WorldWideScience

Sample records for extreme environments including

  1. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  2. Extreme environments and exobiology.

    Science.gov (United States)

    Friedmann, E I

    1993-01-01

    Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.

  3. Moving in extreme environments

    DEFF Research Database (Denmark)

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W;

    2016-01-01

    This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing...... and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may...

  4. Moving in extreme environments

    DEFF Research Database (Denmark)

    Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W

    2016-01-01

    and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may...

  5. Metagenomics of extreme environments.

    Science.gov (United States)

    Cowan, D A; Ramond, J-B; Makhalanyane, T P; De Maayer, P

    2015-06-01

    Whether they are exposed to extremes of heat or cold, or buried deep beneath the Earth's surface, microorganisms have an uncanny ability to survive under these conditions. This ability to survive has fascinated scientists for nearly a century, but the recent development of metagenomics and 'omics' tools has allowed us to make huge leaps in understanding the remarkable complexity and versatility of extremophile communities. Here, in the context of the recently developed metagenomic tools, we discuss recent research on the community composition, adaptive strategies and biological functions of extremophiles.

  6. Life in Extreme Environments

    Science.gov (United States)

    Rothschild, Lynn; Bray, James A. (Technical Monitor)

    2002-01-01

    Each recent report of liquid water existing elsewhere in the solar system has reverberated through the international press and excited the imagination of humankind. Why? Because in the last few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harboring 'extremophiles'. This realization, coupled with new data on the survival of microbes in the space environment and modeling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we critically examine what it means to be an extremophile, the implications of this for evolution, biotechnology, and especially the search for life in the cosmos.

  7. QCD matter in extreme environments

    CERN Document Server

    Fukushima, Kenji

    2011-01-01

    We review various theoretical approaches to the states of QCD matter out of quarks and gluons in extreme environments such as the high-temperature states at zero and finite baryon density and the dimensionally reduced state under an intense magnetic field. The topics at high temperature include the Polyakov loop and the 't Hooft loop in the perturbative regime, the Polyakov loop behaviour and the phase transition in some of non-perturbative methods; the strong-coupling expansion, the large-Nc limit and the holographic QCD models. These analyses are extended to hot and dense matter with a finite baryon chemical potential. We point out that the difficulty in the finite-density problem has similarity to that under a strong magnetic field. We make a brief summary of results related to the topological contents probed by the magnetic field and the Chiral Magnetic Effect. We also address the close connection to the (1+1) dimensional system.

  8. Automation Rover for Extreme Environments

    Science.gov (United States)

    Sauder, Jonathan; Hilgemann, Evan; Johnson, Michael; Parness, Aaron; Hall, Jeffrey; Kawata, Jessie; Stack, Kathryn

    2017-01-01

    Almost 2,300 years ago the ancient Greeks built the Antikythera automaton. This purely mechanical computer accurately predicted past and future astronomical events long before electronics existed1. Automata have been credibly used for hundreds of years as computers, art pieces, and clocks. However, in the past several decades automata have become less popular as the capabilities of electronics increased, leaving them an unexplored solution for robotic spacecraft. The Automaton Rover for Extreme Environments (AREE) proposes an exciting paradigm shift from electronics to a fully mechanical system, enabling longitudinal exploration of the most extreme environments within the solar system.

  9. Functional metagenomics of extreme environments.

    Science.gov (United States)

    Mirete, Salvador; Morgante, Verónica; González-Pastor, José Eduardo

    2016-04-01

    The bioprospecting of enzymes that operate under extreme conditions is of particular interest for many biotechnological and industrial processes. Nevertheless, there is a considerable limitation to retrieve novel enzymes as only a small fraction of microorganisms derived from extreme environments can be cultured under standard laboratory conditions. Functional metagenomics has the advantage of not requiring the cultivation of microorganisms or previous sequence information to known genes, thus representing a valuable approach for mining enzymes with new features. In this review, we summarize studies showing how functional metagenomics was employed to retrieve genes encoding for proteins involved not only in molecular adaptation and resistance to extreme environmental conditions but also in other enzymatic activities of biotechnological interest.

