WorldWideScience

Sample records for extreme heat days

  1. Mortality on extreme heat days using official thresholds in Spain: a multi-city time series analysis

    Directory of Open Access Journals (Sweden)

    Tobias Aurelio

    2012-02-01

    Full Text Available Abstract Background The 2003 heat wave had a high impact on mortality in Europe, which made necessary to develop heat health watch warning systems. In Spain this was carried-out by the Ministry of Health in 2004, being based on exceeding of city-specific simultaneous thresholds of minimum and maximum daily temperatures. The aim of this study is to assess effectiveness of the official thresholds established by the Ministry of Health for each provincial capital city, by quantifying and comparing the short-term effects of above-threshold days on total daily mortality. Methods Total daily mortality and minimum and maximum temperatures for the 52 capitals of province in Spain were collected during summer months (June to September for the study period 1995-2004. Data was analysed using GEE for Poisson regression. Relative Risk (RR of total daily mortality was quantified for the current day of official thresholds exceeded. Results The number of days in which the thresholds were exceeded show great inconsistency, with provinces with great number of exceeded days adjacent to provinces that did not exceed or rarely exceeded. The average overall excess risk of dying during an extreme heat day was about 25% (RR = 1.24; 95% confidence interval (CI = [1.19-1.30]. Relative risks showed a significant heterogeneity between cities (I2 = 54.9%. Western situation and low mean summer temperatures were associated with higher relative risks, suggesting thresholds may have been set too high in these areas. Conclusions This study confirmed that extreme heat days have a considerable impact on total daily mortality in Spain. Official thresholds gave consistent relative risk in the large capital cities. However, in some other cities thresholds

  2. Excess Mortality Attributable to Extreme Heat in New York City, 1997-2013.

    Science.gov (United States)

    Matte, Thomas D; Lane, Kathryn; Ito, Kazuhiko

    2016-01-01

    Extreme heat event excess mortality has been estimated statistically to assess impacts, evaluate heat emergency response, and project climate change risks. We estimated annual excess non-external-cause deaths associated with extreme heat events in New York City (NYC). Extreme heat events were defined as days meeting current National Weather Service forecast criteria for issuing heat advisories in NYC based on observed maximum daily heat index values from LaGuardia Airport. Outcomes were daily non-external-cause death counts for NYC residents from May through September from 1997 to 2013 (n = 337,162). The cumulative relative risk (CRR) of death associated with extreme heat events was estimated in a Poisson time-series model for each year using an unconstrained distributed lag for days 0-3 accommodating over dispersion, and adjusting for within-season trends and day of week. Attributable death counts were computed by year based on individual year CRRs. The pooled CRR per extreme heat event day was 1.11 (95%CI 1.08-1.14). The estimated annual excess non-external-cause deaths attributable to heat waves ranged from -14 to 358, with a median of 121. Point estimates of heat wave-attributable deaths were greater than 0 in all years but one and were correlated with the number of heat wave days (r = 0.81). Average excess non-external-cause deaths associated with extreme heat events were nearly 11-fold greater than hyperthermia deaths. Estimated extreme heat event-associated excess deaths may be a useful indicator of the impact of extreme heat events, but single-year estimates are currently too imprecise to identify short-term changes in risk.

  3. Identifying Population Vulnerable to Extreme Heat Events in San Jose, California.

    Science.gov (United States)

    Rivera, A. L.

    2016-12-01

    The extreme heat days not only make cities less comfortable for living but also they are associated with increased morbidity and mortality. Mapping studies have demonstrated spatial variability in heat vulnerability. A study conducted between 2000 and 2011 in New York City shows that deaths during heat waves was more likely to occur in black individuals, at home in census tracts which received greater public assistance. This map project intends to portray areas in San Jose California that are vulnerable to extreme heat events. The variables considered to build a vulnerability index are: land surface temperature, vegetated areas (NDVI), and people exposed to these area (population density).

  4. Acclimatization to extreme heat

    Science.gov (United States)

    Warner, M. E.; Ganguly, A. R.; Bhatia, U.

    2017-12-01

    Heat extremes throughout the globe, as well as in the United States, are expected to increase. These heat extremes have been shown to impact human health, resulting in some of the highest levels of lives lost as compared with similar natural disasters. But in order to inform decision makers and best understand future mortality and morbidity, adaptation and mitigation must be considered. Defined as the ability for individuals or society to change behavior and/or adapt physiologically, acclimatization encompasses the gradual adaptation that occurs over time. Therefore, this research aims to account for acclimatization to extreme heat by using a hybrid methodology that incorporates future air conditioning use and installation patterns with future temperature-related time series data. While previous studies have not accounted for energy usage patterns and market saturation scenarios, we integrate such factors to compare the impact of air conditioning as a tool for acclimatization, with a particular emphasis on mortality within vulnerable communities.

  5. Spatial vulnerability of Australian urban populations to extreme heat events

    Science.gov (United States)

    Loughnan, Margaret; Tapper, Nigel; Phan, Thu; Lynch, Kellie; McInnes, Judith

    2013-04-01

    Extreme heat events pose a risk to the health of all individuals, especially the elderly and the chronically ill, and are associated with an increased demand for healthcare services. In order to address this problem, policy makers' need information about temperatures above which mortality and morbidity of the exposed population is likely to increase, where the vulnerable groups in the community are located, and how the risks from extreme heat events are likely to change in the future. This study identified threshold temperatures for all Australian capital cities, developed a spatial index of population vulnerability, and used climate model output to predict changes in the number of days exceeding temperature thresholds in the future, as well as changes in risk related to changes in urban density and an ageing population. The study has shown that daily maximum and minimum temperatures from the Bureau of Meteorology forecasts can be used to calculate temperature thresholds for heat alert days. The key risk factors related to adverse health outcomes were found to be areas with intense urban heat islands, areas with higher proportions of older people, and areas with ethnic communities. Maps of spatial vulnerability have been developed to provide information to assist emergency managers, healthcare professionals, and ancillary services develop heatwave preparedness plans at a local scale that target vulnerable groups and address heat-related health risks. The numbers of days exceeding current heat thresholds are predicted to increase over the next 20 to 40 years in all Australian capital cities.

  6. Temporal changes in morality attributed to heat extremes for 57 cities in Northeast Asia.

    Science.gov (United States)

    Lee, Whanhee; Choi, Hayon Michelle; Kim, Dahye; Honda, Yasushi; Guo, Yue-Liang Leon; Kim, Ho

    2018-03-01

    Recent studies have reported that heat-related mortality decreased by adaptation during decades. However, since the frequency of extreme heat events is increasing, it is difficult to conclude with certainty that the heat mortality burden is decreasing. To examine temporal changes in mortality attributed to heat extremes in Northeast Asia, we collected temperature and mortality data covering the years 1972-2012 from 57 cities of 3 countries (Taiwan, Korea, and Japan) in Northeast Asia. Poisson regression curves were fitted to the data from each city. The temporal changes in heat-mortality association were estimated with a time-varying distributed lag non-linear model. Heat extremes were defined as temperatures greater than the 97.5th percentiles of city-specific average temperatures. Attributable deaths were calculated considering temporal variations in exposure and relative risk. The estimates were then pooled through meta-analysis. The results show that the mortality risk on extreme heat days declined during the study period in all countries. However, as summer temperatures in Japan have shown more heat extremes over time, the mortality risk attributed to heat increased during 2003-2012 (0.32%) compared with 1972-1981 (0.19%). Thus, to assess the total health burden due to heat extremes related to climate change, public health strategies should focus on the temporal variation in heat-mortality association as well as changes in the distribution of heat extremes overtime. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Amplification of heat extremes by plant CO2 physiological forcing.

    Science.gov (United States)

    Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S

    2018-03-15

    Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.

  8. Increased hospital admissions associated with extreme-heat exposure in King County, Washington, 1990-2010.

    Science.gov (United States)

    Isaksen, Tania Busch; Yost, Michael G; Hom, Elizabeth K; Ren, You; Lyons, Hilary; Fenske, Richard A

    2015-01-01

    Increased morbidity and mortality have been associated with extreme heat events, particularly in temperate climates. Few epidemiologic studies have considered the impact of extreme heat events on hospitalization rates in the Pacific Northwest region. This study quantifies the historic (May to September 1990-2010) heat-morbidity relationship in the most populous Pacific Northwest County, King County, Washington. A relative risk (RR) analysis was used to explore the association between heat and all non-traumatic hospitalizations on 99th percentile heat days, whereas a time series analysis using a piecewise linear model approximation was used to estimate the effect of heat intensity on hospitalizations, adjusted for temporal trends and day of the week. A non-statistically significant 2% [95% CI: 1.02 (0.98, 1.05)] increase in hospitalization risk, on a heat day vs. a non-heat day, was noted for all-ages and all non-traumatic causes. When considering the effect of heat intensity on admissions, we found a statistically significant 1.59% (95% CI: 0.9%, 2.29%) increase in admissions per degree increase in humidex above 37.4°C. Admissions stratified by cause and age produced statistically significant results with both relative risk and time series analyses for nephritis and nephrotic syndromes, acute renal failure, and natural heat exposure hospitalizations. This study demonstrates that heat, expressed as humidex, is associated with increased hospital admissions. When stratified by age and cause of admission, the non-elderly age groups (<85 years) experience significant risk for nephritis and nephrotic syndromes, acute renal failure, natural heat exposure, chronic obstructive pulmonary disease, and asthma hospitalizations.

  9. Frequently Asked Questions (FAQ) about Extreme Heat

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  10. Quantifying enhancement in aerosol radiative forcing during 'extreme aerosol days' in summer at Delhi National Capital Region, India.

    Science.gov (United States)

    Kumar, Sumant; Dey, Sagnik; Srivastava, Arun

    2016-04-15

    Changes in aerosol characteristics (spectral aerosol optical depth, AOD and composition) are examined during the transition from 'relatively clean' to 'extreme' aerosol days in the summer of 2012 at Delhi National Capital Region (NCR), India. AOD smaller than 0.54 (i.e. 12-year mean AOD-1σ) represents 'relatively clean' days in Delhi during the summer. 'Extreme' days are defined by the condition when AOD0.5 exceeds 12-year mean AOD+1 standard deviation (σ). Mean (±1σ) AOD increases to 1.2±0.12 along with a decrease of Angstrom Exponent from 0.54±0.09 to 0.22±0.12 during the 'extreme' days. Aerosol composition is inferred by fixing the number concentrations of various individual species through iterative tweaking when simulated (following Mie theory) AOD spectrum matches with the measured one. Contribution of coarse mode dust to aerosol mass increased from 76.8% (relatively clean) to 96.8% (extreme events), while the corresponding contributions to AOD0.5 increased from 35.0% to 70.8%. Spectrally increasing single scattering albedo (SSA) and CALIPSO aerosol sub-type information support the dominant presence of dust during the 'extreme' aerosol days. Aerosol direct radiative forcing (ADRF) at the top-of-the-atmosphere increases from 21.2Wm(-2) (relatively clean) to 56.6Wm(-2) (extreme), while the corresponding change in surface ADRF is from -99.5Wm(-2) to -153.5Wm(-2). Coarse mode dust contributes 60.3% of the observed surface ADRF during the 'extreme' days. On the contrary, 0.4% mass fraction of black carbon (BC) translates into 13.1% contribution to AOD0.5 and 33.5% to surface ADRF during the 'extreme' days. The atmospheric heating rate increased by 75.1% from 1.7K/day to 2.96K/day during the 'extreme' days. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. It's the Heat AND the Humidity -- Assessment of Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health

    Science.gov (United States)

    Crosson, William L; Al-Hamdan, Mohammad Z.; Economou, Sigrid, A.; Estes, Maurice G.; Estes, Sue M.; Puckett, Mark; Quattrochi, Dale A

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. In a NASA-funded project supporting the National Climate Assessment, we are providing historical and future measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The project s emphasis is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM output, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons, 2040 and 2090, are the focus of future assessments; these are compared to the recent past period of 1981-2000. We are characterizing regional-scale temperature and humidity conditions using GCM output for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM output have been analyzed to develop a heat stress climatology based on statistics of extreme heat indicators. Differences between the two future and past periods have been used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes, combined with hourly historical meteorological data at a spatial scale (12 km) much finer than that of GCMs, enable us to create future climate realizations, from which we compute the daily heat stress measures and related spatially-specific climatological fields. These include the mean annual

  12. Increased mortality associated with extreme-heat exposure in King County, Washington, 1980-2010

    Science.gov (United States)

    Isaksen, Tania Busch; Fenske, Richard A.; Hom, Elizabeth K.; Ren, You; Lyons, Hilary; Yost, Michael G.

    2016-01-01

    Extreme heat has been associated with increased mortality, particularly in temperate climates. Few epidemiologic studies have considered the Pacific Northwest region in their analyses. This study quantified the historical (May to September, 1980-2010) heat-mortality relationship in the most populous Pacific Northwest County, King County, Washington. A relative risk (RR) analysis was used to explore the relationship between heat and all-cause mortality on 99th percentile heat days, while a time series analysis, using a piece-wise linear model fit, was used to estimate the effect of heat intensity on mortality, adjusted for temporal trends. For all ages, all causes, we found a 10 % (1.10 (95 % confidence interval (CI), 1.06, 1.14)) increase in the risk of death on a heat day versus non-heat day. When considering the intensity effect of heat on all-cause mortality, we found a 1.69 % (95 % CI, 0.69, 2.70) increase in the risk of death per unit of humidex above 36.0 °C. Mortality stratified by cause and age produced statistically significant results using both types of analyses for: all-cause, non-traumatic, circulatory, cardiovascular, cerebrovascular, and diabetes causes of death. All-cause mortality was statistically significantly modified by the type of synoptic weather type. These results demonstrate that heat, expressed as humidex, is associated with increased mortality on heat days, and that risk increases with heat's intensity. While age was the only individual-level characteristic found to modify mortality risks, statistically significant increases in diabetes-related mortality for the 45-64 age group suggests that underlying health status may contribute to these risks.

  13. Exposure to extreme heat and precipitation events associated with increased risk of hospitalization for asthma in Maryland, U.S.A.

    Science.gov (United States)

    Soneja, Sutyajeet; Jiang, Chengsheng; Fisher, Jared; Upperman, Crystal Romeo; Mitchell, Clifford; Sapkota, Amir

    2016-04-27

    Several studies have investigated the association between asthma exacerbations and exposures to ambient temperature and precipitation. However, limited data exists regarding how extreme events, projected to grow in frequency, intensity, and duration in the future in response to our changing climate, will impact the risk of hospitalization for asthma. The objective of our study was to quantify the association between frequency of extreme heat and precipitation events and increased risk of hospitalization for asthma in Maryland between 2000 and 2012. We used a time-stratified case-crossover design to examine the association between exposure to extreme heat and precipitation events and risk of hospitalization for asthma (ICD-9 code 493, n = 115,923). Occurrence of extreme heat events in Maryland increased the risk of same day hospitalization for asthma (lag 0) by 3 % (Odds Ratio (OR): 1.03, 95 % Confidence Interval (CI): 1.00, 1.07), with a considerably higher risk observed for extreme heat events that occur during summer months (OR: 1.23, 95 % CI: 1.15, 1.33). Likewise, summertime extreme precipitation events increased the risk of hospitalization for asthma by 11 % in Maryland (OR: 1.11, 95 % CI: 1.06, 1.17). Across age groups, increase in risk for asthma hospitalization from exposure to extreme heat event during the summer months was most pronounced among youth and adults, while those related to extreme precipitation event was highest among ≤4 year olds. Exposure to extreme heat and extreme precipitation events, particularly during summertime, is associated with increased risk of hospitalization for asthma in Maryland. Our results suggest that projected increases in frequency of extreme heat and precipitation event will have significant impact on public health.

  14. Climate extremes in urban area and their impact on human health: the summer heat waves

    Science.gov (United States)

    Baldi, Marina

    2014-05-01

    In the period 1951-2012 the average global land and ocean temperature has increased by approximately 0.72°C [0.49-0.89] when described by a linear trend, and is projected to rapidly increase. Each of the past three decades has been warmer than all the previous decades, with the decade of the 2000's as the warmest, and, since 1880, nine of the ten warmest years are in the 21st century, the only exception being 1998, which was warmed by the strongest El Niño event of the past century. In parallel an increase in the frequency and intensity of extremely hot days is detected with differences at different scales, which represent an health risk specially in largely populated areas as documented for several regions in the world including the Euro-Mediterranean region. If it is still under discussion if heat wave episodes are a direct result of the warming of the lower troposphere, or if, more likely, they are a regional climate event, however heat episodes have been studied in order to define their correlation with large scale atmospheric patterns and with changes in the regional circulation. Whatever the causes and the spatio-temporal extension of the episodes, epidemiological studies show that these conditions pose increasing health risks inducing heat-related diseases including hyperthermia and heat stress, cardiovascular and respiratory illnesses in susceptible individuals with a significant increase in morbidity and mortality especially in densely populated urban areas. In several Mediterranean cities peaks of mortality associated with extremely high temperature (with simultaneous high humidity levels) have been documented showing that, in some cases, a large increase in daily mortality has been reached compared to the average for the period. The number of fatalities during the summer 2003 heat wave in Europe was estimated to largely exceed the average value of some between 22000 and 50000 cases. In the same summer it was also unusually hot across much of Asia, and

  15. Future Extreme Heat Scenarios to Enable the Assessment of Climate Impacts on Public Health over the Coterminous U.S.

    Science.gov (United States)

    Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.

    2013-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km), to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices

  16. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  17. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany

    Science.gov (United States)

    Lüttger, Andrea B.; Feike, Til

    2018-04-01

    Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901-1930, 1931-1960, 1961-1990 to 2001-2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991-2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981-1990, 1991-2000, and 2001-2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong

  18. Climate impacts on extreme energy consumption of different types of buildings.

    Science.gov (United States)

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  19. Optimal scheduling for electric heat booster under day-ahead electricity and heat pricing

    DEFF Research Database (Denmark)

    Cai, Hanmin; You, Shi; Bindner, Henrik W.

    2017-01-01

    Multi-energy system (MES) operation calls for active management of flexible resources across energy sectors to improve efficiency and meet challenging environmental targets. Electric heat booster, a solution for Domestic Hot Water (DHW) preparation under Low-Temperature-District-Heating (LTDH......) context, is identified as one of aforementioned flexible resources for electricity and heat sectors. This paper extends the concept of optimal load scheduling under day-ahead pricing from electricity sector only to both electricity and heat sectors. A case study constructing day-ahead energy prices...

  20. Climate impacts on extreme energy consumption of different types of buildings.

    Directory of Open Access Journals (Sweden)

    Mingcai Li

    Full Text Available Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382. The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  1. Historic and future increase in the global land area affected by monthly heat extremes

    International Nuclear Information System (INIS)

    Coumou, Dim; Robinson, Alexander

    2013-01-01

    Climatic warming of about 0.5 ° C in the global mean since the 1970s has strongly increased the occurrence-probability of heat extremes on monthly to seasonal time scales. For the 21st century, climate models predict more substantial warming. Here we show that the multi-model mean of the CMIP5 (Coupled Model Intercomparison Project) climate models accurately reproduces the evolution over time and spatial patterns of the historically observed increase in monthly heat extremes. For the near-term (i.e., by 2040), the models predict a robust, several-fold increase in the frequency of such heat extremes, irrespective of the emission scenario. However, mitigation can strongly reduce the number of heat extremes by the second half of the 21st century. Unmitigated climate change causes most (>50%) continental regions to move to a new climatic regime with the coldest summer months by the end of the century substantially hotter than the hottest experienced today. We show that the land fraction experiencing extreme heat as a function of global mean temperature follows a simple cumulative distribution function, which depends only on natural variability and the level of spatial heterogeneity in the warming. (letter)

  2. Changes in the timing, length and heating degree days of the heating season in central heating zone of China

    Science.gov (United States)

    Shen, Xiangjin; Liu, Binhui

    2016-01-01

    Climate change affects the demand for energy consumption, especially for heating and cooling buildings. Using daily mean temperature (Tmean) data, this study analyzed the spatiotemporal changes of the starting date for heating (HS), ending date for heating (HE), length (HL) and heating degree day (HDD) of the heating season in central heating zone of China. Over China’s central heating zone, regional average HS has become later by 0.97 day per decade and HE has become earlier by 1.49 days per decade during 1960–2011, resulting in a decline of HL (−2.47 days/decade). Regional averaged HDD decreased significantly by 63.22 °C/decade, which implies a decreasing energy demand for heating over the central heating zone of China. Spatially, there are generally larger energy-saving rate in the south, due to low average HDD during the heating season. Over China’s central heating zone, Tmean had a greater effect on HL in warm localities and a greater effect on HDD in cold localities. We project that the sensitivity of HL (HDD) to temperature change will increase (decrease) in a warmer climate. These opposite sensitivities should be considered when we want to predict the effects of climate change on heating energy consumption in China in the future. PMID:27651063

  3. Extreme heat in India and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    G. J. van Oldenborgh

    2018-01-01

    Full Text Available On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India – a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data. Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs, these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse

  4. Extreme heat in India and anthropogenic climate change

    Science.gov (United States)

    van Oldenborgh, Geert Jan; Philip, Sjoukje; Kew, Sarah; van Weele, Michiel; Uhe, Peter; Otto, Friederike; Singh, Roop; Pai, Indrani; Cullen, Heidi; AchutaRao, Krishna

    2018-01-01

    On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India - a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data). Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs), these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse, whereas decreased air pollution

  5. Extreme heat and cultural and linguistic minorities in Australia: perceptions of stakeholders.

    Science.gov (United States)

    Hansen, Alana; Nitschke, Monika; Saniotis, Arthur; Benson, Jill; Tan, Yan; Smyth, Val; Wilson, Leigh; Han, Gil-Soo; Mwanri, Lillian; Bi, Peng

    2014-06-03

    Despite acclimatisation to hot weather, many individuals in Australia are adversely affected by extreme heat each summer, placing added pressure on the health sector. In terms of public health, it is therefore important to identify vulnerable groups, particularly in the face of a warming climate. International evidence points to a disparity in heat-susceptibility in certain minority groups, although it is unknown if this occurs in Australia. With cultural diversity increasing, the aim of this study was to explore how migrants from different cultural backgrounds and climate experiences manage periods of extreme heat in Australia. A qualitative study was undertaken across three Australian cities, involving interviews and focus groups with key informants including stakeholders involved in multicultural service provision and community members. Thematic analysis and a framework approach were used to analyse the data. Whilst migrants and refugees generally adapt well upon resettlement, there are sociocultural barriers encountered by some that hinder environmental adaptation to periods of extreme heat in Australia. These barriers include socioeconomic disadvantage and poor housing, language barriers to the access of information, isolation, health issues, cultural factors and lack of acclimatisation. Most often mentioned as being at risk were new arrivals, people in new and emerging communities, and older migrants. With increasing diversity within populations, it is important that the health sector is aware that during periods of extreme heat there may be disparities in the adaptive capacity of minority groups, underpinned by sociocultural and language-based vulnerabilities in migrants and refugees. These factors need to be considered by policymakers when formulating and disseminating heat health strategies.

  6. Connecting people and place: a new framework for reducing urban vulnerability to extreme heat

    International Nuclear Information System (INIS)

    Wilhelmi, Olga V; Hayden, Mary H

    2010-01-01

    Climate change is predicted to increase the intensity and negative impacts of urban heat events, prompting the need to develop preparedness and adaptation strategies that reduce societal vulnerability to extreme heat. Analysis of societal vulnerability to extreme heat events requires an interdisciplinary approach that includes information about weather and climate, the natural and built environment, social processes and characteristics, interactions with stakeholders, and an assessment of community vulnerability at a local level. In this letter, we explore the relationships between people and places, in the context of urban heat stress, and present a new research framework for a multi-faceted, top-down and bottom-up analysis of local-level vulnerability to extreme heat. This framework aims to better represent societal vulnerability through the integration of quantitative and qualitative data that go beyond aggregate demographic information. We discuss how different elements of the framework help to focus attention and resources on more targeted health interventions, heat hazard mitigation and climate adaptation strategies.

  7. Extreme heat and cultural and linguistic minorities in Australia: perceptions of stakeholders

    Science.gov (United States)

    2014-01-01

    Background Despite acclimatisation to hot weather, many individuals in Australia are adversely affected by extreme heat each summer, placing added pressure on the health sector. In terms of public health, it is therefore important to identify vulnerable groups, particularly in the face of a warming climate. International evidence points to a disparity in heat-susceptibility in certain minority groups, although it is unknown if this occurs in Australia. With cultural diversity increasing, the aim of this study was to explore how migrants from different cultural backgrounds and climate experiences manage periods of extreme heat in Australia. Methods A qualitative study was undertaken across three Australian cities, involving interviews and focus groups with key informants including stakeholders involved in multicultural service provision and community members. Thematic analysis and a framework approach were used to analyse the data. Results Whilst migrants and refugees generally adapt well upon resettlement, there are sociocultural barriers encountered by some that hinder environmental adaptation to periods of extreme heat in Australia. These barriers include socioeconomic disadvantage and poor housing, language barriers to the access of information, isolation, health issues, cultural factors and lack of acclimatisation. Most often mentioned as being at risk were new arrivals, people in new and emerging communities, and older migrants. Conclusions With increasing diversity within populations, it is important that the health sector is aware that during periods of extreme heat there may be disparities in the adaptive capacity of minority groups, underpinned by sociocultural and language-based vulnerabilities in migrants and refugees. These factors need to be considered by policymakers when formulating and disseminating heat health strategies. PMID:24889099

  8. Extreme Heat: A Prevention Guide to Promote Your Personal Health and Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  9. Extreme Weather Impacts on Maize Yield: The Case of Shanxi Province in China

    Directory of Open Access Journals (Sweden)

    Taoyuan Wei

    2016-12-01

    Full Text Available Extreme weather can have negative impacts on crop production. In this study, we statistically estimate the impacts of dry days, heat waves, and cold days on maize yield based on household survey data from 1993 to 2011 in ten villages of Shanxi province, China. Our results show that dry days, heat waves, and cold days have negative effects on maize yield, although these effects are marginal if these extreme events do not increase dramatically. Specifically, a one percent increase in extreme-heat-degree-days and consecutive-dry-days results in a maize yield declines of 0.2% and 0.07%, respectively. Maize yield also is reduced by 0.3% for cold days occurring during the growing season from May to September. However, these extreme events can increase dramatically in a warmer world and result in considerable reduction in maize yields. If all the historical temperatures in the villages are shifted up by 2 degrees Celsius, total impacts of these extreme events would lead to a reduction of maize yield by over 30 percent. The impacts may be underestimated since we did not exclude the offset effect of adaptation measures adopted by farmers to combat these extreme events.

  10. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010?2012

    OpenAIRE

    Bishop-Williams, Katherine E.; Berke, Olaf; Pearl, David L.; Hand, Karen; Kelton, David F.

    2015-01-01

    Background Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 ?C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat st...

  11. Day-to-night heat storage in greenhouses

    NARCIS (Netherlands)

    Seginer, Ido; Straten, van Gerrit; Beveren, van Peter J.M.

    2017-01-01

    Day-to-night heat storage in water tanks (buffers) is common practice in cold-climate greenhouses, where gas is burned during the day for carbon dioxide enrichment. In Part 1 of this study, an optimal control approach was outlined for such a system, the basic idea being that the virtual value

  12. Vulnerability to extreme heat and climate change: is ethnicity a factor?

    Science.gov (United States)

    Hansen, Alana; Bi, Linda; Saniotis, Arthur; Nitschke, Monika

    2013-07-29

    With a warming climate, it is important to identify sub-populations at risk of harm during extreme heat. Several international studies have reported that individuals from ethnic minorities are at increased risk of heat-related illness, for reasons that are not often discussed. The aim of this article is to investigate the underpinning reasons as to why ethnicity may be associated with susceptibility to extreme heat, and how this may be relevant to Australia's population. Drawing upon literary sources, the authors provide commentary on this important, yet poorly understood area of heat research. Social and economic disparities, living conditions, language barriers, and occupational exposure are among the many factors contributing to heat-susceptibility among minority ethnic groups in the United States. However, there is a knowledge gap about socio-cultural influences on vulnerability in other countries. More research needs to be undertaken to determine the effects of heat on tourists, migrants, and refugees who are confronted with a different climatic environment. Thorough epidemiological investigations of the association between ethnicity and heat-related health outcomes are required, and this could be assisted with better reporting of nationality data in health statistics. Climate change adaptation strategies in Australia and elsewhere need to be ethnically inclusive and cognisant of an upward trend in the proportion of the population who are migrants and refugees.

  13. Vulnerability to extreme heat and climate change: is ethnicity a factor?

    Directory of Open Access Journals (Sweden)

    Alana Hansen

    2013-07-01

    Full Text Available Background: With a warming climate, it is important to identify sub-populations at risk of harm during extreme heat. Several international studies have reported that individuals from ethnic minorities are at increased risk of heat-related illness, for reasons that are not often discussed. Objective: The aim of this article is to investigate the underpinning reasons as to why ethnicity may be associated with susceptibility to extreme heat, and how this may be relevant to Australia's population. Design: Drawing upon literary sources, the authors provide commentary on this important, yet poorly understood area of heat research. Results: Social and economic disparities, living conditions, language barriers, and occupational exposure are among the many factors contributing to heat-susceptibility among minority ethnic groups in the United States. However, there is a knowledge gap about socio-cultural influences on vulnerability in other countries. Conclusion: More research needs to be undertaken to determine the effects of heat on tourists, migrants, and refugees who are confronted with a different climatic environment. Thorough epidemiological investigations of the association between ethnicity and heat-related health outcomes are required, and this could be assisted with better reporting of nationality data in health statistics. Climate change adaptation strategies in Australia and elsewhere need to be ethnically inclusive and cognisant of an upward trend in the proportion of the population who are migrants and refugees.

  14. Strategies to Reduce the Harmful Effects of Extreme Heat Events: A Four-City Study

    Directory of Open Access Journals (Sweden)

    Jalonne L. White-Newsome

    2014-02-01

    Full Text Available Extreme heat events (EHEs are becoming more intense, more frequent and longer lasting in the 21st century. These events can disproportionately impact the health of low-income, minority, and urban populations. To better understand heat-related intervention strategies used by four U.S. cities, we conducted 73 semi-structured interviews with government and non-governmental organization leaders representing public health, general social services, emergency management, meteorology, and the environmental planning sectors in Detroit, MI; New York City, NY; Philadelphia, PA and Phoenix, AZ—cities selected for their diverse demographics, climates, and climate adaptation strategies. We identified activities these leaders used to reduce the harmful effects of heat for residents in their city, as well as the obstacles they faced and the approaches they used to evaluate these efforts. Local leaders provided a description of how local context (e.g., climate, governance and city structure impacted heat preparedness. Despite the differences among study cities, political will and resource access were critical to driving heat-health related programming. Upon completion of our interviews, we convened leaders in each city to discuss these findings and their ongoing efforts through day-long workshops. Our findings and the recommendations that emerged from these workshops could inform other local or national efforts towards preventing heat-related morbidity and mortality.

  15. Radiant heat increases piglets’ use of the heated creep area on the critical days after birth

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Thodberg, Karen; Pedersen, Lene Juul

    2017-01-01

    The aim of the present study was to investigate how piglets’ use of a creep area is affected by using radiant heat compared to an incandescent light bulb. It was hypothesised that radiant heat would increase the use of the creep area. Twenty litters were randomly assigned to one of two heat sources...... in the creep area: (1) an incandescent light bulb (STANDARD, n=10) or (2) a radiant heat source (RADIANT, n=10) with five of each type of heat source in each of two batches. Observations on piglets’ position in the pen were made by scan sampling every ten minutes in a 4-hour period from 1100 to 1500 h on day 1......–7, 14 and 21 post partum. A higher percentage of piglets in the creep area was seen for RADIANT litters compared to STANDARD litters on day 2 (P=0.002) and day 3 (P=0.005), and percentage of piglets in the creep area increased for RADIANT litters from day 1 to 2 (P

  16. Extreme heat waves under 1.5 °C and 2 °C global warming

    Science.gov (United States)

    Dosio, Alessandro; Mentaschi, Lorenzo; Fischer, Erich M.; Wyser, Klaus

    2018-05-01

    Severe, extreme, and exceptional heat waves, such as those that occurred over the Balkans (2007), France (2003), or Russia (2010), are associated with increased mortality, human discomfort and reduced labour productivity. Based on the results of a very high-resolution global model, we show that, even at 1.5 °C warming, a significant increase in heat wave magnitude is expected over Africa, South America, and Southeast Asia. Compared to a 1.5 °C world, under 2 °C warming the frequency of extreme heat waves would double over most of the globe. In a 1.5 °C world, 13.8% of the world population will be exposed to severe heat waves at least once every 5 years. This fraction becomes nearly three times larger (36.9%) under 2 °C warming, i.e. a difference of around 1.7 billion people. Limiting global warming to 1.5 °C will also result in around 420 million fewer people being frequently exposed to extreme heat waves, and ~65 million to exceptional heat waves. Nearly 700 million people (9.0% of world population) will be exposed to extreme heat waves at least once every 20 years in a 1.5 °C world, but more than 2 billion people (28.2%) in a 2 °C world. With current emission trends threatening even the 2 °C target, our study is helpful to identify regions where limiting the warming to 1.5 °C would have the strongest benefits in reducing population exposure to extreme heat.

  17. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  18. Heat-shield for Extreme Entry Environment Technology (HEEET) Development Status

    Science.gov (United States)

    Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter

    2016-01-01

    The Heat shield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD and SMD co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASA's high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI managed mission cost (PIMMC) for investigations utilizing the Heat Shield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment. The HEEET ablative TPS utilizes 3D weaving technology to manufacture a dual layer material architecture. The 3-D weaving allows for flat panels to be woven. The dual layer consists of a top layer designed to withstand the extreme external environment while the inner or insulating layer by design, is designed to achieve low thermal conductivity, and it keeps the heat from conducting towards the structure underneath. Both arc jet testing combined with material properties have been used to develop thermal response models that allows for comparison of performance with heritage carbon phenolic. A 50% mass efficiency is achieved by the dual layer construct compared to carbon phenolic for a broad range of missions both to Saturn and Venus. The 3-D woven flat preforms are molded to achieve the shape as they are compliant and then resin infusion with curing forms a rigid panels. These panels are then bonded on to the aeroshell structure. Gaps

  19. Extreme Ritualistic Alcohol Consumption among College Students on Game Day

    Science.gov (United States)

    Glassman, Tavis J.; Dodd, Virginia J.; Sheu, Jiunn-Jye; Rienzo, Barbara A.; Wagenaar, Alex C.

    2010-01-01

    Alcohol use and the related consequences associated with college football games are a serious public health issue for university communities. Objective: Examining "Extreme Ritualistic Alcohol Consumption" (ERAC), defined as consuming 10 or more drinks on game day for a male, and 8 or more drinks for a female, is the focus of this study.…

  20. Raising Awareness on Heat Related Mortality in Bangladesh

    Science.gov (United States)

    Arrighi, J.; Burkart, K.; Nissan, H.

    2017-12-01

    Extreme heat is the leading cause of weather-related deaths in the United States and Europe, and was responsible for four of the ten deadliest natural disasters worldwide in 2015. Near the tropics, where hot weather is considered the norm, perceived heat risk is often low, but recent heat waves in South Asia have caught the attention of the health community, policy-makers and the public. In a recent collaboration between the Red Cross Red Crescent Climate Centre, Columbia University and BBC Media Action the effects of extreme heat in Bangladesh were analyzed and the findings were subsequently used as a basis to raise awareness about the impacts of extreme heat on the most vulnerable, to the general public. Analysis of excess heat in Bangladesh between 2003 and 2007 showed that heatwaves occur between April and June with most extreme heat events occurring in May. Between 2003 and 2007 it is estimated that an average of 1500 people died per year due to heatwaves lasting three days or longer, with an eight-day heatwave in 2005 resulting in a minimum of 3,800 excess deaths. Utilizing these findings BBC Media Action launched an online communications campaign in May 2017 ultimately reaching approximately 3.9 million people with information on reducing the impacts of extreme heat. This presentation will highlight key findings from the study of heat related mortality in Bangladesh as well as highlight the benefit of collaboration between scientists and communicators for increasing awareness about the effects of extreme heat on the most vulnerable.

  1. Vulnerability to extreme-heat-associated hospitalization in three counties in Michigan, USA, 2000-2009

    Science.gov (United States)

    Ogbomo, Adesuwa S.; Gronlund, Carina J.; O'Neill, Marie S.; Konen, Tess; Cameron, Lorraine; Wahl, Robert

    2017-05-01

    With climate change, extreme heat (EH) events are increasing, so it is important to understand who is vulnerable to heat-associated morbidity. We determined the association between EH and hospitalizations for all natural causes; cardiovascular, respiratory, and renal diseases; diabetes mellitus; and acute myocardial infarction in Michigan, USA, at different intensities and durations. We assessed confounding by ozone and how individual characteristics and health insurance payer (a proxy for income) modified these associations. We obtained Michigan Inpatient Database, National Climatic Data Center, and US Environmental Protection Agency ozone data for May-September, 2000-2009 for three Michigan counties. We employed a case-crossover design and modeled EH as an indicator for temperature above the 95th, 97th, or 99th percentile thresholds for 1, 2, 3, or 4 days. We examined effect modification by patient age, race, sex, and health insurance payer and pooled the county results. Among non-whites, the pooled odds ratio for hospitalization on EH (97th percentile threshold) vs. non-EH days for renal diseases was 1.37 (95 % CI = 1.13-1.66), which increased with increasing EH intensity, but was null among whites (OR = 1.00, 95 % CI = 0.81, 1.25). We observed a null association between EH and cardiovascular hospitalization. EH (99th percentile threshold) was associated with myocardial infarction hospitalizations. Confounding by ozone was minimal. EH was associated with hospitalizations for renal disease among non-whites. This information on vulnerability to heat-associated morbidity helps characterize the public health burden of EH and target interventions including patient education.

  2. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  3. Impacts of extreme heat on emergency medical service calls in King County, Washington, 2007-2012: relative risk and time series analyses of basic and advanced life support.

    Science.gov (United States)

    Calkins, Miriam M; Isaksen, Tania Busch; Stubbs, Benjamin A; Yost, Michael G; Fenske, Richard A

    2016-01-28

    Exposure to excessive heat kills more people than any other weather-related phenomenon, aggravates chronic diseases, and causes direct heat illness. Strong associations between extreme heat and health have been identified through increased mortality and hospitalizations and there is growing evidence demonstrating increased emergency department visits and demand for emergency medical services (EMS). The purpose of this study is to build on an existing regional assessment of mortality and hospitalizations by analyzing EMS demand associated with extreme heat, using calls as a health metric, in King County, Washington (WA), for a 6-year period. Relative-risk and time series analyses were used to characterize the association between heat and EMS calls for May 1 through September 30 of each year for 2007-2012. Two EMS categories, basic life support (BLS) and advanced life support (ALS), were analyzed for the effects of heat on health outcomes and transportation volume, stratified by age. Extreme heat was model-derived as the 95th (29.7 °C) and 99th (36.7 °C) percentile of average county-wide maximum daily humidex for BLS and ALS calls respectively. Relative-risk analyses revealed an 8 % (95 % CI: 6-9 %) increase in BLS calls, and a 14 % (95 % CI: 9-20 %) increase in ALS calls, on a heat day (29.7 and 36.7 °C humidex, respectively) versus a non-heat day for all ages, all causes. Time series analyses found a 6.6 % increase in BLS calls, and a 3.8 % increase in ALS calls, per unit-humidex increase above the optimum threshold, 40.7 and 39.7 °C humidex respectively. Increases in "no" and "any" transportation were found in both relative risk and time series analyses. Analysis by age category identified significant results for all age groups, with the 15-44 and 45-64 year old age groups showing some of the highest and most frequent increases across health conditions. Multiple specific health conditions were associated with increased risk of an EMS call including abdominal

  4. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    Science.gov (United States)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  5. Global crop yield response to extreme heat stress under multiple climate change futures

    Science.gov (United States)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  6. Global crop yield response to extreme heat stress under multiple climate change futures

    International Nuclear Information System (INIS)

    Deryng, Delphine; Warren, Rachel; Conway, Declan; Ramankutty, Navin; Price, Jeff

    2014-01-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO 2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO 2 fertilization effects, could double global losses of maize yield (ΔY = −12.8 ± 6.7% versus − 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO 2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries. (paper)

  7. Characteristic changes in heat extremes over India in response to global warming using CMIP5 model simulations

    Science.gov (United States)

    Kundeti, K.; Chang, H. H.; T V, L. K.; Desamsetti, S.; Dandi, A. R.

    2017-12-01

    A critical aspect of human-induced climate change is how it will affect climatological mean and extremes around the world. Summer season surface climate of the Indian sub continent is characterized by hot and humid conditions. The global warming can have profound impact on the mean climate as well as extreme weather events over India that may affect both natural and human systems significantly. In this study we examine very direct measure of the impact of climate change on human health and comfort. The Heat stress Index is the measure of combined effects of temperature and atmospheric moisture on the ability of the human body to dissipate heat. It is important to assess the future changes in the seasonal mean of heat stress index, it is also desirable to know how the future holds when it comes to extremes in temperature for a country like India where so much of outdoor activities happen both in the onshore/offshore energy sectors, extensive construction activities. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in the present and develops future climate scenarios. The changes in heat extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCP's (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. In view of this, we provide the expected future changes in the seasonal mean heat stress indices and also the frequency of heat stress exceeding a certain threshold relevant to Inida. Besides, we provide spatial maps of expected future changes in the heat stress index derived as a function of daily mean temperature and relative humidity and representative of human comfort having a direct bearing on the human activities. The observations show an increase in heat extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of heat extremes

  8. Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity.

    Science.gov (United States)

    Gagnon, Daniel; Romero, Steven A; Cramer, Matthew N; Kouda, Ken; Poh, Paula Y S; Ngo, Hai; Jay, Ollie; Crandall, Craig G

    2017-11-01

    We examined the effect of electric fan use on cardiovascular and thermoregulatory responses of nine young (26 ± 3 yr) and nine aged (68 ± 4 yr) adults exposed to extreme heat and humidity. While resting at a temperature of 42°C, relative humidity increased from 30% to 70% in 2% increments every 5 min. On randomized days, the protocol was repeated without or with fan use. HR, core (Tcore) and mean skin (Tsk) temperatures were measured continuously. Whole-body sweat loss was measured from changes in nude body weight. Other measures of cardiovascular (cardiac output), thermoregulatory (local cutaneous and forearm vascular conductance, local sweat rate), and perceptual (thermal and thirst sensations) responses were also examined. When averaged over the entire protocol, fan use resulted in a small reduction of HR (-2 bpm, 95% confidence interval [CI], -8 to 3), and slightly greater Tcore (+0.05°C; 95% CI, -0.13 to 0.23) and Tsk (+0.03°C; 95% CI, -0.36 to 0.42) in young adults. In contrast, fan use resulted in greater HR (+5 bpm; 95% CI, 0-10), Tcore (+0.20°C; 95% CI, 0.00-0.41), and Tsk (+0.47°C; 95% CI, 0.18-0.76) in aged adults. A greater whole-body sweat loss during fan use was observed in young (+0.2 kg; 95% CI, -0.2 to 0.6) but not aged (0.0 kg; 95% CI, -0.2 to 0.2) adults. Greater local sweat rate and cutaneous vascular conductance were observed with fan use in aged adults. Other measures of cardiovascular, thermoregulatory, and perceptual responses were unaffected by fan use in both groups. During extreme heat and humidity, fan use elevates physiological strain in aged, but not young, adults.

  9. The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: a case crossover analysis.

    Science.gov (United States)

    Wilson, Leigh Ann; Morgan, Geoffrey Gerard; Hanigan, Ivan Charles; Johnston, Fay H; Abu-Rayya, Hisham; Broome, Richard; Gaskin, Clive; Jalaludin, Bin

    2013-11-15

    This study examined the association between unusually high temperature and daily mortality (1997-2007) and hospital admissions (1997-2010) in the Sydney Greater Metropolitan Region (GMR) to assist in the development of targeted health programs designed to minimise the public health impact of extreme heat. Sydney GMR was categorized into five climate zones. Heat-events were defined as severe or extreme. Using a time-stratified case-crossover design with a conditional logistic regression model we adjusted for influenza epidemics, public holidays, and climate zone. Odds ratios (OR) and 95% confidence intervals were estimated for associations between daily mortality and hospital admissions with heat-event days compared to non-heat event days for single and three day heat-events. All-cause mortality overall had similar magnitude associations with single day and three day extreme and severe events as did all cardiovascular mortality. Respiratory mortality was associated with single day and three day severe events (95th percentile, lag0: OR = 1.14; 95%CI: 1.04 to 1.24). Diabetes mortality had similar magnitude associations with single day and three day severe events (95th percentile, lag0: OR = 1.22; 95%CI: 1.03 to 1.46) but was not associated with extreme events. Hospital admissions for heat related injuries, dehydration, and other fluid disorders were associated with single day and three day extreme and severe events. Contrary to our findings for mortality, we found inconsistent and sometimes inverse associations for extreme and severe events with cardiovascular disease and respiratory disease hospital admissions. Controlling for air pollutants did not influence the mortality associations but reduced the magnitude of the associations with hospital admissions particularly for ozone and respiratory disease. Single and three day events of unusually high temperatures in Sydney are associated with similar magnitude increases in mortality and hospital admissions. The trend

  10. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  11. Assessment of the Long Term Trends in Extreme Heat Events and the Associated Health Impacts in the United States

    Science.gov (United States)

    Bell, J.; Rennie, J.; Kunkel, K.; Herring, S.; Cullen, H. M.

    2017-12-01

    Land surface air temperature products have been essential for monitoring the evolution of the climate system. Before a temperature dataset is included in such reports, it is important that non-climatic influences be removed or changed so the dataset is considered homogenous. These inhomogeneities include changes in station location, instrumentation and observing practices. While many homogenized products exist on the monthly time scale, few daily products exist, due to the complication of removing breakpoints that are truly inhomogeneous rather than solely by chance (for example, sharp changes due to synoptic conditions). Recently, a sub monthly homogenized dataset has been developed using data and software provided by NOAA's National Centers for Environmental Information (NCEI). Homogeneous daily data are useful for identification and attribution of extreme heat events over a period of time. Projections of increasing temperatures are expected to result in corresponding increases in the frequency, duration, and intensity of extreme heat events. It is also established that extreme heat events can have significant public health impacts, including short-term increases in mortality and morbidity. In addition, it can exacerbate chronic health conditions in vulnerable populations, including renal and cardiovascular issues. To understand how heat events impact a specific population, it will be important to connect observations on the duration and intensity of extreme heat events with health impacts data including insurance claims and hospital admissions data. This presentation will explain the methodology to identify extreme heat events, provide a climatology of heat event onset, length and severity, and explore a case study of an anomalous heat event with available health data.

  12. A cross-sectional, randomized cluster sample survey of household vulnerability to extreme heat among slum dwellers in ahmedabad, india.

    Science.gov (United States)

    Tran, Kathy V; Azhar, Gulrez S; Nair, Rajesh; Knowlton, Kim; Jaiswal, Anjali; Sheffield, Perry; Mavalankar, Dileep; Hess, Jeremy

    2013-06-18

    Extreme heat is a significant public health concern in India; extreme heat hazards are projected to increase in frequency and severity with climate change. Few of the factors driving population heat vulnerability are documented, though poverty is a presumed risk factor. To facilitate public health preparedness, an assessment of factors affecting vulnerability among slum dwellers was conducted in summer 2011 in Ahmedabad, Gujarat, India. Indicators of heat exposure, susceptibility to heat illness, and adaptive capacity, all of which feed into heat vulnerability, was assessed through a cross-sectional household survey using randomized multistage cluster sampling. Associations between heat-related morbidity and vulnerability factors were identified using multivariate logistic regression with generalized estimating equations to account for clustering effects. Age, preexisting medical conditions, work location, and access to health information and resources were associated with self-reported heat illness. Several of these variables were unique to this study. As sociodemographics, occupational heat exposure, and access to resources were shown to increase vulnerability, future interventions (e.g., health education) might target specific populations among Ahmedabad urban slum dwellers to reduce vulnerability to extreme heat. Surveillance and evaluations of future interventions may also be worthwhile.

  13. Impacts of extreme heat and drought on crop yields in China: an assessment by using the DLEM-AG2 model

    Science.gov (United States)

    Zhang, J.; Yang, J.; Pan, S.; Tian, H.

    2016-12-01

    China is not only one of the major agricultural production countries with the largest population in the world, but it is also the most susceptible to climate change and extreme events. Much concern has been raised about how extreme climate has affected crop yield, which is crucial for China's food supply security. However, the quantitative assessment of extreme heat and drought impacts on crop yield in China has rarely been investigated. By using the Dynamic Land Ecosystem Model (DLEM-AG2), a highly integrated process-based ecosystem model with crop-specific simulation, here we quantified spatial and temporal patterns of extreme climatic heat and drought stress and their impacts on the yields of major food crops (rice, wheat, maize, and soybean) across China during 1981-2015, and further investigated the underlying mechanisms. Simulated results showed that extreme heat and drought stress significantly reduced national cereal production and increased the yield gaps between potential yield and rain-fed yield. The drought stress was the primary factor to reduce crop yields in the semi-arid and arid regions, and extreme heat stress slightly aggravated the yield loss. The yield gap between potential yield and rain-fed yield was larger at locations with lower precipitation. Our results suggest that a large exploitable yield gap in response to extreme climatic heat-drought stress offers an opportunity to increase productivity in China by optimizing agronomic practices, such as irrigation, fertilizer use, sowing density, and sowing date.

  14. Quantifying the adverse effect of excessive heat on children: An elevated risk of hand, foot and mouth disease in hot days.

    Science.gov (United States)

    Zhang, Wangjian; Du, Zhicheng; Zhang, Dingmei; Yu, Shicheng; Hao, Yuantao

    2016-01-15

    Hand, foot and mouth disease (HFMD) is a common childhood infection and has become a major public health issue in China. Considerable research has focused on the role of meteorological factors such as temperature and relative humidity in HFMD development. However, no studies have specifically quantified the impact of another major environmental agent, excessive heat, on HFMD. The current study was designed to help address this research gap. Case-based HFMD surveillance data and daily meteorological data collected between 2010 and 2012 was obtained from China CDC and the National Meteorological Information Center, respectively. Distributed lag nonlinear models were applied to assess the impact of excessive heat on HFMD and its variability across social-economic status and age groups. After controlling the effects of several potential confounders, the commonly hot days were found to positively affect the HFMD burdens with the relative risk (RR) peaking at around 6 days of lag. The RR of HFMD in the Pearl-River Delta Region was generally higher and persisted longer than that in the remaining developing areas. Regarding the inter-age group discrepancy, children aged 3-6 years old had the highest risk of HFMD under conditions of excessive heat whereas those greater than 6 years old had the lowest. The lag structure of the impact of the extremely hot days was quite similar to that of the commonly hot days, although the relative effect of these two kinds of conditions of excessive heat might vary across regions. This study indicated significantly facilitating effects of excessive heat on HFMD especially among those aged 3-6 and from developed areas. Results from the current study were particularly practical and important for developing area-and-age-targeted control programs in the context of climate change and urbanization. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Linking long-range weather forecasts and heat consumption as a determining factor when buying fuel chips for town heating plants

    International Nuclear Information System (INIS)

    Rolev, A.-M.

    1991-12-01

    The aim of this study is to test whether long-range weather forecasts from the meteorological services can be used as a determining factor when buying fuel chips. In the study the fuel consumption of heating plants and the factors determining the monthly consumption are mentioned. Degree-day statistics in Denmark for the last 30 years are explained as well as the difficulties in conjunction with the prediction of long-range weather conditions. This study compares degree days in 1989-1990 month by month with the actual and theoretic chip consumption in three different heating plants the same year. The theoretic chip consumption is calculated on the basis of degree days in a ''standard year'' and the annual chip consumption of the heating plant, among other things. Furthermore, on the basis of degree-day statistics the report makes it possible to estimate the monthly chip consumption of a heating plant in a ''standard year'', in an extremely cold year (maximum degree days), and in an extremely warm year (minimum degree days). However, not everything can be predicted, and it is not yet possible to predict reliable weather forecasts for more than 5 days ahead. The study concludes that long-range weather forecasts cannot be used as a determining factor when buying fuel chips for heating plants. When buying fuel chips one must still use statistics and degree days, supplimented by figures based on experience from actual chip consumption in the individual heating plant. These figures take into consideration the different types of heating plants, as well as heat supply, chip-supplier, storing facilities, other fuels, etc. (au)

  16. Spatial distributions of heating, cooling, and industrial degree-days in Turkey

    Science.gov (United States)

    Yildiz, I.; Sosaoglu, B.

    2007-11-01

    The degree-day method is commonly used to estimate energy consumption for heating and cooling in residential, commercial and industrial buildings, as well as in greenhouses, livestock facilities, storage facilities and warehouses. This article presents monthly and yearly averages and spatial distributions of heating, cooling, and industrial degree-days at the base temperatures of 18 °C and 20 °C, 18 °C and 24 °C, and 7 °C and 13 °C, respectively; as well as the corresponding number of days in Turkey. The findings presented here will facilitate the estimation of heating and cooling energy consumption for any residential, commercial and industrial buildings in Turkey, for any period of time (monthly, seasonal, etc.). From this analysis it will also be possible to compare and design alternative building systems in terms of energy efficiencies. If one prefers to use set point temperatures to indicate the resumption of the heating season would also be possible using the provided information in this article. In addition, utility companies and manufacturing/marketing companies of HVAC systems would be able to easily determine the demand, marketing strategies and policies based on the findings in this study.

