WorldWideScience

Sample records for extreme ice loads

  1. Torque and Axial Loading Physics for Measuring Atmospheric Icing Load and Icing Rate

    OpenAIRE

    Mughal, Umair Najeeb; Virk, Muhammad Shakeel

    2015-01-01

    Measuring icing load and icing rate are important parameters for an atmospheric icing sensor. A new icing sensor has recently been designed and developed at Narvik University College for measuring atmospheric icing rate, icing load and icing type. Unlike the existing atmospheric icing sensors commercially available in market, which uses the axial loading for measuring icing load and icing rate, this new sensory system measures icing load and icing rate using the torque loading physics. The pe...

  2. Ice load reducer for dams : laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Lupien, R.; Cote, A.; Robert, A. [Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada)

    2009-07-01

    Many studies have focused on measuring static ice loads on various hydraulic structures in Canada. This paper discussed a Hydro-Quebec research project whose main purpose was to harmonize the ice thrust value in load combinations for use in general hydraulic works or for specific cases. The objectives of the project were to obtain a better understanding of existing data and to characterize sites and their influence on ice thrust; study the structural mechanisms involved in the generation of ice thrust, their consequences on the structural behaviour of ice and the natural mitigating circumstances that may be offered by ice properties or site operating procedures; and examine the relevance of developing an ice load reducer for works that might not fit the harmonized design value. The paper presented the main research goals and ice load reducer goals, with particular focus on the four pipe samples that were planned, built and tested. The experimental program involved checking the pipe shape behaviour in terms of flexibility-stiffness; maximum deformations; maximum load reduction; permanent deformations; and, ability to shape recovering. The testing also involved examining the strength versus strain rate; creep versus strain rate; and creep capacity under biaxial state of tension and compression. It was concluded that the two phenomena involved in generation of ice thrust, notably thermal expansion and water level changes, had very low strain rates. 8 refs., 2 tabs., 16 figs.

  3. Thermal ice loads on dams and ancillary structures: A brief review

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-01-01

    A major consideration in the design of low to medium head dams in cold regions is the thrust exerted by thermal expansion of a solid ice sheet. Such loads are also of concern in the design of gates, intakes and other ancillary structures. Such loads can be greater than 300-400 kilo Newtons per meter, and are of greatest concern when ice is unshielded by snow from temperature fluctuations. Details are presented of calculation of thermal ice loads, and field measurements of thermal ice forces. Past structural failures, field and laboratory investigations, and analyses, all confirm that thermal ice loads on wide structures such as dams, and isolated structures such as bridge piers and water intakes, can be much more significant than is suggested by the loads currently specified in various North American design guidelines for hydraulic structures. While some guidelines for thermal ice loads are excessively conservative, particularly for protected situations such as gates set between piers, in other more common situations they are dangerously low. Three useful approaches that would yield information for improving thermal ice load specification are: hindcast upper bounds on thermal ice loads by assessing the ice regime and load bearing capacity of existing structures; field measurement of thermal ice loads and stresses using modern instrumentation; and measurement and analysis of the formation and movement of lake and reservoir ice covers. 23 refs., 4 figs

  4. Effects of Icing on Wind Turbine Fatigue Loads

    International Nuclear Information System (INIS)

    Frohboese, Peter; Anders, Andreas

    2007-01-01

    The external conditions occurring at cold climate sites will affect wind turbines in different ways. The effects of ice accretion on wind turbines and the influence on the turbine fatigue loads are examined. The amount of icing prior to turbine installation needs to be estimated by using standard measurement data and considering the geometry of the proposed turbine. A procedure to calculate the expected ice accretion on wind turbines out of standard measurement data is explained and the results are discussed. Different parameters to describe the accreted ice on the turbine are examined separately in a fatigue load calculation. The results of the fatigue load calculation are discussed and selected cases are presented

  5. Caisson structures in the Beaufort Sea 1982-1990 : characteristics, instrumentation and ice loads

    Energy Technology Data Exchange (ETDEWEB)

    Timco, G.W.; Johnston, M.E. [National Research Council of Canada, Ottawa, ON (Canada). Canadian Hydraulics Centre

    2002-11-01

    This report presents a comprehensive overview of the instrumentation, characteristics and measured ice loads on the caisson structures used for exploratory drilling in the Canadian Beaufort Sea during the 1970s and 1980s. The focus was placed on the Tarsiut Caissons, the Single Steel Drilling Caisson (SSDC), the Caisson Retained Island (CRI), and the Molikpaq. Details on the ice-load measuring instrumentation were provided for each of the drill sites featuring an ice-load measurement program. The results of global loads on the structures were presented as a Line Load (global load per width of the structure) and the Global Pressure (line load per ice thickness). The authors showed that global loads were a function of the ice macrostructure (level first-year sea ice, multi-year ice, first-year ridges, hummock fields, isolated floes). A general increase in the Line Load with increasing ice thickness was revealed through analysis. There was considerable scatter in the data, and the authors explained it by examining the failure mode of the ice during the interaction process. 36 refs., 4 tabs., 57 figs.

  6. The extreme melt across the Greenland ice sheet in 2012

    Science.gov (United States)

    Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.

    2012-10-01

    The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.

  7. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice

    DEFF Research Database (Denmark)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.

    2018-01-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light......, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties...... for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with approximate to 1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (...

  8. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    Science.gov (United States)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  9. Structural response of cargo containment systems in LNG carriers under ice loads

    International Nuclear Information System (INIS)

    Wang, B.; Yu, H.; Basu, R.; Lee, H.; Kwon, J.C.; Jeon, B.Y.; Kim, J.H.; Daley, C.; Kendrick, A.

    2008-01-01

    Gas exploration has been extended into the Arctic region such as in the Russian Arctic area, because of the increasing demand for energy resources. As a result, shipping in ice-covered seas is also increasing. Many technical issues are involved in ensuring the safety of liquefied natural gas (LNG) ships during the transportation. This paper discussed an investigation of ship-ice interaction scenarios for possible operation routes in Arctic areas. Six scenarios were selected to study the structural response of cargo containment systems (CCS) in both membrane and spherical types of LNG ships. For selected ship-ice interaction scenarios, ice loads and loading areas in the hull structure were determined based on the energy theory. The configurations of LNG carriers were discussed and illustrated. The paper also outlined the assessment criteria and structure analysis procedures. It was concluded that the strength of the CCS of membrane-type LNG carrier and the strength of the skirt structure of spherical-type LNG carrier were strong enough under the design ice loads. 13 refs., 9 tabs., 18 figs

  10. A Novel Ice Storm Experiment for Evaluating the Ecological Impacts of These Extreme Weather Events

    Science.gov (United States)

    Driscoll, C. T.; Campbell, J. L.; Rustad, L.; Fahey, T.; Fahey, R. T.; Garlick, S.; Groffman, P.; Hawley, G. J.; Schaberg, P. G.

    2017-12-01

    Ice storms are among the most destructive natural disturbances in some regions of the world, and are an example of an extreme weather event that can profoundly disrupt ecosystem function. Despite potential dire consequences of ice storms on ecosystems and society, we are poorly positioned to predict responses because severe ice storms are infrequent and understudied. Since it is difficult to determine when and where ice storms will occur, most previous research has consisted of ad hoc attempts to characterize impacts in the wake of major icing events. To evaluate ice storm effects in a more controlled manner, we conducted a novel ice storm manipulation experiment at the Hubbard Brook Experimental Forest in New Hampshire. Water was sprayed above the forest canopy in sub-freezing conditions to simulate a glaze ice event. Treatments included replicate plots that received three levels of radial ice thickness (6, 13, and 19 mm) and reference plots that were not sprayed. Additionally, two of the mid-level treatment plots received ice applications in back-to-back years to evaluate effects associated with ice storm frequency. Measures of the forest canopy, including hemispherical photography, photosynthetically active radiation, and ground-based LiDAR, indicated that the ice loads clearly damaged vegetation and opened up the canopy, allowing more light to penetrate. These changes in the canopy were reflected in measurements of fine and coarse woody debris that were commensurate with the level of icing. Soil respiration declined in the most heavily damaged plots, which we attribute to changes in root activity. Although soil solution nitrogen showed clear seasonal patterns, there was no treatment response. These results differ from the severe regional natural ice storm of 1998, which caused large leaching losses of nitrate in soil solutions and stream water during the growing season after the event, due to lack of uptake by damaged vegetation. It is not yet clear why there

  11. Geotechnical conditions and ice loading for an offshore drilling platform in the Canadian Beaufort Sea

    Energy Technology Data Exchange (ETDEWEB)

    Martens, S.; Eshraghian, A.; Rogers, B. [Klohn Crippen Berger Ltd., Calgary, AB (Canada)

    2009-07-01

    This paper addressed the geotechnical aspects of the deployment of the steel drilling caisson (SDC) at the Paktoa site in the Canadian Beaufort Sea. The SDC is a bottom founded mobile offshore drilling platform that can operate in 8 to 25 m of water in an Arctic environment. It is mated to a submersible barge in order to resist large ice forces on the structure at sites with relatively weak soils, without the need for site preparation. To date, the SDC has been deployed at 8 sites in the Canadian and Alaskan Beaufort Sea. This paper focused on the Paktoa location, where the SDC was deployed 50 km offshore in a water depth of 14 m during the winter of 2005-2006. Geotechnical investigations were conducted from the landfast ice prior to deployment and from the SDC deck. This paper described the soil properties and design loading; design stability; and deformation analysis. The environmental loads considered for the SDC design included ice push, waves and earthquakes. The ice loading was the dominant loading case. The instrumentation installed in the seabed included 2 push-in piezometers and an inclinometer. An ice loading event in February 2006 resulted in considerable displacements in the in-place inclinometer string below the SDC. Several analysis methods were used to estimate the magnitude of the ice load during this event in order to better understand the magnitude of ice loading for future Arctic deployments of gravity based drilling platforms. It was concluded that further deployments should have a minimum of 2 and preferably 4 in-place inclinometer strings to measure real-time deformation of the seabed to enable measurement of rotation of the structure that may occur due to asymmetrical ice loading. 10 refs., 2 tabs., 15 figs.

  12. Mitigating the Long term Operating Extreme Load through Active Control

    International Nuclear Information System (INIS)

    Koukoura, Christina; Natarajan, Anand

    2014-01-01

    The parameters influencing the long term extreme operating design loads are identified through the implementation of a Design of Experiment (DOE) method. A function between the identified critical factors and the ultimate out-of-plane loads on the blade is determined. Variations in the initial blade azimuth location are shown to affect the extreme blade load magnitude during operation in normal turbulence wind input. The simultaneously controlled operation of generator torque variation and pitch variation at low blade pitch angles is detected to be responsible for very high loads acting on the blades. Through gain scheduling of the controller (modifications of the proportional Kp and the integral K gains) the extreme loads are mitigated, ensuring minimum instantaneous variations in the power production for operation above rated wind speed. The response of the blade load is examined for different values of the integral gain as resulting in rotor speed error and the rate of change of rotor speed. Based on the results a new load case for the simulation of extreme loads during normal operation is also presented

  13. Investigation of Ice-PVC separation under Flexural Loading using FEM Analysis

    Directory of Open Access Journals (Sweden)

    H Xue

    2016-08-01

    Full Text Available This paper presents the FEM technique applied in the study of ice separation over a polyvinyl chloride (PVC surface. A two layer model of ice and PVC is analysed theoretically using Euler-Bernoulli beam theory and the rule of mixtures. The physical samples are prepared by freezing ice over the PVC surfaces. The samples are tested experimentally in a four-point loading setup. The experimental results contain strain data gathered through a data acquisition system using the LabView software. The data is collected at the rate of 1 kHz per load step. A model is also coded in MATLAB® and simulated using the finite element method (FEM in ANSYS® Multiphysics. The FEM model of the ice and PVC sample is built using solid elements. The mesh is tested for sensitively. A good agreement is found between the theoretical, experimental and numerical simulation results.

  14. Stochastic Extreme Load Predictions for Marine Structures

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    1999-01-01

    Development of rational design criteria for marine structures requires reliable estimates for the maximum wave-induced loads the structure may encounter during its operational lifetime. The paper discusses various methods for extreme value predictions taking into account the non-linearity of the ......Development of rational design criteria for marine structures requires reliable estimates for the maximum wave-induced loads the structure may encounter during its operational lifetime. The paper discusses various methods for extreme value predictions taking into account the non......-linearity of the waves and the response. As example the wave-induced bending moment in the ship hull girder is considered....

  15. Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters Project

    Science.gov (United States)

    Mueller, Robert P.

    2014-01-01

    Results from the recent LCROSS mission in 2010, indicate that H2O ice and other useful volatiles such as CO, He, and N are present in the permanently shadowed craters at the poles of the moon. However, the extreme topography and steep slopes of the crater walls make access a significant challenge. In addition temperatures have been measured at 40K (-233 C) so quick access and exit is desirable before the mining robot cold soaks. The Global Exploration Roadmap lists extreme access as a necessary technology for Lunar Exploration.

  16. Ice Load Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Timothy J. [DNV GL, Seattle, WA (United States); Brown, Thomas [IFC Engineering, Calgary, AB (Canada); Byrne, Alex [DNV GL, Seattle, WA (United States)

    2014-10-30

    As interest and investment in offshore wind projects increase worldwide, some turbines will be installed in locations where ice of significant thickness forms on the water surface. This ice moves under the driving forces of wind, current, and thermal effects and may result in substantial forces on bottom-fixed support structures. The North and Baltic Seas in Europe have begun to see significant wind energy development and the Great Lakes of the United States and Canada may host wind energy development in the near future. Design of the support structures for these projects is best performed through the use of an integrated tool that can calculate the cumulative effects of forces due to turbine operations, wind, waves, and floating ice. The dynamic nature of ice forces requires that these forces be included in the design simulations, rather than added as static forces to simulation results. The International Electrotechnical Commission (IEC) standard[2] for offshore wind turbine design and the International Organization for Standardization (ISO) standard[3] for offshore structures provide requirements and algorithms for the calculation of forces induced by surface ice; however, currently none of the major wind turbine dynamic simulation codes provides the ability to model ice loads. The scope of work of the project described in this report includes the development of a suite of subroutines, collectively named IceFloe, that meet the requirements of the IEC and ISO standards and couples with four of the major wind turbine dynamic simulation codes. The mechanisms by which ice forces impinge on offshore structures generally include the forces required for crushing of the ice against vertical-sided structures and the forces required to fracture the ice as it rides up on conical-sided structures. Within these two broad categories, the dynamic character of the forces with respect to time is also dependent on other factors such as the velocity and thickness of the moving ice

  17. Mitigating the Long term Operating Extreme Load through Active Control

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand

    2014-01-01

    blade azimuth location are shown to affect the extreme blade load magnitude during operation in normal turbulence wind input. The simultaneously controlled operation of generator torque variation and pitch variation at low blade pitch angles is detected to be responsible for very high loads acting...... on the blades. Through gain scheduling of the controller (modifications of the proportional Kp and the integral Ki gains) the extreme loads are mitigated, ensuring minimum instantaneous variations in the power production for operation above rated wind speed. The response of the blade load is examined...

  18. Extreme and First-Passage Time of Ship Collision Loads

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Thoft-Christensen, Palle

    1983-01-01

    The paper outlines a general theory from which the distribution function of the extreme peak collision load encountered during a certain intended lifetime can be cal culated assuming the arrival of ship collisions to be specified by a Poisson counting proces s.......The paper outlines a general theory from which the distribution function of the extreme peak collision load encountered during a certain intended lifetime can be cal culated assuming the arrival of ship collisions to be specified by a Poisson counting proces s....

  19. Spontaneous De-Icing Phenomena on Extremely Cold Surfaces

    Science.gov (United States)

    Song, Dong; Choi, Chang-Hwan

    2017-11-01

    Freezing of droplets on cold surfaces is universal phenomenon, while the mechanisms are still inadequately understood. Here we report spontaneous de-icing phenomena of an impacting droplet which occur on extreme cold surfaces. When a droplet impacts on cold surfaces lower than -80°, it takes more than two times longer for the droplet to freeze than the ones at -50°. Moreover, the frozen droplet below -80° breaks up into several large parts spontaneously in the end. When a droplet impacts on the extreme cold surfaces, evaporation and condensation occur immediately as the droplet approaches the substrate. A thick layer of frost forms between the droplet and substrate, decreasing the contact area of the droplet with substrate. It leads to impede the heat transfer and hence extends the freezing time significantly. On the extremely cold substrate, the droplet freezes from the center to the edge area, in contrast to a typical case freezing from the bottom to the top. This novel from-center-to-edge freezing process changes the internal tension of the frozen droplet and results in the instantaneous breakup and release eventually, which can be taken advantage of for effective deicing mechanisms.

  20. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    OpenAIRE

    Barlas, Athanasios; Pettas, Vasilis; Gertz, Drew Patrick; Aagaard Madsen , Helge

    2016-01-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components o...

  1. Arctic sea ice, Eurasia snow, and extreme winter haze in China.

    Science.gov (United States)

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-03-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.

  2. Nutritional composition, glycemic index, glycemic load, and organoleptical quality of glucomannan-enriched soy milk ice cream

    Science.gov (United States)

    Sa'adah, S.; Candra, O. M.; Nugrahani, G.; Pramono, A.; Afifah, D. N.

    2018-01-01

    Over the past decades, the number of childhood obesity cases has increased significantly, which led to an increase in the number of adults suffering from degenerative diseases such as diabetes mellitus (DM). Glucomannan-Enriched Soy Milk Ice Cream (GSMIC) may prevent obesity in children. The aim of the study was to test the level of carbohydrates, protein, fat, dietary fiber, glycemic index, glycemic load, and organoleptic quality of GSMIC. This experiment used a completely randomized design to test three formulations of glucomannan flour and soy milk (0.5%, 1.5%, and 2.5%). The products were tested for nutritional composition, and evaluated on glycemic index, glycemic load, and organoleptic quality. GSMIC 2.5% had higher levels of dietary fiber and high carbohydrate, protein, and fat content compared to ice cream (3.99%, 30.7%, 1.50%, 1.33%, respectively). The glycemic index of ice cream and 2.5% GSMIC were 75.83 (75%) and 51.48 (51%), respectively, while the glycemic load of ice cream and 2.5% GSMIC were 9.04 and 11.61, respectively. Based on the organoleptic analysis, formulation preferred by the panellists was 2.5% glucomannan flour. Glucomannan flour affected the level of carbohydrates, protein, fat, dietary fiber, glycemic index, glycemic load, and organoleptic quality in soy milk ice cream.

  3. Committee VI.1. Extreme Hull Girder Loading

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2000-01-01

    Committee Mandate. Evaluate and develop direct calculation procedures for extreme wawe loads on ship hull girders. Due consideration shall be given to stochastic and non-linear effects. The procedures shall be assessed by comparison with in-service experiences, model tests and more refined...

  4. Safe Loads on Ice Sheets (Ice Engineering. Number 13)

    National Research Council Canada - National Science Library

    Haynes, F. D; Carey, Kevin L; Cattabriga, Gioia

    1996-01-01

    Every winter, ice sheets that grow on lakes and rivers in northern states are used for ice roads, ice bridges, construction platforms, airstrips, and recreational activities, It becomes very important...

  5. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  6. Specific gas turbines for extreme peak-load

    International Nuclear Information System (INIS)

    Bellot, C.

    1992-12-01

    As with other European countries, in France peak consumption of electricity occurs during winter. Due to the increasing use of electricity for domestic heating, outside temperature greatly influences consumption (1 200 MW for a drop of 1 deg C). To meet requirements during cold spells, EDF has sought to determine which special facilities are best suited for extreme peak load conditions (i.e. offering short lifespan and minimum capital cost) and has studied the possibility of installing generation means in transformer substations (20 kV). This solution does not require extension of networks since these means are scattered near consumption areas. An experiment conducted on 3 Diesel generators of 800 kWe each at Senlis revealed some of the disadvantages of Diesel (maintenance requirements, polluting emissions and noise). EDF then examined, for this same application, the use of gas turbines, for which these drawbacks are significantly less. A study carried out under an EDF contract by the French manufacturer TURBOMECA showed that it is possible to design a small capacity gas turbine that can compete with Diesel generators, and that capital costs could be minimized by simplifying the machine, adapting its lifespan to extreme peak load needs, and taking advantage of lower cost provided by mass production. TURBOMECA defined the machine's characteristics (2 MW, 6 000 hours lifespan) and aerodynamic flow. It also estimated the cost of packaging. In terms of overall cost (including initial investment, maintenance and fuel) the gas turbine appears cheaper than Diesel generators for annual operation times of less than one hundred hours, which corresponds closely with extreme peak load use. The lower maintenance costs and the better availability counterbalance the higher capital cost (+6%) and the greater consumption (+50%). (author). 7 figs

  7. Upper extremity cumulative trauma disorders in the makers of Maraş pounded ice cream

    Directory of Open Access Journals (Sweden)

    Betül Bakan

    2013-01-01

    Full Text Available Objective: Upper Extremity Cumulative Trauma Disorders(UE-CTD are among the major health problems affectingthe workers. The aim of this study was to investigateUE-CTD in the makers of Maras pounded ice cream(MMPICMethods: This study was conducted among 50 volunteerswho work as a MMPIC and 50 control in our downtownarea. During face-to-face conversion, the participantsfilled out a survey inquiring about age, duration ofwork (in years in job, daily working time, occupation withanother job, health history, and medication usage. Thesubjects were questioned regarding the musculoskeletalcomplaints within the last six months and upper bodyphysical examination was performed in all participants.Results: The study group was composed of males.The mean age of study group and control group were31.78±6.58 and 30.74±5.99 years (p=0.411, respectively.The mean duration of work in pounded ice creambusiness and the mean duration of work in control were11.64± 6.26 years and 10.68±5.48 years (p=0.417, respectively.The mean daily working time in the studygroup and in control group were 10.64±1.82 hours and11.12±1.62 hours (p= 0.168, respectively. Musculoskeletalcomplaints of the upper extremity were found in 52%of the study group, and 28% of the control group. Musculoskeletaldisease of upper extremity was found in 28% ofthe study group and in 12% of the control group. Upperextremity musculoskeletal system complaints and illnesswere difference statistically between the two groups (p=0.014; p= 0.046, respectively.Conclusion: UE-CTD was seen in the makers of poundedice cream and its prevalence was similar to the otherlaborers work in the areas needing repetitive arm andhand motion.Key words: Makers of Maras pounded ice cream, cumulativetrauma disorders, upper extremity problems

  8. The Effects of Load Carriage and Muscle Fatigue on Lower-Extremity Joint Mechanics

    Science.gov (United States)

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L.

    2013-01-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. Purpose: To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Method: Eighteen men performed the following tasks: unloaded…

  9. Impact of extreme load requirements and quality assurance on nuclear power plant costs

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1993-01-01

    Definitive costs, applicable to nuclear power plant concrete structures, as a function of National Regulatory Requirements, standardization, the effect of extreme load design associated with both design basis accidents and extreme external events and quality assurance are difficult to develop since such effects are interrelated and not only differ widely from country to country, project to project but also vary in time. Table 1 shows an estimate of the of the overall plant cost effects of external event extreme load design on nuclear power plant design for the U.S -and selected foreign countries for which experience with LWRs exist- Germany is the most expensive primarily due to a military aircraft crash resistance. However, the German requirement for 4 safeguards trains rather than 2 and the containment design requirement to consider one Steam Generator blowdown concurrent with a RCS blowdown. This presentation will concentrate on the direct current impact extreme load design and quality assurance have on concrete structures, systems and components for nuclear plants. This presentation is considered timely due to the increased interest in the c potential backfit of Eastern European nuclear power stations of the WWER 440 and WWER 1000 types which typically did not consider the extreme loads identified in Table 1 and accident loads in Table 3 and quality assurance in Table 5 in their original design. Concrete structures in particular are highlighted because they typically form the last barrier to radioactive release from the containment and other Safety Related Structures

  10. Current summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1980-01-01

    The development of extreme load design criteria both as to rate and depth within any national jurisdiction as applied to nuclear power plant design is a function of several factors. The prime factor is the number of nuclear power plant facilities which are operating, under construction or planned in a given country. The second most important factor seems to be the degree of development of a domestic independent nuclear steam system supplier, NSSS vendor. Finally, countries whose domestic NSSS firms are active in the export market appear to have more active criteria development programs or at least they appear more visible to the foreign observer. For the purposes of this paper, extreme loads are defined as those loads having probability of occurence less than 10 -1 /yr and whose occurence could result in radiological consequences in excess of those permitted by national health standards. The specific loads considered include earthquake, extreme wind (tornado), airplane crash, detonation, and high energy system rupture. The paper identifies five national centers for extreme load criteria development; Canada, Great Britian, USA, USSR, and West Germany with both France and Japan also about to appear as independent centers of criteria development. Criteria under development by each national center are discussed in detail. (orig.)

  11. Evaluation, management and prevention of lower extremity youth ice hockey injuries

    Directory of Open Access Journals (Sweden)

    Popkin CA

    2016-11-01

    Full Text Available Charles A Popkin,1 Brian M Schulz,2 Caroline N Park,1 Thomas S Bottiglieri,1 T Sean Lynch1 1Department of Orthopedic Surgery, Center for Shoulder, Elbow and Sports Medicine at Columbia University, New York, NY, 2Kerlan‑Jobe Orthopedic Clinic, Los Angeles, CA, USA Abstract: Ice hockey is a fast-paced sport played by increasing numbers of children and adolescents in North America and around the world. Requiring a unique blend of skill, finesse, power and teamwork, ice hockey can become a lifelong recreational activity. Despite the rising popularity of the sport, there is ongoing concern about the high frequency of musculoskeletal injury associated with participation in ice hockey. Injury rates in ice hockey are among the highest in all competitive sports. Numerous research studies have been implemented to better understand the risks of injury. As a result, rule changes were adopted by the USA Hockey and Hockey Canada to raise the minimum age at which body checking is permitted to 13–14 years (Bantam level from 11–12 years (Pee Wee. Continuing the education of coaches, parents and players on rules of safe play, and emphasizing the standards for proper equipment use are other strategies being implemented to make the game safer to play. The objective of this article was to review the evaluation, management and prevention of common lower extremity youth hockey injuries. Keywords: youth hockey, body checking, injury prevention, femoroacetabular impingement, apophyseal avulsions

  12. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Pettas, Vasilis; Gertz, Drew Patrick

    2016-01-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW...

  13. Influence of the control system on wind turbine loads during power production in extreme turbulence: Structural reliability

    DEFF Research Database (Denmark)

    Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard

    2016-01-01

    structural reliability are assessed when the extreme turbulence model is uncertain. The structural reliability is assessed for the wind turbine when three configurations of an industrial grade load alleviation control system of increasing complexity and performance are used. The load alleviation features......The wind energy industry is continuously researching better computational models of wind inflow and turbulence to predict extreme loading (the nature of randomness) and their corresponding probability of occurrence. Sophisticated load alleviation control systems are increasingly being designed...... and deployed to specifically reduce the adverse effects of extreme load events resulting in lighter structures. The main objective herein is to show that despite large uncertainty in the extreme turbulence models, advanced load alleviation control systems yield both a reduction in magnitude and scatter...

  14. Extreme Design Loads Calibration of Offshore Wind Turbine Blades through Real Time Measurements

    DEFF Research Database (Denmark)

    Natarajan, Anand; Vesth, Allan; Lamata, Rebeca Rivera

    2014-01-01

    Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset of the mea......Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset...... of the measurements over a week is taken as input to stochastic load extrapolation whereby the one year extrapolated design extreme is obtained, which are then compared with the maximum extremes obtained from direct measurements over a six month period to validate the magnification in the load levels for the blade...... root flap moment, edge moment obtained by extrapolation. The validation yields valuable information on prescribing the slope of the local extrapolation curve at each mean wind speed. As an alternative to determining the contemporaneous loads for each primary extrapolated load, the blade root resultant...

  15. Effects of normal and extreme turbulence spectral parameters on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Mann, Jakob

    2017-01-01

    the recommended values in the IEC 61400-1 Ed.3 that is used for wind turbine design. The present paper investigates the impact of Mann turbulence model parameter variations on the design loads envelope for 5 MW and 10 MW reference wind turbines. Specific focus is made on the blade root loads, tower top moments...... of design loads is investigated with a focus on the commonly used Mann turbulence model. Quantification of the Mann model parameters is made through wind measurements acquired from the Høvsøre site. The parameters of the Mann model fitted to site specific observations can differ significantly from...... and tower base loads under normal turbulence and extreme turbulence, whereby the change in operating extreme and fatigue design loads obtained through turbulence model parameter variations is compared with corresponding variations obtained from random seeds of turbulence. The investigations quantify...

  16. Bearing Capacity of Floating Ice Sheets under Short-Term Loads: Over-Sea-Ice Traverse from McMurdo Station to Marble Point

    Science.gov (United States)

    2015-01-01

    under Short-Term Loads Over-Sea-Ice Traverse from McMurdo Station to Marble Point Co ld R eg io ns R es ea rc h an d En gi ne er in g La bo ra...Traverse from McMurdo Station to Marble Point Jason C. Weale and Devinder S. Sodhi Cold Regions Research and Engineering Laboratory (CRREL) U.S...Division of Polar Programs operates an over-sea-ice traverse from McMurdo Station to rou- tinely resupply Marble Point Camp. The traverse requires that

  17. Summary of international extreme load design requirements for nuclear power plant facilities

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1978-01-01

    An attempt is made to trace the development of extreme load criteria as it applies to earthquakes, extreme wind, high energy system rupture (LOCA), floods and other manmade and natural external hazards, from 1965 until the present, in the leading nuclear power nations throughout the world. (Author)

  18. Extreme Low Light Requirement for Algae Growth Underneath Sea Ice: A Case Study From Station Nord, NE Greenland

    Science.gov (United States)

    Hancke, Kasper; Lund-Hansen, Lars C.; Lamare, Maxim L.; Højlund Pedersen, Stine; King, Martin D.; Andersen, Per; Sorrell, Brian K.

    2018-02-01

    Microalgae colonizing the underside of sea ice in spring are a key component of the Arctic foodweb as they drive early primary production and transport of carbon from the atmosphere to the ocean interior. Onset of the spring bloom of ice algae is typically limited by the availability of light, and the current consensus is that a few tens-of-centimeters of snow is enough to prevent sufficient solar radiation to reach underneath the sea ice. We challenge this consensus, and investigated the onset and the light requirement of an ice algae spring bloom, and the importance of snow optical properties for light penetration. Colonization by ice algae began in May under >1 m of first-year sea ice with ˜1 m thick snow cover on top, in NE Greenland. The initial growth of ice algae began at extremely low irradiance (automated high-frequency temperature profiles. We propose that changes in snow optical properties, caused by temperature-driven snow metamorphosis, was the primary driver for allowing sufficient light to penetrate through the thick snow and initiate algae growth below the sea ice. This was supported by radiative-transfer modeling of light attenuation. Implications are an earlier productivity by ice algae in Arctic sea ice than recognized previously.

  19. Wave induced extreme hull girder loads on containerships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Pedersen, Preben Terndrup; Shi, Bill

    2009-01-01

    This paper provides simple but rational procedures for prediction of extreme wave – induced sectional hull girder forces with reasonable engineering accuracy. The procedures take into account main ship hull characteristics such as: length, breadth, draught, block coefficient, bow flare coefficient......, forward speed and hull flexibility. The vertical hull girder loads are evaluated for specific operational profiles. Firstly a quadratic strip theory is presented which can give separate predictions for the hogging and sagging bending moments and shear forces and for hull girder loads. Then this procedure...... is based on rational methods it can be applied for novel single hull ship types not presently covered by the rules of the classification societies or to account for specific operational profiles....

  20. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  1. Survey of extreme load design regulatory agency licensing requirements for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J D

    1976-04-01

    Since 1965, when extreme load requirements began to be considered explicitly in nuclear power plant design, there has been a gradual divergence in requirements imposed by national regulatory agencies. However, nuclear plant safety is an international problem because of the potential international effects of any postulated plant failure. For this reason this paper has been prepared in an attempt to highlight the differences in national criteria currently used in the extreme load design of nuclear plant facilities. No attempt has been made to evaluate the relative merit of the criteria established by the various national regulatory agencies. This paper presents the results of a recent survey made of national atomic energy regulatory agencies and major nuclear steam supply design agencies, which requested a summary of current licensing criteria associated with earthquake, extreme wind (tornado), flood, airplane crash and accident (pipe break) loads applicable within the various national jurisdictions. Also presented are a number of comparisons which are meant to illustrate the differences in national regulatory criteria.

  2. Survey of extreme load design regulatory agency licensing requirements for nuclear power plants

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1976-01-01

    Since 1965, when extreme load requirements began to be considered explicitly in nuclear power plant design, there has been a gradual divergence in requirements imposed by national regulatory agencies. However, nuclear plant safety is an international problem because of the potential international effects of any postulated plant failure. For this reason this paper has been prepared in an attempt to highlight the differences in national criteria currently used in the extreme load design of nuclear plant facilities. No attempt has been made to evaluate the relative merit of the criteria established by the various national regulatory agencies. This paper presents the results of a recent survey made of national atomic energy regulatory agencies and major nuclear steam supply design agencies, which requested a summary of current licensing criteria associated with earthquake, extreme wind (tornado), flood, airplane crash and accident (pipe break) loads applicable within the various national jurisdictions. Also presented are a number of comparisons which are meant to illustrate the differences in national regulatory criteria. (Auth.)

  3. Ultimate design load analysis of planetary gearbox bearings under extreme events

    DEFF Research Database (Denmark)

    Gallego Calderon, Juan Felipe; Natarajan, Anand; Cutululis, Nicolaos Antonio

    2017-01-01

    This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped-parameter approach....... Three extreme events are assessed: low-voltage ride through, emergency stop and normal stop. The analysis is focused on finding which event has the most negative impact on the bearing extreme radial loads. The two latter events are carried out following the guidelines of the International...

  4. Analysis of Global Sensitivity of Landing Variables on Landing Loads and Extreme Values of the Loads in Carrier-Based Aircrafts

    Directory of Open Access Journals (Sweden)

    Jin Zhou

    2018-01-01

    Full Text Available When a carrier-based aircraft is in arrested landing on deck, the impact loads on landing gears and airframe are closely related to landing states. The distribution and extreme values of the landing loads obtained during life-cycle analysis provide an important basis for buffering parameter design and fatigue design. In this paper, the effect of the multivariate distribution was studied based on military standards and guides. By establishment of a virtual prototype, the extended Fourier amplitude sensitivity test (EFAST method is applied on sensitivity analysis of landing variables. The results show that sinking speed and rolling angle are the main influencing factors on the landing gear’s course load and vertical load; sinking speed, rolling angle, and yawing angle are the main influencing factors on the landing gear’s lateral load; and sinking speed is the main influencing factor on the barycenter overload. The extreme values of loads show that the typical condition design in the structural strength analysis is safe. The maximum difference value of the vertical load of the main landing gear is 12.0%. This research may provide some reference for structure design of landing gears and compilation of load spectrum for carrier-based aircrafts.

  5. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    Energy Technology Data Exchange (ETDEWEB)

    England, Tony [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; van Nieuwstadt, Lin [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; De Roo, Roger [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Karr, Dale [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Lozenge, David [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering; Meadows, Guy [Univ. of Michigan, Ann Arbor, MI (United States). College of Engineering

    2016-05-30

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that has been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.

  6. Predicting the Extreme Loads on a Wind Turbine Considering Uncertainty in Airfoil Data

    DEFF Research Database (Denmark)

    Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard

    2014-01-01

    The sources contributing to uncertainty in a wind turbine blade static airfoil data include wind tunnel testing, CFD calculations, 3D rotational corrections based on CFD or emprircal models, surface roughness corrections, Reynolds number corrections, expansion to the full 360-degree angle of attack...... range, validation by full scale measurements, and geometric distortions of the blade during manufacturing and under loading. In this paper a stochastic model of the static airfoil data is proposed to supplement the prediction of extreme loads effects for large wind turbines. It is shown...... that the uncertainty in airfoil data can have e significant impact on the prediction of extreme loads effects depending on the component, and the correlation along the span of the blade....

  7. Bottom Fixed Platform Dynamics Models Assessing Surface Ice Interactions for Transitional Depth Structures in the Great Lakes: FAST8 – IceDyn

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Dale G. [Univ. of Michigan, Ann Arbor, MI (United States); Yu, Bingbin [Principle Power, Inc., Emeryville, CA (United States); Sirnivas, Senu [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-04-01

    To create long-term solutions for offshore wind turbines in a variety of environmental conditions, CAE tools are needed to model the design-driving loads that interact with an offshore wind turbine system during operation. This report describes our efforts in augmenting existing CAE tools used for offshore wind turbine analysis with a new module that can provide simulation capabilities for ice loading on the system. This augmentation was accomplished by creating an ice-loading module coupled to FAST8, the CAE tool maintained by the NREL for simulating land-based and offshore wind turbine dynamics. The new module includes both static and dynamic ice loading that can be applied during a dynamic simulation of the response of an offshore wind turbine. The ice forces can be prescribed, or influenced by the structure’s compliant response, or by the dynamics of both the structure and the ice floe. The new module covers ice failure modes of spalling, buckling, crushing, splitting, and bending. The supporting structure of wind turbines can be modeled as a vertical or sloping form at the waterline. The Inward Battered Guide Structure (IBGS) foundation designed by Keystone Engineering for the Great Lakes was used to study the ice models coupled to FAST8. The IBGS foundation ice loading simulations in FAST8 were compared to the baseline simulation case without ice loading. The ice conditions reflecting those from Lake Huron at Port Huron and Lake Michigan at North Manitou were studied under near rated wind speed of 12 m/s for the NREL 5-MW reference turbine. Simulations were performed on ice loading models 1 through 4 and ice model 6 with their respective sub-models. The purpose of ice model 5 is to investigate ice loading on sloping structures such as ice-cones on a monopile and is not suitable for multi-membered jacketed structures like the IBGS foundation. The key response parameters from the simulations, shear forces and moments from the tower base and IBGS foundation

  8. Observed runoff, jokulhlaups and suspended sediment load from the Greenland ice at Kangerlussuaq, West Greenland, 2007 and 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Hasholt, Bent [UNIV OF COPENHAGEN

    2009-01-01

    This study fills the gap in hydrologic measurements of runoff exiting a part of the Greenland Ice Sheet (GrIS), the Kangerlussuaq drainage area, West Greenland. The observations are of value for obtaining knowledge about the terrestrial freshwater and sediment output from part of the GrIS and the strip of land between the GrIS and the ocean, in the context of varying ice sheet surface melt and influx entering the ocean. High-resolution stage, discharge and suspended sediment load show a decrease in runoff of {approx} 25% and in sediment load of {approx} 40% from 2007 to 2008 in response to a decrease in the summer accumulated number of positive degree days. During the 2007 and 2008 runoff season, joekulhlaups are observed at Kangerlussuaq, drained from an ice-dammed lake at the margin of the GrIS.

  9. Investigating extreme event loading on coastal bridges using wireless sensor technology

    Science.gov (United States)

    Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.

    2017-04-01

    Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.

  10. Load Shifting and Storage of Cooling Energy through Ice Bank or Ice Slurry Systems: modelling and experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino

    2009-10-15

    Ice based Cool Thermal Energy Storage (CTES) systems have attracted much attention during last few decades. The reasons are mainly of economical and environmental nature. Compared to conventional refrigeration and air-conditioning systems without cool thermal energy storage, implementation of CTES will increase environmental standards and overall efficiency of the energy systems as it contributes to the phase-out of synthetic refrigerants and reduces peak loads in electricity grids. For the application of a cool thermal energy storages in refrigeration installations and HVAC systems in industry and building sector, it is necessary to have appropriate design tools in order to sufficiently accurate predict their performance. In this thesis theoretical and experimental investigations of two ice based cool thermal energy storage systems, namely static, indirect, external melt, ice-on-coil, i.e. ice bank system and dynamic, ice slurry cool thermal energy storage system are carried out. An ice bank storage technology for cooling purposes is known for a long time. The main drawbacks which are hindering its wider use are the system complexity, high first costs, system efficiency which is highly dependant on design, control and monitoring of the system, etc. On the other hand, ice slurry technology was not well studied until recently, while in the current scientific literature there are still differences between results and conclusions reported by different investigators. The aim of the present thesis is to extend the knowledge in the field of ice based CTES systems, thereby contributing in the development and wider utilization of those systems. In the first part of the thesis a computer application, named 'BankaLeda' is presented. It enables simulation of an ice bank system performance. In order to verify developed simulation model an experimental evaluation has been performed. Field measurements have been conducted on a two module silo which was installed as a

  11. Hydrogen ion induced ultralow wear of PEEK under extreme load

    Science.gov (United States)

    Yan, Shuai; Wang, Anying; Fei, Jixiong; Wang, Zhenyang; Zhang, Xiaofeng; Lin, Bin

    2018-03-01

    As a high-performance engineering polymer, poly(ether ether ketone) (PEEK) is a perfect candidate material for applications under extreme working conditions. However, its high wear rate greatly shortens its service life. In this study, ultralow friction and wear between PEEK and silicon nitride (Si3N4) under extreme-load conditions (with a mean contact pressure above 100 MPa) are found in acid lubricating solutions. Both friction and wear decrease sharply with decreasing pH. At pH = 1, the friction coefficient decreases by an order of magnitude and the wear rate of the PEEK decreases by two orders of magnitude compared to the results with water lubrication. These reductions in friction and wear occur for different speed, load, and surface roughness conditions. The underlying mechanism can be attributed to the formation of hydrogen-ion-induced electrical double layers on the surfaces of PEEK and Si3N4. The combined effect of the resulting repulsive force, electro-viscosity, and low shear strength of the water layer dramatically reduces both friction and wear.

  12. Variability of extreme flap loads during turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Ronold, K O [Det Norske Veritas, Hoevik (Norway); Larsen, G C [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The variability of extreme flap loads is of utmost importance for design of wind-turbine rotor blades. The flap loads of interest consist of the flap-wise bendin moment response at the blade root whose variability in the short-term, for a given wind climate, can be represented by a stationary process. A model for the short-term bending moment process is presented, and the distribution of its associated maxima is derived. A model for the wind climate is given in terms of the probability distributions for the 10-minute mean wind speed and the standard deviation of the arbitrary wind speed. This is used to establish the distribution of the largest flap-wise bending moment in a specific reference period, and it is outlined how a characteristic bending moment for use in design can be extracted from this distribution. The application of the presented distribution models is demonstrated by a numerical example for a site-specific wind turbine. (au)

  13. Tree species traits but not diversity mitigate stem breakage in a subtropical forest following a rare and extreme ice storm.