  10. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  11. Extreme Environments Technologies for Probes to Venus and Jupiter

    Science.gov (United States)

    Balint, Tibor S.; Kolawa, Elizabeth A.; Peterson, Craig E.; Cutts, James A.; Belz, Andrea P.

    2007-01-01

    This viewgraph presentation reviews the technologies that are used to mitigate extreme environments for probes at Venus and Jupiter. The contents include: 1) Extreme environments at Venus and Jupiter; 2) In-situ missions to Venus and Jupiter (past/present/future); and 3) Approaches to mitigate conditions of extreme environments for probes with systems architectures and technologies.

  12. Communication path for extreme environments

    Science.gov (United States)

    Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)

    2010-01-01

    Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.

  13. Propulsion IVHM Extreme Environment Instrumentation Power IVHM

    Science.gov (United States)

    Zakrajsek, June

    2000-01-01

    This paper presents propulsion and instrumentation power for integrated vehicle health management technologies. The topics include: 1) Propulsion IVHM Capabilities Research; 2) Projects: X-33 Post-Test Diagnostic System; 3) X-34 NITEX; 4) Advanced Health Monitoring Systems; 5) Active Vibration Monitoring System; 6) Smart Self Healing Propulsion Systems; 7) Extreme Environment Sensors; and 8) Systems Engineering and Integration.

  14. Wireless Sensor Applications in Extreme Aeronautical Environments

    Science.gov (United States)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  15. Endurance cycling results in extreme environments

    Science.gov (United States)

    Guertin, S. M.; Nguyen, D. N.; Scheick, L. Z.

    2003-01-01

    A new test bed for life testing flash memories in extreme environments is introducted. the test bed is based on a state-of-the-art development board. Since space applications often desire state-of-the-art devices, such a basis seems appropriate. Comparison of this tester to other such systems, including those with data presented here in the past is made. Limitations of different testers for varying applications are discussed. Recently developed data, using this test bed is also presented.

  16. Embedded I&C for Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pump combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.

  17. Sample Handling in Extreme Environments

    Science.gov (United States)

    Avellar, Louisa; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2013-01-01

    Harsh environments, such as that on Venus, preclude the use of existing equipment for functions that involve interaction with the environment. The operating limitations of current high temperature electronics are well below the actual temperature and pressure found on Venus (460 deg C and 92 atm), so proposed lander configurations typically include a pressure vessel where the science instruments are kept at Earth-like temperature and pressure (25 deg C and 1 atm). The purpose of this project was to develop and demonstrate a method for sample transfer from an external drill to internal science instruments for a lander on Venus. The initial concepts were string and pneumatically driven systems; and the latter system was selected for its ability to deliver samples at very high speed. The pneumatic system was conceived to be driven by the pressure difference between the Venusian atmosphere and the inside of the lander. The pneumatic transfer of a small capsule was demonstrated, and velocity data was collected from the lab experiment. The sample transfer system was modeled using CAD software and prototyped using 3D printing. General structural and thermal analyses were performed to approximate the proposed system's mass and effects on the temperature and pressure inside of the lander. Additionally, a sampler breadboard for use on Titan was tested and functionality problems were resolved.

