ACEC in the urban central area is much higher than that in the suburbs. Load control of air-conditioners (ACs is considered to be equivalent to a power plant of the same capacity, and it can greatly reduce the system pressure to peak load shift. In this paper, a simplified second order transfer function control model of ACs is presented, and its parameters will be influenced by the ambient temperature and urban microclimate. The temperature is obtained by using the temperature inversion algorithm of the heat island effect. Then, the heat index is calculated by combining temperature and humidity. The ambient temperature index of urban central area is modified based on the above microclimate, and the second order linear time invariant model of aggregated ACs is upgraded to the linear time varying model. Furthermore, the consequent parameter changes of the second order transfer function model are studied and the influence of urban microclimate on AC load control is analyzed. The proposed method is verified on numerical examples

  7. A Closed-Loop Control Strategy for Air Conditioning Loads to Participate in Demand Response

    Directory of Open Access Journals (Sweden)

    Xiaoqing Hu

    2015-08-01

    Full Text Available Thermostatically controlled loads (TCLs, such as air conditioners (ACs, are important demand response resources—they have a certain heat storage capacity. A change in the operating status of an air conditioner in a small range will not noticeably affect the users’ comfort level. Load control of TCLs is considered to be equivalent to a power plant of the same capacity in effect, and it can significantly reduce the system pressure to peak load shift. The thermodynamic model of air conditioning can be used to study the aggregate power of a number of ACs that respond to the step signal of a temperature set point. This paper analyzes the influence of the parameters of each AC in the group to the indoor temperature and the total load, and derives a simplified control model based on the two order linear time invariant transfer function. Then, the stability of the model and designs its Proportional-Integral-Differential (PID controller based on the particle swarm optimization (PSO algorithm is also studied. The case study presented in this paper simulates both scenarios of constant ambient temperature and changing ambient temperature to verify the proposed transfer function model and control strategy can closely track the reference peak load shifting curves. The study also demonstrates minimal changes in the indoor temperature and the users’ comfort level.

  8. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    is an expected maximum wave in accordance with a Rayleigh distribution. The maximum waves are numerically represented by embedded Stream-function waves. The author compares the resulting bow tendon loading of the hybrid model to the measured responses, as a key performance indicator. 90% to 95% of the loads show...... a satisfying match, though the hybrid model over predicts the remaining 5% to 10% maximum loads by 32%, 34% and 29% for a linear irregular sea state, a nonlinear irregular sea state and a nonlinear irregular sea state with an embedded Stream-function wave, respectively. The limited number of sea states during...... important aspects, which make them non-conservative in use for FOWT: (A) The offshore wind industry intends to install floating structures at much lower water depth (from 50m onwards), than the offshore oil & gas industry (from 300m onwards). In such cases a linear wave theory approach might...

  9. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  10. Experimental and FE Analysis of Exterior Plastic Components of Cars under Static and Dynamic Loading Conditions

    OpenAIRE

    Faghihi, Hassan

    2011-01-01

    This thesis is composed by an experimental part and numerical part, aimed at contributing to a better knowledge of the behavior of plastic parts under different loading conditions. The study is intended to validate a FE model for simulating exterior plastic components of car especially the A-decor and plastic clips in the context of thermal and static load analysis. From the comparison of numerical and experimental results in the terms of thermal and static deformation of the A-decor, it is c...

  11. Influence of tool shape on lattice rearrangement under loading conditions reproducing friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.

  12. Study and simulation of irradiated zirconium alloys fracture under type RIA accidental loading conditions; Comprehension et modelisation de la rupture d'alliages de zirconium irradies en conditions accidentelles de type RIA

    Energy Technology Data Exchange (ETDEWEB)

    Le Saux, M. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), 91 - Gif-sur-Yvette (France)

    2008-07-01

    The thesis aims to study and simulate the mechanical behavior under Reactivity Initiated Accident loading conditions, of the Zircaloy 4 fuel claddings, irradiated or not. It also aims to characterize and simulate the behavior and the fracture under RIA loading conditions of hydrided Zircaloy 4 non irradiated. This study proposes an experimental approach and a simulation. (A.L.B.)

  13. Experimental results from containment piping bellows subjected to severe accident conditions. Volume 1, Results from bellows tested in 'like-new' conditions

    International Nuclear Information System (INIS)

    Lambert, L.D.; Parks, M.B.

    1994-09-01

    Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted under the sponsorship of the US Nuclear Regulatory Commission at Sandia National Laboratories. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of thirteen bellows have been tested, all in the 'like-new' condition. (Additional tests are planned of bellows that have been subjected to corrosion.) The tests showed that bellows are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage. The test data is presented and discussed

  14. Characterization of focal muscle compression under impact loading

    Science.gov (United States)

    Butler, B. J.; Sory, D. R.; Nguyen, T.-T. N.; Proud, W. G.; Williams, A.; Brown, K. A.

    2017-01-01

    In modern wars over 70% of combat wounds are to the extremities. These injuries are characterized by disruption and contamination of the limb soft tissue envelope. The extent of this tissue trauma and contamination determine the outcome of the extremity injury. In military injury, common post-traumatic complications at amputation sites include heterotopic ossification (formation of bone in soft tissue), and severe soft tissue and bone infections. We are currently developing a model of soft tissue injury that recreates pathologies observed in combat injuries. Here we present characterization of a controlled focal compression of the rabbit flexor carpi ulnaris (FCU) muscle group. The FCU was previously identified as a suitable site for studying impact injury because its muscle belly can easily be mobilized from the underlying bone without disturbing anatomical alignment in the limb. We show how macroscopic changes in tissue organization, as visualized using optical microscopy, can be correlated with data from temporally resolved traces of loading conditions.

  15. A dynamic switching strategy for air-conditioning systems operated in light-thermal-load conditions

    International Nuclear Information System (INIS)

    Lin, Jin-Long; Yeh, T.-J.; Hwang, Wei-Yang

    2009-01-01

    Recently, modern air-conditioners have begun to incorporate variable-speed compressors and variable-opening expansion valves, together with feedback control to improve the performance and energy efficiency. However, for the compressor there usually exists a low-speed limit below which its speed can not be continuously modulated unless it is completely turned off. When the air-conditioning system is operated in light-thermal-load conditions, the low-speed limit causes the compressor to run in an on-off manner which can significantly degrade the performance and efficiency. In this paper, a dynamic switching strategy is proposed for such scenarios. The strategy is basically an integration of a cascading control structure, an intuitive switching strategy, and a dynamic compensator. While the control structure provides the nominal performance, the intuitive switching strategy and the dynamic compensator together can account for the compressor's low-speed limitation. Theoretical analysis reveals that when the output matrix of the dynamic compensator is chosen properly, the proposed strategy can effectively reduce the output error caused by the on-off operation of the compressor. Experiments also demonstrate that the proposed strategy can simultaneously provide better regulation for the indoor temperature and improve the energy efficiency at steady state.

  16. Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions

    Science.gov (United States)

    Chen, Ting; Zheng, Xianghao; Zhang, Yu-ning; Li, Shengcai

    2018-02-01

    Owing to the part-load operations for the enhancement of grid flexibility, the Francis turbine often suffers from severe low-frequency and large-amplitude hydraulic instability, which is mostly pertinent to the highly unsteady swirling vortex rope in the draft tube. The influence of disturbances in the upstream (e.g., large-scale vortex structures in the spiral casing) on the draft-tube vortex flow is not well understood yet. In the present paper, the influence of the upstream disturbances on the vortical flow in the draft tube is studied based on the vortex identification method and the analysis of several important parameters (e.g., the swirl number and the velocity profile). For a small guide vane opening (representing the part-load condition), the vortices triggered in the spiral casing propagate downstream and significantly affect the swirling vortex-rope precession in the draft tube, leading to the changes of the intensity and the processional frequency of the swirling vortex rope. When the guide vane opening approaches the optimum one (representing the full-load condition), the upstream disturbance becomes weaker and thus its influences on the downstream flow are very limited.

  17. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins

    Science.gov (United States)

    Zheng, Yong-Fei; Chen, Ren-Xu

    2017-09-01

    Regional metamorphism at extreme conditions refers either to Alpine-type metamorphism at low geothermal gradients of geothermal gradients of >30 °C/km. Extreme pressures refer to those above the polymorphic transition of quartz to coesite, so that ultrahigh-pressure (UHP) eclogite-facies metamorphism occurs at mantle depths of >80 km. Extreme temperatures refer to those higher than 900 °C at crustal depths of ≤80 km, so that ultrahigh-temperature (UHT) granulite-facies metamorphism occurs at medium to high pressures. While crustal subduction at the low geothermal gradients results in blueschist-eclogite facies series without arc volcanism, heating of the thinned orogenic lithosphere brings about the high geothermal gradients for amphibolite-granulite facies series with abundant magmatism. Therefore, UHP metamorphic rocks result from cold lithospheric subduction to the mantle depths, whereas UHT metamorphic rocks are produced by hot underplating of the asthenospheric mantle at the crustal depths. Active continental rifting is developed on the thinned lithosphere in response to asthenospheric upwelling, and this tectonism is suggested as a feasible mechanism for regional granulite-facies metamorphism, with the maximum temperature depending on the extent to which the mantle lithosphere is thinned prior to the rifting. While lithospheric compression is associated with subduction metamorphism in accretionary and collisional orogens, the thinned orogenic lithosphere undergoes extension due to the asthenospheric upwelling to result in orogen-parallel rifting metamorphism and magmatism. Thus, the rifting metamorphism provides a complement to the subduction metamorphism and its operation marks the asthenospheric heating of the orogenic lithosphere. Because of the partial melting and melt extraction of the lower continental crust, contemporaneous granite-migmatite-granulite associations may serve as a petrological indicator of rifting orogeny that is superimposed on

  18. Working memory load modulates microsaccadic rate.

    Science.gov (United States)

    Dalmaso, Mario; Castelli, Luigi; Scatturin, Pietro; Galfano, Giovanni

    2017-03-01

    Microsaccades are tiny eye movements that individuals perform unconsciously during fixation. Despite that the nature and the functions of microsaccades are still lively debated, recent evidence has shown an association between these micro eye movements and higher order cognitive processes. Here, in two experiments, we specifically focused on working memory and addressed whether differential memory load could be reflected in a modulation of microsaccade dynamics. In Experiment 1, participants memorized a numerical sequence composed of either two (low-load condition) or five digits (high-load condition), appearing at fixation. The results showed a reduction in the microsaccadic rate in the high-load compared to the low-load condition. In Experiment 2, five red or green digits were always presented at fixation. Participants either memorized the color (low-load condition) or the five digits (high-load condition). Hence, visual stimuli were exactly the same in both conditions. Consistent with Experiment 1, microsaccadic rate was lower in the high-load than in the low-load condition. Overall, these findings reveal that an engagement of working memory can have an impact on microsaccadic rate, consistent with the view that microsaccade generation is pervious to top-down processes.

  19. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  20. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  1. Conditions of external loading of nuclear power plant structures by vapor cloud explosions and design requirements

    International Nuclear Information System (INIS)

    Geiger, W.

    1977-01-01

    In the design of nuclear power plant structures in the Federal Republic of Germany (FRG) the external loading by pressure waves from unconfined vapor cloud explosions is taken into account. The loading conditions used are based on simplified model considerations for the sequence of events which generates the pressure wave. The basic assumption is that the explosion of unconfined vapor clouds can evolve only in the form of a deflagration wave with a maximum overpressure of 0.3 bar. The research on gas explosions conducted in the FRG with a view to external reactor safety just as similar work in other countries demonstrates that there are still various problems which need further clarification. The principal issues are the maximum conceivable load and the modes of structrual response. This paper presents the main results of a status report commissioned by the German Ministry of the Inertior in which the whole sequence of events leading to the external loading of nuclear power plants and the corresponding response of the structure was scrutinized. Constitutive in establishing the status report have been thorough discussions with experts of the various fields. The following problem areas are discussed in the paper. Incidents leading to the release of large amounts of liquefied gas; Formation of explosive vapor clouds, ignition conditions; Development of the explosion, generation of the pressure wave; Interaction between pressure wave and reactor building. It is outlined where definite statements are possible and where uncertainties and information gaps exist. (Auth.)

  2. Direct Time Domain Numerical Analysis of Transient Behavior of a VLFS during Unsteady External Loads in Wave Condition

    Directory of Open Access Journals (Sweden)

    Yong Cheng

    2014-01-01

    Full Text Available The transient response of the VLFS subjected to arbitrary external load is systematically investigated by a direct time domain modal expansion method, in which the BEM solutions based on time domain Kelvin sources are used for hydrodynamic forces. In the analysis, the time domain free-surface Green functions with sufficient accuracy are rapidly evaluated in finite water depth by the interpolation-tabulation method, and the boundary integral equation with a quarter VLFS model is established taking advantage of symmetry of flow field and structure. The validity of the present method is verified by comparing with the time histories of vertical displacements of the VLFS during a mass drop and airplane landing and takeoff in still water conditions, respectively. Then the developed numerical scheme is used in wave conditions to study the combined action taking into account the mass drop/airplane landing/takeoff loads as well as incident wave action. It is found that the elevation of structural waves due to mass drop load can be significantly changed near the impact region, while the vertical motion of runway in wave conditions is dominant as compared with that only generated by airplane.

  3. Note: Loading method of molecular fluorine using x-ray induced chemistry

    International Nuclear Information System (INIS)

    Pravica, Michael; Sneed, Daniel; White, Melanie; Wang, Yonggang

    2014-01-01

    We have successfully loaded molecular fluorine into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of perfluorohexane (C 6 F 14 ). “White” x-ray radiation from the Advanced Photon Source was used to initiate the chemical decomposition of C 6 F 14 , which resulted in the in situ production of F 2 as verified via Raman spectroscopy. Due to the toxic nature of fluorine, this method will offer significant advantages in the ability to easily load a relatively nontoxic and inert substance into a chamber (such as a diamond anvil cell) that, when sealed with other reactants and irradiate with hard x-rays (>7 keV), releases highly reactive and toxic fluorine into the sample/reaction chamber to enable novel chemical synthesis under isolated and/or extreme conditions

  4. Hemoglobin system of Sparus aurata: Changes in fishes farmed under extreme conditions

    International Nuclear Information System (INIS)

    Campo, Salvatore; Nastasi, Giancarlo; D'Ascola, Angela; Campo, Giuseppe M.; Avenoso, Angela; Traina, Paola; Calatroni, Alberto; Burrascano, Emanuele; Ferlazzo, Alida; Lupidi, Giulio; Gabbianelli, Rosita; Falcioni, Giancarlo

    2008-01-01

    In order to gain more knowledge on the stress responses of gilhead seabream (Sparus aurata) under extreme conditions, this study investigated the functional properties of the hemoglobin system and globin gene expression under hypoxia and low salinity. The oxygen affinity for the two hemoglobin components present inside the S. aurata erythrocyte was practically identical as was the influence of protons and organic phosphates (Root effect). The quantification of S. aurata hemoglobin fractions performed by HPLC and the data on gene expression of globin chains assayed by PCR indicate that under hypoxia and low salinity there is a change in the ratio between the two different hemoglobin components. The result indicating that the distinct hemoglobins present in S. aurata erythrocyte have almost identical functional properties, does not explain the adaptive response (expression change) following exposure of the animal to hypoxia or low salinity on the basis of their function as oxygen transporter. We hypothesize that other parallel biological functions that the hemoglobin molecule is known to display within the erythrocyte are involved in adaptive molecular mechanisms. The autoxidation-reduction cycle of hemoglobin could be involved in the response to particular living conditions

  5. Assessment of functional conditions of basketball and football players during the load by applying the model of integrated evaluation.

    Science.gov (United States)

    Zumbakytė-Šermukšnienė, Renata; Kajėnienė, Alma; Vainoras, Alfonsas; Berškienė, Kristina; Augutienė, Viktorija

    2010-01-01

    We consider the human body as an adaptable, complex, and dynamic system capable of organizing itself, though there is none, the only one, factor inside the system capable of doing this job. Making use of the computerized ECG analysis system "Kaunas-load" with parallel registration of ECG carrying out body motor characteristics, ABP, or other processes characterizing hemodynamics enable one to reveal and evaluate the synergistic aspects of essential systems of the human body what particularly extends the possibilities of functional diagnostics. The aim of the study was to determine the features of alterations in the functional condition of basketball and football players and nonathletes during the bicycle ergometry test by applying the model of evaluation of the functional condition of the human body. The study population consisted of 266 healthy athletes and nonathletes. Groups of male basketball players, male football players, male nonathletes, female basketball players, and female nonathletes were studied. A computerized ECG analysis system "Kaunas-load" that is capable of both registering and analyzing the power developed by the subject and 12-lead ECG synchronically were used for evaluating the functional condition of the CVS. The subject did a computer-based bicycle ergometry test. The following ECG parameters at rest and throughout the load - HR, JT interval, and the deduced JT/RR ratio index that reflects the condition between regulatory and supplying systems - were evaluated. After measuring ABP, the pulse amplitude (S-D) was evaluated. The pulse blood pressure ratio amplitude (S-D)/S that depicts the connection between the periphery and regulatory systems was also evaluated. Speeds of changes in physiological parameters during physical load were evaluated too. Heart rate and JT/RR ratio of athletes at the rest and during load were lower, and JT interval of rest was longer and became shorter more slowly during load, compared to that of healthy nonathletes

  6. Kinematic and kinetic synergies of the lower extremities during the pull in olympic weightlifting.

    Science.gov (United States)

    Kipp, Kristof; Redden, Josh; Sabick, Michelle; Harris, Chad

    2012-07-01

    The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at each joint and how it differed across loads. The analyses extracted two kinematic and four kinetic PCF's. The statistical comparisons indicated that all kinematic and two of the four kinetic PCF's did not differ across load, but scaled according to joint function. The PCF's captured a set of joint- and load-specific synergies that quantified biomechanical function of the lower extremity during Olympic weightlifting and revealed important technical characteristics that should be considered in sports training and future research.