    Directory of Open Access Journals (Sweden)

    Karin Nadrowski

    Full Text Available Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level.

  14. Critical Mechanisms for the Formation of Extreme Arctic Sea-Ice Extent in the Summers of 2007 and 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiquan [Beijing Normal Univ. (China); Univ. of North Dakota, Grand Forks, ND (United States); Zib, Benjamin J. [Univ. of North Dakota, Grand Forks, ND (United States); Xi, Baike [Univ. of North Dakota, Grand Forks, ND (United States); Stanfield, Ryan [Univ. of North Dakota, Grand Forks, ND (United States); Deng, Yi [Georgia Inst. of Technology, Atlanta, GA (United States); Zhang, Xiangdong [Univ. of Alaska, Fairbanks, AK (United States); Lin, B. [NASA Langley Research Center, Hampton, VA (United States); Long, Charles N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-29

    A warming Arctic climate is undergoing significant e 21 nvironmental change, most evidenced by the reduction of Arctic sea-ice extent during the summer. In this study, we examine two extreme anomalies of September sea-ice extent in 2007 and 1996, and investigate the impacts of cloud fraction (CF), atmospheric precipitable water vapor (PWV), downwelling longwave flux (DLF), surface air temperature (SAT), pressure and winds on the sea-ice variation in 2007 and 1996 using both satellite-derived sea-ice products and MERRA reanalysis. The area of the Laptev, East Siberian and West Chukchi seas (70-90oN, 90-180oE) has experienced the largest variation in sea-ice extent from year-to-year and defined here as the Area Of Focus (AOF). The record low September sea-ice extent in 2007 was associated with positive anomalies 30 of CF, PWV, DLF, and SAT over the AOF. Persistent anti-cyclone positioned over the Beaufort Sea coupled with low pressure over Eurasia induced easterly zonal and southerly meridional winds. In contrast, negative CF, PWV, DLF and SAT anomalies, as well as opposite wind patterns to those in 2007, characterized the 1996 high September sea-ice extent. Through this study, we hypothesize the following positive feedbacks of clouds, water vapor, radiation and atmospheric variables on the sea-ice retreat during the summer 2007. The record low sea-ice extent during the summer 2007 is initially triggered by the atmospheric circulation anomaly. The southerly winds across the Chukchi and East Siberian seas transport warm, moist air from the north Pacific, which is not only enhancing sea-ice melt across the AOF, but also increasing clouds. The positive cloud feedback results in higher SAT and more sea-ice melt. Therefore, 40 more water vapor could be evaporated from open seas and higher SAT to form more clouds, which will enhance positive cloud feedback. This enhanced positive cloud feedback will then further increase SAT and accelerate the sea-ice retreat during the

  15. Evaluation of the limit ice thickness for the hull of various Finnish-Swedish ice class vessels navigating in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Pentti Kujala

    2018-05-01

    Full Text Available Selection of suitable ice class for ships operation is an important but not simple task. The increased exploitation of the Polar waters, both seasonal periods and geographical areas, as well as the introduction of new international design standards such as Polar Code, reduces the relevancy of using existing experience as basis for the selection, and new methods and knowledge have to be developed. This paper will analyse what can be the limiting ice thickness for ships navigating in the Russian Arctic and designed according to the Finnish-Swedish ice class rules. The permanent deformations of ice-strengthened shell structures for various ice classes is determined using MT Uikku as the typical size of a vessel navigating in ice. The ice load in various conditions is determined using the ARCDEV data from the winter 1998 as the basic database. By comparing the measured load in various ice conditions with the serviceability limit state of the structures, the limiting ice thickness for various ice classes is determined. The database for maximum loads includes 3-weeks ice load measurements during April 1998 on the Kara Sea mainly by icebreaker assistance. Gumbel 1 distribution is fitted on the measured 20 min maximum values and the data is divided into various classes using ship speed, ice thickness and ice concentration as the main parameters. Results encouragingly show that present designs are safer than assumed in the Polar Code suggesting that assisted operation in Arctic conditions is feasible in rougher conditions than indicated in the Polar Code. Keywords: Loads, Serviceability, Limit ice thickness, Polar code

  16. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  17. Solar Weather Ice Monitoring Station (SWIMS). A low cost, extreme/harsh environment, solar powered, autonomous sensor data gathering and transmission system

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2013-12-01

    The Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally respectful materials that when deployed will increase the albedo, enhancing the formation and/preservation of multi-year ice. Small scale deployments using various materials have been done in Canada, California's Sierra Nevada Mountains and a pond in Minnesota to test the albedo performance and environmental characteristics of these materials. SWIMS is a sophisticated autonomous sensor system being developed to measure the albedo, weather, water temperature and other environmental parameters. The system (SWIMS) employs low cost, high accuracy/precision sensors, high resolution cameras, and an extreme environment command and data handling computer system using satellite and terrestrial wireless communication. The entire system is solar powered with redundant battery backup on a floating buoy platform engineered for low temperature (-40C) and high wind conditions. The system also incorporates tilt sensors, sonar based ice thickness sensors and a weather station. To keep the costs low, each SWIMS unit measures incoming and reflected radiation from the four quadrants around the buoy. This allows data from four sets of sensors, cameras, weather station, water temperature probe to be collected and transmitted by a single on-board solar powered computer. This presentation covers the technical, logistical and cost challenges in designing, developing and deploying these stations in remote, extreme environments. Image captured by camera #3 of setting sun on the SWIMS station One of the images captured by SWIMS Camera #4

  18. Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China

    Science.gov (United States)

    Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.

    2017-12-01

    Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.

  19. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  20. Summary of Research Issues in Behavior and Performance in Isolated and Confined Extreme (ICE) Environments

    Science.gov (United States)

    Palinkas, Lawrence A.

    2000-01-01

    The papers presented in this section describe changes in behavior and performance in various isolated and confined extreme (ICE) environments, including Antarctic expeditions and research stations, space simulators and isolation chambers, and submarines. Each of these environments possesses characteristics that are in some way analogous to those found on long-duration space missions. Despite differences in length of mission, characteristics of mission personnel or crew, and characteristics in the physical environment, the various ICE environments described in this collection of papers appear to produce similar changes in behavior and performance. These changes include increased disturbances of mood, increased rates of psychiatric disorder, increased interpersonal tension, and a disruption of circadian rhythms. However, these environments do not inherently produce decrements in performance. Palinkas and colleagues suggest that prolonged exposure to the isolation and confinement in the Antarctic can actually have positive or "salutogenic" effects as well, evidenced by a decrease in mood disturbances and increase in performance measures.

  1. Extreme Value Predictions using Monte Carlo Simulations with Artificially Increased Load Spectrum

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2011-01-01

    In the analysis of structures subjected to stationary stochastic load processes the mean out-crossing rate plays an important role as it can be used to determine the extreme value distribution of any response, usually assuming that the sequence of mean out-crossings can be modelled as a Poisson...... be scaled down to its actual value. In the present paper the usefulness of this approach is investigated, considering problems related to wave loads on marine structures. Here the load scale parameter is conveniently taken as the square of the significant wave height....... be found using the First Order Reliability Method (FORM). The FORM analysis also shows that the reliability index is strictly inversely proportional to the square root of the magnitude of the load spectrum, irrespectively of the non-linearity in the system. However, the FORM analysis only gives...

  2. Investigation of potential extreme load reduction for a two-bladed upwind turbine with partial pitch

    DEFF Research Database (Denmark)

    Kim, Taeseong; Larsen, Torben J.; Yde, Anders

    2015-01-01

    This paper presents a wind turbine concept with an innovative design combining partial pitch with a two-bladed (PP-2B) turbine configuration. Special emphasis is on extreme load reduction during storm situations at standstill, but operational loads are also investigated. In order to compare...... loads are reduced by approximately 20% for the PP-2B and 18% for the PP-3B compared with the 3B turbine for the parked condition in a storm situation. Moreover, a huge potential of 60% is observed for the reduction of the extreme tower bottom bending moment for the PP-2B turbine, when the wind direction...... is from ±90° to the turbine, but this also requires that the turbine is parked in a T-configuration. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd....

  3. Advances in the Assessment of Wind Turbine Operating Extreme Loads via More Efficient Calculation Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Peter; Damiani, Rick R.; Dykes, Katherine; Jonkman, Jason M.

    2017-01-09

    A new adaptive stratified importance sampling (ASIS) method is proposed as an alternative approach for the calculation of the 50 year extreme load under operational conditions, as in design load case 1.1 of the the International Electrotechnical Commission design standard. ASIS combines elements of the binning and extrapolation technique, currently described by the standard, and of the importance sampling (IS) method to estimate load probability of exceedances (POEs). Whereas a Monte Carlo (MC) approach would lead to the sought level of POE with a daunting number of simulations, IS-based techniques are promising as they target the sampling of the input parameters on the parts of the distributions that are most responsible for the extreme loads, thus reducing the number of runs required. We compared the various methods on select load channels as output from FAST, an aero-hydro-servo-elastic tool for the design and analysis of wind turbines developed by the National Renewable Energy Laboratory (NREL). Our newly devised method, although still in its infancy in terms of tuning of the subparameters, is comparable to the others in terms of load estimation and its variance versus computational cost, and offers great promise going forward due to the incorporation of adaptivity into the already powerful importance sampling concept.

  4. Biomechanical loading on the upper extremity increases from single key tapping to directional tapping.

    Science.gov (United States)

    Qin, Jin; Trudeau, Matthieu; Katz, Jeffrey N; Buchholz, Bryan; Dennerlein, Jack T

    2011-08-01

    Musculoskeletal disorders associated with computer use span the joints of the upper extremity. Computing typically involves tapping in multiple directions. Thus, we sought to describe the loading on the finger, wrist, elbow and shoulder joints in terms of kinematic and kinetic difference across single key switch tapping to directional tapping on multiple keys. An experiment with repeated measures design was conducted. Six subjects tapped with their right index finger on a stand-alone number keypad placed horizontally in three conditions: (1) on single key switch (the number key 5); (2) left and right on number key 4 and 6; (3) top and bottom on number key 8 and 2. A force-torque transducer underneath the keypad measured the fingertip force. An active-marker infrared motion analysis system measured the kinematics of the fingertip, hand, forearm, upper arm and torso. Joint moments for the metacarpophalangeal, wrist, elbow, and shoulder joints were estimated using inverse dynamics. Tapping in the top-bottom orientation introduced the largest biomechanical loading on the upper extremity especially for the proximal joint, followed by tapping in the left-right orientation, and the lowest loading was observed during single key switch tapping. Directional tapping on average increased the fingertip force, joint excursion, and peak-to-peak joint torque by 45%, 190% and 55%, respectively. Identifying the biomechanical loading patterns associated with these fundamental movements of keying improves the understanding of the risks of upper extremity musculoskeletal disorders for computer keyboard users. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Yield surface evolution for columnar ice

    Science.gov (United States)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  6. Ice monitoring program in support of Sakhalin Energy's offshore oil production

    Energy Technology Data Exchange (ETDEWEB)

    Pilkington, R. [CANATEC Associates International Ltd., Calgary, AB (Canada); Keinonen, A. [AKAC Inc., Victoria, BC (Canada); Tambovsky, V.; Ryabov, S. [Environmental Company of Sakhalin, Yuzhno-Sakhalinsk (Russian Federation); Pishchalnik, V. [Russian Academy of Science, Yuzhno-Sakhalinsk (Russian Federation)]|[Far East Geological Inst., Yuzhno-Sakhalinsk (Russian Federation). Sakhalin Dept.; Sheikin, I. [Arctic and Antarctic Research Inst., St. Petersburg (Russian Federation); Brovin, A. [ABIC Service Ltd., Calgary, AB (Canada)

    2006-11-15

    The Sakhalin Energy Investment Company (SEIC) has been producing oil at the Molikpaq platform off the east coast of Sakhalin Island since 1999. The Molikpaq oil production occurs during the open water summer season. When ice begins to form in late November, an Ice Management Team begins to monitor conditions at the site to ensure a safe operation. This paper described the ice monitoring program designed to provide extensive ice and environmental data to support risk management and allow the planning of safe oil production operations using a Single Anchor Leg Mooring( SALM) system, Floating Storage and Offloading System (FSO), and export tankers in ice. The following 2 key aspects of the in-ice operations were covered: ice management to protect the offshore loading operation on a minute by minute basis in moving ice, and also ice forecasting, to determine when any unmanageable ice might approach the tanker loading site and cause the shut down of operations in the fall and during the startup of operations in the spring. The forecasting of ice drift, ice formation and growth in the fall and ice decay in the spring were discussed. It was noted that in the last few years, the date on which ice first appears is getting later. Operations cease for the winter before the ice is forecast to become a problem for the operations. The Ice Management Team returns to the site in May when the ice melts and and is no longer harmful to the operations. The Ice Management Team consists of 9 individuals with several years of operational ice experience. Their tasks include data collection from satellite images; helicopter ice reconnaissance; ice breaker ice maps; radar ice maps and ice drift; and, ice drift analysis using terra MODIS satellite images. A daily or twice daily weather forecast is provided by a commercial weather forecasting company. These forecasts provide the winds, gusts, cloud cover, air temperature, wind wave and swell for every 6 hours for the first 3 days, then every

  7. Modeling the evolution of the Laurentide Ice Sheet from MIS 3 to the Last Glacial Maximum: an approach using sea level modeling and ice flow dynamics

    Science.gov (United States)

    Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.

    2017-12-01

    The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.

  8. Stochastic Procedures for Extreme Wave Load Predictions- Wave Bending Moment in Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2009-01-01

    A discussion of useful stochastic procedures for stochastic wave load problems is given, covering the range from slightly linear to strongly non-linear (bifurcation) problems. The methods are: Hermite transformation, Critical wave episodes and the First Order Reliability Method (FORM). The proced......). The procedures will be illustrated by results for the extreme vertical wave bending moment in ships....

  9. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    Science.gov (United States)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  10. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  11. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  12. Ice forces on marine structures. Volume 2, discussion

    Energy Technology Data Exchange (ETDEWEB)

    Marcellus, R W; Morrison, T B; Allyn, N F.B.; Croasdale, K R; Iyer, H S; Tseng, J

    1988-01-01

    A comprehensive state-of-the-art review is provided of the current methodologies in use for estimating the impact of ice forces on various kinds of marine structures: vertical sided or sloping stationary structures, floating structures, and artificial islands. Introductory chapters present ice statistics from selected Canadian marine regions, the failure modes and mechanical properties of ice, and general principles of ice/structure interactions. The methods for calculating ice loads are basically alternative methods for predicting the behavior of ice under different loading conditions; as such, none of the models have been successful in predicting the behavior of ice under all loading conditions. Currently the only reliable method for accurately predicting ice forces on marine structures is to use large-scale empirical data for ice of the same state as that predicted for design. Extrapolation from ice behavioral data at a smaller scale or ice of a different state is generally required. In comparison to current uncertainties, reasonably accurate estimates of upper bound static ice forces can be made, and a design approach using this upper bound force is appropriate for very massive rigid structures and in designing for overall global stability. The periodicity of ice forces also needs to be considered in terms of dynamic amplification of structure deformation, potential liquefaction of soils, and fatigue life. In certain cases, the deflection of the structure can change the ice failure process and therefore change the level and nature of the ice force. 221 refs., 171 figs., 19 tabs.

  13. Ice-dammed lake drainage in west Greenland: Drainage pattern and implications on ice flow and bedrock motion

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Bjørk, Anders

    2017-01-01

    of surface loading in addition to ice mass change, when assessing glacial isostatic adjustment or elastic rebound using geodetic data. Moreover, the results illustrates a linkage between subglacial discharge and ice surface velocity, important for assessing ice flux, and thus mass balance, in a future...

  14. Analysis of extreme wind events at Høvsøre and the effect on wind turbine loads

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Kelly, Mark C.; Mann, Jakob

    used to simulate wind turbine response in time domain. The simulations are made for the DTU 10 MW reference wind turbine. Load analysis shows that the maximum tilt moment on the tower yaw bearing correlates well with the wind shear of the measurements. When these loads are compared with the extreme...... wind shear load case of the IEC standards, it is seen that they are of similar magnitude and in one case even higher....

  15. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    Science.gov (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  16. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  17. Interaction between Brash Ice and Boat Propulsion Systems

    Science.gov (United States)

    2014-02-01

    minimize the impact of large pieces of ice on the propellers but can also lead to prolonged non-contact loads from cavitation (Laskow 1988; Walker...over the intake hull opening on the full-scale (the model’s intake was open), the hydrodynamics may pull the ice into the intake opening whereas the...Symposium on Marine Propellers (SMP ’09). Trondheim, Norway. Walker, D., N. Bose, H. Yamaguchi, and S. Jones. 1997. Hydrodynamic loads on ice-class

  18. Reliability and validity of a low load endurance strength test for upper and lower extremities in patients with fibromyalgia.

    Science.gov (United States)

    Munguía-Izquierdo, Diego; Legaz-Arrese, Alejandro

    2012-11-01

    To evaluate the reliability, standard error of the mean (SEM), clinical significant change, and known group validity of 2 assessments of endurance strength to low loads in patients with fibromyalgia syndrome (FS). Cross-sectional reliability and comparative study. University Pablo de Olavide, Seville, Spain. Middle-aged women with FS (n=95) and healthy women (n=64) matched for age, weight, and body mass index (BMI) were recruited for the study. Not applicable. The endurance strength to low loads tests of the upper and lower extremities and anthropometric measures (BMI) were used for the evaluations. The differences between the readings (tests 1 and 2) and the SDs of the differences, intraclass correlation coefficient (ICC) model (2,1), 95% confidence interval for the ICC, coefficient of repeatability, intrapatient SD, SEM, Wilcoxon signed-rank test, and Bland-Altman plots were used to examine reliability. A Mann-Whitney U test was used to analyze the differences in test values between the patient group and the control group. We hypothesized that patients with FS would have an endurance strength to low loads performance in lower and upper extremities at least twice as low as that of the healthy controls. Satisfactory test-retest reliability and SEMs were found for the lower extremity, dominant arm, and nondominant arm tests (ICC=.973-.979; P.05 for all). The Bland-Altman plots showed 95% limits of agreement for the lower extremity (4.7 to -4.5), dominant arm (3.8 to -4.4), and nondominant arm (3.9 to -4.1) tests. The endurance strength to low loads test scores for the patients with FS were 4-fold lower than for the controls in all performed tests (P<.001 for all). The endurance strength to low loads tests showed good reliability and known group validity and can be recommended for evaluating endurance strength to low loads in patients with FS. For individual evaluation, however, an improved score of at least 4 and 5 repetitions for the upper and lower extremities

  19. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    Science.gov (United States)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  20. The sea ice in Young Sound: Implications for carbon cycling

    DEFF Research Database (Denmark)

    Glud, Ronnie Nøhr; Rysgaard, Søren; Kühl, Michael

    2007-01-01

    on the available nutrients. The sea-ice algal community adapts effi ciently to the local light environment, and in areas with natural (or man-made) holes and cracks sea-ice algae bloom. However, despite ample nutrients, the overall phototrophic biomass in Young Sound remains very low, with maximum values of c. 15......–30 μg Chl a l-1 sea ice at the underside of the ice and with maximum area integrated values of c. 3 mg Chl a m-2. We speculate that the extreme dynamics in sea-ice appearance, structure and brine percolation, which is driven primarily by large but variable freshwater inputs during snow melt...... the sea-ice matrix were extremely dynamic and strongly regulated by physical processes related to freezing and thawing of sea water rather than biological activity. Enclosure experiments on sea-ice samples performed in June 2002 revealed a high heterotrophic potential causing the sea-ice environment...

  1. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    Science.gov (United States)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  2. Future Antarctic bed topography and its implications for ice sheet dynamics

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-06-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  3. Numerical calculation of air velocity and temperature in ice rinks

    Energy Technology Data Exchange (ETDEWEB)

    Bellache, O.; Galanis, N. [Sherbrooke Univ., PQ (Canada); Ouzzane, M.; Sunye, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Diversification Laboratory

    2002-07-01

    A computational fluid dynamic (CFD) model was developed to predict the energy consumption at an ice rink. Ice rinks in Canada consume approximately 3500 GWh of electricity annually and generate about 300,000 tons of gases contributing to the greenhouse effect. This newly developed model also considers ice quality and comfort conditions in the arena. The typical 2D configuration includes refrigeration loads as well as heat transfer coefficients between the air and the ice. The effects of heat losses through the ice rink envelope are also determined. A comparison of prediction results from 4 different formulations confirms that there are important differences in air velocities near the walls and in the temperature gradient near the ice. The turbulent mixed convection model gives the best estimate of the refrigeration load. It was determined that a good ventilation should circulate air throughout the building to avoid stagnant areas. Air velocities must be low near the stands where the temperature should be around 20 degrees C. Air temperature near the ice should be low to preserve ice quality and to reduce the refrigeration load. The complexity of this geometry has been taken into account in a numerical simulation of the hydrodynamic and thermal fields in the ice rink. 9 refs., 2 tabs., 5 figs.

  4. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  5. Ice storage facilities are worthwhile for the operation of power plants. Load management with jet pumps; Eisspeicher zahlen sich fuer Kraftwerksbetrieb aus. Lastmanagement mit Strahlpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, Richard

    2012-12-15

    The significantly better alternative to hot water tanks in thermal power plants are ice storage tanks and steam jet refrigeration plants. These facilities form ice, supply district heating and produce heat from the environment. Furthermore, these facilities produce additional peak load electricity nearly daily, so that several large power plants become dispensable. How this is possible in a simple and low-cost manner, is described in the contribution under consideration.

  6. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    Science.gov (United States)

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  7. Impact of aerosols on ice crystal size

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2018-01-01

    Full Text Available The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei, which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds.

  8. Impact of aerosols on ice crystal size

    Science.gov (United States)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  9. Charge Transfer Scheme for Atmospheric Ice Sensing

    Directory of Open Access Journals (Sweden)

    Umair Najeeb MUGHAL

    2015-01-01

    Full Text Available The atmospheric icing parameters are being measured nowadays with the aid of more customized yet limited commercial equipment. The parameters include atmospheric ice detection, icing load and icing rate. The robustness of such equipment is usually under scrutiny when it comes to cold/harsh environment operations. This phenomenon was experienced consistently by the atmospheric Icing Research Team at Narvik University College during data retrieval exercises from its atmospheric icing stations installed at Fargnesfjellet during 2012-13. In this paper it is aimed to address the potential feasibility to produce a robust hardware addressing the icing measurements signals, which includes instrumentation hardware giving icing indications, icing type and de- icing rate measurements in a single platform (not commercially available till date.

  10. Assessment of extreme design loads for modern wind turbines using the probabilistic approach

    DEFF Research Database (Denmark)

    Abdallah, Imad

    There is a large drive to reduce the cost of energy of wind energy generators. Various tracks are being considered such as enhanced O&M strategies through condition monitoring, increased manufacturing efficiency through higher production volumes and increased automation, improved resource...... and drag coefficients showed (a) a tangible reduction in the load partial safety factor for a blade and (b) generally a larger impact on extreme loads during power production compared to stand-still. Therefore, the way forward is for wind turbine manufactures to further update the stochastic model...... assessment through turbine-mounted real-time site assessment technologies, improved components reliability by increased laboratory testing, increased number of prototype test turbines before serial production, larger rotor and tower concepts for both onshore and offshore installations, advanced drive train...

  11. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    Science.gov (United States)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  12. Deterministic and Probabilistic Analysis of NPP Communication Bridge Resistance Due to Extreme Loads

    Directory of Open Access Journals (Sweden)

    Králik Juraj

    2014-12-01

    Full Text Available This paper presents the experiences from the deterministic and probability analysis of the reliability of communication bridge structure resistance due to extreme loads - wind and earthquake. On the example of the steel bridge between two NPP buildings is considered the efficiency of the bracing systems. The advantages and disadvantages of the deterministic and probabilistic analysis of the structure resistance are discussed. The advantages of the utilization the LHS method to analyze the safety and reliability of the structures is presented

  13. Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters

    Data.gov (United States)

    National Aeronautics and Space Administration — Results from the recent NASA Lunar CRater Observation and Sensing Satellite, or LCROSS, mission in 2010, indicate that water (H2O), ice and other useful volatiles...

  14. Offshore platforms and deterministic ice actions: Kashagan phase 2 development: North Caspian Sea.

    Energy Technology Data Exchange (ETDEWEB)

    Croasdale, Ken [KRCA, Calgary (Canada); Jordaan, Ian [Ian Jordaan and Associates, St John' s (Canada); Verlaan, Paul [Shell Development Kashagan, London (United Kingdom)

    2011-07-01

    The Kashagan development has to face the difficult conditions of the northern Caspian Sea. This paper investigated ice interaction scenarios and deterministic methods used on platform designs for the Kashagan development. The study presents first a review of the types of platforms in use and being designed for the Kashagan development. The various ice load scenarios and the structures used in each case are discussed. Vertical faced barriers, mobile drilling barges and sheet pile islands were used for the ice loads on vertical structures. Sloping faced barriers and islands of rock were used for the ice loads on sloping structures. Deterministic models such as the model in ISO 19906 were used to calculate the loads occurring with or without ice rubble in front of the structure. The results showed the importance of rubble build-up in front of wide structures in shallow water. Recommendations were provided for building efficient vertical and sloping faced barriers.

  15. Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records

    DEFF Research Database (Denmark)

    Schaefer, H.; Petrenko, V. V.; Brook, E. J.

    2009-01-01

    at Pakitsoq. Sections containing ice from every distinct climatic interval during Termination I, including Last Glacial Maximum, Bolling/Allerod, Younger Dryas and the early Holocene, are identified. In the early Holocene, we find evidence for climatic fluctuations similar to signals found in deep ice cores...... from Greenland. A second glacial-interglacial transition exposed at the extreme margin of the ice is identified as another outcrop of Termination I (rather than the onset of the Eemian interglacial as postulated in earlier work). Consequently, the main structural feature at Pakitsoq is a large......-scale anticline with accordion-type folding in both exposed sequences of the glacial-Holocene transition, leading to multiple layer duplications and age reversals....

  16. Precipitation variations recorded in Guliya ice core in the past 400 years

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the Guliya ice core records, the precipitation in the past 400 years was retrieved. Its rela tions with other regions were also analyzed. The results demonstrated that there were two high-precipitation periods and two low-precipitation periods in Guliya ice core since 1571 AD. The average precipitation in the two high-precipitation periods was 42 mm (21%) higher than that in the two low-precipitation periods. The precipitation recorded in the Guliya ice core was consistent with that in Dunde ice core. The variation trends of precipitation in the Guliya ice core and the northern hemisphere are similar. During the extremely wet years in the northern hemisphere, the precipitation recorded in the Guliya ice core was two times the long-term average. However, the annual precipitation was 38% less than that of the long-term average in extremely dry years.

  17. A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Weide Li

    2017-05-01

    Full Text Available Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM, which combines k-Nearest Neighbor (KNN and Extreme Learning Machine (ELM based on a wavelet denoising technique is proposed for short-term load forecasting. The proposed hybrid model decomposes the time series into a low frequency-associated main signal and some detailed signals associated with high frequencies at first, then uses KNN to determine the independent and dependent variables from the low-frequency signal. Finally, the ELM is used to get the non-linear relationship between these variables to get the final prediction result for the electric load. Compared with three other models, Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EKM, Wavelet Denoising-Extreme Learning Machine (WKM and Wavelet Denoising-Back Propagation Neural Network optimized by k-Nearest Neighbor Regression (WNNM, the model proposed in this paper can improve the accuracy efficiently. New South Wales is the economic powerhouse of Australia, so we use the proposed model to predict electric demand for that region. The accurate prediction has a significant meaning.

  18. A study of binder materials subjected to isentropic compression loading

    International Nuclear Information System (INIS)

    Hall, Clint Allen; Orler, E. Bruce; Sheffield, Steve A.; Gustavsen, Rick L.; Sutherland, Gerrit; Baer, Melvin R.; Hooks, D.E.

    2005-01-01

    Binders such as Estane, Teflon, Kel F and HTPB are typically used in heterogeneous explosives to bond polycrystalline constituents together as an energetic composite. Combined theoretical and experimental studies are underway to unravel the mechanical response of these materials when subjected to isentropic compression loading. Key to this effort is the determination of appropriate constitutive and EOS property data at extremely high stress-strain states as required for detailed mesoscale modeling. The Sandia Z accelerator and associated diagnostics provides new insights into mechanical response of these nonreactive constituents via isentropic ramp-wave compression loading. Several thicknesses of samples, varied from 0.3 to 1.2 mm, were subjected to a ramp load of ∼42 Kbar over 500 ns duration using the Sandia Z-machine. Profiles of transmitted ramp waves were measured at window interfaces using conventional VISAR. Shock physics analysis is then used to determine the nonlinear material response of the binder materials. In this presentation we discuss experimental and modeling details of the ramp wave loading ICE experiments designed specifically for binder materials.

  19. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    Science.gov (United States)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  20. Integrity of reinforced concrete cooling towers under extreme loads: Wind and earthquake

    International Nuclear Information System (INIS)

    Louhi, Amine

    2015-01-01

    The authorities have planned to increase the lifetime of currently operating nuclear power plants. The ageing of reinforced concrete structures such as cooling towers should be evaluated and its impact on the bearing capacity calculated. In the case of significant damage, the strengthening must be considered to ensure the sustainability of these towers facing the risk of storms and earthquakes becoming more and more frequent. This work aims to quantify the adverse effects that can generate concrete cracks and rebar section loss induced by corrosion, especially on the bearing capacity of nuclear power plant cooling towers under monotonic or cyclic extreme load conditions (wind and earthquake). These loads are certainly the most severe, since they take the structure into the nonlinear domain and can induce or amplify cracking damage. Numerical simulations are proposed to determine the quasi-static or dynamic response of the structure, taking into account appearance of concrete cracks and their evolution via an appropriate material concrete law and rebar's yielding. In the case of a seismic load, the responses are evaluated by three different methods; the nonlinear response history analysis (NLRHA), the response spectrum analysis and the modal response history analysis (MRHA) in order to compare the earthquake modeling approaches and to evaluate the robustness of the results. Parametric studies on damping, load combinations and structural configurations, are also performed. In the case of a wind load, the strengthening technique using composite materials, such as carbon fiber reinforced plastic (CFRP) is modeled. The behavior of the damaged structure with an advanced corrosion rate is estimated in the pre- and post-cracking regime, compared to the undamaged structure. The drop of bearing capacity is quantified, a reinforcement designed is proposed to restore the integrity and thus increase the lifetime of the structure. (author)

  1. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study.

    Directory of Open Access Journals (Sweden)

    Jordane G Grenier

    Full Text Available Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context.The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics.Ten experienced infantrymen performed a 21-h simulated military mission (SMM in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE and plantar flexors (PF pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre-/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March.After the SMM, MVC declined by -10.2±3.6% for KE (P<0.01 and -10.7±16.1% for PF (P = 0.06. The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08. These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2 to post-SMM (15.9±2.1, P<0.01. The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either.this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not

  2. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study.

    Science.gov (United States)

    Grenier, Jordane G; Millet, Guillaume Y; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît

    2012-01-01

    Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre-/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. After the SMM, MVC declined by -10.2±3.6% for KE (P<0.01) and -10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter

  3. Model of analysis of maximum loads in wind generators produced by extreme winds

    International Nuclear Information System (INIS)

    Herrera – Sánchez, Omar; Schellong, Wolfgang; González – Fernández, Vladimir

    2010-01-01

    The use of the wind energy by means of the wind turbines in areas of high risk of occurrence of Hurricanes comes being an important challenge for the designers of wind farm at world for some years. The wind generator is not usually designed to support this type of phenomena, for this reason the areas of high incidence of tropical hurricanes of the planning are excluded, that which, in occasions disables the use of this renewable source of energy totally, either because the country is very small, or because it coincides the area of more potential fully with that of high risk. To counteract this situation, a model of analysis of maxims loads has been elaborated taken place the extreme winds in wind turbines of great behavior. This model has the advantage of determining, in a chosen place, for the installation of a wind farm, the micro-areas with higher risk of wind loads above the acceptable for the standard classes of wind turbines. (author)

  4. Problems due to icing of overhead lines - Part II

    International Nuclear Information System (INIS)

    Havard, D.G.; Pon, C.J.; Krishnasamy, S.G.

    1985-01-01

    A companion paper describes uncertainties in overhead line design due to the variability of ice and wind loads. This paper reviews two other effects due to icing; conductor galloping and torsional instability, which require further study. (author)

  5. The ICES system

    International Nuclear Information System (INIS)

    Inzaghi, A.

    1983-01-01

    ICES is an integrated system used in the various engineering fields. It is made up of the Basic System and the applied Subsystems. ICES is controlled by the Operating System of the computer, from which it calls for suitable services: space allocation, loading of the modules etc... To be able to use software of this type on a computer the Operating System should be made more general. The Subsystems are developed with special programs included in the ICES Basic System. Each Subsystem is associated with an area of application. In other words, a Subsystem can only treat a previously defined ''class of problems''. The engineer (user) communicates with the Subsystem using a language oriented towards the problem (POL) also previously defined using the CDL language. The use of the (POL) language makes the engineer-computer contact much easier. The applied programs written in ICETRAN, once supplied as input to the ICETRAN Precompiler, become Fortran programs with special characteristics. A Fortran compiler produces the corresponding object programs with which, using the ICES ''Link-edit'' procedures, one obtains the modules which can be executed by an ICES Subsystem

  6. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  7. Efficacy of sanitized ice in reducing bacterial load on fish fillet and in the water collected from the melted ice.

    Science.gov (United States)

    Feliciano, Lizanel; Lee, Jaesung; Lopes, John A; Pascall, Melvin A

    2010-05-01

    This study investigated the efficacy of sanitized ice for the reduction of bacteria in the water collected from the ice that melted during storage of whole and filleted Tilapia fish. Also, bacterial reductions on the fish fillets were investigated. The sanitized ice was prepared by freezing solutions of PRO-SAN (an organic acid formulation) and neutral electrolyzed water (NEW). For the whole fish study, the survival of the natural microflora was determined from the water of the melted ice prepared with PRO-SAN and tap water. These water samples were collected during an 8 h storage period. For the fish fillet study, samples were inoculated with Escherichia coli K12, Listeria innocua, and Pseudomonas putida then stored on crushed sanitized ice. The efficacies of these were tested by enumerating each bacterial species on the fish fillet and in the water samples at 12 and 24 h intervals for 72 h, respectively. Results showed that each bacterial population was reduced during the test. However, a bacterial reduction of fillet samples. A maximum of approximately 2 log CFU and > 3 log CFU reductions were obtained in the waters sampled after the storage of whole fish and the fillets, respectively. These reductions were significantly (P < 0.05) higher in the water from sanitized ice when compared with the water from the unsanitized melted ice. These results showed that the organic acid formulation and NEW considerably reduced the bacterial numbers in the melted ice and thus reduced the potential for cross-contamination.

  8. On the potential of computational methods and numerical simulation in ice mechanics

    International Nuclear Information System (INIS)

    Bergan, Paal G; Cammaert, Gus; Skeie, Geir; Tharigopula, Venkatapathi

    2010-01-01

    This paper deals with the challenge of developing better methods and tools for analysing interaction between sea ice and structures and, in particular, to be able to calculate ice loads on these structures. Ice loads have traditionally been estimated using empirical data and 'engineering judgment'. However, it is believed that computational mechanics and advanced computer simulations of ice-structure interaction can play an important role in developing safer and more efficient structures, especially for irregular structural configurations. The paper explains the complexity of ice as a material in computational mechanics terms. Some key words here are large displacements and deformations, multi-body contact mechanics, instabilities, multi-phase materials, inelasticity, time dependency and creep, thermal effects, fracture and crushing, and multi-scale effects. The paper points towards the use of advanced methods like ALE formulations, mesh-less methods, particle methods, XFEM, and multi-domain formulations in order to deal with these challenges. Some examples involving numerical simulation of interaction and loads between level sea ice and offshore structures are presented. It is concluded that computational mechanics may prove to become a very useful tool for analysing structures in ice; however, much research is still needed to achieve satisfactory reliability and versatility of these methods.

  9. METHOD OF COMPENSATING LOADS FOR SOLVING OF A PROBLEM OF UNSYMMETRIC BENDING OF INFINITE ICE SLAB WITH CIRCULAR OPENING

    Directory of Open Access Journals (Sweden)

    Elena B. Koreneva

    2017-06-01

    Full Text Available Unsymmetric flexure of an infinite ice slab with circular opening is under examination. The men-tioned construction is considered as an infinite plate of constant thickness resting on an elastic subgrade which properties are described by Winkler’s model. The plate’s thickness is variable in the area ajoining to the opening. Method of compensating loads is used. Basic and compensating solutions are received. The obtained solutions are produced in closed form in terms of Bessel functions.

  10. Thresholds in the sliding resistance of simulated basal ice

    Directory of Open Access Journals (Sweden)

    L. F. Emerson

    2007-10-01

    Full Text Available We report laboratory determinations of the shear resistance to sliding melting ice with entrained particles over a hard, impermeable surface. With higher particle concentrations and larger particle sizes, Coulomb friction at particle-bed contacts dominates and the shear stress increases linearly with normal load. We term this the sandy regime. When either particle concentration or particle size is reduced below a threshold, the dependence of shear resistance on normal load is no longer statistically significant. We term this regime slippery. We use force and mass balance considerations to examine the flow of melt water beneath the simulated basal ice. At high particle concentrations, the transition from sandy to slippery behavior occurs when the particle size is comparable to the thickness of the melt film that separates the sliding ice from its bed. For larger particle sizes, a transition from sandy to slippery behavior occurs when the particle concentration drops sufficiently that the normal load is no longer transferred completely to the particle-bed contacts. We estimate that the melt films separating the particles from the ice are approximately 0.1 µm thick at this transition. Our laboratory results suggest the potential for abrupt transitions in the shear resistance beneath hard-bedded glaciers with changes in either the thickness of melt layers or the particle loading.

  11. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  12. The impact of atmospheric mineral aerosol deposition on the albedo of snow & sea ice: are snow and sea ice optical properties more important than mineral aerosol optical properties?

    Directory of Open Access Journals (Sweden)

    M. L. Lamare

    2016-01-01

    Full Text Available Knowledge of the albedo of polar regions is crucial for understanding a range of climatic processes that have an impact on a global scale. Light-absorbing impurities in atmospheric aerosols deposited on snow and sea ice by aeolian transport absorb solar radiation, reducing albedo. Here, the effects of five mineral aerosol deposits reducing the albedo of polar snow and sea ice are considered. Calculations employing a coupled atmospheric and snow/sea ice radiative-transfer model (TUV-snow show that the effects of mineral aerosol deposits are strongly dependent on the snow or sea ice type rather than the differences between the aerosol optical characteristics. The change in albedo between five different mineral aerosol deposits with refractive indices varying by a factor of 2 reaches a maximum of 0.0788, whereas the difference between cold polar snow and melting sea ice is 0.8893 for the same mineral loading. Surprisingly, the thickness of a surface layer of snow or sea ice loaded with the same mass ratio of mineral dust has little effect on albedo. On the contrary, the surface albedo of two snowpacks of equal depth, containing the same mineral aerosol mass ratio, is similar, whether the loading is uniformly distributed or concentrated in multiple layers, regardless of their position or spacing. The impact of mineral aerosol deposits is much larger on melting sea ice than on other types of snow and sea ice. Therefore, the higher input of shortwave radiation during the summer melt cycle associated with melting sea ice accelerates the melt process.

  13. Experimental study of ice accretion on circular cylinders at moderate low temperatures

    DEFF Research Database (Denmark)

    Koss, Holger H.; Gjelstrup, Henrik; Georgakis, Christos T.

    2012-01-01

    For the assessment of aerodynamic instability of iced bridge cables various calculation models are available. Input for these models are amongst others aerodynamic load coefficients usually determined in wind tunnel tests on generic or simplified models of iced cable sections. Even though icing...

  14. Development of a computer program for the simulation of ice-bank system operation, part II: Verification

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino; Halasz, Boris; Curko, Tonko [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lucica 5, 10 000 Zagreb (Croatia)

    2010-12-15

    In order to verify the mathematical model of an ice bank system developed for the purpose of predicting the system performance, experimental measurements on the ice bank system were performed. Static, indirect, cool thermal storage system, with an external ice-on-coil building/melting was considered. Cooling energy stored in the form of ice by night is used for the rapid cooling of milk after the process of pasteurization by day. The ice bank system was tested under real operating conditions to determine parameters such as the time-varying heat load imposed by the consumer, refrigeration unit load, storage capacity, supply water temperature to the load and to find charging and discharging characteristics of the storage. Experimentally obtained results were then compared to the computed ones. It was found that the calculated and experimentally obtained results are in good agreement as long as there is ice present in the silo. (author)

  15. Lower extremity kinematics that correlate with success in lateral load transfers over a low friction surface.

    Science.gov (United States)

    Catena, Robert D; Xu, Xu

    2015-01-01

    We previously studied balance during lateral load transfers, but were left without explanation of why some individuals were successful in novel low friction conditions and others were not. Here, we retrospectively examined lower extremity kinematics between successful (SL) and unsuccessful (UL) groups to determine what characteristics may improve low friction performance. Success versus failure over a novel slippery surface was used to dichotomise 35 healthy working-age individuals into the two groups (SL and UL). Participants performed lateral load transfers over three sequential surface conditions: high friction, novel low friction, and practiced low friction. The UL group used a wide stance with rotation mostly at the hips during the high and novel low friction conditions. To successfully complete the practiced low friction task, they narrowed their stance and pivoted both feet and torso towards the direction of the load, similar to the SL group in all conditions. This successful kinematic method potentially results in reduced muscle demand throughout the task. Practitioner Summary: The reason for this paper is to retrospectively examine the different load transfer strategies that are used in a low friction lateral load transfer. We found stance width to be the major source of success, while sagittal plane motion was altered to potentially maintain balance.

  16. Summer Arctic sea ice albedo in CMIP5 models

    OpenAIRE

    Koenigk, T.; Devasthale, A.; Karlsson, K.-G.

    2014-01-01

    Spatial and temporal variations of summer sea ice albedo over the Arctic are analyzed using an ensemble of historical CMIP5 model simulations. The results are compared to the CLARA-SAL product that is based on long-term satellite observations. The summer sea ice albedo varies substantially among CMIP5 models, and many models show large biases compared to the CLARA-SAL product. Single summer months show an extreme spread of ice albedo among models; July values vary between 0....