  17. Workers’ perceptions of climate change related extreme heat exposure in South Australia: a cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Jianjun Xiang

    2016-07-01

    Full Text Available Abstract Background Occupational exposure to extreme heat without sufficient protection may not only increase the risk of heat-related illnesses and injuries but also compromise economic productivity. With predictions of more frequent and intense bouts of hot weather, workplace heat exposure is presenting a growing challenge to workers’ health and safety. This study aims to investigate workers’ perceptions and behavioural responses towards extreme heat exposure in a warming climate. Methods A cross-sectional questionnaire survey was conducted in 2012 in South Australia among selected outdoor industries. Workers’ heat risk perceptions were measured in the following five aspects: concerns about heat exposure, attitudes towards more training, policy and guideline support, the adjustment of work habits, and degree of satisfaction of current preventive measures. Bivariate and multivariate logistic regression analyses were used to identify factors significantly associated with workers’ heat perceptions. Results A total of 749 respondents participated in this survey, with a response rate of 50.9 %. A little more than half (51.2 % of respondents were moderately or very much concerned about workplace heat exposure. Factors associated with workers’ heat concerns included age, undertaking very physically demanding work, and the use of personal protective equipment, heat illness history, and injury experience during hot weather. Less than half (43.4 % of the respondents had received heat-related training. Workers aged 25–54 years and those with previous heat-related illness/injury history showed more supportive attitudes towards heat-related training. The provision of cool drinking water was the most common heat prevention measure. A little more than half (51.4 % of respondents were satisfied with the current heat prevention measures. About two-thirds (63.8 % of respondents agreed that there should be more heat-related regulations and

  18. Ten days of repeated local forearm heating does not affect cutaneous vascular function.

    Science.gov (United States)

    Francisco, Michael A; Brunt, Vienna E; Jensen, Krista Nicole; Lorenzo, Santiago; Minson, Christopher T

    2017-08-01

    The aim of the present study was to determine whether 10 days of repeated local heating could induce peripheral adaptations in the cutaneous vasculature and to investigate potential mechanisms of adaptation. We also assessed maximal forearm blood flow to determine whether repeated local heating affects maximal dilator capacity. Before and after 10 days of heat training consisting of 1-h exposures of the forearm to 42°C water or 32°C water (control) in the contralateral arm (randomized and counterbalanced), we assessed hyperemia to rapid local heating of the skin ( n = 14 recreationally active young subjects). In addition, sequential doses of acetylcholine (ACh, 1 and 10 mM) were infused in a subset of subjects ( n = 7) via microdialysis to study potential nonthermal microvascular adaptations following 10 days of repeated forearm heat training. Skin blood flow was assessed using laser-Doppler flowmetry, and cutaneous vascular conductance (CVC) was calculated as laser-Doppler red blood cell flux divided by mean arterial pressure. Maximal cutaneous vasodilation was achieved by heating the arm in a water-spray device for 45 min and assessed using venous occlusion plethysmography. Forearm vascular conductance (FVC) was calculated as forearm blood flow divided by mean arterial pressure. Repeated forearm heating did not increase plateau percent maximal CVC (CVC max ) responses to local heating (89 ± 3 vs. 89 ± 2% CVC max , P = 0.19), 1 mM ACh (43 ± 9 vs. 53 ± 7% CVC max , P = 0.76), or 10 mM ACh (61 ± 9 vs. 85 ± 7% CVC max , P = 0.37, by 2-way repeated-measures ANOVA). There was a main effect of time at 10 mM ACh ( P = 0.03). Maximal FVC remained unchanged (0.12 ± 0.02 vs. 0.14 ± 0.02 FVC, P = 0.30). No differences were observed in the control arm. Ten days of repeated forearm heating in recreationally active young adults did not improve the microvascular responsiveness to ACh or local heating. NEW & NOTEWORTHY We show for the first time that 10 days of repeated

  19. Analysis on the Extreme Heat Wave over China around Yangtze River Region in the Summer of 2013 and Its Main Contributing Factors

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-01-01

    Full Text Available In the summer of 2013, a rare extreme heat wave occurred in the middle and lower reaches of the Yangtze River in China. Based on high resolution reanalysis data from ECMWF, comprehensive analyses on the associated atmospheric circulation and the sea surface temperature anomaly (SSTA were provided. The stable and strong West Pacific Subtropical High (WPSH was the direct cause for the heat wave. The WPSH had four westward extensions, which brought about four hot spells in southern China. The South Asia High (SAH at 150 hPa was more eastward and more northward than normal. The strong Hadley circulation in the central and western Pacific and the anomalous easterlies at 500 hPa and 250 hPa in the middle and high latitudes were favorable for more hot days (HDs. The total HDs in the middle and lower reaches of the Yangtze River had close relationships with the zonal wind anomalies in the middle and high latitudes, the SSTA in the Indian Ocean and Pacific, and the dry soil conditions of the Yangtze River Valley in spring and summer. The anomalies of the tropical, subtropical, and polar circulation and the underlying surfaces could be responsible for this extreme heat wave.

  20. Predictability of summer extreme precipitation days over eastern China

    Science.gov (United States)

    Li, Juan; Wang, Bin

    2017-08-01

    Extreme precipitation events have severe impacts on human activity and natural environment, but prediction of extreme precipitation events remains a considerable challenge. The present study aims to explore the sources of predictability and to estimate the predictability of the summer extreme precipitation days (EPDs) over eastern China. Based on the region- and season-dependent variability of EPDs, all stations over eastern China are divided into two domains: South China (SC) and northern China (NC). Two domain-averaged EPDs indices during their local high EPDs seasons (May-June for SC and July-August for NC) are therefore defined. The simultaneous lower boundary anomalies associated with each EPDs index are examined, and we find: (a) the increased EPDs over SC are related to a rapid decaying El Nino and controlled by Philippine Sea anticyclone anomalies in May-June; (b) the increased EPDs over NC are accompanied by a developing La Nina and anomalous zonal sea level pressure contrast between the western North Pacific subtropical high and East Asian low in July-August. Tracking back the origins of these boundary anomalies, one or two physically meaningful predictors are detected for each regional EPDs index. The causative relationships between the predictors and the corresponding EPDs over each region are discussed using lead-lag correlation analyses. Using these selected predictors, a set of Physics-based Empirical models is derived. The 13-year (2001-2013) independent forecast shows significant temporal correlation skills of 0.60 and 0.74 for the EPDs index of SC and NC, respectively, providing an estimation of the predictability for summer EPDs over eastern China.

  1. Linking Excessive Heat with Daily Heat-Related Mortality over the Coterminous United States

    Science.gov (United States)

    Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.

    2014-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air

  2. Tidally Heated Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  3. Extreme Ultraviolet Imaging of Electron Heated Targets in Petawatt Laser Experiments

    International Nuclear Information System (INIS)

    Ma, T.; MacPhee, A.; Key, M.; Akli, K.; Mackinnon, A.; Chen, C.; Barbee, T.; Freeman, R.; King, J.; Link, A.; Offermann, D.; Ovchinnikov, V.; Patel, P.; Stephens, R.; VanWoerkom, L.; Zhang, B.; Beg, F.

    2007-01-01

    The study of the transport of electrons, and the flow of energy into a solid target or dense plasma, is instrumental in the development of fast ignition inertial confinement fusion. An extreme ultraviolet (XUV) imaging diagnostic at 256 eV and 68 eV provides information about heating and energy deposition within petawatt laser-irradiated targets. XUV images of several irradiated solid targets are presented

  4. Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates

    Directory of Open Access Journals (Sweden)

    V. Romanova

    2006-01-01

    Full Text Available Using an atmospheric general circulation model of intermediate complexity coupled to a sea ice – slab ocean model, we perform a number of sensitivity experiments under present-day orbital conditions and geographical distribution to assess the possibility that land albedo, atmospheric CO2, orography and oceanic heat transport may cause an ice-covered Earth. Changing only one boundary or initial condition, the model produces solutions with at least some ice-free oceans in the low latitudes. Using some combination of these forcing parameters, a full Earth's glaciation is obtained. We find that the most significant factor leading to an ice-covered Earth is the high land albedo in combination with initial temperatures set equal to the freezing point. Oceanic heat transport and orography play only a minor role for the climate state. Extremely low concentrations of CO2 also appear to be insufficient to provoke a runaway ice-albedo feedback, but the strong deviations in surface air temperatures in the Northern Hemisphere point to the existence of a strong nonlinearity in the system. Finally, we argue that the initial condition determines whether the system can go into a completely ice covered state, indicating multiple equilibria, a feature known from simple energy balance models.

  5. Global Warming Impacts on Heating and Cooling Degree-Days in the United States

    Science.gov (United States)

    Petri, Y.; Caldeira, K.

    2014-12-01

    Anthropogenic climate change is expected to significantly alter residential air conditioning and space heating requirements, which account for 41% of U.S. household energy expenditures. The degree-day method can be used for reliable estimation of weather related building energy consumption and costs, as well as outdoor climatic thermal comfort. Here, we use U.S. Climate Normals developed by NOAA based on weather station observations along with Climate Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble simulations. We add the projected change in heating and cooling degree-days based on the climate models to the estimates based on the NOAA U.S. Climate Normals to project future heating and cooling degree-days. We find locations with the lowest and highest combined index of cooling (CDDs) and heating degree-days (HDDs) for the historical period (1981 - 2010) and future period (2080 - 2099) under the Representation Concentration Pathway 8.5 (RCP8.5) climate change scenario. Our results indicate that in both time frames and among the lower 48 states, coastal areas in the West and South California will have the smallest degree-day sum (CDD + HDD), and hence from a climatic perspective become the best candidates for residential real estate. The Rocky Mountains region in Wyoming, in addition to northern Minnesota and North Dakota, will have the greatest CDD + HDD. While global warming is projected to reduce the median heating and cooling demand (- 5%) at the end of the century, CDD + HDD will decrease in the North, with an opposite effect in the South. This work could be helpful in deciding where to live in the United States based on present and future thermal comfort, and could also provide a basis for estimates of changes in heating and cooling energy demand.

  6. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    Science.gov (United States)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  7. Extreme heat event projections for a coastal megacity

    Science.gov (United States)

    Ortiz, L. E.; Gonzalez, J.

    2017-12-01

    As summers become warmer, extreme heat events are expected to increase in intensity, frequency, and duration. Large urban centers may affect these projections by introducing feedbacks between the atmosphere and the built environment through processes involving anthropogenic heat, wind modification, radiation blocking, and others. General circulation models are often run with spatial resolutions in the order of 100 km, limiting their skill at resolving local scale processes and highly spatially varying features such as cities' heterogeneous landscape and mountain topography. This study employs climate simulations using the Weather Research and Forecast (WRF) model coupled with a modified multi-layer urban canopy and building energy model to downscale CESM1 at 1 km horizontal resolution across three time slices (2006-2010, 2075-2079, and 2095-2099) and two projections (RCP 4.5 and 8.5). New York City Metropolitan area, with a population of over 20 million and a complex urban canopy, is used as a case study. The urban canopy model of WRF was modified to include a drag coefficient as a function of the building plant area fraction and the introduction of evaporative cooling systems at building roofs to reject the anthropogenic heat from the buildings, with urban canopy parameters computed from the New York City Property Land-Use Tax-lot Output (PLUTO). Model performance is evaluated against the input model and historical records from airport stations, showing improvement in the statistical characteristics in the downscaled model output. Projection results are presented as spatially distributed anomalies in heat wave frequency, duration, and maximum intensity from the 2006-2010 benchmark period. Results show that local sea-breeze circulations mitigate heat wave impacts, following a positive gradient with increasing distance from the coastline. However, end of century RCP 8.5 projections show the possibility of reversal of this pattern, sea surface temperatures increase

  8. Change in Annual Heating and Cooling Degree Days by State

    Data.gov (United States)

    U.S. Environmental Protection Agency — This service show changes in heating and cooling degree days by state in the US. Both layers in this service were created by comparing the first 60 years of...

  9. Heat balance structure of canopies at extreme precipitation in view of long-term records

    International Nuclear Information System (INIS)

    Bubnowska, J.; Gąsiorek, E.; Łabędzki, L.; Musiał, E.

    2005-01-01

    Increasing frequency of extreme weather conditions is attributed to the global variations in climate. Heat balance of substrate is one of the processes affecting the climate. Variations of heat balance in spring wheat during the growing seasons (April-August) and in potatoes during the growing seasons (May-September) with maximal and minimal precipitation are confronted here with long term changes of the balance. Two regions Wroclaw-Swojec (1964-2000) and Bydgoszcz (1945-2003) were involved in the study [pl

  10. General movements in the first fourteen days of life in extremely low birth weight (ELBW) infants

    NARCIS (Netherlands)

    de Vries, N. K. S.; Erwich, J. J. H. M.; Bos, A. F.

    2008-01-01

    Objective: To assess the quality of general movements (GMs) in the first fourteen days of life in relation to obstetric and postnatal risk factors and neurodevelopmental outcome in extremely low birth weight (ELBW) infants. Study design: The GMs of nineteen infants were assessed on days 2, 4, 6, 10

  11. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Directory of Open Access Journals (Sweden)

    R. García-Herrera

    2005-02-01

    Full Text Available This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal and Madrid (Spain. Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid. The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP, 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air

  12. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Directory of Open Access Journals (Sweden)

    R. García-Herrera

    2005-02-01

    Full Text Available This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal and Madrid (Spain. Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid. The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value.

    The analysis of Sea Level Pressure (SLP, 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly

  13. Regional air-sea coupled model simulation for two types of extreme heat in North China

    Science.gov (United States)

    Li, Donghuan; Zou, Liwei; Zhou, Tianjun

    2018-03-01

    Extreme heat (EH) over North China (NC) is affected by both large scale circulations and local topography, and could be categorized into foehn favorable and no-foehn types. In this study, the performance of a regional coupled model in simulating EH over NC was examined. The effects of regional air-sea coupling were also investigated by comparing the results with the corresponding atmosphere-alone regional model. On foehn favorable (no-foehn) EH days, a barotropic cyclonic (anticyclonic) anomaly is located to the northeast (northwest) of NC, while anomalous northwesterlies (southeasterlies) prevail over NC in the lower troposphere. In the uncoupled simulation, barotropic anticyclonic bias occurs over China on both foehn favorable and no-foehn EH days, and the northwesterlies in the lower troposphere on foehn favorable EH days are not obvious. These biases are significantly reduced in the regional coupled simulation, especially on foehn favorable EH days with wind anomalies skill scores improving from 0.38 to 0.47, 0.47 to 0.61 and 0.38 to 0.56 for horizontal winds at 250, 500 and 850 hPa, respectively. Compared with the uncoupled simulation, the reproduction of the longitudinal position of Northwest Pacific subtropical high (NPSH) and the spatial pattern of the low-level monsoon flow over East Asia are improved in the coupled simulation. Therefore, the anticyclonic bias over China is obviously reduced, and the proportion of EH days characterized by anticyclonic anomaly is more appropriate. The improvements in the regional coupled model indicate that it is a promising choice for the future projection of EH over NC.

  14. Rainy Day: A Remote Sensing-Driven Extreme Rainfall Simulation Approach for Hazard Assessment

    Science.gov (United States)

    Wright, Daniel; Yatheendradas, Soni; Peters-Lidard, Christa; Kirschbaum, Dalia; Ayalew, Tibebu; Mantilla, Ricardo; Krajewski, Witold

    2015-04-01

    Progress on the assessment of rainfall-driven hazards such as floods and landslides has been hampered by the challenge of characterizing the frequency, intensity, and structure of extreme rainfall at the watershed or hillslope scale. Conventional approaches rely on simplifying assumptions and are strongly dependent on the location, the availability of long-term rain gage measurements, and the subjectivity of the analyst. Regional and global-scale rainfall remote sensing products provide an alternative, but are limited by relatively short (~15-year) observational records. To overcome this, we have coupled these remote sensing products with a space-time resampling framework known as stochastic storm transposition (SST). SST "lengthens" the rainfall record by resampling from a catalog of observed storms from a user-defined region, effectively recreating the regional extreme rainfall hydroclimate. This coupling has been codified in Rainy Day, a Python-based platform for quickly generating large numbers of probabilistic extreme rainfall "scenarios" at any point on the globe. Rainy Day is readily compatible with any gridded rainfall dataset. The user can optionally incorporate regional rain gage or weather radar measurements for bias correction using the Precipitation Uncertainties for Satellite Hydrology (PUSH) framework. Results from Rainy Day using the CMORPH satellite precipitation product are compared with local observations in two examples. The first example is peak discharge estimation in a medium-sized (~4000 square km) watershed in the central United States performed using CUENCAS, a parsimonious physically-based distributed hydrologic model. The second example is rainfall frequency analysis for Saint Lucia, a small volcanic island in the eastern Caribbean that is prone to landslides and flash floods. The distinct rainfall hydroclimates of the two example sites illustrate the flexibility of the approach and its usefulness for hazard analysis in data-poor regions.

  15. Compound summer temperature and precipitation extremes over central Europe

    Science.gov (United States)

    Sedlmeier, Katrin; Feldmann, H.; Schädler, G.

    2018-02-01

    Reliable knowledge of the near-future climate change signal of extremes is important for adaptation and mitigation strategies. Especially compound extremes, like heat and drought occurring simultaneously, may have a greater impact on society than their univariate counterparts and have recently become an active field of study. In this paper, we use a 12-member ensemble of high-resolution (7 km) regional climate simulations with the regional climate model COSMO-CLM over central Europe to analyze the climate change signal and its uncertainty for compound heat and drought extremes in summer by two different measures: one describing absolute (i.e., number of exceedances of absolute thresholds like hot days), the other relative (i.e., number of exceedances of time series intrinsic thresholds) compound extreme events. Changes are assessed between a reference period (1971-2000) and a projection period (2021-2050). Our findings show an increase in the number of absolute compound events for the whole investigation area. The change signal of relative extremes is more region-dependent, but there is a strong signal change in the southern and eastern parts of Germany and the neighboring countries. Especially the Czech Republic shows strong change in absolute and relative extreme events.

  16. Early and late hot extremes, and elongation of the warm period over Greece

    Science.gov (United States)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2017-04-01

    The eastern Mediterranean has been assigned as one of the most responsive areas in climate change, mainly with respect to the occurrence of warmer and drier conditions. In Greece in particular, observations suggest prominent increases in the summer air temperature which in some areas amount to approximately 1 0C/decade since the mid 1970s, while Regional Climate Models simulate further increases in the near and distant future. These changes are coupled with simultaneous increase in the occurrence of hot extremes. In addition to changes in the frequency and intensity of hot extrems, timing of occurrence is also of special interest. Early heat waves in particular, have been found to increase thermal risk in humans. The study explores variations and trends in timing, namely the date of first and last occurrence of hot extremes within the year, and subsequently the hot extremes period (season), defined as the time interval (number of days) between first and last hot extremes occurrence, over Greece. A case study for the area of Athens covering a longer than 100-years period (1897-2015) was conducted first, which will be extended to other Greek areas. Several heat related climatic indices were used, based either on predefined temperature thresholds such as 'tropical days' (daily maximum air temperature, Tmax >30 0C), 'tropical nights' (daily minimum air temperature, Tmin >20 0C), 'hot days' (Tmax >35 0C), or on local climate statistics such as days with Tmax (or Tmin) > 95th percentile. The analysis revealed significant changes in the period of hot extremes and specifically elongation of the period, attributed to early rather than late hot extremes occurrence. An earlier shift of the first tropical day and the first tropical night occurrence by approximately 2 days/decade was found over the study period. An overall elongation of the 'hot days' season by 2.6 days/decade was also observed, which is more prominent since the early 1980s. Over the last three decades, earlier

  17. Heating- and growing-degree days at Chalk River Nuclear Laboratories, 1976-1980

    International Nuclear Information System (INIS)

    Jay, P.C.; Wildsmith, D.P.

    1981-05-01

    An update of the report, Heating- and Growing-Degree-Days at Chalk River Nuclear Laboratories (AECL-5547) is presented along with various other meteorological variables which were not included in the previous publication. Also included, and shown in graph form, are the monthly degree-day frequencies. (author)

  18. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    International Nuclear Information System (INIS)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  19. The annual number of days that solar heated water satisfies a specified demand temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, BT37 0QB Northern Ireland (United Kingdom); Popel, O.; Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 127412 (Russian Federation); Norton, B. [Dublin Institute of Technology, Aungier Street, Dublin 2 (Ireland)

    2006-08-15

    An analysis of solar water heating systems determines the number of days in each month when solar heated water wholly meets demand above a set temperature. The approach has been used to investigate the potential contribution to water heating loads of solar water heating in two UK locations. Correlations between the approach developed and the use of solar fractions are discussed. (author)

  20. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA

    Science.gov (United States)

    Schatz, Jason; Kucharik, Christopher J.

    2015-09-01

    As climate change increases the frequency and intensity of extreme heat, cities and their urban heat island (UHI) effects are growing, as are the urban populations encountering them. These mutually reinforcing trends present a growing risk for urban populations. However, we have limited understanding of urban climates during extreme temperature episodes, when additional heat from the UHI may be most consequential. We observed a historically hot summer and historically cold winter using an array of up to 150 temperature and relative humidity sensors in and around Madison, Wisconsin, an urban area of population 402 000 surrounded by lakes and a rural landscape of agriculture, forests, wetlands, and grasslands. In the summer of 2012 (third hottest since 1869), Madison’s urban areas experienced up to twice as many hours ⩾32.2 °C (90 °F), mean July TMAX up to 1.8 °C higher, and mean July TMIN up to 5.3 °C higher than rural areas. During a record setting heat wave, dense urban areas spent over four consecutive nights above the National Weather Service nighttime heat stress threshold of 26.7 °C (80 °F), while rural areas fell below 26.7 °C nearly every night. In the winter of 2013-14 (coldest in 35 years), Madison’s most densely built urban areas experienced up to 40% fewer hours ⩽-17.8 °C (0 °F), mean January TMAX up to 1 °C higher, and mean January TMIN up to 3 °C higher than rural areas. Spatially, the UHI tended to be most intense in areas with higher population densities. Temporally, both daytime and nighttime UHIs tended to be slightly more intense during more-extreme heat days compared to average summer days. These results help us understand the climates for which cities must prepare in a warming, urbanizing world.

  1. Application of probabilistic event attribution in the summer heat extremes in the western US to emissions traced to major industrial carbon producers

    Science.gov (United States)

    Mera, R. J.; Allen, M. R.; Mote, P.; Ekwurzel, B.; Frumhoff, P. C.; Rupp, D. E.

    2015-12-01

    Heat waves in the western US have become progressively more severe due to increasing relative humidity and nighttime temperatures, increasing the health risks of vulnerable portions of the population, including Latino farmworkers in California's Central Valley and other socioeconomically disadvantaged communities. Recent research has shown greenhouse gas emissions doubled the risk of the hottest summer days during the 2000's in the Central Valley, increasing public health risks and costs, and raising the question of which parties are responsible for paying these costs. It has been argued that these costs should not be taken up solely by the general public through taxation, but that additional parties can be considered, including multinational corporations who have extracted and marketed a large proportion of carbon-based fuels. Here, we apply probabilistic event attribution (PEA) to assess the contribution of emissions traced to the world's 90 largest major industrial carbon producers to the severity and frequency of these extreme heat events. Our research uses very large ensembles of regional climate model simulations to calculate fractional attribution of policy-relevant extreme heat variables. We compare a full forcings world with observed greenhouse gases, sea surface temperatures and sea ice extent to a counter-factual world devoid of carbon pollution from major industrial carbon producers. The results show a discernable fraction of record-setting summer temperatures in the western US during the 2000's can be attributed to emissions sourced from major carbon producers.

  2. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress.

    Science.gov (United States)

    Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong

    2015-07-01

    The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (pstress diet, inverse lighting (10:00-19:00 dark, 19:00-10:00 light) with cold water at 9 degrees C under extreme heat stress could enhance growth performance of broiler chickens.

  3. Double Exposure and the Climate Gap: Changing demographics and extreme heat in Ciudad Juárez, Mexico

    Science.gov (United States)

    Collins, Timothy W.; McDonald, Yolanda J.; Aldouri, Raed; Aboargob, Faraj; Eldeb, Abdelatif; Aguilar, María de Lourdes Romo; Velázquez-Angulo, Juárez Gilberto

    2013-01-01

    Scholars have recognized a climate gap, wherein poor communities face disproportionate impacts of climate change. Others have noted that climate change and economic globalization may mutually affect a region or social group, leading to double exposure. This paper investigates how current and changing patterns of neighborhood demographics are associated with extreme heat in the border city of Juárez, Mexico. Many Juárez neighborhoods are at-risk to triple exposures, in which residents suffer due to the conjoined effects of the global recession, drug war violence, and extreme heat. Due to impacts of the recession on maquiladora employment and the explosion of drug violence (since 2008), over 75% of neighborhoods experienced decreasing population density between 2000 and 2010 and the average neighborhood saw a 40% increase in the proportion of older adults. Neighborhoods with greater drops in population density and increases in the proportion of older residents over the decade are at significantly higher risk to extreme heat, as are neighborhoods with lower population density and lower levels of education. In this context, triple exposures are associated with a climate gap that most endangers lower socioeconomic status and increasingly older aged populations remaining in neighborhoods from which high proportions of residents have departed. PMID:25642135

  4. A comparison of whole body vibration and moist heat on lower extremity skin temperature and skin blood flow in healthy older individuals.

    Science.gov (United States)

    Lohman, Everett B; Sackiriyas, Kanikkai Steni Balan; Bains, Gurinder S; Calandra, Giovanni; Lobo, Crystal; Nakhro, Daniel; Malthankar, Gauri; Paul, Sherwine

    2012-07-01

    Tissue healing is an intricate process that is regulated by circulation. Heat modalities have been shown to improve skin circulation. Recent research supports that passive vibration increases circulation without risk of burns. Study purpose is to compare and determine effects of short duration vibration, moist heat, and a combination of the two on skin blood flow (SBF) and skin temperature (ST) in elderly, non-diabetic individuals following short-term exposure. Ten subjects, 3 female and 7 male (55-73 years of age), received two interventions over three days: 1--Active vibration, 2--passive vibration, 3--moist heat, 4--moist heat combined with passive vibration (MHPV), 5--a commercial massaging heating pad, and 6--no intervention. SBF and ST were measured using a MOOR Laser Doppler before and after the intervention and the third measurement were taken 10 minutes following. Mean SBF following a ten-minute intervention were significantly different in the combination of moist heat and passive vibration from the control, active vibration, and the commercial massaging heating pad. Compared to baseline measurements, this resulted in mean SBF elevation to 450% (at conclusion of 10 minutes of intervention) and 379% (10 minutes post). MHPV (p=0.02) showed significant changes in ST from the commercial massaging heating pad, passive vibration, and active vibration interventions. SBF in the lower legs showed greatest increase with MHPV. Interventions should be selected that are low risk while increasing lower extremity skin blood flow.

  5. The contribution of urbanization to recent extreme heat events and white roof mitigation strategy in the Beijing-Tianjin-Hebei metropolitan area

    Science.gov (United States)

    Wang, Mingna

    2015-04-01

    The UHI effect can aggravate summertime heat waves and strongly influence human comfort and health, leading to greater mortality in metropolitan areas. Many geo-engineering technological strategies have been proposed to mitigate climate warming, and for the UHI, increasing the albedo of artificial urban surfaces (rooftops or pavements) has been considered a lucrative and effective way to cool cities. The objective of this work is to quantify the contribution of urbanization to recent extreme heat events of the early 21st century in the Beijing-Tianjin-Hebei metropolitan area, using the mesoscale WRF model coupled with a single urban canopy model and actual urban land cover datasets. This work also investigates a simulation of the regional effects of white roof technology by increasing the albedo of urban areas in the urban canopy model to mitigate the urban heat island, especially in extreme heat waves. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60°C. This change is most obvious at night with an increase up to 0.95°C, for which the total contribution of anthropogenic heat is 34%. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs. White roofs reflect a large fraction of incoming sunlight in the daytime, which reduced the net radiation so that the roof surface keep at a lower temperature than regular solar-absorptive roofs. Urban net radiation decreases by approximately 200 W m-2 at local noon because of high solar reflectance of white roofs, which cools the daytime urban temperature afer sunrise, with the largest decrease of almost -0.80

  6. Historic and future increase in the global land area affected by monthly heat extremes

    NARCIS (Netherlands)

    Coumou, Dim; Robinson, Alexander

    2013-01-01

    Climatic warming of about 0.5 ° C in the global mean since the 1970s has strongly increased the occurrence-probability of heat extremes on monthly to seasonal time scales. For the 21st century, climate models predict more substantial warming. Here we show that the multi-model mean of the CMIP5

  7. Deforestation intensifies hot days

    Science.gov (United States)

    Stoy, Paul C.

    2018-05-01

    Deforestation often increases land-surface and near-surface temperatures, but climate models struggle to simulate this effect. Research now shows that deforestation has increased the severity of extreme heat in temperate regions of North America and Europe. This points to opportunities to mitigate extreme heat.

  8. Utility of High Temporal Resolution Observations for Heat Health Event Characterization

    Science.gov (United States)

    Palecki, M. A.

    2017-12-01

    Many heat health watch systems produce a binary on/off warning when conditions are predicted to exceed a given threshold during a day. Days with warnings and their mortality/morbidity statistics are analyzed relative to days not warned to determine the impacts of the event on human health, the effectiveness of warnings, and other statistics. The climate analyses of the heat waves or extreme temperature events are often performed with hourly or daily observations of air temperature, humidity, and other measured or derived variables, especially the maxima and minima of these data. However, since the beginning of the century, 5-minute observations are readily available for many weather and climate stations in the United States. NOAA National Centers for Environmental Information (NCEI) has been collecting 5-minute observations from the NOAA Automated Surface Observing System (ASOS) stations since 2000, and from the U.S. Climate Reference Network (USCRN) stations since 2005. This presentation will demonstrate the efficacy of utilizing 5-minute environmental observations to characterize heat waves by counting the length of time conditions exceed extreme thresholds based on individual and multiple variables and on derived variables such as the heat index. The length and depth of recovery periods between daytime heating periods will also be examined. The length of time under extreme conditions will influence health outcomes for those directly exposed. Longer periods of dangerous conditions also could increase the chances for poor health outcomes for those only exposed intermittently through cumulative impacts.

  9. Cold and heat waves in the United States.

    Science.gov (United States)

    Barnett, A G; Hajat, S; Gasparrini, A; Rocklöv, J

    2012-01-01

    Extreme cold and heat waves, characterized by a number of cold or hot days in succession, place a strain on people's cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987-2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave's timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the 95-99 percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for extreme temperatures. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Changes in observed climate extremes in global urban areas

    International Nuclear Information System (INIS)

    Mishra, Vimal; Ganguly, Auroop R; Nijssen, Bart; Lettenmaier, Dennis P

    2015-01-01

    Climate extremes have profound implications for urban infrastructure and human society, but studies of observed changes in climate extremes over the global urban areas are few, even though more than half of the global population now resides in urban areas. Here, using observed station data for 217 urban areas across the globe, we show that these urban areas have experienced significant increases (p-value <0.05) in the number of heat waves during the period 1973–2012, while the frequency of cold waves has declined. Almost half of the urban areas experienced significant increases in the number of extreme hot days, while almost 2/3 showed significant increases in the frequency of extreme hot nights. Extreme windy days declined substantially during the last four decades with statistically significant declines in about 60% in the urban areas. Significant increases (p-value <0.05) in the frequency of daily precipitation extremes and in annual maximum precipitation occurred at smaller fractions (17 and 10% respectively) of the total urban areas, with about half as many urban areas showing statistically significant downtrends as uptrends. Changes in temperature and wind extremes, estimated as the result of a 40 year linear trend, differed for urban and non-urban pairs, while changes in indices of extreme precipitation showed no clear differentiation for urban and selected non-urban stations. (letter)

  11. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Hand, Karen; Kelton, David F

    2015-11-27

    Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010-2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality

  12. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat.

    Science.gov (United States)

    Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro

    2014-06-01

    Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.

  13. Trends in the number of extreme hot SST days along the Canary Upwelling System due to the influence of upwelling

    Directory of Open Access Journals (Sweden)

    Xurxo Costoya

    2014-07-01

    Full Text Available Trends in the number of extreme hot days (days with SST anomalies higher than the 95% percentile were analyzed along the Canary Upwelling Ecosystem (CUE over the period 1982- 2012 by means of SST data retrieved from NOAA OI1/4 Degree. The analysis will focus on the Atlantic Iberian sector and the Moroccan sub- region where upwelling is seasonal (spring and summer are permanent, respectively. Trends were analyzed both near coast and at the adjacent ocean where the increase in the number of extreme hot days is higher. Changes are clear at annual scale with an increment of 9.8±0.3 (9.7±0.1 days dec-1 near coast and 11.6±0.2 (13.5±0.1 days dec-1 at the ocean in the Atlantic Iberian sector (Moroccan sub-region. The differences between near shore and ocean trends are especially patent for the months under intense upwelling conditions. During that upwelling season the highest differences in the excess of extreme hot days between coastal and ocean locations (Δn(#days dec-1 occur at those regions where coastal upwelling increase is high. Actually, Δn and upwelling trends have shown to be significantly correlated in both areas, R=0.88 (p<0.01 at the Atlantic Iberian sector and R=0.67 (p<0.01 at the Moroccan sub-region.

  14. Temperature extremes reduce seagrass growth and induce mortality

    International Nuclear Information System (INIS)

    Collier, C.J.; Waycott, M.

    2014-01-01

    Highlights: • Temperature extremes occur during low tide in shallow seagrass meadows. • The effects of temperature extremes were tested experimentally at 35 °C, 40 °C and 43 °C. • 40 °C was a critical threshold with a large impact on growth and mortality. • At 43 °C there was complete mortality after 2–3 days. • Lower light conditions (e.g. poor water quality) led to a greater negative impact. - Abstract: Extreme heating (up to 43 °C measured from five-year temperature records) occurs in shallow coastal seagrass meadows of the Great Barrier Reef at low tide. We measured effective quantum yield (ϕ PSII ), growth, senescence and mortality in four tropical seagrasses to experimental short-duration (2.5 h) spikes in water temperature to 35 °C, 40 °C and 43 °C, for 6 days followed by one day at ambient temperature. Increasing temperature to 35 °C had positive effects on ϕ PSII (the magnitude varied between days and was highly correlated with PPFD), with no effects on growth or mortality. 40 °C represented a critical threshold as there were strong species differences and there was a large impact on growth and mortality. At 43 °C there was complete mortality after 2–3 days. These findings indicate that increasing duration (more days in a row) of thermal events above 40 °C is likely to affect the ecological function of tropical seagrass meadows

  15. Liquid jet impingement cooling with diamond substrates for extremely high heat flux applications

    International Nuclear Information System (INIS)

    Lienhard V, J.H.

    1993-01-01

    The combination of impinging jets and diamond substrates may provide an effective solution to a class of extremely high heat flux problems in which very localized heat loads must be removed. Some potential applications include the cooling of high-heat-load components in synchrotron x-ray, fusion, and semiconductor laser systems. Impinging liquid jets are a very effective vehicle for removing high heat fluxes. The liquid supply arrangement is relatively simple, and low thermal resistances can be routinely achieved. A jet's cooling ability is a strong function of the size of the cooled area relative to the jet diameter. For relatively large area targets, the critical heat fluxes can approach 20 W/mm 2 . In this situation, burnout usually originates at the outer edge of the cooled region as increasing heat flux inhibits the liquid supply. Limitations from liquid supply are minimized when heating is restricted to the jet stagnation zone. The high stagnation pressure and high velocity gradients appear to suppress critical flux phenomena, and fluxes of up to 400 W/mm 2 have been reached without evidence of burnout. Instead, the restrictions on heat flux are closely related to properties of the cooled target. Target properties become an issue owing to the large temperatures and large temperature gradients that accompany heat fluxes over 100 W/mm 2 . These conditions necessitate a target with both high thermal conductivity to prevent excessive temperatures and good mechanical properties to prevent mechanical failures. Recent developments in synthetic diamond technology present a possible solution to some of the solid-side constraints on heat flux. Polycrystalline diamond foils can now be produced by chemical vapor deposition in reasonable quantity and at reasonable cost. Synthetic single crystal diamonds as large as 1 cm 2 are also available

  16. The critical role of extreme heat for maize production in the United States

    Science.gov (United States)

    Lobell, David B.; Hammer, Graeme L.; McLean, Greg; Messina, Carlos; Roberts, Michael J.; Schlenker, Wolfram

    2013-05-01

    Statistical studies of rainfed maize yields in the United States and elsewhere have indicated two clear features: a strong negative yield response to accumulation of temperatures above 30°C (or extreme degree days (EDD)), and a relatively weak response to seasonal rainfall. Here we show that the process-based Agricultural Production Systems Simulator (APSIM) is able to reproduce both of these relationships in the Midwestern United States and provide insight into underlying mechanisms. The predominant effects of EDD in APSIM are associated with increased vapour pressure deficit, which contributes to water stress in two ways: by increasing demand for soil water to sustain a given rate of carbon assimilation, and by reducing future supply of soil water by raising transpiration rates. APSIM computes daily water stress as the ratio of water supply to demand, and during the critical month of July this ratio is three times more responsive to 2°C warming than to a 20% precipitation reduction. The results suggest a relatively minor role for direct heat stress on reproductive organs at present temperatures in this region. Effects of elevated CO2 on transpiration efficiency should reduce yield sensitivity to EDD in the coming decades, but at most by 25%.

  17. One-Day Prediction of Biometeorological Conditions in a Mediterranean Urban Environment Using Artificial Neural Networks Modeling

    Directory of Open Access Journals (Sweden)

    K. P. Moustris

    2013-01-01

    Full Text Available The present study, deals with the 24-hour prognosis of the outdoor biometeorological conditions in an urban monitoring site within the Greater Athens area, Greece. For this purpose, artificial neural networks (ANNs modelling techniques are applied in order to predict the maximum and the minimum value of the physiologically equivalent temperature (PET one day ahead as well as the persistence of the hours with extreme human biometeorological conditions. The findings of the analysis showed that extreme heat stress appears to be 10.0% of the examined hours within the warm period of the year, against extreme cold stress for 22.8% of the hours during the cold period of the year. Finally, human thermal comfort sensation accounts for 81.8% of the hours during the year. Concerning the PET prognosis, ANNs have a remarkable forecasting ability to predict the extreme daily PET values one day ahead, as well as the persistence of extreme conditions during the day, at a significant statistical level of .

  18. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12.

    Science.gov (United States)

    Trent, J D; Osipiuk, J; Pinkau, T

    1990-03-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.

  19. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.

  20. Global predictability of temperature extremes

    Science.gov (United States)

    Coughlan de Perez, Erin; van Aalst, Maarten; Bischiniotis, Konstantinos; Mason, Simon; Nissan, Hannah; Pappenberger, Florian; Stephens, Elisabeth; Zsoter, Ervin; van den Hurk, Bart

    2018-05-01

    Extreme temperatures are one of the leading causes of death and disease in both developed and developing countries, and heat extremes are projected to rise in many regions. To reduce risk, heatwave plans and cold weather plans have been effectively implemented around the world. However, much of the world’s population is not yet protected by such systems, including many data-scarce but also highly vulnerable regions. In this study, we assess at a global level where such systems have the potential to be effective at reducing risk from temperature extremes, characterizing (1) long-term average occurrence of heatwaves and coldwaves, (2) seasonality of these extremes, and (3) short-term predictability of these extreme events three to ten days in advance. Using both the NOAA and ECMWF weather forecast models, we develop global maps indicating a first approximation of the locations that are likely to benefit from the development of seasonal preparedness plans and/or short-term early warning systems for extreme temperature. The extratropics generally show both short-term skill as well as strong seasonality; in the tropics, most locations do also demonstrate one or both. In fact, almost 5 billion people live in regions that have seasonality and predictability of heatwaves and/or coldwaves. Climate adaptation investments in these regions can take advantage of seasonality and predictability to reduce risks to vulnerable populations.

  1. Effectiveness of National Weather Service heat alerts in preventing mortality in 20 US cities.

    Science.gov (United States)

    Weinberger, Kate R; Zanobetti, Antonella; Schwartz, Joel; Wellenius, Gregory A

    2018-04-09

    Extreme heat is a well-documented public health threat. The US National Weather Service (NWS) issues heat advisories and warnings (collectively, "heat alerts") in advance of forecast extreme heat events. The effectiveness of these alerts in preventing deaths remains largely unknown. To quantify the change in mortality rates associated with heat alerts in 20 US cities between 2001 and 2006. Because NWS heat alerts are issued based on forecast weather and these forecasts are imperfect, in any given location there exists a set of days of similar observed heat index in which heat alerts have been issued for some days but not others. We used a case-crossover design and conditional logistic regression to compare mortality rates on days with versus without heat alerts among such eligible days, adjusting for maximum daily heat index and temporal factors. We combined city-specific estimates into a summary measure using standard random-effects meta-analytic techniques. Overall, NWS heat alerts were not associated with lower mortality rates (percent change in rate: -0.5% [95% CI: -2.8, 1.9]). In Philadelphia, heat alerts were associated with a 4.4% (95% CI: -8.3, -0.3) lower mortality rate or an estimated 45.1 (95% empirical CI: 3.1, 84.1) deaths averted per year if this association is assumed to be causal. No statistically significant beneficial association was observed in other individual cities. Our results suggest that between 2001 and 2006, NWS heat alerts were not associated with lower mortality in most cities studied, potentially missing a valuable opportunity to avert a substantial number of heat-related deaths. These results highlight the need to better link alerts to effective communication and intervention strategies to reduce heat-related mortality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Attributing anthropogenic impact on regional heat wave events using CAM5 model large ensemble simulations

    Science.gov (United States)

    Lo, S. H.; Chen, C. T.

    2017-12-01

    Extreme heat waves have serious impacts on society. It was argued that the anthropogenic forcing might substantially increase the risk of extreme heat wave events (e.g. over western Europe in 2003 and over Russia in 2010). However, the regional dependence of such anthropogenic impact and the sensitivity of the attributed risk to the definition of heat wave still require further studies. In our research framework, the change in the frequency and severity of a heat wave event under current conditions is calculated and compared with the probability and magnitude of the event if the effects of particular external forcing, such as due to human influence, had been absent. In our research, we use the CAM5 large ensemble simulation from the CLIVAR C20C+ Detection and Attribution project (http://portal.nersc.gov/c20c/main.html, Folland et al. 2014) to detect the heat wave events occurred in both historical all forcing run and natural forcing only run. The heat wave events are identified by partial duration series method (Huth et al., 2000). We test the sensitivity of heat wave thresholds from daily maximum temperature (Tmax) in warm season (from May to September) between 1959 and 2013. We consider the anthropogenic effect on the later period (2000-2013) when the warming due to human impact is more evident. Using Taiwan and surrounding area as our preliminary research target, We found the anthropogenic effect will increase the heat wave day per year from 30 days to 75 days and make the mean starting(ending) day for heat waves events about 15-30 days earlier(later). Using the Fraction of Attribution Risk analysis to estimate the risk of frequency of heat wave day, our results show the anthropogenic forcing very likely increase the heat wave days over Taiwan by more than 50%. Further regional differences and sensitivity of the attributed risk to the definition of heat wave will be compared and discussed.

  3. The 2010 Pakistan Flood and the Russia Heat Wave: Teleconnection of Extremes

    Science.gov (United States)

    Lau, William K.; Kim, K. M.

    2010-01-01

    The Pakistan flood and the Russia heat wave/Vvild fires of the summer of2010 were two of the most extreme, and catastrophic events in the histories of the two countries occurring at about the same time. To a casual observer, the timing may just be a random coincidence of nature, because the two events were separated by long distances, and represented opposite forces of nature, i.e., flood vs. drought, and water vs. fire. In this paper, using NASA satellite and NOAA reanalysis data, we presented observation evidences that that the two events were indeed physically connected.

  4. Prediction of laser cutting heat affected zone by extreme learning machine

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Skrijelj, Hivzo; Nedić, Bogdan

    2017-01-01

    Heat affected zone (HAZ) of the laser cutting process may be developed based on combination of different factors. In this investigation the HAZ forecasting, based on the different laser cutting parameters, was analyzed. The main goal was to predict the HAZ according to three inputs. The purpose of this research was to develop and apply the Extreme Learning Machine (ELM) to predict the HAZ. The ELM results were compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and by using several statistical indicators. Based upon simulation results, it was demonstrated that ELM can be utilized effectively in applications of HAZ forecasting.

  5. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  6. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    Science.gov (United States)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2018-04-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  7. Moving in extreme environments: what's extreme and who decides?

    Science.gov (United States)

    Cotter, James David; Tipton, Michael J

    2014-01-01

    Humans work, rest and play in immensely varied extreme environments. The term 'extreme' typically refers to insufficiency or excess of one or more stressors, such as thermal energy or gravity. Individuals' behavioural and physiological capacity to endure and enjoy such environments varies immensely. Adverse effects of acute exposure to these environments are readily identifiable (e.g. heat stroke or bone fracture), whereas adverse effects of chronic exposure (e.g. stress fractures or osteoporosis) may be as important but much less discernable. Modern societies have increasingly sought to protect people from such stressors and, in that way, minimise their adverse effects. Regulations are thus established, and advice is provided on what is 'acceptable' exposure. Examples include work/rest cycles in the heat, hydration regimes, rates of ascent to and duration of stay at altitude and diving depth. While usually valuable and well intentioned, it is important to realise the breadth and importance of limitations associated with such guidelines. Regulations and advisories leave less room for self-determination, learning and perhaps adaptation. Regulations based on stress (e.g. work/rest cycles relative to WBGT) are more practical but less direct than those based on strain (e.g. core temperature), but even the latter can be substantively limited (e.g. by lack of criterion validation and allowance for behavioural regulation in the research on which they are based). Extreme Physiology & Medicine is publishing a series of reviews aimed at critically examining the issues involved with self- versus regulation-controlled human movement acutely and chronically in extreme environments. These papers, arising from a research symposium in 2013, are about the impact of people engaging in such environments and the effect of rules and guidelines on their safety, enjoyment, autonomy and productivity. The reviews will cover occupational heat stress, sporting heat stress, hydration, diving

  8. Historical trends and current state of heating and cooling degree days in Italy

    International Nuclear Information System (INIS)

    De Rosa, Mattia; Bianco, Vincenzo; Scarpa, Federico; Tagliafico, Luca A.

    2015-01-01

    Highlights: • A comparison among methods for calculating heating degree-days (HDD) is provided. • ASHRAE method is used for analyze the historical trends of HDD and CDD in Italy. • The HDD historical profile for Rome is decomposed in its characterizing components. - Abstract: Degree days (DD) represent a versatile climatic indicator which is commonly used in the analysis of building energy performance, as e.g. (i) to perform energetic assessment of existent and new buildings, (ii) to analyze the territory energy consumption, (iii) to develop scenario analyses in terms of energy consumption forecasting, and so on. Different methods can be used for determining the DD values, depending on the available climatic data of each location. In the present paper, the simplified methods based on reduced climatic data set have been compared assuming the mean daily degree-hours method (MDDH) as reference. Hourly temperature profiles recorded by the meteorological station located at the University of Genoa have been used for these analyses. In the second part of the present work, the ASHRAE method has been selected to calculate heating (HDD) and cooling (CDD) degree days for several Italian cities. In particular, daily meteorological data of several Italian cities (covering the whole climatic conditions which occur in Italy) have been used to calculate heating and cooling degree days in the period 1978–2013, in order to analyze their trends in the last years. Finally, the historical profiles of Rome and Milan have been treated as time-series and analyzed in the frequency domain, performing a decomposition of the original data set into different characterizing components. This simplified approach permits to deeply analyze the historical profile of DD and represents a simple starting point method for future analyses with forecasting perspectives

  9. Time-of-day effects of exposure to solar radiation on thermoregulation during outdoor exercise in the heat.

    Science.gov (United States)

    Otani, Hidenori; Goto, Takayuki; Goto, Heita; Shirato, Minayuki

    2017-01-01

    High solar radiation has been recognised as a contributing factor to exertional heat-related illness in individuals exercising outdoors in the heat. Although solar radiation intensity has been known to have similar time-of-day variation as body temperature, the relationship between fluctuations in solar radiation associated with diurnal change in the angle of sunlight and thermoregulatory responses in individuals exercising outdoors in a hot environment remains largely unknown. The present study therefore investigated the time-of-day effects of variations in solar radiation associated with changing solar elevation angle on thermoregulatory responses during moderate-intensity outdoor exercise in the heat of summer. Eight healthy, high school baseball players, heat-acclimatised male volunteers completed a 3-h outdoor baseball trainings under the clear sky in the heat. The trainings were commenced at 0900 h in AM trial and at 1600 h in PM trial each on a separate day. Solar radiation and solar elevation angle during exercise continued to increase in AM (672-1107 W/m 2 and 44-69°) and decrease in PM (717-0 W/m 2 and 34-0°) and were higher on AM than on PM (both P  0.05). Tympanic temperature measured by an infrared tympanic thermometer and mean skin temperature were higher in AM than PM at 120 and 180 min (P  0.05). The current study demonstrates a greater thermoregulatory strain in the morning than in the afternoon resulting from a higher body temperature and heart rate in relation to an increase in environmental heat stress with rising solar radiation and solar elevation angle during moderate-intensity outdoor exercise in the heat. This response is associated with a lesser net heat loss at the skin and a greater body heat gain from the sun in the morning compared with the afternoon.

  10. Down-slope cascading modulated by day/night variations of solar heating

    Directory of Open Access Journals (Sweden)

    Irina P. Chubarenko

    2013-04-01

    Full Text Available Sloping sides of natural basins favour the formation of cross-shore temperature gradients (differential coastal heating/cooling, which cause significant littoral-pelagial water exchange. Autumnal denser water cascading along a sloping lake boundary, modulated by day/night variations of solar heating is considered numerically, in order to reveal the development of the cascading process in time, spatial structure of the exchange flows, and diurnal variations of volumetric flow-rate of littoral-pelagial exchange flow, as well as to compare its daily maxima at different depths/cross-sections, with known quasi-steady state predictions under constant buoyancy flux. The development of exchange flows progress through two phases: i appearance and adjustment to day/night buoyancy flux variations; and ii quasi-steady exchange, when variations of the flow rate in every next diurnal cycle are more or less the same as the previous day. The duration of the first phase depends on local depth (~1 day for depths of about 10 m, ~2 days for depths 15-25 m, and ~5 days down to 30 m for the considered initial linear vertical temperature stratification. Maximum horizontal exchange takes place in the cross-section where the thermocline meets the slope, and the cold down-slope currents detach from the bottom. The location of this cross-section advances off-shore with time, in accordance with the deepening of the upper mixed layer. The existence of a specific coastal circulation cell, with different water dynamics from those above the main part of the slope, is a characteristic feature of horizontal convective exchange. The mean value of the specific volumetric flow rate of the convective exchange, driven by day/night oscillations in its fully developed quasi-steady phase increases almost linearly with local depth, and is about twice as large as the quasi-steady exchange values, predicted by formula Q=0.0013·d1.37 (Q is measured in m2 s-1, and local depth above the

  11. The other side of the coin: urban heat islands as shields from extreme cold

    Science.gov (United States)

    Yang, J.; Bou-Zeid, E.

    2017-12-01

    Extensive studies focusing on urban heat islands (UHIs) during hot periods create a perception that UHIs are invariably hazardous to human health and the sustainability of cities. Consequently, cities have invested substantial resources to try to mitigate UHIs. These urban policies can have serious repercussions since the health risks associated with cold weather are in fact higher than for heat episodes, yet wintertime UHIs have hardly been explored. We combine ground observations from 12 U.S. cities and high-resolution simulations to show that UHIs not only warm urban areas in the winter, but also further intensify during cold waves by up to 1.32 ± 0.78 oC (mean ± standard deviation) at night. Urban heat islands serve as shelters against extreme colds and provide invaluable benefits of reducing health risks and heating demand. More importantly, our simulations indicate that standard UHI mitigation measures such as green or cool roofs reduce these cold time amenities to different extents. Cities, particularly in cool and cold temperate climates, should hence revisit policies and efforts that are only desgined for hot periods. A paradigm shift is urgently needed to give an equal weight to the wintertime benefits of UHIs in the sustainability and resilience blueprints of cities.

  12. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    Science.gov (United States)

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the

  13. Urban Heat Island phenomenon in extreme continental climate (Astana, Kazakhstan)

    Science.gov (United States)

    Konstantinov, Pavel; Akhmetova, Alina

    2015-04-01

    Urban Heat Island (UHI) phenomenon is well known in scientific literature since first half of the 19th century [1]. By now a wide number of world capitals is described from climatological point of view, especially in mid-latitudes. In beginning of XXI century new studies focus on heat island of tropical cities. However dynamics UHI in extreme continental climates is insufficiently investigated, due to the fact that there isn't large cities in Europe and Northern America within that climate type. In this paper we investigate seasonal and diurnal dynamics UHI intensity for Astana, capital city of Kazakhstan (population larger than 835 000 within the city) including UHI intensity changes on different time scales. Now (since 1998) Astana is the second coldest capital city in the world after Ulaanbaatar, Mongolia [3] For this study we use the UHI investigation technology, described in [2]. According to this paper, we selected three stations: one located into city in high and midrise buildings area (including extensive lowrise and high-energy industrial - LCZ classification) and two others located in rural site (sparsely built or open-set and lightweight lowrise according LCZ classification). Also these stations must be close by distance (less than 100 km) and altitude. Therefore, first for Astana city were obtained numerical evaluations for UHI climate dynamics, UHI dependence of synoptic situations and total UHI climatology on monthly and daily averages. References: 1.Howard, L. (1833) The Climate of London, Deduced from Meteorological Observations. Volume 2, London. 2.Kukanova E.A., Konstantinov P.I. An urban heat islands climatology in Russia and linkages to the climate change In Geophysical Research Abstracts, volume 16 of EGU General Assembly, pages EGU2014-10833-1, Germany, 2014. Germany. 3.www.pogoda.ru.net

  14. The influence of heat stress on metabolic status of cows

    Directory of Open Access Journals (Sweden)

    Horvat Jožef

    2014-01-01

    Full Text Available It is considered that high air temperature and humidity during the summer are the main factors which adversely affect both the health and production-reproductive performance of high yielding dairy cows. The resulting heath stress leads to a series of changes in endocrine regulation of homeostasis. The changes in hormonal status reflect in some way to the indicators of metabolic status of the cows. The objective of this work was to investigate the influence of heat stress on metabolic status of cows. The experiment was carried out on 20 cows of Holstein-Friesian breed during the summer, in the period from 18th to 45th day of lactation. During the performance of the experiment, the value of heat index (THI was determined hourly and then the value of average morning (from 10 pm the previous day to 9 am the current day, afternoon (from 10 am to 9 pm the current day and all-day THI was calculated. Blood sampling was carried out on the 1st, 2nd, 8th, 11th, 14th, 18th, 25th, 29th and 37th day of the experiment, in the morning and the afternoon. On the basis of hourly THI values, whole experimental period was divided into three periods: period A during which the cows were exposed to a extreme high heat stress (THI≥78 at least 7 hours in 24 hours; period B during which the cows were exposed to a moderate heat stress (72≥THI≤78 at least 7 hours in 24 hours; period C during which the cows were not exposed to a heat stress (THI≤72 in 24 hours. The average daily THI in period A (73,25±0,89 was significantly higher (p<0,01, individually in regard to period B (71,45±0,96 and period C (65,41±2,09. THI was significantly higher in the period B than in the period C (p<0,01. Significantly lower blood glucose value (p<0,05 during the afternoon period in the cows exposed to the extreme heat stress (3,02±0,31 mmol/L in regard to the morning period (3,14±0,41 mmol/L points to the fact that in such conditions, metabolism redirects to use of glucose as an

  15. Impact of two recent extreme heat episodes on morbidity and mortality in Adelaide, South Australia: a case-series analysis

    Directory of Open Access Journals (Sweden)

    Williams Susan

    2011-05-01

    Full Text Available Abstract Background Extreme heatwaves occurred in Adelaide, South Australia, in the summers of 2008 and 2009. Both heatwaves were unique in terms of their duration (15 days and 13 days respectively, and the 2009 heatwave was also remarkable in its intensity with a maximum temperature reaching 45.7°C. It is of interest to compare the health impacts of these two unprecedented heatwaves with those of previous heatwaves in Adelaide. Methods Using case-series analysis, daily morbidity and mortality rates during heatwaves (≥35°C for three or more days occurring in 2008 and 2009 and previous heatwaves occurring between 1993 and 2008 were compared with rates during all non-heatwave days (1 October to 31 March. Incidence rate ratios (IRRs were established for ambulance call-outs, hospital admissions, emergency department presentations and mortality. Dose response effects of heatwave duration and intensity were examined. Results Ambulance call-outs during the extreme 2008 and 2009 events were increased by 10% and 16% respectively compared to 4.4% during previous heatwaves. Overall increases in hospital and emergency settings were marginal, except for emergency department presentations in 2008, but increases in specific health categories were observed. Renal morbidity in the elderly was increased during both heatwaves. During the 2009 heatwave, direct heat-related admissions increased up to 14-fold compared to a three-fold increase seen during the 2008 event and during previous heatwaves. In 2009, marked increases in ischaemic heart disease were seen in the 15-64 year age group. Only the 2009 heatwave was associated with considerable increases in total mortality that particularly affected the 15-64 year age group (1.37; 95% CI, 1.09, 1.71, while older age groups were unaffected. Significant dose-response relationships were observed for heatwave duration (ambulance, hospital and emergency setting and intensity (ambulance and mortality. Conclusions While

  16. GCMs-based spatiotemporal evolution of climate extremes during the 21st century in China

    Science.gov (United States)

    Li, Jianfeng; Zhang, Qiang; Chen, Yongqin David; Singh, Vijay P.