  7. Treatment efficiency of patients with shin fracture after intraosseous blocked osteosynthesis by using the load dispenser

    Directory of Open Access Journals (Sweden)

    Yu. V. Sukhin

    2017-08-01

    Full Text Available The purpose of research: еvaluation of the effectiveness of the device for determining the value of the load on the lower extremity while walking in real time with controlling and signalization of excessive and insufficient load. Materials and methods. Еlaborated and applied device, that allows to determine the load magnitude on the lower extremity in real time, and also to signal about excessive or weak load. The sensory block with the insole and the sensor is located in shoes, under patient's heel, and the main block is fixed on the shin with the help of the strap. Current value of the load on the leg is registered in real time. Received data is recorded in non-volatile memory. The system provides an opportunity to notify patient or doctor by email about the presence of a strong or weak load on the lower extremity, and also about the absence of load for a long period. Results. We used the loading batcher in 38 patients with the shin bones fractures, who were on inpatient treatment at the traumatology and orthopedics center in Odessa in the period from 1.5 to 12 months. The main group included patients, who used the load batcher on the lower extremity in rehabilitation period (transversal fracture of the shin bones diaphysis – 9 patients, oblique fracture – 11 patients. The control group consisted of patients, who didn't use the load batcher (10 patients with oblique fracture of the shin bones in the middle third, 8 patients with transversal fracture of both shin bones in the middle third. As a result of applying the device we succeeded to reduce the fracture fusion period for two weeks and avoid such complications as contracture of joint and fracture non-union. Conclusions. The device allows patients with traumatic consequences reaching the optimal load in rehabilitation period, avoiding excessive load on the lower extremity. The elaboration provides an opportunity to determine the statistics of the load and its transfer to the server

  8. Wrist loading patterns during pommel horse exercises.

    Science.gov (United States)

    Markolf, K L; Shapiro, M S; Mandelbaum, B R; Teurlings, L

    1990-01-01

    Gymnastics is a sport which involves substantial periods of upper extremity support as well as frequent impacts to the wrist. Not surprisingly, wrist pain is a common finding in gymnasts. Of all events, the pommel horse is the most painful. In order to study the forces of wrist impact, a standard pommel horse was instrumented with a specially designed load cell to record the resultant force of the hand on the pommel during a series of basic skills performed by a group of seventeen elite male gymnasts. The highest mean peak forces were recorded during the front scissors and flair exercises (1.5 BW) with peaks of up to 2.0 BW for some gymnasts. The mean peak force for hip circles at the center or end of the horse was 1.1 BW. The mean overall loading rate (initial contact to first loading peak) ranged from 5.2 BWs-1 (hip circles) to 10.6 BW s-1 (flairs). However, many recordings displayed localized initial loading spikes which occurred during 'hard' landings on the pommel. When front scissors were performed in an aggressive manner, the initial loading spikes averaged 1.0 BW in magnitude (maximum 1.8 BW) with an average rise time of 8.2 ms; calculated localized loading rates averaged 129 BW s-1 (maximum 219 BW s-1). These loading parameters are comparable to those encountered at heel strike during running. These impact forces and loading rates are remarkably high for an upper extremity joint not normally exposed to weight-bearing loads, and may contribute to the pathogenesis of wrist injuries in gymnastics.

  9. Load consequences when sweeping blades - A case study of a 5 MW pitch controlled wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Verelst, D.R.S.; Larsen, Torben J.

    2010-08-15

    The generic 5 MW NREL wind turbine model is used in Risoe's aeroelastic simulator HAWC2 to investigate 120 different swept blade configurations (forward and backward sweep). Sensitivity for 2 different controllers is considered as well. Backward sweep results in a pitch to feather torsional moment of the blade, effectively reducing blade twist angles under increased loading. This behaviour results in decreased flap-wise fatigue and extreme loads, an increase for edge-wise fatigue loading and status quo or slight decrease in extreme loads (depending on the controller). Tower base and shaft-end bending moments are reduced as well. Forward sweep leads to an increase in angle of attack under loading. For a pitch controlled turbine this leads to an increase in fatigue and extreme loading in all cases. A controller inflicted instability is present for the more extreme forward swept cases. Due to the shape of considered sweep curves, an inherent and significant increase in torsional blade root bending moment is noted. A boomerang shaped sweep curve is proposed to counteract this problematic increased loading. Controller sensitivity shows that adding sweep affects some loadings differently. Power output is reduced for backward sweep since the blade twist is optimized as a rigid structure, ignoring the torsional deformations which for a swept blade can be significant. (author)

  10. Development status of the experimental and numerical load analysis of package units CASTOR registered under drop test conditions

    International Nuclear Information System (INIS)

    Voelzer, Walter; Schaefer, Marc; Rumanus, Erkan; Liedtke, Ralph; Brehmer, Frank

    2012-01-01

    The mechanical integrity of package units CASTOR registered for a 9-m drop test under accident conditions has to be demonstrated according the requirements of IAEA among others. For reduction of the loads the containers have to be equipped with shock absorbers on the bottom and top sides. The determination of loads under drop test conditions can be performed with experimental or numerical methods. Due to the complexity of the load state and the verification of results both methods are usually used for integrity demonstration. The numerical codes have to model the short-term dynamic behavior of the whole container for different drop orientations and temperatures, local stress states have to be quantifiable for assessment. One of the problems is the modeling of the material behavior of wood that is used in the shock absorbers. The so far used energetic calculation approach will be replaced by a dynamic approach, the numerical models will have to be verified by experimental drop tests.

  11. Matter in Extreme Conditions Instrument - Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is

  12. Establishment and performance of an experimental green roof under extreme climatic conditions.

    Science.gov (United States)

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  13. Structural investigation of composite wind turbine blade considering various load cases and fatigue life

    International Nuclear Information System (INIS)

    Kong, C.; Bang, J.; Sugiyama, Y.

    2005-01-01

    This study proposes a structural design for developing a medium scale composite wind turbine blade made of E-glass/epoxy for a 750 kW class horizontal axis wind turbine system. The design loads were determined from various load cases specified at the IEC61400-1 international specification and GL regulations for the wind energy conversion system. A specific composite structure configuration, which can effectively endure various loads such as aerodynamic loads and loads due to accumulation of ice, hygro-thermal and mechanical loads, was proposed. To evaluate the proposed composite wind turbine blade, structural analysis was performed by using the finite element method. Parametric studies were carried out to determine an acceptable blade structural design, and the most dominant design parameters were confirmed. In this study, the proposed blade structure was confirmed to be safe and stable under various load conditions, including the extreme load conditions. Moreover, the blade adapted a new blade root joint with insert bolts, and its safety was verified at design loads including fatigue loads. The fatigue life of a blade that has to endure for more than 20 years was estimated by using the well-known S-N linear damage theory, the service load spectrum, and the Spera's empirical equations. With the results obtained from all the structural design and analysis, prototype composite blades were manufactured. A specific construction process including the lay-up molding method was applied to manufacturing blades. Full-scale static structural test was performed with the simulated aerodynamic loads. From the experimental results, it was found that the designed blade had structural integrity. In addition, the measured results of deflections, strains, mass, and radial center of gravity agreed well with the analytical results. The prototype blade was successfully certified by an international certification institute, GL (Germanisher Lloyd) in Germany

  14. Bi-orthogonality conditions for power flow analysis in fluid-loaded elastic cylindrical shells

    DEFF Research Database (Denmark)

    Ledet, Lasse; Sorokin, Sergey V.; Larsen, Jan Balle

    2015-01-01

    The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-loaded cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. Firstly, a modal method for formulation of Green’s matrix is derived by means of modal decomposition. The method...... builds on the recent advances on bi-orthogonality conditions for multi-modal waveguides, which are derived here for an elastic fluid-filled cylindrical shell. Subsequently, modal decomposition is applied to the bi-orthogonality conditions to formulate explicit algebraic equations to express the modal...... vibro-acoustic waveguide is subjected to separate pressure and velocity acoustical excitations. Further, it has been found and justified that the bi-orthogonality conditions can be used as a ’root finder’ to solve the dispersion equation. Finally, it is discussed how to predict the response of a fluid...

  15. Proposal for progressive loading of the hip abductors under mechanically unstable conditions: An electromyography study

    Directory of Open Access Journals (Sweden)

    Nejc Sarabon

    2010-12-01

    Full Text Available The aim of this study was to test the effect of the stance width and asymmetry on muscle activation patterns during balancing on a tilt board. Eleven young healthy volunteers took part in the tests. After the standardized warm-up and customization protocol had been carried out, they balanced five times for 60 seconds on a tilt board, using a different foot position each time - (i wide symmetrical, (ii narrow symmetrical, (iii moderate asymmetrical, (iv extreme asymmetrical, and (v single leg. Pair of electromyographic electrodes was glued over the gluteus medius muscle on both sides from which signals were acquired. The average values of the pre-processed signals were normalized and quantified. Repeated measures analysis of variance and t-tests revealed a systematic effect of the foot positions on the amount of the gluteus medius activation. Its activation was significantly increased in both asymmetrical stances when the foot was moved closer to the tilt board`s axis of rotation and most prominently when the single leg stance was used. These results point out the importance of the foot positioning for the actual muscle function while balancing on a tilt board. We believe that different levels of feet positioning asymmetry should be used for gradual loading of the extremity and for provoking activity in hip side stabilizers.

  16. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    Science.gov (United States)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  17. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking.

    Science.gov (United States)

    Xu, Chun; Silder, Amy; Zhang, Ju; Hughes, Julie; Unnikrishnan, Ginu; Reifman, Jaques; Rakesh, Vineet

    2016-10-01

    Prior studies have assessed the effects of load carriage on the tibia. Here, we expand on these studies and investigate the effects of load carriage on joint reaction forces (JRFs) and the resulting spatiotemporal stress/strain distributions in the tibia. Using full-body motion and ground reaction forces from a female subject, we computed joint and muscle forces during walking for four load carriage conditions. We applied these forces as physiological loading conditions in a finite-element (FE) analysis to compute strain and stress. We derived material properties from computed tomography (CT) images of a sex-, age-, and body mass index-matched subject using a mesh morphing and mapping algorithm, and used them within the FE model. Compared to walking with no load, the knee JRFs were the most sensitive to load carriage, increasing by as much as 26.2% when carrying a 30% of body weight (BW) load (ankle: 16.4% and hip: 19.0%). Moreover, our model revealed disproportionate increases in internal JRFs with increases in load carriage, suggesting a coordinated adjustment in the musculature functions in the lower extremity. FE results reflected the complex effects of spatially varying material properties distribution and muscular engagement on tibial biomechanics during walking. We observed high stresses on the anterior crest and the medial surface of the tibia at pushoff, whereas high cumulative stress during one walking cycle was more prominent in the medioposterior aspect of the tibia. Our findings reinforce the need to include: (1) physiologically accurate loading conditions when modeling healthy subjects undergoing short-term exercise training and (2) the duration of stress exposure when evaluating stress-fracture injury risk. As a fundamental step toward understanding the instantaneous effect of external loading, our study presents a means to assess the relationship between load carriage and bone biomechanics.

  18. Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Luchner, J.; Onof, C.

    2017-01-01

    extreme precipitation over Denmark generated by the regional climate model (RCM) HIRHAM-ECEARTH at different spatial resolutions (8, 12, 25 and 50km), three RCM from the RiskChange project at 8km resolution and three RCMs from ENSEMBLES at 25km resolution at temporal aggregations from 1 to 48h...... are more skewed than the observational dataset, which leads to an overestimation by the higher spatial resolution simulations. Nevertheless, in general, under current conditions RCM simulations at high spatial resolution represent extreme events and high-order moments better. The changes projected...

  19. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    Science.gov (United States)

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Snow loads in a changing climate: new risks?

    Directory of Open Access Journals (Sweden)

    U. Strasser

    2008-01-01

    Full Text Available In January/February 2006, heavy snowfalls in Bavaria (Germany lead to a series of infrastructural damage of catastrophic nature. Since on many collapsed roofs the total snow load was not exceptional, serious engineering deficiencies in roof construction and a sudden rise in the total snow load were considered to be the trigger of the events. An analysis of the then meteorological conditions reveals, that the early winter of 2005/2006 was characterised by an exceptional continuous snow cover, temperatures remained around the freezing point and no significant snowmelt was evident. The frequent freezing/thawing cycles were followed by a general compaction of the snow load. This resulted in a re-distribution and a new concentration of the snow load on specific locations on roofs. With respect to climate change, the question arises as to whether the risks relating to snow loads will increase. The future probability of a continuous snow cover occurrence with frequent freezing/thawing cycles will probably decline due to predicted higher temperatures. However, where temperatures remain low, an increase in winter precipitation will result in increased snow loads. Furthermore, the variability of extremes is predicted to increase. If heavy snowfall events are more frequent, the risk of a trigger event will likely increase. Finally, an attempt will be made here in this paper to outline a concept for an operational warning system for the Bavarian region. This system envisages to predict the development and risk of critical snow loads for a 3-day time period, utilising a combination of climate and snow modelling data and using this together with a snow pillow device (located on roofs and the results of which.

  1. Full scale test SSP 34m blade, edgewise loading LTT. Extreme load and PoC{sub I}nvE Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Roczek-Sieradzan, A.; Jensen, Find M. (and others)

    2010-09-15

    This report is the second report covering the research and demonstration project 'Experimental blade research: Structural mechanisms in current and future large blades under combined loading', supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risoe load, where 80% Risoe load corresponds to 100% certification load. These pulls at 80% Risoe load were repeated and the results from these pulls were compared. The blade was reinforced according to a Risoe DTU invention, where the trailing edge panels are coupled. The coupling is implemented to prevent the out of plane deformations and to reduce peeling stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risoe load and the results applicable for the investigation of the influence of the invention on the profile deformation. (Author)

  2. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    DEFF Research Database (Denmark)

    Berg, Jacob; Natarajan, Anand; Mann, Jakob

    2016-01-01

    taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...

  3. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  4. Moving in extreme environments: what's extreme and who decides?

    Science.gov (United States)

    Cotter, James David; Tipton, Michael J

    2014-01-01

    , extreme loading, chronic unloading and high altitude. Ramifications include factors such as health and safety, productivity, enjoyment and autonomy, acute and chronic protection and optimising adaptation.

  5. Time-dependent reliability analysis and condition assessment of structures

    International Nuclear Information System (INIS)

    Ellingwood, B.R.

    1997-01-01

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process

  6. PREDICTION OF THE EXTREMAL SHAPE FACTOR OF SPHEROIDAL PARTICLES

    Directory of Open Access Journals (Sweden)

    Daniel Hlubinka

    2011-05-01

    Full Text Available In the stereological unfolding problem for spheroidal particles the extremal shape factor is predicted. The theory of extreme values has been used to show that extremes of the planar shape factor of particle sections tend to the same limit distribution as extremes of the original shape factor for both the conditional and marginal distribution. Attention is then paid to the extreme shape factor conditioned by the particle size. Normalizing constants are evaluated for a parametric model and the numerical procedure is tested on real data from metallography.

  7. SORM correction of FORM results for the FBC load combination problem

    DEFF Research Database (Denmark)

    Ditlevsen, Ove

    2005-01-01

    The old stochastic load combination model of Ferry Borges and Castanheta and the corresponding extreme random load effect value is considered. The evaluation of the distribution function of the extreme value by use of a particular first order reliability method was first described in a celebrated...... calculations. The calculation gives a limit state curvature correction factor on the probability approximation obtained by the RF algorithm. This correction factor is based on Breitung’s celebrated asymptotic formula. Example calculations with comparisons with exact results show an impressing accuracy...

  8. Correlations in condensed matter under extreme conditions a tribute to Renato Pucci on the occasion of his 70th birthday

    CERN Document Server

    2017-01-01

    This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.

  9. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  10. Modeling of concrete exposed to severe loading conditions - impact and fire

    International Nuclear Information System (INIS)

    Ozbolt, J.; Periskic, G.; Bosnjak, J.; Reinhardt, H.W.; Sharma, A.; Travas, V.

    2011-01-01

    It is well known that the behavior of concrete structures is strongly influenced by loading rate. Compared to quasi-static loading, concrete loaded by impact loading acts in different ways. First, there is a strain-rate influence on strength, stiffness, and ductility, and second, there are inertia forces activated. Both influences are clearly demonstrated in experiments. Moreover, for concrete structures, which exhibit damage and fracture phenomena, the failure mode and cracking pattern depend on loading rate. In general, there is a tendency that with the increase of loading rate the failure mode changes from mode-I to mixed mode. Furthermore, theoretical and experimental investigations indicate that after the crack reaches critical speed of propagation there is crack branching. First part of the present paper focuses on 3D finite-element studies of concrete structures of different kind exposed to impact loading. In the numerical studies the rate sensitive microplane model is used as a constitutive law. The strain-rate influence is captured by the activation energy theory. Inertia forces are implicitly accounted for through dynamic finite element analysis. The results of the study show that the failure mode and structural resistance strongly depend on the loading rate

  11. Quadrupole beam-transport experiment for heavy ions under extreme space charge conditions

    International Nuclear Information System (INIS)

    Chupp, W.; Faltens, A.; Hartwig, E.C.

    1983-03-01

    A Cs ion-beam-transport experiment is in progress to study beam behavior under extreme space-charge conditions. A five-lens section matches the beam into a periodic electrostatic quadrupole FODO channel and its behavior is found to agree with predictions. With the available parameters (less than or equal to 200 keV, less than or equal to 20 mA, πepsilon/sub n/ greater than or equal to 10 - 7 π rad-m, up to 41 periods) the transverse (betatron) occillation frequency (nu) can be depressed down to one-tenth of its zero current value (nu/sub 0/), where nu/sup 2/ = nu/sub 0//sup 2/ -#betta#/sub p/ 2 /2, and #betta#/sub p/ is the beam plasma frequency. The current can be controlled by adjustment of the gun and the emittance can be controlled independently by means of a set of charged grids

  12. Recent studies of transplutonium compounds: new directions and use of extreme conditions

    International Nuclear Information System (INIS)

    Peterson, J.R.; Begun, G.M.; Gibson, J.K.

    1987-01-01

    The number of bulk-phase compounds prepared and characterized for each of the transplutonium (TPu) elements drops off precipitously with increasing atomic number. However, efforts have been made to increase the number of TPu compounds known and also the range of investigative methods applied to their characterization. The results of a worldwide survey to determine the status of the preparation of new TPu compounds and/or the application of new investigative techniques to the study of such compounds in bulk will be presented. The focus will then shift to Oak Ridge projects: extreme conditions of pressure and/or temperature are being used for synthesis and for absorption and raman spectral studies; single crystals of trihalides are being grown for spectral and magnetic studies; new ternary chalcogenide-halide compounds are being characterized; vaporization thermodynamics of TPu compounds are being determined; and attempts to stabilize unusual oxidation states are being carried out

  13. Numerical simulation of deformation and failure processes of a complex technical object under impact loading

    Science.gov (United States)

    Kraus, E. I.; Shabalin, I. I.; Shabalin, T. I.

    2018-04-01

    The main points of development of numerical tools for simulation of deformation and failure of complex technical objects under nonstationary conditions of extreme loading are presented. The possibility of extending the dynamic method for construction of difference grids to the 3D case is shown. A 3D realization of discrete-continuum approach to the deformation and failure of complex technical objects is carried out. The efficiency of the existing software package for 3D modelling is shown.

  14. Cyclic fatigue resistance tests of Nickel-Titanium rotary files using simulated canal and weight loading conditions

    Directory of Open Access Journals (Sweden)

    Ok-In Cho

    2013-02-01

    Full Text Available Objectives This study compared the cyclic fatigue resistance of nickel-titanium (NiTi files obtained in a conventional test using a simulated canal with a newly developed method that allows the application of constant fatigue load conditions. Materials and Methods ProFile and K3 files of #25/.06, #30/.06, and #40/.04 were selected. Two types of testing devices were built to test their fatigue performance. The first (conventional device prescribed curvature inside a simulated canal (C-test, the second new device exerted a constant load (L-test whilst allowing any resulting curvature. Ten new instruments of each size and brand were tested with each device. The files were rotated until fracture and the number of cycles to failure (NCF was determined. The NCF were subjected to one-way ANOVA and Duncan's post-hoc test for each method. Spearman's rank correlation coefficient was computed to examine any association between methods. Results Spearman's rank correlation coefficient (ρ = -0.905 showed a significant negative correlation between methods. Groups with significant difference after the L-test divided into 4 clusters, whilst the C-test gave just 2 clusters. From the L-test, considering the negative correlation of NCF, K3 gave a significantly lower fatigue resistance than ProFile as in the C-test. K3 #30/.06 showed a lower fatigue resistance than K3 #25/.06, which was not found by the C-test. Variation in fatigue test methodology resulted in different cyclic fatigue resistance rankings for various NiTi files. Conclusions The new methodology standardized the load during fatigue testing, allowing determination fatigue behavior under constant load conditions.