  17. Sea Ice Microorganisms: Environmental Constraints and Extracellular Responses

    Directory of Open Access Journals (Sweden)

    Jody W. Deming

    2013-03-01

    Full Text Available Inherent to sea ice, like other high latitude environments, is the strong seasonality driven by changes in insolation throughout the year. Sea-ice organisms are exposed to shifting, sometimes limiting, conditions of temperature and salinity. An array of adaptations to survive these and other challenges has been acquired by those organisms that inhabit the ice. One key adaptive response is the production of extracellular polymeric substances (EPS, which play multiple roles in the entrapment, retention and survival of microorganisms in sea ice. In this concept paper we consider two main areas of sea-ice microbiology: the physico-chemical properties that define sea ice as a microbial habitat, imparting particular advantages and limits; and extracellular responses elicited in microbial inhabitants as they exploit or survive these conditions. Emphasis is placed on protective strategies used in the face of fluctuating and extreme environmental conditions in sea ice. Gaps in knowledge and testable hypotheses are identified for future research.

  18. Outlier robustness for wind turbine extrapolated extreme loads

    DEFF Research Database (Denmark)

    Natarajan, Anand; Verelst, David Robert

    2012-01-01

    . Stochastic identification of numerical artifacts in simulated loads is demonstrated using the method of principal component analysis. The extrapolation methodology is made robust to outliers through a weighted loads approach, whereby the eigenvalues of the correlation matrix obtained using the loads with its...

  19. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    Directory of Open Access Journals (Sweden)

    Chi-Chun Lo

    2016-02-01

    Full Text Available This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

  20. Some aspects of floating ice related to sea surface operations in the Barents sea

    International Nuclear Information System (INIS)

    Loeset, S.

    1993-01-01

    The present work highlights some aspects of floating ice related to sea surface operations in the Barents sea. The thesis consists of eight papers which fall into two main categories; one part deals with numerical modeling of the temperature distribution and ablation of icebergs (three papers), and the other part studies the behavior of broken ice, focusing on both laboratory experiments and numerical modeling. The temperature distribution within an iceberg affects the mechanical strength of the ice and is therefore crucial in engineering applications when estimating loads from impinging icebergs on offshore structures. A numerical model which simulates the temperature distribution and ablation of icebergs has been developed. The model shows that the depth of the thermal disturbance and slope of the temperature gradient of an iceberg depend on the boundary conditions and the time at sea. By about 12 m into the ice, the temperature is virtually free of any thermal boundary influence. Oil spill response techniques are vulnerable to the presence of sea ice. Deflecting ice upstream of a spill site by means of a flexible boom will facilitate the application of conventional oil spill recovery systems such as oil skimmers and booms. Experiments with such an ice deflecting boom were conducted in an ice tank to determine the loads on the boom and to study the ice-free wake. The study indicated the technical feasibility of the ice boom concept as an operational tool for oil spill cleanups. A two-dimensional discrete element model has been developed. This model simulates the dynamics and interaction forces between distinct ice floes in a broken ice field. The numerical model was applied to estimate the loads on a boom used for ice management. 121 refs., 70 figs., 10 tabs

  1. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  2. Thick or Thin Ice Shell on Europa?

    Science.gov (United States)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  3. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  4. Climate-Induced Thresholds In Lake-Watershed Systems: Understanding The Compounding Effects Of Early Ice-Out And Episodic Nutrient Loadings

    Science.gov (United States)

    Jain, S.; Beyene, M. T.

    2017-12-01

    In temperate regions, the sustainability of lake-watershed systems is intimately tied to the climate, ice phenology, annual march of human activities, and biophysical dynamics. Using the state of Maine in the United States as our focal region, one with over 5000 lakes. The recent rise in water temperatures, drop in water quality, depletion of fish stocks has raised concerns over the future state of these lakes. This study takes the "social-ecological systems" view of Maine lakes with focus on climate-induced shifts in the ice-cover duration. The resulting readjustments in the nutrient load assimilation, decrease in lake water quantity, increased radiative heating on phytoplankton productivity and economic and other losses to the community due to cancellation of winter recreation opportunities have the potential to reshape this vulnerable system. We use conceptual models, delineated social-ecological system, empirical-statistical analyses to grasp the complexity of this multifaceted system. Prospects for seasonal climate predictability and impact of the future trajectories of El Nino/Southern Oscillation are also discussed.

  5. Photolysis of aromatic pollutants in clean and dirty ice

    Science.gov (United States)

    Kahan, T.; Malley, P.; Stathis, A.

    2015-12-01

    Anthropogenic aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and substituted benzenes often become more toxic following atmospheric oxidation. Photolysis of these pollutants in ice can be much faster than that in aqueous solution, which might lead to higher carcinogenic loadings in snow-covered regions. In this work we investigate two things. First, we investigate whether toluene, which has been detected at very elevated concentrations near hydraulic fracturing operations, can undergo photolysis at ice surfaces. Toluene in aqueous solution does not absorb sunlight, so photolysis has not been considered a potential atmospheric fate. However, benzene was recently demonstrated to undergo a significant red shift in its absorbance at ice surfaces, leading to photolysis under environmentally-relevant conditions. Here we show that toluene also undergoes photolysis at ice surfaces. In a second set of experiments, we have investigated the effects of organic matter on the photolysis kinetics ofPAHs in ice and at ice surfaces. We found that very small loadings of hydrophobic organics such as octanol can significantly suppress PAH photolysis kinetics in ice, but that the primary effect of the more soluble fulvic acid is competitive photon absorption. Our results show that photochemistry of anthropogenic pollutants can follow very different mechanisms and kinetics in ice than in aqueous solution, and that the photochemical fate of these pollutants depends strongly on the composition of the snow. These results have implications for pollutant fate and human health in a wide range of snow-covered environments including remote areas, cities, and regions near gas and oil extraction operations.

  6. Formation of ice XII at low temperatures and high pressures

    International Nuclear Information System (INIS)

    Schober, H.; Koza, M.; Toelle, A.; Fujara, F.

    1999-01-01

    Complete text of publication follows. Solid water features a large variety of crystalline as well as two amorphous phases. The versatility of water's behavior has been reinforced recently by the identification of still another form of crystalline ice [1]. Ice XII was obtained by cooling liquid water to 260 K at a pressure of 5.5 kbar. Ice XII could be produced in a completely different region of water's phase diagram [2]. Using a. piston-cylinder apparatus ice XII was formed during the production of high-density amorphous ice (HDA) at 77 K as described previously [3]. The amount of crystalline ice XII contamination within the HDA sample varies in a so far unpredictable way with both extremes, i.e. pure HDA as well as pure ice XII. realized. Our results indicate that water's phase diagram needs modification in the region assigned to HDA. Ice XII is characterized as well as its transition towards cubic ice by elastic and inelastic neutron scattering. (author)

  7. Wind simulation for extreme and fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Larsen, G.C.; Mann, J.; Ott, S.; Hansen, K.S.; Pedersen, B.J.

    2004-01-01

    Measurements of atmospheric turbulence have been studied and found to deviate from a Gaussian process, in particular regarding the velocity increments over small time steps, where the tails of the pdf are exponential rather than Gaussian. Principles for extreme event counting and the occurrence of cascading events are presented. Empirical extreme statistics agree with Rices exceedence theory, when it is assumed that the velocity and its time derivative are independent. Prediction based on the assumption that the velocity is a Gaussian process underpredicts the rate of occurrence of extreme events by many orders of magnitude, mainly because the measured pdf is non-Gaussian. Methods for simulation of turbulent signals have been developed and their computational efficiency are considered. The methods are applicable for multiple processes with individual spectra and probability distributions. Non-Gaussian processes are simulated by the correlation-distortion method. Non-stationary processes are obtained by Bezier interpolation between a set of stationary simulations with identical random seeds. Simulation of systems with some signals available is enabled by conditional statistics. A versatile method for simulation of extreme events has been developed. This will generate gusts, velocity jumps, extreme velocity shears, and sudden changes of wind direction. Gusts may be prescribed with a specified ensemble average shape, and it is possible to detect the critical gust shape for a given construction. The problem is formulated as the variational problem of finding the most probable adjustment of a standard simulation of a stationary Gaussian process subject to relevant event conditions, which are formulated as linear combination of points in the realization. The method is generalized for multiple correlated series, multiple simultaneous conditions, and 3D fields of all velocity components. Generalization are presented for a single non-Gaussian process subject to relatively

  8. Short-Term Electricity-Load Forecasting Using a TSK-Based Extreme Learning Machine with Knowledge Representation

    Directory of Open Access Journals (Sweden)

    Chan-Uk Yeom

    2017-10-01

    Full Text Available This paper discusses short-term electricity-load forecasting using an extreme learning machine (ELM with automatic knowledge representation from a given input-output data set. For this purpose, we use a Takagi-Sugeno-Kang (TSK-based ELM to develop a systematic approach to generating if-then rules, while the conventional ELM operates without knowledge information. The TSK-ELM design includes a two-phase development. First, we generate an initial random-partition matrix and estimate cluster centers for random clustering. The obtained cluster centers are used to determine the premise parameters of fuzzy if-then rules. Next, the linear weights of the TSK fuzzy type are estimated using the least squares estimate (LSE method. These linear weights are used as the consequent parameters in the TSK-ELM design. The experiments were performed on short-term electricity-load data for forecasting. The electricity-load data were used to forecast hourly day-ahead loads given temperature forecasts; holiday information; and historical loads from the New England ISO. In order to quantify the performance of the forecaster, we use metrics and statistical characteristics such as root mean squared error (RMSE as well as mean absolute error (MAE, mean absolute percent error (MAPE, and R-squared, respectively. The experimental results revealed that the proposed method showed good performance when compared with a conventional ELM with four activation functions such sigmoid, sine, radial basis function, and rectified linear unit (ReLU. It possessed superior prediction performance and knowledge information and a small number of rules.

  9. Angiographic assessment of atherosclerotic load at the lower extremity in patients with diabetic foot and charcot neuro-arthropathy.

    Science.gov (United States)

    Çildağ, Mehmet B; Ertuğrul, Bülent M; Köseoğlu, Ömer Fk; Çildağ, Songül; Armstrong, David G

    2018-06-01

    The aim of this study was to investigate atherosclerotic load at the lower extremity in patients with diabetic foot and charcot neuro-arthropathy and compare them with patients with diabetic foot without charcot neuro-arthropathy. This retrospective study consists of 78 patients with diabetic foot who had lower extremity angiography with antegrade approach. All patients were classified into two groups; neuro ischemic wounds with charcot neuro-arthropathy (30/78) and without charcot neuro-arthropathy (48/78).Atherosclerotic load at the side of diabetic foot was determined by using the Bollinger angiogram scoring method. Comparison of atherosclerotic load between the two groups was performed. The mean of total and infrapopliteal level angiogram scoring of all patients was 33.3 (standard deviation, sd:±17.2) and 29.3 (sd:±15.6), respectively. The mean of total and infrapopliteal level angiogram scoring of neuroischemic wounds with charcot neuro-arthropathy group was 18.1 (sd:±11.6) and 15.7 (sd:±10.4), respectively. The mean of total and infrapopliteal level angiogram scoring of neuroischemic wounds without charcot neuro-arthropathy group was 42.8 (sd:±12.7) and 37.7 (sd:±12.0), respectively. There was a statistically significant difference between the two groups of mean total and infrapopliteal angiogram scoring (p diabetic foot and chronic charcot neuro-arthropathy is significantly less than in patients with neuroischemic diabetic foot wounds without chronic charcot neuro-arthropathy. Copyright © 2017. Published by Elsevier Taiwan LLC.

  10. Experimental Investigation of Aerodynamic Instability of Iced Bridge Cable Sections

    DEFF Research Database (Denmark)

    Koss, Holger; Lund, Mia Schou Møller

    2013-01-01

    The accretion of ice on structural bridge cables changes the aerodynamic conditions of the surface and influences hence the acting wind load process. Full-scale monitoring indicates that light precipitation at moderate low temperatures between zero and -5°C may lead to large amplitude vibrations...... of bridge cables under wind action. This paper describes the experimental simulation of ice accretion on a real bridge cable sheet HDPE tube segment (diameter 160mm) and its effect on the aerodynamic load. Furthermore, aerodynamic instability will be estimated with quasi-steady theory using the determined...

  11. Impact of environmental factors on the distribution of extreme scouring (gouging) event, Canadian Beaufort shelf

    Energy Technology Data Exchange (ETDEWEB)

    Blasco, Steve [Geological Survey of Canada, Dartmouth (Canada); Carr, Erin; Campbell, Patrick [Canadian Seabed Research Ltd., Porters Lake (Canada); Shearer, Jim [Shearer Consulting, Ottawa (Canada)

    2011-07-01

    A knowledge of the presence of scours, their dimensions and their return frequencies is highly important in the development of hydrocarbon offshore structures. Mapping surveys have identified 290 extreme scour events across the Canadian Beaufort shelf. This paper investigated the impact of environmental factors on the distribution of extreme scouring events in the Canadian Beaufort shelf. This study used the NEWBASE database of new ice scours to perform an analysis of the scours appearance mechanisms. The geotechnical zonation, the bathymetry and the shelf gradient were evaluated using these data. Estimation of the surficial sediment type, the surficial sediment thickness and sea ice regime were also made. It was found that the spatial distribution of extreme scour events is controlled by sea-ice regime, bathymetry and geotechnical zonation. The results obtained from mapping surveys suggested that the key controlling environmental factors may combine to limit the depth of extreme scour events to 5 meters.

  12. Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.

    2017-12-01

    In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  13. Computational modeling of ice cracking and break-up from helicopter blades

    KAUST Repository

    Shiping, Zhang; Khurram, Rooh Ul Amin; Fouladi, Habibollah; Habashi, Wagdi G (Ed)

    2012-01-01

    In order to reduce the danger of impact onto components caused by break-up, it is important to analyze the shape of shed ice accumulated during flight. In this paper, we will present a 3D finite element method (FEM) to predict the shed ice shape by using a fluid-solid interaction (FSI) approach to determine the loads, and linear fracture mechanics to track crack propagation. Typical icing scenarios for helicopters are analyzed, and the possibility of ice break-up is investigated.

  14. Computational modeling of ice cracking and break-up from helicopter blades

    KAUST Repository

    Shiping, Zhang

    2012-06-25

    In order to reduce the danger of impact onto components caused by break-up, it is important to analyze the shape of shed ice accumulated during flight. In this paper, we will present a 3D finite element method (FEM) to predict the shed ice shape by using a fluid-solid interaction (FSI) approach to determine the loads, and linear fracture mechanics to track crack propagation. Typical icing scenarios for helicopters are analyzed, and the possibility of ice break-up is investigated.

  15. Determination of global ice loads on the ship using the measured full-scale motion data

    Directory of Open Access Journals (Sweden)

    Jae-Man Lee

    2016-07-01

    Full-scale data were acquired while the ARAON rammed old ice floes in the high Arctic. Estimated ice impact forces for two representative events showed 7–15 MN when ship operated in heavy ice conditions.

  16. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth C. [Los Alamos National Laboratory

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  17. Ice Forces on Offshore Wind Power Plants. Descriptions of mechanisms and recommendations for dimensioning; Islaster paa vindkraftverk till havs. Beskrivning av mekanismer och rekommendationer foer dimensionering

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, Lars [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Water Environment Transport

    2002-02-01

    Mechanisms for ice-loads on off-shore wind power plants are described, The ice-loads are due to thermal expansion, water level variations, drifting ice and ice-reefing. Ice accretion is briefly treated. Ice instance, ice thickness, ice retention time, water level variations and stream velocities in Swedish waters are compiled. The main text deals with recommendations for dimensioning wind power plants at sea. In the appendices, a thorough review of the physical and mechanical properties of ice is presented.

  18. Proceedings of ICETECH 2008 : the 8. international conference and exhibition on performance of ships and structures in ice. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Bercha, F. (ed.) [Bercha Group, Calgary, AB (Canada); Bercha, S. (comp.) [Bercha Group, Calgary, AB (Canada); Pilkington, R. [CANATEC Associates International Ltd., Calgary, AB (Canada)

    2008-09-15

    The rapid growth and renewed interest in oil and gas exploration and production in Arctic offshore regions has resulted in an increase in maritime transport through northern sea routes, including the Canadian Northwest Passage. This conference included both plenary and technical sessions which addressed issues facing offshore resource development in ice-covered areas, such as construction of offshore platforms; pipelines and facilities; and ice-structure interactions in terms of ice loads and ice mechanics. New offshore developments in ice-covered areas were discussed with reference to potential damage caused by dynamic ice loads, risk assessment, personnel safety, and emergency evacuation rescue. The global warming implications to the Arctic were also discussed along with Arctic geopolitics. The technical session on ships addressed ship performance in ice; propulsion systems; offshore operations; ice loads and hull strength; and icebreaker designs. Ice properties and observations were reviewed along with ice detection and mapping techniques. Developments in the Sakhalin Sea were reviewed along with codes, regulations and standards. Other technical sessions included ice scour and gouging; Arctic escape, evacuation and rescue (EER) operations; oil spill protection and response; and a special session on Arctic marine shipping assessment (AMSA). The conference featured 63 presentations, of which 24 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  19. Proceedings of ICETECH 2008 : the 8. international conference and exhibition on performance of ships and structures in ice. 2. ed.

    International Nuclear Information System (INIS)

    Bercha, F.; Bercha, S.; Pilkington, R.

    2008-09-01

    The rapid growth and renewed interest in oil and gas exploration and production in Arctic offshore regions has resulted in an increase in maritime transport through northern sea routes, including the Canadian Northwest Passage. This conference included both plenary and technical sessions which addressed issues facing offshore resource development in ice-covered areas, such as construction of offshore platforms; pipelines and facilities; and ice-structure interactions in terms of ice loads and ice mechanics. New offshore developments in ice-covered areas were discussed with reference to potential damage caused by dynamic ice loads, risk assessment, personnel safety, and emergency evacuation rescue. The global warming implications to the Arctic were also discussed along with Arctic geopolitics. The technical session on ships addressed ship performance in ice; propulsion systems; offshore operations; ice loads and hull strength; and icebreaker designs. Ice properties and observations were reviewed along with ice detection and mapping techniques. Developments in the Sakhalin Sea were reviewed along with codes, regulations and standards. Other technical sessions included ice scour and gouging; Arctic escape, evacuation and rescue (EER) operations; oil spill protection and response; and a special session on Arctic marine shipping assessment (AMSA). The conference featured 63 presentations, of which 24 have been catalogued separately for inclusion in this database. refs., tabs., figs

  20. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    -vitrified in contact with the ice crystals during the preceding homogeneous freezing cycle exhibit pre-activation: they may retain small ice embryos in pores, have footprints on their surface which match the ice lattice, or simply have a much greater surface area or different surface microstructure compared to the unprocessed glassy aerosol particles. Pre-activation must be considered for the correct interpretation of experimental results on the heterogeneous ice nucleation ability of glassy aerosol particles and may provide a mechanism of producing a population of extremely efficient ice nuclei in the upper troposphere.

  1. Literature review for Texas Department of Transportation Research Project 0-4695: Guidance for design in areas of extreme bed-load mobility, Edwards Plateau, Texas

    Science.gov (United States)

    Heitmuller, Franklin T.; Asquith, William H.; Fang, Xing; Thompson, David B.; Wang, Keh-Han

    2005-01-01

    A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0–4695: Guidance for Design in Areas of Extreme Bed-Load Mobility. The study area comprises the western half of the Edwards Plateau in central Texas. Three primary foci of the literature review are journal articles, edited volumes, and government publications. Major themes within the body of literature include deterministic sediment transport theory and equations, development of methods to measure and analyze fluvial sediment, applications and development of theory in natural channels and flume experiments, and recommendations for river management and structural design. The literature review provides an outline and foundation for the research project to characterize extreme bed-load mobility in rivers and streams across the study area. The literature review also provides a basis upon which potential modifications to low-water stream-crossing design in the study area can be made.

  2. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    Science.gov (United States)

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  3. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    Directory of Open Access Journals (Sweden)

    Amélie Lescroël

    Full Text Available In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC on the foraging efficiency of Adélie penguins (Pygoscelis adeliae breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  4. Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat

    Science.gov (United States)

    Durner, George M.; Whiteman, J.P.; Harlow, H.J.; Amstrup, Steven C.; Regehr, E.V.; Ben-David, M.

    2011-01-01

    Polar bears (Ursus maritimus) prefer to live on Arctic sea ice but may swim between ice floes or between sea ice and land. Although anecdotal observations suggest that polar bears are capable of swimming long distances, no data have been available to describe in detail long distance swimming events or the physiological and reproductive consequences of such behavior. Between an initial capture in late August and a recapture in late October 2008, a radio-collared adult female polar bear in the Beaufort Sea made a continuous swim of 687 km over 9 days and then intermittently swam and walked on the sea ice surface an additional 1,800 km. Measures of movement rate, hourly activity, and subcutaneous and external temperature revealed distinct profiles of swimming and walking. Between captures, this polar bear lost 22% of her body mass and her yearling cub. The extraordinary long distance swimming ability of polar bears, which we confirm here, may help them cope with reduced Arctic sea ice. Our observation, however, indicates that long distance swimming in Arctic waters, and travel over deep water pack ice, may result in high energetic costs and compromise reproductive fitness.

  5. Common Ice Hockey Injuries and Treatment: A Current Concepts Review.

    Science.gov (United States)

    Mosenthal, William; Kim, Michael; Holzshu, Robert; Hanypsiak, Bryan; Athiviraham, Aravind

    Injuries are common in ice hockey, a contact sport where players skate at high speeds on a sheet of ice and shoot a vulcanized rubber puck in excess of one hundred miles per hour. This article reviews the diagnoses and treatment of concussions, injuries to the cervical spine, and lower and upper extremities as they pertain to hockey players. Soft tissue injury of the shoulder, acromioclavicular joint separation, glenohumeral joint dislocation, clavicle fractures, metacarpal fractures, and olecranon bursitis are discussed in the upper-extremity section of the article. Lower-extremity injuries reviewed in this article include adductor strain, athletic pubalgia, femoroacetabular impingement, sports hernia, medial collateral and anterior cruciate ligament tears, skate bite, and ankle sprains. This review is intended to aid the sports medicine physician in providing optimal sports-specific care to allow their athlete to return to their preinjury level of performance.

  6. Reviews and syntheses: Ice acidification, the effects of ocean acidification on sea ice microbial communities

    Science.gov (United States)

    McMinn, Andrew

    2017-09-01

    Sea ice algae, like some coastal and estuarine phytoplankton, are naturally exposed to a wider range of pH and CO2 concentrations than those in open marine seas. While climate change and ocean acidification (OA) will impact pelagic communities, their effects on sea ice microbial communities remain unclear. Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface (infiltration) communities experience much greater extremes. Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies on brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (bacterial communities in general, impacts appear to be minimal. In sea ice also, the few reports available suggest no negative impacts on bacterial growth or community richness. Sea ice ecosystems are ephemeral, melting and re-forming each year. Thus, for some part of each year organisms inhabiting the ice must also survive outside of the ice, either as part of the phytoplankton or as resting spores on the bottom. During these times, they will be exposed to the full range of co-stressors that pelagic organisms experience. Their ability to continue to make a major contribution to sea ice productivity will depend not only on their ability to survive in the ice but also on their ability to survive the increasing seawater temperatures, changing distribution of nutrients and declining pH forecast for the water

  7. Medical ice slurry production device

    Science.gov (United States)

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  8. Mass Balance of the Greenland Ice Sheet at High Elevations.

    Science.gov (United States)

    Thomas; Akins; Csatho; Fahnestock; Gogineni; Kim; Sonntag

    2000-07-21

    Comparison of ice discharge from higher elevation areas of the entire Greenland Ice Sheet with total snow accumulation gives estimates of ice thickening rates over the past few decades. On average, the region has been in balance, but with thickening of 21 centimeters per year in the southwest and thinning of 30 centimeters per year in the southeast. The north of the ice sheet shows less variability, with average thickening of 2 centimeters per year in the northeast and thinning of about 5 centimeters per year in the northwest. These results agree well with those from repeated altimeter surveys, except in the extreme south, where we find substantially higher rates of both thickening and thinning.

  9. Arctic ice island and sea ice movements and mechanical properties. First quarterly report, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Stringer, W.J.

    1984-01-01

    Research activities for the first quarter are presented for the following tasks: (1) ice island; (2) intrusion of the pack ice edge in the Chukchi Sea; and (3) spray ice adhesion to offshore structure coatings. With respect to the ice island portion of this project the following activities are planned for the year: (1) use aerial photography, satellite imagery, and all available historical records to establish a time history of all of the ice shelves of Ellesmere Island; (2) establish positioning buoys on the existing ice islands to track their trajectories daily and to telemeter daily barometric pressure and temperature, via System Argos; (3) relate geostrophic winds to the observed trajectories; (4) begin to build a pseudo-random model for ice island motion over the long term which would enable a determination of the probability of interaction between ice islands and offshore structures. The overall objective of task 2 is to investigate and analyze the causes and extent of summer time pace ice intrusions into the Chukchi Sea, which would interfere with exploration drilling and emplacement of permanent production structures. For task three a method for evaluating shear and tensile strengths of the interface bond between the sea spray ice layer and the structure or ship surface will be developed. A second more detailed task is to then measure the mechanical properties of this bonded layer for a variety of candidate coatings, as functions of temperature, loading rate, strain rate, salinity, and ice type. 25 references, 92 figures.

  10. Breaking Ice 2: A rift system on the Ross Ice Shelf as an analog for tidal tectonics on icy moons

    Science.gov (United States)

    Brunt, K. M.; Hurford, T., Jr.; Schmerr, N. C.; Sauber, J. M.; MacAyeal, D. R.

    2016-12-01

    Ice shelves are the floating regions of the polar ice sheets. Outside of the influence of the narrow region of their grounding zone, they are fully hydrostatic and strongly influenced by the ocean tides. Recent observational and modeling studies have assessed the effect of tides on ice shelves, including: the tidal influence on the ice-shelf surface height, which changes by as much as 6 to 7 m on the southern extreme of the Ronne-Filchner Ice Shelf; the tidal modulation of the ice-shelf horizontal flow velocities, which changes the mean ice-flow rate by as much as two fold on the Ross Ice Shelf; and the tidal contribution to fracture and rift propagation, which eventually leads to iceberg calving. Here, we present the analysis of 16 days of continuous GPS data from a rift system near the front of the Ross Ice Shelf. While the GPS sites were installed for a different scientific investigation, and not optimized to assess tidal rifting mechanics, they provide a first-order sense of the tidal evolution of the rift system. These analyses can be used as a terrestrial analog for tidal activity on icy satellites, such as Europa and Enceladus, moons of Jupiter and Saturn, respectively. Using remote sensing and modeling of the Ross Ice Shelf rift system, we can investigate the geological processes observed on icy satellites and advance modeling efforts of their tidal-tectonic evolution.

  11. Sea ice thickness measurements collected during the LOMROG 2007 and 2009 expeditions

    DEFF Research Database (Denmark)

    Skourup, Henriette; Forsberg, René; Hanson, Susanne

    and 2009 we have collected a unique data set of late summer sea ice thickness, freeboard height and snow depth from the high Arctic Ocean during the time of the annual minimum sea ice extent. The data were collected by on-the-ground drilling and EM measurements. Here we give a brief overview of the data......According to scientific measurements, the Arctic sea ice extent has declined dramatically over the past thirty years, with the most extreme decline seen in the summer melt season. Other observations indicate that the sea ice has become thinner and perennial ice less widely distributed...... collection, as well as the results including the freeboard-to-sea-ice thickness conversion factor, which is used when interpreting freeboard heights measured by remote sensing....

  12. A low cost, high precision extreme/harsh cold environment, autonomous sensor data gathering and transmission platform.

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2014-12-01

    SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.

  13. ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N{sub 2}-, CH{sub 4}-, AND CO-CONTAINING ICES

    Energy Technology Data Exchange (ETDEWEB)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000 (United States)

    2015-10-20

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N{sub 2}-, CH{sub 4}-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N{sub 2}, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.

  14. The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels

    Science.gov (United States)

    Storhaug, Gaute

    2014-12-01

    Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.

  15. Review of the Phenomenon of Ice Shedding from Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    H Xue

    2016-08-01

    Full Text Available Wind power is a sustainable source of energy. However, there are certain challenges to be  overcome. One of the operational challenges is the phenomenon of ice shedding. Icing happens on wind turbine blades in cold regions. When ice grows to a certain size, it separates from the wind turbine blades resulting in the phenomenon of ice shedding. This phenomenon is of significantly dangerous for equipment and personnel in the region. Ice shedding may happen either because of vibrations or bending in blades. However, it was noticed by operators at Nygårdsfjell wind park, Narvik, Norway that ice shedding is more probable to happen when blades are stopped and turned back on. This observation reveals the fact that bending of blades (from loaded to unloaded positions allows the ice to separate and hence result in ice shedding. This can be linked to the phenomenon of icing, mechanical and adhesive properties of ice. This paper reviews above in detail.

  16. Modeling the Fracture of Ice Sheets on Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    Waisman, Haim [Columbia Univ., New York, NY (United States); Tuminaro, Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  17. Effect of fuel assembly mechanical design changes on dynamic response of reactor pressure vessel system under extreme loadings

    International Nuclear Information System (INIS)

    Bhandari, D.R.; Hankinson, M.F.

    1993-01-01

    This paper presents the results of a study to assess the effect of fuel assembly mechanical design changes on the dynamic response of a pressurized water reactor vessel and reactor internals under Loss-Of-Coolant Accident (LOCA) conditions. The results of this study show that the dynamic response of the reactor vessel internals and the core under extreme loadings, such as LOCA, is very sensitive to fuel assembly mechanical design changes. (author)

  18. Validation of nonlinear FEA models of a thin-walled elbow under extreme loading conditions for Sodium-cooled Fast Reactors

    International Nuclear Information System (INIS)

    Watakabe, Tomoyoshi; Wakai, Takashi; Jin, Chuanrong; Usui, Yoshiya; Sakai, Shinkichi; Ooshika, Junji; Tsukimori, Kazuyuki

    2015-01-01

    For the purpose of confirming failure modes and safety margin, some studies on the ultimate strength of thin-walled piping components for Sodium-cooled Fast Reactors (SFRs) under extreme loading conditions such as large earthquakes have been reported these several years. Nonlinear finite element analysis has been applied in these studies to simulate buckling and yielding with large deformation, whose accuracy is dependent on the element type, the mesh size, the elasto-plastic model and so on. It is important to check the validation of a finite element model for nonlinear analysis especially under extreme loading conditions. This paper presents static and dynamic analyses of a thin-walled elbow with large deformation under large seismic loading, and discusses the validation of the FEA models comparing with experimental results. The finite element analysis models in this study are generated by shell elements for a stainless steel pipe elbow of diameter-to-thickness ratio 59:1 similar to the main pipe of SFRs, which is used for shaking table tests. At first, a static analysis is carried out for an in-plane monotonic bending test, in order to confirm that the shell element is appropriate to the large deformation analysis and the material parameters are proper for the strain level in the experiments. And then, a dynamic in-plane bending test with the maximum acceleration of 11.7G is simulated by the nonlinear FEA with stiffness-proportional damping. The influence of mesh sizes on results is investigated, to determine proper mesh sizes and reduce the computational cost. Finally, comparing the results of the FEM analyses with those of experiments, it is concluded that the appropriately generated FEA models are effective and give accurate results for nonlinear analyses of the thin-walled elbow under large seismic loading. (author)

  19. Ice issues relating to the Kashagan phase II development, North Caspian Sea.

    Energy Technology Data Exchange (ETDEWEB)

    Croasdale, Ken [KRCA, Calgary (Canada); Verlaan, Paul [Shell Development Kashagan, London (United Kingdom)

    2011-07-01

    The ice conditions in the north Caspian Sea are challenging for the Kashagan field development. The climatic conditions of the area are extreme, with cold winters (-30 degrees C) and hot summers (+40 degrees C). The presence and the quantity of ice are also highly variable from year to year. This paper investigated the major ice-related issues affecting the Kashagan structures and pipelines. An extensive description of the ice environment was provided. Ice design criteria for the offshore rock islands, the pipelines and the layout of the ice protection barriers around the islands were presented. It was found that the ice design methods used in Arctic areas have required some adaptations to meet Caspian conditions. All the islands were designed with an ice encroachment zone to reduce the hazardous effect of the ice rubble encroaching. Rock sloped barriers and steel barriers were implanted around the islands to protect the logistical areas.

  20. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices

    Science.gov (United States)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} is the dominant gas in the dense clouds of the interstellar medium (ISM). At densities of 10 (5) cm (-3) , an H _{2} molecule arrives at the surface of a 0.1 mum-sized, ice-covered dust grain once every few seconds [1]. At 10 K, H _{2} can diffuse into the pores of the ice mantle and adsorb at high-energy binding sites, loading the ice with hydrogen over the lifetime of the cloud. These icy grains are also impacted by galactic cosmic rays and stellar winds (in clouds with embedded protostar). Based on the available cosmic proton flux spectrum [2], we estimate a small impact rate of nearly 1 hit per year on a 0.1 μm sized grain, or 10 (-7) times the impact frequency of the neutral H _{2}. The energy deposited by such impacts can release the adsorbed H _{2} into the gas phase (impact desorption or sputtering). Recently, we have reported on a new process of ion-induced enhanced adsorption, where molecules from the gas phase are incorporated into the film when irradiation is performed in the presence of ambient gas [3]. The interplay between ion-induced ejection and adsorption can be important in determining the gas-solid balance in the ISM. To understand the effects of cosmic rays/stellar winds impacts on interstellar ice immersed in H _{2} gas, we have performed irradiation of porous amorphous ice films loaded with H _{2} through co-deposition or adsorption following growth. The irradiations were performed with 100 keV H (+) using fluxes of 10 (10) -10 (12) H (+) cm (-2) s (-1) at 7 K, in presence of ambient H _{2} at pressures ranging from 10 (-5) to 10 (-8) Torr. Our initial results show a net loss in adsorbed H _{2} during irradiation, from competing ion-induced ejection and adsorption. The H _{2} loss per ion decreases exponentially with fluence, with a cross-section of 10 (-13) cm (2) . In addition to hydrogen removal, irradiation also leads to trapping of H _{2} in the ice film, from closing of the pores during irradiation [4]. As a result, 2.6 percent

  1. Characterization of the mechanical behavior of sea ice as a frictional material

    Science.gov (United States)

    Lade, Poul V.

    2002-12-01

    The mechanical properties of sea ice are determined by the formation process, and the consequent material behavior at the element scale exhibits viscoelastic behavior at the early loading stages, followed by brittle fracture or ductile, irrecoverable deformation that may be captured by hardening/softening plasticity models with nonassociated flow. Failure of sea ice under different loading conditions follows a pattern that demonstrates its highly cross-anisotropic nature as well as its behavior as a frictional material. The interactions between the floes in the pack ice resemble those observed in granular materials. These materials are frictional in nature, they exhibit both contractive and dilative volume changes, the plastic flow is nonassociated, and their stiffnesses and strengths increase with confining pressure, but they do not have any strength when unconfined. The overall behavior of the pack ice may be close to isotropic. Constitutive modeling of this behavior may be achieved by models used in geotechnical engineering. Formation of leads and subsequent freezing of the water results in cementation between the ice floes, and the pack ice becomes stronger. The behavior of the pack ice may now be compared with that observed in cemented soils or concrete. For these materials, increasing amounts of cementation result in increasing rates of dilation when sheared, and this accounts for the largest contribution to the increase in shear strength.

  2. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  3. Prognostic factors for specific lower extremity and spinal musculoskeletal injuries identified through medical screening and training load monitoring in professional football (soccer): a systematic review

    Science.gov (United States)

    Sergeant, Jamie C; Parkes, Matthew J; Callaghan, Michael J

    2017-01-01

    Background Medical screening and load monitoring procedures are commonly used in professional football to assess factors perceived to be associated with injury. Objectives To identify prognostic factors (PFs) and models for lower extremity and spinal musculoskeletal injuries in professional/elite football players from medical screening and training load monitoring processes. Methods The MEDLINE, AMED, EMBASE, CINAHL Plus, SPORTDiscus and PubMed electronic bibliographic databases were searched (from inception to January 2017). Prospective and retrospective cohort studies of lower extremity and spinal musculoskeletal injury incidence in professional/elite football players aged between 16 and 40 years were included. The Quality in Prognostic Studies appraisal tool and the modified Grading of Recommendations Assessment, Development and Evaluation synthesis approach was used to assess the quality of the evidence. Results Fourteen studies were included. 16 specific lower extremity injury outcomes were identified. No spinal injury outcomes were identified. Meta-analysis was not possible due to heterogeneity and study quality. All evidence related to PFs and specific lower extremity injury outcomes was of very low to low quality. On the few occasions where multiple studies could be used to compare PFs and outcomes, only two factors demonstrated consensus. A history of previous hamstring injuries (HSI) and increasing age may be prognostic for future HSI in male players. Conclusions The assumed ability of medical screening tests to predict specific musculoskeletal injuries is not supported by the current evidence. Screening procedures should currently be considered as benchmarks of function or performance only. The prognostic value of load monitoring modalities is unknown. PMID:29177074

  4. The impact of water loading on postglacial decay times in Hudson Bay

    Science.gov (United States)

    Han, Holly Kyeore; Gomez, Natalya

    2018-05-01

    Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations during the last glacial cycle has been contributing to sea-level changes globally throughout the Holocene, especially in regions like Canada that were heavily glaciated during the Last Glacial Maximum (LGM). The spatial and temporal distribution of GIA, as manifested in relative sea-level (RSL) change, are sensitive to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that RSL curves near the center of previously glaciated regions with no ongoing surface loading follow an exponential-like form, with the postglacial decay times associated with that form having a weak sensitivity to the details of the ice loading history. Postglacial decay time estimates thus provide a powerful datum for constraining the Earth's viscous structure and improving GIA predictions. We explore spatial patterns of postglacial decay time predictions in Hudson Bay by decomposing numerically modeled RSL changes into contributions from water and ice loading effects, and computing their relative impact on the decay times. We demonstrate that ice loading can contribute a strong geographic trend on the decay time estimates if the time window used to compute decay times includes periods that are temporally close to (i.e. contemporaneous with, or soon after) periods of active loading. This variability can be avoided by choosing a suitable starting point for the decay time window. However, more surprisingly, we show that across any adopted time window, water loading effects associated with inundation into, and postglacial flux out of, Hudson Bay and James Bay will impart significant geographic variability onto decay time estimates. We emphasize this issue by considering both maps of predicted decay times across the region and site-specific estimates, and we conclude that variability in observed decay times (whether based on existing or future data

  5. Ice loading model for Glacial Isostatic Adjustment in the Barents Sea constrained by GRACE gravity observations

    Science.gov (United States)

    Root, Bart; Tarasov, Lev; van der Wal, Wouter

    2014-05-01

    The global ice budget is still under discussion because the observed 120-130 m eustatic sea level equivalent since the Last Glacial Maximum (LGM) can not be explained by the current knowledge of land-ice melt after the LGM. One possible location for the missing ice is the Barents Sea Region, which was completely covered with ice during the LGM. This is deduced from relative sea level observations on Svalbard, Novaya Zemlya and the North coast of Scandinavia. However, there are no observations in the middle of the Barents Sea that capture the post-glacial uplift. With increased precision and longer time series of monthly gravity observations of the GRACE satellite mission it is possible to constrain Glacial Isostatic Adjustment in the center of the Barents Sea. This study investigates the extra constraint provided by GRACE data for modeling the past ice geometry in the Barents Sea. We use CSR release 5 data from February 2003 to July 2013. The GRACE data is corrected for the past 10 years of secular decline of glacier ice on Svalbard, Novaya Zemlya and Frans Joseph Land. With numerical GIA models for a radially symmetric Earth, we model the expected gravity changes and compare these with the GRACE observations after smoothing with a 250 km Gaussian filter. The comparisons show that for the viscosity profile VM5a, ICE-5G has too strong a gravity signal compared to GRACE. The regional calibrated ice sheet model (GLAC) of Tarasov appears to fit the amplitude of the GRACE signal. However, the GRACE data are very sensitive to the ice-melt correction, especially for Novaya Zemlya. Furthermore, the ice mass should be more concentrated to the middle of the Barents Sea. Alternative viscosity models confirm these conclusions.

  6. Ocean wave generation by collapsing ice shelves

    Science.gov (United States)

    Macayeal, D. R.; Bassis, J. N.; Okal, E. A.; Aster, R. C.; Cathles, L. M.

    2008-12-01

    The 28-29 February, 2008, break-up of the Wilkins Ice Shelf, Antarctica, exemplifies the now-familiar, yet largely unexplained pattern of explosive ice-shelf break-up. While environmental warming is a likely ultimate cause of explosive break-up, several key aspects of their short-term behavior need to be explained: (1) The abrupt, near-simultaneous onset of iceberg calving across long spans of the ice front margin; (2) High outward drift velocity (about 0.3 m/s) of a leading phalanx of tabular icebergs that originate from the seaward edge of the intact ice shelf prior to break-up; (3) Rapid coverage of the ocean surface in the wake of this leading phalanx by small, capsized and dismembered tabular icebergs; (4) Extremely large gravitational potential energy release rates, e.g., up to 3 × 1010 W; (5) Lack of proximal iceberg-calving triggers that control the timing of break-up onset and that maintain the high break-up calving rates through to the conclusion of the event. Motivated by seismic records obtained from icebergs and the Ross Ice Shelf that show hundreds of micro- tsunamis emanating from near the ice shelf front, we re-examine the basic dynamic features of ice- shelf/ocean-wave interaction and, in particular, examine the possibility that collapsing ice shelves themselves are a source of waves that stimulate the disintegration process. We propose that ice-shelf generated surface-gravity waves associated with initial calving at an arbitrary seed location produce stress perturbations capable of triggering the onset of calving on the entire ice front. Waves generated by parting detachment rifts, iceberg capsize and break-up act next to stimulate an inverted submarine landslide (ice- slide) process, where gravitational potential energy released by upward movement of buoyant ice is radiated as surface gravity waves in the wake of the advancing phalanx of tabular icebergs. We conclude by describing how field research and remote sensing can be used to test the

  7. Environmental controls on micro fracture processes in shelf ice

    Science.gov (United States)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  8. Reviews and syntheses: Ice acidification, the effects of ocean acidification on sea ice microbial communities

    Directory of Open Access Journals (Sweden)

    A. McMinn

    2017-09-01

    Full Text Available Sea ice algae, like some coastal and estuarine phytoplankton, are naturally exposed to a wider range of pH and CO2 concentrations than those in open marine seas. While climate change and ocean acidification (OA will impact pelagic communities, their effects on sea ice microbial communities remain unclear. Sea ice contains several distinct microbial communities, which are exposed to differing environmental conditions depending on their depth within the ice. Bottom communities mostly experience relatively benign bulk ocean properties, while interior brine and surface (infiltration communities experience much greater extremes. Most OA studies have examined the impacts on single sea ice algae species in culture. Although some studies examined the effects of OA alone, most examined the effects of OA and either light, nutrients or temperature. With few exceptions, increased CO2 concentration caused either no change or an increase in growth and/or photosynthesis. In situ studies on brine and surface algae also demonstrated a wide tolerance to increased and decreased pH and showed increased growth at higher CO2 concentrations. The short time period of most experiments (< 10 days, together with limited genetic diversity (i.e. use of only a single strain, however, has been identified as a limitation to a broader interpretation of the results. While there have been few studies on the effects of OA on the growth of marine bacterial communities in general, impacts appear to be minimal. In sea ice also, the few reports available suggest no negative impacts on bacterial growth or community richness. Sea ice ecosystems are ephemeral, melting and re-forming each year. Thus, for some part of each year organisms inhabiting the ice must also survive outside of the ice, either as part of the phytoplankton or as resting spores on the bottom. During these times, they will be exposed to the full range of co-stressors that pelagic organisms experience. Their ability

  9. An on-ice measurement approach to analyse the biomechanics of ice hockey skating.

    Science.gov (United States)

    Buckeridge, Erica; LeVangie, Marc C; Stetter, Bernd; Nigg, Sandro R; Nigg, Benno M

    2015-01-01

    Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High) and nine low caliber (Low) hockey players performed 30 m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65) to excellent (r>0.95) scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05). High caliber exhibited greater hip range of motion and forefoot force application (p<0.05). The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice.