  18. Sample Handling in Extreme Environments

    Science.gov (United States)

    Avellar, Louisa; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2013-01-01

    Harsh environments, such as that on Venus, preclude the use of existing equipment for functions that involve interaction with the environment. The operating limitations of current high temperature electronics are well below the actual temperature and pressure found on Venus (460 deg C and 92 atm), so proposed lander configurations typically include a pressure vessel where the science instruments are kept at Earth-like temperature and pressure (25 deg C and 1 atm). The purpose of this project was to develop and demonstrate a method for sample transfer from an external drill to internal science instruments for a lander on Venus. The initial concepts were string and pneumatically driven systems; and the latter system was selected for its ability to deliver samples at very high speed. The pneumatic system was conceived to be driven by the pressure difference between the Venusian atmosphere and the inside of the lander. The pneumatic transfer of a small capsule was demonstrated, and velocity data was collected from the lab experiment. The sample transfer system was modeled using CAD software and prototyped using 3D printing. General structural and thermal analyses were performed to approximate the proposed system's mass and effects on the temperature and pressure inside of the lander. Additionally, a sampler breadboard for use on Titan was tested and functionality problems were resolved.

  19. Psychophysiological Studies in Extreme Environments

    Science.gov (United States)

    Toscano, William B.

    2011-01-01

    This paper reviews the results from two studies that employed the methodology of multiple converging indicators (physiological measures, subjective self-reports and performance metrics) to examine individual differences in the ability of humans to adapt and function in high stress environments. The first study was a joint collaboration between researchers at the US Army Research Laboratory (ARL) and NASA Ames Research Center. Twenty-four men and women active duty soldiers volunteered as participants. Field tests were conducted in the Command and Control Vehicle (C2V), an enclosed armored vehicle, designed to support both stationary and on-the-move operations. This vehicle contains four computer workstations where crew members are expected to perform command decisions in the field under combat conditions. The study objectives were: 1) to determine the incidence of motion sickness in the C2V relative to interior seat orientation/position, and parked, moving and short-haul test conditions; and 2) to determine the impact of the above conditions on cognitive performance, mood, and physiology. Data collected during field tests included heart rate, respiration rate, skin temperature, and skin conductance, self-reports of mood and symptoms, and cognitive performance metrics that included seven subtests in the DELTA performance test battery. Results showed that during 4-hour operational tests over varied terrain motion sickness symptoms increased; performance degraded by at least 5 percent; and physiological response profiles of individuals were categorized based on good and poor cognitive performance. No differences were observed relative to seating orientation or position.

  20. Astrobiology: Life in Extreme Environments

    Science.gov (United States)

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  1. Astrobiology: Life in Extreme Environments

    Science.gov (United States)

    Kaur, Preeti

    2011-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…

  2. Radiation Hardened Electronics for Extreme Environments

    Science.gov (United States)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  3. Extreme Programming in a Research Environment

    Science.gov (United States)

    Wood, William A.; Kleb, William L.

    2002-01-01

    This article explores the applicability of Extreme Programming in a scientific research context. The cultural environment at a government research center differs from the customer-centric business view. The chief theoretical difficulty lies in defining the customer to developer relationship. Specifically, can Extreme Programming be utilized when the developer and customer are the same person? Eight of Extreme Programming's 12 practices are perceived to be incompatible with the existing research culture. Further, six of the nine 'environments that I know don't do well with XP' apply. A pilot project explores the use of Extreme Programming in scientific research. The applicability issues are addressed and it is concluded that Extreme Programming can function successfully in situations for which it appears to be ill-suited. A strong discipline for mentally separating the customer and developer roles is found to be key for applying Extreme Programming in a field that lacks a clear distinction between the customer and the developer.

  4. SOI MESFETs for Extreme Environment Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing a new extreme environment electronics (EEE) technology based on silicon-on-insulator (SOI) metal-semiconductor field-effect transistors (MESFETs)....

  5. Technology of planetary extreme environment simulation

    Science.gov (United States)

    Wakefield, M. E.; Apodaca, L. E.; Hall, C. A.

    1972-01-01

    Four test chamber systems were devleoped to simulate the extreme atmospheric environs of Venus and Jupiter, in order to assure satisfactory performance of scientific entry probes and their experiments.

  6. Magnetic Reconnection in Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2011-01-01

    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical application...