    2013-10-01

    Changes in the hydrological cycle being caused by human-induced global warming are triggering variations in observed spatiotemporal distributions of precipitation and temperature extremes, and hence in droughts and floods across China. Evaluation of future climate extremes based on General Circulation Models (GCMs) outputs will be of great importance in scientific management of water resources and agricultural activities. In this study, five precipitation extreme and five temperature extreme indices are defined. This study analyzes daily precipitation and temperature data for 1960-2005 from 529 stations in China and outputs of GCMs from the Coupled Model Intercomparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5). Downscaling methods, based on QQ-plot and transfer functions, are used to downscale GCMs outputs to the site scale. Performances of GCMs in simulating climate extremes were evaluated using the Taylor diagram. Results showed that: (1) the multimodel CMIP5 ensemble performs the best in simulating observed extreme conditions; (2) precipitation processes are intensifying with increased frequency and intensity across entire China. The southwest China, however, is dominated by lengthening maximum consecutive dry days and also more heavy precipitation extremes; (3) warming processes continue with increasing warm nights, decreasing frost days, and lengthening heat waves during the 21st century; (4) changes in precipitation and temperature extremes exhibit larger changing magnitudes under RCP85 scenario; (5) for the evolution of changes in extremes, in most cases, the spatial pattern keeps the same, even though changing rates vary. In some cases, area with specific changing properties extends or shrinks gradually. The directions of trends may alter during the evolution; and (6) changes under RCP85 become more and more pronounced as time elapses. Under the peak-and-decline RCP26, changes in some cases do not decrease correspondingly during 2070-2099 even though the

  17. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project.

    Science.gov (United States)

    D'Ippoliti, Daniela; Michelozzi, Paola; Marino, Claudia; de'Donato, Francesca; Menne, Bettina; Katsouyanni, Klea; Kirchmayer, Ursula; Analitis, Antonis; Medina-Ramón, Mercedes; Paldy, Anna; Atkinson, Richard; Kovats, Sari; Bisanti, Luigi; Schneider, Alexandra; Lefranc, Agnès; Iñiguez, Carmen; Perucci, Carlo A

    2010-07-16

    The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity. Heat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated. The effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality) than in North Continental (+ 12.4%) cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions. Climate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.

  18. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project

    Directory of Open Access Journals (Sweden)

    Bisanti Luigi

    2010-07-01

    Full Text Available Abstract Background The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity. Methods Heat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated. Results The effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality than in North Continental (+ 12.4% cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions. Conclusions Climate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.

  19. Urban Form and Extreme Heat Events: Are Sprawling Cities More Vulnerable to Climate Change Than Compact Cities?

    Science.gov (United States)

    Stone, Brian; Hess, Jeremy J.; Frumkin, Howard

    2010-01-01

    Background Extreme heat events (EHEs) are increasing in frequency in large U.S. cities and are responsible for a greater annual number of climate-related fatalities, on average, than any other form of extreme weather. In addition, low-density, sprawling patterns of urban development have been associated with enhanced surface temperatures in urbanized areas. Objectives In this study. we examined the association between urban form at the level of the metropolitan region and the frequency of EHEs over a five-decade period. Methods We employed a widely published sprawl index to measure the association between urban form in 2000 and the mean annual rate of change in EHEs between 1956 and 2005. Results We found that the rate of increase in the annual number of EHEs between 1956 and 2005 in the most sprawling metropolitan regions was more than double the rate of increase observed in the most compact metropolitan regions. Conclusions The design and management of land use in metropolitan regions may offer an important tool for adapting to the heat-related health effects associated with ongoing climate change. PMID:21114000

  20. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    Science.gov (United States)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  1. Temporal Compounding of Heat Waves in the Present and Projected Future

    Science.gov (United States)

    Baldwin, J. W.; Dessy, J.; Vecchi, G. A.; Oppenheimer, M.

    2017-12-01

    The hazard of heat waves is projected to increase significantly with global warming, motivating much recent research characterizing various aspects of these extreme events. One less examined aspect of heat waves is their temporal structure. Here we first modify existing heat wave duration definitions to flexibly account for a variety of possible heat wave temporal structures (sequences of hot and cooler days). We then examine past heat waves associated with high mortality using observational reanalysis data, and note that many past heat waves might be better described as series of hot days compounded together with short breaks of cooler days in between. We employ Geophysical Fluid Dynamics Laboratory (GFDL) global climate model (GCM) simulations to compare the frequency of these compound heat waves in the present and projected future with higher levels of atmospheric carbon dioxide. Our results indicate that temporally compound heatwaves will constitute a greater proportion of heat wave risk with global warming. Via examining synthetic autoregressive model data, we propose that this phenomenon is expected when shifting the mean of a time series with some memory and noise. Notably, an increased proportion of compound events implies that vulnerability from prior hot days will play an increasingly large role in heat wave risk, with possible implications for both heat wave-related policy and preparedness.

  2. Risk from drought and extreme heat in Russian wheat production and its relation to atmospheric blocking and teleconnection patterns

    Science.gov (United States)

    Giannakaki, Paraskevi; Calanca, Pierluigi

    2017-04-01

    Russia has become one of the leading wheat exporters worldwide. Major breakdowns in Russian wheat production induced by extreme weather events are therefore of high significance not only for the domestic but also for the global market. Wheat production in south-western Russia, the main growing area, suffers in particular from the adverse effects of drought and heat waves. For this reason knowledge of the occurrence of this type of extreme events and of the processes that lead to adverse conditions is of paramount importance for risk management. The negative impacts of heat waves and drought are particularly severe when anomalous conditions persist in time. As an example, a blocking event in summer 2010 resulted in one of the warmest and worst drought conditions in Russia's recent history. The latter caused a decline in Russian wheat production by more than 30%, which in turn prompted the Russian government to issue an export ban that lasted until summer 2011. In view of this, the question of course arises of how much of the negative variations in Russian wheat production levels can be explained by blocking events and other features of the large-scale atmospheric circulation. Specific questions are: how often are blocking events over Russia associated with extreme high temperatures and dry conditions? Which of the teleconnection patterns are correlated with drought and heat stress conditions in the area? Answering these questions can contribute to a develop strategies for agricultural risk management. In this contribution we present results of a study that aims at characterizing the occurrence of adverse weather conditions in south-western Russia in relation to atmospheric blocking and teleconnection patterns such as East Atlantic/Western Russia pattern, the Polar/Eurasia pattern, the North Atlantic Oscillation and the Scandinavia pattern. The analysis relies on weather data for 1980-2014 from 130 stations distributed across the wheat production area. The account

  3. Characterizing prolonged heat effects on mortality in a sub-tropical high-density city, Hong Kong

    Science.gov (United States)

    Ho, Hung Chak; Lau, Kevin Ka-Lun; Ren, Chao; Ng, Edward

    2017-11-01

    Extreme hot weather events are likely to increase under future climate change, and it is exacerbated in urban areas due to the complex urban settings. It causes excess mortality due to prolonged exposure to such extreme heat. However, there is lack of universal definition of prolonged heat or heat wave, which leads to inadequacies of associated risk preparedness. Previous studies focused on estimating temperature-mortality relationship based on temperature thresholds for assessing heat-related health risks but only several studies investigated the association between types of prolonged heat and excess mortality. However, most studies focused on one or a few isolated heat waves, which cannot demonstrate typical scenarios that population has experienced. In addition, there are limited studies on the difference between daytime and nighttime temperature, resulting in insufficiency to conclude the effect of prolonged heat. In sub-tropical high-density cities where prolonged heat is common in summer, it is important to obtain a comprehensive understanding of prolonged heat for a complete assessment of heat-related health risks. In this study, six types of prolonged heat were examined by using a time-stratified analysis. We found that more consecutive hot nights contribute to higher mortality risk while the number of consecutive hot days does not have significant association with excess mortality. For a day after five consecutive hot nights, there were 7.99% [7.64%, 8.35%], 7.74% [6.93%, 8.55%], and 8.14% [7.38%, 8.88%] increases in all-cause, cardiovascular, and respiratory mortality, respectively. Non-consecutive hot days or nights are also found to contribute to short-term mortality risk. For a 7-day-period with at least five non-consecutive hot days and nights, there was 15.61% [14.52%, 16.70%] increase in all-cause mortality at lag 0-1, but only -2.00% [-2.83%, -1.17%] at lag 2-3. Differences in the temperature-mortality relationship caused by hot days and hot nights

  4. Changes In The Heating Degree-days In Norway Due Toglobal Warming

    Science.gov (United States)

    Skaugen, T. E.; Tveito, O. E.; Hanssen-Bauer, I.

    A continuous spatial representation of temperature improves the possibility topro- duce maps of temperature-dependent variables. A temperature scenario for the period 2021-2050 is obtained for Norway from the Max-Planck-Institute? AOGCM, GSDIO ECHAM4/OPEC 3. This is done by an ?empirical downscaling method? which in- volves the use of empirical links between large-scale fields and local variables to de- duce estimates of the local variables. The analysis is obtained at forty-six sites in Norway. Spatial representation of the anomalies of temperature in the scenario period compared to the normal period (1961-1990) is obtained with the use of spatial interpo- lation in a GIS. The temperature scenario indicates that we will have a warmer climate in Norway in the future, especially during the winter season. The heating degree-days (HDD) is defined as the accumulated Celsius degrees be- tween the daily mean temperature and a threshold temperature. For Scandinavian countries, this threshold temperature is 17 Celsius degrees. The HDD is found to be a good estimate of accumulated cold. It is therefore a useful index for heating energy consumption within the heating season, and thus to power production planning. As a consequence of the increasing temperatures, the length of the heating season and the HDD within this season will decrease in Norway in the future. The calculations of the heating season and the HDD is estimated at grid level with the use of a GIS. The spatial representation of the heating season and the HDD can then easily be plotted. Local information of the variables being analysed can be withdrawn from the spatial grid in a GIS. The variable is prepared for further spatial analysis. It may also be used as an input to decision making systems.

  5. Future Extreme Event Vulnerability in the Rural Northeastern United States

    Science.gov (United States)

    Winter, J.; Bowen, F. L.; Partridge, T.; Chipman, J. W.

    2017-12-01

    Future climate change impacts on humans will be determined by the convergence of evolving physical climate and socioeconomic systems. Of particular concern is the intersection of extreme events and vulnerable populations. Rural areas of the Northeastern United States have experienced increased temperature and precipitation extremes, especially over the past three decades, and face unique challenges due to their physical isolation, natural resources dependent economies, and high poverty rates. To explore the impacts of future extreme events on vulnerable, rural populations in the Northeast, we project extreme events and vulnerability indicators to identify where changes in extreme events and vulnerable populations coincide. Specifically, we analyze future (2046-2075) maximum annual daily temperature, minimum annual daily temperature, maximum annual daily precipitation, and maximum consecutive dry day length for Representative Concentration Pathways (RCP) 4.5 and 8.5 using four global climate models (GCM) and a gridded observational dataset. We then overlay those projections with estimates of county-level population and relative income for 2060 to calculate changes in person-events from historical (1976-2005), with a focus on Northeast counties that have less than 250,000 people and are in the bottom income quartile. We find that across the rural Northeast for RCP4.5, heat person-events per year increase tenfold, far exceeding decreases in cold person-events and relatively small changes in precipitation and drought person-events. Counties in the bottom income quartile have historically (1976-2005) experienced a disproportionate number of heat events, and counties in the bottom two income quartiles are projected to experience a greater heat event increase by 2046-2075 than counties in the top two income quartiles. We further explore the relative contributions of event frequency, population, and income changes to the total and geographic distribution of climate change

  6. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China: Urbanization and the Increase of EHEs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuchao [Institute of Island and Coastal Ecosystems, Ocean College, Zhejiang University, Zhoushan China; Ruby Leung, L. [Pacific Northwest National Laboratory, Richland Washington USA; Zhao, Naizhuo [Department of Geosciences, Texas Tech University, Lubbock Texas USA; Zhao, Chun [School of Earth and Space Sciences, University of Science and Technology of China, Hefei China; Qian, Yun [Pacific Northwest National Laboratory, Richland Washington USA; Hu, Kejia [Institute of Island and Coastal Ecosystems, Ocean College, Zhejiang University, Zhoushan China; Liu, Xiaoping [School of Geography and Planning, Sun Yat-sen University, Guangzhou China; Chen, Baode [Shanghai Typhoon Institute of China Meteorological Administration, Shanghai China

    2017-07-03

    The urban agglomeration of Yangtze River Delta (YRD) is emblematic of China’s rapid urbanization during the past decades. Based on homogenized daily maximum and minimum temperature data, the contributions of urbanization to trends of extreme temperature indices (ETIs) during summer in YRD are evaluated. Dynamically classifying the observational stations into urban and rural areas, this study presents unexplored changes in temperature extremes during the past four decades in the YRD region and quantifies the amplification of the positive trends in ETIs by the urban heat island effect. Overall, urbanization contributes to more than one third in the increase of intensity of extreme heat events in the region, which is comparable to the contribution of greenhouse gases. Compared to rural stations, more notable shifts to the right in the probability distribution of temperature and ETIs were observed in urban stations.

  7. Thermal Implications for Extreme Fast Charge

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  8. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Safari, H. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  9. Simulated trends of extreme climate indices for the Carpathian basin using outputs of different regional climate models

    Science.gov (United States)

    Pongracz, R.; Bartholy, J.; Szabo, P.; Pieczka, I.; Torma, C. S.

    2009-04-01

    Regional climatological effects of global warming may be recognized not only in shifts of mean temperature and precipitation, but in the frequency or intensity changes of different climate extremes. Several climate extreme indices are analyzed and compared for the Carpathian basin (located in Central/Eastern Europe) following the guidelines suggested by the joint WMO-CCl/CLIVAR Working Group on climate change detection. Our statistical trend analysis includes the evaluation of several extreme temperature and precipitation indices, e.g., the numbers of severe cold days, winter days, frost days, cold days, warm days, summer days, hot days, extremely hot days, cold nights, warm nights, the intra-annual extreme temperature range, the heat wave duration, the growing season length, the number of wet days (using several threshold values defining extremes), the maximum number of consecutive dry days, the highest 1-day precipitation amount, the greatest 5-day rainfall total, the annual fraction due to extreme precipitation events, etc. In order to evaluate the future trends (2071-2100) in the Carpathian basin, daily values of meteorological variables are obtained from the outputs of various regional climate model (RCM) experiments accomplished in the frame of the completed EU-project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Horizontal resolution of the applied RCMs is 50 km. Both scenarios A2 and B2 are used to compare past and future trends of the extreme climate indices for the Carpathian basin. Furthermore, fine-resolution climate experiments of two additional RCMs adapted and run at the Department of Meteorology, Eotvos Lorand University are used to extend the trend analysis of climate extremes for the Carpathian basin. (1) Model PRECIS (run at 25 km horizontal resolution) was developed at the UK Met Office, Hadley Centre, and it uses the boundary conditions from the HadCM3 GCM. (2) Model Reg

  10. Novel Zero-Heat-Flux Deep Body Temperature Measurement in Lower Extremity Vascular and Cardiac Surgery.

    Science.gov (United States)

    Mäkinen, Marja-Tellervo; Pesonen, Anne; Jousela, Irma; Päivärinta, Janne; Poikajärvi, Satu; Albäck, Anders; Salminen, Ulla-Stina; Pesonen, Eero

    2016-08-01

    The aim of this study was to compare deep body temperature obtained using a novel noninvasive continuous zero-heat-flux temperature measurement system with core temperatures obtained using conventional methods. A prospective, observational study. Operating room of a university hospital. The study comprised 15 patients undergoing vascular surgery of the lower extremities and 15 patients undergoing cardiac surgery with cardiopulmonary bypass. Zero-heat-flux thermometry on the forehead and standard core temperature measurements. Body temperature was measured using a new thermometry system (SpotOn; 3M, St. Paul, MN) on the forehead and with conventional methods in the esophagus during vascular surgery (n = 15), and in the nasopharynx and pulmonary artery during cardiac surgery (n = 15). The agreement between SpotOn and the conventional methods was assessed using the Bland-Altman random-effects approach for repeated measures. The mean difference between SpotOn and the esophageal temperature during vascular surgery was+0.08°C (95% limit of agreement -0.25 to+0.40°C). During cardiac surgery, during off CPB, the mean difference between SpotOn and the pulmonary arterial temperature was -0.05°C (95% limits of agreement -0.56 to+0.47°C). Throughout cardiac surgery (on and off CPB), the mean difference between SpotOn and the nasopharyngeal temperature was -0.12°C (95% limits of agreement -0.94 to+0.71°C). Poor agreement between the SpotOn and nasopharyngeal temperatures was detected in hypothermia below approximately 32°C. According to this preliminary study, the deep body temperature measured using the zero-heat-flux system was in good agreement with standard core temperatures during lower extremity vascular and cardiac surgery. However, agreement was questionable during hypothermia below 32°C. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The effect of hot days on occupational heat stress in the manufacturing industry: implications for workers' well-being and productivity

    Science.gov (United States)

    Pogačar, Tjaša; Casanueva, Ana; Kozjek, Katja; Ciuha, Urša; Mekjavić, Igor B.; Kajfež Bogataj, Lučka; Črepinšek, Zalika

    2018-03-01

    Climate change is expected to exacerbate heat stress at the workplace in temperate regions, such as Slovenia. It is therefore of paramount importance to study present and future summer heat conditions and analyze the impact of heat on workers. A set of climate indices based on summer mean (Tmean) and maximum (Tmax) air temperatures, such as the number of hot days (HD: Tmax above 30 °C), and Wet Bulb Globe Temperature (WBGT) were used to account for heat conditions in Slovenia at six locations in the period 1981-2010. Observed trends (1961-2011) of Tmean and Tmax in July were positive, being larger in the eastern part of the country. Climate change projections showed an increase up to 4.5 °C for mean temperature and 35 days for HD by the end of the twenty-first century under the high emission scenario. The increase in WBGT was smaller, although sufficiently high to increase the frequency of days with a high risk of heat stress up to an average of a third of the summer days. A case study performed at a Slovenian automobile parts manufacturing plant revealed non-optimal working conditions during summer 2016 (WBGT mainly between 20 and 25 °C). A survey conducted on 400 workers revealed that 96% perceived the temperature conditions as unsuitable, and 56% experienced headaches and fatigue. Given these conditions and climate change projections, the escalating problem of heat is worrisome. The European Commission initiated a program of research within the Horizon 2020 program to develop a heat warning system for European workers and employers, which will incorporate case-specific solutions to mitigate heat stress.

  12. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot.

    Science.gov (United States)

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani

    2016-06-01

    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone ( Haliotis roei ) and major reductions in recruitment of scallops ( Amusium balloti ), king ( Penaeus latisulcatus ) and tiger ( P. esculentus ) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  13. Present limits to heat-adaptability in corals and population-level responses to climate extremes.

    Directory of Open Access Journals (Sweden)

    Bernhard M Riegl

    Full Text Available Climate change scenarios suggest an increase in tropical ocean temperature by 1-3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33-35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as "critically endangered". We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world's most heat-adapted holobionts while at the same time introducing their genetic information to populations naïve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within ∼20 years.

  14. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Science.gov (United States)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  15. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  16. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    Science.gov (United States)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  17. Using Annual Data to Estimate the Public Health Impact of Extreme Temperatures.

    Science.gov (United States)

    Goggins, William B; Yang, Chunyuh; Hokama, Tomiko; Law, Lewis S K; Chan, Emily Y Y

    2015-07-01

    Short-term associations between both hot and cold ambient temperatures and higher mortality have been found worldwide. Few studies have examined these associations on longer time scales. Age-standardized mortality rates (ASMRs) were calculated for 1976-2012 for Hong Kong SAR, People's Republic of China, defining "annual" time periods in 2 ways: from May through April of the following year and from November through October. Annual frequency and severity of extreme temperatures were summarized by using a degree-days approach with extreme heat expressed as annual degree-days >29.3°C and cold as annual degree-days ASMR, with adjustment for long-term trends. Increases of 10 hot or 200 cold degree-days in an annual period, the approximate interquartile ranges for these variables, were significantly (all P's ≤ 0.011) associated with 1.9% or 3.1% increases, respectively, in the annual ASMR for the May-April analyses and with 2.2% or 2.8% increases, respectively, in the November-October analyses. Associations were stronger for noncancer and elderly mortality. Mortality increases associated with extreme temperature are not simply due to short-term forward displacement of deaths that would have occurred anyway within a few weeks. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Thermal energy storage for electricity-driven space heating in a day-ahead electricity market

    DEFF Research Database (Denmark)

    Pensini, Alessandro

    2012-01-01

    Thermal Energy Storage (TES) in a space heating (SH) application was investigated. The study aimed to determine the economic benefits of introducing TES into an electricity-driven SH system under a day-ahead electricity market. The performance of the TES was assessed by comparing the cost...... of electricity in a system with a TES unit to the case where no storage is in use and the entire heat requirement is fulfilled by purchasing electricity according to the actual load. The study had two goals: 1. Determining how the size – in terms of electricity input (Pmax) and energy capacity (Emax...

  19. Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach

    International Nuclear Information System (INIS)

    De Rosa, Mattia; Bianco, Vincenzo; Scarpa, Federico; Tagliafico, Luca A.

    2014-01-01

    Highlights: • A dynamic model to estimate the energy performance of buildings is presented. • The model is validated against leading software packages, TRNSYS and Energy Plus. • Modified degree days are introduced to account for solar irradiation effects. - Abstract: Degree days represent a versatile climatic indicator which is commonly used in building energy performance analysis. In this context, the present paper proposes a simple dynamic model to simulate heating/cooling energy consumption in buildings. The model consists of several transient energy balance equations for external walls and internal air according to a lumped-capacitance approach and it has been implemented utilizing the Matlab/Simulink® platform. Results are validated by comparison to the outcomes of leading software packages, TRNSYS and Energy Plus. By using the above mentioned model, energy consumption for heating/cooling is analyzed in different locations, showing that for low degree days the inertia effect assumes a paramount importance, affecting the common linear behavior of the building consumption against the standard degree days, especially for cooling energy demand. Cooling energy demand at low cooling degree days (CDDs) is deeply analyzed, highlighting that in this situation other factors, such as solar irradiation, have an important role. To take into account these effects, a correction to CDD is proposed, demonstrating that by considering all the contributions the linear relationship between energy consumption and degree days is maintained

  20. The influence of green areas and roof albedos on air temperatures during extreme heat events in Berlin, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Sebastian; Grossmann-Clarke, Susanne [Potsdam Institute for Climate Impact Research, Potsdam (Germany)

    2013-04-15

    The mesoscale atmospheric model COSMO-CLM (CCLM) with the Double Canyon Effect Parametrization Scheme (DCEP) is applied to investigate possible adaption measures to extreme heat events (EHEs) for the city of Berlin, Germany. The emphasis is on the effects of a modified urban vegetation cover and roof albedo on near-surface air temperatures. Five EHEs with a duration of 5 days or more are identified for the period 2000 to 2009. A reference simulation is carried out for each EHE with current vegetation cover, roof albedo and urban canopy parameters (UCPs), and is evaluated with temperature observations from weather stations in Berlin and its surroundings. The derivation of the UCPs from an impervious surface map and a 3-D building data set is detailed. Characteristics of the simulated urban heat island for each EHE are analysed in terms of these UCPs. In addition, six sensitivity runs are examined with a modified vegetation cover of each urban grid cell by -25%, 5% and 15%, with a roof albedo increased to 0.40 and 0.65, and with a combination of the largest vegetation cover and roof albedo, respectively. At the weather stations' grid cells, the results show a maximum of the average diurnal change in air temperature during each EHE of 0.82 K and -0.48 K for the -25% and 15% vegetation covers, -0.50 K for the roof albedos of 0.65, and -0.63 K for the combined vegetation and albedo case. The largest effects on the air temperature are detected during midday. (orig.)

  1. Mathematical Analysis of Extremity Immersion Cooling for Brain Temperature Management

    National Research Council Canada - National Science Library

    Xu, Xiaojiang; Santee, William; Berglund, Larry; Gonzalez, Richard

    2004-01-01

    .... As blood flow rates and surface-to-volume ratios are generally high in the extremities, heat exchange between the body and the environment through the extremities is an important path for heat exchange...

  2. Relationships Between Excessive Heat and Daily Mortality over the Coterminous U.S

    Science.gov (United States)

    Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maury G., Jr.; Estes, Sue M.; Quattrochi, Dale A.

    2015-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. Using National Land Data Assimilation System (NLDAS) meteorological reanalysis data, we have developed several measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. These measures include daily maximum and minimum air temperatures, daily maximum heat indices and a new heat stress variable called Net Daily Heat Stress (NDHS) that gives an integrated measure of heat stress (and relief) over the course of a day. All output has been created on the NLDAS 1/8 degree (approximately 12 km) grid and aggregated to the county level, which is the preferred geographic scale of analysis for public health researchers. County-level statistics have been made available through the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. We have examined the relationship between excessive heat events, as defined in eight different ways from the various daily heat metrics, and heat-related and all-cause mortality defined in CDC's National Center for Health Statistics 'Multiple Causes of Death 1999-2010' dataset. To do this, we linked daily, county-level heat mortality counts with EHE occurrence based on each of the eight EHE definitions by region and nationally for the period 1999-2010. The objectives of this analysis are to determine (1) whether heat-related deaths can be clearly tied to excessive heat events, (2) what time lags are critical for predicting heat-related deaths, and (3) which of the heat metrics correlates best with mortality in each US region. Results show large regional differences in the correlations between heat and mortality. Also, the heat metric that provides the best indicator of mortality varied by region

  3. Frequency of Extreme Heat Event as a Surrogate Exposure Metric for Examining the Human Health Effects of Climate Change.

    Directory of Open Access Journals (Sweden)

    Crystal Romeo Upperman

    Full Text Available Epidemiological investigation of the impact of climate change on human health, particularly chronic diseases, is hindered by the lack of exposure metrics that can be used as a marker of climate change that are compatible with health data. Here, we present a surrogate exposure metric created using a 30-year baseline (1960-1989 that allows users to quantify long-term changes in exposure to frequency of extreme heat events with near unabridged spatial coverage in a scale that is compatible with national/state health outcome data. We evaluate the exposure metric by decade, seasonality, area of the country, and its ability to capture long-term changes in weather (climate, including natural climate modes. Our findings show that this generic exposure metric is potentially useful to monitor trends in the frequency of extreme heat events across varying regions because it captures long-term changes; is sensitive to the natural climate modes (ENSO events; responds well to spatial variability, and; is amenable to spatial/temporal aggregation, making it useful for epidemiological studies.

  4. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on Chicken Breast Fillet during Cooking

    Directory of Open Access Journals (Sweden)

    Aarieke E.I. de Jong

    2012-01-01

    The surface temperature reached 70∘C within 30 sec and 85∘C within one minute. Extremely high decimal reduction times of 1.90, 1.97, and 2.20 min were obtained for C. jejuni, E. coli, and S. typhimurium, respectively. Chicken meat and refrigerated storage before cooking enlarged the heat resistance of the food borne pathogens. Additionally, a high challenge temperature or fast heating rate contributed to the level of heat resistance. The data were used to assess the probability of illness (campylobacteriosis due to consumption of chicken fillet as a function of cooking time. The data revealed that cooking time may be far more critical than previously assumed.

  5. Microclimate Variation and Estimated Heat Stress of Runners in the 2020 Tokyo Olympic Marathon

    Directory of Open Access Journals (Sweden)

    Eichi Kosaka

    2018-05-01

    Full Text Available The Tokyo 2020 Olympic Games will be held in July and August. As these are the hottest months in Tokyo, the risk of heat stress to athletes and spectators in outdoor sporting events is a serious concern. This study focuses on the marathon races, which are held outside for a prolonged time, and evaluates the potential heat stress of marathon runners using the COMFA (COMfort FormulA Human Heat Balance (HBB Model. The study applies a four-step procedure: (a measure the thermal environment along the marathon course; (b estimate heat stress on runners by applying COMFA; (c identify locations where runners may be exposed to extreme heat stress; and (d discuss measures to mitigate the heat stress on runners. On clear sunny days, the entire course is rated as ‘dangerous’ or ‘extremely dangerous’, and within the latter half of the course, there is a 10-km portion where values continuously exceed the extremely dangerous level. Findings illustrate which stretches have the highest need for mitigation measures, such as starting the race one hour earlier, allowing runners to run in the shade of buildings or making use of urban greenery including expanding the tree canopy.

  6. Temperature extremes reduce seagrass growth and induce mortality.

    Science.gov (United States)

    Collier, C J; Waycott, M

    2014-06-30

    Extreme heating (up to 43 °C measured from five-year temperature records) occurs in shallow coastal seagrass meadows of the Great Barrier Reef at low tide. We measured effective quantum yield (ϕPSII), growth, senescence and mortality in four tropical seagrasses to experimental short-duration (2.5h) spikes in water temperature to 35 °C, 40 °C and 43 °C, for 6 days followed by one day at ambient temperature. Increasing temperature to 35 °C had positive effects on ϕPSII (the magnitude varied between days and was highly correlated with PPFD), with no effects on growth or mortality. 40 °C represented a critical threshold as there were strong species differences and there was a large impact on growth and mortality. At 43 °C there was complete mortality after 2-3 days. These findings indicate that increasing duration (more days in a row) of thermal events above 40 °C is likely to affect the ecological function of tropical seagrass meadows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997

    Science.gov (United States)

    Díaz, J.; García, R.; Velázquez de Castro, F.; Hernández, E.; López, C.; Otero, A.

    2002-04-01

    The effects of heat waves on the population have been described by different authors and a consistent relationship between mortality and temperature has been found, especially in elderly subjects. The present paper studies this effect in Seville, a city in the south of Spain, known for its climate of mild winters and hot summers, when the temperature frequently exceeds 40 °C. This study focuses on the summer months (June to September) for the years from 1986 to 1997. The relationships between total daily mortality and different specific causes for persons older than 65 and 75 years, of each gender, were analysed. Maximum daily temperature and relative humidity at 7.00 a.m. were introduced as environmental variables. The possible confounding effect of different atmospheric pollutants, particularly ozone, were considered. The methodology employed was time series analysis using Box-Jenkins models with exogenous variables. On the basis of dispersion diagrams, we defined extremely hot days as those when the maximum daily temperature surpassed 41 °C. The ARIMA model clearly shows the relationship between temperature and mortality. Mortality for all causes increased up to 51% above the average in the group over 75 years for each degree Celsius beyond 41 °C. The effect is more noticeable for cardiovascular than for respiratory diseases, and more in women than in men. Among the atmospheric pollutants, a relation was found between mortality and concentrations of ozone, especially for men older than 75.

  8. Consumer Unit for Low Energy District Heating Net

    DEFF Research Database (Denmark)

    Paulsen, Otto; Fan, Jianhua; Furbo, Simon

    2008-01-01

    to reduce heat loss in the network. The consumer’s installation is a unit type with an accumulation tank for smoothing the heat load related to the domestic hot water. The building heat load is delivered by an under-floor heating system. The heavy under-floor heating system is assumed to smooth the room...... heat load on a daily basis, having a flow temperature control based on outdoor climate. The unit is designed for a near constant district heating water flow. The paper describes two concepts. The analyses are based on TRNSYS (Klein et al., 2006) simulation, supplied with laboratory verification......A low energy/ low temperature consumer installation is designed and analyzed. The consumer type is a low energy single family house 145 m2 with annual energy consumption in the range of 7000 kWh, incl. domestic hot water in a 2800 degree day climate. The network is an extreme low temperature system...

  9. Impacts of global warming on residential heating and cooling degree-days in the United States.

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-08-04

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981-2010) and future (2080-2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making.

  10. Impacts of global warming on residential heating and cooling degree-days in the United States

    Science.gov (United States)

    Petri, Yana; Caldeira, Ken

    2015-01-01

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981–2010) and future (2080–2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making. PMID:26238673

  11. Mortality impact of extreme winter temperatures

    Science.gov (United States)

    Díaz, Julio; García, Ricardo; López, César; Linares, Cristina; Tobías, Aurelio; Prieto, Luis

    2005-01-01

    During the last few years great attention has been paid to the evaluation of the impact of extreme temperatures on human health. This paper examines the effect of extreme winter temperature on mortality in Madrid for people older than 65, using ARIMA and GAM models. Data correspond to 1,815 winter days over the period 1986 1997, during which time a total of 133,000 deaths occurred. The daily maximum temperature (Tmax) was shown to be the best thermal indicator of the impact of climate on mortality. When total mortality was considered, the maximum impact occured 7 8 days after a temperature extreme; for circulatory diseases the lag was between 7 and 14 days. When respiratory causes were considered, two mortality peaks were evident at 4 5 and 11 days. When the impact of winter extreme temperatures was compared with that associated with summer extremes, it was found to occur over a longer term, and appeared to be more indirect.

  12. Towards constraining extreme temperature projections of the CMIP5 ensemble

    Science.gov (United States)

    Vogel, Martha-Marie; Orth, René; Isabelle Seneviratne, Sonia

    2016-04-01

    The frequency and intensity of heat waves is expected to change in future in response to global warming. Given the severe impacts of heat waves on ecosystems and society it is important to understand how and where they will intensify. Projections of extreme hot temperatures in the IPCC AR5 model ensemble show large uncertainties for projected changes of extreme temperatures in particular in Central Europe. In this region land-atmosphere coupling can contribute substantially to the development of heat waves. This coupling is also subject to change in future, while model projections display considerable spread. In this work we link projections of changes in extreme temperatures and of changes in land-atmosphere interactions with a particular focus on Central Europe. Uncertainties in projected extreme temperatures can be partly explained by different projected changes of the interplay between latent heat and temperature as well as soil moisture. Given the considerable uncertainty in land-atmosphere coupling representation already in the current climate, we furthermore employ observational data sets to constrain the model ensemble, and consequently the extreme temperature projections.

  13. The Spanish tourist sector facing extreme climate events: a case study of domestic tourism in the heat wave of 2003

    Science.gov (United States)

    Gómez-Martín, M. Belén; Armesto-López, Xosé A.; Martínez-Ibarra, Emilio

    2014-07-01

    This research explores, by means of a questionnaire-based survey, public knowledge and perception as well as the behaviour of young Spanish tourists before, during and after the summer holiday period affected by an episode of extreme heat in 2003. The survey was administered between November and December 2004. The extraordinary heat wave of the summer of 2003 can be seen as an example of a normal episode in terms of the predicted intensity and duration of European summers towards the end of the twenty-first century. It can therefore be used as the laboratory setting for this study. In this context, the use of the climate analogue approach allows us to obtain novel perspectives regarding the future impact that this type of event could have on tourist demand, based on a real experience. Likewise, such an approach allows the strategies of adaptation implemented by the different elements in the tourist system in order to cope with the atmospheric episode to be evaluated. Such strategies could prove useful in reducing vulnerability when faced with similar episodes in the future. The main results indicate that Spanish tourists (young segment market) are flexible in adapting to episodes of extremely high temperatures. Their personal perception of the phenomenon, their behaviour and the adaptation measures implemented to a greater or lesser extent before that time, reduce the vulnerability of the sector when faced with this type of event, at least from the point of view of this young segment of the internal national market. In Spain, the episode of extreme heat of 2003 has led to the implementation or improvement of some adaptive measures after the event, especially in the fields of management, policy and education.

  14. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming

    Science.gov (United States)

    Eyshi Rezaei, Ehsan; Siebert, Stefan; Ewert, Frank

    2015-02-01

    Higher temperatures during the growing season are likely to reduce crop yields with implications for crop production and food security. The negative impact of heat stress has also been predicted to increase even further for cereals such as wheat under climate change. Previous empirical modeling studies have focused on the magnitude and frequency of extreme events during the growth period but did not consider the effect of higher temperature on crop phenology. Based on an extensive set of climate and phenology observations for Germany and period 1951-2009, interpolated to 1 × 1 km resolution and provided as supplementary data to this article (available at stacks.iop.org/ERL/10/024012/mmedia), we demonstrate a strong relationship between the mean temperature in spring and the day of heading (DOH) of winter wheat. We show that the cooling effect due to the 14 days earlier DOH almost fully compensates for the adverse effect of global warming on frequency and magnitude of crop heat stress. Earlier heading caused by the warmer spring period can prevent exposure to extreme heat events around anthesis, which is the most sensitive growth stage to heat stress. Consequently, the intensity of heat stress around anthesis in winter crops cultivated in Germany may not increase under climate change even if the number and duration of extreme heat waves increase. However, this does not mean that global warning would not harm crop production because of other impacts, e.g. shortening of the grain filling period. Based on the trends for the last 34 years in Germany, heat stress (stress thermal time) around anthesis would be 59% higher in year 2009 if the effect of high temperatures on accelerating wheat phenology were ignored. We conclude that climate impact assessments need to consider both the effect of high temperature on grain set at anthesis but also on crop phenology.

  15. Climate Change and Fetal Health: The Impacts of Exposure to Extreme Temperatures in New York City

    Science.gov (United States)

    Ngo, Nicole S.; Horton, Radley M.

    2015-01-01

    Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves while reducing cold extremes, yet few studies have examined the relationship between temperature and fetal health. Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES). Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in Manhattan for the same time period. We then generate 33 downscaled climate model time series to project impacts on fetal health. Results: We find exposure to an extra day where average temperature 25 F and 85 F during pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no meaningful, significant effect on gestational age. Using projections of temperature from these climate models, we project average net reductions in birth weight in the 2070- 2099 period of 4.6 g in the business-as-usual scenario. Conclusions: Results suggest that increasing heat events from climate change could adversely impact birth weight and vary by SES.

  16. Analysis on the Extreme Heat Wave over China around Yangtze River Region in the Summer of 2013 and Its Main Contributing Factors

    OpenAIRE

    Jin Li; Ting Ding; Xiaolong Jia; Xianchan Zhao

    2015-01-01

    In the summer of 2013, a rare extreme heat wave occurred in the middle and lower reaches of the Yangtze River in China. Based on high resolution reanalysis data from ECMWF, comprehensive analyses on the associated atmospheric circulation and the sea surface temperature anomaly (SSTA) were provided. The stable and strong West Pacific Subtropical High (WPSH) was the direct cause for the heat wave. The WPSH had four westward extensions, which brought about four hot spells in southern China. The ...

  17. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    Science.gov (United States)

    Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan

    2018-03-01

    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  18. Variability of extreme wet events over Malawi

    Directory of Open Access Journals (Sweden)

    Libanda Brigadier

    2017-01-01

    Full Text Available Adverse effects of extreme wet events are well documented by several studies around the world. These effects are exacerbated in developing countries like Malawi that have insufficient risk reduction strategies and capacity to cope with extreme wet weather. Ardent monitoring of the variability of extreme wet events over Malawi is therefore imperative. The use of the Expert Team on Climate Change Detection and Indices (ETCCDI has been recommended by many studies as an effective way of quantifying extreme wet events. In this study, ETCCDI indices were used to examine the number of heavy, very heavy, and extremely heavy rainfall days; daily and five-day maximum rainfall; very wet and extremely wet days; annual wet days and simple daily intensity. The Standard Normal Homogeneity Test (SNHT was employed at 5% significance level before any statistical test was done. Trend analysis was done using the nonparametric Mann-Kendall statistical test. All stations were found to be homogeneous apart from Mimosa. Trend results show high temporal and spatial variability with the only significant results being: increase in daily maximum rainfall (Rx1day over Karonga and Bvumbwe, increase in five-day maximum rainfall (Rx5day over Bvumbwe. Mzimba and Chileka recorded a significant decrease in very wet days (R95p while a significant increase was observed over Thyolo. Chileka was the only station which observed a significant trend (decrease in extremely wet rainfall (R99p. Mzimba was the only station that reported a significant trend (decrease in annual wet-day rainfall total (PRCPTOT and Thyolo was the only station that reported a significant trend (increase in simple daily intensity (SDII. Furthermore, the findings of this study revealed that, during wet years, Malawi is characterised by an anomalous convergence of strong south-easterly and north-easterly winds. This convergence is the main rain bringing mechanism to Malawi.

  19. The urban heat island and its impact on heat waves and human health in Shanghai.

    Science.gov (United States)

    Tan, Jianguo; Zheng, Youfei; Tang, Xu; Guo, Changyi; Li, Liping; Song, Guixiang; Zhen, Xinrong; Yuan, Dong; Kalkstein, Adam J; Li, Furong

    2010-01-01

    With global warming forecast to continue into the foreseeable future, heat waves are very likely to increase in both frequency and intensity. In urban regions, these future heat waves will be exacerbated by the urban heat island effect, and will have the potential to negatively influence the health and welfare of urban residents. In order to investigate the health effects of the urban heat island (UHI) in Shanghai, China, 30 years of meteorological records (1975-2004) were examined for 11 first- and second-order weather stations in and around Shanghai. Additionally, automatic weather observation data recorded in recent years as well as daily all-cause summer mortality counts in 11 urban, suburban, and exurban regions (1998-2004) in Shanghai have been used. The results show that different sites (city center or surroundings) have experienced different degrees of warming as a result of increasing urbanization. In turn, this has resulted in a more extensive urban heat island effect, causing additional hot days and heat waves in urban regions compared to rural locales. An examination of summer mortality rates in and around Shanghai yields heightened heat-related mortality in urban regions, and we conclude that the UHI is directly responsible, acting to worsen the adverse health effects from exposure to extreme thermal conditions.

  20. Forecasting extreme temperature health hazards in Europe

    Science.gov (United States)

    Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L.

    2017-04-01

    Extreme hot temperatures, such as those experienced during a heat wave, represent a dangerous meteorological hazard to human health. Heat disorders such as sunstroke are harmful to people of all ages and responsible for excess mortality in the affected areas. In 2003 more than 50,000 people died in western and southern Europe because of a severe and sustained episode of summer heat [1]. Furthermore, according to the Intergovernmental Panel on Climate Change heat waves are expected to get more frequent in the future thus posing an increasing threat to human lives. Developing appropriate tools for extreme hot temperatures prediction is therefore mandatory to increase public preparedness and mitigate heat-induced impacts. A recent study has shown that forecasts of the Universal Thermal Climate Index (UTCI) provide a valid overview of extreme temperature health hazards on a global scale [2]. UTCI is a parameter related to the temperature of the human body and its regulatory responses to the surrounding atmospheric environment. UTCI is calculated using an advanced thermo-physiological model that includes the human heat budget, physiology and clothing. To forecast UTCI the model uses meteorological inputs, such as 2m air temperature, 2m water vapour pressure and wind velocity at body height derived from 10m wind speed, from NWP models. Here we examine the potential of UTCI as an extreme hot temperature prediction tool for the European area. UTCI forecasts calculated using above-mentioned parameters from ECMWF models are presented. The skill in predicting UTCI for medium lead times is also analysed and discussed for implementation to international health-hazard warning systems. This research is supported by the ANYWHERE project (EnhANcing emergencY management and response to extreme WeatHER and climate Events) which is funded by the European Commission's HORIZON2020 programme. [1] Koppe C. et al., Heat waves: risks and responses. World Health Organization. Health and

  1. Impact of boreal summer intraseasonal oscillation on heat wave occurrence in Asia and Europe during the summer of 2016

    Science.gov (United States)

    Lee, June-Yi; Hsu, Pang-Chi; ha, Kyung-Ja; Kim, Hae-Jeong; Jung, Yoo-Rim

    2017-04-01

    The summer of 2016 was the earth's hottest summer on record since 1880. Especially, in August, the global mean temperature was 1.66 degree higher than normal and heat waves set records across Asia, Europe, and North America. This study proposes that boreal summer intraseasonal oscillation (BSISO) played an important role in heat wave outbreaks over many regions of the Northern Hemisphere (NH) extratropics in the summer 2016 in addition to other factors including global warming, atmosphere-land interaction, and Africa-Pakistan heavy rainfall. By utilizing the real-time multivariate BSISO indices recently proposed, it has been demonstrated that the two dominant BSISO modes significantly modulate occurrence probability and spatial distributions of extreme rainfall and heat wave over Asia and Europe depending on their phases. The BSISO1 represents the canonical northward propagating variability that often occurs in conjunction with the eastward propagating Madden-Julian Oscillation with quasi-oscillating periods of 30-60 days. The BSISO2 represents the northward/northwestward propagating variability with periods of 10-30 days during primarily the pre-monsoon and monsoon-onset season. In August of 2016, BSISO1 was very active with amplitude up to 2 standard deviation and stayed at phase 7 state for about 20 days. During the phase 7 of BSISO1, extreme convective activity over the South China Sea and western North Pacific typically exerts significant global teleconnection leading to heat wave occurrence over East Asia including Korea and Japan, some part of Russia and Europe, and the western and eastern part of North America. In particular, anticyclonic circulation anomaly tends to be developed over East Asia inducing enhanced adiabatic and diabatic warming over Korea and Japan providing a favorable condition for extreme heat wave occurrence. The August of 2016 exhibited the typical global teleconnection pattern of BSISO1 associated with active convection over the western

  2. Multiple Days of Heat Exposure on Firefighters' Work Performance and Physiology.

    Science.gov (United States)

    Larsen, Brianna; Snow, Rod; Vincent, Grace; Tran, Jacqueline; Wolkow, Alexander; Aisbett, Brad

    2015-01-01

    This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36) were matched and allocated to either the CON (19°C) or HOT (33°C) condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area) to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc), and skin temperature (Tsk) were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG) analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants' doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants' work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of physiological responses

  3. Use of extremity insulation during whole body hyperthermia to reduce temperature nonuniformity

    International Nuclear Information System (INIS)

    Thrall, D.E.; Page, R.L.

    1987-01-01

    The author previously documented during whole body hyperthermia in dogs using a radiant heating device that temperature at superficial sites, including tibial bone marrow, falls below systemic arterial temperature during the plateau phase of heating. This may be due to direct heat loss to the environment. Sites where temperature is lower than systemic arterial temperature during the plateau phase may become sanctuary sites where tumor deposits are spared because they do not receive the prescribed thermal dose. In an attempt to decrease temperature nonuniformity and increase thermal dose delivered to such superficial sites, extremity insulation has been employed during whole body hyperthermia in dogs. The author measured temperature at cutaneous and subcutaneous sites and within tibial bone marrow in insulated and noninsulated extremities of dogs undergoing whole body hyperthermia in the radiant heating device. The author found that extremity insulation is effective in reducing extremity temperature nonuniformity. Specific results are presented. Extremity insulation may be necessary during whole body hyperthermia to assure that extremity tumor deposits receive a thermal dose similar to that prescribed for the entire body

  4. Prediction of length-of-day using extreme learning machine

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2015-03-01

    Full Text Available Traditional artificial neural networks (ANN such as back-propagation neural networks (BPNN provide good predictions of length-of-day (LOD. However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM, to improve the efficiency of LOD predictions. Earth orientation parameters (EOP C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS, which serves as our database. First, the known predictable effects that can be described by functional models—such as the effects of solid earth, ocean tides, or seasonal atmospheric variations—are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN, and adaptive network-based fuzzy inference systems (ANFIS. It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction techniques, the mean-absolute-error (MAE from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC. The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple.

  5. Interdecadal Change in Extreme Precipitation over South China and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    NING Liang; QIAN Yongfu

    2009-01-01

    Based on the daily precipitation data taken from 17 stations over South China during the period of 1961 2003, a sudden change in summer extreme precipitation events over South China in the early 1990s along with the possible mechanism connected with the anomalies of the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula are examined. The results show that both the annual and summer extreme precipitation events have obvious interdecadal variations and have increased significantly since the early 1990s. Moreover, the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula also have obvious interdecadal variations consistent with that of the extreme precipitation, and influence different months' extreme precipitation, respectively. Their effects are achieved by the interdecadal increases of the strengthening convection over South China through the South China Sea Summer Monsoon.

  6. Heat-Related Mortality in India: Excess All-Cause Mortality Associated with the 2010 Ahmedabad Heat Wave

    Science.gov (United States)

    Azhar, Gulrez Shah; Mavalankar, Dileep; Nori-Sarma, Amruta; Rajiva, Ajit; Dutta, Priya; Jaiswal, Anjali; Sheffield, Perry; Knowlton, Kim; Hess, Jeremy J.; Azhar, Gulrez Shah; Deol, Bhaskar; Bhaskar, Priya Shekhar; Hess, Jeremy; Jaiswal, Anjali; Khosla, Radhika; Knowlton, Kim; Mavalankar, Mavalankar; Rajiva, Ajit; Sarma, Amruta; Sheffield, Perry

    2014-01-01

    Introduction In the recent past, spells of extreme heat associated with appreciable mortality have been documented in developed countries, including North America and Europe. However, far fewer research reports are available from developing countries or specific cities in South Asia. In May 2010, Ahmedabad, India, faced a heat wave where the temperatures reached a high of 46.8°C with an apparent increase in mortality. The purpose of this study is to characterize the heat wave impact and assess the associated excess mortality. Methods We conducted an analysis of all-cause mortality associated with a May 2010 heat wave in Ahmedabad, Gujarat, India, to determine whether extreme heat leads to excess mortality. Counts of all-cause deaths from May 1–31, 2010 were compared with the mean of counts from temporally matched periods in May 2009 and 2011 to calculate excess mortality. Other analyses included a 7-day moving average, mortality rate ratio analysis, and relationship between daily maximum temperature and daily all-cause death counts over the entire year of 2010, using month-wise correlations. Results The May 2010 heat wave was associated with significant excess all-cause mortality. 4,462 all-cause deaths occurred, comprising an excess of 1,344 all-cause deaths, an estimated 43.1% increase when compared to the reference period (3,118 deaths). In monthly pair-wise comparisons for 2010, we found high correlations between mortality and daily maximum temperature during the locally hottest “summer” months of April (r = 0.69, pheat (May 19–25, 2010), mortality rate ratios were 1.76 [95% CI 1.67–1.83, pheat wave in Ahmedabad, Gujarat, India had a substantial effect on all-cause excess mortality, even in this city where hot temperatures prevail through much of April-June. PMID:24633076

  7. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    Directory of Open Access Journals (Sweden)

    M. Wehner

    2018-03-01

    Full Text Available The half a degree additional warming, prognosis and projected impacts (HAPPI experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  8. Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave.

    Directory of Open Access Journals (Sweden)

    Gulrez Shah Azhar

    Full Text Available In the recent past, spells of extreme heat associated with appreciable mortality have been documented in developed countries, including North America and Europe. However, far fewer research reports are available from developing countries or specific cities in South Asia. In May 2010, Ahmedabad, India, faced a heat wave where the temperatures reached a high of 46.8 °C with an apparent increase in mortality. The purpose of this study is to characterize the heat wave impact and assess the associated excess mortality.We conducted an analysis of all-cause mortality associated with a May 2010 heat wave in Ahmedabad, Gujarat, India, to determine whether extreme heat leads to excess mortality. Counts of all-cause deaths from May 1-31, 2010 were compared with the mean of counts from temporally matched periods in May 2009 and 2011 to calculate excess mortality. Other analyses included a 7-day moving average, mortality rate ratio analysis, and relationship between daily maximum temperature and daily all-cause death counts over the entire year of 2010, using month-wise correlations.The May 2010 heat wave was associated with significant excess all-cause mortality. 4,462 all-cause deaths occurred, comprising an excess of 1,344 all-cause deaths, an estimated 43.1% increase when compared to the reference period (3,118 deaths. In monthly pair-wise comparisons for 2010, we found high correlations between mortality and daily maximum temperature during the locally hottest "summer" months of April (r = 0.69, p<0.001, May (r = 0.77, p<0.001, and June (r = 0.39, p<0.05. During a period of more intense heat (May 19-25, 2010, mortality rate ratios were 1.76 [95% CI 1.67-1.83, p<0.001] and 2.12 [95% CI 2.03-2.21] applying reference periods (May 12-18, 2010 from various years.The May 2010 heat wave in Ahmedabad, Gujarat, India had a substantial effect on all-cause excess mortality, even in this city where hot temperatures prevail through much of April-June.