  10. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    Science.gov (United States)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used

  11. Effetively trapping air or lqiud water for anti-icing applications

    Science.gov (United States)

    Wang, Jianjun

    2014-03-01

    Icing on solid surfaces leads to operational difficulties and high maintenance efforts for power networks, aircrafts, ships, ground transportation vehicles and house-hold refrigerators, to name but a few. In extreme cases, icing on surfaces causes disastrous events such as crash of aircrafts and collapse of power networks, which result in severe economic impact and large loss of life. This talk is focused on the fundamentals of the ice formation and adhesion of ice with solid substrates aiming for fighting against icing on solid surfaces. When the supercooling is low, it would be possible to remove supercooled liquid water from the solid surfaces before freezing occurs. To achieve this, we design and constructed surfaces that can trap the air at the subfreezing temperature thus condensed water microdroplets could be spontaneously removed after the coalescence. When the supercooling is high, icing on surfaces occurs spontaniously. In this case, we constructed coatings on which aqueous lubricating layer could be trapped, thus the ice adhesion on the coating is so low that the ice formed atop could be removed by a wind action or its own gravity.

  12. Extrapolation of extreme response for different mooring line systems of floating wave energy converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard

    2014-01-01

    Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... measurements from lab-scaled WEPTOS WEC are taken. Different catenary anchor leg mooring (CALM) systems as well as single anchor legmooring (SALM)mooring systemsare implemented for a dynamic simulation with different number of mooring lines. Extreme tension loads with a return period of 50 years are assessed...... for the hawser as well as at the different mooring lines. Furthermore, the extreme load impact given failure of one mooring line is assessed and compared with extreme loads given no system failure....

  13. Design and operational procedures for ORC-based systems coupled with internal combustion engines driving electrical generators at full and partial load

    International Nuclear Information System (INIS)

    Badescu, Viorel; Aboaltabooq, Mahdi Hatf Kadhum; Pop, Horatiu; Apostol, Valentin; Prisecaru, Malina; Prisecaru, Tudor

    2017-01-01

    Highlights: • Waste heat recovery from Internal Combustion Engines (ICEs). • Organic Ranking Cycle (ORC) systems driving Electric Generators (EGs). • ICE-EG partial load operation. • Optimum design geometry of ORC system. • Optimum operation of ORC system at partial EG load. - Abstract: This paper refers to recovering waste heat from the hot gases exhausted by internal combustion engines (ICEs) driving electric generators (EGs) at full and partial load. The topic is of particular interest for developing countries where electric grids are underdeveloped or missing and electricity is generated locally by using classical fuels. The heat recovery system is based on an Organic Rankine Cycle (ORC). A novel method is proposed for the optimum design of ORC-based systems operating in combination with ICE at partial EG loads. First, ORC-based systems coupled with ICEs operating at full EG load is treated. Specific results for the operation at full EG load are as follows: (i) the optimum superheating increment ranges between 30 and 40 °C, depending on the type of the working fluids; (ii) a pinch point temperature difference exits between the flue gas temperature and the working fluid at the evaporator inlet; (iii) the total area of the evaporator is very close to the total area of the condenser, a fact which facilitates manufacturing; (iv) the surface area of the preheater zone is about 75% of the total surface area, while those of the boiler zone and superheater zone is about 13.5% and 11.5%, respectively. Second, the case of the ORC-based systems coupled with ICEs operating at partial EG load is considered. Specific results for this case are as follows: (v) the net power may be maximized by optimizing the working fluid mass flow rate; (vi) when the ICE is coupled with an ORC-based system, the overall thermal efficiency of the combined system, η ICE-ORC , is higher than the thermal efficiency of the ICE operating alone. As an example, for the case treated here,

  14. Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007

    Energy Technology Data Exchange (ETDEWEB)

    Graversen, Rune G.; Drijfhout, Sybren [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Mauritsen, Thorsten [Max-Planck Institute for Meteorology, Hamburg (Germany); Tjernstroem, Michael; Maartensson, Sebastian [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2011-06-15

    During summer 2007 the Arctic sea-ice shrank to the lowest extent ever observed. The role of the atmospheric energy transport in this extreme melt event is explored using the state-of-the-art ERA-Interim reanalysis data. We find that in summer 2007 there was an anomalous atmospheric flow of warm and humid air into the region that suffered severe melt. This anomaly was larger than during any other year in the data (1989-2008). Convergence of the atmospheric energy transport over this area led to positive anomalies of the downward longwave radiation and turbulent fluxes. In the region that experienced unusual ice melt, the net anomaly of the surface fluxes provided enough extra energy to melt roughly one meter of ice during the melting season. When the ocean successively became ice-free, the surface-albedo decreased causing additional absorption of shortwave radiation, despite the fact that the downwelling solar radiation was smaller than average. We argue that the positive anomalies of net downward longwave radiation and turbulent fluxes played a key role in initiating the 2007 extreme ice melt, whereas the shortwave-radiation changes acted as an amplifying feedback mechanism in response to the melt. (orig.)

  15. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    Science.gov (United States)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  16. Potential of Biofilters for Treatment of De-Icing Chemicals

    OpenAIRE

    Raspati, Gema Sakti; Lindseth, Hanna Kristine; Muthanna, Tone Merete; Azrague, Kamal

    2018-01-01

    Organic de-icing chemicals, such as propylene glycol and potassium formate, cause environmental degradation in receiving water if left untreated, due to the high organic load resulting in oxygen depletion. Biofilters are commonly used for the treatment of biodegradable organic carbon in water treatment. This study investigated the potential for using biofilters for treating organic de-icing compounds. Lab-scale adsorption tests using filter media made of crushed clay (Filtralite) and granular...

  17. Initial Low-Reynolds Number Iced Aerodynamic Performance for CRM Wing

    Science.gov (United States)

    Woodard, Brian; Diebold, Jeff; Broeren, Andy; Potapczuk, Mark; Lee, Sam; Bragg, Michael

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  18. Observations of runoff and sediment and dissolved loads from the Greenland Ice Sheet at Kangerlussuaq, West Greenland, 2007 to 2010

    DEFF Research Database (Denmark)

    Hasholt, Bent; Mikkelsen, Andreas Peter Bech; Nielsen, Morten Holtegaard

    2012-01-01

    Observations from 2007 to 2010 of runoff, sediment and solute delivery from a segment of the Greenland Ice Sheet (GrIS) and the proglacial landscape draining into the fjord at Kangerlussuaq are presented. The observations include at least three jökulhlaups and extreme recordings from 2010...... previously published for 2007 and 2008. The average effective erosion from the catchment was 0.28 mm (min. 0.18 and max. 0.45 mm). The erosion is larger than indicated from most other locations along the GrIS, but in the same order of magnitude as erosion in other glaciated areas at the same latitude, e.......g. Norway. The sandur in the proglacial area acts as a sediment sink for a lot of the sediments from the GrIS....

  19. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals

    Science.gov (United States)

    Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui

    2018-04-01

    Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.

  20. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths.

    Science.gov (United States)

    Boyer, Elizabeth R; Derrick, Timothy R

    2018-03-01

    Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2-14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: -9.9 ± 0.9, hFF-FFS: -9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one's SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.

  1. The global signature of post-1900 land ice wastage on vertical land motion

    Science.gov (United States)

    Riva, Riccardo; Frederikse, Thomas; King, Matt; Marzeion, Ben; van den Broeke, Michiel

    2017-04-01

    The amount of ice stored on land has strongly declined during the 20th century, and melt rates showed a significant acceleration over the last two decades. Land ice wastage is well known to be one of the main drivers of global mean sea-level rise, as widely discussed in the literature and reflected in the last assessment report of the IPCC. A less obvious effect of melting land ice is the response of the solid earth to mass redistribution on its surface, which, in the first approximation, results in land uplift where the load reduces (e.g., close to the meltwater sources) and land subsidence where the load increases (e.g., under the rising oceans). This effect is nowadays well known within the cryospheric and sea level communities. However, what is often not realized is that the solid earth response is a truly global effect: a localized mass change does cause a large deformation signal in its proximity, but also causes a change of the position of every other point on the Earth's surface. The theory of the Earth's elastic response to changing surface loads forms the basis of the 'sea-level equation', which allows sea-level fingerprints of continental mass change to be computed. In this paper, we provide the first dedicated analysis of global vertical land motion driven by land ice wastage. By means of established techniques to compute the solid earth elastic response to surface load changes and the most recent datasets of glacier and ice sheet mass change, we show that land ice loss currently leads to vertical deformation rates of several tenths of mm per year at mid-latitudes, especially over the Northern Hemisphere where most sources are located. In combination with the improved accuracy of space geodetic techniques (e.g., Global Navigation Satellite Systems), this means that the effect of ice melt is non-negligible over a large part of the continents. In particular, we show how deformation rates have been strongly varying through the last century, which implies

  2. Increasing runoff and sediment load from the Greenland ice sheet at kangerlussuaq (Sonder Stromfjord) in a 30-year perspective, 1979-2008

    Energy Technology Data Exchange (ETDEWEB)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.; Hasholt, Bent [UNIV OF COPENGAGEN; Steffen, Konrad [UNIV OF COLORADO; Van Den Broeke, Michiel [UTRECHT UNIV; Mcgrath, Daniel [UNIV OF COLORADO; Yde, Jacob [UNIV OF AARHUS

    2009-01-01

    This observation and modeling study provides insights into runoff and sediment load exiting the Watson River drainage basin, Kangerlussuaq, West Greenland during a 30 year period (1978/79-2007/08) when the climate experienced increasing temperatures and precipitation. The 30-year simulations quantify the terrestrial freshwater and sediment output from part of the Greenland Ice Sheet (GrIS) and the land between the GrIS and the ocean, in the context of global warming and increasing GrIS surface melt. We used a snow-evolution modeling system (SnowModel) to simulate the winter accumulation and summer ablation processes, including runoff and surface mass balance (SMB), of the Greenland ice sheet. Observed sediment concentrations were related to observed runoff, producing a sediment-load time series. To a large extent, the SMB fluctuations could be explained by changes in net precipitation (precipitation minus evaporation and sublimation), with 8 out of 30 years having negative SMB, mainly because of relatively low annual net precipitation. The overall trend in net precipitation and runoff increased significantly, while 5MB increased insignificantly throughout the simulation period, leading to enhanced precipitation of 0.59 km{sup 3} w.eq. (or 60%), runoff of 0.43 km{sup 3} w.eq (or 54%), and SMB of 0.16 km3 w.eq. (or 86%). Runoff rose on average from 0.80 km{sup 3} w.eq. in 1978/79 to 1.23 km{sup 3} w.eq. in 2007/08. The percentage of catchment oudet runoff explained by runoff from the GrIS decreased on average {approx} 10%, indicating that catchment runoff throughout the simulation period was influenced more by precipitation and snowmelt events, and less by runoff from the GrIS. Average variations in the increasing Kangerlussuaq runoff from 1978/79 through 2007/08 seem to follow the overall variations in satellite-derived GrIS surface melt, where 64% of the variations in simulated runoff were explained by regional melt conditions on the GrIS. Throughout the simulation

  3. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa L.; Bentley, Michael J.; King, Matt A.

    2015-03-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial isostatic adjustment to match present-day uplift rates. By combining a suite of ice loading histories that include a readvance with a model of glacial isostatic adjustment we report substantial improvements to predictions of present-day uplift rates, including reconciling one problematic observation of land sinking. We suggest retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery has since led to shallowing, ice sheet re-grounding and readvance. The paradoxical existence of grounding lines in apparently unstable configurations on reverse bed slopes may be resolved by invoking the process of unstable advance, in accordance with our load modelling.

  4. Heat transfer analysis and effects of feeding tubes arrangement, falling film behavior and backsplash on ice formation around horizontal tubes bundles

    International Nuclear Information System (INIS)

    Sait, Hani Hussain

    2013-01-01

    Highlights: • Ice shape around the tubes. • Effects of accumulation of ice around the tubes. • Effects of parallel and series tubes arrangements. • Effects of ice accumulated around the tube surfaces. • Effects of backsplash on ice formation. - Abstract: Excessive electrical load has recently get a lot of attention from electric companies specially in hot countries like Saudi Arabia, where air-conditioning load represents about 75% from the total electrical load. Energy storage by freezing is one of the methods that used to tackle this issue. Ice is formed around horizontal cold tubes that are subjected to falling film of water. Ice quantity is measured, photographed and studied. In this studied the coolant inside the tubes flows in series tube arrangement. The results are compared with previous study in which parallel arrangement was used. In addition the falling film behavior and the resulted backsplash are also investigated. A mathematical model to predict ice formation around the tube is proposed. Comparison of the results of the model with that of the experiments showed that the agreement between the two is acceptable. The results also show a quite reasonable quantity of ice is formed in a short time and the series arrangement is more efficient than parallel one. The falling film shapes and its backsplash has also affected the ice formation

  5. An on-ice measurement approach to analyse the biomechanics of ice hockey skating.

    Directory of Open Access Journals (Sweden)

    Erica Buckeridge

    Full Text Available Skating is a fundamental movement in ice hockey; however little research has been conducted within the field of hockey skating biomechanics due to the difficulties of on-ice data collection. In this study a novel on-ice measurement approach was tested for reliability, and subsequently implemented to investigate the forward skating technique, as well as technique differences across skill levels. Nine high caliber (High and nine low caliber (Low hockey players performed 30 m forward skating trials. A 3D accelerometer was mounted to the right skate for the purpose of stride detection, with the 2nd and 6th strides defined as acceleration and steady-state, respectively. The activity of five lower extremity muscles was recorded using surface electromyography. Biaxial electro-goniometers were used to quantify hip and knee angles, and in-skate plantar force was measured using instrumented insoles. Reliability was assessed with the coefficient of multiple correlation, which demonstrated moderate (r>0.65 to excellent (r>0.95 scores across selected measured variables. Greater plantar-flexor muscle activity and hip extension were evident during acceleration strides, while steady state strides exhibited greater knee extensor activity and hip abduction range of motion (p<0.05. High caliber exhibited greater hip range of motion and forefoot force application (p<0.05. The successful implementation of this on-ice mobile measurement approach offers potential for athlete monitoring, biofeedback and training advice.

  6. Engine Icing Data - An Analytics Approach

    Science.gov (United States)

    Fitzgerald, Brooke A.; Flegel, Ashlie B.

    2017-01-01

    Engine icing researchers at the NASA Glenn Research Center use the Escort data acquisition system in the Propulsion Systems Laboratory (PSL) to generate and collect a tremendous amount of data every day. Currently these researchers spend countless hours processing and formatting their data, selecting important variables, and plotting relationships between variables, all by hand, generally analyzing data in a spreadsheet-style program (such as Microsoft Excel). Though spreadsheet-style analysis is familiar and intuitive to many, processing data in spreadsheets is often unreproducible and small mistakes are easily overlooked. Spreadsheet-style analysis is also time inefficient. The same formatting, processing, and plotting procedure has to be repeated for every dataset, which leads to researchers performing the same tedious data munging process over and over instead of making discoveries within their data. This paper documents a data analysis tool written in Python hosted in a Jupyter notebook that vastly simplifies the analysis process. From the file path of any folder containing time series datasets, this tool batch loads every dataset in the folder, processes the datasets in parallel, and ingests them into a widget where users can search for and interactively plot subsets of columns in a number of ways with a click of a button, easily and intuitively comparing their data and discovering interesting dynamics. Furthermore, comparing variables across data sets and integrating video data (while extremely difficult with spreadsheet-style programs) is quite simplified in this tool. This tool has also gathered interest outside the engine icing branch, and will be used by researchers across NASA Glenn Research Center. This project exemplifies the enormous benefit of automating data processing, analysis, and visualization, and will help researchers move from raw data to insight in a much smaller time frame.

  7. Ice hockey injuries.

    Science.gov (United States)

    Benson, Brian W; Meeuwisse, Willem H

    2005-01-01

    This article reviews the distribution and determinants of injuries reported in the pediatric ice hockey literature, and suggests potential injury prevention strategies and directions for further research. Thirteen electronic databases, the ISI Web of Science, and 'grey literature' databases were searched using a combination of Medical Subject Headings and text words to identify potentially relevant articles. The bibliographies of selected studies were searched to identify additional articles. Studies were selected for review based on predetermined inclusion and exclusion criteria. A comparison between studies on this topic area was difficult due to the variability in research designs, definition of injury, study populations, and measurements used to assess injury. The majority of injuries were sustained during games compared with practices. The two most commonly reported injuries were sprains/strains and contusions. Players competing at the Minor hockey, High School, and Junior levels of competition sustained most of their injuries to the upper extremity, head, and lower extremity, respectively. The primary mechanism of injury was body checking, followed by stick and puck contact. The frequency of catastrophic eye injuries has been significantly reduced with the world-wide mandation of full facial protection for all Minor hockey players. Specific hockey-related injury risk factors are poorly delineated and rarely studied among pediatric ice hockey players leaving large gaps in the knowledge of appropriate prevention strategies. Risk management strategies should be focused at avoiding unnecessary foreseeable risk, and controlling the risks inherent to the sport. Suggestions for injury prevention and future research are discussed.

  8. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  9. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law

    Science.gov (United States)

    Lipovsky, Bradley Paul; Dunham, Eric M.

    2017-04-01

    The Whillans Ice Plain (WIP), Antarctica, experiences twice daily tidally modulated stick-slip cycles. Slip events last about 30 min, have sliding velocities as high as ˜0.5 mm/s (15 km/yr), and have total slip ˜0.5 m. Slip events tend to occur during falling ocean tide: just after high tide and just before low tide. To reproduce these characteristics, we use rate-and-state friction, which is commonly used to simulate tectonic faulting, as an ice stream sliding law. This framework describes the evolving strength of the ice-bed interface throughout stick-slip cycles. We present simulations that resolve the cross-stream dimension using a depth-integrated treatment of an elastic ice layer loaded by tides and steady ice inflow. Steady sliding with rate-weakening friction is conditionally stable with steady sliding occurring for sufficiently narrow ice streams relative to a nucleation length. Stick-slip cycles occur when the ice stream is wider than the nucleation length or, equivalently, when effective pressures exceed a critical value. Ice streams barely wider than the nucleation length experience slow-slip events, and our simulations suggest that the WIP is in this slow-slip regime. Slip events on the WIP show a sense of propagation, and we reproduce this behavior by introducing a rate-strengthening region in the center of the otherwise rate-weakening ice stream. If pore pressures are raised above a critical value, our simulations predict that the WIP would exhibit quasi-steady tidally modulated sliding as observed on other ice streams. This study validates rate-and-state friction as a sliding law to describe ice stream sliding styles.

  10. Multivariate Modelling of Extreme Load Combinations for Wind Turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2015-01-01

    into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...

  11. Time-Dependent Effects of Glaze Ice on the Aerodynamic Characteristics of an Airfoil

    Directory of Open Access Journals (Sweden)

    Narges Tabatabaei

    2018-01-01

    Full Text Available The main objective of this study is to estimate the dynamic loads acting over a glaze-iced airfoil. This work studies the performance of unsteady Reynolds-averaged Navier-Stokes (URANS simulations in predicting the oscillations over an iced airfoil. The structure and size of time-averaged vortices are compared to measurements. Furthermore, the accuracy of a two-equation eddy viscosity turbulence model, the shear stress transport (SST model, is investigated in the case of the dynamic load analysis over a glaze-iced airfoil. The computational fluid dynamic analysis was conducted to investigate the effect of critical ice accretions on a 0.610 m chord NACA 0011 airfoil. Leading edge glaze ice accretion was simulated with flat plates (spoiler-ice extending along the span of the blade. Aerodynamic performance coefficients and pressure profiles were calculated and validated for the Reynolds number of 1.83 × 106. Furthermore, turbulent separation bubbles were studied. The numerical results confirm both time-dependent phenomena observed in previous similar measurements: (1 low-frequency mode, with a Strouhal number Sth≈0,013–0.02, and (2 higher frequency mode with a Strouhal number StL≈0,059–0.69. The higher frequency motion has the same characteristics as the shedding mode and the lower frequency motion has the flapping mode characteristics.

  12. Sea-ice thickness from field measurements in the northwestern Barents Sea

    Science.gov (United States)

    King, Jennifer; Spreen, Gunnar; Gerland, Sebastian; Haas, Christian; Hendricks, Stefan; Kaleschke, Lars; Wang, Caixin

    2017-02-01

    The Barents Sea is one of the fastest changing regions of the Arctic, and has experienced the strongest decline in winter-time sea-ice area in the Arctic, at -23±4% decade-1. Sea-ice thickness in the Barents Sea is not well studied. We present two previously unpublished helicopter-borne electromagnetic (HEM) ice thickness measurements from the northwestern Barents Sea acquired in March 2003 and 2014. The HEM data are compared to ice thickness calculated from ice draft measured by ULS deployed between 1994 and 1996. These data show that ice thickness varies greatly from year to year; influenced by the thermodynamic and dynamic processes that govern local formation vs long-range advection. In a year with a large inflow of sea-ice from the Arctic Basin, the Barents Sea ice cover is dominated by thick multiyear ice; as was the case in 2003 and 1995. In a year with an ice cover that was mainly grown in situ, the ice will be thin and mechanically unstable; as was the case in 2014. The HEM data allow us to explore the spatial and temporal variability in ice thickness. In 2003 the dominant ice class was more than 2 years old; and modal sea-ice thickness varied regionally from 0.6 to 1.4 m, with the thinner ice being either first-year ice, or multiyear ice which had come into contact with warm Atlantic water. In 2014 the ice cover was predominantly locally grown ice less than 1 month old (regional modes of 0.5-0.8 m). These two situations represent two extremes of a range of possible ice thickness distributions that can present very different conditions for shipping traffic; or have a different impact on heat transport from ocean to atmosphere.

  13. Precipitation and synoptic regime in two extreme years 2009 and 2010 at Dome C, Antarctica – implications for ice core interpretation

    Directory of Open Access Journals (Sweden)

    E. Schlosser

    2016-04-01

    Full Text Available At the East Antarctic deep ice core drilling site Dome C, daily precipitation measurements were initiated in 2006 and are being continued until today. The amounts and stable isotope ratios of the precipitation samples as well as crystal types are determined. Within the measuring period, the two years 2009 and 2010 showed striking contrasting temperature and precipitation anomalies, particularly in the winter seasons. The reasons for these anomalies are analysed using data from the mesoscale atmospheric model WRF (Weather Research and Forecasting Model run under the Antarctic Mesoscale Prediction System (AMPS. 2009 was relatively warm and moist due to frequent warm air intrusions connected to amplification of Rossby waves in the circumpolar westerlies, whereas the winter of 2010 was extremely dry and cold. It is shown that while in 2010 a strong zonal atmospheric flow was dominant, in 2009 an enhanced meridional flow prevailed, which increased the meridional transport of heat and moisture onto the East Antarctic plateau and led to a number of high-precipitation/warming events at Dome C. This was also evident in a positive (negative SAM (Southern Annular Mode index and a negative (positive ZW3 (zonal wave number three index during the winter months of 2010 (2009. Changes in the frequency or seasonality of such event-type precipitation can lead to a strong bias in the air temperature derived from stable water isotopes in ice cores.

  14. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall

    DEFF Research Database (Denmark)

    Doyle, Samuel H.; Hubbard, Alun; van de Wal, Roderik S.W.

    2015-01-01

    and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior....... We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern...

  15. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  16. 77 FR 75066 - Special Conditions: Airbus, A350-900 Series Airplane; Flight Envelope Protection (Icing and Non...

    Science.gov (United States)

    2012-12-19

    ...-1207; Notice No. 25-12-09-SC] Special Conditions: Airbus, A350-900 Series Airplane; Flight Envelope... or unusual design features associated with flight envelope protection in icing and non- icing..., during failure conditions (which are not shown to be extremely improbable), the requirements of Title 14...

  17. Irradiation of ice creams for immunosuppressed patients

    International Nuclear Information System (INIS)

    Adeil Pietranera, Maria S.; Narvaiz, Patricia; Horack, C.; Kairiyama, Eulogia; Gimenez, Palmira; Gronostajski, D.

    2003-01-01

    Immunosuppressed patients are very likely to acquire microbial food borne diseases, since due to illness, biological condition or situations generating risks, their natural defences are below what is considered as 'normal limits'. This makes their food intake very restricted, avoiding all those products that could be a source of microorganisms. Gamma radiation applied at sub-sterilizing doses represents a good choice in order to achieve 'clean' diets, and at the same time, it can widen the variety of available meals for these patients, allowing the inclusion of some products normally considered as 'high risk' due to their microbial load, but that can be nutritionally or psychologically adequate. One of these products is ice-cream, a minimally processed type of meal that does not suffer enough microbial inactivation during its processing. Particularly those from natural origin can carry undesirable contamination causing sometimes diseases to the consumer. For that reason, different ice-cream flavours (vanilla, raspberry, peach and milk jam) were exposed to an irradiation treatment at the 60 Co facility of the Ezeiza Atomic Centre. The delivered doses were 3, 6 and 9 kGy. Microbiological determinations were performed, together with sensory evaluations and some chemical analysis: acidity, peroxide value, ultraviolet and visible absorption, thin-layer chromatography and sugar determination, in order to find out if gamma radiation could be applied as a decontamination process without impairing quality. Water-based ice-creams (raspberry and peach) were more resistant to gamma radiation than cream-based ones (vanilla and milk jam), due to their differences in fat content. Gamma irradiation with 3 kGy reduced remarkably the microbial load of these ice-creams and eliminated pathogens without impairing their quality. (author)

  18. Ice, Ice, Baby!

    Science.gov (United States)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  19. Pixel Classification of SAR ice images using ANFIS-PSO Classifier

    Directory of Open Access Journals (Sweden)

    G. Vasumathi

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR is playing a vital role in taking extremely high resolution radar images. It is greatly used to monitor the ice covered ocean regions. Sea monitoring is important for various purposes which includes global climate systems and ship navigation. Classification on the ice infested area gives important features which will be further useful for various monitoring process around the ice regions. Main objective of this paper is to classify the SAR ice image that helps in identifying the regions around the ice infested areas. In this paper three stages are considered in classification of SAR ice images. It starts with preprocessing in which the speckled SAR ice images are denoised using various speckle removal filters; comparison is made on all these filters to find the best filter in speckle removal. Second stage includes segmentation in which different regions are segmented using K-means and watershed segmentation algorithms; comparison is made between these two algorithms to find the best in segmenting SAR ice images. The last stage includes pixel based classification which identifies and classifies the segmented regions using various supervised learning classifiers. The algorithms includes Back propagation neural networks (BPN, Fuzzy Classifier, Adaptive Neuro Fuzzy Inference Classifier (ANFIS classifier and proposed ANFIS with Particle Swarm Optimization (PSO classifier; comparison is made on all these classifiers to propose which classifier is best suitable for classifying the SAR ice image. Various evaluation metrics are performed separately at all these three stages.

  20. Design, Construction, Testing and Evaluation of a Residential Ice Storage Air Conditioning System.

    Science.gov (United States)

    1982-11-01

    handler and chilled water coil from previous research. This was a necessity because of the financial constraints of ] the project. 2. The trailer was...Load lbs ice/12 hr Calculation Btuh req’d @ 8 FLEOB 1. NFPA 501 BM 25,043 1391 2. ACCA Manual J 27,571 1537 using manufacturer’sdata 3. ACCA Manual J...kilowatt hrf - ~0.197 (N da• y The equivalent ice requirement was estimated using the above data and 144 Btu/pound of ice. This does not account for any

  1. Structural investigation of composite wind turbine blade considering various load cases and fatigue life

    International Nuclear Information System (INIS)

    Kong, C.; Bang, J.; Sugiyama, Y.

    2005-01-01

    This study proposes a structural design for developing a medium scale composite wind turbine blade made of E-glass/epoxy for a 750 kW class horizontal axis wind turbine system. The design loads were determined from various load cases specified at the IEC61400-1 international specification and GL regulations for the wind energy conversion system. A specific composite structure configuration, which can effectively endure various loads such as aerodynamic loads and loads due to accumulation of ice, hygro-thermal and mechanical loads, was proposed. To evaluate the proposed composite wind turbine blade, structural analysis was performed by using the finite element method. Parametric studies were carried out to determine an acceptable blade structural design, and the most dominant design parameters were confirmed. In this study, the proposed blade structure was confirmed to be safe and stable under various load conditions, including the extreme load conditions. Moreover, the blade adapted a new blade root joint with insert bolts, and its safety was verified at design loads including fatigue loads. The fatigue life of a blade that has to endure for more than 20 years was estimated by using the well-known S-N linear damage theory, the service load spectrum, and the Spera's empirical equations. With the results obtained from all the structural design and analysis, prototype composite blades were manufactured. A specific construction process including the lay-up molding method was applied to manufacturing blades. Full-scale static structural test was performed with the simulated aerodynamic loads. From the experimental results, it was found that the designed blade had structural integrity. In addition, the measured results of deflections, strains, mass, and radial center of gravity agreed well with the analytical results. The prototype blade was successfully certified by an international certification institute, GL (Germanisher Lloyd) in Germany

  2. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    Science.gov (United States)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  3. Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    extrapolation are presented. The first method is based on the same assumptions as the existing method but the statistical extrapolation is only performed for a limited number of mean wind speeds where the extreme load is likely to occur. For the second method the mean wind speeds are divided into storms which......The characteristic loads on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. These parameters must be taken into account in the assessment of the characteristic load. The characteristic load...... are assumed independent and the characteristic loads are determined from the extreme load in each storm....

  4. An Ice Track Equipped with Optical Sensors for Determining the Influence of Experimental Conditions on the Sliding Velocity

    Science.gov (United States)

    Lungevics, J.; Jansons, E.; Gross, K. A.

    2018-02-01

    The ability to slide on ice has previously focused on the measurement of friction coefficient rather than the actual sliding velocity that is affected by it. The performance can only be directly measured by the sliding velocity, and therefore the objective was to design and setup a facility to measure velo-city, and determine how experimental conditions affect it. Optical sensors were placed on an angled ice track to provide sliding velocity measurements along three sections and the velocity for the total sliding distance. Experimental conditions included the surface roughness, ambient temperature and load. The effect of roughness was best reported with a Criterion of Contact that showed a similar sliding velocity for metal blocks abraded with sand paper smoother than 600 grit. Searching for the effect of temperature, the highest sliding velocity coincided with the previously reported lowest coefficient of ice friction. Load showed the greatest velocity increase at temperatures closer to the ice melting point suggesting that in such conditions metal block overcame friction forces more easily than in solid friction. Further research needs to be conducted on a longer ice track, with larger metal surfaces, heavier loads and higher velocities to determine how laboratory experiments can predict real-life situations.

  5. An Ice Track Equipped with Optical Sensors for Determining the Influence of Experimental Conditions on the Sliding Velocity

    Directory of Open Access Journals (Sweden)

    Lungevics J.

    2018-02-01

    Full Text Available The ability to slide on ice has previously focused on the measurement of friction coefficient rather than the actual sliding velocity that is affected by it. The performance can only be directly measured by the sliding velocity, and therefore the objective was to design and setup a facility to measure velo-city, and determine how experimental conditions affect it. Optical sensors were placed on an angled ice track to provide sliding velocity measurements along three sections and the velocity for the total sliding distance. Experimental conditions included the surface roughness, ambient temperature and load. The effect of roughness was best reported with a Criterion of Contact that showed a similar sliding velocity for metal blocks abraded with sand paper smoother than 600 grit. Searching for the effect of temperature, the highest sliding velocity coincided with the previously reported lowest coefficient of ice friction. Load showed the greatest velocity increase at temperatures closer to the ice melting point suggesting that in such conditions metal block overcame friction forces more easily than in solid friction. Further research needs to be conducted on a longer ice track, with larger metal surfaces, heavier loads and higher velocities to determine how laboratory experiments can predict real-life situations.

  6. Studies of a thermal energy storage unit with ice on coils; Ice on coil gata kori chikunetsuso no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    Study was made of an ice-on-coil heat storage tank for power load levelling. Prior to the prediction of performance of the system as a whole, the performance of the heat storage tank itself needs to be predicted. A brine (35.9% water solution of ethylene glycol) cooled by a refrigerating machine was poured from the upper end of the piping in the heat storage tank (consisting of 19 spiral pipes or coils arranged in parallel in the vertical direction) for the collection of ice around the coils. Ice grew thicker with the passage of time but there was no remarkable decrease in the transfer of heat because there was an increase in the area of contact between ice and water, and the brine exit temperature remained constant over a prolonged period of time. There was a close agreement between experiment results and theoretical conclusions throughout the heat accumulation process, including changes with time in the thickness of ice on the coils, all pointing to the appropriateness of this analytical effort. To melt the ice, water was poured into the tank top at a predetermined rate. Water chilly at 2-4{degree}C was recovered at the tank bottom, stable in the amount produced. As for the use of spiral pipes for making ice, the laminar heat transfer rate in such pipes are supposed to be more than two times higher than that in straight pipes, and this was quite effective in accelerating heat transfer. 7 refs., 11 figs.

  7. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  8. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    Directory of Open Access Journals (Sweden)

    J. Hosek

    2011-02-01

    Full Text Available The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply a combination of a numerical weather prediction model and an ice accretion algorithm to simulate a forecast of this event.

    The main goals of this study are to compare the simulated meteorological variables to observations, and to assess the ability of the model to accurately predict the ice accretion load for different forecast horizons. The duration and timing of the freezing rain event that occurred between the night of 4 March and the morning of 6 March was simulated well in all model runs. The total precipitation amounts in the model, however, differed by up to a factor of two from the observations. The accuracy of the model air temperature strongly depended on the forecast horizon, but it was acceptable for all simulation runs. The simulated accretion loads were also compared to the design values for power delivery structures in the region. The results indicated that the simulated values exceeded design criteria in the areas of reported damage and power outages.

  9. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    Science.gov (United States)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and

  10. When ice cream was poisonous: adulteration, ptomaines, and bacteriology in the United States, 1850-1910.

    Science.gov (United States)

    Geist, Edward

    2012-01-01

    With the increasing popularity of ice cream in the nineteenth century, the incidence of foodborne illness attributed to this dessert exploded. Struggling to understand the causes of the mysterious and sometimes lethal ailment called "ice cream poisoning," Victorian doctors and scientists advanced theories including toxic vanilla, galvanism in ice cream freezers, and extreme indigestion. In the late 1880s Victor C. Vaughan's argument that ice cream poisoning could be attributed to the ptomaine "tyrotoxicon" received widespread acceptance. To date historians have neglected the role played by the ptomaine theory of food poisoning in shaping the evolution of both scientific thinking and public health in the late nineteenth century. The case of ice cream poisoning illustrates the emergence, impact, and decline of the ptomaine idea.

  11. Icing Conditions Over Northern Eurasia in Changing Climate

    Science.gov (United States)

    Bulygina, O.; Arzhanova, N.; Groisman, P. Y.

    2013-12-01

    A general increase in atmospheric humidity is expected with global warming, projected with GCMs, reported with remote sensing and in situ observations (Trenberth et al. 2005; Dessler, and Davis 2010; IPCC 2007, Zhang et al. 2012.) In the Arctic this increase has been and will be especially prominent triggered by the dramatic retreat of the sea ice. In the warm season this retreat provides an abundant water vapor supply to the dry Arctic atmosphere. The contemporary sea ice changes are especially visible in the Eastern Hemisphere and after the two extremely anomalous low-ice years (2007 and 2012) it is right time to look for the impact of these changes in the high latitudinal hydrological cycle: first of all in the atmospheric humidity and precipitation changes. Usually, humidity (unless extremely high or low) does not critically affect the human activities and life style. However, in the high latitudes this characteristic has an additional facet: higher humidity causes higher ice condensation from the air (icing and hoar frost) on the infrastructure and transports in the absence of precipitation. The hoar frost and icing (in Russian: gololed) are measured at the Russian meteorological network and reports of icing of the wires are quantitative measurements. While hoar frost can be considered as a minor annoyance, icing may have important societal repercussions. In the Arctic icing occurs mostly during relatively warm months when atmosphere holds maximum amount of water vapor (and is projected to have more). Freezing rain and drizzle contribute to gololed formation and thus this variable (being above some thresholds) presents an important characteristic that can affect the infrastructure (communication lines elevated at the telegraph poles, antennas, etc.), became a Socially-Important climatic Variable (SIV). The former USSR observational program includes gololed among the documented weather phenomena and this allowed RIHMI to create Electronic Reference Book on

  12. Longwave indirect effect of mineral dusts on ice clouds

    Directory of Open Access Journals (Sweden)

    Q. Min

    2010-08-01

    Full Text Available In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2 of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.

  13. Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica

    Science.gov (United States)

    Paulina Vega, Carmen; Isaksson, Elisabeth; Schlosser, Elisabeth; Divine, Dmitry; Martma, Tõnu; Mulvaney, Robert; Eichler, Anja; Schwikowski-Gigar, Margit

    2018-05-01

    Major ions were analysed in firn and ice cores located at Fimbul Ice Shelf (FIS), Dronning Maud Land - DML, Antarctica. FIS is the largest ice shelf in the Haakon VII Sea, with an extent of approximately 36 500 km2. Three shallow firn cores (about 20 m deep) were retrieved in different ice rises, Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), while a 100 m long core (S100) was drilled near the FIS edge. These sites are distributed over the entire FIS area so that they provide a variety of elevation (50-400 m a.s.l.) and distance (3-42 km) to the sea. Sea-salt species (mainly Na+ and Cl-) generally dominate the precipitation chemistry in the study region. We associate a significant sixfold increase in median sea-salt concentrations, observed in the S100 core after the 1950s, to an enhanced exposure of the S100 site to primary sea-salt aerosol due to a shorter distance from the S100 site to the ice front, and to enhanced sea-salt aerosol production from blowing salty snow over sea ice, most likely related to the calving of Trolltunga occurred during the 1960s. This increase in sea-salt concentrations is synchronous with a shift in non-sea-salt sulfate (nssSO42-) toward negative values, suggesting a possible contribution of fractionated aerosol to the sea-salt load in the S100 core most likely originating from salty snow found on sea ice. In contrast, there is no evidence of a significant contribution of fractionated sea salt to the ice-rises sites, where the signal would be most likely masked by the large inputs of biogenic sulfate estimated for these sites. In summary, these results suggest that the S100 core contains a sea-salt record dominated by the proximity of the site to the ocean, and processes of sea ice formation in the neighbouring waters. In contrast, the ice-rises firn cores register a larger-scale signal of atmospheric flow conditions and a less efficient transport of sea-salt aerosols to these sites. These findings are a

  14. High glycemic load diet, milk and ice cream consumption are related to acne vulgaris in Malaysian young adults: a case control study

    Directory of Open Access Journals (Sweden)

    Ismail Noor

    2012-08-01

    Full Text Available Abstract Background The role of dietary factors in the pathophysiology of acne vulgaris is highly controversial. Hence, the aim of this study was to determine the association between dietary factors and acne vulgaris among Malaysian young adults. Methods A case–control study was conducted among 44 acne vulgaris patients and 44 controls aged 18 to 30 years from October 2010 to January 2011. Comprehensive acne severity scale (CASS was used to determine acne severity. A questionnaire comprising items enquiring into the respondent’s family history and dietary patterns was distributed. Subjects were asked to record their food intake on two weekdays and one day on a weekend in a three day food diary. Anthropometric measurements including body weight, height and body fat percentage were taken. Acne severity was assessed by a dermatologist. Results Cases had a significantly higher dietary glycemic load (175 ± 35 compared to controls (122 ± 28 (p  0.05. Conclusions Glycemic load diet and frequencies of milk and ice cream intake were positively associated with acne vulgaris.

  15. High glycemic load diet, milk and ice cream consumption are related to acne vulgaris in Malaysian young adults: a case control study.

    Science.gov (United States)

    Ismail, Noor Hasnani; Manaf, Zahara Abdul; Azizan, Noor Zalmy

    2012-08-16

    The role of dietary factors in the pathophysiology of acne vulgaris is highly controversial. Hence, the aim of this study was to determine the association between dietary factors and acne vulgaris among Malaysian young adults. A case-control study was conducted among 44 acne vulgaris patients and 44 controls aged 18 to 30 years from October 2010 to January 2011. Comprehensive acne severity scale (CASS) was used to determine acne severity. A questionnaire comprising items enquiring into the respondent's family history and dietary patterns was distributed. Subjects were asked to record their food intake on two weekdays and one day on a weekend in a three day food diary. Anthropometric measurements including body weight, height and body fat percentage were taken. Acne severity was assessed by a dermatologist. Cases had a significantly higher dietary glycemic load (175 ± 35) compared to controls (122 ± 28) (p  0.05). Glycemic load diet and frequencies of milk and ice cream intake were positively associated with acne vulgaris.