  15. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    Science.gov (United States)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  16. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Science.gov (United States)

    Chen, Qushan; Hu, Tongning; Qin, Bin; Xiong, Yongqian; Fan, Kuanjun; Pei, Yuanji

    2018-04-01

    Huazhong University of Science and Technology (HUST) has built a compact linac-based terahertz free electron laser (THz-FEL) prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  17. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Directory of Open Access Journals (Sweden)

    Qushan Chen

    2018-04-01

    Full Text Available Huazhong University of Science and Technology (HUST has built a compact linac-based terahertz free electron laser (THz-FEL prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  18. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  19. A phenomenological SMA model for combined axial–torsional proportional/non-proportional loading conditions

    International Nuclear Information System (INIS)

    Bodaghi, M.; Damanpack, A.R.; Aghdam, M.M.; Shakeri, M.

    2013-01-01

    In this paper, a simple and robust phenomenological model for shape memory alloys (SMAs) is proposed to simulate main features of SMAs under uniaxial as well as biaxial combined axial–torsional proportional/non-proportional loadings. The constitutive model for polycrystalline SMAs is developed within the framework of continuum thermodynamics of irreversible processes. The model nominates the volume fractions of self-accommodated and oriented martensite as scalar internal variables and the preferred direction of oriented martensitic variants as directional internal variable. An algorithm is introduced to develop explicit relationships for the thermo-mechanical behavior of SMAs under uniaxial and biaxial combined axial–torsional proportional/non-proportional loading conditions and also thermal loading. It is shown that the model is able to simulate main aspects of SMAs including self-accommodation, martensitic transformation, orientation and reorientation of martensite, shape memory effect, ferro-elasticity and pseudo-elasticity. A description of the time-discrete counterpart of the proposed SMA model is presented. Experimental results of uniaxial tension and biaxial combined tension–torsion non-proportional tests are simulated and a good qualitative correlation between numerical and experimental responses is achieved. Due to simplicity and accuracy, the model is expected to be used in the future studies dealing with the analysis of SMA devices in which two stress components including one normal and one shear stress are dominant

  20. Structural condition assessment and service load performance of deteriorated prestressed concrete deck beam bridges

    Science.gov (United States)

    Fuentes, Juan Bolivar

    Precast pretensioned deck beam bridges are a generic bridge type widely used by IDOT for new construction through the end of the 1970's and still widely used on county roads throughout Illinois. While these bridges were economical to build, IDOT discontinued their use because reflective cracks developed along the length of the longitudinal joints between beams. Three 30 years old deteriorated beams were removed from an existing bridge over Spoon River in Fulton County, IL and delivered to Newmark Civil Engineering Laboratory. The program consisted of a series of comprehensive, destructive and non-destructive, tests and evaluations of the three beams with emphasis on three major areas; (1) The Condition Assessment of the as-delivered beams. (2) The service load performance of the bridge sub-assemblage constructed from those beams. After a comprehensive inspection of the beams was completed, the beams were integrated together into a bridge subassembly that simulated a bridge lane. (3) Following the service load tests, the three beams were separated and tested individually to failure. The critical signs to be observed in existing structures that will lead the inspectors to conclude that a deck beam is being overloaded were are also studied. Several conclusions were found. Cracking of the longitudinal joint has little effect on the stiffness of the bridge if the transverse rod is snug. The presence of a snug transverse tie rod increases the strength of the longitudinal joint. After a longitudinal joint has fractured, reincorporating a snug transverse rod can significantly reestablish the stiffness of the longitudinal joint and reduce overloading of a deteriorated beam. Participation factors must be based on relative bending moments of one beam with respect to the total amount of bending moment produced by the applied load and not to the amount of total vertical displacement. The participation factors will vary along the span of the bridge deck and will depend on the

  1. FRP Composites Strengthening of Concrete Columns under Various Loading Conditions

    Directory of Open Access Journals (Sweden)

    Azadeh Parvin

    2014-04-01

    Full Text Available This paper provides a review of some of the progress in the area of fiber reinforced polymers (FRP-strengthening of columns for several loading scenarios including impact load. The addition of FRP materials to upgrade deficiencies or to strengthen structural components can save lives by preventing collapse, reduce the damage to infrastructure, and the need for their costly replacement. The retrofit with FRP materials with desirable properties provides an excellent replacement for traditional materials, such as steel jacket, to strengthen the reinforced concrete structural members. Existing studies have shown that the use of FRP materials restore or improve the column original design strength for possible axial, shear, or flexure and in some cases allow the structure to carry more load than it was designed for. The paper further concludes that there is a need for additional research for the columns under impact loading senarios. The compiled information prepares the ground work for further evaluation of FRP-strengthening of columns that are deficient in design or are in serious need for repair due to additional load or deterioration.

  2. Model-Based Load Estimation for Predictive Condition Monitoring of Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pederen, Bo Juul; Grunnet, Jacob Deleuran

    signal is performed online, and a Load Indicator Signal (LIS) is formulated as a ratio between current estimated accumulated fatigue loads and its expected value based only on a priori knowledge (WTG dynamics and wind climate). LOT initialisation is based on a priori knowledge and can be obtained using...... programme for pre-maintenance actions. The performance of LOT is demonstrated by applying it to one of the most critical WTG components, the gearbox. Model-based load CMS for gearbox requires only standard WTG SCADA data. Direct measuring of gearbox fatigue loads requires high cost and low reliability...... measurement equipment. Thus, LOT can significantly reduce the price of load monitoring....

  3. Full Scale Test SSP 34m blade, edgewise loading LTT. Extreme load and PoC_InvE Data report

    DEFF Research Database (Denmark)

    Nielsen, Magda; Roczek-Sieradzan, Agnieszka; Jensen, Find Mølholt

    This report is the second report covering the research and demonstration project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last”, supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested...... in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risø load, where 80% Risø load corresponds to 100...... stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risø load and the results applicable for the investigation of the influence of the invention on the profile...

  4. Acclimatization to extreme heat

    Science.gov (United States)

    Warner, M. E.; Ganguly, A. R.; Bhatia, U.

    2017-12-01

    Heat extremes throughout the globe, as well as in the United States, are expected to increase. These heat extremes have been shown to impact human health, resulting in some of the highest levels of lives lost as compared with similar natural disasters. But in order to inform decision makers and best understand future mortality and morbidity, adaptation and mitigation must be considered. Defined as the ability for individuals or society to change behavior and/or adapt physiologically, acclimatization encompasses the gradual adaptation that occurs over time. Therefore, this research aims to account for acclimatization to extreme heat by using a hybrid methodology that incorporates future air conditioning use and installation patterns with future temperature-related time series data. While previous studies have not accounted for energy usage patterns and market saturation scenarios, we integrate such factors to compare the impact of air conditioning as a tool for acclimatization, with a particular emphasis on mortality within vulnerable communities.

  5. [Optimization on trehalose loading technique as protective conditioning for lyophilization of human platelets].

    Science.gov (United States)

    Liu, Jing-Han; Zhou, Jun; Ouyang, Xi-Lin; Li, Xi-Jin; Lu, Fa-Qiang

    2005-08-01

    This study was aimed to further optimize trehalose loading technique including loading temperature, loading time, loading solution and loading concentration of trehalose, based on the established parameters. Loading efficiency in plasma was compared with that in buffer at 37 degrees C; the curves of intracellular trehalose concentration versus loading time at 37 degrees C and 16 degrees C were measured; curves of mean platelet volume (MPV) versus loading time and loading concentration were investigated and compared. According to results obtained, the loaing time, loading temperature, loading solution and trehalose concentration were ascertained for high loading efficiency of trehalose into human platelet. The results showed that the loading efficiency in plasma was markedly higher than that in buffer at 37 degrees C, the loading efficiency in plasma at 37 degrees C was significantly higher than that at 16 degrees C and reached 19.51% after loading for 4 hours, but 6.16% at 16 degrees C. MPV at 16 degrees C was increased by 43.2% than that at 37 degrees C, but had no distinct changes with loading time and loading concentration. In loading at 37 degrees C, MPV increased with loading time and loading concentration positively. Loading time and loading concentration displayed synergetic effect on MPV. MPV increased with loading time and concentration while trehalose loading concentration was above 50 mmol/L. It is concluded that the optimization parameters of trehalose loading technique are 37 degrees C (temperature), 4 hours (leading time), plasma (loading solution), 50 mmol/L (feasible trehalose concentration). The trehalose concentration can be adjusted to meet the requirement of lyophilization.

  6. Technology development of protein rich concentrates for nutrition in extreme conditions using soybean and meat by-products.

    Science.gov (United States)

    Kalenik, Tatiana K; Costa, Rui; Motkina, Elena V; Kosenko, Tamara A; Skripko, Olga V; Kadnikova, Irina A

    2017-01-01

    There is a need to develop new foods for participants of expeditions in extreme conditions, which must be self-sufficient. These foods should be light to carry, with a long shelf life, tasty and with  high nutrient density. Currently, protein sources are limited mainly to dried and canned meat. In this work, a protein-rich dried concentrate suitable for extreme expeditions was developed using soya, tomato, milk whey and meat by-products. Protein concentrates were developed using minced beef liver and heart, dehydrated and mixed with a soya protein-lycopene coagulate (SPLC) obtained from a solution prepared with germi- nated soybeans and mixed with tomato paste in milk whey, and finally dried. The technological parameters of pressing SPLC and of drying the protein concentrate were optimized using response surface methodology. The optimized technological parameters to prepare the protein concentrates were obtained, with 70:30 being the ideal ratio of minced meat to SPLC. The developed protein concentrates are characterized by a high calorific value of 376 kcal/100 g of dry product, with a water content of 98 g·kg-1, and 641-644 g·kg-1 of proteins. The essential amino acid indices are 100, with minimum essential amino acid content constitut- ing 100-128% of the FAO standard, depending on the raw meat used. These concentrates are also rich in micronutrients such as β-carotene and vitamin C. Analysis of the nutrient content showed that these non-perishable concentrates present a high nutritional value and complement other widely available vegetable concentrates to prepare a two-course meal. The soups and porridges prepared with these concentrates can be classified as functional foods, and comply with army requirements applicable to food products for extreme conditions.

  7. Low cognitive load strengthens distractor interference while high load attenuates when cognitive load and distractor possess similar visual characteristics.

    Science.gov (United States)

    Minamoto, Takehiro; Shipstead, Zach; Osaka, Naoyuki; Engle, Randall W

    2015-07-01

    Studies on visual cognitive load have reported inconsistent effects of distractor interference when distractors have visual characteristic that are similar to the cognitive load. Some studies have shown that the cognitive load enhances distractor interference, while others reported an attenuating effect. We attribute these inconsistencies to the amount of cognitive load that a person is required to maintain. Lower amounts of cognitive load increase distractor interference by orienting attention toward visually similar distractors. Higher amounts of cognitive load attenuate distractor interference by depleting attentional resources needed to process distractors. In the present study, cognitive load consisted of faces (Experiments 1-3) or scenes (Experiment 2). Participants performed a selective attention task in which they ignored face distractors while judging a color of a target dot presented nearby, under differing amounts of load. Across these experiments distractor interference was greater in the low-load condition and smaller in the high-load condition when the content of the cognitive load had similar visual characteristic to the distractors. We also found that when a series of judgments needed to be made, the effect was apparent for the first trial but not for the second. We further tested an involvement of working memory capacity (WMC) in the load effect (Experiment 3). Interestingly, both high and low WMC groups received an equivalent effect of the cognitive load in the first distractor, suggesting these effects are fairly automatic.

  8. Fault condition stress analysis of NET 16 TF coil model

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1992-04-01

    As part of the design process of the NET/ITER toroidal field coils (TFCs), the mechanical behaviour of the magnetic system under fault conditions has to be analysed in some detail. Under fault conditions, either electrical or mechanical, the magnetic loading of the coils becomes extreme and further mechanical failure of parts of the overall structure might occur (e.g. failure of the coil, gravitational support, intercoil structure). The mechanical behaviour of the magnetic system under fault conditions has been analysed with a finite element model of the complete TFC system. The analysed fault conditions consist of: a thermal fault, electrical faults and mechanical faults. The mechanical faults have been applied simultaneously with an electrical fault. This report described the work carried out to create the finite element model of 16 TFCs and contains an extensive presentation of the results, obtained with this model, of a normal operating condition analysis and 9 fault condition analyses. Chapter 2-5 contains a detailed description of the finite element model, boundary conditions and loading conditions of the analyses made. Chapters 2-4 can be skipped if the reader is only interested in results. To understand the results presented chapter 6 is recommended, which contains a detailed description of all analysed fault conditions. The dimensions and geometry of the model correspond to the status of the NET/ITER TFC design of May 1990. Compared with previous models of the complete magnetic system, the finite element model of 16 TFCs is 'detailed', and can be used for linear elastic analysis with faulted loads. (author). 8 refs.; 204 figs.; 134 tabs

  9. Extreme Conditioning Programs: Potential Benefits and Potential Risks.

    Science.gov (United States)

    Knapik, Joseph J

    2015-01-01

    CrossFit, Insanity, Gym Jones, and P90X are examples of extreme conditioning programs (ECPs). ECPs typically involve high-volume and high-intensity physical activities with short rest periods between movements and use of multiple joint exercises. Data on changes in fitness with ECPs are limited to CrossFit investigations that demonstrated improvements in muscle strength, muscular endurance, aerobic fitness, and body composition. However, no study has directly compared CrossFit or other ECPs to other more traditional forms of aerobic and resistance training within the same investigation. These direct comparisons are needed to more adequately evaluate the effectiveness of ECPs. Until these studies emerge, the comparisons with available literature suggest that improvements in CrossFit, in terms of muscular endurance (push-ups, sit-ups), strength, and aerobic capacity, appear to be similar to those seen in more traditional training programs. Investigations of injuries in ECPs are limited to two observational studies that suggest that the overall injury rate is similar to that seen in other exercise programs. Several cases of rhabdomyolysis and cervical carotid artery dissections have been reported during CrossFit training. The symptoms, diagnosis, and treatment of these are reviewed here. Until more data on ECPs emerge, physical training should be aligned with US Army doctrine. If ECPs are included in exercise programs, trainers should (1) have appropriate training certifications, (2) inspect exercise equipment regularly to assure safety, (3) introduce ECPs to new participants, (4) ensure medical clearance of Soldiers with special health problems before participation in ECPs, (4) tailor ECPs to the individual Soldier, (5) adjust rest periods to optimize recovery and reduce fatigue, (6) monitor Soldiers for signs of overtraining, rhabdomyolysis, and other problems, and (7) coordinate exercise programs with other unit training activities to eliminate redundant activities

  10. Unique Nature of the Quality of Life in the Context of Extreme Climatic, Geographical and Specific Socio-Cultural Living Conditions

    Science.gov (United States)

    Kulik, Anastasia; Neyaskina, Yuliya; Frizen, Marina; Shiryaeva, Olga; Surikova, Yana

    2016-01-01

    This article presents the results of a detailed empirical research, aimed at studying the quality of life in the context of extreme climatic, geographical and specific sociocultural living conditions. Our research is based on the methodological approach including social, economical, ecological and psychological characteristics and reflecting…

  11. Cognitive processing load across a wide range of listening conditions: insights from pupillometry.

    Science.gov (United States)

    Zekveld, Adriana A; Kramer, Sophia E

    2014-03-01

    The pupil response to speech masked by interfering speech was assessed across an intelligibility range from 0% to 99% correct. In total, 37 participants aged between 18 and 36 years and with normal hearing were included. Pupil dilation was largest at intermediate intelligibility levels, smaller at high intelligibility, and slightly smaller at very difficult levels. Participants who reported that they often gave up listening at low intelligibility levels had smaller pupil dilations in these conditions. Participants who were good at reading masked text had relatively large pupil dilation when intelligibility was low. We conclude that the pupil response is sensitive to processing load, and possibly reflects cognitive overload in difficult conditions. It seems affected by methodological aspects and individual abilities, but does not reflect subjective ratings. Copyright © 2014 Society for Psychophysiological Research.

  12. Restraint behavior of concrete under extreme thermal and hygral conditions

    International Nuclear Information System (INIS)

    Schwesinger, P.; Dommnich, F.

    1989-01-01

    Stresses due to temperature may be a considerable part of the whole loading of the structure especially in reactor vessels, chimneys and other structures. During using of this structures the heating cycle consisting of heating and cooling may be repeated for several times. On the other hand the initial load, the preloading time, the heating rate and the moisture of concrete can differ in respect of the design or utilization of the structure. The effect of this environmental factors on the restraint behavior of concrete is presented in this paper

  13. Comparison of creep behavior under varying load/temperature conditions between Hastelloy XR alloys with different boron content levels

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime; Shindo, Masami; Tanabe, Tatsuhiko; Nakasone, Yuji.

    1996-01-01

    In the design of the high-temperature components, it is often required to predict the creep rupture life under the conditions in which the stress and/or temperature may vary by using the data obtained with the constant load and temperature creep rupture tests. Some conventional creep damage rules have been proposed to meet the above-mentioned requirement. Currently only limited data are available on the behavior of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the High-Temperature Engineering Test Reactor (HTTR), under varying stress and/or temperature creep conditions. Hence a series of constant load and temperature creep rupture tests as well as varying load and temperature creep rupture tests was carried out on two kinds of Hastelloy XR alloys whose boron content levels are different, i.e., below 10 and 60 mass ppm. The life fraction rule completely fails in the prediction of the creep rupture life of Hastelloy XR with 60 mass ppm boron under varying load and temperature conditions though the rule shows good applicability for Hastelloy XR with below 10 mass ppm boron. The change of boron content level of the material during the tests is the most probable source of impairing the applicability of the life fraction rule to Hastelloy XR whose boron content level is 60 mass ppm. The modified life fraction rule has been proposed based on the dependence of the creep rupture strength on the boron content level of the alloy. The modified rule successfully predicts the creep rupture life under the two stage creep test conditions from 1000 to 900degC. The trend observed in the two stage creep tests from 900 to 1000degC can be qualitatively explained by the mechanism that the oxide film which is formed during the prior exposure to 900degC plays the role of the protective barrier against the boron dissipation into the environment. (J.P.N.)

  14. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  15. Full Scale Test of SSP 34m blade, edgewise loading LTT

    DEFF Research Database (Denmark)

    Nielsen, Magda; Jensen, Find Mølholt; Nielsen, Per Hørlyk

    This report is a part of the research project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60......% of an unrealistic extreme event, corresponding to 75% of a certificated extreme load. This report describes the background, the test set up, the tests and the results. For this project, a new solution has been used for the load application and the solution for the load application is described in this report...... as well. The blade has been submitted to thorough examination. More areas have been examined with DIC, both global and local deflections have been measured, and also 378 strain gauge measurements have been performed. Furthermore Acoustic Emission has been used in order to detect damage while testing new...