  7. Geomicrobiological processes in extreme environments: A review

    Institute of Scientific and Technical Information of China (English)

    Hailiang Dong; Bingsong Yu

    2007-01-01

    @@ The last decade has seen an extraordinary growth of Geomicrobiology. Microorganisms have been studied in numerous extreme environments on Earth, ranging from crystalline rocks from the deep subsurface, ancient sedimentary rocks and hypersaline lakes, to dry deserts and deep-ocean hydrothermal vent systems. In light of this recent progress, we review several currently active research frontiers: deep continental subsurface microbiology, microbial ecology in saline lakes, microbial formation of dolomite, geomicrobiology in dry deserts,fossil DNA and its use in recovery of paleoenvironmental conditions, and geomicrobiology of oceans.Throughout this article we emphasize geomicrobiological processes in these extreme environments.

  8. Coaxial Cables for Martian Extreme Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Harvey, Wayne L.; Valas, Sam; Tsai, Michael C.

    2011-01-01

    Work was conducted to validate the use of the rover external flexible coaxial cabling for space under the extreme environments to be encountered during the Mars Science Laboratory (MSL) mission. The antennas must survive all ground operations plus the nominal 670-Martian-day mission that includes summer and winter seasons of the Mars environment. Successful development of processes established coaxial cable hardware fatigue limits, which were well beyond the expected in-flight exposures. In keeping with traditional qualification philosophy, this was accomplished by subjecting flight-representative coaxial cables to temperature cycling of the same depth as expected in-flight, but for three times the expected number of in-flight thermal cycles. Insertion loss and return loss tests were performed on the coaxial cables during the thermal chamber breaks. A vector network analyzer was calibrated and operated over the operational frequency range 7.145 to 8.450 GHz. Even though some of the exposed cables function only at UHF frequencies (approximately 400 MHz), the testing was more sensitive, and extending the test range down to 400 MHz would have cost frequency resolution. The Gore flexible coaxial cables, which were the subject of these tests, proved to be robust and displayed no sign of degradation due to the 3X exposure to the punishing Mars surface operations cycles.

  9. Plant volatiles in extreme terrestrial and marine environments.

    Science.gov (United States)

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation.

  10. Robust, Thin Optical Films for Extreme Environments

    Science.gov (United States)

    2006-01-01

    The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

  11. Glenn Extreme Environments Rig (GEER) Independent Review

    Science.gov (United States)

    Jankovsky, Robert S.; Smiles, Michael D.; George, Mark A.; Ton, Mimi C.; Le, Son K.

    2015-01-01

    The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation. This document contains the outcome of the NESC assessment.

  12. Reconfiguration of Analog Electronics for Extreme Environments

    Science.gov (United States)

    Stoica, Adrian; Zebulum, Ricardo; Keymeulen, Didier; Guo, Xin

    2005-01-01

    This paper argues in favor of adaptive reconfiguration as a technique to expand the operational envelope of analog electronics for extreme environments (EE). On a reconfigurable device, although component parameters change in EE, as long as devices still operate, albeit degraded, a new circuit design, suitable for new parameter values, may be mapped into the reconfigurable structure to recover the initial circuit function. Laboratory demonstrations of this technique were performed by JPL in several independent experiments in which bulk CMOS reconfgurable devices were exposed to, and degraded by, high temperatures (approx.300 C) or radiation (300kRad TID), and then recovered by adaptive reconfiguration using evolutionary search algorithms.