  16. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  17. Extreme temperature events on Greenland in observations and the MAR regional climate model

    Science.gov (United States)

    Leeson, Amber A.; Eastoe, Emma; Fettweis, Xavier

    2018-03-01

    Meltwater from the Greenland Ice Sheet contributed 1.7-6.12 mm to global sea level between 1993 and 2010 and is expected to contribute 20-110 mm to future sea level rise by 2100. These estimates were produced by regional climate models (RCMs) which are known to be robust at the ice sheet scale but occasionally miss regional- and local-scale climate variability (e.g. Leeson et al., 2017; Medley et al., 2013). To date, the fidelity of these models in the context of short-period variability in time (i.e. intra-seasonal) has not been fully assessed, for example their ability to simulate extreme temperature events. We use an event identification algorithm commonly used in extreme value analysis, together with observations from the Greenland Climate Network (GC-Net), to assess the ability of the MAR (Modèle Atmosphérique Régional) RCM to reproduce observed extreme positive-temperature events at 14 sites around Greenland. We find that MAR is able to accurately simulate the frequency and duration of these events but underestimates their magnitude by more than half a degree Celsius/kelvin, although this bias is much smaller than that exhibited by coarse-scale Era-Interim reanalysis data. As a result, melt energy in MAR output is underestimated by between 16 and 41 % depending on global forcing applied. Further work is needed to precisely determine the drivers of extreme temperature events, and why the model underperforms in this area, but our findings suggest that biases are passed into MAR from boundary forcing data. This is important because these forcings are common between RCMs and their range of predictions of past and future ice sheet melting. We propose that examining extreme events should become a routine part of global and regional climate model evaluation and that addressing shortcomings in this area should be a priority for model development.

  18. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Responses of two genetically superior loblolly pine clonal ideotypes to a severe ice storm

    Science.gov (United States)

    Lauren S. Pile; Christopher A. Maier; G. Geoff Wang; Dapao Yu; Tim M. Shearman

    2016-01-01

    An increase in the frequency and magnitude of extreme weather events, such as major ice storms, can have severe impacts on southern forests. We investigated the damage inflicted by a severe ice storm that occurred in February 2014 on two loblolly pine (Pinus taeda L.) ideotypes in Cross, South Carolina located in the southeastern coastal plain. The ‘‘narrow crown”...

  20. Transport of contaminants by Arctic sea ice and surface ocean currents

    International Nuclear Information System (INIS)

    Pfirman, S.

    1995-01-01

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brine drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins

  1. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  2. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  3. First investigations of an ice core from Eisriesenwelt cave (Austria

    Directory of Open Access Journals (Sweden)

    B. May

    2011-02-01

    Full Text Available Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria. In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow freezing of dripping water.

  4. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  5. Application of a modal-driven damage assessment framework for ice localization and quantification on wind turbine blades

    DEFF Research Database (Denmark)

    Hansen, J. B.; Brincker, Rune; Glavind, L.

    2017-01-01

    Analysis algorithm. The vibrational data are extracted in the original state of the blade as well as various ice build-up scenario states. In the perturbation tests sand bags are used to simulate the presence of ice. The output of the detection algorithm is an estimate of location, within 4 discrete areas......Operating wind turbines in northern and/or mountainous regions create the demand for effective ice detection and ice removal systems. Ice accretion on the rotor blades of a wind turbine leads, among other things, to added loads, safety issues and diminished aerodynamic performance of the airfoil...

  6. Social Problems in Canadian Ice Hockey: An Exploration Through Film

    Directory of Open Access Journals (Sweden)

    Fogel Curtis A.

    2014-12-01

    Full Text Available While celebrated as a highly popular sport in Canada, there are many social problems existing within and around Canadian ice hockey. These problems are often overlooked and rarely depicted in academic and journalistic research on sport. These social problems include, but are not limited to: extreme violence resulting in injuries and death, hazing rituals, multiple types of sexual violence, drug abuse, financial corruption, as well as various forms of prejudice and discrimination. Prompted by pop-cultural depictions in films, this paper further identifies and explores social problems in Canadian ice hockey revealing the realism embedded within various seemingly fictional films.

  7. Arctic Sea Ice in a 1.5°C Warmer World

    Science.gov (United States)

    Niederdrenk, Anne Laura; Notz, Dirk

    2018-02-01

    We examine the seasonal cycle of Arctic sea ice in scenarios with limited future global warming. To do so, we analyze two sets of observational records that cover the observational uncertainty of Arctic sea ice loss per degree of global warming. The observations are combined with 100 simulations of historical and future climate evolution from the Max Planck Institute Earth System Model Grand Ensemble. Based on the high-sensitivity observations, we find that Arctic September sea ice is lost with low probability (P≈ 10%) for global warming of +1.5°C above preindustrial levels and with very high probability (P> 99%) for global warming of +2°C above preindustrial levels. For the low-sensitivity observations, September sea ice is extremely unlikely to disappear for +1.5°C warming (P≪ 1%) and has low likelihood (P≈ 10%) to disappear even for +2°C global warming. For March, both observational records suggest a loss of 15% to 20% of Arctic sea ice area for 1.5°C to 2°C global warming.

  8. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  9. A new simulation method for turbines in wake - Applied to extreme response during operation

    DEFF Research Database (Denmark)

    Thomsen, K.; Aagaard Madsen, H.

    2005-01-01

    The work focuses on prediction of load response for wind turbines operating in wind forms using a newly developed aeroelostic simulation method The traditionally used concept is to adjust the free flow turbulence intensity to account for increased loads in wind farms-a methodology that might......, the resulting extremes might be erroneous. For blade loads the traditionally used simplified approach works better than for integrated rotor loads-where the instantaneous load gradient across the rotor disc is causing the extreme loads. In the article the new wake simulation approach is illustrated...

  10. Containment bellows testing under extreme loads

    International Nuclear Information System (INIS)

    Splezter, B.L.; Lambert, L.D.; Parks, M.B.

    1993-01-01

    Sandia National Laboratories (SNL) is conducting several research programs to help develop validated methods for the prediction of the ultimate pressure capacity, at elevated temperatures, of light water reactor (LWR) containment structures. To help understand the ultimate pressure of the entire containment pressure boundary, each component must be evaluated. The containment pressure boundary consists of the containment shell and many access, piping, and electrical penetrations. The focus of the current research program is to study the ultimate behavior of flexible metal bellows that are used at piping penetrations. Bellows are commonly used at piping penetrations in steel containments; however, they have very few applications in concrete (reinforced or prestressed) containments. The purpose of piping bellows is to provide a soft connection between the containment shell and the pipe are attached while maintaining the containment pressure boundary. In this way, piping loads caused by differential movement between the piping and the containment shell are minimized. SNL is conducting a test program to determine the leaktight capacity of containment bellows when subjected to postulated severe accident conditions. If the test results indicate that containment bellows could be a possible failure mode of the containment pressure boundary, then methods will be developed to predict the deformation, pressure, and temperature conditions that would likely cause a bellows failure. Results from the test program would be used to validate the prediction methods. This paper provides a description of the use and design of bellows in containment piping penetrations, the types of possible bellows loadings during a severe accident, and an overview of the test program, including available test results at the time of writing

  11. Information and communication technologies, a tool for risk prevention and accident management on sea ice

    Directory of Open Access Journals (Sweden)

    Elise Lépy

    2015-06-01

    Full Text Available Marine ice melting topic is a repetitive phenomenon in alarmist speeches on climate change. The present positive evolution of air temperatures has in all probability many impacts on the environment and more or less directly on societies. Face to the temperature elevation, the ice pack is undergone to an important temporal variability of ice growth and melting. Human populations can be exposed to meteorological and ice hazards engendering a societal risk. The purpose of this paper is to better understand how ICT get integrated into the risk question through the example of the Bay of Bothnia in the northern extremity of the Baltic Sea. The study deals with the way that Finnish society, advanced in the ICT field, faces to new technology use in risk prevention and accident management on sea ice.

  12. Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment

    International Nuclear Information System (INIS)

    Murphy, M.D.; O’Mahony, M.J.; Upton, J.

    2015-01-01

    Highlights: • A cold thermal energy storage system model was created and validated. • Pseudo real time electricity pricing was derived to represent the smart grid. • A demand side management optimisation algorithm was developed. • Demand side management algorithm performance was compared to a standard controller. • Overall the demand side management algorithm produced modest cost savings. - Abstract: The objective of this study was to assess the benefits of introducing a demand side management optimisation controller to a cold thermal storage ice bank. This controller consisted of an ice bank model, an air temperature forecast model and an optimisation algorithm. The financial and grid utilisation benefits produced by implementation of this controller over the current state of the art in ice bank load shifting control was tested in a day ahead real time electricity pricing forecast environment. This hypothetical real time electricity price was based on the cost of electricity in the Irish wholesale market. Multiple ice bank charge levels were simulated in order to quantify the performance of two control methods for varying operating conditions. First, the “standard controller” was based on the current modus operandi for ice bank systems where ice was generated for food cooling at night when the off-peak electricity tariff is available (00:00–08:00 h). Second, the “upgraded controller” was developed as a bespoke Demand Side Management control system for food refrigeration in a future electricity pricing environment. It consisted of a dual function load shifting optimisation algorithm, an ice bank model, and a predictive air temperature model. A preliminary study was also carried out to test the robustness of the controller’s performance in an uncertain real time electricity pricing forecast scenario. Both economic and grid management benefits were found by simulating the operation of the cold thermal storage load shifting controller in a

  13. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  14. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    Science.gov (United States)

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke; Korhonen, Johanna; Yasuyuki Aono,

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.

  15. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  16. Influence of Icing on the Modal Behavior of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Sudhakar Gantasala

    2016-10-01

    Full Text Available Wind turbines installed in cold climate sites accumulate ice on their structures. Icing of the rotor blades reduces turbine power output and increases loads, vibrations, noise, and safety risks due to the potential ice throw. Ice accumulation increases the mass distribution of the blade, while changes in the aerofoil shapes affect its aerodynamic behavior. Thus, the structural and aerodynamic changes due to icing affect the modal behavior of wind turbine blades. In this study, aeroelastic equations of the wind turbine blade vibrations are derived to analyze modal behavior of the Tjaereborg 2 MW wind turbine blade with ice. Structural vibrations of the blade are coupled with a Beddoes-Leishman unsteady attached flow aerodynamics model and the resulting aeroelastic equations are analyzed using the finite element method (FEM. A linearly increasing ice mass distribution is considered from the blade root to half-length and thereafter constant ice mass distribution to the blade tip, as defined by Germanischer Lloyd (GL for the certification of wind turbines. Both structural and aerodynamic properties of the iced blades are evaluated and used to determine their influence on aeroelastic natural frequencies and damping factors. Blade natural frequencies reduce with ice mass and the amount of reduction in frequencies depends on how the ice mass is distributed along the blade length; but the reduction in damping factors depends on the ice shape. The variations in the natural frequencies of the iced blades with wind velocities are negligible; however, the damping factors change with wind velocity and become negative at some wind velocities. This study shows that the aerodynamic changes in the iced blade can cause violent vibrations within the operating wind velocity range of this turbine.

  17. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    Science.gov (United States)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  18. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    Science.gov (United States)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  19. The delivery of organic contaminants to the Arctic food web: why sea ice matters.

    Science.gov (United States)

    Pućko, Monika; Stern, Gary A; Macdonald, Robie W; Jantunen, Liisa M; Bidleman, Terry F; Wong, Fiona; Barber, David G; Rysgaard, Søren

    2015-02-15

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical-chemical properties (e.g. 2-3-fold increase in exposure to brine-associated biota), and 2) depend on physical-chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibrium based on Henry's law constants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical 'pump' delivering contaminants from the atmosphere to the ocean under ice-covered conditions, with 2-10% of CUPs annually entering the Beaufort Sea via this input route compared to the standing stock in the Polar Mixed Layer of the ocean. The abovementioned processes are strongly favored in first-year ice compared to multi-year ice and, therefore, the dynamic balance between contaminant inventories and contaminant deposition to the surface ocean is being widely affected by the large-scale icescape transition taking place in the Arctic. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Rate of ice accumulation during ice storms

    Energy Technology Data Exchange (ETDEWEB)

    Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The rate of glaze ice accumulation is the result of a complex process dependent on numerous meteorological and physical factors. The aim of this paper was to estimate the distribution rate of glaze ice accumulation on conductors in southern Quebec for use in the design of mechanical and electrical de-icing devices. The analysis was based on direct observations of ice accumulation collected on passive ice meters. The historical database of Hydro-Quebec, which contains observations at over 140 stations over period of 25 years, was used to compute accumulation rates. Data was processed so that each glaze ice event was numbered in a chronological sequence. Each event consisted of the time series of ice accumulations on each of the 8 cylinders of the ice meters, as well as on 5 of its surfaces. Observed rates were converted to represent the average ice on a 30 mm diameter conductor at 30 m above ground with a span of 300 m. Observations were corrected to account for the water content of the glaze ice as evidenced by the presence of icicles. Results indicated that despite significant spatial variations in the expected severity of ice storms as a function of location, the distribution function for rates of accumulation were fairly similar and could be assumed to be independent of location. It was concluded that the observations from several sites could be combined in order to obtain better estimates of the distribution of hourly rates of ice accumulation. However, the rates were highly variable. For de-icing strategies, it was suggested that average accumulation rates over 12 hour periods were preferable, and that analyses should be performed for other time intervals to account for the variability in ice accumulation rates over time. In addition, accumulation rates did not appear to be highly correlated with average wind speed for maximum hourly accumulation rates. 3 refs., 2 tabs., 10 figs.

  1. A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events

    DEFF Research Database (Denmark)

    Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei

    2017-01-01

    numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS...

  2. Uplift rates from a new high-density GPS network in Palmer Land indicate significant late Holocene ice loss in the southwestern Weddell Sea

    DEFF Research Database (Denmark)

    Wolstencroft, Martin; King, Matt A.; Whitehouse, Pippa L

    2015-01-01

    The measurement of ongoing ice-mass loss and associated melt water contribution to sea-level change from regions such as West Antarctica is dependent on a combination of remote sensing methods. A key method, the measurement of changes in Earth's gravity via the GRACE satellite mission, requires...... a potentially large correction to account for the isostatic response of the solid Earth to ice-load changes since the Last Glacial Maximum. In this study, we combine glacial isostatic adjustment modelling with a new GPS dataset of solid Earth deformation for the southern Antarctic Peninsula to test the current...... understanding of ice history in this region. A sufficiently complete history of past ice-load change is required for glacial isostatic adjustment models to accurately predict the spatial variation of ongoing solid Earth deformation, once the independently-constrained effects of present-day ice mass loss have...

  3. Large-Scale Analysis of Relationships between Mineral Dust, Ice Cloud Properties, and Precipitation from Satellite Observations Using a Bayesian Approach: Theoretical Basis and First Results for the Tropical Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Lars Klüser

    2017-01-01

    Full Text Available Mineral dust and ice cloud observations from the Infrared Atmospheric Sounding Interferometer (IASI are used to assess the relationships between desert dust aerosols and ice clouds over the tropical Atlantic Ocean during the hurricane season 2008. Cloud property histograms are first adjusted for varying cloud top temperature or ice water path distributions with a Bayesian approach to account for meteorological constraints on the cloud variables. Then, histogram differences between dust load classes are used to describe the impact of dust load on cloud property statistics. The analysis of the histogram differences shows that ice crystal sizes are reduced with increasing aerosol load and ice cloud optical depth and ice water path are increased. The distributions of all three variables broaden and get less skewed in dusty environments. For ice crystal size the significant bimodality is reduced and the order of peaks is reversed. Moreover, it is shown that not only are distributions of ice cloud variables simply shifted linearly but also variance, skewness, and complexity of the cloud variable distributions are significantly affected. This implies that the whole cloud variable distributions have to be considered for indirect aerosol effects in any application for climate modelling.

  4. Measurements of mesospheric ice aerosols using radars and rockets

    Energy Technology Data Exchange (ETDEWEB)

    Strelnikova, Irina; Li, Qiang; Strelnikov, Boris; Rapp, Markus [Leibniz Institute of Atmospheric Physics, Kuehlungsborn (Germany)

    2010-07-01

    Polar summer mesopause is the coldest region of Earth's atmosphere with temperatures as low as minus 130 C. In this extreme environment ice aerosol layers have appeared. Larger aerosols can be seen from the ground as clouds known as NLC (Noctilucent clouds). Ice aerosols from sub-visible range give rise to the phenomena known as Polar Mesosphere Sommer Echo (PMSE). For efficient scattering, electron number density must be structured at the radar half wavelength (Bragg condition). The general requirement to allow for the observation of structures at VHF and higher frequencies is that the dust size (and charge number) must be large enough to extend the convective-diffusive subrange of the energy spectrum of electrons (by reducing their diffusivity) to the wavelength which is shorter than the Bragg-scale of the probing radar. In this paper we present main results of ice particles measurements inside the PMSE layers obtained from in situ rocket soundings and newly developed radar techniques.

  5. NASA,FAA,ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status

    Science.gov (United States)

    Broeren, Andy

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  6. Greenland deep boreholes inform on sliding and deformation of the basal ice

    Science.gov (United States)

    Dahl-Jensen, D.

    2017-12-01

    Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).

  7. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    Science.gov (United States)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  8. The delivery of organic contaminants to the Arctic food web: Why sea ice matters

    DEFF Research Database (Denmark)

    Pucko, M.; Stern, Gary; Macdonald, Robie

    2015-01-01

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical......–chemical properties (e.g. 2–3-fold increase in exposure to brine-associated biota), and 2) depend on physical–chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate...... risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical ‘pump...

  9. Aircraft anti-ice system: Evaluation of system performance with a new time dependent mathematical model

    International Nuclear Information System (INIS)

    Zilio, Claudio; Patricelli, Luca

    2014-01-01

    The anti-ice systems are critical for airplane safety, but are also strongly affecting the fuel consumption of the aircraft. A complete model of this system allows the designers to investigate all possible combination of external parameters and improve the design of current anti-ice systems. The dynamic model of an anti-ice system is presented and the results of the model are validated thanks to a series of experimental tests. The model has been used to analyze the behavior of an anti-ice system at extreme high bleed air temperature which are typical of new generation aircraft engines. An innovative architecture for anti-ice system is studied and the benefits on aircraft fuel consumption for a standard day mission are shown. -- Highlights: • A detailed mathematical model of an anti-ice valves has been created. • Experimental results confirm the goodness of the developed model. • Instability of the valves has been studied. • A new architecture for the anti-ice systems is proposed and the impacts on the aircraft fuel consumption are analyzed

  10. Modeling the Sulfate Deposition to the Greenland Ice Sheet From the Laki Eruption

    Science.gov (United States)

    Oman, L.; Robock, A.; Stenchikov, G.; Thordarson, T.; Gao, C.

    2005-12-01

    Using the state of the art Goddard Institute for Space Studies (GISS) modelE general circulation model, simulations were conducted of the chemistry and transport of aerosols resulting from the 1783-84 Laki (64°N) flood lava eruption. A set of 3 ensemble simulations from different initial conditions were conducted by injecting our estimate of the SO2 gas into the atmosphere by the 10 episodes of the eruption and allowing the sulfur chemistry model to convert this gas into sulfate aerosol. The SO2 gas and sulfate aerosol is transported by the model and wet and dry deposition is calculated over each grid box during the simulation. We compare the resulting sulfate deposition to the Greenland Ice Sheet in the model to 23 ice core measurements and find very good agreement. The model simulation deposits a range of 169 to over 300 kg/km2 over interior Greenland with much higher values along the coastal areas. This compares to a range of 62 to 324 kg/km2 for the 23 ice core measurements with an average value of 158 kg/km2. This comparison is one important model validation tool. Modeling and observations show fairly large spatial variations in the deposition of sulfate across the Greenland Ice Sheet for the Laki eruption, but the patterns are similar to those we modeled for the 1912 Katmai and 1991 Pinatubo eruptions. Estimates of sulfate loading based on single ice cores can show significant differences, so ideally several ice cores should be combined in reconstructing the sulfate loading of past volcanic eruptions, taking into account the characteristic spatial variations in the deposition pattern.

  11. Effect of tube diameter on the specific energy consumption of the ice making process

    International Nuclear Information System (INIS)

    Tangthieng, C.

    2011-01-01

    One of the favorite forms of ice for consuming is tube ice, which is produced by a refrigeration unit referred to as an ice making tower. In order to redesign the tower for the energy-efficiency purpose, the aim of this paper is to numerically investigate the effect of tube diameter on the ice thickness, the cooling load, and the specific energy consumption. The mathematical model of the ice formation within the tube is developed by assuming unsteady and one-dimensional heat conduction. The governing equations are composed of the wall and the ice regions with the convective boundary condition and isothermal solidification at the interface. The governing system is transformed into a dimensionless form and numerically solved by the finite difference method. The numerical results are validated by comparing the ice thickness obtained from the numerical prediction and that obtained from the field measurement, resulting in qualitative agreement. The variations of ice thickness, cooling load, and specific energy consumption with time for four different tube diameters are presented. The result shows the location of the minimum specific energy consumption as a function of time. By comparing between different tube diameters, the value of the minimum specific energy consumption of a small diameter tube is lower than that of a large diameter one. On the other hand, the behavior of the specific energy consumption of a large diameter tube indicates the existence of a low specific energy consumption period of time beyond the minimum point. Therefore, by choosing a proper tube diameter, the minimum value of the average specific energy consumption over the entire production cycle is obtained, leading to higher energy efficiency. - Research Highlights: → The result indicates the minimum specific energy consumption as a function of time. → A smaller diameter tube has a lower value of the minimum specific energy consumption, but a large one has an extended range of low specific

  12. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    Science.gov (United States)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  13. Characterization of an IceTop tank for the IceCube surface extension IceVeto

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Auffenberg, Jan; Hansmann, Bengt; Rongen, Martin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceTop is an air-shower detector located at the South Pole on the surface above the IceCube detector. It consists of 81 detector stations with two Cherenkov tanks each. The tanks are filled with clear ice and instrumented with two photomultipliers. IceTop detects cosmic-ray induced air-showers above an energy threshold of ∝300 TeV. Muons and neutrinos from these air-showers are the main background for astrophysical neutrino searches with IceCube. The usage of IceTop to veto air-showers largely reduces this background in the field of view. To enlarge the field of view an extension of the surface detector, IceVeto, is planned. Therefore, we investigate the properties of an original IceTop tank as a laboratory reference for the development of new detection module designs. First results of these measurements are presented.

  14. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay

    2017-04-01

    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  15. Sensitivity Analysis of Arctic Sea Ice Extent Trends and Statistical Projections Using Satellite Data

    Directory of Open Access Journals (Sweden)

    Ge Peng

    2018-02-01

    Full Text Available An ice-free Arctic summer would have pronounced impacts on global climate, coastal habitats, national security, and the shipping industry. Rapid and accelerated Arctic sea ice loss has placed the reality of an ice-free Arctic summer even closer to the present day. Accurate projection of the first Arctic ice-free summer year is extremely important for business planning and climate change mitigation, but the projection can be affected by many factors. Using an inter-calibrated satellite sea ice product, this article examines the sensitivity of decadal trends of Arctic sea ice extent and statistical projections of the first occurrence of an ice-free Arctic summer. The projection based on the linear trend of the last 20 years of data places the first Arctic ice-free summer year at 2036, 12 years earlier compared to that of the trend over the last 30 years. The results from a sensitivity analysis of six commonly used curve-fitting models show that the projected timings of the first Arctic ice-free summer year tend to be earlier for exponential, Gompertz, quadratic, and linear with lag fittings, and later for linear and log fittings. Projections of the first Arctic ice-free summer year by all six statistical models appear to converge to the 2037 ± 6 timeframe, with a spread of 17 years, and the earliest first ice-free Arctic summer year at 2031.

  16. The IceProd (IceCube Production) Framework

    International Nuclear Information System (INIS)

    Díaz-Vélez, J C

    2014-01-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  17. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  18. Defense plan of Hydro-Quebec for extreme contingencies

    International Nuclear Information System (INIS)

    Trudel, Guilles; Bernard, Serge; Portales, Esteban

    2000-01-01

    In the last years, Hydro-Quebec it undertook an important program to improve the dependability of their net of energy transport. They concentrated the efforts on increasing the capacity of the net resist in the event of carries to an extreme contingency caused in general by multiple incidents or for successive disconnection of the lines of energy transport. To neutralize these contingencies, Hydro-Quebec it adopted a series of special measures that are contained under the general title of Plan of Defense for Extreme Contingencies. The objective of this plan is to detect the incidents that surpass the capacity of the net. It is completely automatic and it is based mainly in: A system of automatic disconnection of generation and tele-shot of loads; A system of automatic maneuver (opening and closing) of inductances shunt of 735 kw; A system of disconnection of loads for low voltage; A system of disconnection of loads for low frequency. The present document summarizes the orientations that there is taking Hydro-Quebec to protect its net in the event of extreme contingencies and it describes the different automatism that they are adopts, in particular the system automatic disconnection of generation and tele-shot of loads (RPTC) that is one of the main components of the defense plan. The system RPTC detects the simultaneous loss of several lines directly in 15 substations of 735 kw. It understands four places of automatic disconnection of generation and a centralized system of tele-shot of loads

  19. Ecology of Subglacial Lake Vostok (Antarctica, Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice

    Directory of Open Access Journals (Sweden)

    Tom D'Elia

    2013-03-01

    Full Text Available Lake Vostok is the largest of the nearly 400 subglacial Antarctic lakes and has been continuously buried by glacial ice for 15 million years. Extreme cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier and dissolved oxygen (delivered by melting meteoric ice, in addition to limited nutrients and complete darkness, combine to produce one of the most extreme environments on Earth. Metagenomic/metatranscriptomic analyses of ice that accreted over a shallow embayment and over the southern main lake basin indicate the presence of thousands of species of organisms (94% Bacteria, 6% Eukarya, and two Archaea. The predominant bacterial sequences were closest to those from species of Firmicutes, Proteobacteria and Actinobacteria, while the predominant eukaryotic sequences were most similar to those from species of ascomycetous and basidiomycetous Fungi. Based on the sequence data, the lake appears to contain a mixture of autotrophs and heterotrophs capable of performing nitrogen fixation, nitrogen cycling, carbon fixation and nutrient recycling. Sequences closest to those of psychrophiles and thermophiles indicate a cold lake with possible hydrothermal activity. Sequences most similar to those from marine and aquatic species suggest the presence of marine and freshwater regions.

  20. Climate Extreme Events over Northern Eurasia in Changing Climate

    Science.gov (United States)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2014-12-01

    During the period of widespread instrumental observations in Northern Eurasia, the annual surface air temperature has increased by 1.5°C. Close to the north in the Arctic Ocean, the late summer sea ice extent has decreased by 40% providing a near-infinite source of water vapor for the dry Arctic atmosphere in the early cold season months. The contemporary sea ice changes are especially visible in the Eastern Hemisphere All these factors affect the change extreme events. Daily and sub-daily data of 940 stations to analyze variations in the space time distribution of extreme temperatures, precipitation, and wind over Russia were used. Changing in number of days with thaw over Russia was described. The total seasonal numbers of days, when daily surface air temperatures (wind, precipitation) were found to be above (below) selected thresholds, were used as indices of climate extremes. Changing in difference between maximum and minimum temperature (DTR) may produce a variety of effects on biological systems. All values falling within the intervals ranged from the lowest percentile to the 5th percentile and from the 95th percentile to the highest percentile for the time period of interest were considered as daily extremes. The number of days, N, when daily temperatures (wind, precipitation, DTR) were within the above mentioned intervals, was determined for the seasons of each year. Linear trends in the number of days were calculated for each station and for quasi-homogeneous climatic regions. Regional analysis of extreme events was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. Differences in regional characteristics of extreme events are accounted for over a large extent of the Russian territory and variety of its physical and geographical conditions. The number of days with maximum temperatures higher than the 95% percentile has increased in most of Russia and decreased in Siberia in

  1. On the estimation of ice thickness from scattering observations

    Science.gov (United States)

    Williams, T. D.; Squire, V. A.

    2010-04-01

    This paper is inspired by the proposition that it may be possible to extract descriptive physical parameters - in particular the ice thickness, of a sea-ice field from ocean wave information. The motivation is that mathematical theory describing wave propagation in such media has reached a point where the inherent heterogeneity, expressed as pressure ridge keels and sails, leads, thickness variations and changes of material property and draught, can be fully assimilated exactly or through approximations whose limitations are understood. On the basis that leads have the major wave scattering effect for most sea-ice [Williams, T.D., Squire, V.A., 2004. Oblique scattering of plane flexural-gravity waves by heterogeneities in sea ice. Proc. R. Soc. Lon. Ser.-A 460 (2052), 3469-3497], a model two dimensional sea-ice sheet composed of a large number of such features, randomly dispersed, is constructed. The wide spacing approximation is used to predict how wave trains of different period will be affected, after first establishing that this produces results that are very close to the exact solution. Like Kohout and Meylan [Kohout, A.L., Meylan, M.H., 2008. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res. 113, C09016, doi:10.1029/2007JC004434], we find that on average the magnitude of a wave transmitted by a field of leads decays exponentially with the number of leads. Then, by fitting a curve based on this assumption to the data, the thickness of the ice sheet is obtained. The attenuation coefficient can always be calculated numerically by ensemble averaging but in some cases more rapidly computed approximations work extremely well. Moreover, it is found that the underlying thickness can be determined to good accuracy by the method as long as Archimedean draught is correctly provided for, suggesting that waves can indeed be effective as a remote sensing agent to measure ice thickness in areas where pressure ridges

  2. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  3. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  4. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  5. Experimental investigation of ultimate loads

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, S M; Larsen, G C; Antoniou, I; Lind, S O; Courtney, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    Verification of the structural integrity of a wind turbine involves analysis of fatigue loading as well as ultimate loading. With the trend of persistently growing turbines, the ultimate loading seems to become relatively more important. For wind turbines designed according to the wind conditions prescribed in the IEC-61400 code, the ultimate load is often identified as the leading load parameter. Exemplified by the use of an extensive measurement campaign a procedure for evaluation of the extreme flap-wise bending moments, occurring during normal operating of a wind turbine, is presented. The structural measurements are made on a NEG Micon 650 kW wind turbine erected at a complex high wind site in Oak Creek, California. The turbine is located on the top of a ridge. The prevailing wind direction is perpendicular to the ridge, and the annual mean wind speed is 9.5 m/s. The associated wind field measurement, are taken from two instrumented masts erected less than one rotor diameter in front of the turbine in direction of the prevailing wind direction. Both masts are instrumented at different heights in order to gain insight of the 3D-wind speed structure over the entire rotor plane. Extreme distributions, associated with a recurrence period of 10 minutes, conditioned on the mean wind speed and the turbulence intensity are derived. Combined with the wind climate model proposed in the IEC standard, these distributions are used to predict extreme distributions with recurrence periods equal to one and fifty years, respectively. The synthesis of the conditioned PDF`s and the wind climate model is performed by means of Monte Carlo simulation. (au)

  6. Investigating the tension load of rubber composites by impact

    Indian Academy of Sciences (India)

    This work deals with establishing the tension load by impact dynamic testing of rubber ... Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Košice, Institute of Logistics, Park Komenského 14, 043 84 ...

  7. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    Science.gov (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  8. Ice Algae-Produced Carbon Is Critical for Overwintering of Antarctic Krill Euphausia superba

    Directory of Open Access Journals (Sweden)

    Doreen Kohlbach

    2017-09-01

    Full Text Available Antarctic krill Euphausia superba (“krill” constitute a fundamental food source for Antarctic seabirds and mammals, and a globally important fisheries resource. The future resilience of krill to climate change depends critically on the winter survival of young krill. To survive periods of extremely low production by pelagic algae during winter, krill are assumed to rely partly on carbon produced by ice algae. The true dependency on ice algae-produced carbon, however, is so far unquantified. This confounds predictions on the future resilience of krill stocks to sea ice decline. Fatty acid (FA analysis, bulk stable isotope analysis (BSIA, and compound-specific stable isotope analysis (CSIA of diatom- and dinoflagellate-associated marker FAs were applied to quantify the dependency of overwintering larval, juvenile, and adult krill on ice algae-produced carbon (αIce during winter 2013 in the Weddell-Scotia Confluence Zone. Our results demonstrate that the majority of the carbon uptake of the overwintering larval and juvenile krill originated from ice algae (up to 88% of the carbon budget, and that the dependency on ice algal carbon decreased with ontogeny, reaching <56% of the carbon budget in adults. Spatio-temporal variability in the utilization of ice algal carbon was more pronounced in larvae and juvenile krill than in adults. Differences between αIce estimates derived from short- vs. long-term FA-specific isotopic compositions suggested that ice algae-produced carbon gained importance as the winter progressed, and might become critical at the late winter-spring transition, before the phytoplankton bloom commences. Where the sea ice season shortens, reduced availability of ice algae might possibly not be compensated by surplus phytoplankton production during wintertime. Hence, sea ice decline could seriously endanger the winter survival of recruits, and subsequently overall biomass of krill.

  9. Ice shelf fracture parameterization in an ice sheet model

    Science.gov (United States)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  10. Small Scale Polygons and the History of Ground Ice on Mars

    Science.gov (United States)

    Mellon, Michael T.

    2003-01-01

    Recent progress on polygon modeling has focused on the diameter and surface relief that we expect of thermal-contraction polygons in martian permafrost. With this in mind, we developed a finite-element model of thermal-contraction-crack behavior in permafrost in a martian climate. This model was generated from a finite element code by Jay Melosh (called TECTON) originally developed for terrestrial and planetary crustal-deformation studies. We adapted this model to martian permafrost by including time (and temperature) dependent rheologies, boundary conditions, and isotropic thermal-contraction, as well as several small adaptations to a martian environment. We tested our model extensively, including comparison to an analytic solution of pre-fracture stress. We recently published an analysis of two potential sources of water for forming the recent gullies. In this work we first evaluated the potential for near-surface ground ice (in the top meter or so of soil) to melt under conditions of solar heating on sloped surfaces at high obliquity, utilizing both thermal and diffusion-based ground-ice-stability models; our results suggested that the ground ice will sublimate, and the ice table will recede to greater depths before the melting temperature can be reached. An exception can occur only for extremely salt-rich ice, depressing the freezing point.

  11. Data assimilation of surface altimetry on the North-Easter Ice Stream using the Ice Sheet System Model (ISSM)

    Science.gov (United States)

    Larour, Eric; Utke, Jean; Morlighem, Mathieu; Seroussi, Helene; Csatho, Beata; Schenk, Anton; Rignot, Eric; Khazendar, Ala

    2014-05-01

    Extensive surface altimetry data has been collected on polar ice sheets over the past decades, following missions such as Envisat and IceSat. This data record will further increase in size with the new CryoSat mission, the ongoing Operation IceBridge Mission and the soon to launch IceSat-2 mission. In order to make the best use of these dataset, ice flow models need to improve on the way they ingest surface altimetry to infer: 1) parameterizations of poorly known physical processes such as basal friction; 2) boundary conditions such as Surface Mass Balance (SMB). Ad-hoc sensitivity studies and adjoint-based inversions have so far been the way ice sheet models have attempted to resolve the impact of 1) on their results. As for boundary conditions or the lack thereof, most studies assume that they are a fixed quantity, which, though prone to large errors from the measurement itself, is not varied according to the simulated results. Here, we propose a method based on automatic differentiation to improve boundary conditions at the base and surface of the ice sheet during a short-term transient run for which surface altimetry observations are available. The method relies on minimizing a cost-function, the best fit between modeled surface evolution and surface altimetry observations, using gradients that are computed for each time step from automatic differentiation of the ISSM (Ice Sheet System Model) code. The approach relies on overloaded operators using the ADOLC (Automatic Differentiation by OverLoading in C++) package. It is applied to the 79 North Glacier, Greenland, for a short term transient spanning a couple of decades before the start of the retreat of the Zachariae Isstrom outlet glacier. Our results show adjustments required on the basal friction and the SMB of the whole basin to best fit surface altimetry observations, along with sensitivities each one of these parameters has on the overall cost function. Our approach presents a pathway towards assimilating

  12. The influence of geological loading on the structural integrity of an underground nuclear waste repository

    International Nuclear Information System (INIS)

    Jakeman, N.

    1985-08-01

    Stresses are developed in underground nuclear waste repositories as a result of applied loads from geological movements caused by the encroachment of ice sheets or seismic activity for example. These stresses may induce fracturing of the waste matrix, repository vault and nearfield host geology. This fracturing will enhance the advective flow and allow more-rapid transfer of radionuclides from their encapsulation through the repository barriers and nearfield host rock. Geological loads may be applied either gradually as in crustal folding or encroachment of ice sheets, or rapidly as in the case of seismic movements. The analysis outlined in this report is conducted with a view to including the effects of geological loading in a probabilistic repository site assessment computer code such as SYVAC. (author)

  13. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    Science.gov (United States)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  14. Experimental Analysis of Sublimation Dynamics for Buried Glacier Ice in Beacon Valley, Antarctica

    Science.gov (United States)

    Ehrenfeucht, S.; Dennis, D. P.; Marchant, D. R.

    2017-12-01

    The age of the oldest known buried ice in Beacon Valley, McMurdo Dry Valleys (MDV) Antarctica is a topic of active debate due to its implications for the stability of the East Antarctic Ice Sheet. Published age estimates range from as young as 300 ka to as old as 8.1 Ma. In the upland MDV, ablation occurs predominantly via sublimation. The relict ice in question (ancient ice from Taylor Glacier) lies buried beneath a thin ( 30-70 cm) layer of sublimation till, which forms as a lag deposit as underlying debris-rich ice sublimes. As the ice sublimates, the debris held within the ice accumulates slowly on the surface, creating a porous boundary between the buried-ice surface and the atmosphere, which in turn influences gas exchange between the ice and the atmosphere. Additionally, englacial debris adds several salt species that are ultimately concentrated on the ice surface. It is well documented the rate of ice sublimation varies as a function of overlying till thickness. However, the rate-limiting dynamics under varying environmental conditions, including the threshold thicknesses at which sublimation is strongly retarded, are not yet defined. To better understand the relationships between sublimation rate, till thickness, and long-term surface evolution, we build on previous studies by Lamp and Marchant (2017) and evaluate the role of till thickness as a control on ice loss in an environmental chamber capable of replicating the extreme cold desert conditions observed in the MDV. Previous work has shown that this relationship exhibits exponential decay behavior, with sublimation rate significantly dampened under less than 10 cm of till. In our experiments we pay particular attention to the effect of the first several cm of till in order to quantify the dynamics that govern the transition from bare ice to debris-covered ice. We also examine this transition for various forms of glacier ice, including ice with various salt species.

  15. Method for maintenance of ice beds of ice condenser containment

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Hardin, R.T. Jr.

    1987-01-01

    This patent describes a method of maintaining ice baskets associated with a nuclear reactor system and disposed in an array of plural such ice baskets, supported in generally vertically oriented and parallel relationship by a lattice support structure which extends between the individual ice baskets and includes lateral supports adjacent the tops of the comprising: selecting an ice basket of the array requiring replenishment of the ice therewithin due to sublimation voids within the ice charges in the basket; isolating the selected ice basket; drilling a hole downwardly through the ice charges in the ice basket in general parallel axial relationship with respect to the cylindrical sidewall of the ice basket, utilizing a rotary drill bit connected through an auger to a rotary drive means; maintaining the rotary drive means in a fixed axial position and reversing the direction of rotation thereof for driving the auger in reverse rotation; and supplying ice in particulate form to the vicinity of the auger and conveying the particulate ice through the drilled hole by continued, reverse rotation of the auger so as to fill the sublimated voids in communication with the drilled hole, from the lowest and through successively higher such voids in the ice charges within the ice basket, and withdrawing the auger from the drilled hole as the voids are filled

  16. Framing Failures in Wood-Frame Hip Roofs under Extreme Wind Loads

    Directory of Open Access Journals (Sweden)

    Sarah A. Stevenson

    2018-02-01

    Full Text Available Wood-frame residential roof failures are among the most common and expensive types of wind damage. Hip roofs are commonly understood to be more resilient during extreme wind in relation to gable roofs. However, inspection of damage survey data from recent tornadoes has revealed a previously unstudied failure mode in which hip roofs suffer partial failure of the framing structure. In the current study, evidence of partial framing failures and statistics of their occurrence are explored and discussed, while the common roof design and construction practice are reviewed. Two-dimensional finite element models are developed to estimate the element-level load effects on hip roof trusses and stick-frame components. The likelihood of failure in each member is defined based on relative demand-to-capacity ratios. Trussed and stick-frame structures are compared to assess the relative performance of the two types of construction. The present analyses verify the common understanding that toenailed roof-to-wall connections are likely to be the most vulnerable elements in the structure of a wood-frame hip roof. However, the results also indicate that certain framing members and connections display significant vulnerability under the same wind uplift, and the possibility of framing failure is not to be discounted. Furthermore, in the case where the roof-to-wall connection uses hurricane straps, certain framing members and joints become the likely points of failure initiation. The analysis results and damage survey observations are used to expand the understanding of wood-frame residential roof failures, as they relate to the Enhanced Fujita Scale and provide assessment of potential gaps in residential design codes.

  17. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  18. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  19. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  20. Organic components in hair-ice

    Science.gov (United States)

    Hofmann, Diana; Steffen, Bernhard; Disko, Ulrich; Wagner, Gerhard; Mätzler, Christian

    2013-04-01

    supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass resolution (used 400.000 at m/z 400 Da) and mass accuracy (≤ 1 ppm), simultaneously providing molecular level details of thousands of compounds. The characteristics of the FTICR-MS hair-ice spectra with as many as ten or more peaks at each nominal mass are discussed together with highly resolved spectra from water and soil samples different sources, respectively. Complete manual formula assignment for structure elucidation would be extremely time consuming, therefore, we used an automated post processing based on SciLab for exploitation of the data with the aim of an unambiguous assignment of as many peaks as possible. Once the formulae had been assigned, the obtained mass lists were first checked randomly and afterwards transformed into Excel format for further post-processing and description. Most important is the van Krevelen diagram, usually two-dimensional as atomic ratio H/C versus atomic ratio O/C, widely used to classify samples regarding polarity and aromaticity. By comparison with two references (Hockaday 2007, Sleighter 2007), which arranged various biopolymer substance classes in such Van Krevelen plots, lignin could be detected as the main hair-ice component.

  1. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  2. Ice-free conditions in Fennoscandia during Marine Oxygen Isotope Stage 3?