  16. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    Science.gov (United States)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a

  17. Performance Evaluation of UPQC under Nonlinear Unbalanced Load Conditions Using Synchronous Reference Frame Based Control

    Science.gov (United States)

    Kota, Venkata Reddy; Vinnakoti, Sudheer

    2017-12-01

    Today, maintaining Power Quality (PQ) is very important in the growing competent world. With new equipments and devices, new challenges are also being put before power system operators. Unified Power Quality Conditioner (UPQC) is proposed to mitigate many power quality problems and to improve the performance of the power system. In this paper, an UPQC with Fuzzy Logic controller for capacitor voltage balancing is proposed in Synchronous Reference Frame (SRF) based control with Modified Phased Locked Loop (MPLL). The proposed controller with SRF-MPLL based control is tested under non-linear and unbalanced load conditions. The system is developed in Matlab/Simulink and its performance is analyzed under various conditions like non-linear, unbalanced load and polluted supply voltage including voltage sag/swells. Active and reactive power flow in the system, power factor and %THD of voltages and currents before and after compensation are also analyzed in this work. Results prove the applicability of the proposed scheme for power quality improvement. It is observed that the fuzzy controller gives better performance than PI controller with faster capacitor voltage balancing and also improves the dynamic performance of the system.

  18. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  19. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities

    Science.gov (United States)

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.

    2017-12-01

    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the

  20. Climate control loads prediction of electric vehicles

    International Nuclear Information System (INIS)

    Zhang, Ziqi; Li, Wanyong; Zhang, Chengquan; Chen, Jiangping

    2017-01-01

    Highlights: • A model of vehicle climate control loads is proposed based on experiments. • Main climate control loads of the modeled vehicle are quantitatively analyzed. • Range reductions of the modeled vehicle under different conditions are simulated. - Abstract: A new model of electric vehicle climate control loads is provided in this paper. The mathematical formulations of the major climate control loads are developed, and the coefficients of the formulations are experimentally determined. Then, the detailed climate control loads are analyzed, and the New European Driving Cycle (NEDC) range reductions due to these loads are calculated under different conditions. It is found that in an electric vehicle, the total climate control loads vary with the vehicle speed, HVAC mode and blower level. The ventilation load is the largest climate control load, followed by the solar radiation load. These two add up to more than 80% of total climate control load in summer. The ventilation load accounts for 70.7–83.9% of total heating load under the winter condition. The climate control loads will cause a 17.2–37.1% reduction of NEDC range in summer, and a 17.1–54.1% reduction in winter, compared to the AC off condition. The heat pump system has an advantage in range extension. A heat pump system with an average heating COP of 1.7 will extend the range by 7.6–21.1% based on the simulation conditions.

  1. Effect of interface condition on the undrained capacity of subsea mudmats under six-degree-of-freedom loading

    OpenAIRE

    Shen, Z.; Feng, X.; Gourvenec, S.

    2017-01-01

    The effect of soil–foundation interface condition on the undrained capacity of rectangular mudmat foundations under loading in six degrees of freedom is investigated. Undrained failure envelopes for mudmats with zero-tension interface have been derived from finite-element analyses, and compared with the solutions from traditional methods and established for an unlimited-tension interface condition. The zero-tension interface has minimal effect on failure envelopes in the absence of moment, bu...

  2. Normalized performance and load data for the deepwind demonstrator in controlled conditions

    DEFF Research Database (Denmark)

    Battisti, L.; Benini, E.; Brighenti, A.

    2016-01-01

    , derived from real scale measurements on a three-bladed Troposkien vertical-axis wind turbine, are manipulated in a convenient form to be easily compared with the typical outputs provided by simulation codes. The here proposed data complement and support the measurements already presented in "Wind Tunnel......Performance and load normalized coefficients, deriving from an experimental campaign of measurements conducted at the large scale wind tunnel of the Politecnico di Milano (Italy), are presented with the aim of providing useful benchmark data for the validation of numerical codes. Rough data...... Testing of the DeepWind Demonstrator in Design and Tilted Operating Conditions" (Battisti et al., 2016) [1]....

  3. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia

    International Nuclear Information System (INIS)

    Forkel, Matthias; Beer, Christian; Thonicke, Kirsten; Cramer, Wolfgang; Bartalev, Sergey; Schmullius, Christiane

    2012-01-01

    Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires can degrade the forest, affect human values, emit huge amounts of carbon and aerosols and alter the land surface albedo. Usually, wind, slope and dry air conditions have been recognized as factors determining fire spread. Here we identify surface moisture as an additional important driving factor for the evolution of extreme fire events in the Baikal region. An area of 127 000 km 2 burned in this region in 2003, a large part of it in regions underlain by permafrost. Analyses of satellite data for 2002–2009 indicate that previous-summer surface moisture is a better predictor for burned area than precipitation anomalies or fire weather indices for larch forests with continuous permafrost. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil, and how coupled mechanisms can lead to extreme events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, vegetation functioning, and fire activity in Earth system models for projecting climate change impacts over the next century. (letter)

  4. Comparison and development of advanced dosimetric techniques to be used under extreme climatic conditions

    International Nuclear Information System (INIS)

    Madhvanath, U.

    1975-08-01

    The post-irradiation fading characteristics of various dosimeters in function of relative humidity of air during storage were tested in specially set up humidity boxes. The temperature and relative humidity were varied between 5deg-35degC and 40-90%, respectively. Fading was 70% and 80% at 2 and 6 days respectively, for Kodak Type 2 film under 28degC and 76% relative humidity. Under these conditions the corresponding values for NTA emulsions were 30% and 80% respectively. Agfa-Gevaert films proved to be less sensitive and gave 20% and 30%, respectively, for the mentioned intervals. When Kodak Type 2 film was sealed in polythene bags, fading was reduced considerably, to appr. 15% in 4 weeks. Alternate storage of exposed films in humid and dry conditions also reduced fading to the same extent. When NTA emulsions were double-sealed with desiccant inside fading was reduced to 10% in 15 days. CaSO 4 :Dy (DRP and Harshaw) showed only 7% fading in 3 months. LiF TLD-100 was more sensitive, 13% in 2 months. Gamma-irradiated Li-borate has faded up to 30% at extreme climatic conditions in 3 months but thermal neutron irradiated Li-borate was resistant against fading for this period

  5. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  6. The Load Level of Modern Wind Turbines according to IEC 61400-1

    International Nuclear Information System (INIS)

    Freudenreich, K; Argyriadis, K

    2007-01-01

    The paper describes some effects on the load level of state-of-the art multi megawatt wind turbines introduced by the new edition of the standard IEC 61400-1:2005 W ind Turbines - Part 1: Design requirements . Compared to the previous edition, especially the extreme load determination has been modified by applying stochastic and statistical analyses. Within this paper the effect on the overall load level of wind turbines is demonstrated and occurring problems are discussed. Load simulations have been carried out for four state-of-the-art multi-megawatt wind turbines of different design concepts and from different manufacturers. The blade root bending moments and tip deflection have been determined by applying different extrapolation methods. Advantages and disadvantages of these methods and tail fittings for different load components and wind turbine technologies are discussed and interpreted. Further on, the application of the extreme turbulence model is demonstrated. The dependence of the load level on the turbulence intensity and control system, as well as the interaction with extrapolated loads is discussed and limitations outlined. The obtained load level is compared to the overall load level of the turbines according to the previous edition of the standard, IEC 61400-1:1999

  7. Research of Impact Load in Large Electrohydraulic Load Simulator

    Directory of Open Access Journals (Sweden)

    Yongguang Liu

    2014-01-01

    Full Text Available The stronger impact load will appear in the initial phase when the large electric cylinder is tested in the hardware-in-loop simulation. In this paper, the mathematical model is built based on AMESim, and then the reason of the impact load is investigated through analyzing the changing tendency of parameters in the simulation results. The inhibition methods of impact load are presented according to the structural invariability principle and applied to the actual system. The final experimental result indicates that the impact load is inhibited, which provides a good experimental condition for the electric cylinder and promotes the study of large load simulator.

  8. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  9. DeRisk - Accurate prediction of ULS wave loads. Outlook and first results

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Dixen, Martin; Ghadirian, Amin

    2016-01-01

    Loads from extreme waves can be dimensioning for the substructures of offshore wind turbines. The DeRisk project (2015-2019) aims at an improved load evaluation procedure for extreme waves through application of advanced wave models, laboratory tests of load effects, development of hydrodynamic...... load models, aero-elastic response calculations and statistical analysis. This first paper from the project outlines the content and philosophy behind DeRisk. Next, the first results from laboratory tests with irregular waves are presented, including results for 2D and 3D focused wave groups....... The results of focused wave group tests and a 6-hour (full scale duration) test are reproduced numerically by re-application of the wave paddle signal in a fully nonlinear potential flow wave model. A good match for the free surface elevation and associated exceedance probability curve is obtained. Finally...

  10. Methodology for reliability based condition assessment

    International Nuclear Information System (INIS)

    Mori, Y.; Ellingwood, B.

    1993-08-01

    Structures in nuclear power plants may be exposed to aggressive environmental effects that cause their strength to decrease over an extended period of service. A major concern in evaluating the continued service for such structures is to ensure that in their current condition they are able to withstand future extreme load events during the intended service life with a level of reliability sufficient for public safety. This report describes a methodology to facilitate quantitative assessments of current and future structural reliability and performance of structures in nuclear power plants. This methodology takes into account the nature of past and future loads, and randomness in strength and in degradation resulting from environmental factors. An adaptive Monte Carlo simulation procedure is used to evaluate time-dependent system reliability. The time-dependent reliability is sensitive to the time-varying load characteristics and to the choice of initial strength and strength degradation models but not to correlation in component strengths within a system. Inspection/maintenance strategies are identified that minimize the expected future costs of keeping the failure probability of a structure at or below an established target failure probability during its anticipated service period

  11. Effect of load on the tribological properties of hypereutectic Al-Si alloy under boundary lubrication conditions

    Science.gov (United States)

    Kumar, Parveen; Wani, M. F.

    2017-11-01

    Researchers reported that the IC engine components (piston, cylinder liner etc) fail due to the friction losses (~45%) and wear losses (~25-40%). So the demand of light weight, low friction and wear resistance alloys increases day by day, which reduces the emission and increases the efficiency of the IC engine. In this connection, tribological tests on hypereutectic Al-25Si alloy were performed using a ball-on-disk configuration under dry and lubricated sliding conditions. Hypereutectic Al-25Si alloy was prepared by rapid solidification process with T6 condition. T6 condition improves the friction, wear and mechanical properties of the alloy. Friction coefficient and wear rate of the alloy was measured under high loads ranging from 100 to 300 N. It was found that the friction coefficient (COF) and wear rate of hypereutectic Al-25Si alloy/steel tribo pair increased with increase in load. Significant reduction in COF and wear rate was accomplished with SAE20W50 engine oil and Si particles act as solid lubricant. Optical microscope, 3D surface profilometer and scanning electron microscope (SEM) coupled with an energy dispersive spectrometer (EDS) were used for characterization the worn surface morphologies. The morphology, size and distribution of high Si particles due to its fabrication process caused the improvements in COF and wear rate under lubricated conditions. Adhesive wear, abrasive wear and plastic deformation acted as the dominant wear mechanism for hypereutectic Al-25Si alloy.

  12. Laguna Verde annulus pressurization loads evaluation

    International Nuclear Information System (INIS)

    Castaneda, M. A.; Cruz, M. A.; Cardenas, J. B.; Vargas, A.; Cruz, H. J.; Mercado, J. J.

    2010-10-01

    Annulus pressurization, jet impingement, pipe whip restraint and jet thrust are phenomena related to postulated pipe ruptures. A postulated pipe rupture at the weld between recirculation, or feedwater piping and a reactor nozzle safe end, will lead to a high flow rate of flashing water/steam mixture into the annulus between the reactor pressure vessel and the biological shield wall. The total effect of the vessel and pipe inventory blowdown from the break being postulated must be accounted for in the evaluation. A recirculation line break will give rise to an angular dependent short term pressure differential around the vessel, followed by a longer term pressure buildup in the annulus. A recirculation line postulated rupture may not produce worst case conditions and reference to time intervals for only the recirculation break should be treated superficially. A postulated rupture of the feedwater piping may produce the extreme case for determining: 1) the shield wall and reactor vessel to pedestal interactions, 2) loading on the reactor vessel internals, or 3) responses for the balance of piping attached to the vessel. Recently it was identified a potential issue regarding the criteria used to determine which cases were evaluated for Annulus Pressurization (A P) loads for new loads plants. The original A P loads methodology in the late 1970 and early 1980 years separated the mass/energy release calculation from the structural response calculation based on the implicit assumption that the maximum overall mass/energy release will result in maximizing the structural response and corresponding stresses on the reactor pressure vessel, internals, and containment structures. This process did not consider the dynamic response in the primary and secondary safety related structures, components and equipment. Consequently, the A P loads used as input for design adequacy evaluations of Nuclear Steam Supply System safety related components for new loads plants might have

  13. Covered Interest-Rate Parity Revisited: an Extreme Value Copula Analysis

    Directory of Open Access Journals (Sweden)

    Mikel Ugando-Peñate

    2015-11-01

    Full Text Available This article studied the covered interest-rate parity (CIP condition under extreme market movements using extreme value theory and extreme value copulas to characterize dependence between extreme interest rate differentials and forward premium. The empirical analysis for the CIP between interest rates for the US dollar and the British pound indicates that there is strong co-movement between interest rate differentials and forward premium at different maturities and in both upper and lower tails. This conclusion would support the existence of the CIP condition under extreme market movements.

  14. Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations

    Science.gov (United States)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2018-03-01

    Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.

  15. Condensed Matter NMR under Extreme Conditions: Challenges and Opportunities

    Science.gov (United States)

    Reyes, Arneil

    2006-11-01

    Advances in resistive magnet and power supply technology have made available extremely high magnetic fields suitable for condensed matter broadline NMR experiments. This capability expands the available phase space for investigating a wide variety of materials using magnetic resonance; utilizing the strength of the field to expose or induce new physical phenomena resulting in better understanding of the physics. Continuous fields up to 45T in NHMFL Hybrid magnet have brought new challenges in designing NMR instrumentation. Field strengths and sample space limitations put constraints on RF pulse power, tuning range, bandwidth, and temperature control. The inclusion of other capabilities, including high pressure, optics, and sample rotation requires intricate probe design and construction, while extremely low milliKelvin temperatures are desired in order to explore energy scales where thermal fluctuations are suppressed. Optimization of these devices has been of paramount consideration in NHMFL Condensed Matter NMR user program. Science achieved at high fields, the new initiatives to develop resistively-detected NMR in 2D electron gas and similar systems, and the current new generation Series-Connected Hybrid magnets for NMR work will be discussed. The NHMFL is supported by the National Science Foundation and the State of Florida.

  16. Development of a system for simultaneously generating triple extreme conditions for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Shigeju [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    We have developed new system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of : (1) a liquid-helium cryostat which enables the sample temperature range of 1.7 K to 200 K, (2) a superconducting magnet providing a vertical field up to 5 Tesla with antisymmetric split-coil geometry for polarized-beam experiments, and (3) a non-magnetic clamping high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 Gpa. In the workshop, we will report the outline of the system and some results of performance tests using the system at JRR-3M of JAERI. (author)

  17. Effectiveness of oxytetracycline in reducing the bacterial load in rohu fish (Labeo rohita, Hamilton under laboratory culture condition

    Directory of Open Access Journals (Sweden)

    Syed Ariful Haque

    2014-04-01

    Full Text Available Objective: To observe the effectiveness of most widely used antibiotic, oxytetracycline (OTC in reducing the bacterial load in rohu fish under artificial culture condition in the laboratory. Methods: The experiment was conducted in the Faculty Fisheries, Bangladesh Agricultural University, Mymensingh-2202. The fish were reared in 8 aquaria where fish in 5 aquaria were used for replication of the treatment (experimental group and fish in remaining 3 aquaria were considered as a control (Control group. OTC was fed to the fish in the experimental aquarium at the rate of 2 g/kg through diet twice daily whereas fish reared under control condition was given feed without antibiotic for 20 d and bacterial content in the aquarium water, gills, skin and intestine of fish were estimated at every alternative day after onset of the experiment. Results: Rearing the fish with OTC treated feed resulted in gradual decrease of bacterial load in the aquarium water, gills, intestine and skin of the fish whereas the content remain unchanged or little increased in the control group. Water quality parameters such as dissolved oxygen, pH and total hardness were within the suitable range in the experimental aquarium but not in control aquaria throughout the experimental period. Conclusions: These results suggest that OTC could be a potential antibiotic to reduce the bacterial load in fish and can be used commercially for maintaining the fish health in aquarium conditions.

  18. Extreme loads seismic testing of conduit systems

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Harrison, S.; Shi, Z.T.

    1991-01-01

    Rigid steel conduit (thin-wall tubes with threaded connections) containing electrical cabling are a common feature in nuclear power plants. Conduit systems are in many cases classified in U.S.A. practice as Seismic Category I structures. this paper summarizes results and others aspects of a dynamic test program conducted to investigate conduit systems seismic performance under three-axis excitation for designs representative at a nuclear power plant sited near Ft. Worth, Texas (a moderate seismic zone), with a Safe Shutdown Earthquake (SSE) of 0.12 g. Test specimens where subjected to postulated seismic events, including excitation well in excess of Safe Shutdown Earthquake events typical for U.S.A. nuclear power stations. A total of 18 conduit systems of 9-meter nominal lengths were shake table mounted and subjected to a variety of tests. None of the specimens suffered loss of load capacity when subjected to a site-enveloping Safe Shutdown Earthquake (SSE). Clamp/attachment hardware failures only began to occur when earthquake input motion was scaled upward to minimum values of 2.3-4.6 times site enveloping SSE response spectra. Tensile and/or shear failure of clamp attachment bolts or studs was the failure mode in all case in which failure was induced. (author)

  19. Compas project stress analysis of HLW containers: behaviour under realistic disposal conditions

    International Nuclear Information System (INIS)

    Ove Arup and Partners, London

    1990-01-01

    The Compas project is concerned with the structural performance of metal overpacks which may be used to encapsulate vitrified high-level waste (HLW) forms before disposal in deep geological repositories. In this final stage of the project, analysis of an HLW overpack of realistic design is performed to predict its behaviour when subjected to likely repository loads. This analysis work is undertaken with the benefit of experience gained in previous phases of the project in which the ability to accurately predict overpack behaviour, when subjected to a uniform external pressure, was demonstrated. Burial in clay, granite and salt environments has been considered and two distinct loading arrangements identified, in an attempt to represent the worst conditions that could be imposed by such media. The analysis successfully demonstrates the ability of the containers to withstand extreme, yet credible, repository loads

  20. Improving the thermal integrity of new single-family detached residential buildings: Documentation for a regional database of capital costs and space conditioning load savings

    International Nuclear Information System (INIS)

    Koomey, J.G.; McMahon, J.E.; Wodley, C.

    1991-07-01

    This report summarizes the costs and space-conditioning load savings from improving new single-family building shells. It relies on survey data from the National Association of Home-builders (NAHB) to assess current insulation practices for these new buildings, and NAHB cost data (aggregated to the Federal region level) to estimate the costs of improving new single-family buildings beyond current practice. Space-conditioning load savings are estimated using a database of loads for prototype buildings developed at Lawrence Berkeley Laboratory, adjusted to reflect population-weighted average weather in each of the ten federal regions and for the nation as a whole

  1. Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions

    Science.gov (United States)

    Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.