  9. Is southwestern China experiencing more frequent precipitation extremes?

    International Nuclear Information System (INIS)

    Liu, Meixian; Xu, Xianli; Wang, Kelin; Sun, Alexander Y; Liu, Wen; Zhang, Xiaoyan

    2014-01-01

    Climate extremes have and will continue to cause severe damages to buildings and natural environments around the world. A full knowledge of the probability of the climate extremes is important for the management and mitigation of natural hazards. Based on Mann–Kendall trend test and copulas, this study investigated the characteristics of precipitation extremes as well as their implications in southwestern China (Yunnan, Guangxi and Guizhou Province), through analyzing the changing trends and probabilistic characteristics of six indices, including the consecutive dry days, consecutive wet days, annual total wet day precipitation, heavy precipitation days (R25), max 5 day precipitation amount (Rx5) and the rainy days (RDs). Results showed that the study area had generally become drier (regional mean annual precipitation decreased by 11.4 mm per decade) and experienced enhanced precipitation extremes in the past 60 years. Relatively higher risk of drought in Yuanan and flood in Guangxi was observed, respectively. However, the changing trends of the precipitation extremes were not spatially uniform: increasing risk of extreme wet events for Guangxi and Guizhou, and increasing probability of concurrent extreme wet and dry events for Yunnan. Meanwhile, trend analyses of the 10 year return levels of the selected indices implied that the severity of droughts decreased in Yunnan but increased significantly in Guangxi and Guizhou, and the severity of floods increased in Yunnan and Guangxi in the past decades. Hence, the policy-makers need to be aware of the different characterizations and the spatial heterogeneity of the precipitation extremes. (letters)

  10. Simulating the Impacts of Climate Extremes Across Sectors: The Case of the 2003 European Heat Wave

    Science.gov (United States)

    Schewe, J.; Zhao, F.; Reyer, C.; Breuer, L.; Coll, M.; Deryng, D.; Eddy, T.; Elliott, J. W.; Francois, L. M.; Friend, A. D.; Gerten, D.; Gosling, S.; Gudmundsson, L.; Huber, V.; Kim, H.; Lotze, H. K.; Orth, R.; Seneviratne, S. I.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Wada, Y.

    2017-12-01

    Increased occurrence of extreme climate or weather events is one of the most damaging consequences of global climate change today and in the future. Estimating the impacts of such extreme events across different human and natural systems is crucial for quantifying overall risks from climate change. Are current models fit for this task? Here we use the 2003 European heat wave and drought (EHW) as a historical analogue for comparable events in the future, and evaluate how accurately its impacts are reproduced by a multi-sectoral "super-ensemble" of state-of-the-art impacts models. Our study combines, for the first time, impacts on agriculture, freshwater resources, terrestrial and marine ecosystems, energy, and human health in a consistent multi-model framework. We identify key impacts of the 2003 EHW reported in the literature and/or recorded in publicly available databases, and examine how closely the models reproduce those impacts, applying the same measure of impact magnitude across different sectors. Preliminary results are mixed: While the EHW's impacts on water resources (streamflow) are reproduced well by most global hydrological models, not all crop and natural vegetation models reproduce the magnitude of impacts on agriculture and ecosystem productivity, respectively, and their performance varies by country or region. A hydropower capacity model matches reported hydropower generation anomalies only in some countries, and estimates of heat-related excess mortality from a set of statistical models are consistent with literature reports only for some of the cities investigated. We present a synthesis of simulated and observed impacts across sectors, and reflect on potential improvements in modeling and analyzing cross-sectoral impacts.

  11. Multiple Days of Heat Exposure on Firefighters' Work Performance and Physiology.

    Directory of Open Access Journals (Sweden)

    Brianna Larsen

    Full Text Available This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36 were matched and allocated to either the CON (19°C or HOT (33°C condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc, and skin temperature (Tsk were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants' doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants' work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of

  12. Multiple Days of Heat Exposure on Firefighters’ Work Performance and Physiology

    Science.gov (United States)

    Larsen, Brianna; Snow, Rod; Vincent, Grace; Tran, Jacqueline; Wolkow, Alexander; Aisbett, Brad

    2015-01-01

    This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36) were matched and allocated to either the CON (19°C) or HOT (33°C) condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area) to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc), and skin temperature (Tsk) were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG) analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants’ doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants’ work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of physiological

  13. Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 °C and 2 °C of warming

    Science.gov (United States)

    Harrington, Luke J.; Otto, Friederike E. L.

    2018-03-01

    Understanding how continuing increases in global mean temperature will exacerbate societal exposure to extreme weather events is a question of profound importance. However, determining population exposure to the impacts of heat extremes at 1.5 °C and 2 °C of global mean warming requires not only (1) a robust understanding of the physical climate system response, but also consideration of (2) projected changes to overall population size, as well as (3) changes to where people will live in the future. This analysis introduces a new framework, adapted from studies of probabilistic event attribution, to disentangle the relative importance of regional climate emergence and changing population dynamics in the exposure to future heat extremes across multiple densely populated regions in Southern Asia and Eastern Africa (SAEA). Our results reveal that, when population is kept at 2015 levels, exposure to heat considered severe in the present decade across SAEA will increase by a factor of 4.1 (2.4-9.6) and 15.8 (5.0-135) under a 1.5°- and 2.0°-warmer world, respectively. Furthermore, projected population changes by the end of the century under an SSP1 and SSP2 scenario can further exacerbate these changes by a factor of 1.2 (1.0-1.3) and 1.5 (1.3-1.7), respectively. However, a large fraction of this additional risk increase is not related to absolute increases in population, but instead attributed to changes in which regions exhibit continued population growth into the future. Further, this added impact of population redistribution will be twice as significant after 2.0 °C of warming, relative to stabilisation at 1.5 °C, due to the non-linearity of increases in heat exposure. Irrespective of the population scenario considered, continued African population expansion will place more people in locations where emergent changes to future heat extremes are exceptionally severe.

  14. Temperature Extremes, Health, and Human Capital

    Science.gov (United States)

    Zivin, Joshua Graff; Shrader, Jeffrey

    2016-01-01

    The extreme temperatures expected under climate change may be especially harmful to children. Children are more vulnerable to heat partly because of their physiological features, but, perhaps more important, because they behave and respond differently than adults do. Children are less likely to manage their own heat risk and may have fewer ways to…

  15. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming

    International Nuclear Information System (INIS)

    Rezaei, Ehsan Eyshi; Siebert, Stefan; Ewert, Frank

    2015-01-01

    Higher temperatures during the growing season are likely to reduce crop yields with implications for crop production and food security. The negative impact of heat stress has also been predicted to increase even further for cereals such as wheat under climate change. Previous empirical modeling studies have focused on the magnitude and frequency of extreme events during the growth period but did not consider the effect of higher temperature on crop phenology. Based on an extensive set of climate and phenology observations for Germany and period 1951–2009, interpolated to 1 × 1 km resolution and provided as supplementary data to this article (available at stacks.iop.org/ERL/10/024012/mmedia), we demonstrate a strong relationship between the mean temperature in spring and the day of heading (DOH) of winter wheat. We show that the cooling effect due to the 14 days earlier DOH almost fully compensates for the adverse effect of global warming on frequency and magnitude of crop heat stress. Earlier heading caused by the warmer spring period can prevent exposure to extreme heat events around anthesis, which is the most sensitive growth stage to heat stress. Consequently, the intensity of heat stress around anthesis in winter crops cultivated in Germany may not increase under climate change even if the number and duration of extreme heat waves increase. However, this does not mean that global warning would not harm crop production because of other impacts, e.g. shortening of the grain filling period. Based on the trends for the last 34 years in Germany, heat stress (stress thermal time) around anthesis would be 59% higher in year 2009 if the effect of high temperatures on accelerating wheat phenology were ignored. We conclude that climate impact assessments need to consider both the effect of high temperature on grain set at anthesis but also on crop phenology. (letter)

  16. Causes of Glacier Melt Extremes in the Alps Since 1949

    Science.gov (United States)

    Thibert, E.; Dkengne Sielenou, P.; Vionnet, V.; Eckert, N.; Vincent, C.

    2018-01-01

    Recent record-breaking glacier melt values are attributable to peculiar extreme events and long-term warming trends that shift averages upward. Analyzing one of the world's longest mass balance series with extreme value statistics, we show that detrending melt anomalies makes it possible to disentangle these effects, leading to a fairer evaluation of the return period of melt extreme values such as 2003, and to characterize them by a more realistic bounded behavior. Using surface energy balance simulations, we show that three independent drivers control melt: global radiation, latent heat, and the amount of snow at the beginning of the melting season. Extremes are governed by large deviations in global radiation combined with sensible heat. Long-term trends are driven by the lengthening of melt duration due to earlier and longer-lasting melting of ice along with melt intensification caused by trends in long-wave irradiance and latent heat due to higher air moisture.

  17. Heat waves according to warm spell duration index in Slovakia during 1901-2016

    Science.gov (United States)

    Bochníček, Oliver; Faško, Pavel; Markovič, Ladislav

    2017-04-01

    A heat wave is a prolonged period of extremely high temperatures for a particular region. However, there exist no universal definitions for a heat wave as it is relative to a specific area and to a certain time of year. In fact, average temperatures in one region may be considered heat wave conditions in another. For instance, an average day in the Mediterranean would be regarded as heat wave conditions in Northern Europe. We have known that World Meteorological Organization definition of a heatwave which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5 °C, the normal period being 1961-1990". This rule has been accepted in contribution Heat waves and warm periods in Slovakia (Oliver Bochníček - Pavol Fa\\vsko - Ladislav Markovič) published (presented) in EGU 2016. To move on we have tried another criterion for heat waves evaluation (according to warm spell duration index, WSDI) and period since 1901 (1951) to 2016. Important for many sectors (hydrology, agriculture, transportation and tourism) is, that heat waves have been expected during the whole year and period, that is why it can have various impacts. Heat waves occurrence gave us interesting results especially after the 1990.

  18. Assessment of every day extremely low frequency (Elf) electromagnetic fields (50-60 Hz) exposure: which metrics?

    International Nuclear Information System (INIS)

    Verrier, A.; Magne, I.; Souqes, M.; Lambrozo, J.

    2006-01-01

    Because electricity is encountered at every moment of the day, at home with household appliances, or in every type of transportation, people are most of the time exposed to extremely low frequency (E.L.F.) electromagnetic fields (50-60 Hz) in a various way. Due to a lack of knowledge about the biological mechanisms of 50 Hz magnetic fields, studies seeking to identify health effects of exposure use central tendency metrics. The objective of our study is to provide better information about these exposure measurements from three categories of metrics. We calculated metrics of exposure measurements from data series (79 very day exposed subjects), made up approximately 20,000 recordings of magnetic fields, measured every 30 seconds for 7 days with an E.M.D.E.X. II dosimeter. These indicators were divided into three categories : central tendency metrics, dispersion metrics and variability metrics.We use Principal Component Analysis, a multidimensional technique to examine the relations between different exposure metrics for a group of subjects. Principal component Analysis (P.C.A.) enabled us to identify from the foreground 71.7% of the variance. The first component (42.7%) was characterized by central tendency; the second (29.0%) was composed of dispersion characteristics. The third component (17.2%) was composed of variability characteristics. This study confirm the need to improve exposure measurements by using at least two dimensions intensity and dispersion. (authors)

  19. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  20. Tipping a SPRUCE tree over - how extreme heat and desiccation may push southern boreal species beyond their capacity

    Science.gov (United States)

    Warren, J.; Childs, J.; Ward, E. J.; Wullschleger, S.; Hanson, P. J.

    2016-12-01

    Since August 2015, the Spruce and Peatland Responses under Climatic and Environmental Change (SPRUCE) climate change experiment (http://mnspruce.ornl.gov/) in Northern Minnesota, USA, has exposed 13 m diameter plots of an ombrotrophic Picea mariana - Ericaceous shrub - Sphagnum bog ecosystem to long-term temperature (T) (0 to +9 °C) and since June 2016, elevated CO2 treatments (ambient or + 500 ppm). In addition to their direct impacts, the T and CO2 treatments have dramatically impacted soil water availability, vapor pressure deficit and # days dew point is reached. We examined plant water relations of Picea mariana (black spruce), Larix laricina (tamarack), and several Ericaceous shrubs including seasonal patterns of water potential (ψ), in addition to sap flow in the in trees. Granier-style thermal dissipation sensors were calibrated in situ (outside plots) by cutting instrumented trees and measuring their actual water uptake. Maximum summer T in N Minnesota reaches 35 °C, and optimal photosynthetic activity for P. mariana at the site peaks between 35-38°C. Treatments have resulted in air T reaching 45°C in the warmest plots resulting in substantial physiological stress. Pretreatment sap flow typically began by late May and was fairly constant over the season until declining in mid-September and ceasing as temperatures dropped below zero. Once the T treatments began, sap flow began earlier in the spring and continued later in the fall indicating an expanded physiological season that can result in plant vulnerability to extreme cold events. Indeed, foliar damage was evident in warmer plots following a spring freeze event in 2016. In addition, the drying heat has resulted in additional foliar damage, indicated by large reductions in predawn water potentials (even in the spring), quicker drying following rain events, and water stress reached earlier in the day. Midday mean summer ψ was -1.5 MPa for P. mariana foliage, higher than the co-occurring L. laricina

  1. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes

    International Nuclear Information System (INIS)

    Lenderink, Geert; Van Meijgaard, Erik

    2010-01-01

    Relations between hourly precipitation extremes and atmospheric temperature and moisture derived for the present-day climate are studied with the aim of understanding the behavior (and the uncertainty in predictions) of hourly precipitation extremes in a changing climate. A dependency of hourly precipitation extremes on the daily mean 2 m temperature of approximately two times the Clausius-Clapeyron (CC) relation is found for temperatures above 10 deg. C. This is a robust relation obtained in four observational records across western Europe. A dependency following the CC relation can be explained by the observed increase in atmospheric (absolute) humidity with temperature, whereas the enhanced dependency (compared to the CC relation) appears to be caused by dynamical feedbacks owing to excess latent heat release in extreme showers. Integrations with the KNMI regional climate model RACMO2 at 25 km grid spacing show that changes in hourly precipitation extremes may indeed considerably exceed the prediction from the CC relation. The results suggests that increases of + 70% or even more are possible by the end of this century. However, a different regional model (CLM operated at ETHZ) predicts much smaller increases; this is probably caused by a too strong sensitivity of this model to a decrease in relative humidity.

  2. The association of extreme temperatures and the incidence of tuberculosis in Japan

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-08-01

    Seasonal variation in the incidence of tuberculosis (TB) has been widely assumed. However, few studies have investigated the association between extreme temperatures and the incidence of TB. We collected data on cases of TB and mean temperature in Fukuoka, Japan for 2008-2012 and used time-series analyses to assess the possible relationship of extreme temperatures with TB incident cases, adjusting for seasonal and interannual variation. Our analysis revealed that the occurrence of extreme heat temperature events resulted in a significant increase in the number of TB cases (relative risk (RR) 1.20, 95 % confidence interval (CI) 1.01-1.43). We also found that the occurrence of extreme cold temperature events resulted in a significant increase in the number of TB cases (RR 1.23, 95 % CI 1.05-1.45). Sex and age did not modify the effect of either heat or cold extremes. Our study provides quantitative evidence that the number of TB cases increased significantly with extreme heat and cold temperatures. The results may help public health officials predict extreme temperature-related TB incidence and prepare for the implementation of preventive public health interventions.

  3. Effects of extreme heat and drought on trees: what do we know and what do we need to know?

    Science.gov (United States)

    Teskey, R. O.

    2017-12-01

    It is almost certain that trees will experience heat waves and droughts during their lifetime. In response, they have acquired many adaptations to survive these periods of intense stress. For example, recently we have investigated the surprising role that stomata play in maintaining leaf function at very high temperatures by opening widely to cool the leaf even when photosynthesis is zero. This process and its trade-offs, as well as many other physiological and morphological responses to high temperatures, will be discussed. The current state of knowledge of the mechanisms trees use to cope with extreme drought, including leaf shedding, hydraulic architecture, carbohydrate storage, and changes in wood anatomy will be discussed. Examples of how the interactions between drought and heat affect trees also will be provided. Finally, an assessment of knowledge gaps and recommendations for future research will be provided.

  4. Extreme Events and Energy Providers: Science and Innovation

    Science.gov (United States)

    Yiou, P.; Vautard, R.

    2012-04-01

    Most socio-economic regulations related to the resilience to climate extremes, from infrastructure or network design to insurance premiums, are based on a present-day climate with an assumption of stationarity. Climate extremes (heat waves, cold spells, droughts, storms and wind stilling) affect in particular energy production, supply, demand and security in several ways. While national, European or international projects have generated vast amounts of climate projections for the 21st century, their practical use in long-term planning remains limited. Estimating probabilistic diagnostics of energy user relevant variables from those multi-model projections will help the energy sector to elaborate medium to long-term plans, and will allow the assessment of climate risks associated to those plans. The project "Extreme Events for Energy Providers" (E3P) aims at filling a gap between climate science and its practical use in the energy sector and creating in turn favourable conditions for new business opportunities. The value chain ranges from addressing research questions directly related to energy-significant climate extremes to providing innovative tools of information and decision making (including methodologies, best practices and software) and climate science training for the energy sector, with a focus on extreme events. Those tools will integrate the scientific knowledge that is developed by scientific communities, and translate it into a usable probabilistic framework. The project will deliver projection tools assessing the probabilities of future energy-relevant climate extremes at a range of spatial scales varying from pan-European to local scales. The E3P project is funded by the Knowledge and Innovation Community (KIC Climate). We will present the mechanisms of interactions between academic partners, SMEs and industrial partners for this project. Those mechanisms are elementary bricks of a climate service.

  5. Summer heat and mortality in New York City: how hot is too hot?

    Science.gov (United States)

    Metzger, Kristina B; Ito, Kazuhiko; Matte, Thomas D

    2010-01-01

    To assess the public health risk of heat waves and to set criteria for alerts for -excessive heat, various meteorologic metrics and models are used in different jurisdictions, generally without systematic comparisons of alternatives. We report such an analysis for New York City that compared maximum heat index with alternative metrics in models to predict daily variation in warm-season natural-cause mortality from 1997 through 2006. We used Poisson time-series generalized linear models and generalized additive models to estimate weather-mortality relationships using various metrics, lag and averaging times, and functional forms and compared model fit. A model that included cubic functions of maximum heat index on the same and each of the previous 3 days provided the best fit, better than models using maximum, minimum, or average temperature, or spatial synoptic classification (SSC) of weather type. We found that goodness of fit and maximum heat index-mortality functions were similar using parametric and nonparametric models. Same-day maximum heat index was linearly related to mortality risk across its range. The slopes at lags of 1, 2, and 3 days were flat across moderate values but increased sharply between maximum heat index of 95 degrees F and 100 degrees F (35-38 degrees C). SSC or other meteorologic variables added to the maximum heat index model moderately improved goodness of fit, with slightly attenuated maximum heat index-mortality functions. In New York City, maximum heat index performed similarly to alternative and more complex metrics in estimating mortality risk during hot weather. The linear relationship supports issuing heat alerts in New York City when the heat index is forecast to exceed approximately 95-100 degrees F. Periodic city-specific analyses using recent data are recommended to evaluate public health risks from extreme heat.

  6. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    Planton, S.; Deque, M.; Chauvin, F.; Terray, L.

    2008-01-01

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  7. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.

    Science.gov (United States)

    Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A

    2011-10-01

    Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the

  8. The great 2006 heat wave over California and Nevada: Signal of an increasing trend

    Science.gov (United States)

    Gershunov, A.; Cayan, D.R.; Iacobellis, S.F.

    2009-01-01

    Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed. ?? 2009 American Meteorological Society.

  9. Heat exposure on farmers in northeast Ghana

    Science.gov (United States)

    Frimpong, Kwasi; Van Etten E J, Eddie; Oosthuzien, Jacques; Fannam Nunfam, Victor

    2017-03-01

    Environmental health hazards faced by farmers, such as exposure to extreme heat stress, are a growing concern due to global climate change, particularly in tropical developing countries. In such environments, farmers are considered to be a population at risk of environmental heat exposure. The situation is exacerbated due to their farming methods that involve the use of primitive equipment and hard manual labour conducted in full sunshine under hot and humid conditions. However, there is inadequate information about the extent of heat exposure to such farmers, both at the household and farm levels. This paper presents results from a study assessing environmental heat exposure on rural smallholder farmers in Bawku East, Northern Ghana. From January to December 2013, Lascar USB temperature and humidity sensors and a calibrated Questemp heat stress monitor were deployed to farms and homes of rural farmers at Pusiga in Bawku East to capture farmers' exposure to heat stress in both their living and working environments as they executed regular farming routines. The Lascar sensors have the capability to frequently, accurately and securely measure temperature and humidity over long periods. The Questemp heat stress monitor was placed in the same vicinity and showed strong correlations to Lascar sensors in terms of derived values of wet-bulb globe temperature (WBGT). The WBGT in the working environment of farmers peaked at 33.0 to 38.1 °C during the middle of the day in the rainy season from March to October and dropped to 14.0-23.7 °C in the early morning during this season. A maximum hourly WBGT of 28.9-37.5 °C (March-October) was recorded in the living environment of farmers, demonstrating little relief from heat exposure during the day. With these levels of heat stress, exposed farmers conducting physically demanding outdoor work risk suffering serious health consequences. The sustainability of manual farming practices is also under threat by such high levels of

  10. Heat-Related Deaths in Hot Cities: Estimates of Human Tolerance to High Temperature Thresholds

    Directory of Open Access Journals (Sweden)

    Sharon L. Harlan

    2014-03-01

    Full Text Available In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥65 during the months May–October for years 2000–2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90–97 °F; 32.2‒36.1 °C were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C. Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C and males <65 years (ATmax = 102 °F; 38.9 °C. Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.

  11. Innovation and energy. ECRIN day

    International Nuclear Information System (INIS)

    2004-01-01

    ECRIN is an association jointly created by the French atomic energy commission (CEA) and the French national center of scientific research (CNRS). It gathers experts from the research and industry worlds, representatives of institutions and decision making peoples in order to work on important topics like energy. This document gathers the working documents and transparencies presented at the ECRIN day on energy and innovation: opening talk of C. Birraux (head of the parliamentary office of evaluation of scientific and technological choices); the energy of seas (offshore wind power, wave energy, tide currents energy, thermal energy of seas, osmotic energy, tidal energy); synthetic fuels (stakes, possible options, Fischer-Tropsch synthesis, GTL, CTL, BTL, production with CO 2 recycling); capture and geological sequestration of CO 2 : a general overview (stakes, solutions, capture and sequestration, transport, geologic disposal, present day situation and perspectives); geothermal energy: new prospects (enhanced geothermal systems, hot-dry-rocks and hot fractured rocks, advances, cost, advantages and drawbacks); heat pumps and valorization of low temperature heat sources (space heating, district heating networks, heat pumps, artificial geothermal energy, low temperature water transport, thermal potentiality); heat and coldness storage and transport (use of intermittent energy sources, cogeneration, optimisation of processes, recovery of heat losses, CO 2 capture, present-day situation, problems to be solved, integration of systems and processes); plastic photovoltaic solar cells (market, stakes, potentialities of organic materials for photovoltaic conversion, state-of-the-art, research in Europe and France, perspectives); conclusion of the Ecrin day (challenges, diversification of energy sources, energy efficiency, abatement of CO 2 emissions, role of ECRIN). (J.S.)

  12. Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast

    Science.gov (United States)

    Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.

    2018-03-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.

  13. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  14. Critical care at extremes of temperature: effects on patients, staff and equipment.

    Science.gov (United States)

    Hindle, Elise M; Henning, J D

    2014-12-01

    Modern travel and military operations have led to a significant increase in the need to provide medical care in extreme climates. Presently, there are few data on what happens to the doctor, their drugs and equipment when exposed to these extremes. A review was undertaken to find out the effects of 'extreme heat or cold' on anaesthesia and critical care; in addition, subject matter experts were contacted directly. Both extreme heat and extreme cold can cause a marked physiological response in a critically ill patient and the doctor treating these patients may also suffer a decrement in both physical and mental functioning. Equipment can malfunction when exposed to extremes of temperature and should ideally be stored and operated in a climatically controlled environment. Many drugs have a narrow range of temperatures in which they remain useable though some have been shown to remain effective if exposed to extremes of temperature for a short period of time. All personnel embarking on an expedition to an extreme temperature zone should be of sufficient physical robustness and ideally should have a period of acclimatisation which may help mitigate against some of the physiological effects of exposure to extreme heat or extreme cold. Expedition planners should aim to provide climatic control for drugs and equipment and should have logistical plans for replenishment of drugs and medical evacuation of casualties. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Heat Stress in Older Adults

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  16. Effects on Public Health of Heat Waves to Improve the Urban Quality of Life

    Directory of Open Access Journals (Sweden)

    Vito Telesca

    2018-04-01

    Full Text Available Life satisfaction has been widely used in recent studies to evaluate the effect of environmental factors on individuals’ well-being. In the last few years, many studies have shown that the potential impact of climate change on cities depends on a variety of social, economic, and environmental determinants. In particular, extreme events, such as flood and heat waves, may cause more severe impacts and induce a relatively higher level of vulnerability in populations that live in urban areas. Therefore, the impact of climate change and related extreme events certainly influences the economy and quality of life in affected cities. Heat wave frequency, intensity, and duration are increasing in global and local climate change scenarios. The association between high temperatures and morbidity is well-documented, but few studies have examined the role of meteo-climatic variables on hospital admissions. This study investigates the effects of temperature, relative humidity, and barometric pressure on health by linking daily access to a Matera (Italy hospital with meteorological conditions in summer 2012. Extreme heat wave episodes that affected most of the city from 1 June to 31 August 2012 (among the selected years 2003, 2012, and 2017 were analyzed. Results were compared with heat waves from other years included in the base period (1971–2000 and the number of emergency hospital admissions on each day was considered. The meteorological data used in this study were collected from two weather stations in Matera. In order to detect correlations between the daily emergency admissions and the extreme health events, a combined methodology based on a heat wave identification technique, multivariate analysis (PCA, and regression analysis was applied. The results highlight that the role of relative humidity decreases as the severity level of heat waves increases. Moreover, the combination of temperatures and daily barometric pressure range (DPR has been

  17. The urban heat island dynamics during heat waves: a study of cities in the United States

    Science.gov (United States)

    Hu, Leiqiu

    2016-04-01

    The urban heat island (UHI) is a common phenomenon describing that metropolitan areas are usually warmer than their rural surroundings. This effect is compounded by extreme heat events, which are a leading cause of weather-related human mortality in many countries worldwide. However, the spatial and diurnal variability of temperature and humidity in urban and adjacent rural areas during extreme heat events is not well measured and therefore not well understood. The recently developed dataset of near-surface air and dew temperature from MODIS atmospheric profiles and the new method for the UHI quantification--urban heat island curve are used to quantify the urban climatic changes during heat waves in cities of the United States. The enhanced and weakened UHIs are observed in various cities. The causes of UHI changes during heat waves are discussed, including climate region, vegetation type and amount, city geolocation, etc.

  18. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    Science.gov (United States)

    van Oldenborgh, Geert Jan; van der Wiel, Karin; Sebastian, Antonia; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-12-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1 °C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2 × CC scaling, the second 1 × CC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston’s flood protection system.

  19. Day-to-day consistency of lower extremity kinematics during stair ambulation in 24-45 years old athletes.

    Science.gov (United States)

    Husa-Russell, Johanna; Ukelo, Thomas; List, Renate; Lorenzetti, Silvio; Wolf, Peter

    2011-04-01

    Before making interpretations on the effects of interventions or on the features of pathological gait patterns during stair ambulation, the day-to-day consistency of the investigated variables must be established. In this article, the day-to-day consistency was determined for kinematic variables during barefoot stair ambulation. Ten healthy athletes performed two gait analysis sessions, at least one week apart, utilizing a marker set of 47 skin markers, and a functional joint center/axes determination. Being found on limits of agreement and mean differences between the repeated stair ambulation sessions, totally 43 ranges of motions were examined at the hip, knee, ankle, and midfoot joints. The day-to-day consistency was generally in the magnitude of three degrees, irrespective of test condition, investigated joint, or regarded cardinal body plane. The reported values of the day-to-day consistency provide guidelines to distinguish between pathological and healthy gait patterns, and thresholds to determine minimal effects of interventions during stair ambulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effect of Enhanced Air Temperature (extreme heat, and Load of Non-Linear Against the Use of Electric Power

    Directory of Open Access Journals (Sweden)

    I Ketut Wijaya

    2015-12-01

    Full Text Available Usage Electric power is very easy to do, because the infrastructure for connecting  already available and widely sold. Consumption electric power is not accompanied by the ability to recognize electric power. The average increase of electricity power in Bali in extreme weather reaches 10% in years 2014, so that Bali suffered power shortages and PLN as the manager of electric power to perform scheduling on of electric power usage. Scheduling is done because many people use electric power as the load  of fan and Air Conditioner exceeding the previous time. Load of fan, air conditioning, and computers including non-linear loads which can add heat on the conductor of electricity. Non-linear load and hot weather can lead to heat on conductor so  insulation damaged  and cause electrical short circuit. Data of electric power obtained through questionnaires, surveys, measurement and retrieve data from various parties. Fires that occurred in 2014, namely 109 events, 44 is  event caused by an electric short circuit (approximately 40%. Decrease power factors can cause losses of electricity and hot. Heat can cause and adds heat on the  conductor electric. The analysis showed  understanding electric power of the average  is 27,700 with value between 20 to 40. So an understanding of the electrical power away from the understand so that many errors because of the act own. Installation tool ELCB very necessary but very necessary provide counseling   of electricity to the community.

  1. Extreme Temperatures over India in the 1.5°C and 2°C warmer worlds

    Science.gov (United States)

    Thanigachalam, A.; Achutarao, K. M.

    2017-12-01

    n the summer of 2015 a heat wave claimed more than 2500 lives of southeastern India. Wehner et al., (2016) showed that the risk of this heat wave has increased due to anthropogenic forcings. Under the RCP 8.5 scenario, surface temperature over India shows a rate of increase of about 0.2°C/decade during the 21st Century (Basha et al., 2017). The extreme temperatures that have occurred in the recent past and further increases projected for the future have implications for human health and productivity. In light of the Paris accords, future stabilization of global mean temperature at the 1.5°C above pre-industrial aspirational target and the "not to be exceeded" 2°C target (still higher than current temperatures), the possibility of increases in extreme temperatures under these scenarios is very real. In this study we seek to understand the nature of extreme temperatures over India in the 1.5°C and 2°C worlds in comparison to the current climate. We make use of model output contributed under the Half a degree Additional warming, Prognosis and Projected Impacts project (HAPPI; Mitchell et al., 2017). The HAPPI database contains output from many atmospheric GCMs with multiple simulations ( 100 each) of historical (2005-2015), 1.5°C warmer decade, and 2°C warmer decade. The large number of ensembles provides an opportunity to study the extremes in temperature that occur over India and how they may change. In order to provide insights into the future comparable against current operational practices, we make use of definitions of "hot days", "heat waves", and "severe heat waves" used by the India Meteorological Department (IMD). We compare modelled data (and bias corrected model output where available) against observed daily temperatures from the IMD gridded (1°x1°) dataset available for 1951-2015 as also circulation features that lead to such events by comparing against reanalysis products. We also investigate the timing of such events in the future scenarios

  2. Spatially explicit modelling of extreme weather and climate events ...

    African Journals Online (AJOL)

    The reality of climate change continues to influence the intensity and frequency of extreme weather events such as heat waves, droughts, floods, and landslides. The impacts of the cumulative interplay of these extreme weather and climate events variation continue to perturb governments causing a scramble into formation ...

  3. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    extremes, we conclude that the formation of extreme events is a highly nonlinear process. However, our results suggest that crucial features of convective organization throughout the day may be independent of temperature - with possible implications for large-scale model parameterizations. Yet, the timing of the onset of initial precipitation depends strongly on the temperature boundary conditions, where higher temperatures, or earlier, moderate heating, lead to earlier initiation of convection and hence allow for more time for development and the production of extremes.

  4. Moving in extreme environments:what’s extreme and who decides?

    OpenAIRE

    Cotter, James David; Tipton, Michael J

    2014-01-01

    Humans work, rest and play in immensely varied extreme environments. The term ‘extreme’ typically refers to insufficiency or excess of one or more stressors, such as thermal energy or gravity. Individuals’ behavioural and physiological capacity to endure and enjoy such environments varies immensely. Adverse effects of acute exposure to these environments are readily identifiable (e.g. heat stroke or bone fracture), whereas adverse effects of chronic exposure (e.g. stress fractures or osteopor...

  5. Thermal extremes mortality risk assessment in urban areas

    Directory of Open Access Journals (Sweden)

    Paulo Canário

    2010-06-01

    Full Text Available The impact of heat waves on mortality has been the subject of numerous studies and the focus of attention of various national and international governmental bodies. In the summer of 2003 alone, which was exceptionally hot, the number of deaths in 12 European countries increased by 70,000. The overall trend of warming will lead to an increase in frequency, duration and intensity of heat waves and to an increase in heat related mortality. The need to assess the risk of death due to extreme heat, at a detailed spatial scale, has determined the implementation of a research project based on a general model of risk for potentially destructive natural phenomena; the model uses the relationship between hazard and vulnerability and was designed primarily for urban areas. The major hazardous meteorological variables are those that determine the thermal complex (air temperature, radiative temperature, wind and humidity and the variables related to air quality (mainly ozone and Particulate matter. Vulnerability takes into account the population sensitivity (at various spatial scales and their exposure to thermal extremes.

  6. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    Science.gov (United States)

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  7. Evolution caused by extreme events.

    Science.gov (United States)

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  8. Excessive Heat Events and National Security: Building Resilience based on Early Warning Systems

    Science.gov (United States)

    Vintzileos, A.

    2017-12-01

    Excessive heat events (EHE) affect security of Nations in multiple direct and indirect ways. EHE are the top cause for morbidity/mortality associated to any atmospheric extremes. Higher energy consumption used for cooling can lead to black-outs and social disorder. EHE affect the food supply chain reducing crop yield and increasing the probability of food contamination during delivery and storage. Distribution of goods during EHE can be severely disrupted due to mechanical failure of transportation equipment. EHE during athletic events e.g., marathons, may result to a high number of casualties. Finally, EHE may also affect military planning by e.g. reducing hours of exercise and by altering combat gear. Early warning systems for EHE allow for building resilience. In this paper we first define EHE as at least two consecutive heat days; a heat day is defined as a day with a maximum heat index with probability of occurrence that exceeds a certain threshold. We then use retrospective forecasts performed with a multitude of operational models and show that it is feasible to forecast EHE at forecast lead of week-2 and week-3 over the contiguous United States. We finally introduce an improved definition of EHE based on an intensity index and investigate forecast skill of the predictive system in the tropics and subtropics.

  9. Responding to the Effects of Extreme Heat: Baltimore City's Code Red Program.

    Science.gov (United States)

    Martin, Jennifer L

    2016-01-01

    Heat response plans are becoming increasingly more common as US cities prepare for heat waves and other effects of climate change. Standard elements of heat response plans exist, but plans vary depending on geographic location and distribution of vulnerable populations. Because heat events vary over time and affect populations differently based on vulnerability, it is difficult to compare heat response plans and evaluate responses to heat events. This article provides an overview of the Baltimore City heat response plan, the Code Red program, and discusses the city's response to the 2012 Ohio Valley/Mid Atlantic Derecho, a complex heat event. Challenges with and strategies for evaluating the program are reviewed and shared.

  10. Heat-related deaths in hot cities: estimates of human tolerance to high temperature thresholds.

    Science.gov (United States)

    Harlan, Sharon L; Chowell, Gerardo; Yang, Shuo; Petitti, Diana B; Morales Butler, Emmanuel J; Ruddell, Benjamin L; Ruddell, Darren M

    2014-03-20

    In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90-97 °F; 32.2-36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.

  11. A comparative analysis of heat waves and associated mortality in St. Louis, Missouri--1980 and 1995.

    Science.gov (United States)

    Smoyer, K E

    1998-08-01

    This research investigates heat-related mortality during the 1980 and 1995 heat waves in St. Louis, Missouri. St. Louis has a long history of extreme summer weather, and heat-related mortality is a public health concern. Heat waves are defined as days with apparent temperatures exceeding 40.6 degrees C (105 degrees F). The study uses a multivariate analysis to investigate the relationship between mortality and heat wave intensity, duration, and timing within the summer season. The heat wave of 1980 was more severe and had higher associated mortality than that of 1995. To learn if changing population characteristics, in addition to weather conditions, contributed to this difference, changes in population vulnerability between 1980 and 1995 are evaluated under simulated heat wave conditions. The findings show that St. Louis remains at risk of heat wave mortality. In addition, there is evidence that vulnerability has increased despite increased air-conditioning penetration and public health interventions.

  12. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    Science.gov (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  13. Household electricity and gas consumption for heating homes

    International Nuclear Information System (INIS)

    Jeong, Jaehoon; Seob Kim, Chang; Lee, Jongsu

    2011-01-01

    Energy consumption has been drastically changed because of energy source depletion, price fluctuations, development and penetration of alternative energy sources, and government policies. Household energy sources are interrelated, and energy price and household characteristics, such as income level and dwelling size, affect the usage. To supply energy consistently and achieve a balance between production and consumption, stakeholders must understand consumer energy-consumption behavior. Therefore, this study identifies household heating energy usage patterns and the substitutive and/or complementary relationships between electricity and gas. Based on a multiple discrete-continuous extreme value model, household utility structure is identified from data on gas-heating usage. Results show greater utility and the smallest satiation values for gas boilers than for electric heaters and electric heating beds. The effects of consumer socioeconomic and environmental characteristics on the choice of heating energy sources were analyzed. Also, for further comparison, the respondents were split into high and low categories for income, heating degree days, dwelling size, and gas usage. Gas was found to be the most economical heating choice for households. - Research highlights: → This study investigates household electricity and gas consumption behavior for heating. → It also studied the relationship between two energy sources. → A research framework is suggested by combining the CDA and the MDCEV models. → It provides quantitative data that might be used for designing efficient energy policies.

  14. Heat-related illness in China, summer of 2013

    Science.gov (United States)

    Gu, Shaohua; Huang, Cunrui; Bai, Li; Chu, Cordia; Liu, Qiyong

    2016-01-01

    Extreme heat events have occurred more frequently in China in recent years, leading to serious impacts on human life and the health care system. To identify the characteristics of individuals with heat-related illnesses in China during the summer of 2013, we collected the data from the Heat-related Illness Surveillance System in Chinese Center for Disease Control and Prevention (China CDC). A total of 5758 cases were reported in the summer of 2013, mostly concentrated in urban areas around the middle and lower reaches of the Yangtze River. We found a difference in age distribution of percentage of deaths from heat-related illness between males and females. Severe cases in males mostly occurred in the age group 45-74 years but in females mostly in the age group over 75. A distributed lag non-linear model had been used to identify population vulnerabilities in Ningbo and Chongqing. The results show that there was a clear positive relationship between maximum temperature and heat-related illness, and the heat effect was nonlinear and could last for 3 days. The elderly and males in the range of 45-64 years old might be the most vulnerable people of heat-related illness in China. We also highlighted some deficiencies of the surveillance system, such that the reported data were not accurate, comprehensive, or timely enough at this stage.

  15. Impact of climate change on extreme rainfall events and flood risk

    Indian Academy of Sciences (India)

    The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts ...

  16. Impacts of Anthropogenic Aerosols on Regional Climate: Extreme Events, Stagnation, and the United States Warming Hole

    Science.gov (United States)

    Mascioli, Nora R.

    Extreme temperatures, heat waves, heavy rainfall events, drought, and extreme air pollution events have adverse effects on human health, infrastructure, agriculture and economies. The frequency, magnitude and duration of these events are expected to change in the future in response to increasing greenhouse gases and decreasing aerosols, but future climate projections are uncertain. A significant portion of this uncertainty arises from uncertainty in the effects of aerosol forcing: to what extent were the effects from greenhouse gases masked by aerosol forcing over the historical observational period, and how much will decreases in aerosol forcing influence regional and global climate over the remainder of the 21st century? The observed frequency and intensity of extreme heat and precipitation events have increased in the U.S. over the latter half of the 20th century. Using aerosol only (AER) and greenhouse gas only (GHG) simulations from 1860 to 2005 in the GFDL CM3 chemistry-climate model, I parse apart the competing influences of aerosols and greenhouse gases on these extreme events. I find that small changes in extremes in the "all forcing" simulations reflect cancellations between the effects of increasing anthropogenic aerosols and greenhouse gases. In AER, extreme high temperatures and the number of days with temperatures above the 90th percentile decline over most of the U.S., while in GHG high temperature extremes increase over most of the U.S. The spatial response patterns in AER and GHG are significantly anti-correlated, suggesting a preferred regional mode of response that is largely independent of the type of forcing. Extreme precipitation over the eastern U.S. decreases in AER, particularly in winter, and increases over the eastern and central U.S. in GHG, particularly in spring. Over the 21 st century under the RCP8.5 emissions scenario, the patterns of extreme temperature and precipitation change associated with greenhouse gas forcing dominate. The

  17. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available To protect humans from heat stress risks, thermal comfort and heat stress potential were evaluated under arid environment, which had never been made for such climate. The thermal indices THI, WBGT, PET, and UTCI were used to evaluate thermal comfort and heat stress. RayMan software model was used to estimate the PET, and the UTCI calculator was used for UTCI. Dry and wet bulb temperatures (Td, Tw, natural wet bulb temperature (Tnw, and globe temperature (Tg were measured in a summer day to be used in the calculation. The results showed the following. (i The thermal sensation and heat stress levels can be evaluated by either the PET or UTCI scales, and both are valid for extremely high temperature in the arid environment. (ii In the comfort zone, around 75% of individuals would be satisfied with the surrounding environment and feel comfortable during the whole day. (iii Persons are exposed to strong heat stress and would feel uncomfortable most of the daytime in summer. (iv Heat fatigue is expected with prolonged exposure to sun light and activity. (v During the daytime, humans should schedule their activities according to the highest permissible values of the WBGT to avoid thermal shock.

  18. Climate Extreme Events over Northern Eurasia in Changing Climate

    Science.gov (United States)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2014-12-01

    During the period of widespread instrumental observations in Northern Eurasia, the annual surface air temperature has increased by 1.5°C. Close to the north in the Arctic Ocean, the late summer sea ice extent has decreased by 40% providing a near-infinite source of water vapor for the dry Arctic atmosphere in the early cold season months. The contemporary sea ice changes are especially visible in the Eastern Hemisphere All these factors affect the change extreme events. Daily and sub-daily data of 940 stations to analyze variations in the space time distribution of extreme temperatures, precipitation, and wind over Russia were used. Changing in number of days with thaw over Russia was described. The total seasonal numbers of days, when daily surface air temperatures (wind, precipitation) were found to be above (below) selected thresholds, were used as indices of climate extremes. Changing in difference between maximum and minimum temperature (DTR) may produce a variety of effects on biological systems. All values falling within the intervals ranged from the lowest percentile to the 5th percentile and from the 95th percentile to the highest percentile for the time period of interest were considered as daily extremes. The number of days, N, when daily temperatures (wind, precipitation, DTR) were within the above mentioned intervals, was determined for the seasons of each year. Linear trends in the number of days were calculated for each station and for quasi-homogeneous climatic regions. Regional analysis of extreme events was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. Differences in regional characteristics of extreme events are accounted for over a large extent of the Russian territory and variety of its physical and geographical conditions. The number of days with maximum temperatures higher than the 95% percentile has increased in most of Russia and decreased in Siberia in

  19. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  20. Impacts of climate extremes on gross primary production under global warming

    International Nuclear Information System (INIS)

    Williams, I N; Torn, M S; Riley, W J; Wehner, M F

    2014-01-01

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at the warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections

  1. Possible future changes in extreme events over Northern Eurasia

    Science.gov (United States)

    Monier, Erwan; Sokolov, Andrei; Scott, Jeffery

    2013-04-01

    In this study, we investigate possible future climate change over Northern Eurasia and its impact on extreme events. Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. Furthermore, severe permafrost degradation associated with climate change could result in peatlands releasing large amounts of carbon dioxide and methane. Meanwhile, changes in the frequency and magnitude of extreme events, such as extreme precipitation, heat waves or frost days are likely to have substantial impacts on Northern Eurasia ecosystems. For this reason, it is very important to quantify the possible climate change over Northern Eurasia under different emissions scenarios, while accounting for the uncertainty in the climate response and changes in extreme events. For several decades, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has been investigating uncertainty in climate change using the MIT Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. In this study, regional change is investigated using the MIT IGSM-CAM framework that links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). New modules were developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. The simulations presented in this paper were carried out for two emission scenarios, a "business as usual" scenario and a 660 ppm of CO2-equivalent stabilization, which are similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios. Values of climate sensitivity and net aerosol

  2. Projection of Heat Waves over China under Different Global Warming Targets

    Science.gov (United States)

    Guo, Xiaojun; Luo, Yong; Huang, Jianbin; Zhao, Zongci

    2015-04-01

    Global warming targets, which are determined in terms of global mean temperature increases relative to pre-industrial temperature levels, have been one of the heated issues recently. And the climate change (especially climate extremes) and its impacts under different targets have been paid extensive concerns. In this study, evaluation and projection of heat waves in China were carried out by five CMIP5 global climate models (GCMs) with a 0.5°×0.5° horizontal resolution which were derived from EU WATCH project. A new daily observed gridded dataset CN05.1 (0.5°×0.5°) was also used to evaluate the GCMs. And four indices (heat waves frequency, longest heat waves duration, heat waves days and high temperature days) were adopted to analyze the heat waves. Compared with the observations, the five GCMs and its Multi-Model Ensemble (MME) have a remarkable capacity of reproducing the spatial and temporal characteristic of heat waves. The time correlation coefficients between MME and the observation results can all reach 0.05 significant levels. Based on the projection data of five GCMs, both the median year of crossing 1.5°C, 2°C, 2.5°, 3°C, 3.5°C, 4°C, 4.5°C and 5°C global warming targets and the corresponding climate change over China were analyzed under RCP 4.5 and RCP 8.5 scenarios, respectively. The results show that when the global mean surface air temperature rise to different targets with respect to the pre-industrial times (1861-1880), the frequency and intensity of heat waves will increase dramatically. To take the high emission scenario RCP8.5 as an example, under the RCP8.5 scenario, the warming rate over China is stronger than that over the globe, the temperature rise(median year) over China projected by MME are 1.77°C(2025), 2.63°C(2039), 3.39°C(2050), 3.97°C(2060), 4.82°C(2070), 5.47°C(2079) and 6.2°C(2089) under 1.5°C, 2°C, 2.5°C, 3°C, 3.5°C, 4°C and 4.5°C global warming targets, respectively. With the increase of the global

  3. Prinsip Umum Penatalaksanaan Cedera Olahraga Heat Stroke

    OpenAIRE

    Ade Tobing, Saharun Iso

    2016-01-01

    Exercises that are conducted in an extreme heat environment can cause heat injury. Heatinjury is associated with disturbance to temperature regulation and cardiovascular systems. Heatstroke is the most severe type of heat injury. Heat stroke is associated with high morbidity andmortality numbers, particularly if therapy treatment is delayed. In general, heat stroke is caused bytwo things, namely increase in heat production and decrease in heat loss.Heat stroke signs include: (1) rectal temper...

  4. Interactions between urban heat islands and heat waves

    Science.gov (United States)

    Zhao, Lei; Oppenheimer, Michael; Zhu, Qing; Baldwin, Jane W.; Ebi, Kristie L.; Bou-Zeid, Elie; Guan, Kaiyu; Liu, Xu

    2018-03-01

    Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored

  5. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  6. Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy

    Science.gov (United States)

    Kwon, Y. J.; Lee, D. K.

    2017-12-01

    Raised concerns about possible contribution from urban heat island to global warming is about 30 percent. Therefore, mitigating urban heat island became one of major issues to solve among urban planners, urban designers, landscape architects, urban affair decision makers and etc. Urban heat island effect on a micro-scale is influenced by factors such as wind, water vapor and solar radiation. Urban heat island effect on a microscale is influenced by factors like wind, water vapor and solar radiation. These microscopic climates are also altered by factors affecting the heat content in space, like SVF and aspect ratio depending on the structural characteristics of various urban canyon components. Indicators of heat mitigation in urban design stage allows us to create a spatial structure considering the heat balance budget. The spatial characteristics affect thermal change by varying heat storage, emitting or absorbing the heat. The research defines characteristics of the space composed of the factors affecting the heat flux change as the potential urban heat island space. Potential urban heat island spaces are that having higher heat flux than periphery space. The study is to know the spatial characteristics that affects the subsequent temperature rise by the heat flux. As a research method, four types of potential heat island space regions were analyzed. I categorized the spatial types by comparing parameters' value of energy balance in day and night: 1) day severe areas, 2) day comfort areas, 3) night severe areas, 4) night comfort areas. I have looked at these four types of potential urban heat island areas from a microscopic perspective and investigated how various forms of heat influences on higher heat flux areas. This research was designed to investigate the heat indicators to be reflected in the design of urban canyon for heat mitigation. As a result, severe areas in daytime have high SVF rate, sensible heat is generated. Day comfort areas have shadow effect

  7. Rehabilitation Trends After Lower Extremity Amputations in Canada.

    Science.gov (United States)

    Kayssi, Ahmed; Dilkas, Steven; Dance, Derry L; de Mestral, Charles; Forbes, Thomas L; Roche-Nagle, Graham

    2017-05-01

    The heterogeneity of medical complications that lead to amputation has resulted in a diverse patient population with differing rehabilitation needs; however, the rehabilitation trends for patients with lower extremity amputations across Canada have not been studied previously. To describe trends in rehabilitation after lower extremity amputations and the factors affecting rehabilitation length of stay in Canada. Retrospective cohort analysis. Canadian inpatient rehabilitation facilities that received persons with lower extremity amputations discharged from academic or community hospitals. Patients underwent lower extremity amputations between 2006 and 2009 for nontraumatic indications and were then discharged to a rehabilitation facility. Patients were identified from the Canadian Institute for Health Information's Discharge Abstract Database that includes hospital admissions across Canada except Quebec. Inpatient rehabilitation after lower extremity amputations. Length of stay, discharge destination, and change in total and motor function scores. The analysis included 5342 persons who underwent lower extremity amputations, 1904 of whom were transferred to a rehabilitation facility (36%). Patients most commonly underwent single below-knee (74%) and above-knee (17%) amputations. The duration of rehabilitation varied by whether the amputation was performed by a vascular (median = 36 days), orthopedic (median = 38 days), or general surgeon (median = 35 days). The overall median length of stay was 36 days. Most patients (72%) subsequently were discharged home and 9% were readmitted to hospital. Predictors of longer rehabilitation included amputation by an orthopedic surgeon (beta = 5.0, P ≤ .01), older age (beta = 0.2, P ≤ .01), and a history of ischemic heart disease (beta = 3.8, P = .03) or congestive heart failure (beta = 5, P = .04). Patients who spent Canada after lower extremity amputation varies by the type of surgeon performing the amputation. Advanced age

  8. Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)

    International Nuclear Information System (INIS)

    Santágata, Daniela M.; Castesana, Paula; Rössler, Cristina E.; Gómez, Darío R.

    2017-01-01

    We studied the role of cold waves and heat waves on major power outages in the metropolitan area of Buenos Aires. Impacts of events occurring in the tails of distributions were assessed estimating deviations of minimum temperature, maximum temperature and hourly electricity consumption with respect to statistically derived thresholds and using three sets of data: temperature observations (1911–2013); major power outages reported in a disaster database (1971–2013) and hourly electricity consumption (2006–2013). These deviations (exceedances) proved to be adequate indicators of the stress posed by extreme temperature events to the electricity distribution system leading to major blackouts. Based on these indicators, we found that the electricity distribution system was under similar stress during cold waves or heat waves, but it was much more vulnerable to heat waves (three blackouts under cold waves against 20 under heat waves between 2006 and 2013). For heat waves, the results of a binomial regression logistic model provided an adequate description of the probability of disastrous supply interruptions in terms of exceedances in extreme temperatures and electricity consumption stress. This approach may be of use for other cities wishing to evaluate the effects of extreme temperature events on the electricity distribution infrastructure. - Highlights: • The linkage between extreme temperatures and disastrous power outages is analyzed. • Exceedance in extreme temperature and electricity consumption are stress indicators. • Extreme temperatures pose moderate to extreme impacts to electricity distribution. • Electricity distribution is more vulnerable to heat waves than cold waves.

  9. Extreme events in total ozone over Arosa – Part 1: Application of extreme value theory

    Directory of Open Access Journals (Sweden)

    H. E. Rieder

    2010-10-01

    Full Text Available In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs and high (termed EHOs total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima, and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds. Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO and chemical features (e.g. strong polar vortex ozone loss, and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.

  10. Early Warning of Heat/Cold Waves as a Smart City Subsystem: A Retrospective Case Study of Non-anticipative Analog methodology

    Directory of Open Access Journals (Sweden)

    Dmytro Zubov

    2015-12-01

    Full Text Available In this paper, the self-organizing inductive methodology is applied for the non-anticipative analog forecasting of the heat/cold waves in the natural environment subsystem of the smart city. The prediction algorithm is described by two paradigms. First one (short range uses quantum computing formalism. D-Wave adiabatic quantum computing Ising model is employed and evaluated for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data, respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world as well as sea level (Aburatsu, Japan. The proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample 1975-2010 yr. Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions on the validation sample 2011-2014 yr shows that Ising model with three qubits has 100% accuracy, which is significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case. Second paradigm (long range uses classical computation in the Microsoft Azure public cloud. Here, the forecast method identifies the dependencies between the current values of two meteorological variables and the future state of another variable. The method is applied to the prediction of heat/cold waves at Ronald Reagan Washington National Airport. The data include the above-stated datasets plus monthly mean Darwin and Tahiti sea level pressures, SOI, equatorial SOI, sea surface temperature, and multivariate ENSO index (131 datasets in total. Every dataset is split into two samples, for learning and

  11. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  12. Avery Island heater tests: measured data for 1000 days of heating

    International Nuclear Information System (INIS)

    Van Sambeek, L.L.; Stickney, R.G.; DeJong, K.B.

    1983-10-01

    Three heater tests were conducted in the Avery Island salt mine. The measurements of temperature and displacement, and the calculation of stress in the vicinity of each heater are of primary importance in the understanding of the thermal and thermomechanical response of the salt to an emplaced heat source. This report presents the temperature, displacement, and calculated stress data gathered during the heating phase of the three heater tests. The data presented have application in the ongoing studies of the response of geologicic media to an emplaced heat source. Specifically, electric heaters, which simulate canisters of heat-generating nuclear waste, were placed in the floor of the Avery Island salt mine, and measurements were made of the response of the salt caused by the heating. The purpose of this report is to transmit the data to the scientific community; rigorous analysis and interpretation of the data are considered beyond the scope of this data report. 11 references, 46 figures

  13. Effect of heat treatment at 600 degree C for 10 hours on human BMP

    International Nuclear Information System (INIS)

    Izawa, H.; Hachiya, Y.; Muramatsu, K.; Narita, Y.; Kawai, T.