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Barbara (Dept. of Geology and Geochemistry, Stockholm Univ., Stockholm (Sweden))

    2009-04-15

    One of the central aims of the climate research conducted by the Swedish Nuclear Fuel and Waste Management Company (SKB) is to investigate the extremes within which climate conditions may vary within a 100,000 year perspective. The 100,000 year time perspective corresponds to one glacial cycle during which warm interstadial and cold stadial conditions alternated, leading to ice sheet advance and retreat over Fennoscandia. To address the issue of how extreme climate conditions may impact the deep nuclear waste repository, a climate modelling study was initiated with the aim to investigate the response to different climate scenarios: glacial conditions, permafrost conditions and temperate conditions. A model set-up for the permafrost and glacial scenario required information on, for example past ice cover, vegetation, and land-sea configuration. The permafrost climate scenario focussed on a stadial event (Greenland stadial 12) during Marine Oxygen Isotope Stage (MIS) 3, because it was assumed that southern Sweden and the areas of Forsmark and Oskarshamn were not ice covered, but possibly experienced permafrost conditions. This assumption however needed to be validated by paleoenvironmental and paleoclimatic records for MIS 3. Available paleoenvironmental records for this time interval are comparably scarce and due to chronological uncertainties also partly conflicting. Most records are derived from marginal areas of the former Fennoscandian ice sheet and only little and inconsistent information exists for the central part. Geological investigations along the Norwegian coast, in Denmark, southern Sweden, northern and eastern Finland have for example shown that the Fennoscandian ice sheet margin responded distinctly to some of the warmest middle Weichselian interstadials (MIS 3). Interstadial organic sediments from the central part of the former ice sheet have been described from several localities in Sweden, but radiocarbon (14C) dates for these deposits provided ages

  3. Ice-free conditions in Fennoscandia during Marine Oxygen Isotope Stage 3?

    International Nuclear Information System (INIS)

    Wohlfarth, Barbara

    2009-04-01

    One of the central aims of the climate research conducted by the Swedish Nuclear Fuel and Waste Management Company (SKB) is to investigate the extremes within which climate conditions may vary within a 100,000 year perspective. The 100,000 year time perspective corresponds to one glacial cycle during which warm interstadial and cold stadial conditions alternated, leading to ice sheet advance and retreat over Fennoscandia. To address the issue of how extreme climate conditions may impact the deep nuclear waste repository, a climate modelling study was initiated with the aim to investigate the response to different climate scenarios: glacial conditions, permafrost conditions and temperate conditions. A model set-up for the permafrost and glacial scenario required information on, for example past ice cover, vegetation, and land-sea configuration. The permafrost climate scenario focussed on a stadial event (Greenland stadial 12) during Marine Oxygen Isotope Stage (MIS) 3, because it was assumed that southern Sweden and the areas of Forsmark and Oskarshamn were not ice covered, but possibly experienced permafrost conditions. This assumption however needed to be validated by paleoenvironmental and paleoclimatic records for MIS 3. Available paleoenvironmental records for this time interval are comparably scarce and due to chronological uncertainties also partly conflicting. Most records are derived from marginal areas of the former Fennoscandian ice sheet and only little and inconsistent information exists for the central part. Geological investigations along the Norwegian coast, in Denmark, southern Sweden, northern and eastern Finland have for example shown that the Fennoscandian ice sheet margin responded distinctly to some of the warmest middle Weichselian interstadials (MIS 3). Interstadial organic sediments from the central part of the former ice sheet have been described from several localities in Sweden, but radiocarbon ( 14 C) dates for these deposits provided

  4. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  5. Arctic Sea Ice Trafficability - New Strategies for a Changing Icescape

    Science.gov (United States)

    Dammann, Dyre Oliver

    substantial thickness variability results in the need to raise thickness thresholds by 50%. If sea ice is thick enough for safe travel, then the efficiency of travel is relevant and is influenced by the roughness of the ice surface. Here, I develop a technique to derive trafficability measures from ice roughness using polarimetric and interferometric synthetic aperture radar (SAR). Validated using Structure-from-Motion analysis of imagery obtained from an unmanned aerial system near Utqiagvik, Alaska, I demonstrate the ability of these SAR techniques to map both topography and roughness with potential to guide trail construction efforts towards more trafficable ice. Even when the ice is sufficiently thick to ensure safe travel, potential for fracturing can be a serious hazard through the ability of cracks to compromise load-bearing capacity. Therefore, I have created a state-of-the-art technique using interferometric SAR to assess ice stability with capability of assessing internal ice stress and potential for failure. In an analysis of ice deformation and potential hazards for the Northstar Island ice road near Prudhoe Bay on Alaska's North Slope I have identified a zone of high relative fracture intensity potential that conformed with road inspections and hazard assessments by the operator. Through this work I have investigated the intersection between ice use and geophysics, demonstrating that quantitative evaluation of a given region in the ice use assessment framework developed here can aid in tactical routing of ice trails and roads as well as help inform long-term strategic decision-making regarding the future of Arctic operations on or near sea ice.

  6. Environmental Loads of a Finnish indoor training iceskating rink in the Context of LCA

    International Nuclear Information System (INIS)

    Vaahterus, T.; Saari, A.

    2001-01-01

    In this study the environmental burdens generated by its essential building elements and systems of a typical new indoor training ice-skating rink during entire life cycle were calculated. The calculations were made by using a calculation method developed at Helsinki University of Technology at the department of Civil and Environmental Engineering, Construction Economics and Management. The developed method is based on LCA -methodology and follows the principle of the ISO 14040 Environmental Management standard. In the calculations the life cycle of the indoor training iceskating rink was divided in four main phases: new construction, maintenance and energy, repair, and demolition. In each life cycle phase all the material and energy flows and emissions were calculated. Almost all (99 %) of the building elements in the indoor training ice skating rink were made of non-renewable materials. Also the energy, consumed during the life cycle, was mainly (81 %) produced with non-renewable energy sources. The life cycle phases causing the most environmental loads were energy and new construction. The energy phase consumed 92 % of the total energy and produced 91 of the CO 2 equivalents and 74 % of the SO 2 equivalents. In the new-construction phase 6 % of the life cycle energy was consumed, and 64 % of the ethene equivalents were produced. In addition to these 79 % of the building materials were used in the new- construction phase. The calculations were also tested against the sensitivity to different presumption changes. Two kinds of presumptions were made: ones that could be influenced by project control and others which refer to the future of the building and could not be influenced by project control. The calculations of the environmental loads of the indoor training ice skating rink were most sensitive to changes in the usage profiles and indoor temperature. For example one of the usage profile increased the environmental loads of the indoor training ice skating rink

  7. Causes of Glacier Melt Extremes in the Alps Since 1949

    Science.gov (United States)

    Thibert, E.; Dkengne Sielenou, P.; Vionnet, V.; Eckert, N.; Vincent, C.

    2018-01-01

    Recent record-breaking glacier melt values are attributable to peculiar extreme events and long-term warming trends that shift averages upward. Analyzing one of the world's longest mass balance series with extreme value statistics, we show that detrending melt anomalies makes it possible to disentangle these effects, leading to a fairer evaluation of the return period of melt extreme values such as 2003, and to characterize them by a more realistic bounded behavior. Using surface energy balance simulations, we show that three independent drivers control melt: global radiation, latent heat, and the amount of snow at the beginning of the melting season. Extremes are governed by large deviations in global radiation combined with sensible heat. Long-term trends are driven by the lengthening of melt duration due to earlier and longer-lasting melting of ice along with melt intensification caused by trends in long-wave irradiance and latent heat due to higher air moisture.

  8. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  9. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay

    Directory of Open Access Journals (Sweden)

    P. Itkin

    2017-10-01

    Full Text Available Ice retreat in the eastern Eurasian Arctic is a consequence of atmospheric and oceanic processes and regional feedback mechanisms acting on the ice cover, both in winter and summer. A correct representation of these processes in numerical models is important, since it will improve predictions of sea ice anomalies along the Northeast Passage and beyond. In this study, we highlight the importance of winter ice dynamics for local summer sea ice anomalies in thickness, volume and extent. By means of airborne sea ice thickness surveys made over pack ice areas in the south-eastern Laptev Sea, we show that years of offshore-directed sea ice transport have a thinning effect on the late-winter sea ice cover. To confirm the preconditioning effect of enhanced offshore advection in late winter on the summer sea ice cover, we perform a sensitivity study using a numerical model. Results verify that the preconditioning effect plays a bigger role for the regional ice extent. Furthermore, they indicate an increase in volume export from the Laptev Sea as a consequence of enhanced offshore advection, which has far-reaching consequences for the entire Arctic sea ice mass balance. Moreover we show that ice dynamics in winter not only preconditions local summer ice extent, but also accelerate fast-ice decay.

  10. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice.

    Science.gov (United States)

    Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C

    2018-05-01

    Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.

  11. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    Science.gov (United States)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  12. Surface Assisted Formation of methane Hydrates on Ice and Na Montmorillonite Clay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teich-McGoldrick, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cygan, Randall Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.

  13. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    Science.gov (United States)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100

  14. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  15. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    Science.gov (United States)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  16. Ice on Mars Utopia Planitia Again

    Science.gov (United States)

    1979-01-01

    This high-resolution color photo of the surface of Mars was taken by Viking Lander 2 at its Utopia Planitia landing site on May 18, 1979, and relayed to Earth by Orbiter 1 on June 7. It shows a thin coating of water ice on the rocks and soil. The time the frost appeared corresponds almost exactly with the buildup of frost one Martian year (23 Earth months) ago. Then it remained on the surface for about 100 days. Scientists believe dust particles in the atmosphere pick up bits of solid water. That combination is not heavy enough to settle to the ground. But carbon dioxide, which makes up 95 percent of the Martian atmosphere, freezes and adheres to the particles and they become heavy enough to sink. Warmed by the Sun, the surface evaporates the carbon dioxide and returns it to the atmosphere, leaving behind the water and dust. The ice seen in this picture, like that which formed one Martian year ago, is extremely thin, perhaps no more than one-thousandth of an inch thick.

  17. Directional Considerations for Extreme Wind Climatic Events in the ...

    African Journals Online (AJOL)

    This paper takes a look at the importance and role of probability concepts structural design of transmission line. The reliability of transmission structure is clearly a function of the maximum loads that may be imposed over the useful life of the structure. These loads are, more often than not, caused by the extreme atmospheric ...

  18. A significant reduction of ice adhesion on nanostructured surfaces that consist of an array of single-walled carbon nanotubes: A molecular dynamics simulation study

    Science.gov (United States)

    Bao, Luyao; Huang, Zhaoyuan; Priezjev, Nikolai V.; Chen, Shaoqiang; Luo, Kai; Hu, Haibao

    2018-04-01

    It is well recognized that excessive ice accumulation at low-temperature conditions can cause significant damage to civil infrastructure. The passive anti-icing surfaces provide a promising solution to suppress ice nucleation and enhance ice removal. However, despite extensive efforts, it remains a challenge to design anti-icing surfaces with low ice adhesion. Using all-atom molecular dynamics (MD) simulations, we show that surfaces with single-walled carbon nanotube array (CNTA) significantly reduce ice adhesion due to the extremely low solid areal fraction. It was found that the CNTA surface exhibits up to a 45% decrease in the ice adhesion strength in comparison with the atomically smooth graphene surface. The details of the ice detachment from the CNTA surface were examined for different water-carbon interaction energies and temperatures of the ice cube. Remarkably, the results of MD simulations demonstrate that the ice detaching strength depends linearly on the ratio of the ice-surface interaction energy and the ice temperature. These results open the possibility for designing novel robust surfaces with low ice adhesion for passive anti-icing applications.

  19. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  20. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    Science.gov (United States)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  1. Sea ice roughness: the key for predicting Arctic summer ice albedo

    Science.gov (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  2. Hydrocarbons (aliphatic and aromatic) in the snow-ice cover in the Arctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.; Kluvitkin, A.A.

    2002-01-01

    This paper presented the concentration and composition of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in snow and ice-infested waters in the France-Victoria trough in the northern Barents Sea and in the Mendeleev ridge in the Amerasian basin of the Arctic Ocean. Extreme conditions such as low temperatures, ice sheets and the polar nights render the arctic environment susceptible to oil spills. Hydrocarbons found in these northern seas experience significant transformations. In order to determine the sources, pathways and transformations of the pollutants, it is necessary to know their origin. Hydrocarbon distributions is determined mostly by natural hydrobiological and geochemical conditions. The regularity of migration is determined by natural factors such as formation and circulation of air and ice drift. There is evidence suggesting that the hydrocarbons come from pyrogenic sources. It was noted that hydrocarbons could be degraded even at low temperatures. 17 refs., 1 tab

  3. Wave–ice interactions in the neXtSIM sea-ice model

    Directory of Open Access Journals (Sweden)

    T. D. Williams

    2017-09-01

    Full Text Available In this paper we describe a waves-in-ice model (WIM, which calculates ice breakage and the wave radiation stress (WRS. This WIM is then coupled to the new sea-ice model neXtSIM, which is based on the elasto-brittle (EB rheology. We highlight some numerical issues involved in the coupling and investigate the impact of the WRS, and of modifying the EB rheology to lower the stiffness of the ice in the area where the ice has broken up (the marginal ice zone or MIZ. In experiments in the absence of wind, we find that wind waves can produce noticeable movement of the ice edge in loose ice (concentration around 70 % – up to 36 km, depending on the material parameters of the ice that are used and the dynamical model used for the broken ice. The ice edge position is unaffected by the WRS if the initial concentration is higher (≳ 0.9. Swell waves (monochromatic waves with low frequency do not affect the ice edge location (even for loose ice, as they are attenuated much less than the higher-frequency components of a wind wave spectrum, and so consequently produce a much lower WRS (by about an order of magnitude at least.In the presence of wind, we find that the wind stress dominates the WRS, which, while large near the ice edge, decays exponentially away from it. This is in contrast to the wind stress, which is applied over a much larger ice area. In this case (when wind is present the dynamical model for the MIZ has more impact than the WRS, although that effect too is relatively modest. When the stiffness in the MIZ is lowered due to ice breakage, we find that on-ice winds produce more compression in the MIZ than in the pack, while off-ice winds can cause the MIZ to be separated from the pack ice.

  4. Study of Extreme Weather Hazards Using GRACE

    Science.gov (United States)

    Zhang, Y.; Shum, C. K.; Shang, K.; Guo, J.; Schwartz, F. W.; Akyılmaz, O.; Feng, W.; Forootan, E.; LIU, G.; Zhong, M.

    2017-12-01

    Extreme weather events significantly affect humans and economics in the region. Synoptic and timely observations of these abrupt meteoro-hydrological hazards would benefit disaster management and improve storm forecasting. Contemporary processing of the Gravity Recovery and Climate Experiment (GRACE) twin-satellite data at monthly sampling would miss or under-sample abrupt events such as large ice storms with durations much shorter than a month. Here, we employ the energy balance approach processing GRACE Level 1 data, which is flexible to allow sub-monthly solutions at daily sampling covering the genesis and evolution of large winter storms. We studied the 2008 Southeast China snow and ice storm, which lasted from mid-January to mid-February, and affected 21 out of China's 34 provinces with heavy snows, ice and freezing rains, caused extensive damage and transportation disruption, displaced nearly 1.7 million people, and claimed 129 lives. We also investigated the devastating North America blizzard which occurred during late January through mid-February 2010. The massive accumulations of snow and ice in both storms slightly changed the gravity field of the Earth, and were sensitive to the GRACE satellite measurements, manifested as transient terrestrial water storage (TWS) change. We compared our solutions with other available high temporal frequency GRACE solutions. The GRACE observed total storage change for both storms are in good agreement with in situ precipitation measurements, and with GRACE observations clearly show the complex genesis, decline, strengthening and melting phases depicting the detailed evolution of these example large snow storms.

  5. High density amorphous ice and its phase transition to ice XII

    International Nuclear Information System (INIS)

    Kohl, I.

    2001-07-01

    1998 Lobban et al. reported the neutron diffraction data of a new phase of ice, called ice XII, which formed at 260 K on compression of water within the domain of ice V at a pressure of 0.5 GPa. Surprisingly ice XII forms as an incidental product in the preparation of high-density amorphous ice (HDA) on compression of hexagonale ice (ice Ih) at 77 K up to pressures = 1.3 GPa. A decisive experimental detail is the use of an indium container: when compressing ice Ih in a pressure vessel with indium linings, then reproducibly HDA (high density amorphous ice) forms, but without indium randomly scattered relative amounts of ice XII and HDA form. Ice XII forms on compression of ice Ih at 77 K only via HDA, and not directly from ice Ih. Its formation requires a sudden pronounced apparent pressure drop of ca 0.18 GPa at pressures ca 1.1 GPa. These apparent pressure drops can be caused by buildup friction between the piston and the pressure vessel and its sudden release on further compression. I propose that shock-waves generated by apparent pressure drops cause transient local heating and that this induces nucleation and crystal growth. A specific reproducible method to prepare ice XII is heating HDA in a pressure vessel with indium linings at constant pressures (or constant volume). The ice XII (meta-)stability domain extends between ca 158 and 212 K from ca 0.7 to ca 1.5 GPa. DSC (differential scanning calorimetry) and x-ray powder diffraction revealed, that on heating at atmospheric pressure ice XII transforms directly into cubic ice (ice Ic) at 154 K (heating rate 10 K min - 1) and not into an amorphous form before transition to ice Ic. The enthalpy of the ice XII - ice Ic transition is -1.21 ± 0.07 kJ mol -1 . An estimation of the Gibbs free energy at atmospheric pressure and about 140 K results that ice XII is thermodynamically more stable than ice VI. In the heating curve of ice XII a reversible endothermic step can be found at the onset temperature (heating rate

  6. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    Science.gov (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  7. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications.

    Science.gov (United States)

    Zhang, Qiang; Hong, Yongmi; Zou, Fasheng; Zhang, Min; Lee, Tien Ming; Song, Xiangjin; Rao, Jiteng

    2016-03-01

    The extent to which species' traits, behavior and habitat synergistically determine their response to extreme weather events (EWE) remains poorly understood. By quantifying bird and vegetation assemblages before and after the 2008 ice storm in China, combined with interspecific interactions and foraging behaviours, we disentangled whether storm influences avian reassembly directly via functional traits (i.e. behavioral adaptations), or indirectly via habitat variations. We found that overall species richness decreased, with 20 species detected exclusively before the storm, and eight species detected exclusively after. These shifts in bird relative abundance were linked to habitat preferences, dietary guild and flocking behaviours. For instance, forest specialists at higher trophic levels (e.g. understory-insectivores, woodpeckers and kingfishers) were especially vulnerable, whereas open-habitat generalists (e.g. bulbuls) were set to benefit from potential habitat homogenization. Alongside population fluctuations, we found that community reassembly can be rapidly adjusted via foraging plasticity (i.e. increased flocking propensity and reduced perching height). And changes in preferred habitat corresponded to a variation in bird assemblages and traits, as represented by intact canopy cover and high density of large trees. Accurate predictions of community responses to EWE are crucial to understanding ecosystem disturbances, thus linking species-oriented traits to a coherent analytical framework.

  8. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  9. Open-Source Python Modules to Estimate Level Ice Thickness from Ice Charts

    Science.gov (United States)

    Geiger, C. A.; Deliberty, T. L.; Bernstein, E. R.; Helfrich, S.

    2012-12-01

    A collaborative research effort between the University of Delaware (UD) and National Ice Center (NIC) addresses the task of providing open-source translations of sea ice stage-of-development into level ice thickness estimates on a 4km grid for the Interactive Multisensor Snow and Ice Mapping System (IMS). The characteristics for stage-of-development are quantified from remote sensing imagery with estimates of level ice thickness categories originating from World Meteorological Organization (WMO) egg coded ice charts codified since the 1970s. Conversions utilize Python scripting modules which transform electronic ice charts with WMO egg code characteristics into five level ice thickness categories, in centimeters, (0-10, 10-30, 30-70, 70-120, >120cm) and five ice types (open water, first year pack ice, fast ice, multiyear ice, and glacial ice with a reserve slot for deformed ice fractions). Both level ice thickness categories and ice concentration fractions are reported with uncertainties propagated based on WMO ice stage ranges which serve as proxy estimates for standard deviation. These products are in preparation for use by NCEP, CMC, and NAVO by 2014 based on their modeling requirements for daily products in near-real time. In addition to development, continuing research tests the value of these estimated products against in situ observations to improve both value and uncertainty estimates.

  10. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  11. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  12. Mapping the depth to ice-cemented ground in the high elevation Dry Valleys, Antarctica

    Science.gov (United States)

    Marinova, M.; McKay, C. P.; Heldmann, J. L.; Davila, A. F.; Andersen, D. T.; Jackson, A.; Lacelle, D.; Paulsen, G.; Pollard, W. H.; Zacny, K.

    2011-12-01

    The high elevation Dry Valleys of Antarctica provide a unique location for the study of permafrost distribution and stability. In particular, the extremely arid and cold conditions preclude the presence of liquid water, and the exchange of water between the ice-cemented ground and the atmosphere is through vapour transport (diffusion). In addition, the low atmospheric humidity results in the desiccation of the subsurface, forming a dry permafrost layer (i.e., cryotic soils which are dry and not ice-cemented). Weather data suggests that subsurface ice is unstable under current climatic conditions. Yet we do find ice-cemented ground in these valleys. This contradiction provides insight into energy balance modeling, vapour transport, and additional climate effects which stabilize subsurface ice. To study the driving factors in the stability and distribution of ice-cemented ground, we have extensively mapped the depth to ice-cemented ground in University Valley (1730 m; 77°S 51.8', 160°E 43'), and three neighbouring valleys in the Beacon Valley area. We measured the depth to ice-cemented ground at 15-40 locations per valley by digging soil pits and drilling until ice was reached; for each location 3-5 measurements within a ~1 m2 area were averaged (see figure). This high-resolution mapping of the depth to ice-cemented ground provides new insight on the distribution and stability of subsurface ice, and shows significant variability in the depth to ground ice within each valley. We are combining data from mapping the depth to ice-cemented ground with year-round, in situ measurements of the atmospheric and subsurface conditions, such as temperature, humidity, wind, and light, to model the local stability of ice-cemented ground. We are using this dataset to examine the effects of slopes, shading, and soil properties, as well as the suggested importance of snow recurrence, to better understand diffusion-controlled subsurface ice stability.

  13. The design analysis of ACP-canister for nuclear waste disposal

    International Nuclear Information System (INIS)

    Raiko, H.

    1992-05-01

    The design basis, dimensioning and some manufacturing aspects of the Advanced Cold Process Canister (ACPC) for the nuclear waste disposal is summarized in the report. The strength of the canister has been evaluated in normal design load condition and in extreme high hydrostatic pressure load condition possibly caused by ice age (orig.)

  14. Current status of and problems in ice heat storage systems contributing to improving load rates. Strengthening works intended for leveling the electric power load; Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Denryoku fuka heikinka ni muketa torikumi no kyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T. [Agency of Natural Resources and Energy, Tokyo (Japan)

    1998-02-01

    This paper introduces improvement in annual load rate in power supply in Japan, and the measures to proliferate and expand the use of ice heat storage systems. The annual load rate in power supply has dropped to about 55% today from the level of about 70% in 1965. This has been caused by the following reasons: the maximum power demand having become sharper in summer due to rapid increase in demand for air conditioning for room cooling, increase in weight of business operation department associated with progress of service economy, and change in the industrial structure from the material type industry to the processing and assembling type industry in the industrial department. In order to achieve load shift in the room cooling demand, which accounts largely for consumer demand during the peak time in summer, and is the main cause for reduced load rate, it is important that a heat storage type air conditioning system and a gas room cooling system be used more widely. The heat storage air conditioning and gas room cooling systems have a bottleneck in their proliferation that their facility cost is more expensive than existing air conditioning systems of non-heat regeneration type. It is necessary to review legal institutions and electric power charge systems for the purpose of proliferation and expanded use of the heat regeneration air conditioning and gas room cooling systems. 2 figs.

  15. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    Science.gov (United States)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  16. Dark ice dynamics of the south-west Greenland Ice Sheet

    Science.gov (United States)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  17. GPR capabilities for ice thickness sampling of low salinity ice and for detecting oil in ice

    Energy Technology Data Exchange (ETDEWEB)

    Lalumiere, Louis [Sensors by Design Ltd. (Canada)

    2011-07-01

    This report discusses the performance and capabilities test of two airborne ground-penetrating radar (GPR) systems of the Bedford Institute of Oceanography (BIO), Noggin 1000 and Noggin 500, for monitoring low salinity snow and ice properties which was used to measure the thickness of brackish ice on Lake Melville in Labrador and on a tidal river in Prince Edward Island. The work of other researchers is documented and the measurement techniques proposed are compared to the actual GPR approach. Different plots of GPR data taken over snow and freshwater ice and over ice with changing salinity are discussed. An interpretation of brackish ice GPR plots done by the Noggin 1000 and Noggin 500 systems is given based on resolution criterion. Additionally, the capability of the BIO helicopter-borne GPR to detect oil-in-ice has been also investigated, and an opinion on the likelihood of the success of GPR as an oil-in-ice detector is given.

  18. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  19. Organic ice resists for 3D electron-beam processing: Instrumentation and operation

    DEFF Research Database (Denmark)

    Tiddi, William; Elsukova, Anna; Beleggia, Marco

    2018-01-01

    Organic vapors condensed into thin layers of ice on the surface of a cold substrate are exposed with an electron beam to create resist patterns for lithography applications. The entire spin- and development-free lithography process requires a single custom instrument. We report the design, material...... choice, implementation and operation of this apparatus. It is based on a scanning electron microscope fitted with an electron beam control system that is normally used for electron beam lithography in a multi-user open-access laboratory. The microscope was also equipped with a gas injection system......, a liquid nitrogen cooled cryostage, a temperature control system, and a load-lock. Three steps are required to initialize the apparatus for organic ice resist processing, and two steps are required to restore the apparatus for routine multi-user operations. Five steps are needed to create organic ice...

  20. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    Science.gov (United States)

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  1. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds

    Directory of Open Access Journals (Sweden)

    Eva Garcia-Lopez

    2017-07-01

    Full Text Available Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.

  2. The Reusable Load Cell with Protection Applied for Online Monitoring of Overhead Transmission Lines Based on Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    Guoming Ma

    2016-06-01

    Full Text Available Heavy ice coating of high–voltage overhead transmission lines may lead to conductor breakage and tower collapse causing the unexpected interrupt of power supply. The optical load cell applied in ice monitoring systems is immune to electromagnetic interference and has no need of a power supply on site. Therefore, it has become a hot research topic in China and other countries. In this paper, to solve the problem of eccentric load in measurement, we adopt the shearing structure with additional grooves to improve the strain distribution and acquire good repeatability. Then, the fiber Bragg grating (FBG with a permanent weldable package are mounted onto the front/rear groove of the elastic element by spot welding, the direction deviation of FBGs is 90° from each other to achieve temperature compensation without an extra FBG. After that, protection parts are designed to guarantee high sensitivity for a light load condition and industrial safety under a heavy load up to 65 kN. The results of tension experiments indicate that the sensitivity and resolution of the load cell is 0.1285 pm/N and 7.782 N in the conventional measuring range (0–10 kN. Heavy load tension experiments prove that the protection structure works and the sensitivity and resolution are not changed after several high load (65 kN cycles. In addition, the experiment shows that the resolution of the sensor is 87.79 N in the large load range, allowing the parameter to be used in heavy icing monitoring.

  3. Rational Calibration of Four IEC 61400-1 Extreme External Conditions

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2008-01-01

    Based on a set of asymptotic statistical models on closed form this paper presents a rational and consistent calibration of four extreme external conditions defined in the International Electrotechnical Commission (IEC) 61400-1 standard: extreme operating gust, extreme wind shear, extreme coheren...... and proposed specifications of the magnitudes of the extreme external wind conditions are highlighted and discussed using an illustrative example based on two selected terrain types. Copyright © 2008 John Wiley & Sons, Ltd....... gust with direction change and extreme wind direction change. These four extreme external conditions are used in the definition of six of the IEC 61400-1 ultimate load cases. The statistical models are based on simple and easily accessible mean wind speed and turbulence characteristics...

  4. Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates

    Directory of Open Access Journals (Sweden)

    V. Romanova

    2006-01-01

    Full Text Available Using an atmospheric general circulation model of intermediate complexity coupled to a sea ice – slab ocean model, we perform a number of sensitivity experiments under present-day orbital conditions and geographical distribution to assess the possibility that land albedo, atmospheric CO2, orography and oceanic heat transport may cause an ice-covered Earth. Changing only one boundary or initial condition, the model produces solutions with at least some ice-free oceans in the low latitudes. Using some combination of these forcing parameters, a full Earth's glaciation is obtained. We find that the most significant factor leading to an ice-covered Earth is the high land albedo in combination with initial temperatures set equal to the freezing point. Oceanic heat transport and orography play only a minor role for the climate state. Extremely low concentrations of CO2 also appear to be insufficient to provoke a runaway ice-albedo feedback, but the strong deviations in surface air temperatures in the Northern Hemisphere point to the existence of a strong nonlinearity in the system. Finally, we argue that the initial condition determines whether the system can go into a completely ice covered state, indicating multiple equilibria, a feature known from simple energy balance models.

  5. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    Science.gov (United States)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  6. Airplane Ice Detector Based on a Microwave Transmission Line

    Science.gov (United States)

    Ngo, Phong; Arndt, G. Dickey; Carl, James R.

    2004-01-01

    An electronic instrument that could detect the potentially dangerous buildup of ice on an airplane wing is undergoing development. The instrument is based on a microwave transmission line configured as a capacitance probe: at selected spots, the transmission-line conductors are partly exposed to allow any ice and/or liquid water present at those spots to act as predominantly capacitive electrical loads on the transmission line. These loads change the input impedance of the transmission line, as measured at a suitable excitation frequency. Thus, it should be possible to infer the presence of ice and/or liquid water from measurements of the input impedance and/or electrical parameters related to the input impedance. The sensory transmission line is of the microstrip type and thus thin enough to be placed on an airplane wing without unduly disturbing airflow in flight. The sensory spots are small areas from which the upper layer of the microstrip has been removed to allow any liquid water or ice on the surface to reach the transmission line. The sensory spots are spaced at nominal open-circuit points, which are at intervals of a half wavelength (in the transmission line, not in air) at the excitation frequency. The excitation frequency used in the experiments has been 1 GHz, for which a half wavelength in the transmission line is .4 in. (.10 cm). The figure depicts a laboratory prototype of the instrument. The impedance-related quantities chosen for use in this version of the instrument are the magnitude and phase of the scattering parameter S11 as manifested in the in-phase (I ) and quadrature (Q) outputs of the phase detector. By careful layout of the transmission line (including the half-wavelength sensor spacing), one can ensure that the amplitude and phase of the input to the phase detector keep shifting in the same direction as ice forms on one or more of the sensor areas. Although only one transmission-line sensor strip is used in the laboratory version, in a

  7. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  8. Reduced body size and cub recruitment in polar bears associated with sea ice decline

    Science.gov (United States)

    Rode, Karyn D.; Amstrup, Steven C.; Regehr, Eric V.

    2010-01-01

    Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long‐term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long‐term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.

  9. Changes on the ice plain of Ice Stream B and Ross Ice Shelf

    Science.gov (United States)

    Shabtaie, Sion

    1993-01-01

    During the 1970's and 1980's, nearly 200 stations from which accurate, three dimensional position fixes have been obtained from TRANSIT satellites were occupied throughout the Ross Ice Shelf. We have transformed the elevations obtained by satellite altimetry to the same geodetic datum, and then applied a second transformation to reduce the geodetic heights to elevations above mean sea level using the GEM-10C geoidal height. On the IGY Ross Ice Shelf traverse between Oct. 1957 and Feb. 1958, an accurate method of barometric altimetry was used on a loop around the ice shelf that was directly tied to the sea at both ends of the travel route, thus providing absolute elevations. Comparisons of the two sets of data at 32 station pairs on floating ice show a mean difference of 0 +/- 1 m. The elevation data were also compared with theoretical values of elevations for a hydrostatically floating ice shelf. The mean difference between theoretical and measured values of elevations is -2 +/- 1 m.

  10. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  11. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  12. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  13. The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees.

    Science.gov (United States)

    Morgenroth, David C; Segal, Ava D; Zelik, Karl E; Czerniecki, Joseph M; Klute, Glenn K; Adamczyk, Peter G; Orendurff, Michael S; Hahn, Michael E; Collins, Steven H; Kuo, Art D

    2011-10-01

    Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope=-.72±.22; p=.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope=-.34±.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. Published by Elsevier B.V.

  14. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    Science.gov (United States)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  15. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    Science.gov (United States)

    1980-09-01

    N. and Tabata , T., Ice study in the Gulf of Peschanskii, I.S., Ice science and ice technology, Bothnia, III: observations on large grains of ice...ice and by Sterrett, K.F., The arctic environment and the hitting ice floes. Results of these measurements have arctic surface effect vehicle, Cold...ice growth, temperature 26-3673 effects, ice cover thickness. 28-557 Determining contact stresses when a ship’s stem hits the ice, Kheisin, D.E

  16. Influence of winter sea-ice motion on summer ice cover in the Arctic

    Directory of Open Access Journals (Sweden)

    Noriaki Kimura

    2013-11-01

    Full Text Available Summer sea-ice cover in the Arctic varies largely from year to year owing to several factors. This study examines one such factor, the relationship between interannual difference in winter ice motion and ice area in the following summer. A daily-ice velocity product on a 37.5-km resolution grid is prepared using the satellite passive microwave sensor Advanced Microwave Scanning Radiometer—Earth Observing System data for the nine years of 2003–2011. Derived daily-ice motion reveals the dynamic modification of the winter ice cover. The winter ice divergence/convergence is strongly related to the summer ice cover in some regions; the correlation coefficient between the winter ice convergence and summer ice area ranges between 0.5 and 0.9 in areas with high interannual variability. This relation implies that the winter ice redistribution controls the spring ice thickness and the summer ice cover.

  17. Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice?

    Science.gov (United States)

    Moore, G. W. K.; Schweiger, A.; Zhang, J.; Steele, M.

    2018-03-01

    The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi-stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low-pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2-sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.

  18. Remote sensing of sea ice: advances during the DAMOCLES project

    Directory of Open Access Journals (Sweden)

    G. Heygster

    2012-12-01

    ASCAT (62.5 km grid spacing, with visible AVHRR observations (20 km, with the synthetic aperture radar sensor ASAR (10 km, and a multi-sensor product (62.5 km with improved angular resolution (Continuous Maximum Cross Correlation, CMCC method is presented. CMCC is also used to derive the sea ice deformation, important for formation of sea ice leads (diverging deformation and pressure ridges (converging. The indirect determination of sea ice thickness from altimeter freeboard data requires knowledge of the ice density and snow load on sea ice. The relation between freeboard and ice thickness is investigated based on the airborne Sever expeditions conducted between 1928 and 1993.

  19. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  20. State of Arctic Sea Ice North of Svalbard during N-ICE2015

    Science.gov (United States)

    Rösel, Anja; King, Jennifer; Gerland, Sebastian

    2016-04-01

    The N-ICE2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 ice stations where installed and the complex ocean-sea ice-atmosphere system was studied with an interdisciplinary Approach. During the N-ICE2015 cruise, extensive ice thickness and snow depth measurements were performed during both, winter and summer conditions. Total ice and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, ice mass balance and snow buoys were deployed. Snow and ice thickness measurements were performed on repeated transects to quantify the ice growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general ice thickness distribution. Average snow depths of 32 cm on first year ice, and 52 cm on multi-year ice were measured in January, the mean snow depth on all ice types even increased until end of March to 49 cm. The average total ice and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year ice of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new ice formation and thin ice on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal ice zone, was observed during two ice stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The

  1. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which

  2. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    Science.gov (United States)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  3. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... a three parameter Weibull distribution to the measured on-shore and off-shore data for wind speed variations. Specific recommendations on off-shore design turbulence intensities are lacking in the presentIEC-code. Based on the present analysis of the off-shore wind climate on two shallow water sites...

  4. Surface and Subsurface Meltwater Ponding and Refreezing on the Bach Ice Shelf, Antarctic Peninsula

    Science.gov (United States)

    Willis, I.; Haggard, E.; Benedek, C. L.; MacAyeal, D. R.; Banwell, A. F.

    2017-12-01

    There is growing concern about the stability and fate of Antarctic ice shelves, as four major ice shelves on the Antarctic Peninsula have completely disintegrated since the 1950s. Their collapse has been linked to the southward movement of the -9 oC mean annual temperature isotherm. The proximal causes of ice shelf instability are not fully known, but an increase in surface melting leading to water ponding and ice flexure, fracture and calving has been implicated. Close to the recently collapsed Wilkins Ice Shelf, the Bach Ice Shelf (72°S 72°W) may be at risk from break up in the near future. Here, we document the changing surface hydrology of the Bach Ice Shelf between 2001 and 2017 using Landsat 7 & 8 imagery. Extensive surface water is identified across the Bach Ice Shelf and its tributary glaciers. Two types of drainage system are observed, drainage into firn via simple stream networks and drainage into the ocean via more complex networks. There are differences between the surface hydrology on the ice shelf and the tributary glaciers, as well as variations within and between summer seasons linked to surface air temperature fluctuations. We also document the changing subsurface hydrology of the ice shelf between 2014 and 2017 using Sentinel 1 A/B SAR imagery. Forty-five subsurface features are identified and analysed for their patterns and temporal evolution. Fourteen of the features show similar characteristics to previously-identified buried lakes and some occur in areas associated with surface lakes in previous years. The buried lakes show seasonal variability in area and surface backscatter, which varies with surface air temperature, and are consistent with the presence, enlargement and contraction of liquid water bodies. Buried lakes are an overlooked source of water loading on ice shelves, which may contribute to ice shelf flexure and potential fracture.

  5. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Wahr, J.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  6. Reconstructing the post-LGM decay of the Eurasian Ice Sheets with Ice Sheet Models; data-model comparison and focus on the Storfjorden (Svalbard) ice stream dynamics history

    Science.gov (United States)

    Petrini, Michele; Kirchner, Nina; Colleoni, Florence; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G.; Forte, Emanuele; Colucci, Renato R.

    2017-04-01

    climate simulation. In this presentation, we will show work in progress, address open issues, and sketch future work. In particular, we invite the community to suggest possibilities for model-data comparison and integration. Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., Lynch-Stieglitz, J., Curry, W., Brook, E. and Erickson, D., 2009. Transient simulation of last deglaciation with a new mechanism for Bólling-Alleród warming. Science, 325(5938), pp.310-314. Lucchi, R.G., Camerlenghi, A., Rebesco, M., Colmenero-Hidalgo, E., Sierro, F.J., Sagnotti, L., Urgeles, R., Melis, R., Morigi, C., Bárcena, M.A. and Giorgetti, G., 2013. Postglacial sedimentary processes on the Storfjorden and Kveithola trough mouth fans: Significance of extreme glacimarine sedimentation. Global and planetary change, 111, pp.309-326. Martin, M.A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C. and Levermann, A., 2011. The Potsdam Parallel Ice Sheet Model (PISM-PIK)-Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere, 5(3), pp.727-740. Pedrosa, M.T., Camerlenghi, A., De Mol, B., Urgeles, R., Rebesco, M. and Lucchi, R.G., 2011. Seabed morphology and shallow sedimentary structure of the Storfjorden and Kveithola trough-mouth fans (north west Barents Sea). Marine Geology, 286(1), pp.65-81. Pollard, D. and DeConto, R.M., 2012. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geoscientific Model Development, 5(5), pp.1273-1295. Rebesco, M., Liu, Y., Camerlenghi, A., Winsborrow, M., Laberg, J.S., Caburlotto, A., Diviacco, P., Accettella, D., Sauli, C., Wardell, N. and Tomini, I., 2011. Deglaciation of the western margin of the Barents Sea Ice Sheet-a swath bathymetric and sub-bottom seismic study from the Kveithola Trough. Marine Geology, 279(1), pp.141-147. Rebesco, M., Laberg, J., Pedrosa, M., Camerlenghi, A., Lucchi, R., Zgur, F. and Wardell, N., 2013. Onset and growth of Trough

  7. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    Science.gov (United States)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  8. Tropospheric characteristics over sea ice during N-ICE2015

    Science.gov (United States)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  9. Box modelling approach for evaluation of influence of ice transport of radionuclides for doses to man

    International Nuclear Information System (INIS)

    Iospje, M.

    2002-01-01

    Modelling of the ice transport of radionuclides, which is a unique pathway in the Arctic ocean and adjacent sea areas, is limited by necessity to describe complete processes of incorporation of radioactivity into ice and ice sediment. Freezing / melting processes and transport of 'clean' ice can be described with a good accuracy for relatively short time scale on the basis of the present level of modelling, but detailed description of the sediment entrainment into ice based on the Reynolds equations with attention to coagulation processes is limited by low concentration of particles (grease ice cannot be described) and time scale up to 5 . 10 -2 s (1 . 10 -9 y) what is not available for large time scale and ice masses. Adding the radioactivity incorporation into the ice with following description of transport and fate of radionuclides will lead to further increasing of the complexity of the modelling. Therefore, it is necessary to develop an alternative approach for purposes of radiological assessment on the basis of the box modelling to describe the incorporation of radioactivity into ice and ice sediment, transport of radioactivity by ice and incorporation of radioactivity into sea areas through melding processes. It is shown that the ice transport of radionuclides can be a significant factor for some scenarios and radionuclides. The influence of the ice transport increases with increasing K d values for radionuclides. It is necessary to note that the content and structure of the sediment load in ice vary within wide limits, and therefore, sensitivity and uncertainty analysis can improve the possibility to represent model results satisfactorily. (LN)

  10. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    Science.gov (United States)

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  11. Response Load Extrapolation for Wind Turbines during Operation Based on Average Conditional Exceedance Rates

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan

    2011-01-01

    to cases where the Gumbel distribution is the appropriate asymptotic extreme value distribution. However, two extra parameters are introduced by which a more general and flexible class of extreme value distributions is obtained with the Gumbel distribution as a subclass. The general method is implemented...... within a hierarchical model where the variables that influence the loading are divided into ergodic variables and time-invariant non-ergodic variables. The presented method for statistical response load extrapolation was compared with the existing methods based on peak extrapolation for the blade out......The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted...

  12. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  13. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  14. Hummocky moraine: sedimentary record of stagnant Laurentide Ice Sheet lobes resting on soft beds

    Science.gov (United States)

    Eyles, N.; Boyce, J. I.; Barendregt, R. W.