  2. Puget Sound Area Electric Reliability Plan. Appendix D, Conservation, Load Management and Fuel Switching Analysis : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  3. A complex study on the reliability assessment of the containment of a PWR. Part III.- Structural reliability assessment under internal and external loading conditions

    International Nuclear Information System (INIS)

    Bauer, J.; Schueller, G.I.

    1977-01-01

    The first part of the analysis is concerned with the determination of the failure probability of the steel hull under internal load conditions. Two independent failure criteria are the basis for this calculation; the first one being the ultimate yield which is actually an instability condition and the second one being the fracture condition as described in Part II of the paper. Both the global and the local failure probabilities are investigated. The second part of the analysis is concerned with the external load case of earthquake. As it has already been described in Part I the probability of occurrence of a LOCA, given an earthquake has been considered in connection with the probable damage which the steel hull might experience during the earthquake. In other words the survival probability of the hull with deteriorated resistance is calculated, taking into account the frequencies of occurrence of the various events. The third part of the analysis is concerned with the reliability determination of the reinforced concrete dome structure, which is supposed to protect, the steel hull against external load conditions such as airplane crash and external pressure waves (the latter covering the load case of tornado occurrence). The reliability analysis of the reinforced concrete structure under earthquake loading is performed by utilizing the time-history method. Some aspects of the drawbacks of the response spectra method -when used in a risk analysis- are pointed out. The probability distribution of the concrete strength as determined under intermediate strain rate as described in Part II is utilized in the analysis. Finally the remaining two external load cases are discussed in light of their use in a reliability analysis and with respect to their frequency of occurrence and the probability distribution of their load intensities. The reliability demonstration is performed using the containment structure of the PWR-plant 'Biblis B' which is locate

  4. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  5. Numerical Simulation of Floating Bodies in Extreme Free Surface Waves

    Science.gov (United States)

    Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling

    2010-05-01

    A task of the EPSRC funded research project 'Extreme Wave loading on Offshore Wave Energy Devices: a Hierarchical Team Approach' is to investigate the survivability of two wave energy converter (WEC) devices Pelamis and the Manchester Bobber using different CFD approaches. Both devices float on the water surface, generating the electricity from the motion of the waves. In this paper, we describe developments of the AMAZON-SC 3D numerical wave tank (NWT) to study extreme wave loading of a fixed or floating (in Heave motion) structure. The extreme wave formulation as an inlet condition is due to Dalzell (1999) and Ning et. al. (2009) in which a first or second-order Stokes focused wave can be prescribed. The AMAZON-SC 3D code (see e.g. Hu et al. (2009)) uses a cell centred finite volume method of the Godunov-type for the space discretization of the Euler and Navier Stokes equations. The computational domain includes both air and water regions with the air/water boundary captured as a discontinuity in the density field thereby admitting the break up and recombination of the free surface. Temporal discretisation uses the artificial compressibility method and a dual time stepping strategy to maintain a divergence free velocity field. Cartesian cut cells are used to provide a fully boundary-fitted gridding capability on an regular background Cartesian grid. Solid objects are cut out of the background mesh leaving a set of irregularly shaped cells fitted to the boundary. The advantages of the cut cell approach have been outlined previously by Causon et al. (2000, 2001) including its flexibility for dealing with complex geometries whether stationary or in relative motion. The field grid does not need to be recomputed globally or even locally for moving body cases; all that is necessary is to update the local cut cell data at the body contour for as long as the motion continues. The handing of numerical wave paddles and device motion in a NWT is therefore straightforward

  6. Load and Global Response of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    The present monograph covers wave load and global structural response for ships. It is primary written as a textbook for students with an introductionary background in naval architecture and a basic knowledge of statistics and strength of materials. The subjects are treated in details starting from...... first principles. The aim has been to derive and present the necessary theoretical framework for predicting the extreme loads and the corresponding hull girder stresses the ship may be subjected to during its operational lifetime.Although some account is given to reliabiity analysis, the present...

  7. Procedures for Calculating Residential Dehumidification Loads

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.

  8. An evaluation of analysis methodologies for predicting cleavage arrest of a deep crack in an RPV subjected to PTS loading conditions

    International Nuclear Information System (INIS)

    Keeney-Walker, J.; Bass, B.R.

    1992-01-01

    Several calculational procedures are compared for predicting cleavage arrest of a deep crack in the wall of a prototypical reactor pressure vessel (RPV) subjected to pressurized-thermal-shock (PTS) types of loading conditions. Three procedures examined in this study utilized the following models: (1) a static finite-element model (full bending); (2) a radially constrained static model; and (3) a thermoelastic dynamic finite-element model. A PTS transient loading condition was selected that produced a deep arrest of an axially-oriented initially shallow crack according to calculational results obtained from the static (full-bending) model. Results from the two static models were compared with those generated from the detailed thermoelastic dynamic finite-element analysis. The dynamic analyses modeled cleavage-crack propagation using node-release technique and an application-mode methodology based on dynamic fracture toughness curves generated from measured data. Comparisons presented here indicate that the degree to which dynamic solutions can be approximated by static models is highly dependent on several factors, including the material dynamic fracture curves and the propensity for cleavage reinitiation of the arrested crack under PTS loading conditions. Additional work is required to develop and validate a satisfactory dynamic fracture toughness model applicable to postcleavage arrest conditions in an RPV

  9. Biological effects of extreme environmental conditions. [considering limits of biosphere

    Science.gov (United States)

    Imshenetskiy, A. A.

    1975-01-01

    Actions of extreme physical and chemical space factors on microorganisms and plants are elaborated in order to establish limits for the biosphere. Considered are effects of low and high temperatures; ionizing and ultraviolet radiation; various gases; and effects of vibration, desiccation and acceleration.

  10. Frequently Asked Questions (FAQ) about Extreme Heat

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  11. Extreme climatic events in relation to global change and their impact on life histories

    Directory of Open Access Journals (Sweden)

    Juan MORENO, Anders Pape Møller

    2011-06-01

    Full Text Available Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history [Current Zoology 57 (3: 375–389, 2011].

  12. Provision of Supplementary Load Frequency Control via Aggregation of Air Conditioning Loads

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2015-12-01

    Full Text Available The integration of large-scale renewable energy poses great challenges for the operation of power system because of its increased frequency fluctuations. More load frequency control (LFC resources are demanded in order to maintain a stable system with more renewable energy injected. Unlike the costly LFC resources on generation side, the thermostatically controlled loads (TCLs on the demand side become an attractive solution on account of its substantial quantities and heat-storage capacity. It generally contains air conditioners (ACs, water heaters and fridges. In this paper, the supplementary LFC is extracted by the modeling and controlling of aggregated ACs. We first present a control framework integrating the supplementary LFC with the traditional LFC. Then, a change-time-priority-list method is proposed to control power output taking into account customers’ satisfaction. Simulations on a single-area power system with wind power integration demonstrate the effectiveness of the proposed method. The impact of ambient temperature changes and customer preferences on room temperature is also involved in the discussion. Results show that the supplementary LFC provided by ACs could closely track the LFC signals and effectively reduce the frequency deviation.

  13. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  14. Numerical simulation of pressure fluctuation of a pump-turbine with MGV at no-load condition

    International Nuclear Information System (INIS)

    Liu, J T; Wang, L Q; Liu, S H; Sun, Y K; Wu, Y L

    2012-01-01

    In order to analyse the pressure fluctuation caused by misaligned guide vanes (MGV) during starting period at no-load condition, 3-D (three dimensional), unsteady flows in a pump-turbine were numerically studied. Pressure fluctuations of different points at no-load condition are obtained. Fast Fourier Transform(FFT) was used to analyse the frequency spectrum of pressure fluctuations. The amplitude and dominant frequency of pressure fluctuation at vaneless space between the runner and guide vane, as well as the inlet of draft tube, was investigated. The amplitude of pressure fluctuation of the pump-turbine with MGV device is twice that of synchronous vanes. This might be caused by the non-uniform flow in the pump-turbine due to the pre-opened guide vanes. The pump-turbine with synchronous vanes has a low frequency which is 0.33f n , while the low frequency changes into 0.63f n when the MGV device is used. The vortex rope in the draft tube is large than that of synchronize vanes. Resultsof pressure fluctuations with synchronous vanes agree with each other between computational and testing results. The numerical study of pressure fluctuations with MGV can provide a basic understanding for the improvement of the instability of a pump-turbine.

  15. Ultramarathon is an outstanding model for the study of adaptive responses to extreme load and stress

    Directory of Open Access Journals (Sweden)

    Millet Grégoire P

    2012-07-01

    Full Text Available Abstract Ultramarathons comprise any sporting event involving running longer than the traditional marathon length of 42.195 km (26.2 miles. Studies on ultramarathon participants can investigate the acute consequences of ultra-endurance exercise on inflammation and cardiovascular or renal consequences, as well as endocrine/energetic aspects, and examine the tissue recovery process over several days of extreme physical load. In a study published in BMC Medicine, Schütz et al. followed 44 ultramarathon runners over 4,487 km from South Italy to North Cape, Norway (the Trans Europe Foot Race 2009 and recorded daily sets of data from magnetic resonance imaging, psychometric, body composition and biological measurements. The findings will allow us to better understand the timecourse of degeneration/regeneration of some lower leg tissues such as knee joint cartilage, to differentiate running-induced from age-induced pathologies (for example, retropatelar arthritis and finally to assess the interindividual susceptibility to injuries. Moreover, it will also provide new information about the complex interplay between cerebral adaptations/alterations and hormonal influences resulting from endurance exercise and provide data on the dose-response relationship between exercise and brain structure/function. Overall, this study represents a unique attempt to investigate the limits of the adaptive response of human bodies. Please see related article: http://www.biomedcentral.com/1741-7015/10/78

  16. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  17. Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.; Aagaard Madsen, Helge

    2016-01-01

    The paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic...... computations using the HAWC2 aero-servo-elastic code A 2-bladed 5 MW VAWT rotor is used based on a modified version of the DeepWind rotor For the HAWT simulations the NREL 3-bladed 5 MW reference wind turbine model is utilized Various DLCs are examined including normal power production, emergency shut down...... and parked situations, from cut-in to cut-out and extreme wind conditions. The ultimate and 1 Hz equivalent fatigue loads of the blade root and turbine base bottom are extracted and compared in order to give an insight of the load levels between the two concepts. According to the analysis the IEC 61400-1 ed...

  18. Expert consensus on facilitators and barriers to return-to-work following surgery for non-traumatic upper extremity conditions : A Delphi study

    NARCIS (Netherlands)

    Peters, S. E.; Johnston, V.; Ross, M.; Coppieters, M. W.

    2017-01-01

    This Delphi study aimed to reach consensus on important facilitators and barriers for return-to-work following surgery for non-traumatic upper extremity conditions. In Round 1, experts (n = 42) listed 134 factors, which were appraised in Rounds 2 and 3. Consensus (3/485% agreement) was achieved for

  19. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    Science.gov (United States)

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  20. Molecular Simulations of Cyclic Loading Behavior of Carbon Nanotubes Using the Atomistic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2009-01-01

    Full Text Available The potential applications of carbon nanotubes (CNT in many engineered bionanomaterials and electromechanical devices have imposed an urgent need on the understanding of the fatigue behavior and mechanism of CNT under cyclic loading conditions. To date, however, very little work has been done in this field. This paper presents the results of a theoretical study on the behavior of CNT subject to cyclic tensile and compressive loads using quasi-static molecular simulations. The Atomistic Finite Element Method (AFEM has been applied in the study. It is shown that CNT exhibited extreme cyclic loading resistance with yielding strain and strength becoming constant within limited number of loading cycles. Viscoelastic behavior including nonlinear elasticity, hysteresis, preconditioning (stress softening, and large strain have been observed. Chiral symmetry was found to have appreciable effects on the cyclic loading behavior of CNT. Mechanisms of the observed behavior have been revealed by close examination of the intrinsic geometric and mechanical features of tube structure. It was shown that the accumulated residual defect-free morphological deformation was the primary mechanism responsible for the cyclic failure of CNT, while the bond rotating and stretching experienced during loading/unloading played a dominant role on the strength, strain and modulus behavior of CNT.

  1. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  2. A conditional extreme value theory approach in value-at-risk forecasting: Evidence from Southeastern Europe and USA market

    Directory of Open Access Journals (Sweden)

    Totić Selena

    2015-01-01

    Full Text Available As a consequence of the recent financial crisis, the adequacy of different Value-at-Risk (VaR methodologies was heavily questioned. Current practice in VaR assessment relies on modeling the whole distribution of returns. As an alternative, in this paper we model tail behavior of returns, and thus VaR, using conditional Extreme Value Theory (EVT, which combines EVT and GARCH methodology. Moreover, we examine the performance of conditional EVT with the daily returns of seven stock market indices, of which six are from Southeastern Europe (BelexLine, BET, BUX, CROBEX, SBITOP, SOFIX from the period of September 2004 - April 2013, and one from USA market (Standard&Poors 500 Index from the period January 1998 - April 2013. Backtesting of historical daily returns proves that conditional EVT model gives good predictions for all indices and for all confidence levels.

  3. Can Concentration - Discharge Relationships Diagnose Material Source During Extreme Events?

    Science.gov (United States)

    Karwan, D. L.; Godsey, S.; Rose, L.

    2017-12-01

    Floods can carry >90% of the basin material exported in a given year as well as alter flow pathways and material sources. In turn, sediment and solute fluxes can increase flood damages and negatively impact water quality and integrate physical and chemical weathering of landscapes and channels. Concentration-discharge (C-Q) relationships are used to both describe export patterns as well as compute them. Metrics for describing C-Q patterns and inferring their controls are vulnerable to infrequent sampling that affects how C-Q relationships are interpolated and interpreted. C-Q relationships are typically evaluated from multiple samples, but because hydrological extremes are rare, data are often unavailable for extreme events. Because solute and sediment C-Q relationships likely respond to changes in hydrologic extremes in different ways, there is a pressing need to define their behavior under extreme conditions, including how to properly sample to capture these patterns. In the absence of such knowledge, improving load estimates in extreme floods will likely remain difficult. Here we explore the use of C-Q relationships to determine when an event alters a watershed system such that it enters a new material source/transport regime. We focus on watersheds with sediment and discharge time series include low-frequency and/or extreme events. For example, we compare solute and sediment patterns in White Clay Creek in southeastern Pennsylvania across a range of flows inclusive of multiple hurricanes for which we have ample ancillary hydrochemical data. TSS is consistently mobilized during high flow events, even during extreme floods associated with hurricanes, and sediment fingerprinting indicates different sediment sources, including in-channel remobilization and landscape erosion, are active at different times. In other words, TSS mobilization in C-Q space is not sensitive to the source of material being mobilized. Unlike sediments, weathering solutes in this watershed

  4. Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions

    Science.gov (United States)

    Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.

    2016-02-01

    The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.

  5. Blinded by the load: attention, awareness and the role of perceptual load.

    Science.gov (United States)

    Lavie, Nilli; Beck, Diane M; Konstantinou, Nikos

    2014-05-05

    What is the relationship between attention and conscious awareness? Awareness sometimes appears to be restricted to the contents of focused attention, yet at other times irrelevant distractors will dominate awareness. This contradictory relationship has also been reflected in an abundance of discrepant research findings leading to an enduring controversy in cognitive psychology. Lavie's load theory of attention suggests that the puzzle can be solved by considering the role of perceptual load. Although distractors will intrude upon awareness in conditions of low load, awareness will be restricted to the content of focused attention when the attended information involves high perceptual load. Here, we review recent evidence for this proposal with an emphasis on the various subjective blindness phenomena, and their neural correlates, induced by conditions of high perceptual load. We also present novel findings that clarify the role of attention in the response to stimulus contrast. Overall, this article demonstrates a critical role for perceptual load across the spectrum of perceptual processes leading to awareness, from the very early sensory responses related to contrast detection to explicit recognition of semantic content.

  6. [Injury mechanisms in extreme violence settings].

    Science.gov (United States)

    Arcaute-Velazquez, Fernando Federico; García-Núñez, Luis Manuel; Noyola-Vilallobos, Héctor Faustino; Espinoza-Mercado, Fernando; Rodríguez-Vega, Carlos Eynar

    2016-01-01

    Extreme violence events are consequence of current world-wide economic, political and social conditions. Injury patterns found among victims of extreme violence events are very complex, obeying several high-energy injury mechanisms. In this article, we present the basic concepts of trauma kinematics that regulate the clinical approach to victims of extreme violence events, in the hope that clinicians increase their theoretical armamentarium, and reflecting on obtaining better outcomes. Copyright © 2016. Published by Masson Doyma México S.A.

  7. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Science.gov (United States)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  8. Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

    Science.gov (United States)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.

    2017-01-01

    INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include

  9. Probabilistic analysis of extreme wind events

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    1997-12-31

    A vital task in wind engineering and meterology is to understand, measure, analyse and forecast extreme wind conditions, due to their significant effects on human activities and installations like buildings, bridges or wind turbines. The latest version of the IEC standard (1996) pays particular attention to the extreme wind events that have to be taken into account when designing or certifying a wind generator. Actually, the extreme wind events within a 50 year period are those which determine the ``static`` design of most of the wind turbine components. The extremes which are important for the safety of wind generators are those associated with the so-called ``survival wind speed``, the extreme operating gusts and the extreme wind direction changes. A probabilistic approach for the analysis of these events is proposed in this paper. Emphasis is put on establishing the relation between extreme values and physically meaningful ``site calibration`` parameters, like probability distribution of the annual wind speed, turbulence intensity and power spectra properties. (Author)

  10. Lifetime assessment of thick-walled components made of nickel-base alloys under near-service loading conditions

    International Nuclear Information System (INIS)

    Hueggenberg, Daniel

    2015-01-01

    Until 2050 the renewable energies should provide 80% of the power in Germany according to Renewable Energy law. Due to that reason the conventional power plants are not used for base load, but rather for the supply of average and peak load. The change of the operating mode leads to shorter times at stationary temperatures and the number of faster start-ups/shut-downs of the power plants will increase. As a result of this the components are exposed to an interacting load of creep and fatigue which reduces the lifetimes. The aim of this thesis is the development and verification of a lifetime assessment procedure for components made of the nickel-base alloys Alloy 617 mod. and Alloy 263 under creep fatigue loading conditions based on numerical phenomenological models and on the approaches of different standards/recommendations. The focus lies on two components of the high temperature material test rig II (HWT II), a header made of Alloy 617 mod. and Alloy 263 as well as a formed part made of Alloy 617 mod. For the basis characterization of the HWT II melts, specimens of the Alloy 617 mod. and Alloy 263 are tested in uniaxial tensile tests, (creep-)fatigue tests, creep tests and charpy tests in a temperature range between 20 C and 725 C. From the comparisons of the test results and the material specifications respectively the results of the projects COORETEC DE4, MARCKO DE2 and MARCKO700 no deviations were obvious for both materials with the exception of the creep test results with Alloy 617 mod. material. The creep tests with Alloy 617 mod. material of the HWT II melt show differences regarding the deformation and damage behavior. In addition to the basis characterization tests some complex lab tests for the characterization of the material behavior under creep-fatigue and multiaxial loading conditions were conducted. The developments of the microstructure, the precipitations as well as the structure of dislocations are investigated in the light optical microscope

  11. Static reliability of concrete structures under extreme temperature, radiation, moisture and force loading

    International Nuclear Information System (INIS)

    Stepanek, P.; Stastnik, S.; Salajka, V.; Hradil, P.; Skolar, J.; Chlanda, V.