    1999-01-01

    Viral infection are an extremely serious in allogeneic bone transplantations. While it is essential to kill viruses such as HIV in allogeneic bone graft, the osteoinductive activity must be preserved. Heat treatment of allogeneic bone graft at 60 degree C for 10 hours is effective in killing viruses such as HIV, but it is unclear to what extent the activity of human bone morphogenetic protein (hBMP) is preserved. In this experiment crude hBMP was extracted from both heated and non-heated human bones which were decalcified by the Urist method. Gelatin capsules containing 5mg of crude hBMP were transplanted into the thigh muscles of 5 week old mice. Human bone samples heated in a water bath at 60 degree C for 10 hours and non-heated samples were each transplanted into 5 mice. At 20 days after transplantation, the heterotopic bone formation was compared by evaluation of X-ray and histologicic analysis. X-rays showed heterotopic bone formation in both heated and non-heated samples. Further, histologic analysis showed that peripheral osteoid tissue had developed into laminar bone formation and interlaminar bone marrow was observed. Heterotopic bone formation was induced by crude hBMP from heated bones in a similar way to crude hBMP from non-heated bones observed in X-ray. There was no significant difference in histologic analysis. The crude hBMP, extracted from bones which were heat-treated at 60 degree C for 10 hours induced heterotopic bone formation similar to that in non-heated bone observed by X-ray and histologic analysis at 20 days after transplantation. This demostrates that the heat-treated bone preserved osteoinduction

  14. Spatiotemporal influence of temperature, air quality, and urban environment on cause-specific mortality during hazy days.

    Science.gov (United States)

    Ho, Hung Chak; Wong, Man Sing; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Bilal, Muhammad; Chan, Ta-Chien

    2018-03-01

    Haze is an extreme weather event that can severely increase air pollution exposure, resulting in higher burdens on human health. Few studies have explored the health effects of haze, and none have investigated the spatiotemporal interaction between temperature, air quality and urban environment that may exacerbate the adverse health effects of haze. We investigated the spatiotemporal pattern of haze effects and explored the additional effects of temperature, air pollution and urban environment on the short-term mortality risk during hazy days. We applied a Poisson regression model to daily mortality data from 2007 through 2014, to analyze the short-term mortality risk during haze events in Hong Kong. We evaluated the adverse effect on five types of cause-specific mortality after four types of haze event. We also analyzed the additional effect contributed by the spatial variability of urban environment on each type of cause-specific mortality during a specific haze event. A regular hazy day (lag 0) has higher all-cause mortality risk than a day without haze (odds ratio: 1.029 [1.009, 1.049]). We have also observed high mortality risks associated with mental disorders and diseases of the nervous system during hazy days. In addition, extreme weather and air quality contributed to haze-related mortality, while cold weather and higher ground-level ozone had stronger influences on mortality risk. Areas with a high-density environment, lower vegetation, higher anthropogenic heat, and higher PM 2.5 featured stronger effects of haze on mortality than the others. A combined influence of haze, extreme weather/air quality, and urban environment can result in extremely high mortality due to mental/behavioral disorders or diseases of the nervous system. In conclusion, we developed a data-driven technique to analyze the effects of haze on mortality. Our results target the specific dates and areas with higher mortality during haze events, which can be used for development of

  15. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    Science.gov (United States)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  16. Extreme exercise and oxidative DNA modification

    DEFF Research Database (Denmark)

    Poulsen, H E; Loft, S; Vistisen, K

    1996-01-01

    Extreme exercise increases oxygen uptake with a potential for increased formation of reactive oxygen species. Damage to biomolecules may occur if such an increase exceeds the protective capacity of antioxidant defence mechanisms. Vigorous exercise amounting to approximately 10 h a day for 30 days...

  17. Climate Variability and Weather Extremes: Model-Simulated and Historical Data. Chapter 9

    Science.gov (United States)

    Schubert, Siegfried D.; Lim, Young-Kwon

    2012-01-01

    Extremes in weather and climate encompass a wide array of phenomena including tropical storms, mesoscale convective systems, snowstorms, floods, heat waves, and drought. Understanding how such extremes might change in the future requires an understanding of their past behavior including their connections to large-scale climate variability and trends. Previous studies suggest that the most robust findings concerning changes in short-term extremes are those that can be most directly (though not completely) tied to the increase in the global mean temperatures. These include the findings that (IPCC 2007): There has been a widespread reduction in the number of frost days in mid-latitude regions in recent decades, an increase in the number of warm extremes, particularly warm nights, and a reduction in the number of cold extremes, particularly cold nights. For North America in particular (CCSP SAP 3.3, 2008): There are fewer unusually cold days during the last few decades. The last 10 years have seen a lower number of severe cold waves than for any other 10-year period in the historical record that dates back to 1895. There has been a decrease in the number of frost days and a lengthening of the frost-free season, particularly in the western part of North America. Other aspects of extremes such as the changes in storminess have a less clear signature of long term change, with considerable interannual, and decadal variability that can obscure any climate change signal. Nevertheless, regarding extratropical storms (CCSP SAP 3.3, 2008): The balance of evidence suggests that there has been a northward shift in the tracks of strong low pressure systems (storms) in both the North Atlantic and North Pacific basins. For North America: Regional analyses suggest that there has been a decrease in snowstorms in the South and lower Midwest of the United States, and an increase in snowstorms in the upper Midwest and Northeast. Despite the progress already made, our understanding of the

  18. Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States.

    Science.gov (United States)

    Hass, Alisa L; Ellis, Kelsey N; Reyes Mason, Lisa; Hathaway, Jon M; Howe, David A

    2016-01-11

    Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center) in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts.

  19. Heat and Humidity in the City: Neighborhood Heat Index Variability in a Mid-Sized City in the Southeastern United States

    Directory of Open Access Journals (Sweden)

    Alisa L. Hass

    2016-01-01

    Full Text Available Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts.

  20. Fatal Exertional Heat Stroke and American Football Players: The Need for Regional Heat-Safety Guidelines.

    Science.gov (United States)

    Grundstein, Andrew J; Hosokawa, Yuri; Casa, Douglas J

    2018-01-01

      Weather-based activity modification in athletics is an important way to minimize heat illnesses. However, many commonly used heat-safety guidelines include a uniform set of heat-stress thresholds that do not account for geographic differences in acclimatization.   To determine if heat-related fatalities among American football players occurred on days with unusually stressful weather conditions based on the local climate and to assess the need for regional heat-safety guidelines.   Cross-sectional study.   Data from incidents of fatal exertional heat stroke (EHS) in American football players were obtained from the National Center for Catastrophic Sport Injury Research and the Korey Stringer Institute.   Sixty-one American football players at all levels of competition with fatal EHSs from 1980 to 2014.   We used the wet bulb globe temperature (WBGT) and a z-score WBGT standardized to local climate conditions from 1991 to 2010 to assess the absolute and relative magnitudes of heat stress, respectively.   We observed a poleward decrease in exposure WBGTs during fatal EHSs. In milder climates, 80% of cases occurred at above-average WBGTs, and 50% occurred at WBGTs greater than 1 standard deviation from the long-term mean; however, in hotter climates, half of the cases occurred at near average or below average WBGTs.   The combination of lower exposure WBGTs and frequent extreme climatic values in milder climates during fatal EHSs indicates the need for regional activity-modification guidelines with lower, climatically appropriate weather-based thresholds. Established activity-modification guidelines, such as those from the American College of Sports Medicine, work well in the hotter climates, such as the southern United States, where hot and humid weather conditions are common.

  1. Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon

    Directory of Open Access Journals (Sweden)

    Jackson Voelkel

    2018-03-01

    Full Text Available Extreme urban heat is a powerful environmental stressor which poses a significant threat to human health and well-being. Exacerbated by the urban heat island phenomenon, heat events are expected to become more intense and frequent as climate change progresses, though we have limited understanding of the impact of such events on vulnerable populations at a neighborhood or census block group level. Focusing on the City of Portland, Oregon, this study aimed to determine which socio-demographic populations experience disproportionate exposure to extreme heat, as well as the level of access to refuge in the form of public cooling centers or residential central air conditioning. During a 2014 heat wave, temperature data were recorded using a vehicle-traverse collection method, then extrapolated to determine average temperature at the census block group level. Socio-demographic factors including income, race, education, age, and English speaking ability were tested using statistical assessments to identify significant relationships with heat exposure and access to refuge from extreme heat. Results indicate that groups with limited adaptive capacity, including those in poverty and non-white populations, are at higher risk for heat exposure, suggesting an emerging concern of environmental justice as it relates to climate change. The paper concludes by emphasizing the importance of cultural sensitivity and inclusion, in combination with effectively distributing cooling centers in areas where the greatest burden befalls vulnerable populations.

  2. Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon.

    Science.gov (United States)

    Voelkel, Jackson; Hellman, Dana; Sakuma, Ryu; Shandas, Vivek

    2018-03-30

    Extreme urban heat is a powerful environmental stressor which poses a significant threat to human health and well-being. Exacerbated by the urban heat island phenomenon, heat events are expected to become more intense and frequent as climate change progresses, though we have limited understanding of the impact of such events on vulnerable populations at a neighborhood or census block group level. Focusing on the City of Portland, Oregon, this study aimed to determine which socio-demographic populations experience disproportionate exposure to extreme heat, as well as the level of access to refuge in the form of public cooling centers or residential central air conditioning. During a 2014 heat wave, temperature data were recorded using a vehicle-traverse collection method, then extrapolated to determine average temperature at the census block group level. Socio-demographic factors including income, race, education, age, and English speaking ability were tested using statistical assessments to identify significant relationships with heat exposure and access to refuge from extreme heat. Results indicate that groups with limited adaptive capacity, including those in poverty and non-white populations, are at higher risk for heat exposure, suggesting an emerging concern of environmental justice as it relates to climate change. The paper concludes by emphasizing the importance of cultural sensitivity and inclusion, in combination with effectively distributing cooling centers in areas where the greatest burden befalls vulnerable populations.

  3. Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland

    Directory of Open Access Journals (Sweden)

    R. Auchmann

    2012-02-01

    Full Text Available We analyze weather and climate during the "Year without Summer" 1816 using sub-daily data from Geneva, Switzerland, representing one of the climatically most severely affected regions. The record includes twice daily measurements and observations of air temperature, pressure, cloud cover, wind speed, and wind direction as well as daily measurements of precipitation. Comparing 1816 to a contemporary reference period (1799–1821 reveals that the coldness of the summer of 1816 was most prominent in the afternoon, with a shift of the entire distribution function of temperature anomalies by 3–4 °C. Early morning temperature anomalies show a smaller change for the mean, a significant decrease in the variability, and no changes in negative extremes. Analyzing cloudy and cloud-free conditions separately suggests that an increase in the number of cloudy days was to a significant extent responsible for these features. A daily weather type classification based on pressure, pressure tendency, and wind direction shows extremely anomalous frequencies in summer 1816, with only one day (compared to 20 in an average summer classified as high-pressure situation but a tripling of low-pressure situations. The afternoon temperature anomalies expected from only a change in weather types was much stronger negative in summer 1816 than in any other year. For precipitation, our analysis shows that the 80% increase in summer precipitation compared to the reference period can be explained by 80% increase in the frequency of precipitation, while no change could be found neither in the average intensity of precipitation nor in the frequency distribution of extreme precipitation. In all, the analysis shows that the regional circulation and local cloud cover played a dominant role. It also shows that the summer of 1816 was an example of extreme climate, not extreme weather.

  4. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  5. Modifications of the urban heat island characteristics under exceptionally hot weather - A case study

    Science.gov (United States)

    Founda, Dimitra; Pierros, Fragiskos; Santamouris, Mathew

    2016-04-01

    Considerable recent research suggests that heat waves are becoming more frequent, more intense and longer in the future. Heat waves are characterised by the dominance of prolonged abnormally hot conditions related to synoptic scale anomalies, thus they affect extensive geographical areas. Heat waves (HW) have a profound impact on humans and they have been proven to increase mortality. Urban areas are known to be hotter than the surrounding rural areas due to the well documented urban heat island (UHI) phenomenon. Urban areas face increased risk under heat waves, due to the added heat from the urban heat island and increased population density. Given that urban populations keep increasing, citizens are exposed to significant heat related risk. Mitigation and adaptation strategies require a deep understanding of the response of the urban heat islands under extremely hot conditions. The response of the urban heat island under selected episodes of heat waves is examined in the city of Athens, from the comparison between stations of different characteristics (urban, suburban, coastal and rural). Two distinct episodes of heat waves occurring during summer 2000 were selected. Daily maximum air temperature at the urban station of the National Observatory of Athens (NOA) exceeded 40 0C for at least three consecutive days for both episodes. The intensity of UHI during heat waves was compared to the intensity under 'normal' conditions, represented from a period 'before' and 'after' the heat wave. Striking differences of UHI features between HW and no HW cases were observed, depending on the time of the day and the type of station. The comparison between the urban and the coastal station showed an increase of the order of 3 0C in the intensity of UHI during the HW days, as regards both daytime and nighttime conditions. The comparison between urban and a suburban (inland) station, revealed some different behaviour during HWs, with increases of the order of 3 0C in the nocturnal

  6. Workshop day on ``films and droplets heat transport``; Journee d`etude sur ``le transport de chaleur par films ou gouttelettes``

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop day was organized by the French society of thermal engineers (SFT). This compilation of proceedings comprises 9 papers dealing with: the effect of droplets evaporation on a poly-dispersed jet under pressure (application to combustion chambers of diesel engines); effect of two-phase heat exchanges on the performances of a piston engine; heat and mass transfers in the entering region of a laminar liquid film; mass transfer at the interface of a free or sheared turbulent film; measurement of gasoline films thickness using laser induced fluorescence - evaluation of the evaporation quickness using several tracers (application to the intake manifold of port-injected and of indirect injection spark ignition engines); heat transfers and condensation inside ducts for the evacuation of combustion products; evaporation of a climbing film on a wall with discontinuous fins (application to the ebullition in heat exchangers); temperature measurement of droplets in a mono-dispersed jet using IR technique and refractometry; influence of homogeneous and isotropic turbulence on the vaporization of fuel droplets. (J.S.)

  7. Workshop day on ``films and droplets heat transport``; Journee d`etude sur ``le transport de chaleur par films ou gouttelettes``

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop day was organized by the French society of thermal engineers (SFT). This compilation of proceedings comprises 9 papers dealing with: the effect of droplets evaporation on a poly-dispersed jet under pressure (application to combustion chambers of diesel engines); effect of two-phase heat exchanges on the performances of a piston engine; heat and mass transfers in the entering region of a laminar liquid film; mass transfer at the interface of a free or sheared turbulent film; measurement of gasoline films thickness using laser induced fluorescence - evaluation of the evaporation quickness using several tracers (application to the intake manifold of port-injected and of indirect injection spark ignition engines); heat transfers and condensation inside ducts for the evacuation of combustion products; evaporation of a climbing film on a wall with discontinuous fins (application to the ebullition in heat exchangers); temperature measurement of droplets in a mono-dispersed jet using IR technique and refractometry; influence of homogeneous and isotropic turbulence on the vaporization of fuel droplets. (J.S.)

  8. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  9. Glucose concentration and blood acid-basis status in high-yielding dairy cows during heat stress

    Directory of Open Access Journals (Sweden)

    Vujanac Ivan

    2011-01-01

    Full Text Available The objective of this work was to examine the effect of heat stress on glucose and pH values in blood of high-yielding dairy cows in the early stage of lactation, as well as to determine whether the changes in these parameters are interdependent under such conditions. An experiment was performed on high-yielding dairy cows during the summer and the spring periods. Forty cows were selected, twenty each for the two periods under investigation. In the course of the experiment, the temperature humidity index (THI was determined for the entire period of investigations, and then also the average daily THI, nightmorning THI (average value of hourly THI measured from 22h on the previous day until 10h of the current day, as well as the day-night THI (average value of hourly THI measured during the period from 10h to 22h of the current day. The pH and glucose concentration were determined in blood samples taken in the morning and afternoon of days 30, 60, and 90 of lactation during the spring and summer periods of the investigations. Based on the results for the THI, it was established that the animals were not exposed to the effect of extreme heat stress during the spring period of investigations, while they were periodically exposed to moderate but also extreme heat stress during the summer, in particular in the afternoon hours. It can be concluded from the results obtained for the blood pH that the cows were in respiratory alkalosis during the summer in the morning and afternoon hours on day 30, in the afternoon hours of days 60 and 90 of lactation, as well as in the afternoon on day 90 of lactation during the spring period of investigations. During the summer period, there were no statistically significant differences between the pH value determined in the morning and afternoon hours on day 30 of lactation, while the pH value was significantly higher in the afternoon hours than in the morning hours on days 60 and 90 of lactation. There were no

  10. Extreme heat and runoff extremes in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    M. Zappa

    2007-06-01

    Full Text Available The hydrological response of Swiss river basins to the 2003 European summer heatwave was evaluated by a combined analysis of historical discharge records and specific applications of distributed hydrological modeling. In the summer of 2003, the discharge from headwater streams of the Swiss Central Plateau was only 40%–60% of the long-term average. For alpine basins runoff was about 60%–80% of the average. Glacierized basins showed the opposite behavior. According to the degree of glacierization, the average summer runoff was close or even above average. The hydrological model PREVAH was applied for the period 1982–2005. Even if the model was not calibrated for such extreme meteorological conditions, it was well able to simulate the hydrological responses of three basins. The aridity index φ describes feedbacks between hydrological and meteorological anomalies, and was adopted as an indicator of hydrological drought. The anomalies of φ and temperature in the summer of 2003 exceeded the 1982–2005 mean by more than 2 standard deviations. Catchments without glaciers showed negative correlations between φ and discharge R. In basins with about 15% glacierization, φ and R were not correlated. River basins with higher glacier percentages showed a positive correlation between φ and R. Icemelt was positively correlated with φ and reduced the variability of discharge with larger amounts of meltwater. Runoff generation from the non-glaciated sub-areas was limited by high evapotranspiration and reduced precipitation. The 2003 summer heatwave could be a precursor to similar events in the near future. Hydrological models and further data analysis will allow the identification of the most sensitive regions where heatwaves may become a recurrent natural hazard with large environmental, social and economical impacts.

  11. Human mortality impacts of the 2015 summer heat spells in Slovakia

    Science.gov (United States)

    Výberči, Dalibor; Labudová, Lívia; Eštóková, Milada; Faško, Pavol; Trizna, Milan

    2017-07-01

    In 2015, Central Europe experienced an unusually warm summer season. For a great majority of climatic stations around Slovakia, it had been the warmest summer ever recorded over their entire instrumental observation period. In this study, we investigate the mortality effects of hot days' sequences during that particular summer on the Slovak population. In consideration of the range of available mortality data, the position of 2015 is analysed within the years 1996-2015. Over the given 20-year period, the summer heat spells of 2015 were by far the most severe from a meteorological point of view, and clearly the deadliest with the total of almost 540 excess deaths. In terms of impacts, an extraordinary 10-day August heat spell was especially remarkable. The massive lethal effects of heat would have likely been even more serious under normal circumstances, since the number of premature deaths appeared to be partially reduced due to a non-standard mortality pattern in the first quarter of the year. The heat spells of the extremely warm summer of 2015 in Slovakia are notable not just for their short-term response in mortality. It appears that in a combination with the preceding strong influenza season, they subsequently affected mortality conditions in the country in the following months up until the end of the year. The impacts described above were rather different for selected population subgroups (men and women, the elderly). Both separately and as a part of the annual mortality cycle, the 2015 summer heat spells may represent a particularly valuable source of information for public health.

  12. Design and fabrication of heat resistant multilayers

    International Nuclear Information System (INIS)

    Thorne, J.M.; Knight, L.V.; Peterson, B.G.; Perkins, R.T.; Gray, K.J.

    1986-01-01

    Many promising applications of multilayer x-ray optical elements subject them to intense radiation. This paper discusses the selection of optimal pairs of materials to resist heat damage and presents simulations of multilayer performance under extreme heat loadings

  13. Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013

    Directory of Open Access Journals (Sweden)

    Sonja Kivinen

    2017-02-01

    Full Text Available We studied climate trends and the occurrence of rare and extreme temperature and precipitation events in northern Fennoscandia in 1914–2013. Weather data were derived from nine observation stations located in Finland, Norway, Sweden and Russia. The results showed that spring and autumn temperatures and to a lesser extent summer temperatures increased significantly in the study region, the observed changes being the greatest for daily minimum temperatures. The number of frost days declined both in spring and autumn. Rarely cold winter, spring, summer and autumn seasons had a low occurrence and rarely warm spring and autumn seasons a high occurrence during the last 20-year interval (1994–2013, compared to the other 20-year intervals. That period was also characterized by a low number of days with extremely low temperature in all seasons (4–9% of all extremely cold days and a high number of April and October days with extremely high temperature (36–42% of all extremely warm days. A tendency of exceptionally high daily precipitation sums to grow even higher towards the end of the study period was also observed. To summarize, the results indicate a shortening of the cold season in northern Fennoscandia. Furthermore, the results suggest significant declines in extremely cold climate events in all seasons and increases in extremely warm climate events particularly in spring and autumn seasons.

  14. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  15. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.

    Science.gov (United States)

    Davis, Robert E; Hondula, David M; Patel, Anjali P

    2016-06-01

    Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum

  16. Quantifying enhancement in aerosol radiative forcing during ‘extreme aerosol days’ in summer at Delhi National Capital Region, India

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumant [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Dey, Sagnik [Centre for Atmospheric Sciences, IIT Delhi, New Delhi 110016 (India); Srivastava, Arun [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-04-15

    Changes in aerosol characteristics (spectral aerosol optical depth, AOD and composition) are examined during the transition from ‘relatively clean’ to ‘extreme’ aerosol days in the summer of 2012 at Delhi National Capital Region (NCR), India. AOD smaller than 0.54 (i.e. 12-year mean AOD − 1σ) represents ‘relatively clean’ days in Delhi during the summer. ‘Extreme’ days are defined by the condition when AOD{sub 0.5} exceeds 12-year mean AOD + 1 standard deviation (σ). Mean (± 1σ) AOD increases to 1.2 ± 0.12 along with a decrease of Angstrom Exponent from 0.54 ± 0.09 to 0.22 ± 0.12 during the ‘extreme’ days. Aerosol composition is inferred by fixing the number concentrations of various individual species through iterative tweaking when simulated (following Mie theory) AOD spectrum matches with the measured one. Contribution of coarse mode dust to aerosol mass increased from 76.8% (relatively clean) to 96.8% (extreme events), while the corresponding contributions to AOD{sub 0.5} increased from 35.0% to 70.8%. Spectrally increasing single scattering albedo (SSA) and CALIPSO aerosol sub-type information support the dominant presence of dust during the ‘extreme’ aerosol days. Aerosol direct radiative forcing (ADRF) at the top-of-the-atmosphere increases from 21.2 W m{sup −2} (relatively clean) to 56.6 W m{sup −2} (extreme), while the corresponding change in surface ADRF is from − 99.5 W m{sup −2} to − 153.5 W m{sup −2}. Coarse mode dust contributes 60.3% of the observed surface ADRF during the ‘extreme’ days. On the contrary, 0.4% mass fraction of black carbon (BC) translates into 13.1% contribution to AOD{sub 0.5} and 33.5% to surface ADRF during the ‘extreme’ days. The atmospheric heating rate increased by 75.1% from 1.7 K/day to 2.96 K/day during the ‘extreme’ days. - Graphical abstract: Deviation (in %) of aerosol properties from ‘relatively clean’ days to ‘extreme’ aerosol days. - Highlights:

  17. Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones

    Directory of Open Access Journals (Sweden)

    Natalie Melissa McLean

    2015-01-01

    Full Text Available End-of-century changes in Caribbean climate extremes are derived from the Providing Regional Climate for Impact Studies (PRECIS regional climate model (RCM under the A2 and B2 emission scenarios across five rainfall zones. Trends in rainfall, maximum temperature, and minimum temperature extremes from the RCM are validated against meteorological stations over 1979–1989. The model displays greater skill at representing trends in consecutive wet days (CWD and extreme rainfall (R95P than consecutive dry days (CDD, wet days (R10, and maximum 5-day precipitation (RX5. Trends in warm nights, cool days, and warm days were generally well reproduced. Projections for 2071–2099 relative to 1961–1989 are obtained from the ECHAM5 driven RCM. Northern and eastern zones are projected to experience more intense rainfall under A2 and B2. There is less consensus across scenarios with respect to changes in the dry and wet spell lengths. However, there is indication that a drying trend may be manifest over zone 5 (Trinidad and northern Guyana. Changes in the extreme temperature indices generally suggest a warmer Caribbean towards the end of century across both scenarios with the strongest changes over zone 4 (eastern Caribbean.

  18. Extreme Weather Events and Climate Change Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Katherine [National Academy of Sciences, Washington, DC (United States)

    2016-03-31

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  19. Some specific features of subcooled boiling heat transfer and crisis at extremely high heat flux densities

    International Nuclear Information System (INIS)

    Gotovsky, M.A.

    2001-01-01

    Forced convection boiling is the process used widely in a lot of industry branches including NPP. Heat transfer intensity under forced convection boiling is considered in different way in dependence on conditions. One of main problems for the process considered is an influence of interaction between forced flow and boiling on heat transfer character. For saturated water case a transition from ''pure'' forced convection to nucleate boiling can be realized in smooth form. (author)

  20. Extremely low temperature properties of epoxy GFRP

    International Nuclear Information System (INIS)

    Kadotani, Kenzo; Nagai, Matao; Aki, Fumitake.

    1983-01-01

    The examination of fiber-reinforced plastics, that is, plastics such as epoxy, polyester and polyimide reinforced with high strength fibers such as glass, carbon, boron and steel, for extremely low temperature use began from the fuel tanks of rockets. Therafter, the trial manufacture of superconducting generators and extremely low temperature transformers and the manufacture of superconducting magnets for nuclear fusion experimental setups became active, and high performance FRPs have been adopted, of which the extremely low temperature properties have been sufficiently grasped. Recently, the cryostats made of FRPs have been developed, fully utilizing such features of FRPs as high strength, high rigidity, non-magnetic material, insulation, low heat conductivity, light weight and the freedom of molding. In this paper, the mechanical properties at extremely low temperature of the plastic composite materials used as insulators and structural materials for extremely low temperature superconducting equipment is outlined, and in particular, glass fiber-reinforced epoxy laminates are described somewhat in detail. The fracture strain of GFRP at extremely low temperature is about 1.3 times as large as that at room temperature, but at extremely low temperature, clear cracking occurred at 40% of the fracture strain. The linear thermal contraction of GFRP showed remarkable anisotropy. (Kako, I.)

  1. Evaluation of satellite-retrieved extreme precipitation using gauge observations

    Science.gov (United States)

    Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.

    2012-04-01

    Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.

  2. Research of the heat exchanging processes running in the heating and hot water supply loops of the coil heat exchangers

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Шитікова

    2016-11-01

    Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future

  3. Beryllium armoured target for extreme heat and neutron loading conditions

    International Nuclear Information System (INIS)

    Mazul, I.; Gervash, A.; Giniyatulin, R.

    2004-01-01

    Beryllium is a primary candidate as a target material for high-energy protons conversion into neutrons used for different applications. In order to get higher neutron flux the conversion area has to be minimized - in our case the target is limited by 1-2 liter volume. This target generates about 5·10 13 fast neutrons per second and removes of 150 kW thermal power deposited by proton beam (30 mA, 5 MeV), coming from linac. The operational condition of the converter is close to the condition of Be-armored components in fusion reactors: high thermal and neutron fluxes and active cooling. Therefore achievements in development of water-cooled high heat flux components for fusion application can be used for design of Be converter and vice versa. However for medical application the using of high-activated heat sink materials such as Cu and SS is strongly limited. So, new materials (Be, Al, Zr) and new joining technologies in comparison with the achievements in fusion area have to be used for construction of such Be converter. In order to reduce amount of heat sink materials in the target saddle-block geometry for Be armor is suggested and developed. Results of R and D works on the development of water cooled Be target for converter are presented, including data on selected materials, technological trials and mockups high heat flux testing. Preliminary design of Be neutron converter for medical applications based on R and D results is presented. (author)

  4. Starting Ovsynch protocol on day 6 of first postpartum estrous cycle increased fertility in dairy cows by affecting ovarian response during heat stress.

    Science.gov (United States)

    Dirandeh, E

    2014-10-01

    The objective was to compare fertility in cows using an Ovsynch protocol starting on day 6 of first postpartum estrous cycle with an Ovsynch protocol initiated at random stages of the estrous cycle during heat stress (temperature-humidity index (THI)=77-83). Cows (n=459) at the beginning of the lactation period were randomly assigned to time-of-ovulation synchronization treatments: (1) control, Ovsynch (first GnRH treatment, PGF2α treatment 7 days later, second GnRH treatment 56 h later, and TAI 16 h later), initiated at random stages of the estrous cycle (40 ± 2 days postpartum, n=224) and (2) Ovsynch initiated on day 6 of first postpartum estrous cycle (estrus=day 0) based on detection of the first estrus after day 30 postpartum (O6, 35 ± 2 postpartum, n=235). Statistical analyses were conducted using SAS. The percentage of cows responding to the initial GnRH injection using the Ovsynch protocol was greater with the O6 treatment compared to the control treatment (60.4% compared with 52.6%). The percentage of cows having a corpus luteum (CL) on the day of the PGF2α injection was not different among treatments (control=87.0% and O6=90.2%, respectively). Also more cows in the O6 treatment group responded to the second GnRH injection of the Ovsynch protocol compared with control treatments (82.5% compared with 75.8%). Treatment affected the percentage of cows diagnosed pregnant at 32 ± 0.7 days and 60 ± 3 days after the resynchronized timing of AI but pregnancy losses (5.3% compared with 6.8%) did not differ between treatment groups. It is concluded that initiating the Ovsynch protocol 6 days after estrus during the first 40 days postpartum resulted in a greater pregnancy rate at the synchronized estrus and increased fertility compared with control cows during heat stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Heat flow and heat generation in greenstone belts

    Science.gov (United States)

    Drury, M. J.

    1986-01-01

    Heat flow has been measured in Precambrian shields in both greenstone belts and crystalline terrains. Values are generally low, reflecting the great age and tectonic stability of the shields; they range typically between 30 and 50 mW/sq m, although extreme values of 18 and 79 mW/sq m have been reported. For large areas of the Earth's surface that are assumed to have been subjected to a common thermotectonic event, plots of heat flow against heat generation appear to be linear, although there may be considerable scatter in the data. The relationship is expressed as: Q = Q sub o + D A sub o in which Q is the observed heat flow, A sub o is the measured heat generation at the surface, Q sub o is the reduced heat flow from the lower crust and mantle, and D, which has the dimension of length, represents a scale depth for the distribution of radiogenic elements. Most authors have not used data from greenstone belts in attempting to define the relationship within shields, considering them unrepresentative and preferring to use data from relatively homogeneous crystalline rocks. A discussion follows.

  6. Using waste oil to heat a greenhouse

    Science.gov (United States)

    Marla Schwartz

    2009-01-01

    During the winter of 1990, Northwoods Nursery (Elk River, ID) purchased a wood-burning system to heat the current greenhouses. This system burned slabs of wood to heat water that was then pumped into the greenhouses. The winter of 1990 was extremely harsh, requiring non-stop operation of the heating system. In order to keep seedlings in the greenhouse from freezing,...

  7. Temporal variation in the effect of heat and the role of the Italian heat prevention plan.

    Science.gov (United States)

    de'Donato, F; Scortichini, M; De Sario, M; de Martino, A; Michelozzi, P

    2018-05-08

    The aim of the article is to evaluate the temporal change in the effect of heat on mortality in Italy in the last 12 years after the introduction of the national heat plan. Time series analysis. Distributed lag non-linear models were used to estimate the association between maximum apparent temperature and mortality in 23 Italian cities included in the national heat plan in four study periods (before the introduction of the heat plan and three periods after the plan was in place between 2005 and 2016). The effect (relative risks) and impact (attributable fraction [AF] and number of heat-related deaths) were estimated for mild summer temperatures (20th and 75th percentile maximum apparent temperature [Tappmax]) and extreme summer temperatures (75th and 99th percentile Tappmax) in each study period. A survey of the heat preventive measures adopted over time in the cities included in the Italian heat plan was carried out to better describe adaptation measures and response. Although heat still has an impact on mortality in Italian cities, a reduction in heat-related mortality is observed progressively over time. In terms of the impact, the heat AF related to extreme temperatures declined from 6.3% in the period 1999-2002 to 4.1% in 2013-2016. Considering the entire temperature range (20th vs 99th percentile), the total number of heat-related deaths spared over the entire study period was 1900. Considering future climate change and the health burden associated to heat waves, it is important to promote adaptation measures by showing the potential effectiveness of heat prevention plans. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  8. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    Directory of Open Access Journals (Sweden)

    Jill N Ulrich

    2016-07-01

    Full Text Available The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  9. Temporal Changes in Mortality Related to Extreme Temperatures for 15 Cities in Northeast Asia: Adaptation to Heat and Maladaptation to Cold.

    Science.gov (United States)

    Chung, Yeonseung; Noh, Heesang; Honda, Yasushi; Hashizume, Masahiro; Bell, Michelle L; Guo, Yue-Liang Leon; Kim, Ho

    2017-05-15

    Understanding how the temperature-mortality association worldwide changes over time is crucial to addressing questions of human adaptation under climate change. Previous studies investigated the temporal changes in the association over a few discrete time frames or assumed a linear change. Also, most studies focused on attenuation of heat-related mortality and studied the United States or Europe. This research examined continuous temporal changes (potentially nonlinear) in mortality related to extreme temperature (both heat and cold) for 15 cities in Northeast Asia (1972-2009). We used a generalized linear model with splines to simultaneously capture 2 types of nonlinearity: nonlinear association between temperature and mortality and nonlinear change over time in the association. We combined city-specific results to generate country-specific results using Bayesian hierarchical modeling. Cold-related mortality remained roughly constant over decades and slightly increased in the late 2000s, with a larger increase for cardiorespiratory deaths than for deaths from other causes. Heat-related mortality rates have decreased continuously over time, with more substantial decrease in earlier decades, for older populations and for cardiorespiratory deaths. Our findings suggest that future assessment of health effects of climate change should account for the continuous changes in temperature-related health risk and variations by factors such as age, cause of death, and location. © Crown copyright 2017.

  10. [Heat stroke and burns resulting from use of sauna

    DEFF Research Database (Denmark)

    Runitz, K.; Jensen, T.H.

    2009-01-01

    We describe a case of severe heat stroke resulting from exposure to extreme heat in a sauna for an unknown period of time. The patient sustained 20% 2nd degree burns. On arrival at the emergency department, the patient's temperature was 40.5 degrees C. At the critical care unit, the patient devel...... developed severe multi-organ failure and critical polyneuropathy. Severe heat stroke is a rare diagnosis in Denmark. The treatment is symptomatic and the prognosis is grave, especially in combination with severe burns Udgivelsesdato: 2009/1/26......We describe a case of severe heat stroke resulting from exposure to extreme heat in a sauna for an unknown period of time. The patient sustained 20% 2nd degree burns. On arrival at the emergency department, the patient's temperature was 40.5 degrees C. At the critical care unit, the patient...

  11. Health impacts of workplace heat exposure: an epidemiological review.

    Science.gov (United States)

    Xiang, Jianjun; Bi, Peng; Pisaniello, Dino; Hansen, Alana

    2014-01-01

    With predicted increasing frequency and intensity of extremely hot weather due to changing climate, workplace heat exposure is presenting an increasing challenge to occupational health and safety. This article aims to review the characteristics of workplace heat exposure in selected relatively high risk occupations, to summarize findings from published studies, and ultimately to provide suggestions for workplace heat exposure reduction, adaptations, and further research directions. All published epidemiological studies in the field of health impacts of workplace heat exposure for the period of January 1997 to April 2012 were reviewed. Finally, 55 original articles were identified. Manual workers who are exposed to extreme heat or work in hot environments may be at risk of heat stress, especially those in low-middle income countries in tropical regions. At risk workers include farmers, construction workers, fire-fighters, miners, soldiers, and manufacturing workers working around process-generated heat. The potential impacts of workplace heat exposure are to some extent underestimated due to the underreporting of heat illnesses. More studies are needed to quantify the extent to which high-risk manual workers are physiologically and psychologically affected by or behaviourally adapt to workplace heat exposure exacerbated by climate change.

  12. The heat recovery with heat transfer methods from solar photovoltaic systems

    International Nuclear Information System (INIS)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-01-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc. (paper)

  13. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon

  14. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected

  15. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones

    Directory of Open Access Journals (Sweden)

    J. von Buttlar

    2018-03-01

    Full Text Available Extreme climatic events, such as droughts and heat stress, induce anomalies in ecosystem–atmosphere CO2 fluxes, such as gross primary production (GPP and ecosystem respiration (Reco, and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme-event impacts on GPP, Reco, and the resulting net ecosystem production (NEP. We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30-year time period. We then used FLUXNET eddy covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they downregulated GPP, resulting in a moderate reduction in the ecosystem's carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a downregulation after about 2 weeks. This confirms

  16. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones

    Science.gov (United States)

    von Buttlar, Jannis; Zscheischler, Jakob; Rammig, Anja; Sippel, Sebastian; Reichstein, Markus; Knohl, Alexander; Jung, Martin; Menzer, Olaf; Altaf Arain, M.; Buchmann, Nina; Cescatti, Alessandro; Gianelle, Damiano; Kiely, Gerard; Law, Beverly E.; Magliulo, Vincenzo; Margolis, Hank; McCaughey, Harry; Merbold, Lutz; Migliavacca, Mirco; Montagnani, Leonardo; Oechel, Walter; Pavelka, Marian; Peichl, Matthias; Rambal, Serge; Raschi, Antonio; Scott, Russell L.; Vaccari, Francesco P.; van Gorsel, Eva; Varlagin, Andrej; Wohlfahrt, Georg; Mahecha, Miguel D.

    2018-03-01

    Extreme climatic events, such as droughts and heat stress, induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme-event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30-year time period. We then used FLUXNET eddy covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they downregulated GPP, resulting in a moderate reduction in the ecosystem's carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a downregulation after about 2 weeks. This confirms earlier theories that

  17. Changes in extreme events and the potential impacts on human health.

    Science.gov (United States)

    Bell, Jesse E; Brown, Claudia Langford; Conlon, Kathryn; Herring, Stephanie; Kunkel, Kenneth E; Lawrimore, Jay; Luber, George; Schreck, Carl; Smith, Adam; Uejio, Christopher

    2018-04-01

    Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future. Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.

  18. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilled—making the fuel-production process more efficient. The microorganisms don’t require light, so they can be grown anywhere—inside a dark reactor or even in an underground facility.

  19. Overview of the biology of extreme events

    Science.gov (United States)

    Gutschick, V. P.; Bassirirad, H.

    2008-12-01

    Extreme events have, variously, meteorological origins as in heat waves or precipitation extremes, or biological origins as in pest and disease eruptions (or tectonic, earth-orbital, or impact-body origins). Despite growing recognition that these events are changing in frequency and intensity, a universal model of ecological responses to these events is slow to emerge. Extreme events, negative and positive, contrast with normal events in terms of their effects on the physiology, ecology, and evolution of organisms, hence also on water, carbon, and nutrient cycles. They structure biogeographic ranges and biomes, almost surely more than mean values often used to define biogeography. They are challenging to study for obvious reasons of field-readiness but also because they are defined by sequences of driving variables such as temperature, not point events. As sequences, their statistics (return times, for example) are challenging to develop, as also from the involvement of multiple environmental variables. These statistics are not captured well by climate models. They are expected to change with climate and land-use change but our predictive capacity is currently limited. A number of tools for description and analysis of extreme events are available, if not widely applied to date. Extremes for organisms are defined by their fitness effects on those organisms, and are specific to genotypes, making them major agents of natural selection. There is evidence that effects of extreme events may be concentrated in an extended recovery phase. We review selected events covering ranges of time and magnitude, from Snowball Earth to leaf functional loss in weather events. A number of events, such as the 2003 European heat wave, evidence effects on water and carbon cycles over large regions. Rising CO2 is the recent extreme of note, for its climatic effects and consequences for growing seasons, transpiration, etc., but also directly in its action as a substrate of photosynthesis

  20. Mapping the Decadal Spatio-temporal Variation of Social Vulnerability to Hydro-climatic Extremes over India

    Science.gov (United States)

    H, V.; Karmakar, S.; Ghosh, S.

    2015-12-01

    Human induced global warming is unequivocal and observational studies shows that, this has led to increase in the intensity and frequency of hydro-climatic extremes, most importantly precipitation extreme, heat waves and drought; and also is expected to be increased in the future. The occurrence of these extremes have a devastating effects on nation's economy and on societal well-being. Previous studies on India provided the evidences of significant changes in the precipitation extreme from pre- to post-1950, with huge spatial heterogeneity; and projections of heat waves indicated that significant part of India will experience heat stress conditions in the future. Under these circumstance, it is necessary to develop a nation-wide social vulnerability map to scrutinize the adequacy of existing emergency management. Yet there has been no systematic past efforts on mapping social vulnerability to hydro-climatic extremes at nation-wide for India. Therefore, immediate efforts are required to quantify the social vulnerability, particularly developing country like India, where major transformations in demographic characteristics and development patterns are evident during past decades. In the present study, we perform a comprehensive spatio-temporal social vulnerability analysis by considering multiple sensitive indicators for three decades (1990-2010) which identifies the hot-spots, with higher vulnerability to hydro-climatic extremes. The population datasets are procured from Census of India and the meteorological datasets are obtained from India Meteorological Department (IMD). The study derives interesting results on decadal changes of spatial distribution of risk, considering social vulnerability and hazard to extremes.

  1. Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California

    Directory of Open Access Journals (Sweden)

    Haider Taha

    2017-08-01

    Full Text Available To further evaluate the factors influencing public heat and air-quality health, a characterization of how urban areas affect the thermal environment, particularly in terms of the air temperature, is necessary. To assist public health agencies in ranking urban areas in terms of heat stress and developing mitigation plans or allocating various resources, this study characterized urban heat in California and quantified an urban heat island index (UHII at the census-tract level (~1 km2. Multi-scale atmospheric modeling was carried out and a practical UHII definition was developed. The UHII was diagnosed with different metrics and its spatial patterns were characterized for small, large, urban-climate archipelago, inland, and coastal areas. It was found that within each region, wide ranges of urban heat and UHII exist. At the lower end of the scale (in smaller urban areas, the UHII reaches up to 20 degree-hours per day (DH/day; °C.hr/day, whereas at the higher end (in larger areas, it reaches up to 125 DH/day or greater. The average largest temperature difference (urban heat island within each region ranges from 0.5–1.0 °C in smaller areas to up to 5 °C or more at the higher end, such as in urban-climate archipelagos. Furthermore, urban heat is exacerbated during warmer weather and that, in turn, can worsen the health impacts of heat events presently and in the future, for which it is expected that both the frequency and duration of heat waves will increase.

  2. Effects of repeated 9 and 30-day exposure to extremely low-frequency electromagnetic fields on social recognition behavior and estrogen receptors expression in olfactory bulb of Wistar female rats.

    Science.gov (United States)

    Bernal-Mondragón, C; Arriaga-Avila, V; Martínez-Abundis, E; Barrera-Mera, B; Mercado-Gómez, O; Guevara-Guzmán, R

    2017-02-01

    We investigated the short- and long-term effects of extremely low-frequency electromagnetic fields (EMF) on social recognition behavior and expression of α- and β-estrogen receptors (ER). Rats were exposed to 60-Hz electromagnetic fields for 9 or 30 days and tested for social recognition behavior. Immunohistochemistry and western blot assays were performed to evaluate α- and β-ER expression in the olfactory bulb of intact, ovariectomized (OVX), and ovariectomized+estradiol (E2) replacement (OVX+E2). Ovariectomization showed impairment of social recognition after 9 days of EMF exposure and a complete recovery after E2 replacement and so did those after 30 days. Short EMF exposure increased expression of β-ER in intact, but not in the others. Longer exposure produced a decrease in intact but an increase in OVX and OVX+E2. Our findings suggest a significant role for β-estrogen receptors and a lack of effect for α-estrogen receptors on a social recognition task. EMF: extremely low frequency electromagnetic fields; ERs: estrogen receptors; OB: olfactory bulb; OVX: ovariectomized; OVX + E 2 : ovariectomized + estradiol replacement; IEI: interexposure interval; β-ER: beta estrogen receptor; E 2 : replacement of estradiol; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; WB: Western blot; PBS: phosphate-buffer saline; PB: phosphate-buffer.

  3. ENERGY-EFFICIENT REGIMES FOR HEATING-SUPPLY OF THE RESIDENTIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2015-01-01

    Full Text Available Rise in comfort and inhabitation safety is one of the main requirements of the general maintenance, reconstruction of the old and construction of the new residential houses. One of the essential factors of it is substitution in the household hot-water preparing sources: from the individual domestic gas  water-heaters to  the common  entire-building hot-water supply at the expense of the centralized heat supply. Extremely erratic hot-water daily consumption by tenants leads to the necessity of sharp increase in central heat-supply level during a few hours of the day, which requires a significant increase of the source heat-power. On that score, the authors propose to direct a significant part (up to 50 % of the centralized heating and ventilation heat power-consumption to the hot water preparation during the period of short-term hot water consumption peak.Substitution  of  the  individual  domestic  gas  water-heaters  with  the  common  entirebuilding hot-water supply releases a huge amount of natural gas which can be utilized not only for production of the necessary heat power but as well for electric power producing. This substitution is especially advantageous if heat-power is delivered to the residential area from a НРС where significant part of heat especially in a relatively warm season of the year is thrown out into the air. The content of the article is based on several patents received earlier.

  4. Electrocortical Activity at 7 Days of Life is Affected in Extremely Premature Infants with Patent Ductus Arteriosus.

    Science.gov (United States)

    Bruns, N; Metze, B; Bührer, C; Felderhoff-Müser, U; Hüseman, D

    2015-09-01

    The aim of this study was to determine whether the aEEG at 7 days of life is influenced by the presence of a PDA in non-sedated extremely low gestational age preterm infants. We prospectively recruited infants born at less than 28 weeks of gestation between 11/2007 and 12/2009. aEEGs were recorded at seven days of life and assessed by using the Burdjalov score and the electronically assessed lower border (eLBA). Kruskal-Wallis-Test and linear regression analysis were performed to determine how GA and a PDA affect the aEEG score and the eLBA. Using linear regression analysis we tested which components of the score are affected by a PDA. We recruited 44 infants with a GA of 26.5/7 (23.4/7-27.6/7) weeks and a birth weight of 837 (461-1230) g. The total sum of score points increased from 4 (1-6) to 8 (5-9) points in infants born at 23/24 weeks and 27 weeks of gestation, respectively. In infants with relevant PDA the aEEG scored lower with 8 (3-10) points compared to those with PDA: 5 (1-8) points. Linear regression analysis showed a positive influence of GA and a negative influence of a PDA on the total score. GA had a positive influence on SWC and the visually assessed LBA. A PDA had a negative influence on continuity. The eLBA increased from 4.61 (3.18-5.53) µV to 5.27 (3.38-6.51) µV in infants of 23/24 vs. 27 gestational weeks, but was not significantly influenced by a PDA. A PDA has a negative influence on the total Burdjalov score and continuity at 7 days of age in infants born at less than 28 weeks of gestation. The electrocortical disturbances may be the consequence of a diminished cerebral perfusion in the presence of a PDA. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Ranking of European Capitals According to the Impact of Future Heat Waves

    Science.gov (United States)

    Smid, M.; Costa, A. C.; Russo, S.; Pebesma, E. J.; Canut, C. G.

    2017-12-01

    In warming Europe, we are witnessing a growth in urban population with aging trend, which will make the society more vulnerable to extreme heat waves. In the period 1950-2015 the occurrence of extreme heat waves increased across European capitals. As an example, Moscow was hit by the strongest heat wave of the present era, killing more than ten thousand people. Here we focus on larger metropolitan areas of European capitals. By using observations and an ensemble of eight EURO-CORDEX models under the RCP8.5 scenario, we calculate a suite of temperature based climate indices. We introduce a simple ranking procedure based on ensemble predictions using the mean of metropolitan grid cells for each capital, and population density as a proxy to quantify the future impact. Results show that the selected ensemble provides solid simulation of climate characteristics over most of the targeted metropolitan areas. All the investigated European metropolitan areas will be more vulnerable to extreme heat in the coming decades. Based on the impact ranking, the results reveal that in near, but mainly in distant future, the extreme heat events in European capitals will be not exclusive to traditionally exposed areas such as the Mediterranean and the Iberian Peninsula. The ranking of European capitals based on their vulnerability to the extreme heat could be of paramount importance to the decision makers in order to mitigate the heat related mortality, especially with the foreseen increase of global mean temperature. Acknowledgments: The authors gratefully acknowledge the support of Geoinformatics: Enabling Open Cities (GEO-C), the project funded by the European Commission within the Marie Skłodowska-Curie Actions, International Training Networks (ITN), European Joint Doctorates (EJD). Grant Agreement number 642332 — GEO-C — H2020-MSCA-ITN-2014.

  6. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    Science.gov (United States)

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  7. Trend of extreme precipitation events over China in last 40 years

    International Nuclear Information System (INIS)

    Zhang Daquan; Hu Jingguo; Feng Guolin

    2008-01-01

    Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have been performed in this paper. Results indicate that the percentage of heavy rains (above 25mm/day) in the annual rainfall has increased, while on average the day number of heavy rains has slightly reduced during the past 40 years. In the end of 1970s and the beginning of 1980s, both the number of days with extreme precipitation and the percentage of extreme precipitation abruptly changed over China, especially in the northern China. By moving t test, the abrupt change year of extreme precipitation for each station and its spatial distribution over the whole country are also obtained. The abrupt change years concentrated in 1978–1982 for most regions of northern China while occurred at various stations in southern China in greatly different/diverse years. Besides the abrupt change years of extreme precipitation at part stations of Northwest China happened about 5 years later in comparison with that of the country's average

  8. Extreme Heat Wave over European Russia in Summer 2010: Anomaly or a Manifestation of Climatic Trend?

    Science.gov (United States)

    Razuvaev, V.; Groisman, P. Y.; Bulygina, O.; Borzenkova, I.

    2010-12-01

    Extraordinary temperature anomalies over European Russia (ER) in summer 2010 raised a legitimate question in the title of this presentation. A 60-days-long hot anticyclonic weather system with daily temperature anomalies as high as +10K and no or negligible amount of rainfall first decimated crops in the forest-steppe zone of ER, gradually dried wetlands in the forest zone and, finally, caused numerous natural and anthropogenic fires that at the time of this abstract preparation have not yet been extinguished. The extreme heat, lack of precipitation, and forest fires have caused hundreds of deaths and multimillion dollars in property losses. Indirect losses of lives due to this weather anomaly, with the ensuing fires and related air pollution, as well as the absence of air conditioning in apartments has yet to be estimated. The center of European Russia was well covered by meteorological observations for the past 130 years. These data, historical weather records (yearbooks or "letopisi" , which were carried on in the major Russian monasteries), and finally, dendroclimatological information, all show that this summer temperature anomaly was well above all known extremes in the past 1000 years. Like ocean waves and ocean tides, weather and climate variability go together strengthening (or mitigating) each other. We shall show the precursors of the current outbreak using principally the most accurate meteorological records of the past century updated to 2009 (at the Session, the 2010 data will also be presented). While a careful analyses of these records and thoughtful analyses of recent similar temperature outbreaks in Western Europe could not prevent the occurrence of this disaster, the lessons learned from these analyses (a) would warn about its increasing probability and (b) mitigation and adaptation measures could well be made to reduce its negative consequences. Among our arguments are: (1)There is a century-long tendency of reduction of equator minus pole

  9. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.

    Science.gov (United States)

    Silverstein, Rachel N; Cunning, Ross; Baker, Andrew C

    2015-01-01

    Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (stress-induced symbiosis breakdown), but stress-tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress-sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress-tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3-dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post-bleaching resulted from

  10. Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device.

    Science.gov (United States)

    Pfützner, Andreas; Pesach, Gidi; Nagar, Ron

    2017-06-01

    Injectable life-saving drugs should not be exposed to temperatures 30°C/86°F. Frequently, weather conditions exceed these temperature thresholds in many countries. Insulin is to be kept at 4-8°C/~ 39-47°F until use and once opened, is supposed to be stable for up to 31 days at room temperature (exception: 42 days for insulin levemir). Extremely hot or cold external temperature can lead to insulin degradation in a very short time with loss of its glucose-lowering efficacy. Combined chemical and engineering solutions for heat protection are employed in ViViCap-1 for disposable insulin pens. The device works based on vacuum insulation and heat consumption by phase-change material. Laboratory studies with exposure of ViViCap-1 to hot outside conditions were performed to evaluate the device performance. ViViCap-1 keeps insulin at an internal temperature phase-change process and 'recharges' the device for further use. ViViCap-1 performed within its specifications. The small and convenient device maintains the efficacy and safety of using insulin even when carried under hot weather conditions.

  11. Operational early warning platform for extreme meteorological events

    Science.gov (United States)

    Mühr, Bernhard; Kunz, Michael

    2015-04-01

    Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.

  12. Predicting extreme rainfall over eastern Asia by using complex networks

    International Nuclear Information System (INIS)

    He Su-Hong; Gong Yan-Chun; Huang Yan-Hua; Wu Cheng-Guo; Feng Tai-Chen; Gong Zhi-Qiang

    2014-01-01

    A climate network of extreme rainfall over eastern Asia is constructed for the period of 1971–2000, employing the tools of complex networks and a measure of nonlinear correlation called event synchronization (ES). Using this network, we predict the extreme rainfall for several cases without delay and with n-day delay (1 ≤ n ≤ 10). The prediction accuracy can reach 58% without delay, 21% with 1-day delay, and 12% with n-day delay (2 ≤ n ≤ 10). The results reveal that the prediction accuracy is low in years of a weak east Asia summer monsoon (EASM) or 1 year later and high in years of a strong EASM or 1 year later. Furthermore, the prediction accuracy is higher due to the many more links that represent correlations between different grid points and a higher extreme rainfall rate during strong EASM years. (geophysics, astronomy, and astrophysics)

  13. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  14. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia

    Science.gov (United States)

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  15. Geothermal heat pumps - Trends and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1989-01-01

    Heat pumps are used where geothermal water or ground temperatures are only slightly above normal, generally 50 to 90 deg. F. Conventional geothermal heating (and cooling) systems are not economically efficient at these temperatures. Heat pumps, at these temperatures, can provide space heating and cooling, and with a desuperheater, domestic hot water. Two basic heat pump systems are available, air-source and water- or ground-source. Water- and ground-coupled heat pumps, referred to as geothermal heat pumps (GHP), have several advantages over air-source heat pumps. These are: (1) they consume about 33% less annual energy, (2) they tap the earth or groundwater, a more stable energy source than air, (3) they do not require supplemental heat during extreme high or low outside temperatures, (4) they use less refrigerant (freon), and (5) they have a simpler design and consequently less maintenance.