    1999-02-01

    Over large areas of the western interior plains of North America, hummocky moraine (HM) formed at the margins of Laurentide Ice Sheet (LIS) lobes that flowed upslope against topographic highs. Current depositional models argue that HM was deposited supraglacially from stagnant debris-rich ice (`disintegration moraine'). Across southern Alberta, Canada, map and outcrop data show that HM is composed of fine-grained till as much as 25 m thick containing rafts of soft, glaciotectonized bedrock and sediment. Chaotic, non-oriented HM commonly passes downslope into weakly-oriented hummocks (`washboard moraine') that are transitional to drumlins in topographic lows; the same subsurface stratigraphy and till facies is present throughout. These landforms, and others such as doughnut-like `rim ridges', flat-topped `moraine plateaux' and linear disintegration ridges, are identified as belonging to subglacially-deposited soft-bed terrain. This terrain is the record of ice lobes moving over deformation till derived from weakly-lithified, bentonite-rich shale. Drumlins record continued active ice flow in topographic lows during deglaciation whereas HM was produced below the outer stagnant margins of ice lobes by gravitational loading (`pressing') of remnant dead ice blocks into wet, plastic till. Intervening zones of washboard moraine mark the former boundary of active and stagnant ice and show `hybrid' drumlins whose streamlined form has been altered by subglacial pressing (` humdrums') below dead ice. The presence of hummocky moraine over a very large area of interior North America provides additional support for glaciological models of a soft-bedded Laurentide Ice Sheet.

  15. There goes the sea ice: following Arctic sea ice parcels and their properties.

    Science.gov (United States)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  16. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    Directory of Open Access Journals (Sweden)

    Xiang Zhi

    2015-03-01

    Full Text Available This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  17. Development of a capacitive ice sensor to measure ice growth in real time.

    Science.gov (United States)

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  18. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...

  19. Spatial generalized linear mixed models of electric power outages due to hurricanes and ice storms

    International Nuclear Information System (INIS)

    Liu Haibin; Davidson, Rachel A.; Apanasovich, Tatiyana V.

    2008-01-01

    This paper presents new statistical models that predict the number of hurricane- and ice storm-related electric power outages likely to occur in each 3 kmx3 km grid cell in a region. The models are based on a large database of recent outages experienced by three major East Coast power companies in six hurricanes and eight ice storms. A spatial generalized linear mixed modeling (GLMM) approach was used in which spatial correlation is incorporated through random effects. Models were fitted using a composite likelihood approach and the covariance matrix was estimated empirically. A simulation study was conducted to test the model estimation procedure, and model training, validation, and testing were done to select the best models and assess their predictive power. The final hurricane model includes number of protective devices, maximum gust wind speed, hurricane indicator, and company indicator covariates. The final ice storm model includes number of protective devices, ice thickness, and ice storm indicator covariates. The models should be useful for power companies as they plan for future storms. The statistical modeling approach offers a new way to assess the reliability of electric power and other infrastructure systems in extreme events

  20. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Directory of Open Access Journals (Sweden)

    V. Dansereau

    2017-09-01

    Full Text Available This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB, is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr–Coulomb damage criterion that allows for pure (uniaxial and biaxial tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  1. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Science.gov (United States)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  2. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    Science.gov (United States)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  4. Environmental Loads of a Finnish indoor training iceskating rink in the Context of LCA; Jaeaehallirakennuksen aiheuttamat ympaeristoekuormitukset

    Energy Technology Data Exchange (ETDEWEB)

    Vaahterus, T.; Saari, A.

    2001-07-01

    In this study the environmental burdens generated by its essential building elements and systems of a typical new indoor training ice-skating rink during entire life cycle were calculated. The calculations were made by using a calculation method developed at Helsinki University of Technology at the department of Civil and Environmental Engineering, Construction Economics and Management. The developed method is based on LCA -methodology and follows the principle of the ISO 14040 Environmental Management standard. In the calculations the life cycle of the indoor training iceskating rink was divided in four main phases: new construction, maintenance and energy, repair, and demolition. In each life cycle phase all the material and energy flows and emissions were calculated. Almost all (99 %) of the building elements in the indoor training ice skating rink were made of non-renewable materials. Also the energy, consumed during the life cycle, was mainly (81 %) produced with non-renewable energy sources. The life cycle phases causing the most environmental loads were energy and new construction. The energy phase consumed 92 % of the total energy and produced 91 of the CO{sub 2} equivalents and 74 % of the SO{sub 2} equivalents. In the new-construction phase 6 % of the life cycle energy was consumed, and 64 % of the ethene equivalents were produced. In addition to these 79 % of the building materials were used in the new- construction phase. The calculations were also tested against the sensitivity to different presumption changes. Two kinds of presumptions were made: ones that could be influenced by project control and others which refer to the future of the building and could not be influenced by project control. The calculations of the environmental loads of the indoor training ice skating rink were most sensitive to changes in the usage profiles and indoor temperature. For example one of the usage profile increased the environmental loads of the indoor training ice

  5. Uplift rates from a new high-density GPS network in Palmer Land indicate significant late Holocene ice loss in the southwestern Weddell Sea

    Science.gov (United States)

    Wolstencroft, Martin; King, Matt A.; Whitehouse, Pippa L.; Bentley, Michael J.; Nield, Grace A.; King, Edward C.; McMillan, Malcolm; Shepherd, Andrew; Barletta, Valentina; Bordoni, Andrea; Riva, Riccardo E. M.; Didova, Olga; Gunter, Brian C.

    2015-10-01

    The measurement of ongoing ice-mass loss and associated melt water contribution to sea-level change from regions such as West Antarctica is dependent on a combination of remote sensing methods. A key method, the measurement of changes in Earth's gravity via the GRACE satellite mission, requires a potentially large correction to account for the isostatic response of the solid Earth to ice-load changes since the Last Glacial Maximum. In this study, we combine glacial isostatic adjustment modelling with a new GPS dataset of solid Earth deformation for the southern Antarctic Peninsula to test the current understanding of ice history in this region. A sufficiently complete history of past ice-load change is required for glacial isostatic adjustment models to accurately predict the spatial variation of ongoing solid Earth deformation, once the independently-constrained effects of present-day ice mass loss have been accounted for. Comparisons between the GPS data and glacial isostatic adjustment model predictions reveal a substantial misfit. The misfit is localized on the southwestern Weddell Sea, where current ice models under-predict uplift rates by approximately 2 mm yr-1. This under-prediction suggests that either the retreat of the ice sheet grounding line in this region occurred significantly later in the Holocene than currently assumed, or that the region previously hosted more ice than currently assumed. This finding demonstrates the need for further fieldwork to obtain direct constraints on the timing of Holocene grounding line retreat in the southwestern Weddell Sea and that GRACE estimates of ice sheet mass balance will be unreliable in this region until this is resolved.

  6. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  7. How dynamic are ice-stream beds?

    Science.gov (United States)

    Davies, Damon; Bingham, Robert G.; King, Edward C.; Smith, Andrew M.; Brisbourne, Alex M.; Spagnolo, Matteo; Graham, Alastair G. C.; Hogg, Anna E.; Vaughan, David G.

    2018-05-01

    Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3-6 years apart, along a cumulative ˜ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a-1, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a-1 previously reported from repeat geophysical surveys in West Antarctica.

  8. A natural ice boom

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.R. [Manitoba Hydro, Winnipeg, MB (Canada)

    1998-10-01

    Planning for ice jams and ice movements are critical on the Nelson River in northern Manitoba in designing cofferdams. Experience on the St. Lawrence River demonstrated the possibility of exercising some control over ice action by judicious placement of log booms or ice control structures. The success of experiments with man-made controls led to field tests in which an ice sheet of sufficient magnitude and competence was introduced into the open water stream of the Nelson River. The ice sheet was subsequently jammed in a narrow channel, thereby creating a natural ice bridge or boom upstream of a proposed hydro development. Under favourable conditions, this boom would initiate the progression of the ice cover from its location upstream, cutting off the downstream reach from the ice producing potential of the upstream reach. Although ice would still be generated downstream, the length of the reach between the ice boom and the development site would be short enough that ice jamming at the development site would never occur. Although problems in blasting prevented the introduction of a competent ice sheet into the main stream of the river at the location chosen, sufficient confidence in the theory was gained to warrant further consideration. 4 refs., 1 tab., 10 figs.

  9. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  10. A model for Quick Load Analysis for monopile-type offshore wind turbine substructures

    DEFF Research Database (Denmark)

    Schløer, Signe; Castillo, Laura Garcia; Fejerskov, Morten

    2016-01-01

    A model for Quick Load Analysis, QuLA, of an offshore wind turbine substructure is presented. The aerodynamic rotor loads and damping are precomputed for a load-based configuration. The dynamic structural response is represented by the first global fore-aft mode only and is computed...... in the frequency domain using the equation of motion. The model is compared against the state of the art aeroelastic code, Flex5, and both life time fatigue and extreme loads are considered in the comparison. In general there is good similarity between the two models. Some derivation for the sectional forces...... are explained in terms of the model simplifications. The difference in the sectional moments are found to be within 14% for the fatigue load case and 10% for the extreme load condition....

  11. Energy consumption optimization of a continuous ice cream process

    International Nuclear Information System (INIS)

    González-Ramírez, J.E.; Leducq, D.; Arellano, M.; Alvarez, G.

    2013-01-01

    Highlights: • This work investigates potential energy savings of an ice cream freezer. • From a full load compressor to a variable speed compressor one in freezer. • 30% less of energy consumption. • It is possible to save between 11 and 14 MWh per year by optimizing freezers. - Abstract: This work investigates potential energy saves in an ice cream freezer by using a variable speed compressor and optimization’s methodology for operating conditions during the process. Two configurations to control the refrigeration capacity were analyzed, the first one, modifies the pressure through the pilot control valve (conventional refrigeration system) and the second one with a variable speed compressor, both with a float expansion valve. Variable speed compressor configuration has showed the highest coefficient of performance and around of 30% less of energy consumption than the conventional one. The optimization of operating conditions in order to minimize the energy consumption is also presented. It was calculated only in France, for all ice cream and sorbet production, it is possible to save energy between 11 and 14 MWh per year by optimizing the operation of the refrigeration system through a variable speed compressor configuration

  12. Ice targets

    International Nuclear Information System (INIS)

    Pacheco, C.; Stark, C.; Tanaka, N.; Hodgkins, D.; Barnhart, J.; Kosty, J.

    1979-12-01

    This report presents a description of ice targets that were constructed for research work at the High Resolution Spectrometer (HRS) and at the Energetic Pion Channel and Spectrometer (EPICS). Reasons for using these ice targets and the instructions for their construction are given. Results of research using ice targets will be published at a later date

  13. Kinematic and kinetic synergies of the lower extremities during the pull in olympic weightlifting.

    Science.gov (United States)

    Kipp, Kristof; Redden, Josh; Sabick, Michelle; Harris, Chad

    2012-07-01

    The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at each joint and how it differed across loads. The analyses extracted two kinematic and four kinetic PCF's. The statistical comparisons indicated that all kinematic and two of the four kinetic PCF's did not differ across load, but scaled according to joint function. The PCF's captured a set of joint- and load-specific synergies that quantified biomechanical function of the lower extremity during Olympic weightlifting and revealed important technical characteristics that should be considered in sports training and future research.

  14. Snapshots of the Greenland ice sheet configuration in the Pliocene to early Pleistocene

    DEFF Research Database (Denmark)

    Solgaard, Anne M.; Reeh, Niels; Japsen, Peter

    2011-01-01

    The geometry of the ice sheets during the Pliocene to early Pleistocene is not well constrained. Here we apply an ice-flow model in the study of the Greenland ice sheet (GIS) during three extreme intervals of this period constrained by geological observations and climate reconstructions. We study...... the extent of the GIS during the Mid-Pliocene Warmth (3.3-3.0 Ma), its advance across the continental shelf during the late Pliocene to early Pleistocene glaciations (3.0-2.4 Ma) as implied by offshore geological studies, and the transition from glacial to interglacial conditions around 2.4 Ma as deduced...... the variability of the GIS during the Pliocene to early Pleistocene and underline the importance of including independent estimates of the GIS in studies of climate during this period. We conclude that the GIS did not exist throughout the Pliocene to early Pleistocene, and that it melted during interglacials even...

  15. Treatment efficiency of patients with shin fracture after intraosseous blocked osteosynthesis by using the load dispenser

    Directory of Open Access Journals (Sweden)

    Yu. V. Sukhin

    2017-08-01

    Full Text Available The purpose of research: еvaluation of the effectiveness of the device for determining the value of the load on the lower extremity while walking in real time with controlling and signalization of excessive and insufficient load. Materials and methods. Еlaborated and applied device, that allows to determine the load magnitude on the lower extremity in real time, and also to signal about excessive or weak load. The sensory block with the insole and the sensor is located in shoes, under patient's heel, and the main block is fixed on the shin with the help of the strap. Current value of the load on the leg is registered in real time. Received data is recorded in non-volatile memory. The system provides an opportunity to notify patient or doctor by email about the presence of a strong or weak load on the lower extremity, and also about the absence of load for a long period. Results. We used the loading batcher in 38 patients with the shin bones fractures, who were on inpatient treatment at the traumatology and orthopedics center in Odessa in the period from 1.5 to 12 months. The main group included patients, who used the load batcher on the lower extremity in rehabilitation period (transversal fracture of the shin bones diaphysis – 9 patients, oblique fracture – 11 patients. The control group consisted of patients, who didn't use the load batcher (10 patients with oblique fracture of the shin bones in the middle third, 8 patients with transversal fracture of both shin bones in the middle third. As a result of applying the device we succeeded to reduce the fracture fusion period for two weeks and avoid such complications as contracture of joint and fracture non-union. Conclusions. The device allows patients with traumatic consequences reaching the optimal load in rehabilitation period, avoiding excessive load on the lower extremity. The elaboration provides an opportunity to determine the statistics of the load and its transfer to the server

  16. Wrist loading patterns during pommel horse exercises.

    Science.gov (United States)

    Markolf, K L; Shapiro, M S; Mandelbaum, B R; Teurlings, L

    1990-01-01

    Gymnastics is a sport which involves substantial periods of upper extremity support as well as frequent impacts to the wrist. Not surprisingly, wrist pain is a common finding in gymnasts. Of all events, the pommel horse is the most painful. In order to study the forces of wrist impact, a standard pommel horse was instrumented with a specially designed load cell to record the resultant force of the hand on the pommel during a series of basic skills performed by a group of seventeen elite male gymnasts. The highest mean peak forces were recorded during the front scissors and flair exercises (1.5 BW) with peaks of up to 2.0 BW for some gymnasts. The mean peak force for hip circles at the center or end of the horse was 1.1 BW. The mean overall loading rate (initial contact to first loading peak) ranged from 5.2 BWs-1 (hip circles) to 10.6 BW s-1 (flairs). However, many recordings displayed localized initial loading spikes which occurred during 'hard' landings on the pommel. When front scissors were performed in an aggressive manner, the initial loading spikes averaged 1.0 BW in magnitude (maximum 1.8 BW) with an average rise time of 8.2 ms; calculated localized loading rates averaged 129 BW s-1 (maximum 219 BW s-1). These loading parameters are comparable to those encountered at heel strike during running. These impact forces and loading rates are remarkably high for an upper extremity joint not normally exposed to weight-bearing loads, and may contribute to the pathogenesis of wrist injuries in gymnastics.

  17. Load consequences when sweeping blades - A case study of a 5 MW pitch controlled wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Verelst, D.R.S.; Larsen, Torben J.

    2010-08-15

    The generic 5 MW NREL wind turbine model is used in Risoe's aeroelastic simulator HAWC2 to investigate 120 different swept blade configurations (forward and backward sweep). Sensitivity for 2 different controllers is considered as well. Backward sweep results in a pitch to feather torsional moment of the blade, effectively reducing blade twist angles under increased loading. This behaviour results in decreased flap-wise fatigue and extreme loads, an increase for edge-wise fatigue loading and status quo or slight decrease in extreme loads (depending on the controller). Tower base and shaft-end bending moments are reduced as well. Forward sweep leads to an increase in angle of attack under loading. For a pitch controlled turbine this leads to an increase in fatigue and extreme loading in all cases. A controller inflicted instability is present for the more extreme forward swept cases. Due to the shape of considered sweep curves, an inherent and significant increase in torsional blade root bending moment is noted. A boomerang shaped sweep curve is proposed to counteract this problematic increased loading. Controller sensitivity shows that adding sweep affects some loadings differently. Power output is reduced for backward sweep since the blade twist is optimized as a rigid structure, ignoring the torsional deformations which for a swept blade can be significant. (author)

  18. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  19. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  20. Deglaciation of the Eurasian ice sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of

  1. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  2. Arctic landfast sea ice

    Science.gov (United States)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  3. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-12-15

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  4. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    Science.gov (United States)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  5. Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry

    Science.gov (United States)

    Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.

    2017-12-01

    The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.

  6. Containment loads due to direct containment heating and associated hydrogen behavior: Analysis and calculations with the CONTAIN code

    International Nuclear Information System (INIS)

    Williams, D.C.; Bergeron, K.D.; Carroll, D.E.; Gasser, R.D.; Tills, J.L.; Washington, K.E.

    1987-05-01

    One of the most important unresolved issues governing risk in many nuclear power plants involves the phenomenon called direct containment heating (DCH), in which it is postulated that molten corium ejected under high pressure from the reactor vessel is dispersed into the containment atmosphere, thereby causing sufficient heating and pressurization to threaten containment integrity. Models for the calculation of potential DCH loads have been developed and incorporated into the CONTAIN code for severe accident analysis. Using CONTAIN, DCH scenarios in PWR plants having three different representative containment types have been analyzed: Surry (subatmospheric large dry containment), Sequoyah (ice condenser containment), and Bellefonte (atmospheric large dry containment). A large number of parameter variation and phenomenological uncertainty studies were performed. Response of DCH loads to these variations was found to be quite complex; often the results differ substantially from what has been previously assumed concerning DCH. Containment compartmentalization offers the potential of greatly mitigating DCH loads relative to what might be calculated using single-cell representations of containments, but the actual degree of mitigation to be expected is sensitive to many uncertainties. Dominant uncertainties include hydrogen combustion phenomena in the extreme environments produced by DCH scenarios, and factors which affect the rate of transport of DCH energy to the upper containment. In addition, DCH loads can be aggravated by rapid blowdown of the primary system, co-dispersal of moderate quantities of water with the debris, and quenching of de-entrained debris in water; these factors act by increasing steam flows which, in turn, accelerates energy transport. It may be noted that containment-threatening loads were calculated for a substantial portion of the scenarios treated for some of the plants considered

  7. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    Directory of Open Access Journals (Sweden)

    O. Gagliardini

    2013-08-01

    Full Text Available The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  8. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    Science.gov (United States)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and

  9. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    Science.gov (United States)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  10. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    Science.gov (United States)

    Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  11. Determination of Correlation for Extreme Metocean Variables

    Directory of Open Access Journals (Sweden)

    Nizamani Zafarullah

    2017-01-01

    Full Text Available Metocean environmental load includes wind, wave and currents. Offshore structures are designed for two environmental load design conditions i.e. extreme and operational load conditions of environmental loads are evaluated. The ccorrelation between load variables using Joint probability distribution, Pearson correlation coefficient and Spearman’s rank correlation coefficients methods in Peninsular Malaysia (PM, Sabah and Sarawak are computed. Joint probability distribution method is considered as a reliable method among three different methods to determine the relationship between load variables. The PM has good correlation between the wind-wave and wave-current; Sabah has both strong relationships of wind-wave and wind-current with 50 year return period; Sarawak has good correlation between wind and current in both 50 years and 100 years return period. Since Sabah has good correlation between the associated load variables, no matter in 50 years or 100 years of return period of load combination. Thus, method 1 of ISO 19901-1, specimen provides guideline for metocean loading conditions, can be adopted for design for offshore structure in Sabah. However, due to weak correlations in PM and Sarawak, this method cannot be applied and method 2, which is current practice in offshore industry, should continueto be used.

  12. Full scale test SSP 34m blade, edgewise loading LTT. Extreme load and PoC{sub I}nvE Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Roczek-Sieradzan, A.; Jensen, Find M. (and others)

    2010-09-15

    This report is the second report covering the research and demonstration project 'Experimental blade research: Structural mechanisms in current and future large blades under combined loading', supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risoe load, where 80% Risoe load corresponds to 100% certification load. These pulls at 80% Risoe load were repeated and the results from these pulls were compared. The blade was reinforced according to a Risoe DTU invention, where the trailing edge panels are coupled. The coupling is implemented to prevent the out of plane deformations and to reduce peeling stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risoe load and the results applicable for the investigation of the influence of the invention on the profile deformation. (Author)

  13. The Atlas load protection switch

    CERN Document Server

    Davis, H A; Dorr, G; Martínez, M; Gribble, R F; Nielsen, K E; Pierce, D; Parsons, W M

    1999-01-01

    Atlas is a high-energy pulsed-power facility under development to study materials properties and hydrodynamics experiments under extreme conditions. Atlas will implode heavy liner loads (m~45 gm) with a peak current of 27-32 MA delivered in 4 mu s, and is energized by 96, 240 kV Marx generators storing a total of 23 MJ. A key design requirement for Atlas is obtaining useful data for 95601130f all loads installed on the machine. Materials response calculations show current from a prefire can damage the load requiring expensive and time consuming replacement. Therefore, we have incorporated a set of fast-acting mechanical switches in the Atlas design to reduce the probability of a prefire damaging the load. These switches, referred to as the load protection switches, short the load through a very low inductance path during system charge. Once the capacitors have reached full charge, the switches open on a time scale short compared to the bank charge time, allowing current to flow to the load when the trigger pu...

  14. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  15. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    DEFF Research Database (Denmark)

    Berg, Jacob; Natarajan, Anand; Mann, Jakob

    2016-01-01

    taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...

  16. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    helicopter (i.e. in an icing tunnel or engine test cell ) and therefore can be subjected to controlled icing where spe- cific problems can be safely...evaluation. 69 2.2.5.2 Ice Protection Systems Demonstration Many of the systems noted in 2.2.5.1 can be evaluated in icing test cells or icing wind tunnels...Figure 2-32 illustrates a typical rotor deice system control arrangement. 104 (N >4 A.dO INaH -E- C4) uo U En 9 E-1 H m I ~z O 04 04iH U 0 El4 E-f C E

  17. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  18. The Immediacy of Arctic Change: New 2016-17 Extremes

    Science.gov (United States)

    Overland, J. E.; Kattsov, V.; Olsen, M. S.; Walsh, J. E.

    2017-12-01

    Additional recent observations add increased certainty to cryospheric Arctic changes, and trends are very likely to continue past mid-century. Observed and projected Arctic changes are large compared with those at mid-latitude, driven by greenhouse gas (GHG) increase and Arctic feedbacks. Sea ice has undergone a regime shift from mostly multi-year to first-year sea ice, and summer sea ice is likely to be esentially gone within the next few decades. Spring snow cover is decreasing, and Arctic greening is increasing, although somewhat variable. There are potential emerging impacts of Arctic change on mid-latitude weather and sea level rise. Model assessments under different future GHG concentration scenarios show that stabilizing global temperatures near 2° C compliant with Paris agreement could slow, but not halt further major changes in the Arctic before mid- 21st century; foreseeable Arctic temperature changes are 4-5° C for fall/winter by 2040-2050. Substantial and immediate mitigation reductions in GHG emissions (at least at the level of the RCP 4.5 emission scenario) should reduce the risk of further change for most cryospheric components after mid-century, and reduce the likelyhood of potential runaway loss of ice sheets and glaciers and their impact on sea level rise. Extreme winter 2016 Arctic temperatures and a large winter 2017 sea ice deficit demonstrate contemporary climate states outside the envelope of previous experience. While there is confidence in the sign of Arctic changes, recent observations increase uncertainty in projecting the rate for future real world scenarios. Do events return to mean conditions, represent irreversible changes, or contribute to accelerating trends beyond those provided by climate models? Such questions highlight the need for improved quantitative prediction of the cryosphere and its global impacts, crucial for adaptation actions and risk management at local to global scales.

  19. Autonomous Aerial Ice Observation for Ice Defense

    Directory of Open Access Journals (Sweden)

    Joakim Haugen

    2014-10-01

    Full Text Available One of the tasks in ice defense is to gather information about the surrounding ice environment using various sensor platforms. In this manuscript we identify two monitoring tasks known in literature, namely dynamic coverage and target tracking, and motivate how these tasks are relevant in ice defense using RPAS. An optimization-based path planning concept is outlined for solving these tasks. A path planner for the target tracking problem is elaborated in more detail and a hybrid experiment, which consists of both a real fixed-wing aircraft and simulated objects, is included to show the applicability of the proposed framework.

  20. Instrumented figure skating blade for measuring on-ice skating forces

    Science.gov (United States)

    Acuña, S. A.; Smith, D. M.; Robinson, J. M.; Hawks, J. C.; Starbuck, P.; King, D. L.; Ridge, S. T.; Charles, S. K.

    2014-12-01

    Competitive figure skaters experience substantial, repeated impact loading during jumps and landings. Although these loads, which are thought to be as high as six times body weight, can lead to overuse injuries, it is not currently possible to measure these forces on-ice. Consequently, efforts to improve safety for skaters are significantly limited. Here we present the development of an instrumented figure skating blade for measuring forces on-ice. The measurement system consists of strain gauges attached to the blade, Wheatstone bridge circuit boards, and a data acquisition device. The system is capable of measuring forces in the vertical and horizontal directions (inferior-superior and anterior-posterior directions, respectively) in each stanchion with a sampling rate of at least 1000 Hz and a resolution of approximately one-tenth of body weight. The entire system weighs 142 g and fits in the space under the boot. Calibration between applied and measured force showed excellent agreement (R > 0.99), and a preliminary validation against a force plate showed good predictive ability overall (R ≥ 0.81 in vertical direction). The system overestimated the magnitude of the first and second impact peaks but detected their timing with high accuracy compared to the force plate.

  1. Measures Earth System Data Records (ESDR) of Ice Motion in Antarctica: Status, Impact and Future Products.

    Science.gov (United States)

    Scheuchl, B.; Rignot, E. J.; Mouginot, J.

    2014-12-01

    Spaceborne Synthetic Aperture Radar (SAR) data is an extremely useful tool for providing relevant information about the ice sheet ECV: ice vector velocity, grounding line position, and ice front location. Here, we provide an overview of the SAR Earth System Data Records (ESDR) for Antarctica part of MEaSUREs that includes: the first complete map of surface ice vector velocity in Antarctica, a map of grounding line positions around Antarctica, ice velocity time series for selected regions: Ross and Ronne-Filchner Ice Shelves and associated drainage basins, the Amundsen Sea Embayment of West Antarctica which is the largest contributor to sea level rise from Antarctica and the focus of rapid ice sheet retreat, and Larsen-B and -C ice shelves which is the second largest contribution to sea level rise from Antarctica. Other products include a database of ice shelf boundaries and drainage basins based on ice motion mapping and digital elevation models generated independently. Data continuity is a crucial aspect of this work and a fundamental challenge for the continuation of these products due to the lack of a dedicated interferometric mission on the cryosphere until the SAR mission under consideration between NASA and ISRO is approved. Four SAR missions ceased operations since IPY. CSA's RADARSAT-2 has provided important bridging data between these missions in Greenland and Antarctica. In 2014, ESA launched Sentinel-1a and JAXA launched ALOS-2 PALSAR, for which we will have limited data access. The Polar Space Task Group (PSTG) created by WMO has established a mandate to support cryospheric products from scientific research using international SARs which continues to play an active role in securing key data acquisitions over ice sheets. We will provide an overview of current efforts. This work was conducted at UC Irvine, Department of Earth System Science under a contract with NASA's MEaSUREs program.

  2. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    Science.gov (United States)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be

  3. The ICT-2 - continuing challenges as the tilting ICE enters its second generation; Der ICT 2 - auch in der zweiten Generation des ICE T eine Herausforderung

    Energy Technology Data Exchange (ETDEWEB)

    Erpenbeck, T. [DB Systemtechnik, Minden (Germany)

    2004-07-01

    Now that an order has been placed for a second batch of tilting ICEs, the challenge facing project management is one of reconciling the integration of technical and design improvements, which have crystallized though the experience of operating the first 43 ICE-Ts, on the one hand, while maintaining the ICE-T system platform, on the other hand - i.e. as far as possible using identical components, interfaces and spare parts for the same deployment and standardized maintenance of the two batches. Striking the best possible balance between these two extremes leads almost automatically to implementing the essential harmonization at module level, which, at the same time, radically brings down the life-cycle costs of the second batch. Passengers will find themselves onboard a familiar train, but one whose technical functions have been optimized, creating benefits especially for the operator and for maintenance. It is DB Systemtechnik that is handling the project on behalf of the railway, by pooling all Deutsche Bahn's know-how in both engineering and testing. Both parties to the contract have agreed on coordinated processes, so that decisions can be prepared efficiently, ensuring that their cooperation is focused on achieving results. (orig.)

  4. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    Science.gov (United States)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  5. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    Science.gov (United States)

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  6. 'Development and introduction of ice water conveyance system and verification of low temperature blast system' for leveling off electric power load; Denryoku fuka heijunka wo misueta 'hyosui hanso hoshiki no kaihatsu donyu to teion sofu hoshiki no kensho'

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, T. [Nikken Sekkei Ltd., Osaka (Japan)

    1999-11-05

    From the view point of the earth environment protection, energy-saving in the field of building air-conditioning has become increasingly important. On the other hand, the utilization of nighttime electric power is needed to ease the electric power supply and demand problem, and in this connection, a wider introduction of the ice heat storage system is recommended as one of the means to cope with such a problem. However, the ice heat storage system also has problems to be solved such as energy savability, and economy. Under such circumstances, various technical research and development efforts as well as evaluation thereof have been made centering around the 'technical development of the ice water conveyance system' and the 'evaluation of the low temperature blast system' for energy-saving, facility cost reduction and electric power load leveling off, and as a matter of fact these systems have been installed in actual buildings with useful results. (author)

  7. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    Science.gov (United States)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  8. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    Science.gov (United States)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  9. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa; Bentley, Michael J.; King, Matt

    2014-05-01

    The Holocene deglaciation of West Antarctica resulted in widespread ice surface lowering. While many ice-sheet reconstructions generally assume a monotone Holocene retreat for the West Antarctica Ice sheet (WAIS) [Ivins et al., 2013; Peltier, 2004; Whitehouse et al., 2012], an increasing number of glaciological observations infer it is readvancing, following retreat behind the present-day margin[Siegert et al., 2013]. We will show that a readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice-streams grounded on beds that deepen inland in apparent contradiction to theory [Schoof, 2007]; and (ii) the inability of models of Glacial Isostatic Adjustment (GIA) to match present-day uplift rates [Whitehouse et al., 2012]. Combining a suite of ice loading histories that include a readvance with a model of GIA provides significant improvements to predictions of present-day uplift rates, and we are able to reproduce previously unexplained observations of subsidence in the southern sector of the Weddell Sea. We hypothesize that retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery led to shallowing, ice sheet re-grounding and readvance. We will conclude that some sections of the current WAIS grounding line that are theoretically unstable, may be advancing and that the volume change of the WAIS may have been more complex in the Late Holocene than previously posited. This revised Holocene ice-loading history would have important implications for the GIA correction applied to Gravity Recovery and Climate Experiment (GRACE) data, likely resulting in a reduction in the GIA correction and a smaller estimate of present-day ice mass loss within the Weddell Sea region of the WAIS. Ivins, E. R., T. S. James, J. Wahr, E. J. O. Schrama, F. W. Landerer, and K. M. Simon (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction

  10. Removable cruciform for ice condenser ice basket

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Mazza, G.E.; Golick, L.R.; Pomaibo, P.

    1987-01-01

    A removable cruciform for use in an ice basket having a generally cylindrical sidewall defining a central, vertical axis of the ice basket and plural, generally annular retaining rings secured to the interior of the cylindrical sidewall of the ice basket at predetermined, spaced elevations throughout the axial height of the ice basket is described comprising: a pair of brackets, each comprising a central, base portion having parallel longitudinal edges and a pair of integral legs extending at corresponding angles relative to the base portion from the perspective parallel longitudinal edges thereof; a pair of support plate assemblies secured to and extending in parallel, spaced relationship from one of the pair of brackets; a pair of slide support plates secured to the other of the pair of brackets and extending therefrom in spaced, parallel relationship; and spring means received within the housing and engaging the base portions of the brackets and applying a resilient biasing force thereto for maintaining the spaced relationship thereof

  11. Bacterial Ice Crystal Controlling Proteins

    Science.gov (United States)

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  12. Moving in extreme environments: what's extreme and who decides?

    Science.gov (United States)

    Cotter, James David; Tipton, Michael J

    2014-01-01

    , extreme loading, chronic unloading and high altitude. Ramifications include factors such as health and safety, productivity, enjoyment and autonomy, acute and chronic protection and optimising adaptation.

  13. Astronomical Ice: The Effects of Treating Ice as a Porous Media on the Dynamics and Evolution of Extraterrestrial Ice-Ocean Environments

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.

    2015-12-01

    With the prevalence of water and ice rich environments in the solar system, and likely the universe, becoming more apparent, understanding the evolutionary dynamics and physical processes of such locales is of great importance. Piqued interest arises from the understanding that the persistence of all known life depends on the presence of liquid water. As in situ investigation is currently infeasible, accurate numerical modeling is the best technique to demystify these environments. We will discuss an evolving model of ice-ocean interaction aimed at realistically describing the behavior of the ice-ocean interface by treating basal ice as a porous media, and its possible implications on the formation of astrobiological niches. Treating ice as a porous media drastically affects the thermodynamic properties it exhibits. Thus inclusion of this phenomenon is critical in accurately representing the dynamics and evolution of all ice-ocean environments. This model utilizes equations that describe the dynamics of sea ice when it is treated as a porous media (Hunke et. al. 2011), coupled with a basal melt and accretion model (Holland and Jenkins 1999). Combined, these two models produce the most accurate description of the processes occurring at the base of terrestrial sea ice and ice shelves, capable of resolving variations within the ice due to environmental pressures. While these models were designed for application to terrestrial environments, the physics occurring at any ice-water interface is identical, and these models can be used to represent the evolution of a variety of icy astronomical bodies. As terrestrial ice shelves provide a close analog to planetary ice-ocean environments, we truth test the models validity against observations of ice shelves. We apply this model to the ice-ocean interface of the icy Galilean moon Europa. We include profiles of temperature, salinity, solid fraction, and Darcy velocity, as well as temporally and spatially varying melt and

  14. Causes and effects of long periods of ice cover on a remote high Alpine lake

    Directory of Open Access Journals (Sweden)

    Michael STURM

    2000-09-01

    Full Text Available The response of the physical and chemical limnology of Hagelseewli (2339 m a.s.l. to local meteorological forcing was investigated from 1996 to 1998 using an automatic weather station, thermistor chains, water samples and sediment traps. On-site meteorological measurements revealed the paramount importance of local topographic shading for the limnology of the lake. A high cliff to the south diminishes incident radiation by 15% to 90%, resulting in a long period of ice cover. Hence, the spring and summer seasons are extremely condensed, allowing only about 2 months per year for mixing, oxygen uptake, nutrient inflow, water exchange and phytoplankton growth. Regular measurements of water temperature, chemistry and diatom composition show that Hagelseewli responds very rapidly to changes in nutrient concentrations and light conditions. This response is restricted mainly to an extremely short productivity pulse, which takes place as soon as the lake is completely free of ice. Ice-free conditions are indicated by the occurrence of planktonic diatoms. In contrast to most low-altitude lakes, maximum productivity occurs in the middle of the water column (6-9 m, where first light, and then soluble reactive phosphorus (SRP, are the limiting factors. During the period of thawing, large amounts of ammonium enter the lake. Nevertheless, allochthonous nutrient input is not important because SRP, the limiting nutrient for algal growth, originates from the sediments. Water chemistry data and data from sediment traps show that, although autochthonous calcite precipitation does occur, the calcite crystals are redissolved completely in the bottom waters during the extended period of ice cover. Thus, the most important factor for changes in the nutrient budget, primary production and preservation of calcite is the bottom water oxygen status, which is governed by the occurrence of an ice-free period. We hypothesise that the duration of the ice-free period is of

  15. Real-time visual biofeedback during weight bearing improves therapy compliance in patients following lower extremity fractures.

    Science.gov (United States)

    Raaben, Marco; Holtslag, Herman R; Leenen, Luke P H; Augustine, Robin; Blokhuis, Taco J

    2018-01-01

    Individuals with lower extremity fractures are often instructed on how much weight to bear on the affected extremity. Previous studies have shown limited therapy compliance in weight bearing during rehabilitation. In this study we investigated the effect of real-time visual biofeedback on weight bearing in individuals with lower extremity fractures in two conditions: full weight bearing and touch-down weight bearing. 11 participants with full weight bearing and 12 participants with touch-down weight bearing after lower extremity fractures have been measured with an ambulatory biofeedback system. The participants first walked 15m and the biofeedback system was only used to register the weight bearing. The same protocol was then repeated with real-time visual feedback during weight bearing. The participants could thereby adapt their loading to the desired level and improve therapy compliance. In participants with full weight bearing, real-time visual biofeedback resulted in a significant increase in loading from 50.9±7.51% bodyweight (BW) without feedback to 63.2±6.74%BW with feedback (P=0.0016). In participants with touch-down weight bearing, the exerted lower extremity load decreased from 16.7±9.77kg without feedback to 10.27±4.56kg with feedback (P=0.0718). More important, the variance between individual steps significantly decreased after feedback (P=0.018). Ambulatory monitoring weight bearing after lower extremity fractures showed that therapy compliance is low, both in full and touch-down weight bearing. Real-time visual biofeedback resulted in significantly higher peak loads in full weight bearing and increased accuracy of individual steps in touch-down weight bearing. Real-time visual biofeedback therefore results in improved therapy compliance after lower extremity fractures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermodynamics of high-pressure ice polymorphs : ices III and V

    NARCIS (Netherlands)

    Tchijov, [No Value; Ayala, RB; Leon, GC; Nagornov, O

    Thermodynamic properties of high-pressure ice polymorphs, ices III and V, are studied theoretically. The results of TIP4P molecular dynamics simulations in the NPT ensemble are used to calculate the temperature dependence of the specific volume of ices III and V at pressures 0.25 and 0.5 GPa,

  17. Multilayer Formation and Evaporation of Deuterated Ices in Prestellar and Protostellar Cores

    Science.gov (United States)

    Taquet, Vianney; Charnley, Steven B.; Sipilä, Olli

    2014-08-01

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H2 and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  18. Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores

    International Nuclear Information System (INIS)

    Taquet, Vianney; Charnley, Steven B.; Sipilä, Olli

    2014-01-01

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H 2 and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  19. Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney; Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Sipilä, Olli [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki (Finland)

    2014-08-10

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H{sub 2} and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  20. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica

    Science.gov (United States)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre

    2013-04-01

    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  1. Observation and modeling of snow melt and superimposed ice formation on sea ice

    OpenAIRE

    Nicolaus, Marcel; Haas, Christian

    2004-01-01

    Sea ice plays a key role within the global climate system. It covers some 7% of earths surface and processes a strong seasonal cycle. Snow on sea ice even amplifies the importance of sea ice in the coupled atmosphere-ice-ocean system, because it dominates surface properties and energy balance (incl. albedo).Several quantitative observations of summer sea ice and its snow cover show the formation of superimposed ice and a gap layer underneath, which was found to be associated to high standing ...

  2. Response of faults to climate-driven changes in ice and water volumes on Earth's surface.

    Science.gov (United States)

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios

    2010-05-28

    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  3. Yedomas in Alaska: Evolution of ice-rich landscapes in a changing climate

    Science.gov (United States)

    Stephani, E.; Kanevskiy, M. Z.; Fortier, D.; Shur, Y.; Jorgenson, T. T.; Dillon, M.; Bray, M.

    2011-12-01

    Yedomas (Ice complexes) have developed on lands that remained unglaciated during the Late-Pleistocene. Ground exposure to cold climate allowed large syngenetic ice wedges to form typically in fine-grained, organic-rich, and ice-rich enclosing sediments, resulting in particularly ice-rich and thick sequences. Changing climate since has triggered geomorphological changes of these ice-rich landscapes and now contemporary climate conditions generally favour their degradation. Yedoma remnants have been observed in areas of Alaska including in the northern part of Seward Peninsula and Iktilik River area where we studied their metrics, cryostratigraphy, soil properties, and their degradation processes. Understanding the dynamic of this particular periglacial landscape and determining its properties is essential for modeling its future evolution in a changing climate. At our three study sites, presence of typical geomorphological features and cryostratigraphic units revealed information on the landscape evolution since deposition of these ice-rich strata. A Yedoma deposit in the northern part of Seward Peninsula comprised ice wedges at least 36 m-deep. The enclosing sediment was characterized by an ice-rich cryofacies of coarse silt with microlenticular cryostructure and abundant fine rootlets. The intermediate layer, a typical extremely ice-rich layer located below the active layer, was observed above the Yedoma deposit in areas less affected by thermo-degradation. In the thermo-degraded areas characterized by an irregular terrain surface, the intermediate layer was replaced by the generally ice-poor taberal cryofacies which corresponds to a deposit that was formerly ice-rich, thawed, drained, and eventually refrozen. Yedoma remnants in their contemporary degrading state can be recognized with their abundant thermokarst lakes, drained lake basins, and drainage gullies. Thermokarst lakes can be particularly deep because of the considerable amount of ground ice that can

  4. The effect of ice-cream-scoop water on the hygiene of ice cream.

    Science.gov (United States)

    Wilson, I. G.; Heaney, J. C.; Weatherup, S. T.

    1997-01-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples. PMID:9287941

  5. Reply to Comment by W. R. Peltier, D. F. Argus, and R. Drummond on "An Assessment of the ICE6G_C (VM5a) Glacial Isostatic Adjustment Model"

    Science.gov (United States)

    Purcell, A.; Tregoning, P.; Dehecq, A.

    2018-02-01

    The empirical approximation of Purcell et al. (2011, https://doi.org/10.1029/2011GL048624) has been validated by Peltier et al. (2018, https://doi.org/10.1002/2016JB013844). In their Comment they introduced new results derived from the same ice/rheology models of ICE6G_C (VM5a) but using a different model for Antarctic bathymetry. This has greatly reduced the differences in predicted Antarctic uplift rates relative to those of Purcell et al. (2016, https://doi.org/10.1002/2015JB012742). In fact, with a ˜50% reduction in uplift rate in the Weddell Sea, the results of Peltier et al. (2018, https://doi.org/10.1002/2016JB013844) now agree more closely with the predictions of Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) than with the original ICE6G_C values. Peltier et al. (2018, https://doi.org/10.1002/2016JB013844) state that the high power in their high-frequency spherical harmonic coefficients remains in their new calculations. They also claim that Purcell et al. (2016, https://doi.org/10.1002/2015JB012742) used an inaccurate loading history in deriving their velocity field. In fact, the ice load history was unchanged; to remove any ambiguity, the ice and water load histories used in the CALSEA calculations are provided in the supporting information.