    2003-01-01

    The contribution presents some aspects of the static reliability of concrete structures under temperature effects and under mechanical loading. The mathematical model of a load-bearing concrete structure was performed using the FEM method. The temperature field and static stress that generated states of stress were taken into account. A brief description of some aspects of evaluation of the reliability within the primary circuit concrete structures is stated. The knowledge of actual physical and mechanical characteristics and chemical composition of concrete were necessary for obtaining correct results of numerical analysis. (author)

  12. Heavy-Load Lifting

    DEFF Research Database (Denmark)

    Bloomquist, Kira; Oturai, Peter; Steele, Megan L

    2018-01-01

    of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal....... repetition maximum (RM), two sets of 15-20 repetitions) and heavy-load (85-90% 1RM, three sets of 5-8 repetition) upper-extremity resistance exercise separated by a one-week wash-out period. Swelling was determined by bioimpedance spectroscopy and dual energy x-ray absorptiometry, with breast cancer......-related lymphedema symptoms (heaviness, swelling, pain, tightness) reported using a numeric rating scale (0-10). Order of low- versus heavy-load was randomized. All outcomes were assessed pre-, immediately post-, and 24- and 72-hours post-exercise. Generalized estimating equations were used to evaluate changes over...

  13. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions

    Directory of Open Access Journals (Sweden)

    Serge Suanez

    2015-07-01

    Full Text Available Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France over the past decade (2004–2014 has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i astronomic tide; (ii storm surge; and (iii vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL data sets obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo and field runup measurements (Rmax was obtained (R2 85%. The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.

  14. Extreme river flow dependence in Northern Scotland

    Science.gov (United States)

    Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.

    2012-04-01

    Various methods for the spatial analysis of hydrologic data have been developed recently. Here we present results using the conditional probability approach proposed by Keef et al. [Appl. Stat. (2009): 58,601-18] to investigate spatial interdependence in extreme river flows in Scotland. This approach does not require the specification of a correlation function, being mostly suitable for relatively small geographical areas. The work is motivated by the Flood Risk Management Act (Scotland (2009)) which requires maps of flood risk that take account of spatial dependence in extreme river flow. The method is based on two conditional measures of spatial flood risk: firstly the conditional probability PC(p) that a set of sites Y = (Y 1,...,Y d) within a region C of interest exceed a flow threshold Qp at time t (or any lag of t), given that in the specified conditioning site X > Qp; and, secondly the expected number of sites within C that will exceed a flow Qp on average (given that X > Qp). The conditional probabilities are estimated using the conditional distribution of Y |X = x (for large x), which can be modeled using a semi-parametric approach (Heffernan and Tawn [Roy. Statist. Soc. Ser. B (2004): 66,497-546]). Once the model is fitted, pseudo-samples can be generated to estimate functionals of the joint tails of the distribution of (Y,X). Conditional return level plots were directly compared to traditional return level plots thus improving our understanding of the dependence structure of extreme river flow events. Confidence intervals were calculated using block bootstrapping methods (100 replicates). We report results from applying this approach to a set of four rivers (Dulnain, Lossie, Ewe and Ness) in Northern Scotland. These sites were chosen based on data quality, spatial location and catchment characteristics. The river Ness, being the largest (catchment size 1839.1km2) was chosen as the conditioning river. Both the Ewe (441.1km2) and Ness catchments have

  15. Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    M. H. Dao

    2011-02-01

    Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.

  16. Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

    International Nuclear Information System (INIS)

    Wang, Haitao; Han, En-Hou

    2017-01-01

    The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

  17. Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haitao; Han, En-Hou [Chinese Academy of Sciences, Shenyang (China)

    2017-04-15

    The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

  18. Improving real-time estimation of heavy-to-extreme precipitation using rain gauge data via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Seo, Dong-Jun; Siddique, Ridwan; Zhang, Yu; Kim, Dongsoo

    2014-11-01

    A new technique for gauge-only precipitation analysis for improved estimation of heavy-to-extreme precipitation is described and evaluated. The technique is based on a novel extension of classical optimal linear estimation theory in which, in addition to error variance, Type-II conditional bias (CB) is explicitly minimized. When cast in the form of well-known kriging, the methodology yields a new kriging estimator, referred to as CB-penalized kriging (CBPK). CBPK, however, tends to yield negative estimates in areas of no or light precipitation. To address this, an extension of CBPK, referred to herein as extended conditional bias penalized kriging (ECBPK), has been developed which combines the CBPK estimate with a trivial estimate of zero precipitation. To evaluate ECBPK, we carried out real-world and synthetic experiments in which ECBPK and the gauge-only precipitation analysis procedure used in the NWS's Multisensor Precipitation Estimator (MPE) were compared for estimation of point precipitation and mean areal precipitation (MAP), respectively. The results indicate that ECBPK improves hourly gauge-only estimation of heavy-to-extreme precipitation significantly. The improvement is particularly large for estimation of MAP for a range of combinations of basin size and rain gauge network density. This paper describes the technique, summarizes the results and shares ideas for future research.

  19. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions

    International Nuclear Information System (INIS)

    Pedersen, Ketill O.; Borvik, Tore; Hopperstad, Odd Sture

    2011-01-01

    The fracture behaviour of the aluminium alloy AA7075-T651 is investigated for quasi-static and dynamic loading conditions and different stress states. The fracture surfaces obtained in tensile tests on smooth and notched axisymmetric specimens and compression tests on cylindrical specimens are compared to the fracture surfaces that occur when a projectile, having either a blunt or an ogival nose shape, strikes a 20 mm thick plate of the aluminium alloy. The stress state in the impact tests is much more complex and the strain rate significantly higher than in the tensile and compression tests. Optical and scanning electron microscopes are used in the investigation. The fracture surface obtained in tests with smooth axisymmetric specimens indicates that the crack growth is partly intergranular along the grain boundaries or precipitation free zones and partly transgranular by void formation around fine and coarse intermetallic particles. When the stress triaxiality is increased through the introduction of a notch in the tensile specimen, delamination along the grain boundaries in the rolling plane is observed perpendicular to the primary crack. In through-thickness compression tests, the crack propagates within an intense shear band that has orientation about 45 o with respect to the load axis. The primary failure modes of the target plate during impact were adiabatic shear banding when struck by a blunt projectile and ductile hole-enlargement when struck by an ogival projectile. Delamination and fragmentation of the plates occurred for both loading cases, but was stronger for the ogival projectile. The delamination in the rolling plane was attributed to intergranular fracture caused by tensile stresses occurring during the penetration event.

  20. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches. 

  1. The Influence of Lower Extremity Lean Mass on Landing Biomechanics During Prolonged Exercise.

    Science.gov (United States)

    Montgomery, Melissa M; Tritsch, Amanda J; Cone, John R; Schmitz, Randy J; Henson, Robert A; Shultz, Sandra J

    2017-08-01

      The extent to which lower extremity lean mass (LELM) relative to total body mass influences one's ability to maintain safe landing biomechanics during prolonged exercise when injury incidence increases is unknown.   To examine the influence of LELM on (1) pre-exercise lower extremity biomechanics and (2) changes in biomechanics during an intermittent exercise protocol (IEP) and (3) determine whether these relationships differ by sex. We hypothesized that less LELM would predict higher-risk baseline biomechanics and greater changes toward higher-risk biomechanics during the IEP.   Cohort study.   Controlled laboratory.   A total of 59 athletes (30 men: age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg; 29 women: age = 20.6 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) participated.   Before completing an individualized 90-minute IEP designed to mimic a soccer match, participants underwent dual-energy x-ray absorptiometry testing for LELM.   Three-dimensional lower extremity biomechanics were measured during drop-jump landings before the IEP and every 15 minutes thereafter. A previously reported principal components analysis reduced 40 biomechanical variables to 11 factors. Hierarchical linear modeling analysis then determined the extent to which sex and LELM predicted the baseline score and the change in each factor over time.   Lower extremity lean mass did not influence baseline biomechanics or the changes over time. Sex influenced the biomechanical factor representing knee loading at baseline (P = .04) and the changes in the anterior cruciate ligament-loading factor over time (P = .03). The LELM had an additional influence only on women who possessed less LELM (P = .03 and .02, respectively).   Lower extremity lean mass influenced knee loading during landing in women but not in men. The effect appeared to be stronger in women with less LELM. Continually decreasing knee loading over time may reflect a

  2. Effects of casting defects, matrix structures and loading conditions on the fatigue strength of ductile irons

    Directory of Open Access Journals (Sweden)

    Endo Masahiro

    2014-06-01

    Full Text Available A novel method is presented to estimate the lower bound of the scatter in fatigue limit of ductile iron based upon the information of microstructural in homogeneities and loading conditions. The predictive capability of the method was verified by comparing to the experimental data obtained by the rotating-bending, torsion and combined tension-torsion fatigue tests for ductile irons with ferritic, pearlitic and bulls-eye (ferritic/pearlitic microstructures.

  3. Aortic dissection: natural course of disease? Report of two cases representing the extremes of the condition

    International Nuclear Information System (INIS)

    Tollefsen, Isak; Joergensen, Ingrid K.; Woie, Leik; Fossdal, Jan E.

    2001-01-01

    Objective: In a time when diagnostic methods and above all, surgical as well as interventional radiological treatment for aortic aneurysms and aortic dissections have reached a point nobody could think of a few years back, the present authors feel that it is worth while to remind oneself of the natural course of disease in these conditions. Taking into consideration the high morbidity and mortality rate in surgically treated patients with aortic dissection, and the high complication rate per- and postoperatively, it also seems right to ask if a more expectative and conservative approach to the condition sometimes perhaps may be justified. Methods and material: Two case reports are given. One was a 15-year-old boy with Stanford (Daily) type B dissection who statistically ought to have a good prognosis, but who died within 2 h after onset of symptoms. The other patient, a middle-aged woman with Stanford type A dissection, survived for 25 years without operation. Conclusion: These two cases, though not unique viewed separately, we consider to represent the extremes of the condition and also a natural course of disease, while none of them was operated on

  4. Aortic dissection: natural course of disease? Report of two cases representing the extremes of the condition.

    Science.gov (United States)

    Tollefsen, I; Jørgensen, I K; Woie, L; Fossdal, J E

    2001-10-01

    In a time when diagnostic methods and above all, surgical as well as interventional radiological treatment for aortic aneurysms and aortic dissections have reached a point nobody could think of a few years back, the present authors feel that it is worth while to remind oneself of the natural course of disease in these conditions. Taking into consideration the high morbidity and mortality rate in surgically treated patients with aortic dissection, and the high complication rate per- and postoperatively, it also seems right to ask if a more expectative and conservative approach to the condition sometimes perhaps may be justified. Two case reports are given. One was a 15-year-old boy with Stanford (Daily) type B dissection who statistically ought to have a good prognosis, but who died within 2 h after onset of symptoms. The other patient, a middle-aged woman with Stanford type A dissection, survived for 25 years without operation. These two cases, though not unique viewed separately, we consider to represent the extremes of the condition and also a natural course of disease, while none of them was operated on.

  5. Time- & Load-Dependence of Triboelectric Effect.

    Science.gov (United States)

    Pan, Shuaihang; Yin, Nian; Zhang, Zhinan

    2018-02-06

    Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.

  6. Full scale test SSP 34m blade, combined load. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Nielsen, Magda; Jensen, Find M. (and others)

    2010-11-15

    This report is part of the research project where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of an imaginary extreme event based on the certification load of the blade. This report describes the reason for choosing the loads and the load direction and the method of applying the loads to the blade. A novel load introduction allows the blade to deform in a more realistic manner, allowing the observation of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades' respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed. (Author)

  7. Human Performance under Extreme Conditions with Respect to a Resilient Organisation. Proceedings of a CSNI International Workshop, 24-26 February 2015, Brugg, Switzerland

    International Nuclear Information System (INIS)

    2015-01-01

    After the Fukushima Daiichi accident a number of initiatives have been undertaken internationally to learn from the accident and to implement lessons learned to improve nuclear safety. The accident has shown in particular the challenges in supporting reliable human performance under extreme conditions. Acknowledging that further work is needed to be better prepared for the HOF (Human and Organisational Factors) challenges of the extreme conditions that may be present in severe accidents, the NEA's Working Group on Human and Organisational Factors (WGHOF), one of the working groups for the Committee on the Safety of Nuclear Installations (CSNI) initiated a new task with the objectives to: - share experiences and knowledge of human and organisational performance under extreme conditions, - identify specific currently applied HOF principles in nuclear and other high risk industries and compare them with the available knowledge, - provide a basis for improvements and necessary research taking into account HOF issues in the design and use of measures, and - make recommendations with the aim to achieve the best level of human and organisational performance as possible under extreme conditions. In order to move those issues forward WGHOF hosted together with the Swiss Federal Nuclear Safety Inspectorate ENSI a workshop entitled 'Human Performance under Extreme Conditions with respect to a Resilient Organization'. The workshop was conducted with participation of a number of invited key speakers from academic research and a range of industries, including nuclear. Thirty-four experts from 12 countries, the IAEA and OECD/Halden participated. Experts came from nuclear authorities, research centres, technical support organisations, training simulator centres, utilities and from non-nuclear field (aircraft accident investigation, fire fighting, military, design of resilient organisations). From the discussions at the workshop, it is clear that the accident at Fukushima has

  8. [The heart in extreme sports: hyperbaric activity and microgravity].

    Science.gov (United States)

    Berrettini, Umberto; Landolfi, Angelo; Patteri, Giovanna

    2008-10-01

    The study of the cardiovascular and respiratory modifications in extreme environments could be useful for the understanding of the adaptive mechanisms of the body in particular conditions. The knowledge of how different environmental conditions in terms of extreme pressure, temperature and gravity modify the neurovegetative and cardiovascular system could be useful in daily practice for hypobaric and hyperbaric sports.

  9. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  10. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    Science.gov (United States)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  11. Automatic social comparison: Cognitive load facilitates an increase in negative thought accessibility after thin ideal exposure among women.

    Science.gov (United States)

    Bocage-Barthélémy, Yvana; Chatard, Armand; Jaafari, Nematollah; Tello, Nina; Billieux, Joël; Daveau, Emmanuel; Selimbegović, Leila

    2018-01-01

    Women are routinely exposed to images of extremely slim female bodies (the thin ideal) in advertisements, even if they do not necessarily pay much attention to these images. We hypothesized that paradoxically, it is precisely in such conditions of low attention that the impact of the social comparison with the thin ideal might be the most pronounced. To test this prediction, one hundred and seventy-three young female participants were exposed to images of the thin ideal or of women's fashion accessories. They were allocated to either a condition of high (memorizing 10 digits) or low cognitive load (memorizing 4 digits). The main dependent measure was implicit: mean recognition latency of negative words, relative to neutral words, as assessed by a lexical decision task. The results showed that thin-ideal exposure did not affect negative word accessibility under low cognitive load but that it increased it under high cognitive load. These findings are consistent with the hypothesis that social comparison with the thin ideal is an automatic process, and contribute to explain why some strategies to prevent negative effects of thin-ideal exposure are inefficient.

  12. Basin Testing of Wave Energy Converters in Trondheim: Investigation of Mooring Loads and Implications for Wider Research

    Directory of Open Access Journals (Sweden)

    Vladimir Krivtsov

    2014-04-01

    Full Text Available This paper describes the physical model testing of an array of wave energy devices undertaken in the NTNU (Norwegian University of Science and Technology Trondheim basin between 8 and 20 October 2008 funded under the EU Hydralabs III initiative, and provides an analysis of the extreme mooring loads. Tests were completed at 1/20 scale on a single oscillating water column device and on close-packed arrays of three and five devices following calibration of instrumentation and the wave and current test environment. One wave energy converter (WEC was fully instrumented with mooring line load cells, optical motion tracker and accelerometers and tested in regular waves, short- and long-crested irregular waves and current. The wave and current test regimes were measured by six wave probes and a current meter. Arrays of three and five similar WECs, with identical mooring systems, were tested under similar environmental loading with partial monitoring of mooring forces and motions. The majority of loads on the mooring lines appeared to be broadly consistent with both logistic and normal distribution; whilst the right tail appeared to conform to the extreme value distribution. Comparison of the loads at different configurations of WEC arrays suggests that the results are broadly consistent with the hypothesis that the mooring loads should differ. In particular; the results from the tests in short crested seas conditions give an indication that peak loads in a multi WEC array may be considerably higher than in 1-WEC configuration. The test campaign has contributed essential data to the development of Simulink™ and Orcaflex™ models of devices, which include mooring system interactions, and data have also been obtained for inter-tank comparisons, studies of scale effects and validation of mooring system numerical models. It is hoped that this paper will help to draw the attention of a wider scientific community to the dataset freely available from the

  13. Base Oil-Extreme Pressure Additive Synergy in Lubricants

    Science.gov (United States)

    Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...

  14. Calculation of equivalent static loads and its application

    International Nuclear Information System (INIS)

    Choi, Woo-Seok; Park, K.B.; Park, G.J.

    2005-01-01

    All the forces in the real world act dynamically on structures. Since dynamic loads are extremely difficult to handle in analysis and design, static loads are usually utilized with dynamic factors. Generally, the dynamic factors are determined from design codes or experience. Therefore, static loads may not give accurate solutions in analysis and design and structural engineers often come up with unreliable solutions. Two different methods are proposed for the transformation of dynamic loads into equivalent static loads (ESLs). One is an analytical method for exact ESLs and the other is an approximation method. The exact ESLs are calculated to generate identical response fields such as displacement and stress with those from dynamic loads at a certain time. Some approximation methods are proposed in engineering applications, which generate similar response fields from dynamic loads. They are divided into the displacement-based approach and the stress-based approach. The process is derived and evaluated mathematically. Standard examples are selected and solved by the proposed method and error analyses are conducted. Applications of the method to structural optimization are discussed

  15. Structural and functional responses of extremity veins to long-term gravitational loading or unloading—lessons from animal systems

    Science.gov (United States)

    Monos, Emil; Raffai, Gábor; Dörnyei, Gabriella; Nádasy, György L.; Fehér, Erzsébet

    2007-02-01

    Long, transparent tubular tilt-cages were developed to maintain experimental rats either in 45∘ head-up (orthostasis model), or in 45∘ head-down body position (antiorthostasis model) for several weeks. In order to study the functional and structural changes in extremity blood vessels, also novel pressure angiograph systems, as well as special quantitative electron microscopic methods were applied. It was found that several adaptive mechanisms are activated in the lower limb superficial veins and microvessels of muscles when an organism is exposed to long-term (1-2 weeks) orthostatic-type gravitational load including a reversible amplification of the pressure-dependent myogenic response, tuning of the myogenic tone by Ca++- and voltage-sensitive K+ channels in humans, augmentation of the intramural sympathetic innervation involving an increased nerve terminal density and synaptic vesicle count with functional remodeling, reorganization of vascular network properties (microvascular rarefaction in muscles, decreased branching angles in superficial veins), and responses of an endothelin and platelet-derived growth factor (PDGF) containing vesicle system in the endothelium. On the other hand, when applying long-term head-down tilting, the effects are dichotomous, e.g. it suppresses significantly the pressure-induced myogenic response, however does not diminish the adventitial sympathetic innervation density.