  16. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios

    Science.gov (United States)

    Nangombe, Shingirai; Zhou, Tianjun; Zhang, Wenxia; Wu, Bo; Hu, Shuai; Zou, Liwei; Li, Donghuan

    2018-05-01

    Anthropogenic forcing is anticipated to increase the magnitude and frequency of extreme events1, the impacts of which will be particularly hard-felt in already vulnerable locations such as Africa2. However, projected changes in African climate extremes remain little explored, particularly in the context of the Paris Agreement targets3,4. Here, using Community Earth System Model low warming simulations5, we examine how heat and hydrological extremes may change in Africa under stabilized 1.5 °C and 2 °C scenarios, focusing on the projected changing likelihood of events that have comparable magnitudes to observed record-breaking seasons. In the Community Earth System Model, limiting end-of-century warming to 1.5 °C is suggested to robustly reduce the frequency of heat extremes compared to 2 °C. In particular, the probability of events similar to the December-February 1991/1992 southern African and 2009/2010 North African heat waves is estimated to be reduced by 25 ± 5% and 20 ± 4%, respectively, if warming is limited to 1.5 °C instead of 2 °C. For hydrometeorological extremes (that is, drought and heavy precipitation), by contrast, signal differences are indistinguishable from the variation between ensemble members. Thus, according to this model, continued efforts to limit warming to 1.5 °C offer considerable benefits in terms of minimizing heat extremes and their associated socio-economic impacts across Africa.

  17. Trends in extreme temperature and precipitation in Muscat, Oman

    Directory of Open Access Journals (Sweden)

    L. N. Gunawardhana

    2014-09-01

    Full Text Available Changes in frequency and intensity of weather events often result in more frequent and intensive disasters such as flash floods and persistent droughts. In Oman, changes in precipitation and temperature have already been detected, although a comprehensive analysis to determine long-term trends is yet to be conducted. We analysed daily precipitation and temperature records in Muscat, the capital city of Oman, mainly focusing on extremes. A set of climate indices, defined in the RClimDex software package, were derived from the longest available daily series (precipitation over the period 1977–2011 and temperature over the period 1986–2011. Results showed significant changes in temperature extremes associated with cooling. Annual maximum value of daily maximum temperature (TX, on average, decreased by 1°C (0.42°C/10 year. Similarly, the annual minimum value of daily minimum temperature (TN decreased by 1.5°C (0.61°C/10 year, which, on average, cooled at a faster rate than the maximum temperature. Consequently, the annual count of days when TX > 45°C (98th percentile decreased from 8 to 3, by 5 days. Similarly, the annual count of days when TN < 15°C (2nd percentile increased from 5 to 15, by 10 days. Annual total precipitation averaged over the period 1977–2011 is 81 mm, which shows a tendency toward wetter conditions with a 6 mm/10 year rate. There is also a significant tendency for stronger precipitation extremes according to many indices. The contribution from very wet days to the annual precipitation totals steadily increases with significance at 75% level. When The General Extreme Value (GEV probability distribution is fitted to annual maximum 1-day precipitation, the return level of a 10-year return period in 1995–2011 was estimated to be 95 mm. This return level in the recent decade is about 70% higher than the return level for the period of 1977–1994. These results indicate that the long-term wetting signal apparent in total

  18. Changes in Extreme Events and the Potential Impacts on National Security

    Science.gov (United States)

    Bell, J.

    2017-12-01

    Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socio-economic impacts. Climate change has caused changes in extreme event frequency, intensity and geographic distribution, and will continue to be a driver for changes in the future. Some of the extreme events that have already changed are heat waves, droughts, wildfires, flooding rains, coastal flooding, storm surge, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local intricacies of societal and environmental factors that influences the level of exposure. The goal of this presentation is to discuss the national security implications of changes in extreme weather events and demonstrate how changes in extremes can lead to a host cascading issues. To illustrate this point, this presentation will provide examples of the various pathways that extreme events can increase disease burden and cause economic stress.

  19. The effects of the 1996–2012 summer heat events on human mortality in Slovakia

    Directory of Open Access Journals (Sweden)

    Výberči Dalibor

    2015-09-01

    Full Text Available The impacts of summer heat events on the mortality of the Slovak population, both in total and for selected population sub-groups, are the foci of this study. This research is the first of its kind, focusing on a given population, and therefore one priority was to create a knowledge base for the issue and to basically evaluate existing conditions for the heat-mortality relationship in Slovakia. This article also aims to fill a void in current research on these issues in Europe. In addition to overall effects, we focused individually on the major historical heat events which occurred in the summers of 2007, 2010 and 2012. During the heat events, a non-negligible negative response in mortality was recorded and fatal effects were more pronounced during particularly strong heat events and periods which lasted for two or more days. In general, females and the elderly were the most sensitive groups in the population and mortality was characterized by several specific effects in individual population groups. The most extreme heat periods were commonly followed by a deficit in mortality, corresponding to a short-term mortality displacement, the pattern of which varied in specific cases. In general, displaced mortality appeared to compensate for a large part of heat-induced excess deaths.

  20. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Be Prepared Safe Citizen Day Organize Important Medical Information ER Checklists Preparing for Emergencies Be ready to ... anyone can be affected. Here you will find information about heat cramps and heat stroke and exhaustion. ...

  1. Actual and future trends of extreme values of temperature for the NW Iberian Peninsula

    Science.gov (United States)

    Taboada, J.; Brands, S.; Lorenzo, N.

    2009-09-01

    It is now very well established that yearly averaged temperatures are increasing due to anthropogenic climate change. In the area of Galicia (NW Spain) this trend has also been determined. The main objective of this work is to assess actual and future trends of different extreme indices of temperature, which are of curcial importance for many impact studies. Station data for the study was provided by the CLIMA database of the regional government of Galicia (NW Spain). As direct GCM-output significantly underestimates the variance of daily surface temperature variables in NW Spain, these variables are obtained by applying a statistical downscaling technique (analog method), using 850hPa temperature and mean sea level pressure as combined predictors. The predictor fields have been extracted from three GCMs participating in the IPCC AR4 under A1, A1B and A2 scenarios. The definitions of the extreme indices have been taken from the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) This group has defined a set of standard extreme values to simplify intercomparisons of data from different regions of the world. For the temperatures in the period 1960-2006, results show a significant increase of the number of days with maximum temperatures above the 90th percentile. Furthermore, a significant decrease of the days with maximum temperatures below the 10th percentile has been found. The tendencies of minimum temperatures are reverse: less nights with minimum temperatures below 10th percentile, and more with minimum temperatures above 90th percentile. Those tendencies can be observed all over the year, but are more pronounced in summer. We have also calculated the relationship between the above mentioned extreme values and different teleconnection patterns appearing in the North Atlantic area. Results show that local tendencies are associated with trends of EA (Eastern Atlantic) and SCA (Scandinavian) patterns. NAO (North Atlantic

  2. Seasonal temperature extremes in Potsdam

    Science.gov (United States)

    Kundzewicz, Zbigniew; Huang, Shaochun

    2010-12-01

    The awareness of global warming is well established and results from the observations made on thousands of stations. This paper complements the large-scale results by examining a long time-series of high-quality temperature data from the Secular Meteorological Station in Potsdam, where observation records over the last 117 years, i.e., from January 1893 are available. Tendencies of change in seasonal temperature-related climate extremes are demonstrated. "Cold" extremes have become less frequent and less severe than in the past, while "warm" extremes have become more frequent and more severe. Moreover, the interval of the occurrence of frost has been decreasing, while the interval of the occurrence of hot days has been increasing. However, many changes are not statistically significant, since the variability of temperature indices at the Potsdam station has been very strong.

  3. Have human activities changed the frequencies of absolute extreme temperatures in eastern China?

    Science.gov (United States)

    Wang, Jun; Tett, Simon F. B.; Yan, Zhongwei; Feng, Jinming

    2018-01-01

    Extreme temperatures affect populous regions, like eastern China, causing substantial socio-economic losses. It is beneficial to explore whether the frequencies of absolute or threshold-based extreme temperatures have been changed by human activities, such as anthropogenic emissions of greenhouse gases (GHGs). In this study, we compared observed and multi-model-simulated changes in the frequencies of summer days, tropical nights, icy days and frosty nights in eastern China for the years 1960-2012 by using an optimal fingerprinting method. The observed long-term trends in the regional mean frequencies of these four indices were +2.36, +1.62, -0.94, -3.02 days decade-1. The models performed better in simulating the observed frequency change in daytime extreme temperatures than nighttime ones. Anthropogenic influences are detectable in the observed frequency changes of these four temperature extreme indices. The influence of natural forcings could not be detected robustly in any indices. Further analysis found that the effects of GHGs changed the frequencies of summer days (tropical nights, icy days, frosty nights) by +3.48 ± 1.45 (+2.99 ± 1.35, -2.52 ± 1.28, -4.11 ± 1.48) days decade-1. Other anthropogenic forcing agents (dominated by anthropogenic aerosols) offset the GHG effect and changed the frequencies of these four indices by -1.53 ± 0.78, -1.49 ± 0.94, +1.84 ± 1.07, +1.45 ± 1.26 days decade-1, respectively. Little influence of natural forcings was found in the observed frequency changes of these four temperature extreme indices.

  4. Extreme weather-related health needs of people who are homeless.

    Science.gov (United States)

    Cusack, Lynette; van Loon, Antonia; Kralik, Debbie; Arbon, Paul; Gilbert, Sandy

    2013-01-01

    To identify the extreme weather-related health needs of homeless people and the response by homeless service providers in Adelaide, South Australia, a five-phased qualitative interpretive study was undertaken. (1) Literature review, followed by semi-structured interviews with 25 homeless people to ascertain health needs during extreme weather events. (2) Identification of homeless services. (3) Semi-structured interviews with 16 homeless service providers regarding their response to the health needs of homeless people at times of extreme weather. (4) Gap analysis. (5) Suggestions for policy and planning. People experiencing homelessness describe adverse health impacts more from extreme cold, than extreme hot weather. They considered their health suffered more, because of wet bedding, clothes and shoes. They felt more depressed and less able to keep themselves well during cold, wet winters. However, homeless service providers were more focussed on planning for extra service responses during times of extreme heat rather than extreme cold. Even though a city may be considered to have a temperate climate with a history of very hot summers, primary homeless populations have health needs during winter months. The experiences and needs of homeless people should be considered in extreme weather policy and when planning responses.

  5. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  6. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  7. Rapid heating of the atmosphere of an extrasolar planet.

    Science.gov (United States)

    Laughlin, Gregory; Deming, Drake; Langton, Jonathan; Kasen, Daniel; Vogt, Steve; Butler, Paul; Rivera, Eugenio; Meschiari, Stefano

    2009-01-29

    Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.

  8. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics

    Directory of Open Access Journals (Sweden)

    S. Sippel

    2017-05-01

    Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand

  9. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  10. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes

    Science.gov (United States)

    Lejeune, Quentin; Davin, Edouard L.; Gudmundsson, Lukas; Winckler, Johannes; Seneviratne, Sonia I.

    2018-05-01

    The effects of past land-cover changes on climate are disputed1-3. Previous modelling studies have generally concluded that the biogeophysical effects of historical deforestation led to an annual mean cooling in the northern mid-latitudes3,4, in line with the albedo-induced negative radiative forcing from land-cover changes since pre-industrial time reported in the most recent Intergovernmental Panel on Climate Change report5. However, further observational and modelling studies have highlighted strong seasonal and diurnal contrasts in the temperature response to deforestation6-10. Here, we show that historical deforestation has led to a substantial local warming of hot days over the northern mid-latitudes—a finding that contrasts with most previous model results11,12. Based on observation-constrained state-of-the-art climate-model experiments, we estimate that moderate reductions in tree cover in these regions have contributed at least one-third of the local present-day warming of the hottest day of the year since pre-industrial time, and were responsible for most of this warming before 1980. These results emphasize that land-cover changes need to be considered when studying past and future changes in heat extremes, and highlight a potentially overlooked co-benefit of forest-based carbon mitigation through local biogeophysical mechanisms.

  11. Random regression models to account for the effect of genotype by environment interaction due to heat stress on the milk yield of Holstein cows under tropical conditions.

    Science.gov (United States)

    Santana, Mário L; Bignardi, Annaiza Braga; Pereira, Rodrigo Junqueira; Menéndez-Buxadera, Alberto; El Faro, Lenira

    2016-02-01

    The present study had the following objectives: to compare random regression models (RRM) considering the time-dependent (days in milk, DIM) and/or temperature × humidity-dependent (THI) covariate for genetic evaluation; to identify the effect of genotype by environment interaction (G×E) due to heat stress on milk yield; and to quantify the loss of milk yield due to heat stress across lactation of cows under tropical conditions. A total of 937,771 test-day records from 3603 first lactations of Brazilian Holstein cows obtained between 2007 and 2013 were analyzed. An important reduction in milk yield due to heat stress was observed for THI values above 66 (-0.23 kg/day/THI). Three phases of milk yield loss were identified during lactation, the most damaging one at the end of lactation (-0.27 kg/day/THI). Using the most complex RRM, the additive genetic variance could be altered simultaneously as a function of both DIM and THI values. This model could be recommended for the genetic evaluation taking into account the effect of G×E. The response to selection in the comfort zone (THI ≤ 66) is expected to be higher than that obtained in the heat stress zone (THI > 66) of the animals. The genetic correlations between milk yield in the comfort and heat stress zones were less than unity at opposite extremes of the environmental gradient. Thus, the best animals for milk yield in the comfort zone are not necessarily the best in the zone of heat stress and, therefore, G×E due to heat stress should not be neglected in the genetic evaluation.

  12. Iatrogenic Lower Extremity Subcutaneous Emphysema after Prolonged Robotic-Assisted Hysterectomy

    Directory of Open Access Journals (Sweden)

    Monica Hagan Vetter

    2015-01-01

    Full Text Available Subcutaneous emphysema is a known complication of carbon dioxide insufflation, an essential component of laparoscopy. The literature contains reports of hypercarbia, pneumothorax, or pneumomediastinum. However, isolated lower extremity subcutaneous emphysema remains a seldom-reported complication. We report a case of unilateral lower extremity subcutaneous emphysema following robotic-assisted hysterectomy, bilateral salpingooophorectomy, staging, and anterior/posterior colporrhaphy for carcinosarcoma and vaginal prolapse. On postoperative day 1, the patient developed tender crepitus and bruising of her right ankle. Radiography confirmed presence of subcutaneous air. Vital signs and laboratory findings were unremarkable. Her symptoms spontaneously improved over time, and she was discharged in good condition on day 2. In stable patients with postoperative extremity swelling or pain with crepitus on exam, the diagnosis of iatrogenic subcutaneous emphysema must be considered.

  13. Heat transport in an anharmonic crystal

    Science.gov (United States)

    Acharya, Shiladitya; Mukherjee, Krishnendu

    2018-04-01

    We study transport of heat in an ordered, anharmonic crystal in the form of slab geometry in three dimensions. Apart from attaching baths of Langevin type to two extreme surfaces, we also attach baths of same type to the intermediate surfaces of the slab. Since the crystal is uninsulated, it exchanges energy with the intermediate heat baths. We find that both Fourier’s law of heat conduction and the Newton’s law of cooling hold to leading order in anharmonic coupling. The leading behavior of the temperature profile is exponentially falling from high to low temperature surface of the slab. As the anharmonicity increases, profiles fall more below the harmonic one in the log plot. In the thermodynamic limit thermal conductivity remains independent of the environment temperature and its leading order anharmonic contribution is linearly proportional to the temperature change between the two extreme surfaces of the slab. A fast crossover from one-dimensional (1D) to three-dimensional (3D) behavior of the thermal conductivity is observed in the system.

  14. Vulnerability of solar energy infrastructure and output to extreme events: Climate change implications (Conference paper)

    OpenAIRE

    Patt, A.; Pfenninger, S.; Lilliestam, J.

    2010-01-01

    This paper explores the potential vulnerability of solar energy systems to future extreme event risks as a consequence of climate change. We describe the three main technologies likely to be used to harness sunlight -- thermal heating, photovoltaic (PV), and concentrating solar power (CSP) -- and identify critical extreme event vulnerabilities for each one. We then compare these vulnerabilities with assessments of future changes in extreme event risk levels. We do not identify any vulnerabili...

  15. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  16. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?

    Science.gov (United States)

    McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M; Botham, Marc S; Franco, Aldina M A

    2017-01-01

    There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37-year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life-history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life-history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  17. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system

    International Nuclear Information System (INIS)

    Gao, Y; Fu, J S; Drake, J B; Liu, Y; Lamarque, J-F

    2012-01-01

    This study is the first evaluation of dynamical downscaling using the Weather Research and Forecasting (WRF) Model on a 4 km × 4 km high resolution scale in the eastern US driven by the new Community Earth System Model version 1.0 (CESM v1.0). First we examined the global and regional climate model results, and corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask. In comparison with observations, WRF shows statistically significant improvement over CESM in reproducing extreme weather events, with improvement for heat wave frequency estimation as high as 98%. The fossil fuel intensive scenario Representative Concentration Pathway (RCP) 8.5 was used to study a possible future mid-century climate extreme in 2057–9. Both the heat waves and the extreme precipitation in 2057–9 are more severe than the present climate in the Eastern US. The Northeastern US shows large increases in both heat wave intensity (3.05 °C higher) and annual extreme precipitation (107.3 mm more per year). (letter)

  18. Innovation and energy. ECRIN day; Innovation et energie. Journee ECRIN

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    ECRIN is an association jointly created by the French atomic energy commission (CEA) and the French national center of scientific research (CNRS). It gathers experts from the research and industry worlds, representatives of institutions and decision making peoples in order to work on important topics like energy. This document gathers the working documents and transparencies presented at the ECRIN day on energy and innovation: opening talk of C. Birraux (head of the parliamentary office of evaluation of scientific and technological choices); the energy of seas (offshore wind power, wave energy, tide currents energy, thermal energy of seas, osmotic energy, tidal energy); synthetic fuels (stakes, possible options, Fischer-Tropsch synthesis, GTL, CTL, BTL, production with CO{sub 2} recycling); capture and geological sequestration of CO{sub 2}: a general overview (stakes, solutions, capture and sequestration, transport, geologic disposal, present day situation and perspectives); geothermal energy: new prospects (enhanced geothermal systems, hot-dry-rocks and hot fractured rocks, advances, cost, advantages and drawbacks); heat pumps and valorization of low temperature heat sources (space heating, district heating networks, heat pumps, artificial geothermal energy, low temperature water transport, thermal potentiality); heat and coldness storage and transport (use of intermittent energy sources, cogeneration, optimisation of processes, recovery of heat losses, CO{sub 2} capture, present-day situation, problems to be solved, integration of systems and processes); plastic photovoltaic solar cells (market, stakes, potentialities of organic materials for photovoltaic conversion, state-of-the-art, research in Europe and France, perspectives); conclusion of the Ecrin day (challenges, diversification of energy sources, energy efficiency, abatement of CO{sub 2} emissions, role of ECRIN). (J.S.)

  19. Evaluating infant core temperature response in a hot car using a heat balance model.

    Science.gov (United States)

    Grundstein, Andrew J; Duzinski, Sarah V; Dolinak, David; Null, Jan; Iyer, Sujit S

    2015-03-01

    Using a 1-year old male infant as the model subject, the objectives of this study were to measure increased body temperature of an infant inside an enclosed vehicle during the work day (8:00 am-4:00 pm) during four seasons and model the time to un-compensable heating, heat stroke [>40 °C (>104 °F)], and critical thermal maximum [>42 °C (>107.6 °F)]. A human heat balance model was used to simulate a child's physiological response to extreme heat exposure within an enclosed vehicle. Environmental variables were obtained from the nearest National Weather Service automated surface observing weather station and from an observational vehicular temperature study conducted in Austin, Texas in 2012. In all four seasons, despite differences in starting temperature and solar radiation, the model infant reached heat stroke and demise before 2:00 pm. Time to heat stroke and demise occurred most rapidly in summer, at intermediate durations in fall and spring, and most slowly in the winter. In August, the model infant reached un-compensable heat within 20 min, heat stroke within 105 min, and demise within 125 min. The average rate of heating from un-compensable heat to heat stroke was 1.7 °C/h (3.0 °F/h) and from heat stroke to demise was 4.8 °C/h (8.5 °F/h). Infants left in vehicles during the workday can reach hazardous thermal thresholds quickly even with mild environmental temperatures. These results provide a seasonal analogue of infant heat stroke time course. Further effort is required to create a universally available forensic tool to predict vehicular hyperthermia time course to demise.

  20. Perceptions of Workplace Heat Exposure and Controls among Occupational Hygienists and Relevant Specialists in Australia.

    Directory of Open Access Journals (Sweden)

    Jianjun Xiang

    Full Text Available With warmer weather projections, workplace heat exposure is presenting a growing challenge to workers' health and safety. Occupational hygienists are the specialist group conducting measurements and providing advice on heat stress management to industry. In order to provide insights into hygienists perceptions on workplace heat exposure, current and future preparedness for extreme heat, and barriers to possible heat adaptation strategies, a self-administered questionnaire survey was conducted during a national conference of the Australian Institute of Occupational Hygienists. Nearly 90% of the 180 respondents were at least moderately concerned about extreme heat and 19% were dissatisfied with current heat stress prevention measures. Barriers recognized by the participants were lack of awareness (68%, insufficient training (56%, unsatisfactory management commitment (52%, and low compliance with prevention policies (40%. The findings suggest a need to refine occupational heat management and prevention strategies.

  1. Solar Powered Heat Control System for Cars

    OpenAIRE

    Abin John; Jithin Thomas

    2014-01-01

    It takes times for an air-conditioner to effectively start cooling the passenger compartment in the car. So the passenger of the car will feel the heat in the car extremely before the air-conditioner fully cooling the interior of the car. Excessive heat can also damage an automobile's interior as well as personal property kept in the passenger compartment. So, a system to reduce this excessive heat by pumping out hot air and allowing cooler ambient air to enter the car by mean...

  2. Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality

    International Nuclear Information System (INIS)

    Rey, Gregoire; Fouillet, Anne; Bessemoulin, Pierre; Frayssinet, Philippe; Dufour, Anne; Jougla, Eric; Hemon, Denis

    2009-01-01

    Heat waves may become a serious threat to the health and safety of people who currently live in temperate climates. It was therefore of interest to investigate whether more deprived populations are more vulnerable to heat waves. In order to address the question on a fine geographical scale, the spatial heterogeneity of the excess mortality in France associated with the European heat wave of August 2003 was analysed. A deprivation index and a heat exposure index were used jointly to describe the heterogeneity on the Canton scale (3,706 spatial units). During the heat wave period, the heat exposure index explained 68% of the extra-Poisson spatial variability of the heat wave mortality ratios. The heat exposure index was greater in the most urbanized areas. For the three upper quintiles of heat exposure in the densely populated Paris area, excess mortality rates were twofold higher in the most deprived Cantons (about 20 excess deaths/100,000 people/day) than in the least deprived Cantons (about 10 excess deaths/100,000 people/day). No such interaction was observed for the rest of France, which was less exposed to heat and less heterogeneous in terms of deprivation. Although a marked increase in mortality was associated with heat wave exposure for all degrees of deprivation, deprivation appears to be a vulnerability factor with respect to heat-wave-associated mortality.

  3. Thyroid activity in heat adaptation

    International Nuclear Information System (INIS)

    Joshi, B.C.; Varshney, V.P.; Sanwal, P.C.

    1980-01-01

    The effect of acute and chronic (22 day round-the-clock) exposure to microenvironmental heat stress (37 deg C DBT) on thyroid activity was studied in Hariana x Holstein Frisian, Hariana x Brown Swiss and Hariana x Jersey non-cycling F 1 crossbred heifers. Vis-a-vis their no-heat norms, the percentage uptake of tri-iodothyronine- 125 I by resin registered a steep fall (about 45 to 60 percent) on acute heat exposures reaching a minimum value in about 2 hrs. The levels started recouping by the 2nd day, plateuing out on the 5th day onwards at slightly subnormal level with up and down fluctuations throughout the three week duration of exposure to heat. There were no significant differences in the pattern or magnitude of response amongst breeds, though in case of Holstein Frisian and Brown Swiss cross-breds the levels of T 3 tended, at times, to overshoot the no-stress norm. (author)

  4. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  5. Analyses of Observed and Anticipated Changes in Extreme Climate Events in the Northwest Himalaya

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh

    2016-02-01

    Full Text Available In this study, past (1970-2005 as well as future long term (2011-2099 trends in various extreme events of temperature and precipitation have been investigated over selected hydro-meteorological stations in the Sutlej river basin. The ensembles of two Coupled Model Intercomparison Project (CMIP3 models: third generation Canadian Coupled Global Climate Model and Hadley Centre Coupled Model have been used for simulation of future daily time series of temperature (maximum and minimum and precipitation under A2 emission scenario. Large scale atmospheric variables of both models and National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis data sets have been downscaled using statistical downscaling technique at individual stations. A total number of 25 extreme indices of temperature (14 and precipitation (11 as specified by the Expert Team of the World Meteorological Organization and Climate Variability and Predictability are derived for the past and future periods. Trends in extreme indices are detected over time using the modified Mann-Kendall test method. The stations which have shown either decrease or no change in hot extreme events (i.e., maximum TMax, warm days, warm nights, maximum TMin, tropical nights, summer days and warm spell duration indicators for 1970–2005 and increase in cold extreme events (cool days, cool nights, frost days and cold spell duration indicators are predicted to increase and decrease respectively in the future. In addition, an increase in frequency and intensity of extreme precipitation events is also predicted.

  6. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  7. Virtual Reality Training for Upper Extremity in Subacute Stroke (VIRTUES)

    DEFF Research Database (Denmark)

    Brunner, Iris; Skouen, Jan Sture; Hofstad, Håkon

    2017-01-01

    Objective: To compare the effectiveness of upper extremity virtual reality rehabilitation training (VR) to time-matched conventional training (CT) in the subacute phase after stroke. Methods: In this randomized, controlled, single-blind phase III multicenter trial, 120 participants with upper...... extremity motor impairment within 12 weeks after stroke were consecutively included at 5 rehabilitation institutions. Participants were randomized to either VR or CT as an adjunct to standard rehabilitation and stratified according to mild to moderate or severe hand paresis, defined as $20 degrees wrist...... were assessed at baseline, after intervention, and at the 3-month follow-up. Results: Mean time from stroke onset for the VR group was 35 (SD 21) days and for the CT group was 34 (SD 19) days. There were no between-group differences for any of the outcome measures. Improvement of upper extremity motor...

  8. Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu province, southeast China

    Science.gov (United States)

    Huang, Jin; Islam, A. R. M. Towfiqul; Zhang, Fangmin; Hu, Zhenghua

    2017-10-01

    With the increasing risk of meteorological disasters, it is of great importance to analyze the spatiotemporal changes of precipitation extremes and its possible impact on rice productivity, especially in Jiangsu province, southeast China. In this study, we explored the relationships between rice yield and extreme precipitation indices using Mann-Kendall trend test, Pettitt's test, and K-means clustering methods. This study used 10 extreme precipitation indices of the rice growing season (May to October) based on the daily precipitation records and rice yield data at 52 meteorological stations during 1961-2012 in Jiangsu province. The main findings were as follows: (1) correlation results indicated that precipitation extremes occurred in the months of July, August, and October, which had noticeable adverse effects on rice yield; (2) the maximum 7-day precipitation of July and the number of rainy days of August and October should be considered as three key indicators for the precipitation-induced rice meteorological disasters; and (3) most of the stations showed an increasing trends for the maximum 7-day precipitation of July and the number of rainy days of August, while the number of rainy days of October in all the stations demonstrated a decreasing trend. Moreover, Jiangsu province could be divided into two major sub-regions such as north and south areas with different temporal variations in the three key indicators.

  9. Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu province, southeast China.

    Science.gov (United States)

    Huang, Jin; Islam, A R M Towfiqul; Zhang, Fangmin; Hu, Zhenghua

    2017-10-01

    With the increasing risk of meteorological disasters, it is of great importance to analyze the spatiotemporal changes of precipitation extremes and its possible impact on rice productivity, especially in Jiangsu province, southeast China. In this study, we explored the relationships between rice yield and extreme precipitation indices using Mann-Kendall trend test, Pettitt's test, and K-means clustering methods. This study used 10 extreme precipitation indices of the rice growing season (May to October) based on the daily precipitation records and rice yield data at 52 meteorological stations during 1961-2012 in Jiangsu province. The main findings were as follows: (1) correlation results indicated that precipitation extremes occurred in the months of July, August, and October, which had noticeable adverse effects on rice yield; (2) the maximum 7-day precipitation of July and the number of rainy days of August and October should be considered as three key indicators for the precipitation-induced rice meteorological disasters; and (3) most of the stations showed an increasing trends for the maximum 7-day precipitation of July and the number of rainy days of August, while the number of rainy days of October in all the stations demonstrated a decreasing trend. Moreover, Jiangsu province could be divided into two major sub-regions such as north and south areas with different temporal variations in the three key indicators.

  10. Evaluation of extreme temperature events in northern Spain based on process control charts

    Science.gov (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  11. A quantitative determination of air-water heat fluxes in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year

    Science.gov (United States)

    Kyper, Nicholas D.

    An extensive heat flux study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual heat fluxes on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) heat fluxes are calculated. The incident heat flux is the dominate term in the net flux, accounting for 93% of the variance found in Qn and producing a heat gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of heat in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of heat within the lake. The latent and blackbody heat fluxes produce the largest losses of heat in the net heat flux with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible heat flux is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net heat produces a net gain of heat of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to air temperature, surface water temperature, and wind speed data, as well as data from the five heat fluxes. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three

  12. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.

    Science.gov (United States)

    Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan

    2016-04-01

    Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Enhancing the Extreme Climate Index (ECI) to monitor climate extremes for an index-based insurance scheme across Africa

    Science.gov (United States)

    Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.

    2017-12-01

    Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.

  14. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2014-01-01

    Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

  15. Assessment of Thermal Comfort in a Building Heated with a Tiled Fireplace with the Function of Heat Accumulation

    Science.gov (United States)

    Telejko, Marek; Zender-Świercz, Ewa

    2017-10-01

    Thermal comfort determines the state of satisfaction of a person or group of people with thermal conditions of the environment in which the person or group of persons is staying. This state of satisfaction depends on the balance between the amount of heat generated by the body’s metabolism, and the dissipation of heat from the body to the surrounding environment. Due to differences in body build, metabolism, clothing etc. individuals may feel the parameters of the environment in which they are staying differently. Therefore, it is impossible to ensure the thermal comfort of all users of the room. However, properly designed building systems (heating, ventilation, air conditioning) allow for creating optimal thermal conditions that will evaluated positively by the vast majority of users. Due to the fact that currently we spend even 100% of the day indoors, the subject becomes extremely important. The article presents the evaluation of thermal comfort in rooms heated with a tiled fireplace with the function of accumulation of heat using the PMV (Predicted Mean Vote) and PPD (Predicted Percentage Dissatisfied) indices. It also presents the results of studies, on the quality of the micro-climate in such spaces. The system of heating premises described in the article is not a standard solution, but is now more and more commonly used as a supplement to the heating system, or even as a primary heating system in small objects, e.g. single-family houses, seasonal homes, etc. The studies comprised the measurements and analysis of typical internal micro-climate parameters: temperature, relative humidity and CO2 concentration. The results obtained did not raise any major reservations. In order to fully assess the conditions of use, the evaluation of thermal comfort of the analyzed rooms was made. Therefore, additionally the temperature of radiation of the surrounding areas, and the insulation of the users’ clothing was determined. Based on the data obtained, the PPD and PMV

  16. Projections of rising heat stress over the western Maritime Continent from dynamically downscaled climate simulations

    Science.gov (United States)

    Im, Eun-Soon; Kang, Suchul; Eltahir, Elfatih A. B.

    2018-06-01

    This study assesses the future changes in heat stress in response to different emission scenarios over the western Maritime Continent. To better resolve the region-specific changes and to enhance the performance in simulating extreme events, the MIT Regional Climate Model with a 12-km horizontal resolution is used for the dynamical downscaling of three carefully selected CMIP5 global projections forced by two Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Daily maximum wet-bulb temperature (TWmax), which includes the effect of humidity, is examined to describe heat stress as regulated by future changes in temperature and humidity. An ensemble of projections reveals robust pattern in which a large increase in temperature is accompanied by a reduction in relative humidity but a significant increase in wet-bulb temperature. This increase in TWmax is relatively smaller over flat and coastal regions than that over mountainous region. However, the flat and coastal regions characterized by warm and humid present-day climate will be at risk even under modest increase in TWmax. The regional extent exposed to higher TWmax and the number of days on which TWmax exceeds its threshold value are projected to be much higher in RCP8.5 scenario than those in RCP4.5 scenario, thus highlighting the importance of controlling greenhouse gas emissions to reduce the adverse impacts on human health and heat-related mortality.

  17. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    Science.gov (United States)

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  18. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    Science.gov (United States)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  19. Relevance of land forcings and feedbacks in the attribution of climate extremes

    Science.gov (United States)

    Seneviratne, S. I.; Davin, E.; Greve, P.; Gudmundsson, L.; Hauser, M.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Orth, R.

    2014-12-01

    Land forcings and feedbacks play an important role in the climate system, in particular for the occurrence of climate extremes. Recent investigations have for instance highlighted the impacts of soil moisture-climate interactions for the development of droughts and heat waves (e.g. Seneviratne et al. 2012, Mueller and Seneviratne 2012, Seneviratne et al. 2013, Orlowsky and Seneviratne 2013). In addition, forcing from land use and land cover changes through modified albedo or turbulent fluxes can also affect the temperature variability in summer (Davin et al. 2014). These effects are important for better understanding the relationships between climate forcing and regional climate changes, and appear relevant for a recent discrepancy between trends in global mean temperature vs hot extremes over land (Seneviratne et al. 2014). This presentation will provide an overview on the underlying processes and on possible approaches for their consideration in attribution research. References:- Davin, E.L., S.I. Seneviratne, P. Ciais, A. Olioso, T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci., Published ahead of print June 23, 2014.- Mueller, B., and S.I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences, 109 (31), 12398-12403, doi: 10.1073/pnas.1204330109.- Orlowsky, B., and S.I. Seneviratne, 2013: Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydr. Earth Syst. Sci., 17, 1765-1781, doi:10.5194/hess-17-1765-2013- Seneviratne, S.I., N. Nicholls, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., et al. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, pp. 109-230.- Seneviratne, S.I., et al

  20. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  1. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean

    Science.gov (United States)

    Ruffault, Julien; Curt, Thomas; Martin-StPaul, Nicolas K.; Moron, Vincent; Trigo, Ricardo M.

    2018-03-01

    Increasing drought conditions under global warming are expected to alter the frequency and distribution of large and high-intensity wildfires. However, our understanding of the impact of increasing drought on extreme wildfires events remains incomplete. Here, we analyzed the weather conditions associated with the extreme wildfires events that occurred in Mediterranean France during the exceptionally dry summers of 2003 and 2016. We identified that these fires were related to two distinct shifts in the fire weather space towards fire weather conditions that had not been explored before and resulting from specific interactions between different types of drought and different fire weather types. In 2016, a long-lasting press drought intensified wind-driven fires. In 2003, a hot drought combining a heat wave with a press drought intensified heat-induced fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and lead to a higher frequency of extremes wildfires events.

  2. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  3. Hypothyroid-induced acute compartment syndrome in all extremities.

    Science.gov (United States)

    Musielak, Matthew C; Chae, Jung Hee

    2016-12-20

    Acute compartment syndrome (ACS) is an uncommon complication of uncontrolled hypothyroidism. If unrecognized, this can lead to ischemia, necrosis and potential limb loss. A 49-year-old female presented with the sudden onset of bilateral lower and upper extremity swelling and pain. The lower extremity anterior compartments were painful and tense. The extensor surface of the upper extremities exhibited swelling and pain. Motor function was intact, however, limited due to pain. Bilateral lower extremity fasciotomies were performed. Postoperative Day 1, upper extremity motor function decreased significantly and paresthesias occurred. She therefore underwent bilateral forearm fasciotomies. The pathogenesis of hypothyroidism-induced compartment syndrome is unclear. Thyroid-stimulating hormone-induced fibroblast activation results in increased glycosaminoglycan deposition. The primary glycosaminoglycan in hypothyroid myxedematous changes is hyaluronic acid, which binds water causing edema. This increases vascular permeability, extravasation of proteins and impaired lymphatic drainage. These contribute to increased intra-compartmental pressure and subsequent ACS. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.

  4. Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.

    2016-12-01

    Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.

  5. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    International Nuclear Information System (INIS)

    Manson, S.J.; Gianoulakis, S.E.

    1994-04-01

    An examination of the effect of a realistic (though conservative) hot day environment on the thermal transient behavior of spent fuel shipping casks is made. These results are compared to those that develop under the prescribed normal thermal condition of 10 CFR 71. Of specific concern are the characteristics of propagating thermal waves, which are set up by diurnal variations of temperature and insolation in the outdoor environment. In order to arrive at a realistic approximation of these variations on a conservative hot day, actual temperature and insolation measurements have been obtained from the National Climatic Data Center (NCDC) for representatively hot and high heat flux days. Thus, the use of authentic meteorological data ensures the realistic approach sought. Further supporting the desired realism of the modeling effort is the use of realistic cask configurations in which multiple laminations of structural, shielding, and other materials are expected to attenuate the propagating thermal waves. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by enforcement of the regulatory environmental conditions of 10 CFR 71. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the prescribed regulatory conditions. However, the temperature differences are small enough that the normal conservative assumptions that are made in the course of typical cask evaluations should correct for any potential violations. The analysis demonstrates that diurnal temperature variations that penetrate the cask wall all have maxima substantially less than the corresponding regulatory solutions. Therefore it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the conditions of 10 CFR 71

  6. Extreme Precipitation in Poland in the Years 1951-2010

    Science.gov (United States)

    Malinowska, Miroslawa

    2017-12-01

    The characteristics of extreme precipitation, including the dominant trends, were analysed for eight stations located in different parts of Poland for the period 1951-2010. Five indices enabling the assessment of the intensity and frequency of both extremely dry and wet conditions were applied. The indices included the number of days with precipitation ≥10mm·d-1 (R10), maximum number of consecutive dry days (CDD), maximum 5-day precipitation total (R5d), simple daily intensity index (SDII), and the fraction of annual total precipitation due to events exceeding the 95th percentile calculated for the period 1961-1990. Annual trends were calculated using standard linear regression method, while the fit of the model was assessed with the F-test at the 95% confidence level. The analysed changes in extreme precipitation showed mixed patterns. A significant positive trend in the number of days with precipitation ≥10mm·d-1 (R10) was observed in central Poland, while a significant negative one, in south-eastern Poland. Based on the analysis of maximum 5-day precipitation totals (R5d), statistically significant positive trends in north-western, western and eastern parts of the country were detected, while the negative trends were found in the central and northeastern parts. Daily precipitation, expressed as single daily intensity index (SDII), increased over time in northern and central Poland. In southern Poland, the variation of SDII index showed non-significant negative tendencies. Finally, the fraction of annual total precipitation due to the events exceeding the 1961-1990 95th percentile increased at one station only, namely, in Warsaw. The indicator which refers to dry conditions, i.e. maximum number of consecutive dry days (CDD) displayed negative trends throughout the surveyed area, with the exception of Szczecin that is a representative of north-western Poland.

  7. Perceptions of Heat Risk to Health: A Qualitative Study of Professional Bus Drivers and Their Managers in Jinan, China

    Directory of Open Access Journals (Sweden)

    Lin Zhou

    2014-01-01

    Full Text Available Summer extreme heat threatens the health of individuals, especially persons who are involved in outdoor activities. Ensuring the normal function of a city, bus drivers are among those who participate in outdoor physical activities and are exposed to excessive heat in hot summer weather. This qualitative study was performed to explore professional bus drivers’ in-depth views of extreme heat risks to their health, and ultimately develop targeted advice and policy interventions for city bus drivers. An interview-based study was performed among professional bus drivers in Jinan, China, including four focus groups with professional bus drivers (n = 37 and three interviews with their managers (n = 14. Five central themes or categories from the bus driver interviews were found: concerns about summer heat; health effects related to extreme heat; adaptive measures; barriers in implementing these adaptive measures; and suggested interventions. The beneficial role of cooling facilities (particularly air-conditioning during extreme heat are addressed. The barriers not only impede the implementation of behavioral adaptive measures but also enhance the negative attitudes of bus drivers towards their effectiveness. The responsibilities of managers in promoting preventive actions are addressed.

  8. Recent trends in pre-monsoon daily temperature extremes over India

    Indian Academy of Sciences (India)

    e-mail: kotha@tropmet.res.in. Extreme climate and weather events are increasingly being recognized as key aspects of climate change. Pre-monsoon season ... change in day-to-day magnitude of fluctuations of pre-monsoon maximum and minimum tempera- tures. ... by high exceedence counts during drought periods.

  9. Climate variations and changes in extreme climate events in Russia

    International Nuclear Information System (INIS)

    Bulygina, O N; Razuvaev, V N; Korshunova, N N; Groisman, P Ya

    2007-01-01

    Daily temperature (mean, minimum and maximum) and atmospheric precipitation data from 857 stations are used to analyze variations in the space-time distribution of extreme temperatures and precipitation across Russia during the past six decades. The seasonal numbers of days (N) when daily air temperatures (diurnal temperature range, precipitation) were higher or lower than selected thresholds are used as indices of climatic extremes. Linear trends in N are calculated for each station for the time period of interest. The seasonal numbers of days (for each season) with maximum temperatures higher than the 95th percentile have increased over most of Russia, with minimum temperatures lower than the 5th percentile having decreased. A tendency for the decrease in the number of days with abnormally high diurnal temperature range is observed over most of Russia. In individual regions of Russia, however, a tendency for an increasing number of days with a large diurnal amplitude is found. The largest tendency for increasing number of days with heavy precipitation is observed in winter in Western Siberia and Yakutia

  10. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  11. The dry heat exchanger calorimeter system

    International Nuclear Information System (INIS)

    Renz, D.P.; Wetzel, J.R.; James, S.J.; Kasperski, P.W.; Duff, M.F.

    1991-01-01

    A radiometric isothermal heat flow calorimeter and preconditioner system that uses air instead of water as the heat exchange medium has been developed at Mound. The dry heat exchanger calorimeter is 42 inches high by 18 inches in diameter and the preconditioner is a 22 inch cube, making it extremely compact compared to existing units. The new system is ideally suited for transportable, stand-alone, or glovebox applications. Preliminary tests of the system have produced sample measurements with standard deviations less than 0.25% and sample errors less than 0.50%. These tests have shown that the dry heat exchanger system will yield acceptance data with an accuracy comparable to those of Mound water bath systems now in use. 4 figs., 1 tab

  12. Changing precipitation extremes and flood risk over the conterminous U.S.

    Science.gov (United States)

    Lettenmaier, D. P.

    2017-12-01

    On the basis of first principles, precipitation extremes should increase in a warming climate. Effectively, the atmospheric "heat engine" is expected to turn over more rapidly as the climate warms, due to increased water holding capacity of the atmosphere. Most climate models reflect this behavior, and project that precipitation extremes should increase, at roughly the Clausius-Clapyron rate. From a societal standpoint though, changing precipitation extremes in and of themselves aren't necessarily a concern - rather, the question of societal interest is "are and/or will flood extremes change". Flood extremes of course respond to precipitation extremes, but they are affected by a number of other factors, among them being the duration of precipitation relative to catchment size and channel features, storm orientation relative to catchment orientation, soil characteristics, and antecedent hydrologic conditions. Various studies have shown that over both the conterminous U.S. and globally, there have been slight increases in precipitation extremes (i.e., more than would be expected due to chance. On the other hand, evidence for increases in flooding are less pervasive. I review past work in this area, and suggest the nature of studies that might be conducted going forward to better understand the likely signature of changing precipitation extremes on flooding.

  13. The waviness of the extratropical jet and daily weather extremes

    Science.gov (United States)

    Röthlisberger, Matthias; Martius, Olivia; Pfahl, Stephan

    2016-04-01

    In recent years the Northern Hemisphere mid-latitudes have experienced a large number of weather extremes with substantial socio-economic impact, such as the European and Russian heat waves in 2003 and 2010, severe winter floods in the United Kingdom in 2013/2014 and devastating winter storms such as Lothar (1999) and Xynthia (2010) in Central Europe. These have triggered an engaged debate within the scientific community on the role of human induced climate change in the occurrence of such extremes. A key element of this debate is the hypothesis that the waviness of the extratropical jet is linked to the occurrence of weather extremes, with a wavier jet stream favouring more extremes. Previous work on this topic is expanded in this study by analyzing the linkage between a regional measure of jet waviness and daily temperature, precipitation and wind gust extremes. We show that indeed such a linkage exists in many regions of the world, however this waviness-extremes linkage varies spatially in strength and sign. Locally, it is strong only where the relevant weather systems, in which the extremes occur, are affected by the jet waviness. Its sign depends on how the frequency of occurrence of the relevant weather systems is correlated with the occurrence of high and low jet waviness. These results go beyond previous studies by noting that also a decrease in waviness could be associated with an enhanced number of some weather extremes, especially wind gust and precipitation extremes over western Europe.

  14. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    Science.gov (United States)

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  15. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Directory of Open Access Journals (Sweden)

    Ramesh Gopalan

    2011-01-01

    Full Text Available Abstract The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  16. Future heat stress arising from climate change on Iran's population health

    Science.gov (United States)

    Modarres, Reza; Ghadami, Mohammad; Naderi, Sohrab; Naderi, Mohammad

    2018-04-01

    Climate change-induced extreme heat events are becoming a major issue in different parts of the world, especially in developing countries. The assessment of regional and temporal past and future change in heat waves is a crucial task for public health strategies and managements. The historical and future heat index (HI) time series are investigated for temporal change across Iran to study the impact of global warming on public health. The heat index is calculated, and the nonparametric trend assessment is carried out for historical time series (1981-2010). The future change in heat index is also projected for 2020-2049 and 2070-2099 periods. A rise in the historical heat index and extreme caution conditions for summer and spring seasons for major parts of Iran are notable for historical (1981-2010) series in this study. Using different climate change scenarios shows that heat index will exceed the critical threshold for human adaptability in the future in the country. The impact of climate change on heat index risk in Iran is significant in the future. To cope with this crucial situation, developing early warning systems and health care strategies to deal with population growth and remarkable socio-economic features in future is essential.

  17. Study on diverse passive decay heat removal approach

    International Nuclear Information System (INIS)

    Lin Qian; Si Shengyi

    2012-01-01

    One of the most important principles for nuclear safety is the decay heat removal in accidents. Passive decay heat removal systems are extremely helpful to enhance the safety. In currently design of many advanced nuclear reactors, kinds of passive systems are proposed or developed, such as the passive residual heat removal system, passive injection system, passive containment cooling system. These systems provide entire passive heat removal paths from core to ultimate heat sink. Various kinds of passive systems for decay heat removal are summarized; their common features or differences on heat removal paths and design principle are analyzed. It is found that, these passive decay heat removal paths are similarly common on and connected by several basic heat transfer modes and steps. By the combinations or connections of basic modes and steps, new passive decay heat removal approach or diverse system can be proposed. (authors)

  18. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003

    Energy Technology Data Exchange (ETDEWEB)

    You, Qinglong [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Friedrich-Schiller University Jena, Department of Geoinformatics, Jena (Germany); Graduate University of Chinese Academy of Sciences, Beijing (China); Kang, Shichang [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Lanzhou (China); Aguilar, Enric [Universitat Rovirai Virgili de Tarragona, Climate Change Research Group, Geography Unit, Tarragona (Spain); Pepin, Nick [University of Portsmouth, Department of Geography, Portsmouth (United Kingdom); Fluegel, Wolfgang-Albert [Friedrich-Schiller University Jena, Department of Geoinformatics, Jena (Germany); Yan, Yuping [National Climate Center, Beijing (China); Xu, Yanwei; Huang, Jie [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Zhang, Yongjun [Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China)

    2011-06-15

    Based on daily maximum and minimum surface air temperature and precipitation records at 303 meteorological stations in China, the spatial and temporal distributions of indices of climate extremes are analyzed during 1961-2003. Twelve indices of extreme temperature and six of extreme precipitation are studied. Temperature extremes have high correlations with the annual mean temperature, which shows a significant warming of 0.27 C/decade, indicating that changes in temperature extremes reflect the consistent warming. Stations in northeastern, northern, northwestern China have larger trend magnitudes, which are accordance with the more rapid mean warming in these regions. Countrywide, the mean trends for cold days and cold nights have decreased by -0.47 and -2.06 days/decade respectively, and warm days and warm nights have increased by 0.62 and 1.75 days/decade, respectively. Over the same period, the number of frost days shows a statistically significant decreasing trend of -3.37 days/decade. The length of the growing season and the number of summer days exhibit significant increasing trends at rates of 3.04 and 1.18 days/decade, respectively. The diurnal temperature range has decreased by -0.18 C/decade. Both the annual extreme lowest and highest temperatures exhibit significant warming trends, the former warming faster than the latter. For precipitation indices, regional annual total precipitation shows an increasing trend and most other precipitation indices are strongly correlated with annual total precipitation. Average wet day precipitation, maximum 1-day and 5-day precipitation, and heavy precipitation days show increasing trends, but only the last is statistically significant. A decreasing trend is found for consecutive dry days. For all precipitation indices, stations in the Yangtze River basin, southeastern and northwestern China have the largest positive trend magnitudes, while stations in the Yellow River basin and in northern China have the largest

  19. Spatiotemporal patterns of precipitation extremes in the Poyang Lake basin, China: Changing properties and causes

    Science.gov (United States)

    Xiao, M.

    2016-12-01

    Under the background of climate change, extensive attentions have been paid on the increased extreme precipitation from the public and government. To analyze the influences of large-scale climate indices on the precipitation extremes, the spatiotemporal patterns of precipitation extremes in the Poyang Lake basin have been investigated using the Bayesian hierarchical method. The seasonal maximum one-day precipitation amount (Rx1day) was used to represent the seasonal precipitation extremes. Results indicated that spring Rx1day was affected by El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), a positive ENSO event in the same year tends to decrease the spring Rx1day in the northern part of Poyang Lake Basin while increase the spring Rx1day in southeastern Poyang Lake Basin, a positive NAO events in the same year tends to increase the spring Rx1day in the southwest and northwest part of Poyang Lake basin while decrease the spring Rx1day in the eastern part of Poyang Lake basin; summer Rx1day was affected by Indian Ocean Dipole (IOD), positive IOD events in the same year tend to increase the summer Rx1day of northern Poyang Lake basin while decrease summer Rx1day of southern Poyang Lake basin; autumn Rx1day was affected by ENSO, positive ENSO events in the same year tend to mainly increase the autumn Rx1day in the west part of Poyang Lake basin; winter Rx1day was mainly affected by the NAO, positive NAO events in the same year tend to mainly increase the winter Rx1day of southern Poyang Lake basin, while positive NAO events in the previous year tend to mainly increase the winter Rx1day in the central and northeast part of Poyang Lake basin. It is considered that the region with the negative vertical velocity is dominated by more precipitation and vice versa. Furthermore, field patterns of 500 hPa vertical velocity anomalies related to each climate index have further corroborated the influences of climate indices on the seasonal Rx1day, and

  20. Public crowdsensing of heat waves by social media data

    Science.gov (United States)

    Grasso, Valentina; Crisci, Alfonso; Morabito, Marco; Nesi, Paolo; Pantaleo, Gianni

    2017-07-01

    Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015). Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans) against heat hazards have been already implemented in some WHO (World Health Organization) European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM) offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets). This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM), the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.

  1. Extreme Wildfire Spread and Behaviour: Case Studies from North Sardinia, Italy

    Science.gov (United States)

    Salis, M.; Arca, B.; Ager, A.; Fois, C.; Bacciu, V.; Duce, P.; Spano, D.

    2012-04-01

    Worldwide, fire seasons are usually characterized by the occurrence of one or more days with extreme environmental conditions, such as heat waves associated with strong winds. On these days, fires can quickly get out of hand originating large and severe wildfires. In these cases, containment and extinguishment phases are critical, considering that the imperative goal is to keep fire crews, people and animals safe. In this work we will present a set of large and severe wildfires occurred with extreme environmental conditions in the northern area of Sardinia. The most recent wildfire we will describe was ignited on July 13, 2011 in the Oschiri municipality (40°43' N; 9°06' E), and burned about 2,500 ha of wooded and herbaceous pastures and oakwoods in few hours. The second wildfire we will present was ignited on July 23, 2009 in the Bonorva municipality (40°25' N; 8° 46' E), and was responsible for the death of two people and several damages to houses, animals and farms. This wildfire lasted on July 25, and burned about 10,000 ha of wooded and herbaceous pastures; the most of the area was burned during the first day. The last wildfire we will describe was ignited on July 23, 2007 in the Oniferi municipality (40°16' N; 9° 16' E) and burned about 9,000 ha of wooded and herbaceous pastures and oakwoods; about 8,000 ha were burned after 11 hours of propagation. All these wildfires were ignited in days characterized by very hot temperatures associated to the effect of air masses moving from inland North Africa to the Mediterranean Basin, and strong winds from west-south west. This is one of the typical weather pattern associated with large and severe wildfires in North Sardinia, and is well documented in the last years. Weather conditions, fuels and topography factors related to each case study will be accurately analyzed. Moreover, a detailed overview of observed fire spread and behavior and post-fire vegetation recovery will be presented. The fire spread and

  2. Short Duration Heat Acclimation in Australian Football Players.

    Science.gov (United States)

    Kelly, Monica; Gastin, Paul B; Dwyer, Daniel B; Sostaric, Simon; Snow, Rodney J

    2016-03-01

    This study examined if five sessions of short duration (27 min), high intensity, interval training (HIIT) in the heat over a nine day period would induce heat acclimation in Australian football (AF) players. Fourteen professional AF players were matched for VO2peak (mL·kg(-1)·min(-1)) and randomly allocated into either a heat acclimation (Acc) (n = 7) or Control (Con) group (n = 7). The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH), whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH). Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% V̇O2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH) during which VO2, blood lactate concentration ([Lac(-)]), heart rate (HR), rating of perceived exertion (RPE), thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac(-)] (all p competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited. Key pointsSome minor heat acclimation adaptations can be induced in professional AF players with five 27 min non-consecutive, short duration HIIT sessions in the heat.The heat acclimation protocol employed in this study was able to be implemented in a professional team sport environment during an actual competitive season.Elevating and maintaining a high core temperature sufficient for heat acclimation likely requires a longer heat training session or some pre-heating prior to exercise.