  6. Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading

    DEFF Research Database (Denmark)

    Liu, Lin; Khan, Shfaqat Abbas; van Dam, Tonie

    2017-01-01

    variability. Here we examine the annual changes of the vertical displacements measured at two GPS stations (SRMP and UPVK) near Upernavik Isstrøm in western Greenland. We model elastic loading displacements due to various surface mass loading including three non-ice components: atmospheric pressure, ocean...

  7. Proceedings of the 19. IAHR international symposium on ice : using new technology to understand water-ice interaction

    International Nuclear Information System (INIS)

    Jasek, M.; Andrishak, R.; Siddiqui, A.

    2008-01-01

    This conference provided a venue for scientists, engineers and researchers an opportunity to expand their knowledge of water-ice interactions with reference to water resources, river and coastal hydraulics, risk analysis, energy and the environment. The the theme of new technology falls into 3 basic groups, notably measurement and instrumentation; remote sensing; and numerical simulation. The thermal regime of rivers was discussed along with ice mechanics, ice hydraulics, ice structures and modelling ice phenomena. The titles of the sessions were: river ice, glaciers and climate change; freeze-up processes on rivers and oceans; river ice-structure interactions; numerical simulations in ice engineering; river-ice break-up and ice jam formation; ice measurement; Grasse River ice evaluation; evaluation of structural ice control alternatives; remote sensing; hydropower and dam decommissioning; mechanical behaviour of river ice, ice covered flow and thermal modelling; mathematical and computer model formulations for ice friction and sea ice; ice bergs and ice navigation; ice crushing processes; sea ice and shore/structure interactions; ice properties, testing and physical modelling; ice actions on compliant structures; oil spills in ice; desalination, ice thickness and climate change; and, sea ice ridges. The conference featured 123 presentations, of which 20 have been catalogued separately for inclusion in this database. refs., tabs., figs

  8. SORM correction of FORM results for the FBC load combination problem

    DEFF Research Database (Denmark)

    Ditlevsen, Ove

    2005-01-01

    The old stochastic load combination model of Ferry Borges and Castanheta and the corresponding extreme random load effect value is considered. The evaluation of the distribution function of the extreme value by use of a particular first order reliability method was first described in a celebrated...... calculations. The calculation gives a limit state curvature correction factor on the probability approximation obtained by the RF algorithm. This correction factor is based on Breitung’s celebrated asymptotic formula. Example calculations with comparisons with exact results show an impressing accuracy...

  9. Effect of recycle on treatment of aircraft de-icing fluid in an anaerobic ...

    African Journals Online (AJOL)

    Aircraft de-icing fluid at 7 000 mg COD/ℓ was successfully treated in an anaerobic baffled reactor operated with and without recycle at volumetric organic loading rate of between 4 and 11 g COD/ℓreactor·d. Reactor recycle was found to improve reactor performance. The anaerobic baffled reactor operated with a 6:1 recycle ...

  10. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  11. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    Science.gov (United States)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  12. Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers

    Science.gov (United States)

    Perovich, D. K.; Holland, M. M.

    2016-12-01

    The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.

  13. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    Science.gov (United States)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  14. United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation

    Science.gov (United States)

    Black, R. X.

    2017-12-01

    We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.

  15. Ice, Ice, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development

    Science.gov (United States)

    Hamilton, C.

    2009-12-01

    Ice, Ice, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of Ice Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the Ice, Ice, Baby curriculum, were developed to help students understand the role of polar ice sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of ice, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the Ice, Ice, Baby program. While students are actively engaged in hands-on learning about the unusual topics of ice sheets, glaciers, icebergs and sea ice, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the Ice, Ice, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the Ice, Ice, Baby program, and to foster teachers' progression toward more reform-based science instruction.

  16. Directional analysis of extreme winds under mixed climate conditions

    CSIR Research Space (South Africa)

    Kruger, A

    2013-07-01

    Full Text Available Directional statistics provide design engineers with the opportunity to realise considerable cost savings, but these are not yet provided for in the South African standard for wind loading. The development of the directional statistics of extreme...

  17. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  18. Simulation of an extended surface detector IceVeto for IceCube-Gen2

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Tim; Auffenberg, Jan; Haack, Christian; Hansmann, Bengt; Kemp, Julian; Konietz, Richard; Leuner, Jakob; Raedel, Leif; Stahlberg, Martin; Schoenen, Sebastian; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a neutrino observatory located at the geographic South Pole. The main backgrounds for IceCube's primary goal, the measurement of astrophysical neutrinos, are muons and neutrinos from cosmic-ray air showers in the Earth's atmosphere. Strong supression of these backgrounds from the Southern hemisphere has been demonstrated by coincident detection of these air showers with the IceTop surface detector. For an extended instrument, IceCube-Gen2, it is considered to build an enlarged surface array, IceVeto, that will improve the detection capabilities of coincident air showers. We will present simulation studies to estimate the IceVeto capabilities to optimize the IceCube-Gen2 design.

  19. Simulation of the Greenland Ice Sheet over two glacial–interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet–ice-shelf model

    Directory of Open Access Journals (Sweden)

    S. L. Bradley

    2018-05-01

    Full Text Available Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM the Greenland ice sheet (GrIS expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS and Innuitian Ice Sheet (IIS, it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial–interglacial cycles (240 ka BP to the present day using the ice-sheet–ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL forcing generated by a glacial isostatic adjustment (GIA model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG and LGM the ice sheet added 1.46 and −2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (∼  1.26 m than most previous studies whereas the contribution to the LIG highstand is lower (∼  0.7 m. The spatial and temporal behaviour of the northern margin was

  20. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Science.gov (United States)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  1. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  2. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  3. The role of sediment supply in esker formation and ice tunnel evolution

    Science.gov (United States)

    Burke, Matthew J.; Brennand, Tracy A.; Sjogren, Darren B.

    2015-05-01

    Meltwater is an important part of the glacier system as it can directly influence ice sheet dynamics. Although it is important that ice sheet models incorporate accurate information about subglacial meltwater processes, the relative inaccessibility of contemporary ice sheet beds makes direct investigation challenging. Former ice sheet beds contain a wealth of meltwater landforms such as eskers that, if accurately interpreted, can provide detailed insight into the hydrology of former ice sheets. Eskers are the casts of ice-walled channels and are a common landform within the footprint of the last Laurentide and Cordilleran Ice Sheets. In south-western Alberta, esker distribution suggests that both water and sediment supply may have been important controls; the longest esker ridge segments are located within meltwater valleys partially filled by glaciofluvial sediments, whereas the shortest esker ridge segments are located in areas dominated by clast-poor till. Through detailed esker ridge planform and crest-type mapping, and near surface geophysics we reveal morpho-sedimentary relationships that suggest esker sedimentation was dynamic, but that esker distribution and architecture were primarily governed by sediment supply. Through comparison of these data with data from eskers elsewhere, we suggest three formative scenarios: 1) where sediment supply and flow powers were high, coarse sediment loads result in rapid deposition, and rates of thermo-mechanical ice tunnel growth is exceeded by the rate of ice tunnel closure due to sediment infilling. High sedimentation rates reduce ice tunnel cross-sectional area, cause an increase in meltwater flow velocity and force ice tunnel growth. Thus, ice tunnel growth is fastest where sedimentation rate is highest; this positive feedback results in a non-uniform ice tunnel geometry, and favours macroform development and non-uniform ridge geometry. 2) Where sediment supply is limited, but flow power high, the rate of sedimentation

  4. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    Science.gov (United States)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  5. Glacial isostatic stress shadowing by the Antarctic ice sheet

    Science.gov (United States)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  6. GridICE: monitoring the user/application activities on the grid

    International Nuclear Information System (INIS)

    Aiftimiei, C; Pra, S D; Andreozzi, S; Fattibene, E; Misurelli, G; Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A; Fantinel, S

    2008-01-01

    The monitoring of the grid user activity and application performance is extremely useful to plan resource usage strategies particularly in cases of complex applications. Large VOs, such as the LHC VOs, do their monitoring by means of dashboards. Other VOs or communities, like for example the BioinfoGRID one, are characterized by a greater diversification of the application types: so the effort to provide a dashboard like monitor is particularly heavy. The main theme of this paper is to show the improvements introduced in GridICE, a web tool built to provides an almost complete grid monitoring. These recent improvements allows GridICE to provide new reports on the resources usage with details of the VOMS groups, roles and users. By accessing the GridICE web pages, the grid user can get all information that is relevant to keep track of his activity on the grid. In the same way, the activity of a VOMS group can be distinguished from the activity of the entire VO. In this paper we briefly talk about the features and advantages of this approach and, after discussing the requirements, we describe the software solutions, middleware and prerequisite to manage and retrieve the user's credentials

  7. Full Scale Test SSP 34m blade, edgewise loading LTT. Extreme load and PoC_InvE Data report

    DEFF Research Database (Denmark)

    Nielsen, Magda; Roczek-Sieradzan, Agnieszka; Jensen, Find Mølholt

    This report is the second report covering the research and demonstration project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last”, supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested...... in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risø load, where 80% Risø load corresponds to 100...... stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risø load and the results applicable for the investigation of the influence of the invention on the profile...

  8. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  9. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area.

    Science.gov (United States)

    Gustafsson, O; Andersson, P; Axelman, J; Bucheli, T D; Kömp, P; McLachlan, M S; Sobek, A; Thörngren, J-O

    2005-04-15

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l(-1) in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC(-1) in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K(ow) (ice log K(oc)-log K(ow) regressions: p<0.05, r2=0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration

  10. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area

    International Nuclear Information System (INIS)

    Gustafsson, Oe.; Andersson, P.; Axelman, J.; Bucheli, T.D.; Koemp, P.; McLachlan, M.S.; Sobek, A.; Thoerngren, J.-O.

    2005-01-01

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l -1 in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC -1 in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K ow (ice log K oc -log K ow regressions: p 2 =0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration gradients, both

  11. Glacial refugia and post-glacial colonization patterns in European bryophytes

    OpenAIRE

    Kyrkjeeide, Magni Olsen; Stenøien, Hans K.; Flatberg, Kjell Ivar; Hassel, Kristian

    2014-01-01

    Most species are assumed to have survived south or east of the ice sheet covering northern Europe during the last glacial maximum. Molecular and macrofossil evidence suggests, however, that some species may have survived in ice-free areas in Scandinavia. In plants, inbreeding and vegetative growth are associated with low genetic load and enhanced survival in small, isolated populations. These characteristics are often found in bryophytes, possibly allowing them to survive extreme conditions i...

  12. Soil Nutrient Responses to Disturbance in a Northern Temperate Forest: The Influence of an Ice Storm Manipulation Experiment on Belowground Biogeochemical Cycling

    Science.gov (United States)

    Wiley, E.; King, C.; Richardson, A. D.; Landhäusser, S.

    2016-12-01

    Temperate forest ecosystems are increasingly impacted by human-induced changes in climate, which have the ability to alter the prevalence, severity, and extent of extreme weather events. Ice storms, an example of such extreme events, tend to be rarer and often occur as localized events, making them difficult to predict. As such, their impacts on ecosystem structure and functioning are poorly understood. We utilized a field manipulation experiment that effectively simulated natural ice storms of varying intensities to mechanistically understand the short-term nitrogen (N) responses to such extreme weather events. Net N mineralization and nitrification were quantified for both the organic and mineral soil horizons via 30-day in situ incubations of intact soil cores, while gross N transformations were measured in short-term laboratory incubations using the 15N pool dilution technique. Net C mineralization and N and C microbial biomass were also measured on disturbed soil cores via the chloroform fumigation incubation method. All microbial transformation measurements were carried out in the fall of the pre-treatment year (2015), and the spring and fall of the post-treatment years (2016 and 2017). We found that the availability of inorganic N to the microbial community did not significantly change immediately following the simulated ice storms. Over longer time-scales, however, we expect that N loss (mineralization, nitrification, denitrification) and conservation (immobilization) processes will be controlled more by the flow and availability of labile C from newly decaying fine and coarse woody debris that was dropped immediately following the ice storm. We hypothesize that the forested ecosystem is now in a state of N oligotrophy, and thus less likely to show any N response to disturbance in the short-term. This suggests that recovery of the forest over the long-term may be slower than that observed following a natural ice storm event that took place in 1998 in the

  13. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  14. Lateral Viscosity Variations in the Both Local and Global and Viscoelastic Load Response and it's Uncertainty

    Science.gov (United States)

    Ivins, E. R.; Caron, L.; Adhikari, S.; Larour, E. Y.; Seroussi, H. L.; Wiens, D.; Lloyd, A. J.; Dietrich, R. O. R.; Richter, A.

    2017-12-01

    One aspect of GIA modeling that has been a source of contention for many years is the exploration, or lack thereof, of the parameters representing growth and collapse of ice loading while additionally allowing mantle structure to vary. These problems are today being approached with advanced coupled solid earth and ice sheet continuum mechanics. An additional source of non-uniqueness lies in the potential for large (4 orders of magnitude) variability in mantle creep strength. A main question that remains is how to seek some simplification of the set of problems that this implies and to shed from consideration those questions that lack relevance to properly interpreting geodetic data sets. Answering this question therefore entails defining what science questions are to be addressed and to define what parameters produce the highest sensitivities. Where mantle viscosity and lithospheric thickness have affinity with an active dynamic mantle that brings rejuvenation by upwelling of volatiles and heat, the time scales for ice and water loading shorten. Here we show how seismic images map with constitutive flow laws into effective laterally varying viscosity maps. As important, we map the uncertainties. In turn, these uncertainties also inform the time scales that are sensitive to load reconstruction for computing present-day deformation and gravity. We employ the wavelength-dependent viscoelastic response decay spectra derived from analytic solutions in order to quantitatively map these sensitivities.

  15. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  16. Full Scale Test of SSP 34m blade, edgewise loading LTT

    DEFF Research Database (Denmark)

    Nielsen, Magda; Jensen, Find Mølholt; Nielsen, Per Hørlyk

    This report is a part of the research project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60......% of an unrealistic extreme event, corresponding to 75% of a certificated extreme load. This report describes the background, the test set up, the tests and the results. For this project, a new solution has been used for the load application and the solution for the load application is described in this report...... as well. The blade has been submitted to thorough examination. More areas have been examined with DIC, both global and local deflections have been measured, and also 378 strain gauge measurements have been performed. Furthermore Acoustic Emission has been used in order to detect damage while testing new...

  17. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  18. Ross Sea Polynyas: Response of Ice Concentration Retrievals to Large Areas of Thin Ice

    Science.gov (United States)

    Kwok, R.; Comiso, J. C.; Martin, S.; Drucker, R.

    2007-01-01

    For a 3-month period between May and July of 2005, we examine the response of the Advanced Microwave Scanning Radiometer (AMSR-E) Enhanced NASA Team 2 (NT2) and AMSR-E Bootstrap (ABA) ice concentration algorithms to large areas of thin ice of the Ross Sea polynyas. Coincident Envisat Synthetic Aperture Radar (SAR) coverage of the region during this period offers a detailed look at the development of the polynyas within several hundred kilometers of the ice front. The high-resolution imagery and derived ice motion fields show bands of polynya ice, covering up to approximately 105 km(sup 2) of the Ross Sea, that are associated with wind-forced advection. In this study, ice thickness from AMSR-E 36 GHz polarization information serves as the basis for examination of the response. The quality of the thickness of newly formed sea ice (<10 cm) from AMSR-E is first assessed with thickness estimates derived from ice surface temperatures from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The effect of large areas of thin ice in lowering the ice concentration estimates from both NT2/ABA approaches is clearly demonstrated. Results show relatively robust relationships between retrieved ice concentrations and thin ice thickness estimates that differ between the two algorithms. These relationships define the approximate spatial coincidence of ice concentration and thickness isopleths. Using the 83% (ABA) and 91% (NT2) isopleths as polynya boundaries, we show that the computed coverage compares well with that using the estimated 10-cm thickness contour. The thin ice response characterized here suggests that in regions with polynyas, the retrieval results could be used to provide useful geophysical information, namely thickness and coverage.

  19. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    Science.gov (United States)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  20. Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements

    Directory of Open Access Journals (Sweden)

    D. Zhang

    2018-03-01

    Full Text Available Collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL that is  ∼  1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings. Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.

  1. Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Canadian Ice Service (CIS) produces digital Arctic regional sea ice charts for marine navigation, climate research, and input to the Global Digital Sea Ice Data...

  2. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  3. Momentum Exchange Near Ice Keels in the Under Ice Ocean Boundary Layer

    National Research Council Canada - National Science Library

    Bleidorn, John C

    2008-01-01

    .... Understanding ice-ocean momentum exchange is important for accurate predictive ice modeling. Due to climate change, increased naval presence in the Arctic region is anticipated and ice models will become necessary for tactical and safety reasons...

  4. Polar Stereographic Valid Ice Masks Derived from National Ice Center Monthly Sea Ice Climatologies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These valid ice masks provide a way to remove spurious ice caused by residual weather effects and land spillover in passive microwave data. They are derived from the...

  5. The De-Icing Comparison Experiment (D-ICE): A campaign for improving data retention rates of radiometric measurements under icing conditions in cold regions

    Science.gov (United States)

    Cox, C. J.; Morris, S. M.

    2017-12-01

    Longwave and shortwave radiative fluxes are fundamental quantities regularly observed globally using broadband radiometers. In cold climates, frost, rime, snow and ice (collectively, "icing") frequently builds up on sensor windows, contaminating measurements. Since icing occurs under particular meteorological conditions, associated data losses constitutes a climatological bias. Furthermore, the signal caused by ice is difficult to distinguish from that of clouds, hampering efforts to identify contaminated from real data in post-processing. Because of the sensitivity of radiometers to internal temperature instabilities, there are limitations to using heat as a de-icing method. The magnitude of this problem is indicated by the large number of research institutions and commercial vendors that have developed various de-icing strategies. The D-ICE campaign has been designed to bring together a large number of currently available systems to quantitatively evaluate and compare ice-migration strategies and also to characterize the potentially adverse effects of the techniques themselves. For D-ICE, a variety of automated approaches making use of ventilation, heating, modified housings and alcohol spray are being evaluated alongside standard units operating with only the regularly scheduled manual cleaning by human operators at the NOAA Baseline Surface Radiation Network (BSRN) station in Utqiaġvik (formerly Barrow), Alaska. Previous experience within the BSRN community suggests that aspiration of ambient air alone may be sufficient to maintain ice-free radiometers without increasing measurement uncertainty during icing conditions, forming the main guiding hypothesis of the experiment. Icing on the sensors is monitored visually using cameras recording images every 15 minutes and quantitatively using an icing probe and met station. The effects of applied heat on infrared loss in pyranometers will be analyzed and the integrated effect of icing on monthly averages will be

  6. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  7. Comparing flow-through and static ice cave models for Shoshone Ice Cave

    Directory of Open Access Journals (Sweden)

    Kaj E. Williams

    2015-05-01

    Full Text Available In this paper we suggest a new ice cave type: the “flow-through” ice cave. In a flow-through ice cave external winds blow into the cave and wet cave walls chill the incoming air to the wet-bulb temperature, thereby achieving extra cooling of the cave air. We have investigated an ice cave in Idaho, located in a lava tube that is reported to have airflow through porous wet end-walls and could therefore be a flow-through cave. We have instrumented the site and collected data for one year. In order to determine the actual ice cave type present at Shoshone, we have constructed numerical models for static and flow-through caves (dynamic is not relevant here. The models are driven with exterior measurements of air temperature, relative humidity and wind speed. The model output is interior air temperature and relative humidity. We then compare the output of both models to the measured interior air temperatures and relative humidity. While both the flow-through and static cave models are capable of preserving ice year-round (a net zero or positive ice mass balance, both models show very different cave air temperature and relative humidity output. We find the empirical data support a hybrid model of the static and flow-through models: permitting a static ice cave to have incoming air chilled to the wet-bulb temperature fits the data best for the Shoshone Ice Cave.

  8. The Load Level of Modern Wind Turbines according to IEC 61400-1

    International Nuclear Information System (INIS)

    Freudenreich, K; Argyriadis, K

    2007-01-01

    The paper describes some effects on the load level of state-of-the art multi megawatt wind turbines introduced by the new edition of the standard IEC 61400-1:2005 W ind Turbines - Part 1: Design requirements . Compared to the previous edition, especially the extreme load determination has been modified by applying stochastic and statistical analyses. Within this paper the effect on the overall load level of wind turbines is demonstrated and occurring problems are discussed. Load simulations have been carried out for four state-of-the-art multi-megawatt wind turbines of different design concepts and from different manufacturers. The blade root bending moments and tip deflection have been determined by applying different extrapolation methods. Advantages and disadvantages of these methods and tail fittings for different load components and wind turbine technologies are discussed and interpreted. Further on, the application of the extreme turbulence model is demonstrated. The dependence of the load level on the turbulence intensity and control system, as well as the interaction with extrapolated loads is discussed and limitations outlined. The obtained load level is compared to the overall load level of the turbines according to the previous edition of the standard, IEC 61400-1:1999

  9. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  10. Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica

    Science.gov (United States)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.

    2017-12-01

    It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.

  11. The effects of weighted skates on ice-skating kinematics, kinetics and muscular activity.

    Science.gov (United States)

    Mavor, Matthew P; Hay, Dean C; Graham, Ryan B

    2018-07-01

    Sport-specific resistance training, through limb loading, can be a complimentary training method to traditional resistance training by loading the working muscles during all phases of a specific movement. The purpose of this study was to examine the acute effects of skating with an additional load on the skate, using a skate weight prototype, on kinematics, kinetics, and muscle activation during the acceleration phase while skating on a synthetic ice surface. 10 male hockey skaters accelerated from rest (standing erect with knees slightly bent) under four non-randomized load conditions: baseline 1 (no weight), light (0.9 kg per skate), heavy (1.8 kg per skate), and baseline 2 (no weight). Skating with additional weight caused athletes to skate slower (p skates decreased skating velocity, but athletes maintained similar muscle activation profiles (magnitude and trends) with minor changes to their skating kinematics.

  12. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    Science.gov (United States)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  13. DeRisk - Accurate prediction of ULS wave loads. Outlook and first results

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Dixen, Martin; Ghadirian, Amin

    2016-01-01

    Loads from extreme waves can be dimensioning for the substructures of offshore wind turbines. The DeRisk project (2015-2019) aims at an improved load evaluation procedure for extreme waves through application of advanced wave models, laboratory tests of load effects, development of hydrodynamic...... load models, aero-elastic response calculations and statistical analysis. This first paper from the project outlines the content and philosophy behind DeRisk. Next, the first results from laboratory tests with irregular waves are presented, including results for 2D and 3D focused wave groups....... The results of focused wave group tests and a 6-hour (full scale duration) test are reproduced numerically by re-application of the wave paddle signal in a fully nonlinear potential flow wave model. A good match for the free surface elevation and associated exceedance probability curve is obtained. Finally...

  14. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  15. Slurry Ice as a Cooling System on 30 GT Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Alam Baheramsyah

    2017-06-01

    Full Text Available Indonesia is the largest archipelago country in the world that has a sea area that is very spacious. Indonesian sea area is 5.8 million square kilometers and a coastline of 95 181 km has huge potential in the fisheries sector. In line with the need to further improve on the quality of the fish catch. One way to preserve fish is to use a slurry of ice. Slurry ice proved more effective preserving fishery products instead of using ice cubes. Ice slurry cooling system was designed and applied to the fishing vessel 30 GT. The cooling system uses a simple vapor compression system consists of five major components consisting of evaporator, condenser, compressor, and two pumps.In designing this system determined the type of refrigerant used in advance which type of refrigerant R-507a. Then do the design or selection of its main components. The design is only done on the evaporator. As for the other major components such as condensers, compressors, and pumps election in accordance with the specification of the power needed. After that dialakukan depiction of each system component. Then subsequently designing the laying of ice slurry cooling system components on a fishing vessel 30 GT.            Through calculations using simple thermodynamic equations obtained cooling load on this system amounted to 32.06 kW. Condenser with a power of 40 kW. Compressor with power 12 kW. Pump with capacity 10 m3 / h. With memepertimbangkan space left on the ship in the ice slurry system design on the main deck of the ship to the efficient use of space on board. The power requirements of the generator vessel increases due to the addition of ice slurry system components therefore do replacement generator into the generator with a power of 100 kW and penambahn fuel tank to 6,000 L.

  16. An Ice Model That is Consistent with Composite Rheology in GIA Modelling

    Science.gov (United States)

    Huang, P.; Patrick, W.

    2017-12-01

    There are several popular approaches in constructing ice history models. One of them is mainly based on thermo-mechanical ice models with forcing or boundary conditions inferred from paleoclimate data. The second one is mainly based on the observed response of the Earth to glacial loading and unloading, a process called Glacial Isostatic Adjustment or GIA. The third approach is a hybrid version of the first and second approaches. In this presentation, we will follow the second approach which also uses geological data such as ice flow, terminal moraine data and simple ice dynamic for the ice sheet re-construction (Peltier & Andrew 1976). The global ice model ICE-6G (Peltier et al. 2015) and all its predecessors (Tushingham & Peltier 1991, Peltier 1994, 1996, 2004, Lambeck et al. 2014) are constructed this way with the assumption that mantle rheology is linear. However, high temperature creep experiments on mantle rocks show that non-linear creep laws can also operate in the mantle. Since both linear (e.g. diffusion creep) and non-linear (e.g. dislocation) creep laws can operate simultaneously in the mantle, mantle rheology is likely composite, where the total creep is the sum of both linear and onlinear creep. Preliminary GIA studies found that composite rheology can fit regional RSL observations better than that from linear rheology(e.g. van der Wal et al. 2010). The aim of this paper is to construct ice models in Laurentia and Fennoscandia using this second approach, but with composite rheology, so that its predictions can fit GIA observations such as global RSL data, land uplift rate and g-dot simultaneously in addition to geological data and simple ice dynamics. The g-dot or gravity-rate-of-change data is from the GRACE gravity mission but with the effects of hydrology removed. Our GIA model is based on the Coupled Laplace-Finite Element method as described in Wu(2004) and van der Wal et al.(2010). It is found that composite rheology generally supports a thicker

  17. Icing losses on wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, T.; Fotsing, I.; Pearson, S. [Garrad Hassan Canada Inc., Ottawa, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed some of the energy losses that can occur as a result of icing on wind turbines. Airfoil deterioration can occur in the presence of rime and glaze ice. Anemometers are also impacted by ice, and shut-downs can occur as a result of icing events. Availability deficits that occur during the winter months can lead to annual energy losses of 0.5 percent. The impact of icing events on total wind power energy production in Quebec is estimated at between 1.3 percent to 2.7 percent. Ice loss estimates are considered during the pre-construction phases of wind power projects. However, ice loss prediction methods are often inaccurate. Studies have demonstrated that preconstruction masts show a reasonable correlation with wind turbine icing, and that icing losses are site-specific. tabs., figs.

  18. Analysis of High-Intensity Skating in Top-Class Ice Hockey Match-Play in Relation to Training Status and Muscle Damage.

    Science.gov (United States)

    Lignell, Erik; Fransson, Dan; Krustrup, Peter; Mohr, Magni

    2018-05-01

    Lignell, E, Fransson, D, Krustrup, P, and Mohr, M. Analysis of high-intensity skating in top-class ice hockey match-play in relation to training status and muscle damage. J Strength Cond Res 32(5): 1303-1310, 2018-We examined high-intensity activities in a top-class ice-hockey game and the effect of training status. Male ice-hockey players (n = 36) from the National Hockey League participated. Match analysis was performed during a game and physical capacity was assessed by a submaximal Yo-Yo Intermittent Recovery Ice-hockey test, level 1 (YYIR1-IHSUB). Venous blood samples were collected 24-hour post-game to determine markers of muscle damage. Players performed 119 ± 8 and 31 ± 3 m·min of high intensity and sprint skating, respectively, during a game. Total distance covered was 4,606 ± 219 m (2,260-6,749 m), of which high-intensity distance was 2042 ± 97 m (757-3,026 m). Sprint-skating speed was 5-8% higher (p ≤ 0.05) in periods 1 and 2 vs. period 3 and overtime. Defensemen (D) covered 29% more (p ≤ 0.05) skating in total than forwards (F) and were on the ice 47% longer. However, F performed 54% more (p ≤ 0.05) high-intensity skating per minute than defensemen. Plasma creatine kinase (CK) was 338 ± 45 (78-757) U·L 24-hour post-game. Heart rate loading during YYIR1-IHSUB correlated inversely (p ≤ 0.05) to the frequency of high-intensity skating bouts (r = -0.55) and V[Combining Dot Above]O2max (r = -0.85) and positively to post-game CK (r = 0.49; p ≤ 0.05). In conclusion, ice hockey is a multiple-sprint sport that provokes fatigue in the latter half of a game. Forwards perform more intense skating than defensemen. Moreover, high-intensity game activities during top-class ice hockey are correlated with cardiovascular loading during a submaximal skating test. Taken together, training of elite ice-hockey players should improve the ability for repeated high-intensity skating, and testing should include the YYIR1-IHSUB test as an indicator for ice

  19. Catching cosmic clues in the ice - recent results from IceCube

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    IceCube is a neutrino observatory located deep in the Antarctic glacier close to the geographical South Pole. Close to a gigaton of ice has been instrumented with optical sensors with the primary goal of searching for neutrinos from the still unknown sources of the highest-energy cosmic rays. Last year, IceCube observed for the first time ever a handful of high-energy neutrinos which must have originated outside the solar system. The discovery was named the 2013 Breakthrough of the Year by the British magazine Physics World. It is the first necessary step to actually achieve the dream of charting the places in the universe able to accelerate hadrons to energies over a million times higher than those at the LHC. The science goals of IceCube extend beyond astrophysics: IceCube is also a powerful tool for searches of dark matter and can be used to study phenomena connected to the neutrinos themselves, like neutrino oscillations. The talk will be an update on the most recent results from IceCube.

  20. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  1. Response timescales for martian ice masses and implications for ice flow on Mars

    DEFF Research Database (Denmark)

    Koutnik, Michelle Rebecca; Waddington, E.D.; Winebrener, D.P.

    2013-01-01

    a predictable shape, which is a function of ice temperature, ice rheology, and surface mass-exchange rate. In addition, the time for surface-shape adjustment is shorter than the characteristic time for significant deformation or displacement of internal layers within a flowing ice mass; as a result, surface......On Earth and on Mars, ice masses experience changes in precipitation, temperature, and radiation. In a new climate state, flowing ice masses will adjust in length and in thickness, and this response toward a new steady state has a characteristic timescale. However, a flowing ice mass has...... topography is more diagnostic of flow than are internal-layer shapes. Because the shape of Gemina Lingula, North Polar Layered Deposits indicates that it flowed at some time in the past, we use its current topography to infer characteristics of those past ice conditions, or past climate conditions, in which...

  2. Preliminary biogeochemical assessment of EPICA LGM and Holocene ice samples

    Science.gov (United States)

    Bulat, S.; Alekhina, I.; Marie, D.; Wagenbach, D.; Raynaud, D.; Petit, J. R.

    2009-04-01

    We are investigating the biological content (biomass and microbial diversity of Aeolian origin) of EPICA ice core within the frame of EPICA Microbiology consortium*. Two ice core sections were selected from EPICA Dome C and Droning Maud Land, both from LGM and Holocene. Preliminary measurements of DOC (dissolved organic content) and microbial cell concentrations have been performed. Both analyses showed the very low biomass and ultra low DOC content. Trace DNA analyses are in a progress. The ice sections were decontaminated in LGGE cold and clean room facilities benefiting the protocol developed for Vostok ice core studies. The melt water was then shared between two party laboratories for a complementary approach in studying microbial content. Prior to biology the melt water was tested for chemical contaminant ions and organic acids, DOC and dust contents. The biological methods included all the spectra of appropriate molecular techniques (gDNA extraction, PCR, clone libraries and sequencing). As preliminary results, both LGM (well identified by dust fallout) and Holocene ice samples (EDC99 and EDML) proved to be extremely clear (i.e. pristine) in terms of biomass (less then 4 cells per ml) and DOC contents (less then 5 ppbC). There was no obvious difference between LGM and Holocene in cell counts, while LGM showed a bit high organic carbon content. The latter in terms of biology means ultra-oligotrophic conditions (i.e., no possibility for heterotrophic life style). In fact no metabolizing microbial cells or propagating populations are expected at these depths at temperature -38oC and lower (limiting life temperature threshold is -20°C). Nevertheless some life seeds brought in Antarctica with precipitation could be well preserved because the age is rather young (21 kyr and less). Trying to identify these aliens and document their distribution during last climate cycle the meltwater was concentrated about 1000 times down. The genomic DNA was extracted and very

  3. An ice sheet model validation framework for the Greenland ice sheet

    Science.gov (United States)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  4. Bare ice fields developed in the inland part of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    Shuhei Takahashi

    1997-03-01

    Full Text Available Observations of a bare ice field were carried out at Seal Rock in the Sor Rondane area, East Antarctica. A large sublimation rate, 200 to 280mm/a, was observed on the bare ice field. Air temperature on the bare ice was about 1℃ higher than that on the snow surface. The large sublimation rate was explained from the low albedo of bare ice; its value was roughly estimated from heat budget considerations. The bare ice fields were classified into 4 types according to origin.

  5. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    Science.gov (United States)

    2014-09-30

    OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer

  6. Ice Engineering. Number 25, September 2000. Remote Ice Motion Detection

    National Research Council Canada - National Science Library

    2000-01-01

    .... Government agencies, and the engineering community in general. The potential exists for property damage, serious injury, and fatalities during ice-related flooding, evacuations, and other ice mitigation operations...

  7. Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica

    Science.gov (United States)

    Buffo, J. J.; Schmidt, B. E.; Huber, C.

    2018-01-01

    Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.

  8. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    Science.gov (United States)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  9. Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones

    Science.gov (United States)

    Kwok, R.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.

  10. CFD-based design load analysis of 5MW offshore wind turbine

    Science.gov (United States)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  11. Extreme loads seismic testing of conduit systems

    International Nuclear Information System (INIS)

    Howard, G.E.; Ibanez, P.; Harrison, S.; Shi, Z.T.

    1991-01-01

    Rigid steel conduit (thin-wall tubes with threaded connections) containing electrical cabling are a common feature in nuclear power plants. Conduit systems are in many cases classified in U.S.A. practice as Seismic Category I structures. this paper summarizes results and others aspects of a dynamic test program conducted to investigate conduit systems seismic performance under three-axis excitation for designs representative at a nuclear power plant sited near Ft. Worth, Texas (a moderate seismic zone), with a Safe Shutdown Earthquake (SSE) of 0.12 g. Test specimens where subjected to postulated seismic events, including excitation well in excess of Safe Shutdown Earthquake events typical for U.S.A. nuclear power stations. A total of 18 conduit systems of 9-meter nominal lengths were shake table mounted and subjected to a variety of tests. None of the specimens suffered loss of load capacity when subjected to a site-enveloping Safe Shutdown Earthquake (SSE). Clamp/attachment hardware failures only began to occur when earthquake input motion was scaled upward to minimum values of 2.3-4.6 times site enveloping SSE response spectra. Tensile and/or shear failure of clamp attachment bolts or studs was the failure mode in all case in which failure was induced. (author)

  12. Airframe Icing Research Gaps: NASA Perspective

    Science.gov (United States)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  13. Inelastic neutron scattering of amorphous ice

    International Nuclear Information System (INIS)

    Fukazawa, Hiroshi; Ikeda, Susumu; Suzuki, Yoshiharu

    2001-01-01

    We measured the inelastic neutron scattering from high-density amorphous (HDA) and low-density amorphous (LDA) ice produced by pressurizing and releasing the pressure. We found a clear difference between the intermolecular vibrations in HDA and those in LDA ice: LDA ice has peaks at 22 and 33 meV, which are also seen in the spectrum of lattice vibrations in ice crystal, but the spectrum of HDA ice does not have these peaks. The excitation energy of librational vibrations in HDA ice is 10 meV lower than that in LDA ice. These results imply that HDA ice includes 2- and 5-coordinated hydrogen bonds that are created by breakage of hydrogen bonds and migration of water molecules into the interstitial site, while LDA ice contains mainly 4-coordinated hydrogen bonds and large cavities. Furthermore, we report the dynamical structure factor in the amorphous ice and show that LDA ice is more closely related to the ice crystal structure than to HDA ice. (author)

  14. IceMap250—Automatic 250 m Sea Ice Extent Mapping Using MODIS Data

    Directory of Open Access Journals (Sweden)

    Charles Gignac

    2017-01-01

    Full Text Available The sea ice cover in the North evolves at a rapid rate. To adequately monitor this evolution, tools with high temporal and spatial resolution are needed. This paper presents IceMap250, an automatic sea ice extent mapping algorithm using MODIS reflective/emissive bands. Hybrid cloud-masking using both the MOD35 mask and a visibility mask, combined with downscaling of Bands 3–7 to 250 m, are utilized to delineate sea ice extent using a decision tree approach. IceMap250 was tested on scenes from the freeze-up, stable cover, and melt seasons in the Hudson Bay complex, in Northeastern Canada. IceMap250 first product is a daily composite sea ice presence map at 250 m. Validation based on comparisons with photo-interpreted ground-truth show the ability of the algorithm to achieve high classification accuracy, with kappa values systematically over 90%. IceMap250 second product is a weekly clear sky map that provides a synthesis of 7 days of daily composite maps. This map, produced using a majority filter, makes the sea ice presence map even more accurate by filtering out the effects of isolated classification errors. The synthesis maps show spatial consistency through time when compared to passive microwave and national ice services maps.

  15. The lunar thermal ice pump

    Energy Technology Data Exchange (ETDEWEB)

    Schorghofer, Norbert [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Aharonson, Oded, E-mail: norbert@hawaii.edu [Helen Kimmel Center for Planetary Science, Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100 (Israel)

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  16. The contribution to future flood risk in the Severn Estuary from extreme sea level rise due to ice sheet mass loss

    Science.gov (United States)

    Quinn, N.; Bates, P. D.; Siddall, M.

    2013-12-01

    The rate at which sea levels will rise in the coming century is of great interest to decision makers tasked with developing mitigation policies to cope with the risk of coastal inundation. Accurate estimates of future sea levels are vital in the provision of effective policy. Recent reports from UK Climate Impacts Programme (UKCIP) suggest that mean sea levels in the UK may rise by as much as 80 cm by 2100; however, a great deal of uncertainty surrounds model predictions, particularly the contribution from ice sheets responding to climatic warming. For this reason, the application of semi-empirical modelling approaches for sea level rise predictions has increased of late, the results from which suggest that the rate of sea level rise may be greater than previously thought, exceeding 1 m by 2100. Furthermore, studies in the Red Sea indicate that rapid sea level rise beyond 1m per century has occurred in the past. In light of such research, the latest UKCIP assessment has included a H++ scenario for sea level rise in the UK of up to 1.9 m which is defined as improbable but, crucially, physically plausible. The significance of such low-probability sea level rise scenarios upon the estimation of future flood risk is assessed using the Somerset levels (UK) as a case study. A simple asymmetric probability distribution is constructed to include sea level rise scenarios of up to 1.9 m by 2100 which are added to a current 1:200 year event water level to force a two-dimensional hydrodynamic model of coastal inundation. From the resulting ensemble predictions an estimation of risk by 2100 is established. The results indicate that although the likelihood of extreme sea level rise due to rapid ice sheet mass loss is low, the resulting hazard can be large, resulting in a significant (27%) increase to the projected annual risk. Furthermore, current defence construction guidelines for the coming century in the UK are expected to account for 95% of the sea level rise distribution

  17. Puget Sound Area Electric Reliability Plan. Appendix D, Conservation, Load Management and Fuel Switching Analysis : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  18. Development of a pellet cutting and loading device for the JT-60 repetitive pellet injector

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Ichige, Hisashi; Kizu, Kaname; Iwahashi, Takaaki; Honda, Masao

    2001-03-01

    In JT-60, a pellet injector that repetitively injects deuterium pellets is under development to supply fuel to high temperature plasmas and sustain high-density plasmas. The pellet injector generates cubic pellets and accelerates them with a straight-arm rotor by centrifugal force. In this acceleration method, it is important to supply pellets reliably and stably, to prevent pellet orbits from disordering and to stabilize the launching direction. To achieve higher performance of the injector, a pellet cutting and loading device that cuts a deuterium ice rod into cubic pellets and loads them to the pellet injector successively and stably has been developed. The pellet cutting and loading device can cut a deuterium ice rod produced at low temperature of -8 Pam 3 /s, cutting time of <3 ms, cutting frequency of 1-20 Hz and cutter stroke of 2.5 mm were confirmed in the device test. In the operation test after assembling this device to the centrifugal pellet injector, the operational performance of pellet injection frequency of ∼10 Hz, pellet speed of ∼690 m/s and pellet injection duration time of ∼3.5 s was achieved. Thus, the development of the pellet cutting and loading device contributed to the upgrade of the JT-60 pellet injector. (author)

  19. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    Science.gov (United States)

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  20. Assimilating the ICE-6G_C Reconstruction of the Latest Quaternary Ice Age Cycle Into Numerical Simulations of the Laurentide and Fennoscandian Ice Sheets

    Science.gov (United States)

    Stuhne, G. R.; Peltier, W. R.

    2017-12-01

    We analyze the effects of nudging 100 kyr numerical simulations of the Laurentide and Fennoscandian ice sheets toward the glacial isostatic adjustment-based (GIA-based) ICE-6G_C reconstruction of the most recent ice age cycle. Starting with the ice physics approximations of the PISM ice sheet model and the SeaRISE simulation protocols, we incorporate nudging at characteristic time scales, τf, through anomalous mass balance terms in the ice mass conservation equation. As should be expected, these mass balances exhibit physically unrealistic details arising from pure GIA-based reconstruction geometry when nudging is very strong (τf=20 years for North America), while weakly nudged (τf=1,000 years) solutions deviate from ICE-6G_C sufficiently to degrade its observational fit quality. For reasonable intermediate time scales (τf=100 years and 200 years), we perturbatively analyze nudged ice dynamics as a superposition of "leading-order smoothing" that diffuses ICE-6G_C in a physically and observationally consistent manner and "higher-order" deviations arising, for instance, from biases in the time dependence of surface climate boundary conditions. Based upon the relative deviations between respective nudged simulations in which these biases follow surface temperature from ice cores and eustatic sea level from marine sediment cores, we compute "ice core climate adjustments" that suggest how local paleoclimate observations may be applied to the systematic refinement of ICE-6G_C. Our results are consistent with a growing body of evidence suggesting that the geographical origins of Meltwater Pulse 1B (MWP1b) may lie primarily in North America as opposed to Antarctica (as reconstructed in ICE-6G_C).