  16. Decrease in hydroclimatic conditions generating floods in the southeast of Belgium over the last 50 years resulting from changes in seasonal snow cover and extreme precipitation events

    Science.gov (United States)

    Wyard, Coraline; Fettweis, Xavier

    2016-04-01

    As a consequence of climate change, several studies concluded that winter flood occurrence could increase in the future in many rivers of northern and western Europe in response to an increase in extreme precipitation events. This study aims to determine if trends in extreme hydroclimatic events generating floods can already be detected over the last century. In particular, we focus on the Ourthe River (southeast of Belgium) which is one of the main tributaries of the Meuse River with a catchment area of 3500 km². In this river, most of the floods occur during winter and about 50% of them are due to rainfall events associated with the melting of the snow which covers the Ardennes during winter. In this study, hydroclimatic conditions favorable to flooding were reconstructed over the 20th century using the regional climate model MAR ("Modèle Atmosphérique Régional") forced by the following reanalyses: the ERA-20C, the ERA-Interim and the NCEP/NCAR-v1. The use of the MAR model allows to compute precipitation, snow depth and run-off resulting from precipitation events and snow melting in any part of the Ourthe river catchment area. Therefore, extreme hydroclimatic events, namely extreme run-off events, which could potentially generate floods, can be reconstructed using the MAR model. As validation, the MAR results were compared to weather station-based data. A trend analysis was then performed in order to study the evolution of conditions favorable to flooding in the Ourthe River catchment. The results show that the MAR model allows the detection of more than 95% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the 1974-2014 period. Conditions favorable to flooding present a negative trend over the last 50 years as a result of a decrease in snow accumulation and in extreme precipitation events. However, significance of these trends depends on the reanalysis used to force the regional climate model as well as the

  17. An influence of extremal edges on boundary extension.

    Science.gov (United States)

    Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P

    2015-08-01

    Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.

  18. Effect of load transients on SOFC operation—current reversal on loss of load

    Science.gov (United States)

    Gemmen, Randall S.; Johnson, Christopher D.

    The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.

  19. Load As A Reliability Resource in the Restructured Electricity Market

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, J.D.

    2002-06-10

    Recent electricity price spikes are painful reminders of the value that meaningful demand-side responses could bring to the restructuring US electricity system. Review of the aggregate offers made by suppliers confirms that even a modest increase in demand elasticity could dramatically reduce these extremes in price volatility. There is a strong need for dramatically increased customer participation in these markets to enhance system reliability and reduce price volatility. Indeed, allowing customers to manage their loads in response to system conditions might be thought of as the ultimate reliability resource. Most would agree that meaningful demand-side responses to price are the hallmark of a well-functioning competitive market [1]. Yet, in today's markets for electricity, little or no such response is evident. The reason is simple: customers currently do not experience directly the time-varying costs of their consumption decisions. Consequently, they have no incentive to modify these decisions in ways that might enhance system reliability or improve the efficiency of the markets in which electricity is traded. Increased customer participation is a necessary step in the evolution toward more efficient markets for electricity and ancillary services. This scoping report provides a three-part assessment of the current status of efforts to enhance the ability of customer's load to participate in competitive markets with a specific focus on the role of customer loads in enhancing electricity system reliability. First, this report considers the definitions of electricity-reliability-enhancing ancillary services (Section 2) and a preliminary assessment of the ability of customer's loads to provide these services. Second, is a review a variety of programs in which load has been called on as a system reliability resource (Section 3). These experiences, drawn from both past and current utility and ISO programs, focus on programs triggered by system

  20. Epstein-Barr virus viral load and serology in childhood non-Hodgkin's lymphoma and chronic inflammatory conditions in Uganda: implications for disease risk and characteristics.

    Science.gov (United States)

    Orem, Jackson; Sandin, Sven; Mbidde, Edward; Mangen, Fred Wabwire; Middeldorp, Jaap; Weiderpass, Elisabete

    2014-10-01

    Epstein-Barr virus (EBV) has been linked to malignancies and chronic inflammatory conditions. In this study, EBV detection was compared in children with non-Hodgkin's lymphoma and children with chronic inflammatory conditions, using samples and data from a case-control study carried out at the Mulago National Referral Hospital between 2004 and 2008. EBV viral load was measured in saliva, whole blood and white blood cells by real-time PCR. Serological values for IgG-VCA, EBNA1, and EAd-IgG were compared in non-Hodgkin's lymphoma and chronic inflammatory conditions; and in Burkitt's lymphoma and other subtypes of non-Hodgkin's lymphoma. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated. Of the 127 children included (87 males and 40 females; median age 7 years, range 2-17), 96 had non-Hodgkin's lymphoma (46 Burkitt's lymphoma and 50 other non-Hodgkin's lymphoma), 31 had chronic inflammatory conditions, and only 10% were HIV-positive. The most common clinical presentations for all disease categories considered were fever, night sweats, and weight loss. EBV viral load in whole blood was elevated in Burkitt's lymphoma compared to other non-Hodgkin's lymphoma (OR 6.67, 95% CI 1.32, 33.69; P-value = 0.04), but EBV viral loads in saliva and white blood cells were not different in any of the disease categories considered. A significant difference in EAd-IgG was observed when non-Hodgkin's lymphoma was compared with chronic inflammatory conditions (OR 0.19, 95% CI 0.07, 0.51; P-value = 0.001). When compared to chronic inflammatory conditions, EBV viral load was elevated in Burkitt's lymphoma, and EA IgG was higher in non-Hodgkin's lymphoma. This study supports an association between virological and serological markers of EBV and childhood non-Hodgkin's lymphoma, irrespective of subtype, in Uganda. © 2014 Wiley Periodicals, Inc.

  1. A risk analysis for natural-draught cooling towers under wind load

    International Nuclear Information System (INIS)

    Niemann, H.J.

    1977-01-01

    A satisfactory safety level of natural-draught cooling towers is usually reached by assuming an extreme wind load, for which the probability of being exceeded is very low. Taking into account the dispersion of strength, the relevant extreme wind velocity for the limiting carrying capacity is calculated for a desired probability of failure. Compared with the method of partial safety coefficients, the reliability can be calculated more exactly in this way, even though the probability distribution of the extreme wind velocity must be extrapolated from limited observations. (orig.) [de

  2. Attrition of limestones by impact loading in fluidized beds: The influence of reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio [Istituto di Ricerche sulla Combustione, Consiglio Nazionale delle Ricerche, Napoli (Italy); Salatino, Piero [Istituto di Ricerche sulla Combustione, Consiglio Nazionale delle Ricerche, Napoli (Italy); Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, Napoli (Italy)

    2010-09-15

    The extent of attrition associated with impact loading was studied for five different limestones pre-processed in fluidized bed under different reaction conditions. The experimental procedure was based on the measurement of the amount and the particle size distribution of the debris generated upon impact of sorbent samples against a target at velocities between 10 and 45 m/s. The effect of calcination, sulfation and calcination/re-carbonation on impact damage was assessed. Fragmentation by impact loading of the limestones was significant and increased with the impact velocity. Lime samples displayed the largest propensity to undergo impact damage, followed by sulfated, re-carbonated and raw limestones. Fragmentation of the sulfated samples followed a pattern typical of the failure of brittle materials. On the other hand, the behaviour of lime samples better conformed to a disintegration failure mode, with extensive generation of very fine fragments. Raw limestone and re-carbonated lime samples followed either of the two patterns depending on the sorbent nature. The extent of particle fragmentation increased after multiple impacts, but the incremental amount of fragments generated upon one impact decreased with the number of successive impacts. (author)

  3. Lateral ring metal elastic wheel absorbs shock loading

    Science.gov (United States)

    Galan, L.

    1966-01-01

    Lateral ring metal elastic wheel absorbs practically all shock loading when operated over extremely rough terrain and delivers only a negligible shock residue to associated suspension components. The wheel consists of a rigid aluminum assembly to which lateral titanium ring flexible elements with treads are attached.

  4. Spatial extreme value analysis to project extremes of large-scale indicators for severe weather.

    Science.gov (United States)

    Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M

    2013-09-01

    Concurrently high values of the maximum potential wind speed of updrafts ( W max ) and 0-6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd.

  5. Predicting the solubility of gases in Nitrile Butadiene Rubber in extreme conditions using molecular simulation

    Science.gov (United States)

    Khawaja, Musab; Molinari, Nicola; Sutton, Adrian; Mostofi, Arash

    In the oil and gas industry, elastomer seals play an important role in protecting sensitive monitoring equipment from contamination by gases - a problem that is exacerbated by the high pressures and temperatures found down-hole. The ability to predict and prevent such permeative failure has proved elusive to-date. Nitrile butadiene rubber (NBR) is a common choice of elastomer for seals due to its resistance to heat and fuels. In the conditions found in the well it readily absorbs small molecular weight gases. How this behaviour changes quantitatively for different gases as a function of temperature and pressure is not well-understood. In this work a series of fully atomistic simulations are performed to understand the effect of extreme conditions on gas solubility in NBR. Widom particle insertion is used to compute solubilities. The importance of sampling and allowing structural relaxation upon compression are highlighted, and qualitatively reasonable trends reproduced. Finally, while at STP it has previously been shown that the solubility of CO2 is higher than that of He in NBR, we observe that under the right circumstances it is possible to reverse this trend.

  6. Fault tolerance improvement for queuing systems under stress load

    International Nuclear Information System (INIS)

    Nikonov, Eh.G.; Florko, A.B.

    2009-01-01

    Various kinds of queuing information systems (exchange auctions systems, web servers, SCADA) are faced to unpredictable situations during operation, when information flow that requires being analyzed and processed rises extremely. Such stress load situations often require human (dispatcher's or administrator's) intervention that is the reason why the time of the first denial of service is extremely important. Common queuing systems architecture is described. Existing approaches to computing resource management are considered. A new late-first-denial-of-service resource management approach is proposed

  7. Laterally cyclic loading of monopile in dense sand

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Hededal, Ole; Svensson, M.

    2011-01-01

    In order to investigate the response from laterally cyclic loading of monopiles a large centrifuge tests series is ongoing at the Technical University of Denmark (DTU). This paper will present some of the tests carried out with a focus on the influence of accumulation of rotation when changing...... the loading conditions. In these tests the load conditions are controlled by two load characteristics, one controlling the level of the cyclic loading and one controlling the characteristic of the cyclic loading. The centrifuge tests were performed in dense dry sand on a pile with prototype dimensions...

  8. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    Science.gov (United States)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  9. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Linwen [Université de Toulouse, UPS, INSA, LMDC, Toulouse (France); Université de Sherbrooke, Quebec (Canada); François, Raoul, E-mail: raoul.francois@insa-toulouse.fr [Université de Toulouse, UPS, INSA, LMDC, Toulouse (France); Dang, Vu Hiep [Hanoi Architectural University, Faculty of Civil Engineering, Hanoi (Viet Nam); L' Hostis, Valérie [CEA Saclay, CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, Gif-sur-Yvette (France); Gagné, Richard [Université de Sherbrooke, Quebec (Canada)

    2015-01-15

    This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order to investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth.

  10. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  11. Effects of formulation variables on viability of L. casei loaded in whey protein-Ca alginate microparticles in simulated in vivo conditions

    OpenAIRE

    Smilkov, Katarina; Petrusevska Tozi, Lidija; Petreska Ivanovska, Tanja; Geskovski, Nikola; Petkovska, Rumenka; Glavas Dodov, Marija; Baceva, Katerina; Dimitrovski, Dejan; Mladenovska, Kristina

    2011-01-01

    The objective of this work was to assess the influence of formulation variables of L. casei loaded whey protein-Ca-alginate microparticles on probiotic survival under different conditions, representing simulated in vivo environment.

  12. On structural reliability under time-varying multi-parameter loading

    International Nuclear Information System (INIS)

    Augusti, G.

    1975-01-01

    Special attention will be paid to the superimposition of loads of different origin and characteristics (e.g. long-term loads like the furniture and usual occupancy load in a building and short-term loads like explosions, earthquakes, storms, etc.): it will be recognized that a single procedure for all cases does not appear practical, and that, within a general framework special method must be devised according to the type of loads and structural responses. For instance, the superimposition of impulsive loads must be studied with reference to the response time of the structure. It will be shown that usually, the statistics of extreme values are not sufficient for a correct study of superimposition: the instantaneous probability distributions of the load intensities are also required. The results obtained with respect to the loads can be joined with previous results by Augusti and Baratta (see e.g. SMiRT-2 paper M7/8) on structural strength, for the evaluation of the probability of success (i.e. the reliability) of a structural design

  13. The near-term prediction of drought and flooding conditions in the northeastern United States based on extreme phases of AMO and NAO

    Science.gov (United States)

    Berton, Rouzbeh; Driscoll, Charles T.; Adamowski, Jan F.

    2017-10-01

    frequency of wet, average, and dry discharge conditions with regards to the extreme phases of AMO and NAO. While the function was decaying, the tail asymptotically merged into and stabilized at the theoretical probability of the event. As the basin scale increased, the probability of wet, average, and dry discharge conditions decreased. The Merrimack River watershed will most likely experience greater than average discharge as its extreme condition, therefore development should be avoided on flood plains. Furthermore, the current reservoir storage capacity in the Merrimack should be improved in order to accommodate excess water input and minimize flood damage. Future research should target changes in the magnitude and timing of high discharge events in order to develop adaptation strategies for aging hydraulic infrastructure in the region.

  14. Study on validation method for femur finite element model under multiple loading conditions

    Science.gov (United States)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu

    2018-03-01

    Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.

  15. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    International Nuclear Information System (INIS)

    Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg

    2014-01-01

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically

  16. Arctic sea ice, Eurasia snow, and extreme winter haze in China.

    Science.gov (United States)

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-03-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.

  17. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  18. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners

    OpenAIRE

    Kahanov, Leamor; Eberman,Lindsey; Games,Kenneth; Wasik,Mitch

    2015-01-01

    Leamor Kahanov,1 Lindsey E Eberman,2 Kenneth E Games,2 Mitch Wasik2 1College of Health Science, Misericordia University, Dallas, PA, USA; 2Department of Applied Medicine and Rehabilitation, Indiana State University, Terre Haute, IN, USA Abstract: Stress fractures account for between 1% and 20% of athletic injuries, with 80% of stress fractures in the lower extremity. Stress fractures of the lower extremity are common injuries among individuals who participate in endurance, high load-bearing ...

  19. Visual perceptual load induces inattentional deafness.

    Science.gov (United States)

    Macdonald, James S P; Lavie, Nilli

    2011-08-01

    In this article, we establish a new phenomenon of "inattentional deafness" and highlight the level of load on visual attention as a critical determinant of this phenomenon. In three experiments, we modified an inattentional blindness paradigm to assess inattentional deafness. Participants made either a low- or high-load visual discrimination concerning a cross shape (respectively, a discrimination of line color or of line length with a subtle length difference). A brief pure tone was presented simultaneously with the visual task display on a final trial. Failures to notice the presence of this tone (i.e., inattentional deafness) reached a rate of 79% in the high-visual-load condition, significantly more than in the low-load condition. These findings establish the phenomenon of inattentional deafness under visual load, thereby extending the load theory of attention (e.g., Lavie, Journal of Experimental Psychology. Human Perception and Performance, 25, 596-616, 1995) to address the cross-modal effects of visual perceptual load.

  20. Availability analysis of a turbocharged diesel engine operating under transient load conditions

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Giakoumis, E.G.

    2004-01-01

    A computer analysis is developed for studying the energy and availability performance of a turbocharged diesel engine, operating under transient load conditions. The model incorporates many novel features for the simulation of transient operation, such as detailed analysis of mechanical friction, separate consideration for the processes of each cylinder during a cycle ('multi-cylinder' model) and mathematical modeling of the fuel pump. This model has been validated against experimental data taken from a turbocharged diesel engine, located at the authors' laboratory and operated under transient conditions. The availability terms for the diesel engine and its subsystems are analyzed, i.e. cylinder for both the open and closed parts of the cycle, inlet and exhaust manifolds, turbocharger and aftercooler. The present analysis reveals, via multiple diagrams, how the availability properties of the diesel engine and its subsystems develop during the evolution of the engine cycles, assessing the importance of each property. In particular the irreversibilities term, which is absent from any analysis based solely on the first-law of thermodynamics, is given in detail as regards transient response as well as the rate and cumulative terms during a cycle, revealing the magnitude of contribution of all the subsystems to the total availability destruction

  1. Soil behavior under earthquake loading conditions. In situ impulse test for determination of shear modulus for seismic response analyses. Progress report

    International Nuclear Information System (INIS)

    1974-06-01

    Progress is reported in the determination of the best methods of evaluation and prediction of soil behavior of potential nuclear power plant sites under seismic loading conditions. Results are reported of combined experimental and analytical studies undertaken to continue development of an in situ impulse test for determination of the soil shear modulus. Emphasis of the field work was directed toward making the field measurements at frequent depth intervals and at shear strains in the strong motion earthquake range. Emphasis of the analytical work was aimed toward supporting the field effort through processing and evaluation of the experimental test results combined with additional calculations required to gain insight into data interpretation and the in situ test setup itself. Continuing studies to evaluate free field soil behavior under earthquake loading conditions are discussed. (U.S.)

  2. Application of Galerkin meshfree methods to nonlinear thermo-mechanical simulation of solids under extremely high pulsed loading

    International Nuclear Information System (INIS)

    Ibáñez, Daniel Iglesias; García Orden, Juan C.; Brañas, B.; Carmona, J.M.; Molla, J.

    2013-01-01

    Highlights: • The paper presents a novel application of meshfree methods, valid for its implementation on a multibody framework. • Coupled nonlinear thermo-mechanical formulation is detailed and described in the reference configuration, as this allows to compute the shape functions only once. • We show the conditions in which future information induces inefficiency. • Beam parameters are the only information needed to apply the thermal load. • The solution procedure takes charge of updating the volumetric heat rate as the body moves and deforms. -- Abstract: Beam facing elements of the International Fusion Materials Irradiation Facility (IFMIF) Linear Particle Accelerator prototype (LIPAc) must stop 5–40 MeV D + ions with a peak current of 125 mA. The duty cycle of the beam loading varies from 0.1% to 100% (CW), depending on the device, with the ions being stopped in the first hundreds microns of the beam facing material. For intermediate duty cycles up to CW, the thermal load can be considered a heat flux load on the boundary, but this approximation gets too conservative as the duty cycle is reduced because the thermal diffusion becomes more important. Instant heat flux produced by the beam can reach up to 3 GW/m 2 in elements such as the beam dump and slits during short times of hundredths of microseconds. In these cases, the accuracy of the volumetric heat generation is critical for obtaining realistic results. Meshfree Galerkin methods discretize a continuum using scattered nodes. As opposed to FEM, no predefined connectivity is needed between the nodes, so C ∞ (infinitely differentiable) locally supported shape functions can be used to approximate both the trial and the test functions. This feature makes these type of methods well suited for those problems where the domain experiences very large deformations or has high gradients of the state variables. Radial basis (RBF) and moving least squares (MLS) functions have been applied to the

  3. Evaluation of a new methodology to simulate damage and wear of polyethylene hip replacements subjected to edge loading in hip simulator testing.