  3. Regional amplification of extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M.; Orth, R.; Seneviratne, S. I.

    2016-12-01

    Land temperatures, and in particular hot extremes, will likely increase by more than 2° C in many regions, even in the case that the global temperature increase with respect to pre-industrial levels can be limited to 2°C. We investigate here the role of soil moisture-temperature feedbacks for projected changes of extreme temperatures by comparing experiments from the GLACE-CMIP5 (Global Land-Atmosphere Coupling Experiment - Coupled Model Intercomparison Project Phase 5) project. In particular, we consider fully coupled experiments with all 6 involved GCMs and corresponding experiments where soil moisture is fixed to the local present-day seasonal cycle until the end of the 21st century. We consider the yearly hottest days and apply a scaling approach whereby we relate changes of hottest days to global mean temperature increase. We find that soil moisture-temperature coupling significantly contributes to additional future warming of extreme temperatures in many regions: In particular, it can explain more than 70% of the warming amplification of hottest days compared to global mean temperature in Central Europe, Central North America and Northern Australia, and around 50% of this signal in the Amazonian Region and Southern Africa.

  4. Genetic component of sensitivity to heat stress for nonreturn rate of Brazilian Holstein cattle.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Stefani, G; El Faro, L

    2017-08-01

    The objectives of the present study were: 1) to investigate variation in the genetic component of heat stress for nonreturn rate at 56 days after first artificial insemination (NR56); 2) to identify and characterize the genotype by environment interaction (G × E) due to heat stress for NR56 of Brazilian Holstein cattle. A linear random regression model (reaction norm model) was applied to 51,748 NR56 records of 28,595 heifers and multiparous cows. The decline in NR56 due to heat stress was more pronounced in milking cows compared to heifers. The age of females at first artificial insemination and temperature-humidity index (THI) exerted an important influence on the genetic parameters of NR56. Several evidence of G × E on NR56 were found as the high slope/intercept ratio and frequent intersection of reaction norms. Additionally, the genetic correlation between NR56 at opposite extremes of the THI scale reached estimates below zero, indicating that few of the same genes are responsible for NR56 under conditions of thermoneutrality and heat stress. The genetic evaluation and selection for NR56 in Holstein cattle reared under (sub)tropical conditions should therefore take into consideration the genetic variation on age at insemination and G × E due to heat stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating

    International Nuclear Information System (INIS)

    Moreno-Rodriguez, A.; Garcia-Hernando, N.; González-Gil, A.; Izquierdo, M.

    2013-01-01

    This paper discusses the experimental validation of a theoretical model that determines the operating parameters of a DXSAHP (direct-expansion solar-assisted heat pump) applied to heating. For this application, the model took into account the variable condensing temperature, and it was developed from the following environmental variables: outdoor temperature, solar radiation and wind. The experimental data were obtained from a prototype installed at the University Carlos III, which is located south of Madrid. The prototype uses a solar collector with a total area of 5.6 m 2 , a compressor with a rated capacity of 1100 W, a thermostatic expansion valve and fan-coil units as indoor terminals. The monitoring results were analyzed for several typical days in the climatic zone where the machine was located to understand the equipment's seasonal behavior. The experimental coefficient of the performance varies between 1.9 and 2.7, and the equipment behavior in extreme outdoor conditions has also been known to determine the thermal demand that can be compensated for. - Highlights: • The study aims to present an experimental validation of a theoretical model. • The experimental COP can vary between 1.9 and 2.7 (max. condensation temperature 59 °C). • A “dragging term” relates condensation and evaporation temperature. • The operating parameters respond to the solar radiation. The COP may increase up to 25%

  6. Analysis and evaluation of functional status of lower extremity amputee-appliance systems: an integrated approach.

    Science.gov (United States)

    Ganguli, S

    1976-11-01

    This paper introduces an integrated, objective and biomechanically sound approach for the analysis and evaluation of the functional status of lower extremity amputee-appliance systems. The method is demonstrated here in its application to the unilateral lower extremity amputee-axillary crutches system and the unilateral below-knee amputee-PTB prosthesis system, both of which are commonly encountered in day-to-day rehabilitation practice.

  7. Response of Urban Systems to Climate Change in Europe: Heat Stress Exposure and the Effect on Human Health

    Science.gov (United States)

    Stevens, Catherine; Thomas, Bart; Grommen, Mart

    2015-04-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a

  8. Energetic and financial evaluation of solar assisted heat pump space heating systems

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Moschos, Konstantinos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • Four solar heating systems are presented in this work. • Various combinations between solar collectors and heat pumps are presented. • The systems are compared energetically and financially. • The use of PV and an air source heat pump is the best choice financially. • The use of PVT with a water source heat pump is the best solution energetically. - Abstract: Using solar energy for space heating purposes consists an alternative way for substituting fossil fuel and grid electricity consumption. In this study, four solar assisted heat pump heating systems are designed, simulated and evaluated energetically and financially in order to determine the most attractive solution. The use of PV collectors with air source heat pump is compared to the use of FPC, PVT and FPC with PV coupled with a water source heat pump. A sensitivity analysis for the electricity cost is conducted because of the great variety of this parameter over the last years. The final results proved that for electricity cost up to 0.23 €/kW h the use of PV coupled with an air source heat pump is the most sustainable solution financially, while for higher electricity prices the coupling of PVT with an water source heat pump is the best choice. For the present electricity price of 0.2 €/kW h, 20 m"2 of PV is able to drive the air source heat pump with a yearly solar coverage of 67% leading to the most sustainable solution. Taking into account energetic aspects, the use of PVT leads to extremely low grid electricity consumption, fact that makes this technology the most environmental friendly.

  9. Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial.

    Science.gov (United States)

    Page, Stephen J; Hill, Valerie; White, Susan

    2013-06-01

    To compare the efficacy of a repetitive task-specific practice regimen integrating a portable, electromyography-controlled brace called the 'Myomo' versus usual care repetitive task-specific practice in subjects with chronic, moderate upper extremity impairment. Sixteen subjects (7 males; mean age 57.0 ± 11.02 years; mean time post stroke 75.0 ± 87.63 months; 5 left-sided strokes) exhibiting chronic, stable, moderate upper extremity impairment. Subjects were administered repetitive task-specific practice in which they participated in valued, functional tasks using their paretic upper extremities. Both groups were supervised by a therapist and were administered therapy targeting their paretic upper extremities that was 30 minutes in duration, occurring 3 days/week for eight weeks. One group participated in repetitive task-specific practice entirely while wearing the portable robotic, while the other performed the same activity regimen manually. The upper extremity Fugl-Meyer, Canadian Occupational Performance Measure and Stroke Impact Scale were administered on two occasions before intervention and once after intervention. After intervention, groups exhibited nearly identical Fugl-Meyer score increases of ≈2.1 points; the group using robotics exhibited larger score changes on all but one of the Canadian Occupational Performance Measure and Stroke Impact Scale subscales, including a 12.5-point increase on the Stroke Impact Scale recovery subscale. Findings suggest that therapist-supervised repetitive task-specific practice integrating robotics is as efficacious as manual practice in subjects with moderate upper extremity impairment.

  10. Effects of occupational heat exposure on female brick workers in West Bengal, India

    Science.gov (United States)

    Sett, Moumita; Sahu, Subhashis

    2014-01-01

    Background Manual brick-manufacturing units in India engage a large number of female workers on a daily-wage basis for a period of 8 months per year. There are two groups of female workers in the brickfields: the brick molders and the brick carriers. These brickfields are mostly unorganized, and the workers are exposed to extreme conditions such as very high seasonal heat. The present trend of increasing temperatures, as a result of global warming and climate change, will put an additional burden on them. Objective This study aims to evaluate the effect of workplace heat exposure on the well-being, physiological load, and productivity of female brickfield workers in India. Design A questionnaire study (n=120), environmental temperature, and weekly work productivity analyses were evaluated for 8 months in the brickfields. Cardiac strain and walking speed (subset, n=40) were also studied and compared in hotter and colder days amongst the female brickfield workers. Results The subjects experience summer for about 5 months with additional heat stress radiating from the brick kiln. The weekly productivity data show a linear decline in productivity with increased maximum air temperature above 34.9°C. The cardiac parameters (peak heart rate (HRp), net cardiac cost (NCC), relative cardiac cost (RCC), and recovery heart rates) were significantly higher on hotter days (Wet Bulb Globe Temperature (WBGTout) index: 26.9°C to 30.74°C) than on cooler days (WBGTout index: 16.12°C to 19.37°C) for the brick molders; however, this is not the case for the brick carriers. As the brick carriers adapt to hotter days by decreasing their walking speed, their productivity decreases. Conclusion We conclude that high heat exposure in brickfields during summer caused physiological strain in both categories of female brickfield workers. A coping strategy employed by the brick carriers was to reduce their walking speed and thus lose part of their earnings. The lost productivity for every

  11. Effects of occupational heat exposure on female brick workers in West Bengal, India.

    Science.gov (United States)

    Sett, Moumita; Sahu, Subhashis

    2014-01-01

    Manual brick-manufacturing units in India engage a large number of female workers on a daily-wage basis for a period of 8 months per year. There are two groups of female workers in the brickfields: the brick molders and the brick carriers. These brickfields are mostly unorganized, and the workers are exposed to extreme conditions such as very high seasonal heat. The present trend of increasing temperatures, as a result of global warming and climate change, will put an additional burden on them. This study aims to evaluate the effect of workplace heat exposure on the well-being, physiological load, and productivity of female brickfield workers in India. A questionnaire study (n=120), environmental temperature, and weekly work productivity analyses were evaluated for 8 months in the brickfields. Cardiac strain and walking speed (subset, n=40) were also studied and compared in hotter and colder days amongst the female brickfield workers. The subjects experience summer for about 5 months with additional heat stress radiating from the brick kiln. The weekly productivity data show a linear decline in productivity with increased maximum air temperature above 34.9°C. The cardiac parameters (peak heart rate (HRp), net cardiac cost (NCC), relative cardiac cost (RCC), and recovery heart rates) were significantly higher on hotter days (Wet Bulb Globe Temperature (WBGTout) index: 26.9°C to 30.74°C) than on cooler days (WBGTout index: 16.12°C to 19.37°C) for the brick molders; however, this is not the case for the brick carriers. As the brick carriers adapt to hotter days by decreasing their walking speed, their productivity decreases. We conclude that high heat exposure in brickfields during summer caused physiological strain in both categories of female brickfield workers. A coping strategy employed by the brick carriers was to reduce their walking speed and thus lose part of their earnings. The lost productivity for every degree rise in temperature is about 2% in the

  12. Extreme weather events in Iran under a changing climate

    Science.gov (United States)

    Alizadeh-Choobari, Omid; Najafi, M. S.

    2018-01-01

    Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3 °C during the period 1951-2013 (+0.2 °C per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.

  13. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Showman, Adam P.

    2013-01-01

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ wave , plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ wave ∼√(τ rad /Ω), where τ rad is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ rad ∼ τ vert , where τ vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ rad and the horizontal day-night advection timescale, τ adv . Only

  14. Heating being put into service

    CERN Multimedia

    2016-01-01

    The SMB-SE group would like to inform you that, the central heating will start this year, on Monday 3 October 2016, and will be progressively and depending on the weather forecast put into service throughout. All buildings will have heating within the following few days. Thank you for your understanding. The CERN heating team SMB-SE

  15. The probability distribution of extreme precipitation

    Science.gov (United States)

    Korolev, V. Yu.; Gorshenin, A. K.

    2017-12-01

    On the basis of the negative binomial distribution of the duration of wet periods calculated per day, an asymptotic model is proposed for distributing the maximum daily rainfall volume during the wet period, having the form of a mixture of Frechet distributions and coinciding with the distribution of the positive degree of a random variable having the Fisher-Snedecor distribution. The method of proving the corresponding result is based on limit theorems for extreme order statistics in samples of a random volume with a mixed Poisson distribution. The adequacy of the models proposed and methods of their statistical analysis is demonstrated by the example of estimating the extreme distribution parameters based on real data.

  16. Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods

    Science.gov (United States)

    Werner, Arelia T.; Cannon, Alex J.

    2016-04-01

    Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e. correlation tests) and distributional properties (i.e. tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), the climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3-day peak flow and 7-day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational data sets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational data set. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7-day low-flow events, regardless of reanalysis or observational data set. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event

  17. Projected Changes in Temperature Extremes in China Using PRECIS

    Directory of Open Access Journals (Sweden)

    Yujing Zhang

    2017-01-01

    Full Text Available Temperature extremes can cause disastrous impacts on ecological and social economic systems. China is very sensitive to climate change, as its warming rate exceeds that of the global mean level. This paper focused on the spatial and temporal changes of the temperature extremes characterized by the 95th percentile of maximum temperature (TX95, the 5th percentile of the minimum temperature (TN5, high-temperature days (HTD and low-temperature days (LTD. The daily maximum and minimum temperatures generated by PRECIS under different Representative Concentration Pathways (RCPs are used in the research. The results show that: (1 Model simulation data can reproduce the spatial distribution features of the maximum temperature (Tmax and minimum temperature (Tmin as well as that of the extreme temperature indices; (2 By the end of the 21st century (2070–2099, both the Tmax and Tmin are warmer than the baseline level (1961–1990 in China and the eight sub-regions. However, there are regional differences in the asymmetrical warming features, as the Tmin warms more than the Tmax in the northern part of China and the Tibetan Plateau, while the Tmax warms more than the Tmin in the southern part of China; (3 The frequency of the warm extremes would become more usual, as the HTD characterized by the present-day threshold would increase by 106%, 196% and 346%, under RCP2.6, RCP4.5 and RCP8.5, respectively, while the cold extremes characterized by the LTD would become less frequent by the end of the 21st century, decreasing by 75%, 90% and 98% under RCP2.6, RCP4.5 and RCP8.5, respectively. The southern and eastern parts of the Tibetan Plateau respond sensitively to changes in both the hot and cold extremes, suggesting its higher likelihood to suffer from climate warming; (4 The intensity of the warm (cold extremes would increase (decrease significantly, characterized by the changes in the TX95 (TN5 by the end of the 21st century, and the magnitude of the

  18. Stellar by Day, Planetary by Night: Atmospheres of Ultra-Hot Jupiters

    Science.gov (United States)

    Hensley, Kerry

    2018-06-01

    Move over, hot Jupiters theres an even stranger kind of giant planet in the universe! Ultra-hot Jupiters are so strongly irradiated that the molecules in their atmospheres split apart. What does this mean for heat transport on these planets?Atmospheres of Exotic PlanetsA diagram showing the orbit of an ultra-hot Jupiter and the longitudes at which dissociation and recombination occur. [Bell Cowan 2018]Similar to hot Jupiters, ultra-hot Jupiters are gas giants with atmospheres dominated by molecular hydrogen. What makes them interesting is that their dayside atmospheres are so hot that the molecules dissociate into individual hydrogen atoms more like the atmospheres of stars than planets.Because of the intense stellar irradiation, there is also an extreme temperature difference between the day and night sides of these planets potentially more than 1,000 K! As the stellar irradiation increases, the dayside atmosphere becomes hotter and hotter and the temperature difference between the day and night sides increases.When hot atomic hydrogen is transported into cooler regions (by winds, for instance), it recombines to form H2 molecules and heats the gas, effectively transporting heat from one location to another. This is similar to how the condensation of water redistributes heat in Earths atmosphere but what effect does this phenomenon have on the atmospheres of ultra-hot Jupiters?Maps of atmospheric temperature of molecular hydrogen dissociation fraction for three wind speeds. Click to enlarge. [Bell Cowan 2018]Modeling Heat RedistributionTaylor Bell and Nicolas Cowan (McGill University) used an energy-balance model to estimate the effects of H2 dissociation and recombination on heat transport in ultra-hot Jupiter atmospheres. In particular, they explored the redistribution of heat and how it affects the resultant phase curve the curve that describes the combination of reflected and thermally emitted light from the planet, observed as a function of its phase angle

  19. Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia

    Science.gov (United States)

    Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep

    2014-05-01

    Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the

  20. Performance of a day/night water heat storage system for heating and cooling of semi-closed greenhouses in mild winter climate

    NARCIS (Netherlands)

    Baeza, E.J.; Pérez Parra, J.J.; López, J.C.; Gázquez, J.C.; Meca, D.E.; Stanghellini, C.; Kempkes, F.L.K.; Montero, J.I.

    2012-01-01

    A novel system for heating/cooling greenhouses based on air/water heat exchangers connected to a thermally stratified water storage tank was tested in a small greenhouse compartment at the Experimental Station of the Cajamar Foundation in Almería, Spain. The system maintained a closed greenhouse (no

  1. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  2. A Spatial Framework to Map Heat Health Risks at Multiple Scales.

    Science.gov (United States)

    Ho, Hung Chak; Knudby, Anders; Huang, Wei

    2015-12-18

    In the last few decades extreme heat events have led to substantial excess mortality, most dramatically in Central Europe in 2003, in Russia in 2010, and even in typically cool locations such as Vancouver, Canada, in 2009. Heat-related morbidity and mortality is expected to increase over the coming centuries as the result of climate-driven global increases in the severity and frequency of extreme heat events. Spatial information on heat exposure and population vulnerability may be combined to map the areas of highest risk and focus mitigation efforts there. However, a mismatch in spatial resolution between heat exposure and vulnerability data can cause spatial scale issues such as the Modifiable Areal Unit Problem (MAUP). We used a raster-based model to integrate heat exposure and vulnerability data in a multi-criteria decision analysis, and compared it to the traditional vector-based model. We then used the Getis-Ord G(i) index to generate spatially smoothed heat risk hotspot maps from fine to coarse spatial scales. The raster-based model allowed production of maps at spatial resolution, more description of local-scale heat risk variability, and identification of heat-risk areas not identified with the vector-based approach. Spatial smoothing with the Getis-Ord G(i) index produced heat risk hotspots from local to regional spatial scale. The approach is a framework for reducing spatial scale issues in future heat risk mapping, and for identifying heat risk hotspots at spatial scales ranging from the block-level to the municipality level.

  3. FEMALE FARMWORKERS’ PERCEPTIONS OF HEAT-RELATED ILLNESS AND PREGNANCY HEALTH

    OpenAIRE

    Flocks, Joan; Mac, Valerie Vi Thien; Runkle, Jennifer; Tovar-Aguilar, Jose Antonio; Economos, Jeannie; McCauley, Linda A.

    2013-01-01

    While agricultural workers have elevated risks of heat-related illnesses (HRI), pregnant farmworkers exposed to extreme heat face additional health risk, including poor pregnancy health and birth outcomes. Qualitative data from five focus groups with 35 female Hispanic and Haitian nursery and fernery workers provide details about the women’s perceptions of HRI and pregnancy. Participants believe that heat exposure can adversely affect general, pregnancy, and fetal health, yet feel they lack c...

  4. Heat exposure in cities: combining the dynamics of temperature and population

    Science.gov (United States)

    Hu, L.; Wilhelmi, O.; Uejio, C. K.

    2017-12-01

    Assessment of human exposure to extreme heat requires the distributions of temperature and population. However, both variables are dynamic, thus presenting many challenges in capturing temperature and population patterns spatially and over time in an urban context. This study aims to improve the understanding of spatiotemporal patterns of urban population exposure to heat, taking Chicago, USA as an example. We estimate the hourly, geographically variable, population distribution considering commute of workers and students in a regular weekday and analyze the diurnal air temperature patterns during different meteorological conditions from satellite observations. The results show a relatively larger temperature increase in less urbanized areas during extreme heat events (EHEs), resulting in a spatially homogeneous temperature distribution over Chicago Metropolitan area. A lake cooling effect is weaker during EHEs. Population dynamics due to daily commute determine higher population density in more urbanized areas during daytime. The city-wide analysis reveals that the exposure is more sensitive to the nighttime temperature increases, and EHEs enhance this sensitivity. The high exposure hotspots are identified at the northwest Chicago, Cicero and Oak Park areas, where the influence from Lake Michigan is weakened, while the spatial extent of high outdoor exposure areas varies diurnally. This study's findings have potential to better inform general heat mitigation strategies during hot summer months and facilitate emergency response during EHEs. Availability of remotely-sensed temperature observations as well as the workers and students commute-adjusted population data allows for the adoption of this study's methodology in other major metropolitan areas. A better understanding of space-time patterns of urban population's exposure to heat will further enable local decision makers to mitigate extreme heat health risks and develop more targeted heat preparedness and

  5. Heating experiments of JT-60

    International Nuclear Information System (INIS)

    1987-01-01

    In JT-60, after the finish of the first stage Joule experiment, the heating facilities were installed, and the heating experiment was started in August, 1986. As to neutral beam injection, the beam injection experiment at the maximum rating 20 MW carried out, and also as to RF, the injection experiment up to 1.4 MW was carried out in both ion cyclotron and low band hybrid waves. The results worthy of special mention in the heating experiment were the success in the current drive up to 1.7 MA at maximum using low band hybrid waves and the improvement of plasma confinement characteristics obtained by the compound heating of NBI and RF. In this paper, the main results of these heating experiments and their significance are explained. The JT-60 is the testing facilities for attaining the critical plasma condition by additionally heating the plasma which is generated by Joule electric discharge with NBI and RF heatings. The experimental operation cycle of the JT-60 consists of the unit cycle of two weeks, and the number of days in operation is nine days. The temperature of heated plasma rose to 70 million deg C in the 20 MW NBI heating. Hereafter, the improvement of confinement time by increasing the stored energy of plasma is attempted. (Kako, I.)

  6. Genetics of heat tolerance for milk yield and quality in Holsteins.

    Science.gov (United States)

    Santana, M L; Bignardi, A B; Pereira, R J; Stefani, G; El Faro, L

    2017-01-01

    Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature-humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (-0.22 to -0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality

  7. Impacts of High Resolution Extreme Events on U.S. Energy Demand and CO{sub 2} Emissions in the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Diffenbaugh, Noah [Stanford University

    2013-06-21

    Progress is reported in these areas: Validation of temperature and precipitation extremes; Time of emergence of severe heat stress in the United States; Quantifying the effects of temperature extremes on energy demand and carbon dioxide emissions.

  8. Air Circulation and Heat Exchange Under Reduced Pressures

    Science.gov (United States)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  9. Short Duration Heat Acclimation in Australian Football Players

    Directory of Open Access Journals (Sweden)

    Monica Kelly, Paul B. Gastin, Daniel B Dwyer, Simon Sostaric, Rodney J. Snow

    2016-03-01

    Full Text Available This study examined if five sessions of short duration (27 min, high intensity, interval training (HIIT in the heat over a nine day period would induce heat acclimation in Australian football (AF players. Fourteen professional AF players were matched for VO2peak (mL·kg-1·min-1 and randomly allocated into either a heat acclimation (Acc (n = 7 or Control (Con group (n = 7. The Acc completed five cycle ergometer HIIT sessions within a nine day period on a cycle ergometer in the heat (38.7 ± 0.5 °C; 34.4 ± 1.3 % RH, whereas Con trained in thermo-neutral conditions (22.3 ± 0.2 °C; 35.8 ± 0. % RH. Four days prior and two days post HIIT participants undertook a 30 min constant load cycling test at 60% VO2peak in the heat (37.9 ± 0.1 °C; 28.5 ± 0.7 % RH during which VO2, blood lactate concentration ([Lac-], heart rate (HR, rating of perceived exertion (RPE, thermal comfort, core and skin temperatures were measured. Heat acclimation resulted in reduced RPE, thermal comfort and [Lac-] (all p < 0.05 during the submaximal exercise test in the heat. Heart rate was lower (p = 0.007 after HIIT, in both groups. Heat acclimation did not influence any other measured variables. In conclusion, five short duration HIIT sessions in hot dry conditions induced limited heat acclimation responses in AF players during the in-season competition phase. In practice, the heat acclimation protocol can be implemented in a professional team environment; however the physiological adaptations resulting from such a protocol were limited.

  10. Public crowdsensing of heat waves by social media data

    Directory of Open Access Journals (Sweden)

    V. Grasso

    2017-07-01

    Full Text Available Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015. Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans against heat hazards have been already implemented in some WHO (World Health Organization European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets. This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM, the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.

  11. Regional Frequency and Uncertainty Analysis of Extreme Precipitation in Bangladesh

    Science.gov (United States)

    Mortuza, M. R.; Demissie, Y.; Li, H. Y.

    2014-12-01

    Increased frequency of extreme precipitations, especially those with multiday durations, are responsible for recent urban floods and associated significant losses of lives and infrastructures in Bangladesh. Reliable and routinely updated estimation of the frequency of occurrence of such extreme precipitation events are thus important for developing up-to-date hydraulic structures and stormwater drainage system that can effectively minimize future risk from similar events. In this study, we have updated the intensity-duration-frequency (IDF) curves for Bangladesh using daily precipitation data from 1961 to 2010 and quantified associated uncertainties. Regional frequency analysis based on L-moments is applied on 1-day, 2-day and 5-day annual maximum precipitation series due to its advantages over at-site estimation. The regional frequency approach pools the information from climatologically similar sites to make reliable estimates of quantiles given that the pooling group is homogeneous and of reasonable size. We have used Region of influence (ROI) approach along with homogeneity measure based on L-moments to identify the homogenous pooling groups for each site. Five 3-parameter distributions (i.e., Generalized Logistic, Generalized Extreme value, Generalized Normal, Pearson Type Three, and Generalized Pareto) are used for a thorough selection of appropriate models that fit the sample data. Uncertainties related to the selection of the distributions and historical data are quantified using the Bayesian Model Averaging and Balanced Bootstrap approaches respectively. The results from this study can be used to update the current design and management of hydraulic structures as well as in exploring spatio-temporal variations of extreme precipitation and associated risk.

  12. Electric fields, Joule and particle heating in the high latitude thermosphere. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, A [Auroral Observatory, Tromsoe (Norway)

    1976-08-01

    A short review of the recent high latitude measurements of ionospheric electric fields is given. The importance of investigating large-scale and slowly-varying electric fields in order to study magnetospheric convection is stressed. The motion of such high energetic phenomena as auroral forms and spread E-region echoes must be treated by extreme caution when interpreted as a manifestation of convection motion. The relationship between the ionospheric source and polarization field is still an unanswered problem. It is indicated that progress can be made in this respect when electric fields and conductivities are measured simultaneously in the ionosphere. Evidence is shown at one occasion that the meridional component during an auroral sunstorm might be mainly a polarization field. The height-integrated Joule heating rate is occasionally found to be far larger than the solar radiation input at auroral altitudes. The presence of this additional heat source at any time of day is expected to have a strong impact on the global-scale atmospheric dynamics. From comparisons made between Joule and particle heating it appears that the two components are comparable. It is expected that high latitude incoherent radars will contribute substantially to the understanding of these phenomena in the near future.

  13. Recent and future extreme precipitation over Ukraine

    Science.gov (United States)

    Vyshkvarkova, Olena; Voskresenskaya, Elena

    2014-05-01

    of Atlantic multidecadal oscillation. Typical space distribution of extreme precipitation (R95p) for seasons and for year is characterized by their southward intensity increasing from North-East and North-West. Summer precipitation extremes are characterized by quite homogeneous distribution. Linear trends of indices of precipitation extremes (R95p, R20mm and R30mm) for period 1951 - 2005 are mainly negative in winter season and positive in summer. To analyze the possible changes of extreme precipitation it was calculated the R95p index for recent climate period (1986 - 2005) and for periods 2046 - 2065 and 2081 - 2100 (as it was recommended by IPCC). Its difference between 1986 - 2005 and 2046 - 2065 shows that intensity of extreme precipitation will decrease in the north-east and increase in the south-west regions, especially in summer season. Magnitude of intensity changes of extreme precipitation will be ± 4 - 5 mm/day. The intensity changes of extreme precipitation since the recent climate period till the end of the century will be some less (2 - 3 mm/day) than in previous period, except summer months. Number of cases with precipitation extremes will be increase in southern regions of Ukraine in summer seasons. In other seasons it will be at the recent climate level.

  14. Future frequencies of extreme weather events in the National Wildlife Refuges of the conterminous U.S.

    Science.gov (United States)

    Martinuzzi, Sebastian; Allstadt, Andrew J.; Bateman, Brooke L.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Vavrus, Stephen J.; Radeloff, Volker C.

    2016-01-01

    Climate change is a major challenge for managers of protected areas world-wide, and managers need information about future climate conditions within protected areas. Prior studies of climate change effects in protected areas have largely focused on average climatic conditions. However, extreme weather may have stronger effects on wildlife populations and habitats than changes in averages. Our goal was to quantify future changes in the frequency of extreme heat, drought, and false springs, during the avian breeding season, in 415 National Wildlife Refuges in the conterminous United States. We analyzed spatially detailed data on extreme weather frequencies during the historical period (1950–2005) and under different scenarios of future climate change by mid- and late-21st century. We found that all wildlife refuges will likely experience substantial changes in the frequencies of extreme weather, but the types of projected changes differed among refuges. Extreme heat is projected to increase dramatically in all wildlife refuges, whereas changes in droughts and false springs are projected to increase or decrease on a regional basis. Half of all wildlife refuges are projected to see increases in frequency (> 20% higher than the current rate) in at least two types of weather extremes by mid-century. Wildlife refuges in the Southwest and Pacific Southwest are projected to exhibit the fastest rates of change, and may deserve extra attention. Climate change adaptation strategies in protected areas, such as the U.S. wildlife refuges, may need to seriously consider future changes in extreme weather, including the considerable spatial variation of these changes.

  15. Climate change impacts on extreme events in the United States: an uncertainty analysis

    Science.gov (United States)

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  16. Dosimetry to extremities at the Center of positron emission tomography (PET) at the Purpan hospital of Toulouse

    International Nuclear Information System (INIS)

    Sevilla, A.

    2008-01-01

    The study of the dosimetry statements shows that the daily whole body dose equivalent measured for a manipulator is 13 μSv /day and this for the realization of 3 examinations a day with an average activity injected by 285 MBq and that the extremities dose is 175 μSv /day. If we return this to 10 examinations a day, the annual whole body dose equivalent could approach 10 mSv /year and the extremities dose equivalent 130 mSv /year what is far from being unimportant and confirms the classification of the manipulators in category A. These estimations show the necessity of reducing at most the dose equivalent received by beginning a thought on the staff movement and on the radiation protection equipments. The study of doses to the extremities showed that the dose equivalent received was far from being unimportant but could be reduced in a significant way by simple means (pliers, simplification of the stages) and that the dosimetry to the extremities (TLD ring ) was imperative. (N.C.)

  17. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  18. Heat transport in bubbling turbulent convection

    NARCIS (Netherlands)

    Lakkaraju, R.; Stevens, Richard Johannes Antonius Maria; Oresta, P.; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to

  19. A new 'bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen.

    Science.gov (United States)

    Jacobs, Stephanie J; Pezza, Alexandre B; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor 'bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  20. A new `bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen

    Science.gov (United States)

    Jacobs, Stephanie J.; Pezza, Alexandre B.; Barras, Vaughan; Bye, John

    2014-03-01

    Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor `bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.

  1. Heat stress and public health: a critical review.

    Science.gov (United States)

    Kovats, R Sari; Hajat, Shakoor

    2008-01-01

    Heat is an environmental and occupational hazard. The prevention of deaths in the community caused by extreme high temperatures (heat waves) is now an issue of public health concern. The risk of heat-related mortality increases with natural aging, but persons with particular social and/or physical vulnerability are also at risk. Important differences in vulnerability exist between populations, depending on climate, culture, infrastructure (housing), and other factors. Public health measures include health promotion and heat wave warning systems, but the effectiveness of acute measures in response to heat waves has not yet been formally evaluated. Climate change will increase the frequency and the intensity of heat waves, and a range of measures, including improvements to housing, management of chronic diseases, and institutional care of the elderly and the vulnerable, will need to be developed to reduce health impacts.

  2. Energetic and Exergy Efficiency of a Heat Storage Unit for Building Heating

    International Nuclear Information System (INIS)

    Hazami, Mejdi; Kooli, Sami; Lazaar, Meriem; Farhat, Abdelhamid; Belghith, Ali

    2009-01-01

    This paper deals with a numerical and experimental investigation of a daily solar storage system conceived and built in Laboratoire de Maitrise des Technologies de l Energie (LMTE, Borj Cedria). This system consists mainly of the storage unit connected to a solar collector unit. The storage unit consists of a wooden case with dimension of 5 m 3 (5 m x 1m x 1m) filed with fin sand. Inside the wooden case was buried a network of a polypropylene capillary heat exchanger with an aperture area equal to 5 m 2 . The heat collection unit consisted of 5 m 2 of south-facing solar collector mounted at a 37 degree tilt angle. In order to evaluate the system efficiency during the charging period (during the day) and discharging period (during the night) an energy and exergy analyses were applied. Outdoor experiments were also carried out under varied environmental conditions for several consecutive days. Results showed that during the charging period, the average daily rates of thermal energy and exergy stored in the heat storage unit were 400 and 2.6 W, respectively. It was found that the net energy and exergy efficiencies in the charging period were 32 pour cent and 22 pour cent, respectively. During the discharging period, the average daily rates of the thermal energy and exergy recovered from the heat storage unit were 2 kW and 2.5 kW, respectively. The recovered heat from the heat storage unit was used for the air-heating of a tested room (4 m x 3 m x 3 m). The results showed that 30 pour cent of the total heating requirement of the tested room was obtained from the heat storage system during the whole night in cold seasons

  3. Observed changes in extreme precipitation in Poland: 1991-2015 versus 1961-1990

    Science.gov (United States)

    Pińskwar, Iwona; Choryński, Adam; Graczyk, Dariusz; Kundzewicz, Zbigniew W.

    2018-01-01

    Several episodes of extreme precipitation excess and extreme precipitation deficit, with considerable economic and social impacts, have occurred in Europe and in Poland in the last decades. However, the changes of related indices exhibit complex variability. This paper analyses changes in indices related to observed abundance and deficit of precipitated water in Poland. Among studied indices are maximum seasonal 24-h precipitation for the winter half-year (Oct.-March) and the summer half-year (Apr.-Sept.), maximum 5-day precipitation, maximum monthly precipitation and number of days with intense or very intense precipitation (respectively, in excess of 10 mm or 20 mm per day). Also, the warm-seasonal maximum number of consecutive dry days (longest period with daily precipitation below 1 mm) was examined. Analysis of precipitation extremes showed that daily maximum precipitation for the summer half-year increased for many stations, and increases during the summer half-year are more numerous than those in the winter half-year. Also, analysis of 5-day and monthly precipitation sums show increases for many stations. Number of days with intense precipitation increases especially in the north-western part of Poland. The number of consecutive dry days is getting higher for many stations in the summer half-year. Comparison of these two periods: colder 1961-1990 and warmer 1991-2015, revealed that during last 25 years most of statistical indices, such as 25th and 75th percentiles, median, mean and maximum are higher. However, many changes discussed in this paper are weak and statistically insignificant. The findings reported in this paper challenge results based on earlier data that do not include 2007-2015.

  4. Temperature Variation and Heat Wave and Cold Spell Impacts on Years of Life Lost Among the Urban Poor Population of Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    Thaddaeus Egondi

    2015-03-01

    Full Text Available Weather extremes are associated with adverse health outcomes, including mortality. Studies have investigated the mortality risk of temperature in terms of excess mortality, however, this risk estimate may not be appealing to policy makers assessing the benefits expected for any interventions to be adopted. To provide further evidence of the burden of extreme temperatures, we analyzed the effect of temperature on years of life lost (YLL due to all-cause mortality among the population in two urban informal settlements. YLL was generated based on the life expectancy of the population during the study period by applying a survival analysis approach. Association between daily maximum temperature and YLL was assessed using a distributed lag nonlinear model. In addition, cold spell and heat wave effects, as defined according to different percentiles, were investigated. The exposure-response curve between temperature and YLL was J-shaped, with the minimum mortality temperature (MMT of 26 °C. An average temperature of 21 °C compared to the MMT was associated with an increase of 27.4 YLL per day (95% CI, 2.7–52.0 years. However, there was no additional effect for extended periods of cold spells, nor did we find significant associations between YLL to heat or heat waves. Overall, increased YLL from all-causes were associated with cold spells indicating the need for initiating measure for reducing health burdens.

  5. [Mathematical apparatus of the circuit theory in modeling of heat transfer upon extreme heating of an organism].

    Science.gov (United States)

    2010-01-01

    The mathematical model of heat transfer in whole-body hyperthermia, developed earlier by the author, has been refined using the mathematical apparatus of the circuit theory. The model can be used to calculate the temperature of each organ, which can increase the efficacy and safety of the immersion-convection technique of whole-body hyperthermia.

  6. Pulsed Laser Techniques in Laser Heated Diamond Anvil Cells for Studying Methane (CH4) and Water (H2O) at Extreme Pressures and Temperatures

    Science.gov (United States)

    Holtgrewe, N.; Lobanov, S.; Mahmood, M.; Goncharov, A. F.

    2017-12-01

    Scientific advancement in the fields of high pressure material synthesis and research on planetary interiors rely heavily on a variety of techniques for probing such extreme conditions, such as laser-heating diamond anvil cells (LHDACs) (Goncharov et al., J. Synch. Rad., 2009) and shock compression (Nellis et al., J. Chem. Phys., 2001/ Armstrong et al., Appl. Phys. Lett., 2008). However, certain chemical properties can create complications in the detection of such extreme states, for example the instability of energetic materials, and detection of these dynamic chemical states by time-resolved methods has proven to be valuable in exploring the kinetics of these materials. Current efforts at the Linac Coherent Light Source (LCLS) for exploring the transitions between different phases of condensed matter (Armstrong et. al., APS Mar. Meeting, 2017/ Radousky et al., APS Mar. Meeting, 2017), and X-ray synchrotron pulsed heating are useful techniques but require large facilities and are not always accessible. Instead, optical properties of materials can serve as a window into the state or structure of species through electronic absorption properties. Pump-probe spectroscopy can be used to detect these electronic properties in time and allow the user to develop a picture of complex dynamic chemical events. Here we present data acquired up to 1.5 megabar (Mbar) pressures and temperatures >3000 K using pulsed transmission/reflective spectroscopy combined with a pulsed LHDAC and time-resolved detection (streak camera) (McWilliams et. al., PNAS, 2015/ McWilliams et al., PRL, 2016). Time-resolved optical properties will be presented on methane (CH4) and water (H2O) at P-T conditions found in icy bodies such as Uranus and Neptune (Lee and Scandolo, Nature Comm., 2011). Our results show that the interiors of Uranus and Neptune are optically opaque at P-T conditions corresponding to the mantles of these icy bodies, which has implications for the unusual magnetic fields of these

  7. Extreme Programming Pocket Guide

    CERN Document Server

    Chromatic

    2003-01-01

    Extreme Programming (XP) is a radical new approach to software development that has been accepted quickly because its core practices--the need for constant testing, programming in pairs, inviting customer input, and the communal ownership of code--resonate with developers everywhere. Although many developers feel that XP is rooted in commonsense, its vastly different approach can bring challenges, frustrations, and constant demands on your patience. Unless you've got unlimited time (and who does these days?), you can't always stop to thumb through hundreds of pages to find the piece of info

  8. Understanding extreme sea levels for coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter

  9. An experimental observation of the effect of flow direction for evaporation heat transfer in plate heat exchanger

    International Nuclear Information System (INIS)

    Lin, Yueh-Hung; Li, Guang-Cheng; Yang, Chien-Yuh

    2015-01-01

    This study provides an Infrared Thermal Image observation on the evaporation heat transfer of refrigerant R-410A in plate heat exchanger with various flow arrangement and exit superheat conditions. An experimental method was derived for estimating the superheat region area of two-phase refrigerant evaporation in plate heat exchanger. The experimental results show that the superheat region area for parallel flow is much larger than that for counter flow as that estimated by Yang et al. [9]. There is an early superheated region at the central part of the plate heat exchanger for parallel flow arrangement. This effect is not significant for counter flow arrangement. The Yang et al. [9] method under estimated the superheat area approximately 40%–53% at various flow rates and degree of exit superheat. Even though the flow inside a plate heat exchanger is extremely turbulent because of the chevron flow passages, the assumption of uniform temperature distribution in the cross section normal to the bulk flow direction will cause significant uncertainties for estimating the superheat area for refrigerant evaporating in a plate heat exchanger

  10. Puget Sound Area Electric Reliability Plan. Appendix D, Conservation, Load Management and Fuel Switching Analysis : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  11. Puget Sound area electric reliability plan

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  12. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    OpenAIRE

    Van Oldenborgh, Geert Jan; Van Der Wiel, Karin; Sebastian, A.G.; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-01-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1)...

  13. Did European temperatures in 1540 exceed present-day records?

    Science.gov (United States)

    Orth, Rene; Vogel, Martha M.; Luterbacher, Jürg; Pfister, Christian; Seneviratne, Sonia I.

    2017-04-01

    There is strong evidence that the year 1540 was exceptionally dry and warm in Central Europe. Here we infer 1540 summer temperatures from the number of dry days (NDDs) in spring (March-May) and summer (June-August) in 1540 derived from historical documentary evidence published elsewhere, and compare our estimates with present-day temperatures. We translate the NDD values into temperature distributions using a linear relationship between modeled temperature and NDD from a 3000 year pre-industrial control simulation with the Community Earth System Model (CESM). Our results show medium confidence that summer mean temperatures (T JJA) and maximum temperatures (TXx) in Central Europe in 1540 were warmer than the respective present-day mean summer temperatures (assessed between 1966-2015). The model-based reconstruction suggests further that with a probability of 40%-70%, the highest daily temperatures in 1540 were even warmer than in 2003, while there is at most a 20% probability that the 1540 mean summer temperature was warmer than that of 2003 in Central Europe. As with other state-of-the-art analyses, the uncertainty of the reconstructed 1540 summer weather in this study is considerable, for instance as extrapolation is required because 1540-like events are not captured by the employed Earth system model (ESM), and neither by other ESMs. However, in addition to paleoclimatological approaches we introduce here an independent methodology to estimate 1540 temperatures, and contribute consequently to a reduced overall uncertainty in the analysis of this event. The characterization of such events and the related climate system functioning is particularly relevant in the context of global warming and the corresponding increase of extreme heat wave magnitude and occurrence frequency. Orth, R., M.M. Vogel, J. Luterbacher, C. Pfister, and S.I. Seneviratne, (2016): Did European temperatures in 1540 exceed present-day records? Env. Res. Lett., 11, 114021, doi: 10.1088/1748-9326/11/11/114021

  14. Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-06-01

    Full Text Available In this paper, an optimal energy management strategy for a cooperative multi-microgrid system with combined cooling, heat and power (CCHP is proposed and has been verified for a test case of building microgrids (BMGs. Three different demand types of buildings are considered and the BMGs are assumed to be equipped with their own combined heat and power (CHP generators. In addition, the BMGs are also connected to an external energy network (EEN, which contains a large CHP, an adsorption chiller (ADC, a thermal storage tank, and an electric heat pump (EHP. By trading the excess electricity and heat energy with the utility grid and EEN, each BMG can fulfill its energy demands. Seasonal energy demand variations have been evaluated by selecting a representative day for the two extreme seasons (summer and winter of the year, among the real profiles of year-round data on electricity, heating, and cooling usage of all the three selected buildings. Especially, the thermal energy management aspect is emphasized where, bi-lateral heat trading between the energy supplier and the consumers, so-called energy prosumer concept, has been realized. An optimization model based on mixed integer linear programming has been developed for minimizing the daily operation cost of the EEN while fulfilling the energy demands of the BMGs. Simulation results have demonstrated the effectiveness of the proposed strategy.

  15. Estimation of the impact of climate change-induced extreme precipitation events on floods

    Science.gov (United States)

    Hlavčová, Kamila; Lapin, Milan; Valent, Peter; Szolgay, Ján; Kohnová, Silvia; Rončák, Peter

    2015-09-01

    In order to estimate possible changes in the flood regime in the mountainous regions of Slovakia, a simple physically-based concept for climate change-induced changes in extreme 5-day precipitation totals is proposed in the paper. It utilizes regionally downscaled scenarios of the long-term monthly means of the air temperature, specific air humidity and precipitation projected for Central Slovakia by two regional (RCM) and two global circulation models (GCM). A simplified physically-based model for the calculation of short-term precipitation totals over the course of changing air temperatures, which is used to drive a conceptual rainfall-runoff model, was proposed. In the paper a case study of this approach in the upper Hron river basin in Central Slovakia is presented. From the 1981-2010 period, 20 events of the basin's most extreme average of 5-day precipitation totals were selected. Only events with continual precipitation during 5 days were considered. These 5-day precipitation totals were modified according to the RCM and GCM-based scenarios for the future time horizons of 2025, 2050 and 2075. For modelling runoff under changed 5-day precipitation totals, a conceptual rainfall-runoff model developed at the Slovak University of Technology was used. Changes in extreme mean daily discharges due to climate change were compared with the original flood events and discussed.

  16. The National Extreme Events Data and Research Center (NEED)

    Science.gov (United States)

    Gulledge, J.; Kaiser, D. P.; Wilbanks, T. J.; Boden, T.; Devarakonda, R.

    2014-12-01

    The Climate Change Science Institute at Oak Ridge National Laboratory (ORNL) is establishing the National Extreme Events Data and Research Center (NEED), with the goal of transforming how the United States studies and prepares for extreme weather events in the context of a changing climate. NEED will encourage the myriad, distributed extreme events research communities to move toward the adoption of common practices and will develop a new database compiling global historical data on weather- and climate-related extreme events (e.g., heat waves, droughts, hurricanes, etc.) and related information about impacts, costs, recovery, and available research. Currently, extreme event information is not easy to access and is largely incompatible and inconsistent across web sites. NEED's database development will take into account differences in time frames, spatial scales, treatments of uncertainty, and other parameters and variables, and leverage informatics tools developed at ORNL (i.e., the Metadata Editor [1] and Mercury [2]) to generate standardized, robust documentation for each database along with a web-searchable catalog. In addition, NEED will facilitate convergence on commonly accepted definitions and standards for extreme events data and will enable integrated analyses of coupled threats, such as hurricanes/sea-level rise/flooding and droughts/wildfires. Our goal and vision is that NEED will become the premiere integrated resource for the general study of extreme events. References: [1] Devarakonda, Ranjeet, et al. "OME: Tool for generating and managing metadata to handle BigData." Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 2014. [2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.

  17. Modeling heat stress under different environmental conditions.

    Science.gov (United States)

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  18. Pre-heating mitigates composite degradation.

    Science.gov (United States)

    Silva, Jessika Calixto da; Rogério Vieira, Reges; Rege, Inara Carneiro Costa; Cruz, Carlos Alberto dos Santos; Vaz, Luís Geraldo; Estrela, Carlos; Castro, Fabrício Luscino Alves de

    2015-01-01

    Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey's tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (pheated specimens presented higher radiopacity values than non-pre-heated specimens (pheated specimens (pheating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  19. Predictability and Spatial Characteristics of New-York-City-Area Heat Waves

    Science.gov (United States)

    Raymond, C.; Horton, R. M.

    2016-12-01

    The origins, characteristics, and predictability of extreme heat waves in the Northeast U.S. are simultaneously examined at multiple scales, using hourly observational data from 1948-2014 and focusing in particular on the region surrounding New York City. A novel definition of heat waves - incorporating both temperature and moisture at hourly resolution - is used to identify 3-to-5-day heat waves whose dynamics are then analyzed from 3 weeks prior to 3 weeks subsequent to the event. Inter-event differences in dynamics such as the strength and position of geopotential-height anomalies; the strength, persistence, and orientation of sea breezes; and the dominant 850-hPa wind azimuth, all of which are filtered via local terrain and land-use to create differences in conditions between events at specific locations. In particular, using composite maps and back trajectories, they are found to play an important role in creating mesoscale differences in low-level moisture content, from one side of the metropolitan area to the other. Evidence is presented supporting the influence of coastline orientation in explaining the differences in the relationships between wind azimuth and temperature & moisture advection between New York City proper and northern New Jersey. Self-organizing maps are employed to classify heat waves based on the small-scale differences in temperature and moisture between events, and the results of this classification are then used in correlations with synoptic- and hemispheric-scale geopotential-height anomalies. Considerable predictability of event type on the small-scale (as well as occurrence of a heat wave of any kind) is found, originating primarily from central Pacific and western Atlantic SSTs.

  20. Spatiotemporal extremes of temperature and precipitation during 1960-2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics

    Science.gov (United States)

    Cui, Lifang; Wang, Lunche; Qu, Sai; Singh, Ramesh P.; Lai, Zhongping; Yao, Rui

    2018-05-01

    Recently, extreme climate variation has been studied in different parts of the world, and the present study aims to study the impacts of climate extremes on vegetation. In this study, we analyzed the spatiotemporal variations of temperature and precipitation extremes during 1960-2015 in the Yangtze River Basin (YRB) using the Mann-Kendall (MK) test with Sen's slope estimator and kriging interpolation method based on daily precipitation (P), maximum temperature (T max), and minimum temperature (T min). We also analyzed the vegetation dynamics in the YRB during 1982-2015 using Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets and investigated the relationship between temperature and precipitation extremes and NDVI using Pearson correlation coefficients. The results showed a pronounced increase in the annual mean maximum temperature (T nav) and mean minimum temperature (T xav) at the rate of 0.23 °C/10 years and 0.15 °C/10 years, respectively, during 1960-2015. In addition, the occurrence of warm days and warm nights shows increasing trends at the rate of 1.36 days/10 years and 1.70 days/10 years, respectively, while cold days and cold nights decreased at the rate of 1.09 days/10 years and 2.69 days/10 years, respectively, during 1960-2015. The precipitation extremes, such as very wet days (R95, the 95th percentile of daily precipitation events), very wet day precipitation (R95p, the number of days with rainfall above R95), rainstorm (R50, the number of days with rainfall above 50 mm), and maximum 1-day precipitation (RX1day), all show pronounced increasing trends during 1960-2015. In general, annual mean NDVI over the whole YRB increased at the rate of 0.01/10 years during 1982-2015, with an increasing transition around 1994. Spatially, annual mean NDVI increased in the northern, eastern, and parts of southwestern YRB, while it decreased in the YRD and parts of southern YRB during 1982-2015. The correlation

  1. Some Problems of the Integration of Heat Pump Technology into a System of Combined Heat and Electricity Production

    Directory of Open Access Journals (Sweden)

    G. Böszörményi

    2001-01-01

    Full Text Available The closure of a part of the municipal combined heat and power (CHP plant of Košice city would result in the loss of 200 MW thermal output within a realtively short period of time. The long term development plan for the Košice district heating system concentrates on solving this problem. Taking into account the extremely high (90 % dependence of Slovakia on imported energy sources and the desirability of reducing the emission of pollutantst the alternative of supplying of 100 MW thermal output from geothermal sources is attractive. However the indices of economic efficiency for this alternative are unsatisfactory. Cogeneration of electricity and heat in a CHP plant, the most efficient way of supplying heat to Košice at the present time. If as planned, geothermal heat is fed directly into the district heating network the efficiency would be greatly reduced. An excellent solution of this problem would be a new conception, preferring the utilization of geothermal heat in support of a combined electricity and heat production process. The efficiency of geothermal energy utilization could be increased through a special heat pump. This paper deals with several aspects of the design of a heat pump to be integrated into the system of the CHP plant.

  2. Possible biphasic sweating response during short-term heat acclimation protocol for tropical natives.

    Science.gov (United States)

    Magalhães, Flávio de Castro; Machado-Moreira, Christiano Antônio; Vimieiro-Gomes, Ana Carolina; Silami-Garcia, Emerson; Lima, Nilo Resende Viana; Rodrigues, Luiz Oswaldo Carneiro

    2006-05-01

    The aim of the present study was to evaluate the sweat loss response during short-term heat acclimation in tropical natives. Six healthy young male subjects, inhabitants of a tropical region, were heat acclimated by means of nine days of one-hour heat-exercise treatments (40+/-0 degrees C and 32+/-1% relative humidity; 50% (.)VO(2peak) on a cycle ergometer). On days 1 to 9 of heat acclimation whole-body sweat loss was calculated by body weight variation corrected for body surface area. On days 1 and 9 rectal temperature (T(re)) and heart rate (HR) were measured continuously, and rating of perceived exertion (RPE) every 4 minutes. Heat acclimation was confirmed by reduced HR (day 1 rest: 77+/-5 b.min(-1); day 9 rest: 68+/-3 b.min(-1); day 1 final exercise: 161+/-15 b.min(-1); day 9 final exercise: 145+/-11 b.min(-1), p0.05) of the protocol. These findings are consistent with the heat acclimation induced adaptations and suggest a biphasic sweat response (an increase in the sweat rate in the middle of the protocol followed by return to initial values by the end of it) during short-term heat acclimation in tropical natives.

  3. Factors contributing to record-breaking heat waves over the Great Plains during the 1930s Dust Bowl

    Science.gov (United States)

    Cowan, T.; Hegerl, G. C.

    2016-12-01

    Record-breaking summer heat waves that plagued contiguous United States in the 1930s emerged during the decade-long "Dust Bowl" drought. Using high-quality daily temperature observations, the Dust Bowl heat wave characteristics for the Great Plains are assessed using metrics that describe variations in heat wave activity and intensity. We also quantify record-breaking heat waves over the pre-industrial period for 22 CMIP5 model multi-century realisations. The most extreme Great Plains heat wave summers in the Dust Bowl decade (e.g. 1931, 1934, 1936) were pre-conditioned by anomalously dry springs, as measured by proxy drought indices. In general, summer heat waves over the Great Plains develop 15-20 days earlier after anomalously dry springs, and are also significantly longer and hotter, indicative of the importance of land surface feedbacks in heat wave intensification. The majority of pre-industrial climate model experiments capture regionally clustered summer heat waves across North America, although the North Pacific and Atlantic sea surface temperature patterns associated with the heat waves vary considerably between models. Sea surface temperature patterns may be more important for influencing winter and spring precipitation, thus amplifying summer heat waves during drought periods. The synoptic pattern that commonly appeared during the exceptional Dust Bowl heat waves featured an anomalous broad surface pressure ridge straddling an upper level blocking anticyclone over the western United States. This forced significant subsidence and adiabatic warming over the Great Plains, and triggered anomalous southward warm advection over southern regions, prolonging and amplifying the heat waves over central United States. Importantly, the results show that despite the sparsity of stations in the 1930s, homogeneous observations are crucial in accurately quantifying the Dust Bowl decade heat waves, as opposed to solely relying on atmospheric reanalysis.

  4. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    Science.gov (United States)

    Akinsanola, A. A.; Zhou, Wen

    2018-05-01

    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  5. Shelf-life extension of bread by heat and irradiation treatment [Bangladesh

    International Nuclear Information System (INIS)

    Begum, F.; Siddique, A.K.; Choudhury, N.; Mollah, R.A.

    1994-01-01

    Bread slices were given irradiation treatment 0.5, 1.0, 1.5, and 2.0 KGy and heat treatment at 60 deg. C for 20 min to control mould growth. Mould growth was reladed at ambient temperature by 3, 4, 6 and 8 days after 0.5, 1.0, 1.5 and 2.0 KGy treatments, respectively, compared to 2 days in case of control sample and 3 days for heat treatment alone. Combination of heat with irradiation at 0.5, 1.0, 1.5 and 2.0 KGy retarded mould growth up to 4, 6, 7 an 9 days, respectively. Organoleptically, the irradiated bread slices were acceptable up to 3 to 6 days depending on the treatment. The combination method treated slices were acceptable up to 8 days. The application of radiation dose exceeding 2.0 KGy caused off flavour. Mild heat treatment and radiation in combination resulted in a synergistic antifungal effect and enhanced shelf-life of bread

  6. Imaging extrasolar planets with the European Extremely Large Telescope

    Directory of Open Access Journals (Sweden)

    Jolissaint L.

    2011-07-01

    Full Text Available The European Extremely Large Telescope (E-ELT is the most ambitious of the ELTs being planned. With a diameter of 42 m and being fully adaptive from the start, the E-ELT will be more than one hundred times more sensitive than the present-day largest optical telescopes. Discovering and characterising planets around other stars will be one of the most important aspects of the E-ELT science programme. We model an extreme adaptive optics instrument on the E-ELT. The resulting contrast curves translate to the detectability of exoplanets.

  7. Secular trends in monthly heating and cooling demands in Croatia

    Science.gov (United States)

    Cvitan, Lidija; Sokol Jurković, Renata

    2016-08-01

    This paper analyzes long-term heating and cooling trends for five locations in Croatia from 1901 to 2008 to assist in the revision of Croatia's heating and cooling energy policy. Trends in monthly heating degree-days (HDD) and cooling degree-days (CDD) were determined for three related temperature threshold values each and analyzed to provide insight into the influence of desired thermal comfort on the extent of changes in energy consumption. Monthly trends in the corresponding number of heating days (HD) and cooling days (CD) were also analyzed. A basic investigation of HDD, HD, CDD, and CD trends proved to be essential to the development of a complete description of important climate-related conditions that impact energy demands associated with heating and cooling. In a few cases, the dependence of the trends on the implemented temperature thresholds was rather pronounced and was reflected in great spatial and temporal variations in monthly trends. The statistical significance of the detected monthly trends illustrated a diverse range of possible impacts of climate changes on heating and cooling energy consumption both across and within three main climate regions in Croatia (continental, mountainous, and maritime). It is confirmed that the applied monthly scale for analyses is suitable for assessing heating and cooling practices.

  8. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    Science.gov (United States)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  9. Mortality during heat waves in South Korea, 1991 to 2005: How exceptional was the 1994 heat wave?

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Kim, J.

    2009-01-01

    Roč. 38, č. 2 (2009), s. 105-116 ISSN 0936-577X R&D Projects: GA ČR GC205/07/J044 Institutional research plan: CEZ:AV0Z30420517 Keywords : heat wave * human mortality * East Asia * extreme events * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.250, year: 2009

  10. [Relationship between weather factors and heat stroke in Ningbo city].

    Science.gov (United States)

    Gu, S H; Wang, A H; Bian, G L; He, T F; Yi, B; Lu, B B; Li, X H; Xu, G Z

    2016-08-10

    To explore the main effects of weather factors on heat stroke. Data from case report on heat stroke was collected in Ningbo city during 2011 to 2014. Temperature threshold, lag effects and interaction of weather factors on heat stroke had been analyzed, using the piecewise regression model, distributed lag non-linear model, response surface model and other methods. RESULTS showed that temperature and humidity were more correlated with heat stroke than other weather-related factors. Through different models, daily average temperature always presented a better role in predicting the heat stroke, rather than maximum or minimum temperature. Positive association between daily average temperature and heat stroke was obvious, especially at lag 0-1 days, with its threshold as 29.1 (95% CI: 28.7-29.5) ℃ . The cumulative RR of heat stroke at 90(th) percentile of daily average temperature versus 10(th) percentile was 14.05 (95% CI: 7.23-27.31) in lag 0-1 days. The effects of daily relative humidity on heat stroke appeared nonlinear, with low humidity showing a negative effect on heat stroke and could lag for 1-4 days. However, the effect of high humidity was not significant, with the cumulative RR of low humidity and high humidity as 2.35 (95%CI: 1.27-4.33) and 0.86 (95%CI: 0.40-1.85) in lag of 0-4 days, respectively. We also noticed that there was an interactive effect of both temperature and humidity on heat stroke. Under high temperature and low humidity, the risk of heat stroke showed the highest. Temperature and humidity showed obvious relationship with heat stroke in Ningbo city, with the threshold temperature as 29.1 ℃. Under high temperature and low humidity, the risk of heat stroke became the highest.

  11. Spontaneous De-Icing Phenomena on Extremely Cold Surfaces

    Science.gov (United States)

    Song, Dong; Choi, Chang-Hwan

    2017-11-01

    Freezing of droplets on cold surfaces is universal phenomenon, while the mechanisms are still inadequately understood. Here we report spontaneous de-icing phenomena of an impacting droplet which occur on extreme cold surfaces. When a droplet impacts on cold surfaces lower than -80°, it takes more than two times longer for the droplet to freeze than the ones at -50°. Moreover, the frozen droplet below -80° breaks up into several large parts spontaneously in the end. When a droplet impacts on the extreme cold surfaces, evaporation and condensation occur immediately as the droplet approaches the substrate. A thick layer of frost forms between the droplet and substrate, decreasing the contact area of the droplet with substrate. It leads to impede the heat transfer and hence extends the freezing time significantly. On the extremely cold substrate, the droplet freezes from the center to the edge area, in contrast to a typical case freezing from the bottom to the top. This novel from-center-to-edge freezing process changes the internal tension of the frozen droplet and results in the instantaneous breakup and release eventually, which can be taken advantage of for effective deicing mechanisms.

  12. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay

    2017-04-01

    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  13. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  14. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  15. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    Science.gov (United States)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  16. A theory of burn-out in heated channels at low mass velocities

    International Nuclear Information System (INIS)

    Randles, J.

    1963-01-01

    At low coolant mass velocities the fraction by weight of vapour flowing out of heated channels can become extremely large (∼ 90%). Consequently, the dominating feature of burn-out at small flow rates is that it occurs at high vapour qualities. For such a high degree of evaporation, the induced turbulence is very strong and the liquid phase is dispersed into a spray of droplets. By the application of the first law of thermodynamics and some basic relationships of turbulence theory to this spray, it is shown how an expression for the critical heat flux can be derived. By comparing this expression with the data from burn-out measurements on uniformly heated channels, reasonably good agreement is obtained. It is demonstrated that eddy slip and channel geometry are extremely important in the determination of the level of turbulence in the droplet motion. Having thus established a reasonable degree of plausibility for the theory, it is applied to channels heated by a chopped cosine form of power distribution. The results indicate that the effect of the axial variation of the power on the burnout heat flux can be described in a simple manner. (author)

  17. Extremely high concentration of folates in premature newborns.

    Science.gov (United States)

    Zikavska, T; Brucknerova, I

    2014-01-01

    Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).

  18. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    Science.gov (United States)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  19. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis.

    Science.gov (United States)

    Schmitt, Sarah E; Pargeon, Kimberly; Frechette, Eric S; Hirsch, Lawrence J; Dalmau, Josep; Friedman, Daniel

    2012-09-11

    To determine continuous EEG (cEEG) patterns that may be unique to anti-NMDA receptor (NMDAR) encephalitis in a series of adult patients with this disorder. We evaluated the clinical and EEG data of 23 hospitalized adult patients with anti-NMDAR encephalitis who underwent cEEG monitoring between January 2005 and February 2011 at 2 large academic medical centers. Twenty-three patients with anti-NMDAR encephalitis underwent a median of 7 (range 1-123) days of cEEG monitoring. The median length of hospitalization was 44 (range 2-200) days. Personality or behavioral changes (100%), movement disorders (82.6%), and seizures (78.3%) were the most common symptoms. Seven of 23 patients (30.4%) had a unique electrographic pattern, which we named "extreme delta brush" because of its resemblance to waveforms seen in premature infants. The presence of extreme delta brush was associated with a more prolonged hospitalization (mean 128.3 ± 47.5 vs 43.2 ± 39.0 days, p = 0.008) and increased days of cEEG monitoring (mean 27.6 ± 42.3 vs 6.2 ± 5.6 days, p = 0.012). The modified Rankin Scale score showed a trend toward worse scores in patients with the extreme delta brush pattern (mean 4.0 ± 0.8 vs 3.1 ± 1.1, p = 0.089). Extreme delta brush is a novel EEG finding seen in many patients with anti-NMDAR encephalitis. The presence of this pattern is associated with a more prolonged illness. Although the specificity of this pattern is unclear, its presence should raise consideration of this syndrome.

  20. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  1. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  2. Temperature extremes: Effect on plant growth and development

    Directory of Open Access Journals (Sweden)

    Jerry L. Hatfield

    2015-12-01

    Full Text Available Temperature is a primary factor affecting the rate of plant development. Warmer temperatures expected with climate change and the potential for more extreme temperature events will impact plant productivity. Pollination is one of the most sensitive phenological stages to temperature extremes across all species and during this developmental stage temperature extremes would greatly affect production. Few adaptation strategies are available to cope with temperature extremes at this developmental stage other than to select for plants which shed pollen during the cooler periods of the day or are indeterminate so flowering occurs over a longer period of the growing season. In controlled environment studies, warm temperatures increased the rate of phenological development; however, there was no effect on leaf area or vegetative biomass compared to normal temperatures. The major impact of warmer temperatures was during the reproductive stage of development and in all cases grain yield in maize was significantly reduced by as much as 80−90% from a normal temperature regime. Temperature effects are increased by water deficits and excess soil water demonstrating that understanding the interaction of temperature and water will be needed to develop more effective adaptation strategies to offset the impacts of greater temperature extreme events associated with a changing climate.

  3. Unprecedented 2015/2016 Indo-Pacific Heat Transfer Speeds Up Tropical Pacific Heat Recharge

    Science.gov (United States)

    Mayer, Michael; Alonso Balmaseda, Magdalena; Haimberger, Leopold

    2018-04-01

    El Niño events are characterized by anomalously warm tropical Pacific surface waters and concurrent ocean heat discharge, a precursor of subsequent cold La Niña conditions. Here we show that El Niño 2015/2016 departed from this norm: despite extreme peak surface temperatures, tropical Pacific (30°N-30°S) upper ocean heat content increased by 9.6 ± 1.7 ZJ (1 ZJ = 1021 J), in stark contrast to the previous strong El Niño in 1997/1998 (-11.5 ± 2.9 ZJ). Unprecedented reduction of Indonesian Throughflow volume and heat transport played a key role in the anomalous 2015/2016 event. We argue that this anomaly is linked with the previously documented intensified warming and associated rising sea levels in the Indian Ocean during the last decade. Additionally, increased absorption of solar radiation acted to dampen Pacific ocean heat content discharge. These results explain the weak and short-lived La Niña conditions in 2016/2017 and indicate the need for realistic representation of Indo-Pacific energy transfers for skillful seasonal-to-decadal predictions.

  4. Relationship between heat index and mortality of 6 major cities in Taiwan.

    Science.gov (United States)

    Sung, Tzu-I; Wu, Pei-Chih; Lung, Shih-Chun; Lin, Chuan-Yao; Chen, Mu-Jean; Su, Huey-Jen

    2013-01-01

    Increased mortality, linked to events of extreme high temperatures, is recognized as one critical challenge to the public health sector. Therefore, this ecological study was conducted to assess whether this association is also significant in Taiwan and the characteristics of the relationship. Daily mean heat indices, from 1994 through 2008, were used as the predictor for the risk of increased mortality in populations from 6 major Taiwanese cities. Daily mortality data from 1994 through 2008 were retrieved from the Taiwan Death Registry, Department of Health, Taiwan, and meteorological data were acquired from the Central Weather Bureau. Poisson regression analyses using generalized linear models were applied to estimate the temperature-mortality relationship. Daily mean heat indices were calculated and used as the temperature metric. Overall, increased risk ratios in mortality were associated with increased daily mean heat indices. Significantly increased risk ratios of daily mortality were evident when daily mean heat indices were at and above the 95th percentile, when compared to the lowest percentile, in all cities. These risks tended to increase similarly among those aged 65 years and older; a phenomenon seen in the cities of Keelung, Taipei, Taichung, Tainan, and Kaohsiung, but not Chiayi. Being more vulnerable to heat stress is likely restricted to a short-term effect, as suggested by lag models which showed that there was dominantly an association during the period of 0 to 3 days. In Taiwan, predicting city-specific daily mean heat indices may provide a useful early warning system for increased mortality risk, especially for the elderly. Regional differences in health vulnerabilities should be further examined in relation to the differential social-ecological systems that affect them. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. E.X.T.R.E.M.E. project. Launch

    International Nuclear Information System (INIS)

    Eyrolle, F.; Charmasson, S.; Masson, O.

    2005-01-01

    Due to the drastic decrease in artificial radioactivity levels from primary sources such as atmospheric fallout or industrial releases, radioactive storages constituted in the past within several environmental compartments act today as non negligible secondary sources. These delayed sources are particularly active during extreme weather or climatic events such as rainfalls or atmospheric deposits, floods, storms, etc...that may remove important mass, generate activity levels higher than the predicted ones from modeling based on mean transfer process, and produce in a couple of hours or days fluxes similar to those accrued over several month or years. Extreme aims at assessing the consequences on man and its environment of natural events that generate extreme radioactive stocks and/or fluxes within several environmental compartments (atmosphere, soils, rivers, coastal marine environment and deep sea areas). (authors)

  6. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India); Sharma, S.K. [Energy Research Centre, Panjab University, Chandigarh 160 017, Punjab (India)

    2007-06-15

    A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C{sup ++} for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004-2005 at Chandigarh (31 N and 78 E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6-7 K and 5-6 K below ambient, respectively for an extreme summer day and 7-8 K and 5-6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature. (author)

  7. Evidence of molecular adaptation to extreme environments and applicability to space environments

    Directory of Open Access Journals (Sweden)

    Filipović M.

    2008-01-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: Escherichia coli (E. coli K12, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0ºC (Metarhizium frigidum (M. frigidum and Methanococcoides burtonii (M. burtonii and 110ºC (Methanopyrus kandleri (M. kandleri. Although not all the components of heat adaptation can be attributed to novel genes, the chaperones known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved chaperons found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique chaperone TF55. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The following hyperthermophile genomes incorporated in this software were used for these studies: Methanocaldococcus jannaschii (M. jannaschii, M. kandleri, Archaeoglobus fulgidus (A. fulgidus and three species of Pyrococcus. Common genes were annotated and grouped according to their roles in cellular processes where such information was available and proteins not previously implicated in the heat-adaptation of hyperthermophiles were identified. Additional experimental data are needed in order to learn more about these proteins. To address non-gene based components of thermal adaptation, all sequenced extremophiles were

  8. Heat stress during the Black Saturday event in Melbourne, Australia

    Science.gov (United States)

    Jacobs, Stephanie J.; Vihma, Timo; Pezza, Alexandre B.

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h-1 and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h-1 to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience.

  9. Assessing the impact of future climate extremes on the US corn and soybean production

    Science.gov (United States)

    Jin, Z.

    2015-12-01

    Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.

  10. A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2015-08-06

    In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4% (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk

  11. Endovascular Management of Deep venous Thrombosis of Lower Extremity in Patients with Malignant Disease

    International Nuclear Information System (INIS)

    Jeong, Su Jin; Kim, Jae Kyu; Jang, Nam Kyu; Han, Seung Min; Kang, Heoung Keun; Choi, Soo Jin Nah

    2009-01-01

    To evaluate the efficacy of endovascular management of lower extremity deep vein thrombosis (DVT) in patients with malignant disease. Between January 2002 and January 2008, six consecutive patients (5 male and 1 female, mean age-65 years) with lower extremity DVT and malignant disease underwent endovascular management. The duration of symptoms lasted 4-120 days (mean-31 days; 20 days or less in four patients and more than 20 days in two). A catheter-directed thrombolysis was performed via the ipsilateral popliteal vein or common femoral vein, used alone or combined with a percutaneous mechanical thrombectomy. Angioplasty or stent placement was performed in residual stenosis or occlusion of the vein. The follow-up period lasted 1-14 months (mean 7.6 months) and was performed via a color Doppler ultrasonography or computed tomographic venography. Technical success and relief from symptoms was achieved within two days was achieved in five patients. Minor hemorrhagic complications occurred in two cases: hematuria and a hematoma at the puncture site. Upon follow-up, a recurrent DVT occurred in three patients as well as a patent venous flow in two. One patient died within 1 month due to a metastatic mediastinal lymphadenopathy. Endovascular management of the lower extremity DVT is effective for quickly eliminating a thrombus, relieving symptoms, and decreasing hemorrhagic complications in patients with malignant disease

  12. Endovascular Management of Deep venous Thrombosis of Lower Extremity in Patients with Malignant Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Su Jin; Kim, Jae Kyu; Jang, Nam Kyu; Han, Seung Min; Kang, Heoung Keun; Choi, Soo Jin Nah [Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2009-07-15

    To evaluate the efficacy of endovascular management of lower extremity deep vein thrombosis (DVT) in patients with malignant disease. Between January 2002 and January 2008, six consecutive patients (5 male and 1 female, mean age-65 years) with lower extremity DVT and malignant disease underwent endovascular management. The duration of symptoms lasted 4-120 days (mean-31 days; 20 days or less in four patients and more than 20 days in two). A catheter-directed thrombolysis was performed via the ipsilateral popliteal vein or common femoral vein, used alone or combined with a percutaneous mechanical thrombectomy. Angioplasty or stent placement was performed in residual stenosis or occlusion of the vein. The follow-up period lasted 1-14 months (mean 7.6 months) and was performed via a color Doppler ultrasonography or computed tomographic venography. Technical success and relief from symptoms was achieved within two days was achieved in five patients. Minor hemorrhagic complications occurred in two cases: hematuria and a hematoma at the puncture site. Upon follow-up, a recurrent DVT occurred in three patients as well as a patent venous flow in two. One patient died within 1 month due to a metastatic mediastinal lymphadenopathy. Endovascular management of the lower extremity DVT is effective for quickly eliminating a thrombus, relieving symptoms, and decreasing hemorrhagic complications in patients with malignant disease.

  13. Impacts of temperature extremes on cardiovascular morbidity and mortality in the Czech Republic

    Science.gov (United States)

    Davídkovová, H.; Kyselý, J.; Plavcová, E.; Urban, A.; Kriz, B.; Kyncl, J.

    2012-04-01

    Elevated mortality associated with high ambient temperatures in summer represents one of the main impacts of weather extremes on human society. Increases in cardiovascular mortality during heat waves have been reported in many European countries; much less is known about which particular cardiovascular disorders are most affected during heat waves, and whether similar patterns are found for morbidity (hospital admissions). Relatively less understood is also cold-related mortality and morbidity in winter, when the relationships between weather and human health are more complex, less direct, and confounded by other factors such as epidemics of influenza/acute respiratory infections. The present study analyses relationships between temperature extremes and cardiovascular morbidity and mortality. We make use of the datasets on hospital admissions and daily mortality in the population of the Czech Republic (about 10.3 million) over 1994-2009. The data have been standardized to remove the effects of the long-term trend and the seasonal and weekly cycles. Periods when the morbidity/mortality data were affected by epidemics of influenza and other acute respiratory infections have been removed from the analysis. We use analogous definitions for hot and cold spells based on quantiles of daily average temperature anomalies, which allows for a comparison of the findings for summer hot spells and winter cold spells. The main aims of the study are (i) to identify deviations of mortality and morbidity from the baseline associated with hot and cold spells, (ii) to compare the hot- and cold-spell effects for individual cardiovascular diseases (e.g. ischaemic heart disease I20-I25, cerebrovascular disease I60-I69, hypertension I10, aterosclerosis I70) and to identify those diagnoses that are most closely linked to temperature extremes, (iii) to identify population groups most vulnerable to temperature extremes, and (iv) to compare the links to temperature extremes for morbidity and

  14. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  15. Heat Stress and feeding strategies in meat-type chickens

    NARCIS (Netherlands)

    Syafwan, W.; Kwakkel, R.P.; Verstegen, M.W.A.

    2011-01-01

    Heat stress can induce hyperthermia in poultry. A reduction in heat load can be achieved by increasing the possibilities for dissipation, decreasing the level of heat production or by changing the thermal production pattern within a day. Strategies to reduce the negative effects of heat stress can

  16. Quantum-limited heat conduction over macroscopic distances

    Science.gov (United States)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  17. Dietary supplementation of Zingiber officinale and Zingiber zerumbet to heat-stressed broiler chickens and its effect on heat shock protein 70 expression, blood parameters and body temperature.

    Science.gov (United States)

    Hasheimi, S R; Zulkifli, I; Somchit, M N; Zunita, Z; Loh, T C; Soleimani, A F; Tang, S C

    2013-08-01

    The present study was conducted to assess the effects of dietary supplementation of Zingiber officinale and Zingiber zerumbet and to heat-stressed broiler chickens on heat shock protein (HSP) 70 density, plasma corticosterone concentration (CORT), heterophil to lymphocyte ratio (HLR) and body temperature. Beginning from day 28, chicks were divided into five dietary groups: (i) basal diet (control), (ii) basal diet +1%Z. zerumbet powder (ZZ1%), (iii) basal diet +2%Z. zerumbet powder (ZZ2%), (iv) basal diet +1%Z. officinale powder (ZO1%) and (v) basal diet +2%Z. officinale powder (ZO2%). From day 35-42, heat stress was induced by exposing birds to 38±1°C and 80% RH for 2 h/day. Irrespective of diet, heat challenge elevated HSP70 expression, CORT and HLR on day 42. On day 42, following heat challenge, the ZZ1% birds showed lower body temperatures than those of control, ZO1% and ZO2%. Neither CORT nor HLR was significantly affected by diet. The ZO2% and ZZ2% diets enhanced HSP70 expression when compared to the control groups. We concluded that dietary supplementation of Z. officinale and Z. zerumbet powder may induce HSP70 reaction in broiler chickens exposed to heat stress. © 2012 Blackwell Verlag GmbH.

  18. The Concomitant Use of Diuretics, Non-Steroidal Anti-Inflammatory Drugs, and Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers (Triple Whammy), Extreme Heat, and In-Hospital Acute Kidney Injury in Older Medical Patients.

    Science.gov (United States)

    Mangoni, Arduino A; Kholmurodova, Feruza; Mayner, Lidia; Hakendorf, Paul; Woodman, Richard J

    2017-11-01

    We investigated whether the concomitant use of diuretics, non-steroidal anti-inflammatory drugs, and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (triple whammy, TW) predicts in-hospital acute kidney injury (AKI) and whether admission during recorded periods of extreme heat influences this association. We retrospectively collected data on patient characteristics and use of TW/non-TW drugs on admission, AKI (increase in serum creatinine ≥ 27 µmol/l either within the first 48 h of admission or throughout hospitalization, primary outcome), length of stay (LOS), and mortality (secondary outcomes) in medical patients ≥65 years admitted (1) during five consecutive heat waves (HWs) between 2007 and 2009 (n = 382) or (2) either before or after each HW, matched for HW period, age, and admission day of the week (non-HW, controls, n = 1339). Number of TW and non-TW drugs, co-morbidities, number of daily admissions, incidence of in-hospital AKI, LOS, and mortality were similar in the HW and non-HW groups. After adjusting for clinical and demographic confounders, logistic regression showed that TW use did not predict AKI within 48 h of admission either during non-HW periods (OR 0.79, 95% CI 0.34-1.83, P = 0.58) or during HWs (OR 1.02, 95% CI 0.21-2.97, P = 0.97). Similar results were observed when AKI was captured throughout hospitalization. TW use did not predict LOS or mortality irrespective of environmental temperature on admission. TW use on admission did not predict in-hospital AKI, LOS, or mortality in older medical patients admitted either during periods of normal environmental temperature or during HWs.

  19. The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: a case crossover analysis

    OpenAIRE

    Wilson, Leigh Ann; Gerard Morgan, Geoffrey; Hanigan, Ivan Charles; Johnston, Fay H; Abu-Rayya, Hisham; Broome, Richard; Gaskin, Clive; Jalaludin, Bin

    2013-01-01

    Background This study examined the association between unusually high temperature and daily mortality (1997?2007) and hospital admissions (1997?2010) in the Sydney Greater Metropolitan Region (GMR) to assist in the development of targeted health programs designed to minimise the public health impact of extreme heat. Methods Sydney GMR was categorized into five climate zones. Heat-events were defined as severe or extreme. Using a time-stratified case-crossover design with a conditional logisti...

  20. Exploring regional stakeholder needs and requirements in terms of Extreme Weather Event Attribution

    Science.gov (United States)

    Schwab, M.; Meinke, I.; Vanderlinden, J. P.; Touili, N.; Von Storch, H.

    2015-12-01

    Extreme event attribution has increasingly received attention in the scientific community. It may also serve decision-making at the regional level where much of the climate change impact mitigation takes place. Nevertheless, there is, to date, little known about the requirements of regional actors in terms of extreme event attribution. We have therefore analysed these at the example of regional decision-makers for climate change-related activities and/or concerned with storm surge risks at the German Baltic Sea and heat wave risks in the Greater Paris area. In order to explore if stakeholders find scientific knowledge from extreme event attribution useful and how this information might be relevant to their decision-making, we consulted a diverse set of actors engaged in the assessment, mitigation and communication of storm surge, heat wave, and climate change-related risks. Extreme event attribution knowledge was perceived to be most useful to public and political awareness-raising, but was of little or no relevance for the consulted stakeholders themselves. It was not acknowledged that it would support adaptation planning as sometimes argued in the literature. The consulted coastal protection, health, and urban adaptation planners rather needed reliable statements about possible future changes in extreme events than causal statements about past events. To enhance salience, a suitable product of event attribution should be linked to regional problems, vulnerabilities, and impacts of climate change. Given that the tolerance of uncertainty is rather low, most of the stakeholders also claimed that a suitable product of event attribution is to be received from a trusted "honest broker" and published rather later, but with smaller uncertainties than vice versa. Institutional mechanisms, like regional climate services, which enable and foster communication, translation and mediation across the boundaries between knowledge and action can help fulfill such requirements

  1. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  2. Innovative system for delivery of low temperature district heating

    Directory of Open Access Journals (Sweden)

    Anton Ivanov Ianakiev

    2017-01-01

    Full Text Available An innovative Low Temperature District Heating (LTDH local network is developed in Nottingham, supported by REMOURBAN project, part of the H2020 Smart City and Community Lighthouse scheme. It was proposed that a branch emanating from the return pipe of the of the existing district heating system in Nottingham would be created to use low temperature heating for the first time in UK. The development is aimed to extract wasted (unused heat from existing district heating system and make it more efficient and profitable. Four maisonette blocks of 94 low-raised flats, at Nottingham demo site of the REMOURBAN project will be connected to this new LTDH system. The scheme will provide a primary supply of heat and hot water at approximately 50oC to 60oC. Innovated solutions have been put forward to overcome certain barriers, such as legionella related risks and peak loads during extreme heating seasons and occasional maintenance.

  3. Climate change and the impact of extreme temperatures on aviation

    Science.gov (United States)

    Coffel, E.; Horton, R.

    2014-12-01

    Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.

  4. [Effect of extremely low frequency magnetic field on glutathione in rat muscles].

    Science.gov (United States)

    Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna

    2014-01-01

    Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

  5. On extreme on the line of phase transition of the first type

    International Nuclear Information System (INIS)

    Magomedov, M.N.

    1995-01-01

    Equations describing behavior of thermodynamic parameters in extreme points on primary phase transition line were derived. The equations were employed to estimate the jump is isothermal compressibility in the point of maximum of bcc-cesium melting curve as well as to estimate the jump of isobaric heat capacity in the minimum point on helium-3 melting curve. 13 refs

  6. CTEPP DATA COLLECTION FORM 05: CHILD DAY CARE CENTER PRE-MONITORING QUESTIONNAIRE

    Science.gov (United States)

    This data collection form is used to identify the potential sources of pollutants at the day care center. The day care teacher is asked questions related to the age of their day care building; age and frequency of cleaning carpets or rugs; types of heating and air conditioning de...

  7. Heat Transfer and Pressure Drop with Rough Surfaces, a Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1964-05-15

    This literature survey deals with changes in heat transfer coefficient and friction factor with varying nature and degree of roughness. Experimental data cover mainly the turbulent flow region for both air and water as flow mediums. Semiempirical analysis about changes in heat transfer coefficient due to roughness has been included. An example of how to use these data to design a heat exchanger surface is also cited. The extreme case of large fins has not been considered. Available literature between 1933 - 1963 has been covered.

  8. Infant otitis media and the use of secondary heating sources.

    Science.gov (United States)

    Pettigrew, Melinda M; Gent, Janneane F; Triche, Elizabeth W; Belanger, Kathleen D; Bracken, Michael B; Leaderer, Brian P

    2004-01-01

    This prospective study investigated the association of exposure to indoor secondary heating sources with otitis media and recurrent otitis media risk in infants. We enrolled mothers living in nonsmoking households and delivering babies between 1993 and 1996 in 12 Connecticut and Virginia hospitals. Biweekly telephone interviews during the first year of life assessed diagnoses from doctors' office visits and use of secondary home heating sources, air conditioner use, and day care. Otitis media episodes separated by more than 21 days were considered to be unique episodes. Recurrent otitis media was defined as 4 or more episodes of otitis media. Repeated-measures logistic regression modeling evaluated the association of kerosene heater, fireplace, or wood stove use with otitis media episodes while controlling for potential confounders. Logistic regression evaluated the relation of these secondary heating sources with recurrent otitis media. None of the secondary heating sources were associated with otitis media or with recurrent otitis media. Otitis media was associated with day care, the winter heating season, birth in the fall, white race, additional children in the home, and a maternal history of allergies in multivariate models. Recurrent otitis media was associated with day care, birth in the fall, white race, and a maternal history of allergies or asthma. We found no evidence that the intermittent use of secondary home heating sources increases the risk of otitis media or recurrent otitis media. This study confirms earlier findings regarding the importance of day care with respect to otitis media risk.

  9. Extreme climate in China. Facts, simulation and projection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui-Jun; Sun, Jian-Qi; Chen, Huo-Po; Zhu, Ya-Li; Zhang, Ying; Jiang, Da-Bang; Lang, Xian-Mei; Fan, Ke; Yu, En-Tao [Chinese Academy of Sciences, Beijing (China). Inst. of Atmospheric Physics; Yang, Song [NOAA Climate Prediction Center, Camp Springs, MD (United States)

    2012-06-15

    In this paper, studies on extreme climate in China including extreme temperature and precipitation, dust weather activity, tropical cyclone activity, intense snowfall and cold surge activity, floods, and droughts are reviewed based on the peer-reviewed publications in recent decades. The review is focused first on the climatological features, variability, and trends in the past half century and then on simulations and projections based on global and regional climate models. As the annual mean surface air temperature (SAT) increased throughout China, heat wave intensity and frequency overall increased in the past half century, with a large rate after the 1980s. The daily or yearly minimum SAT increased more significantly than the mean or maximum SAT. The long-term change in precipitation is predominantly characterized by the so-called southern flood and northern drought pattern in eastern China and by the overall increase over Northwest China. The interdecadal variation of monsoon, represented by the monsoon weakening in the end of 1970s, is largely responsible for this change in mean precipitation. Precipitation-related extreme events (e.g., heavy rainfall and intense snowfall) have become more frequent and intense generally over China in the recent years, with large spatial features. Dust weather activity, however, has become less frequent over northern China in the recent years, as result of weakened cold surge activity, reinforced precipitation, and improved vegetation condition. State-of-the-art climate models are capable of reproducing some features of the mean climate and extreme climate events. However, discrepancies among models in simulating and projecting the mean and extreme climate are also demonstrated by many recent studies. Regional models with higher resolutions often perform better than global models. To predict and project climate variations and extremes, many new approaches and schemes based on dynamical models, statistical methods, or their

  10. Aging Will Amplify the Heat-related Mortality Risk under a Changing Climate: Projection for the Elderly in Beijing, China

    Science.gov (United States)

    Li, Tiantian; Horton, Radley M.; Bader, Daniel A.; Zhou, Maigeng; Liang, Xudong; Ban, Jie; Sun, Qinghua; Kinney, Patrick L.

    2016-06-01

    An aging population could substantially enhance the burden of heat-related health risks in a warming climate because of their higher susceptibility to extreme heat health effects. Here, we project heat-related mortality for adults 65 years and older in Beijing China across 31 downscaled climate models and 2 representative concentration pathways (RCPs) in the 2020s, 2050s, and 2080s. Under a scenario of medium population and RCP8.5, by the 2080s, Beijing is projected to experience 14,401 heat-related deaths per year for elderly individuals, which is a 264.9% increase compared with the 1980s. These impacts could be moderated through adaptation. In the 2080s, even with the 30% and 50% adaptation rate assumed in our study, the increase in heat-related death is approximately 7.4 times and 1.3 times larger than in the 1980s respectively under a scenario of high population and RCP8.5. These findings could assist countries in establishing public health intervention policies for the dual problems of climate change and aging population. Examples could include ensuring facilities with large elderly populations are protected from extreme heat (for example through back-up power supplies and/or passive cooling) and using databases and community networks to ensure the home-bound elderly are safe during extreme heat events.

  11. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    Science.gov (United States)

    Stein, J. S.; Fisher, A. T.; Langseth, M.; Jin, W.; Iturrino, G.; Davis, E.

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  12. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    Science.gov (United States)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  13. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  14. Detection and attribution of extreme weather disasters

    Science.gov (United States)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    , with consequences being a function of the intensity of the physical weather event, the exposure and value of assets, and vulnerabilities. We have examined selected major extreme events and disasters, including superstorm Sandy in 2012, the Pakistan floods and the heat wave in Russia in 2010, the 2010 floods in Colombia and the 2011 floods in Australia. We systematically analyzed to what extent (anthropogenic) climate change may have contributed to intensity and frequency of the event, along with changes in the other risk variables, to eventually reach a more comprehensive understanding of the relative role of climate change in recent loss and damage of extreme weather events.

  15. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  16. Extreme pressure differences at 0900 NZST and winds across New Zealand

    Science.gov (United States)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are

  17. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  18. Communicating the deadly consequences of global warming for human heat stress

    Science.gov (United States)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  19. Communicating the deadly consequences of global warming for human heat stress.

    Science.gov (United States)

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  20. Production of molten UO2 pools by internal heating: apparatus and preliminary experimental heat transfer results

    International Nuclear Information System (INIS)

    Chasanov, M.G.; Gunther, W.H.; Baker, L. Jr.

    1977-01-01

    The capability for removal of heat from a pool of molten fuel under postaccident conditions is an important consideration in liquid-metal fast breeder reactor safety analysis. No experimental data for pool heat transfer from molten UO 2 under conditions simulating internal heat generation by fission product decay have been reported previously in the literature. An apparatus to provide such data was developed and used to investigate heat transfer from pools containing up to 7.5 kg of UO 2 ; the internal heat generation rates and pool depths attained cover most of the ranges of interest for postaccident heat removal analysis. It was also observed in these studies that the presence of simulated fission products corresponding to approximately 150,000 kW-day/kg burnup had no significant effect on the observed heat transfer

  1. Design of the prestressed concrete reactor vessel for gas-cooled heating reactors

    International Nuclear Information System (INIS)

    Becker, G.; Notheisen, C.; Steffen, G.

    1987-01-01

    The GHR pebble bed reactor offers a simple, safe and economic possibility of heat generation. An essential component of this concept is the prestressed concrete reactor vessel. A system of cooling pipes welded to the outer surface of the liner is used to transfer the heat from the reactor to the intermediate circuit. The high safety of this vessel concept results from the clear separation of the functions of the individual components and from the design principle of the prestressed conncrete. The prestressed concrete structure is so designed that failure can be reliably ruled out under all operating and accident conditions. Even in the extremely improbable event of failure of all decay heat removal systems when decay heat and accumulated heat are transferred passively by natural convection only, the integrity of the vessel remains intact. For reasons of plant availability the liner and the liner cooling system shall be designed so as to ensure safe elimination of failure over the total operating life. The calculations which were peformed partly on the basis of extremely adverse assumption, also resulted in very low loads. The prestressed concrete vessel is prefabricated to the greatest possible extent. Thus a high quality and optimized fabrication technology can be achieved especially for the liner and the liner cooling system. (orig./HP)

  2. Black breast cancer survivors experience greater upper extremity disability.

    Science.gov (United States)

    Dean, Lorraine T; DeMichele, Angela; LeBlanc, Mously; Stephens-Shields, Alisa; Li, Susan Q; Colameco, Chris; Coursey, Morgan; Mao, Jun J

    2015-11-01

    Over one-third of breast cancer survivors experience upper extremity disability. Black women present with factors associated with greater upper extremity disability, including: increased body mass index (BMI), more advanced disease stage at diagnosis, and varying treatment type compared with Whites. No prior research has evaluated the relationship between race and upper extremity disability using validated tools and controlling for these factors. Data were drawn from a survey study among 610 women with stage I-III hormone receptor positive breast cancer. The disabilities of the arm, shoulder and hand (QuickDASH) is an 11-item self-administered questionnaire that has been validated for breast cancer survivors to assess global upper extremity function over the past 7 days. Linear regression and mediation analysis estimated the relationships between race, BMI and QuickDASH score, adjusting for demographics and treatment types. Black women (n = 98) had 7.3 points higher average QuickDASH scores than White (n = 512) women (p disability by 40 %. Even several years post-treatment, Black breast cancer survivors had greater upper extremity disability, which was partially mediated by higher BMIs. Close monitoring of high BMI Black women may be an important step in reducing disparities in cancer survivorship. More research is needed on the relationship between race, BMI, and upper extremity disability.

  3. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  4. Climatology and trends of summer high temperature days in India ...

    Indian Academy of Sciences (India)

    patterns, there is clear change in climatological mean and coefficient of variation of HT days in a ... regions of India probably from mid 1990s. ... in extreme climate events are more sensitive to cli- ... C since mid-1990s in south, east, north.

  5. Changes in cause-specific mortality during heat waves in central Spain, 1975-2008

    Science.gov (United States)

    Miron, Isidro Juan; Linares, Cristina; Montero, Juan Carlos; Criado-Alvarez, Juan Jose; Díaz, Julio

    2015-09-01

    The relationship between heat waves and mortality has been widely described, but there are few studies using long daily data on specific-cause mortality. This study is undertaken in central Spain and analysing natural causes, circulatory and respiratory causes of mortality from 1975 to 2008. Time-series analysis was performed using ARIMA models, including data on specific-cause mortality and maximum and mean daily temperature and mean daily air pressure. The length of heat waves and their chronological number were analysed. Data were stratified in three decadal stages: 1975-1985, 1986-1996 and 1997-2008. Heat-related mortality was triggered by a threshold temperature of 37 °C. For each degree that the daily maximum temperature exceeded 37 °C, the percentage increase in mortality due to circulatory causes was 19.3 % (17.3-21.3) in 1975-1985, 30.3 % (28.3-32.3) in 1986-1996 and 7.3 % (6.2-8.4) in 1997-2008. The increase in respiratory cause ranged from 12.4 % (7.8-17.0) in the first period, to 16.3 % (14.1-18.4) in the second and 13.7 % (11.5-15.9) in the last. Each day of heat-wave duration explained 5.3 % (2.6-8.0) increase in respiratory mortality in the first period and 2.3 % (1.6-3.0) in the last. Decadal scale differences exist for specific-causes mortality induced by extreme heat. The impact on heat-related mortality by natural and circulatory causes increases between the first and the second period and falls significantly in the last. For respiratory causes, the increase is no reduced in the last period. These results are of particular importance for the estimation of future impacts of climate change on health.

  6. Development of Field Angle Resolved Specific Heat Measurement System for Unconventional Superconductors

    International Nuclear Information System (INIS)

    Kitamura, Yasuhiro; Matsubara, Takeshi; Machida, Yo; Izawa, Koichi; Onuki, Yoshichika; Salce, Bernard; Flouquet, Jacques

    2015-01-01

    We developed a measurement system for field angle resolved specific heat under multiple extreme conditions at low temperature down to 50 mK, in magnetic field up to 7 T, and under high pressure up to 10 GPa. We demonstrated the performance of our developed system by measuring field angle dependence of specific heat of pressure induced unconventional superconductor CeIrSi 3

  7. Observed Trends in Indices of Daily Precipitation and Temperature Extremes in Rio de Janeiro State (brazil)

    Science.gov (United States)

    Silva, W. L.; Dereczynski, C. P.; Cavalcanti, I. F.

    2013-05-01

    One of the main concerns of contemporary society regarding prevailing climate change is related to possible changes in the frequency and intensity of extreme events. Strong heat and cold waves, droughts, severe floods, and other climatic extremes have been of great interest to researchers because of its huge impact on the environment and population, causing high monetary damages and, in some cases, loss of life. The frequency and intensity of extreme events associated with precipitation and air temperature have been increased in several regions of the planet in recent years. These changes produce serious impacts on human activities such as agriculture, health, urban planning and development and management of water resources. In this paper, we analyze the trends in indices of climatic extremes related to daily precipitation and maximum and minimum temperatures at 22 meteorological stations of the National Institute of Meteorology (INMET) in Rio de Janeiro State (Brazil) in the last 50 years. The present trends are evaluated using the software RClimdex (Canadian Meteorological Service) and are also subjected to statistical tests. Preliminary results indicate that periods of drought are getting longer in Rio de Janeiro State, except in the North/Northwest area. In "Vale do Paraíba", "Região Serrana" and "Região dos Lagos" the increase of consecutive dry days is statistically significant. However, we also detected an increase in the total annual rainfall all over the State (taxes varying from +2 to +8 mm/year), which are statistically significant at "Região Serrana". Moreover, the intensity of heavy rainfall is also growing in most of Rio de Janeiro, except in "Costa Verde". The trends of heavy rainfall indices show significant increase in the "Metropolitan Region" and in "Região Serrana", factor that increases the vulnerability to natural disasters in these areas. With respect to temperature, it is found that the frequency of hot (cold) days and nights is

  8. Expected changes in future temperature extremes and their elevation dependency over the Yellow River source region

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2013-07-01

    Full Text Available Using the Statistical DownScaling Model (SDSM and the outputs from two global climate models, we investigate possible changes in mean and extreme temperature indices and their elevation dependency over the Yellow River source region for the two future periods 2046–2065 and 2081–2100 under the IPCC SRES A2, A1B and B1 emission scenarios. Changes in interannual variability of mean and extreme temperature indices are also analyzed. The validation results show that SDSM performs better in reproducing the maximum temperature-related indices than the minimum temperature-related indices. The projections show that by the middle and end of the 21st century all parts of the study region may experience increases in both mean and extreme temperature in all seasons, along with an increase in the frequency of hot days and warm nights and with a decrease in frost days. By the end of the 21st century, interannual variability increases in all seasons for the frequency of hot days and warm nights and in spring for frost days while it decreases for frost days in summer. Autumn demonstrates pronounced elevation-dependent changes in which around six out of eight indices show significant increasing changes with elevation.

  9. Impacts of extreme weather events and climate variability on carbon exchanges in an age-sequence of managed temperate pine forests from 2003 to 201

    Science.gov (United States)

    Arain, M. A.

    2017-12-01

    North American temperate forests are a critical component of the global carbon cycle and regional water resources. A large portion of these forests has traditionally been managed for timber production and other uses. The response of these forests, which are in different stages of development, to extreme weather events such as drought and heat stresses, climate variability and management regimes is not fully understood. In this study, eddy covariance flux measurements in an age sequence (77-, 42-, and 14-years old as of 2016) of white pine (Pinus strobus L.) plantation forests in southern Ontario, Canada are examined to determine the impact of heat and drought stresses and climate variability over a 14 year period (2003 to 2016). The mean annual net ecosystem productivity (NEP) values were 195 ± 87, 512 ±161 and 103 ± 103 g C m-2 year-1 in 77-, 42- and 14-year-old forests respectively, over the study period. The youngest forest became a net carbon sink in the fifth year of its growth. Air temperature was a dominant control on carbon fluxes and heat stress reduced photosynthesis much more as compared to ecosystem respiration in the growing season. A large decrease in annual NEP was observed during years experiencing heat waves. Drought stress had the strongest impact on the middle age forest which had the largest carbon sink and water demand. In contrast, young forest was more sensitive to heat stress, than drought. Severity of heat and drought stress impacts was highly dependent on the timing of these events. Simultaneous occurrence of heat and drought stress in the early growing season such as in 2012 and 2016 had a drastic negative impact on carbon balance in these forests due to plant-soil-atmosphere feedbacks. Future research should consider the timing of the extreme events, the stage of forest development and effects of extreme events on component fluxes. This research helps to assess the vulnerability of managed forests and their ecological and hydrological

  10. Female farmworkers' perceptions of heat-related illness and pregnancy health.

    Science.gov (United States)

    Flocks, Joan; Vi Thien Mac, Valerie; Runkle, Jennifer; Tovar-Aguilar, Jose Antonio; Economos, Jeannie; McCauley, Linda A

    2013-01-01

    Although agricultural workers have elevated risks of heat-related illnesses (HRI), pregnant farmworkers exposed to extreme heat face additional health risk, including poor pregnancy health and birth outcomes. Qualitative data from five focus groups with 35 female Hispanic and Haitian nursery and fernery workers provide details about the women's perceptions of HRI and pregnancy. Participants believe that heat exposure can adversely affect general, pregnancy, and fetal health, yet feel they lack control over workplace conditions and that they lack training about these specific risks. These data are being used to develop culturally appropriate educational materials emphasizing health promoting and protective behaviors during pregnancy.

  11. The effect of heat waves on dairy cow mortality.

    Science.gov (United States)

    Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N

    2015-07-01

    This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW. Copyright © 2015 American Dairy Science

  12. Thermoregulatory efficiency is increased after heat acclimation in tropical natives.

    Science.gov (United States)

    Magalhães, Flávio C; Passos, Renata L F; Fonseca, Michele A; Oliveira, Kenya P M; Ferreira-Júnior, João B; Martini, Angelo R P; Lima, Milene R M; Guimarães, Juliana B; Baraúna, Valério G; Silami-Garcia, Emerson; Rodrigues, Luiz O C

    2010-01-01

    To evaluate the effects of heat acclimation on sweat rate redistribution and thermodynamic parameters, 9 tropical native volunteers were submitted to 11 days of exercise-heat exposures (40+/-0 degrees C and 45.1+/-0.2% relative humidity). Sudomotor function was evaluated by measuring total and local (forehead, chest, arm, forearm, and thigh) sweat rates, local sweat sodium concentration, and mean skin and rectal temperatures. We also calculated heat production (H), heat storage (S), heat exchange by radiation (R) and by convection (C), evaporated sweat (E(sw)), sweating efficiency (eta(sw)), skin wettedness (w(sk)), and the ratio between the heat storage and the sum of heat production and heat gains by radiation and convection (S/(H+R+C)). The heat acclimation increased the whole-body sweat rate and reduced the mean skin temperature. There were changes in the local sweat rate patterns: on the arm, forearm, and thigh it increased significantly from day 1 to day 11 (all p<0.05) and the sweat rates from the forehead and the chest showed a small nonsignificant increase (p=0.34 and 0.17, respectively). The relative increase of local sweat rates on day 11 was not different among the sites; however, when comparing the limbs (arm, forearm, and thigh) with the trunk (forehead and chest), there was a significant higher increase in the limbs (32+/-5%) in comparison to the trunk (11+/-2%, p=0.001). After the heat acclimation period we observed higher w(sk) and E(sw) and reduced S/(H+R+C), meaning greater thermoregulatory efficiency. The increase in the limb sweat rate, but not the increase in the trunk sweat rate, correlated with the increased w(sk), E(sw), and reduced S/(H+R+C) (p<0.05 to all). Altogether, it can be concluded that heat acclimation increased the limbs' sweat rates in tropical natives and that this increase led to increased loss of heat through evaporation of sweat and this higher sweat evaporation was related to higher thermoregulatory efficiency.

  13. Variational principles in terms of entransy for heat transfer

    International Nuclear Information System (INIS)

    Xu, Mingtian

    2012-01-01

    A variational principle for heat conduction is formulated which results in the steady state heat conduction equation established from the Fourier law. Furthermore based on the thermodynamics in terms of entransy a more general functional is defined for incompressible fluids. We show that extremizing this functional gives rise to the state described by the Navier-Stokes-Fourier equations with vanishing substantive derivatives of the temperature and velocity field. In this sense one may conclude that this variational principle is consistent with the Navier-Stokes-Fourier equations. Therefore the variational principle developed in the present work demonstrates a great advantage over the minimum entropy production principle. -- Highlights: ► A variational principle for heat transfer of incompressible fluid is established in terms of entransy. ► For pure heat conduction the variational principle leads to the classical steady state heat conduction equation. ► For heat convection the variational principle is consistent with the Navier-Stokes-Fourier equations.

  14. Performance of an SOI Boot-Strapped Full-Bridge MOSFET Driver, Type CHT-FBDR, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems designed for use in deep space and planetary exploration missions are expected to encounter extreme temperatures and wide thermal swings. Silicon-based devices are limited in their wide-temperature capability and usually require extra measures, such as cooling or heating mechanisms, to provide adequate ambient temperature for proper operation. Silicon-On-Insulator (SOI) technology, on the other hand, lately has been gaining wide spread use in applications where high temperatures are encountered. Due to their inherent design, SOI-based integrated circuit chips are able to operate at temperatures higher than those of the silicon devices by virtue of reducing leakage currents, eliminating parasitic junctions, and limiting internal heating. In addition, SOI devices provide faster switching, consume less power, and offer improved radiation-tolerance. Very little data, however, exist on the performance of such devices and circuits under cryogenic temperatures. In this work, the performance of an SOI bootstrapped, full-bridge driver integrated circuit was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.

  15. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  16. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  17. Ziar nad Hronom will be heated by an underground heat plant

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    The World Bank and the European Bank for Reconstruction and Development are concerned in co-participation in funding a project for utilising geothermal ground water in heating premises in Ziar nad Hronom. The project implementations costs will be running at U.S.$18 million, of which the two bank institutions would provide for a non-specified part in the form of credit. In heating residential houses, production and commercial infrastructure of Ziar nad Hronom, 72 thousand tonnes of coal are consumed annually to generate 810 TJ heat. By implementing the new project there will be over 100 TJ savings, with a new more efficient distribution hot water network and 39 reconstructed heat exchange station making for effective consumption of heat. The current heat plant will only serve as an auxiliary source under extremely chilly weather conditions with an expected coal consumption of at most 9 thousand tonnes. In addition to cost implications, the geothermal water heating will make a significant contribution through environmental impact. Ecologists calculated that by shutting down the solid fuel burning heat plant the air burden will be reduced by 59 thousand tonnes of carbon dioxide, 290 tonnes of sulfur dioxide, 48 tonnes of nitrogen oxide, 230 tonnes of dust and nearly 12 tonnes of ash. The implementer of the project scheduled to complete in 2001 is a subsidiary of the joint-stock company Zavod SNP - Geothermal, Ltd, Ziar nad Hronom. Aimed at geothermal water sampling in the depth of some 2,500 meters, a trial drill at Ziarska kotlina - site Varticka will last roughly till April 9 1999. The drilling set of Nafta Gbely erected on December 21, 1998 is technically capable of reaching the depth 2,800 meter, just in case that the geothermal water level is lower than the expected 2,500 m. In all In all Nafta Gbely staffs will carry out two production and two reinjection drills. (author)

  18. The Effects of Forest Area Changes on Extreme Temperature Indexes between the 1900s and 2010s in Heilongjiang Province, China

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    2017-12-01

    Full Text Available Land use and land cover changes (LUCC are thought to be amongst the most important impacts exerted by humans on climate. However, relatively little research has been carried out so far on the effects of LUCC on extreme climate change other than on regional temperatures and precipitation. In this paper, we apply a regional weather research and forecasting (WRF climate model using LUCC data from Heilongjiang Province, that was collected between the 1900s and 2010s, to explore how changes in forest cover influence extreme temperature indexes. Our selection of extreme high, low, and daily temperature indexes for analysis in this study enables the calculation of a five-year numerical integration trail with changing forest space. Results indicate that the total forested area of Heilongjiang Province decreased by 28% between the 1900s and 2010s. This decrease is most marked in the western, southwestern, and northeastern parts of the province. Our results also reveal a remarkable correlation between change in forested area and extreme high and low temperature indexes. Further analysis enabled us to determine that the key factor explaining increases in extreme high temperature indexes (i.e., calculated using the number of warm days, warm nights, as well as tropical nights, and summer days is decreasing forest area; data also showed that this factor caused a decrease in extreme low temperature indexes (i.e., calculated using the number of cold days and cold nights, as well as frost days, and ice days and an increase in the maximum value of daily minimum temperature. Spatial data demonstrated that there is a significant correlation between forest-to-farmland conversion and extreme temperature indexes throughout most of our study period. Spatial data demonstrated that there is a significant correlation between forest-to-farmland conversion and extreme temperature indexes throughout most of our study period. Positive correlations are also present between

  19. Observed and simulated temperature extremes during the recent warming hiatus

    International Nuclear Information System (INIS)

    Sillmann, Jana; Donat, Markus G; Fyfe, John C; Zwiers, Francis W

    2014-01-01

    The discrepancy between recent observed and simulated trends in global mean surface temperature has provoked a debate about possible causes and implications for future climate change projections. However, little has been said in this discussion about observed and simulated trends in global temperature extremes. Here we assess trend patterns in temperature extremes and evaluate the consistency between observed and simulated temperature extremes over the past four decades (1971–2010) in comparison to the recent 15 years (1996–2010). We consider the coldest night and warmest day in a year in the observational dataset HadEX2 and in the current generation of global climate models (CMIP5). In general, the observed trends fall within the simulated range of trends, with better consistency for the longer period. Spatial trend patterns differ for the warm and cold extremes, with the warm extremes showing continuous positive trends across the globe and the cold extremes exhibiting a coherent cooling pattern across the Northern Hemisphere mid-latitudes that has emerged in the recent 15 years and is not reproduced by the models. This regional inconsistency between models and observations might be a key to understanding the recent hiatus in global mean temperature warming. (letters)

  20. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in