    Science.gov (United States)

    Partridge, Susan; Tipper, Joanne L; Al-Hajjar, Mazen; Isaac, Graham H; Fisher, John; Williams, Sophie

    2018-05-01

    Wear and fatigue of polyethylene acetabular cups have been reported to play a role in the failure of total hip replacements. Hip simulator testing under a wide range of clinically relevant loading conditions is important. Edge loading of hip replacements can occur following impingement under extreme activities and can also occur during normal gait, where there is an offset deficiency and/or joint laxity. This study evaluated a hip simulator method that assessed wear and damage in polyethylene acetabular liners that were subjected to edge loading. The liners tested to evaluate the method were a currently manufactured crosslinked polyethylene acetabular liner and an aged conventional polyethylene acetabular liner. The acetabular liners were tested for 5 million standard walking cycles and following this 5 million walking cycles with edge loading. Edge loading conditions represented a separation of the centers of rotation of the femoral head and the acetabular liner during the swing phase, leading to loading of the liner rim on heel strike. Rim damage and cracking was observed in the aged conventional polyethylene liner. Steady-state wear rates assessed gravimetrically were lower under edge loading compared to standard loading. This study supports previous clinical findings that edge loading may cause rim cracking in liners, where component positioning is suboptimal or where material degradation is present. The simulation method developed has the potential to be used in the future to test the effect of aging and different levels of severity of edge loading on a range of cross-linked polyethylene materials. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1456-1462, 2018. © 2017 Wiley Periodicals, Inc.

  4. Assessment extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea

    Science.gov (United States)

    Dvornikov, Anton; Martyanov, Stanislav; Ryabchenko, Vladimir; Eremina, Tatjana; Isaev, Alexey; Sein, Dmitry

    2017-04-01

    Extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea, are estimated paying a special attention to the area of the future construction of nuclear power plant (NPP) "Hanhikivi-1" (24° 16' E, 64° 32' N). To produce these estimates, long-term observations and results from numerical models of water and ice circulation and wind waves are used. It is estimated that the average annual air temperature in the vicinity of the station is +3° C, summer and winter extreme temperature is equal to 33.3° C and -41.5° C, respectively. Model calculations of wind waves have shown that the most dangerous (in terms of the generation of wind waves in the NPP area) is a north-west wind with the direction of 310°. The maximum height of the waves in the Gulf of Bothnia near the NPP for this wind direction with wind velocity of 10 m/s is 1.2-1.4 m. According to the model estimates, the highest possible level of the sea near the NPP is 248 cm, the minimum level, -151 cm, respectively for the western and eastern winds. These estimates are in good agreement with observations on the sea level for the period 1922-2015 at the nearest hydrometeorological station Raahe (Finland). In order to assess the likely impact of the NPP on the marine environment numerical experiments for the cold (2010) and warm year (2014) have been carried out. These calculations have shown that permanent release of heat into the marine environment from the operating NPP for the cold year (2010) will increase the temperature in the upper layer of 0-250m zone by 10°C in winter - spring and by 8°C in summer - early autumn, and in the bottom layer of 0-250m zone by 5°C in winter - spring and 3°C in summer - early autumn. For the warm year (2014), these temperature changes are smaller. Ice cover in both cases will disappear in two - kilometer vicinity of the NPP. These effects should be taken into account when assessing local climate changes in the future

  5. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovich, G., E-mail: gfox@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Kovalev, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Aguirre, M.H. [Laboratory of Advanced Microscopy, Institute of Nanoscience of Aragón, University of Zaragoza, 50018 Zaragoza (Spain); Yamamoto, K. [Materials Research Laboratory, Kobe Steel Ltd, 1-5-5 Takatsuda-dai, Nishi-ku, Kobe 651-2271, Hyogo (Japan); Veldhuis, S. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Gershman, I. [All-Russian Railway Research Institute, 10 Third Mytishchinskaya Street, Moscow 29851 (Russian Federation); Rashkovskiy, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Endrino, J.L. [Albengoa Research, Energia Solar 1, Palmas Altas, Seville 41014 (Spain); Beake, B. [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dosbaeva, G. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Wainstein, D. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Yuan, Junifeng; Bunting, J.W. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada)

    2014-04-01

    Highlights: • The evolution of self-organization under extreme frictional conditions has been studied. • Comprehensive characterization of the tribo-films was made using various surface analytical techniques. • During the running-in stage, mullite tribo-ceramics predominate on the surface of the nano-multilayer coating, establishing a functional hierarchy within the layer of tribo-films. • It is possible to control tribo-film evolution during self-organization by means of an increase in structural complexity and the non-equilibrium state of the surface engineered layer. - Abstract: The evolution of the self-organization process where dissipative structures are formed under the extreme frictional conditions associated with high performance dry machining of hardened steels has been studied in detail. The emphasis was on the progressive studies of surface transformations within multilayer and monolayer TiAlCrSiYN-based PVD coatings during the running-in stage of wear when self-organization process occurs. The coating layer was characterized by high resolution electron energy-loss spectroscopy (HREELS). It is shown that the nano-multilayer coating possesses higher non-equilibrium structure in comparison to the monolayer. Comprehensive studies of the tribo-films (dissipative structures) formed on the friction surface were made using a number of advanced surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES). The data obtained for the tribo-films was combined with the detailed TEM studies of the structural and phase transformations within the underlying coating layer. This data was related to the micro-mechanical characteristics of the coating layer and its wear resistance. It was demonstrated that the evolution of the self-organization process is strongly controlled by the characteristics of the tribo-films formed at different stages of the wear process. Within running-in stage (after

  6. Final Report for Project. Quark matter under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Incera, Vivian [Univ. of Texas, El Paso, TX (United States); Ferrer, Efrain [Univ. of Texas, El Paso, TX (United States)

    2015-12-31

    The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report “Reaching for the Horizon” has been “to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.” The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.

  7. Final Report for Project. Quark matter under extreme conditions

    International Nuclear Information System (INIS)

    Incera, Vivian; Ferrer, Efrain

    2015-01-01

    The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report 'Reaching for the Horizon' has been 'to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.' The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.

  8. Seismic load resistance of reinforcing steels in the as delivered condition and after corrosion - relevant material characteristics for performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moersch, Ing. Joerg [Max Aicher Engineering GmbH, Freilassing (Germany)

    2016-10-15

    This type of accelerated corrosion test was used to study the high number of test samples in due time. The corrosion phenomena obtained in salt spray testing deviate significantly from corrosion phenomena (pitting factor) obtained in practical conditions. Salt spray testing represents practical conditions for the more uniform corrosion as a result of a severe carbonation of the concrete and/or for higher chloride contents at the surface of the rebar. At low corrosion current densities the effect of pit depth on residual mechanical performance might be underestimated. Reinforced concrete (r.c.) buildings in seismic areas shall be designed to guarantee enough ductile resources as for example a sufficient rotational capacity to allow for load re-distribution. The rotational capacity is directly dependent on the ductility of the reinforcing steel which is generally expressed as elongation at maximum load (A+g{sub t}) and the hardening ratio (R{sub m}/R{sub e}). A direct testing of the seismic load resistance of reinforcing steels is not part of the construction product standards. Therefore it was decided by European Commission to introduce this performance requirement in the mandate for the revision of EN 10080:2005. In parallel to the standardization process a research project was carried out to deliver the scientific background.

  9. Artificial neural networks and the effects of loading conditions on fatigue life of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Pleune, T.T.

    1996-11-01

    The ASME Boiler and Pressure Vessel Code contains rules for the construction of nuclear power plant components. Figure 1-90 of Appendix I to Section III of the Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Recent test data indicate significant decreases in the fatigue lives of carbon and low-alloy steels in LWR environments when five conditions are satisfied simultaneously. When applied strain range, temperature, dissolved oxygen in the water, and sulfur content of the steel are above a minimum threshold level, and the loading strain rate is below a threshold value, environmentally assisted fatigue occurs. For this study, a data base of 1036 fatigue tests was used to train an artificial neural network (ANN). Once the optimal ANN was designed, ANN were trained and used to predict fatigue life for specified sets of loading and environmental conditions. By finding patterns and trends in the data, the ANN can find the fatigue lifetime for any set of conditions. Artificial neural networks show great potential for predicting environmentally assisted corrosion. Their main benefits are that the fit of the data is based purely on data and not on preconceptions and that the network can interpolate effects by learning trends and patterns when data are not available

  10. Variable load failure mechanism for high-speed load sensing electro-hydrostatic actuator pump of aircraft

    Directory of Open Access Journals (Sweden)

    Cun SHI

    2018-05-01

    Full Text Available This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator (LS-EHA. Focusing on the slipper/swashplate pair partial abrasion, which is considered as the dominant failure mode in the high-speed condition, slipper dynamic models are established. A forth sliding motion of the slipper on the swashplate surface is presented under the fact that the slipper center of mass will rotate around the center of piston ball when the swashplate angle is dynamically adjusted. Besides, extra inertial tilting moments will be produced for the slipper based on the theorem on translation of force, which will increase rapidly when LS-EHA pump operates under high-speed condition. Then, a dynamic lubricating model coupling with fluid film thickness field, temperature field and pressure field is proposed. The deformation effects caused by thermal deflection and hydrostatic pressure are considered. A numerical simulation model is established to validate the effectiveness and accuracy of the proposed model. Finally, based on the load spectrum of aircraft flight profile, the variable load conditions and the oil film characteristics are analyzed, and series of variable load rules of oil film thickness with variable speed/variable pressure/variable displacement are concluded. Keywords: Coupling lubrication model, Electro-Hydrostatic Actuator (EHA, High-speed pump, Partial abrasion, Slipper pair, Variable load

  11. The impact of extreme weather conditions on the life of settlers in the Central Russia in X - XVI centuries

    Science.gov (United States)

    Graves, Irina; Nizovtsev, Viacheslav; Erman, Natalia

    2017-04-01

    A special place in the reconstruction of climate dynamics takes an analysis of extraordinary meteorological phenomena. These extreme weather events in the first place impact the functioning of, the rhythm and dynamics of the landscapes and determine not only the features of economy, but also certain aspects of historical development. In the analysis of primary chronicles and published data, along with the direct climatic characteristics (hot, warm, cold, wet, dry, etc.) a lot of attention was paid to abnormal (extreme) natural phenomena and indirect indications of climate variability (floods, crop failures, hunger years, epidemics, etc.). As a result, tables were compiled reflecting climatic basic characteristics and extremes for each year since 900 BC. X-XI centuries was a period of minor climatic optimum - the climate was warmer and drier than the modern one. In addition to higher temperatures (up to 1-3C above than mordern), during this period there were no severe winters. A small amount of summer rainfall has led to a reduction in the number of small water reservoirs and flooding rivers. This is evidenced by Slavic settlements on floodplains of a number of rivers in the Moscow region. It is in this favorable climatic time the way "from the Vikings to the Greeks" was open. Catastrophic natural events had a minimum repeatability. For example, during the X century the Russian chronicles mentioned 41 extreme event, but for the XIII century - 102. Most of the villages and towns were located on the low floodplain terraces of rivers. The main farmland was concentrated there as well. In the "period of contrasts" (XIII - XIV centuries) there was an increase of intra-seasonal climate variability, humidity and widespread reduction in summer temperatures by 1-2C. The number of extreme weather events increased: cold prolonged winters, long rains in summers, cold weather returns in the early summer, early frosts in late summer - early autumn. Such conditions often

  12. Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2005-01-01

    In cities located in a subtropical climate, air-cooled chillers are commonly used to provide cooling to the indoor environment. This accounts for the increasing electricity demand of buildings over the decades. This paper investigates how the condensing temperature serves to accurately determine the energy efficiency, or coefficient of performance (COP), of air-cooled chillers under part load conditions. An experiment on an air-cooled reciprocating chiller showed that for any given operating condition, the COP of the chiller varies, depending on how the condensing temperature is controlled. A sensitivity analysis is implemented to investigate to what extent COP is responding to changes in operating variables and confirms that the condensing temperature is an adequate variable to gauge COP under various operating conditions. The specifications of the upper limit for the condensing temperature in order to improve the energy efficiency of air-cooled chillers are discussed. The results of this work will give designers and researchers a good idea about how to model chiller energy performance curves in the thermal and energy computation exercises

  13. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    of adaptation strategies, but these changes are subject to uncertainties. The focus of this PhD thesis is the quantification of uncertainties in changes in extreme precipitation. It addresses two of the main sources of uncertainty in climate change impact studies: regional climate models (RCMs) and statistical...... downscaling methods (SDMs). RCMs provide information on climate change at the regional scale. SDMs are used to bias-correct and downscale the outputs of the RCMs to the local scale of interest in adaptation strategies. In the first part of the study, a multi-model ensemble of RCMs from the European ENSEMBLES...... project was used to quantify the uncertainty in RCM projections over Denmark. Three aspects of the RCMs relevant for the uncertainty quantification were first identified and investigated. These are: the interdependency of the RCMs; the performance in current climate; and the change in the performance...

  14. Medium fidelity modelling of loads in wind farms under non-neutral ABL stability conditions – a full-scale validation study

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Larsen, Torben J.; Chougule, A.

    2017-01-01

    The aim of the present paper is to demonstrate the capability of medium fidelity modelling of wind turbine component fatigue loading, when the wind turbines are subjected to wake affected non-stationary flow fields under non-neutral atmospheric stability conditions. To accomplish this we combine......) in description of both large- and small scale atmospheric boundary layer turbulence is facilitated by a generalization of the classical Mann spectral tensor, which consistently includes buoyancy effects. With non-stationary wind turbine inflow fields modelled as described above, fatigue loads are obtained using...... the state-of-the art aeroelastic model HAWC2. The Lillgrund offshore wind farm (WF) constitute an interesting case study for wind farm model validation, because the WT interspacing is small, which in turn means that wake effects are significant. A huge data set, comprising 5 years of blade and tower load...

  15. On structural reliability under time-varying multi-parameter loading

    International Nuclear Information System (INIS)

    Augusti, G.

    1975-01-01

    This paper intends to be a contribution towards the formulation of a procedure for the solution of the title problem that is at the same time correct and not too cumbersome for practical application. The problem is examined in detail and a number of possible alternative approaches to the solution discussed. Special attention is paid to the superimposition of loads of different origin and characteristics (e.g. long-term loads like the furniture and usual occupancy load in a building, and short-term loads like explosions, earthquakes, storms, etc.): it is recognized that a single procedure for all cases does not appear practical, and that, within a general framework, special methods must be devised according to the type of loads and structural responses. For instance, the superimposition of impulsive loads must be studied with reference to the response time of the structure. It is shown that usually, the statistics of extreme values are not sufficient for a correct study of superimposition: the instantaneous probability distributions of the load intensities are also required. (Auth.)

  16. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    Science.gov (United States)

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Experimental studies on the performance of novel layered materials under highly dynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, A, E-mail: shuklaa@egr.uri.ed [Dynamic Photomechanics Laboratory Department of Mechanical Engineering and Applied Mechanics University of Rhode Island, Kingston, RI 02881 (United States)

    2009-08-01

    This paper focuses on the experimental observations of the performance of different layered composite material systems subjected to blast loadings. These material systems include layered composites and sandwich composite materials. A controlled blast loading of pre-defined pressure magnitude and rise time were obtained using a shock tube apparatus. Rectangular plate elements of the desired material system were subjected to such a controlled blast loading and the effects of the blast loading on these elements were studied using optical and residual strength measurements. A high speed imaging technique was utilized to study the damage modes and mechanisms in real time. It was observed that layering of a conventional composite material with a soft visco-elastic polymer provided better blast resistance and sandwiching the polymer greatly enhanced its survivability under extreme air blast conditions. Aside from layering the conventional composite material with a soft visco-elastic polymer, it was observed that layering or grading the core can successfully mitigate the impact damage and thus improve the overall blast resistance as well. In addition to these, three dimensional (3D) woven skin and core reinforcements were introduced in the conventional sandwich composites and their effects on the blast resistance were studied experimentally. It was observed that these reinforcements also enhance the blast resistance of conventional sandwich composites by changing the mechanism of failure initiation and propagation in these sandwich structures.

  18. Enhancing the Extreme Climate Index (ECI) to monitor climate extremes for an index-based insurance scheme across Africa

    Science.gov (United States)

    Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.

    2017-12-01

    Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.

  19. Modelling of extreme gusts for design calculations (NewGust)

    Energy Technology Data Exchange (ETDEWEB)

    Bierbooms, W; Cheng, Po-Wen [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands); Larsen, G [Risoe National Lab., Roskilde (Denmark); Juul Pedersen, B [Vestas Wind Systems A/S, Lem (Denmark); Hansen, K [Tecnical Univ. of Denmark (Denmark)

    1999-03-01

    The main objective of the NewGust project is to come to a realistic and verified description of extreme gusts based on the stochastic properties of wind. In this paper the first results of the project are presented. Theoretical considerations indicate that the shape of extreme gusts is very sharp. Based on simulated wind time series, mean gust shapes (for several amplitudes and mean wind speeds) are determined and compared with the theoretical curves. The resemblance turned out to be very good. Furthermore, the influence of the sampling rate and the dynamics of a cup anemometer on the empirical mean gust shape are examined. The promising results are confirmed by a (preliminary) verification based on measured wind time series, available from the database on wind characteristics. The mean shape of gusts, of certain amplitude, together with their probability of occurrence can be used to obtain the distribution of the extreme response of wind turbines to gust loading. (au)

  20. The effect of defined auditory conditions versus mental loading on the laparoscopic motor skill performance of experts.

    Science.gov (United States)

    Conrad, Claudius; Konuk, Yusuf; Werner, Paul; Cao, Caroline G; Warshaw, Andrew; Rattner, David; Jones, Daniel B; Gee, Denise

    2010-06-01

    Music and noise are frequent occurrences in the operating room. To date, the effects of these auditory conditions on the performance of laparoscopic surgery experts have not been evaluated. Eight internationally recognized experts were recruited for a crossover study. The experts were randomized to perform three simple tasks on a laparoscopic simulator, SurgicalSIM VR. The tasks were equal in difficulty and performed under the following conditions: silence, dichaotic music (auditory stress), classical music (auditory relaxation), and mental loading (mental arithmetic tasks). Permutations of the conditions were created to account for a learning effect. The tasks were performed twice to test for memory consolidation and to accommodate baseline variability. Time until task completion and task accuracy via instrument tip trajectory (path of the tip through space) were recorded. Performance was correlated with responses on the Brief Musical Experience Questionnaire (MEQ). The study demonstrated that dichaotic music has a negative impact on time until task completion but not on task accuracy. In addition, memory consolidation of accuracy is negatively influenced. Classical music has a variable effect on experts' time until task completion, yet all the experts performed the tasks more accurately. Classical music had no effect on recall of a procedure. Mental loading increased time until completion, but did not affect accuracy or recall. The experience of music varied among experts and influenced how each of the conditions affected their performance. The study demonstrated that, contrary to common belief, proficiency in surgery does not protect against stressful auditory influences or the influence of mental preoccupation. Interestingly, relaxing auditory influences such as classical music can even have a positive impact on the accuracy of experts. Previous musical experience could help to identify surgeons whose performance may be specifically affected by music or noise.