  13. EXTREMELY METAL-POOR GALAXIES: THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Filho, M. E. [Universidad de Las Palmas de Gran Canaria–Universidad de La Laguna, CIE Canarias: Tri-Continental Atlantic Campus, Canary Islands (Spain); Almeida, J. Sánchez; Muñoz-Tuñón, C. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nuza, S. E.; Kitaura, F.; Heß, S., E-mail: mfilho@astro.up.pt [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-04-01

    We have analyzed bibliographical observational data and theoretical predictions, in order to probe the environment in which extremely metal-poor dwarf galaxies (XMPs) reside. We have assessed the H i component and its relation to the optical galaxy, the cosmic web type (voids, sheets, filaments and knots), the overdensity parameter and analyzed the nearest galaxy neighbors. The aim is to understand the role of interactions and cosmological accretion flows in the XMP observational properties, particularly the triggering and feeding of the star formation. We find that XMPs behave similarly to Blue Compact Dwarfs; they preferably populate low-density environments in the local universe: ∼60% occupy underdense regions, and ∼75% reside in voids and sheets. This is more extreme than the distribution of irregular galaxies, and in contrast to those regions preferred by elliptical galaxies (knots and filaments). We further find results consistent with previous observations; while the environment does determine the fraction of a certain galaxy type, it does not determine the overall observational properties. With the exception of five documented cases (four sources with companions and one recent merger), XMPs do not generally show signatures of major mergers and interactions; we find only one XMP with a companion galaxy within a distance of 100 kpc, and the H i gas in XMPs is typically well-behaved, demonstrating asymmetries mostly in the outskirts. We conclude that metal-poor accretion flows may be driving the XMP evolution. Such cosmological accretion could explain all the major XMP observational properties: isolation, lack of interaction/merger signatures, asymmetric optical morphology, large amounts of unsettled, metal-poor H i gas, metallicity inhomogeneities, and large specific star formation.

  14. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  15. Plasma physics of extreme astrophysical environments

    Science.gov (United States)

    Uzdensky, Dmitri A.; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)—the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  16. Terrestrial Applications of Extreme Environment Stirling Space Power Systems

    Science.gov (United States)

    Dyson, Rodger. W.

    2012-01-01

    NASA has been developing power systems capable of long-term operation in extreme environments such as the surface of Venus. This technology can use any external heat source to efficiently provide electrical power and cooling; and it is designed to be extremely efficient and reliable for extended space missions. Terrestrial applications include: use in electric hybrid vehicles; distributed home co-generation/cooling; and quiet recreational vehicle power generation. This technology can reduce environmental emissions, petroleum consumption, and noise while eliminating maintenance and environmental damage from automotive fluids such as oil lubricants and air conditioning coolant. This report will provide an overview of this new technology and its applications.

  17. Advanced Flip Chips in Extreme Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni

    2010-01-01

    material and the silicon die or chip, and also the underfill materials. Advanced packaging interconnects technology such as flip-chip interconnect test boards have been subjected to various extreme temperature ranges that cover military specifications and extreme Mars and asteroid environments. The eventual goal of each process step and the entire process is to produce components with 100 percent interconnect and satisfy the reliability requirements. Underfill materials, in general, may possibly meet demanding end use requirements such as low warpage, low stress, fine pitch, high reliability, and high adhesion.

  18. Neighboring extremal optimal control design including model mismatch errors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.J. [Sandia National Labs., Albuquerque, NM (United States); Hull, D.G. [Texas Univ., Austin, TX (United States). Dept. of Aerospace Engineering and Engineering Mechanics

    1994-11-01

    The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.

  19. Colors of extreme exo-Earth environments.

    Science.gov (United States)

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  20. Extreme Environment Technologies for Space and Terrestrial Applications

    Science.gov (United States)

    Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.

    2008-01-01

    Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.

  1. Extreme Environment High Temperature Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  2. Magnetic Logic Circuits for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program aims to demonstrate a new genre of all-magnetic logic circuits which are radiation-tolerant and capable of reliable operation in extreme environmental...

  3. Extreme Environments: The Ghetto and the South Pole.

    Science.gov (United States)

    Pierce, Chester M.

    Extreme environments, such as polar regions or space crafts, provide an analogue for speculations concerning the needs of, educational provisions for, and environmental impacts on ghetto youth in kindergarten through the third grade. This discussion first centers on the common qualities of an extreme environment (whether exotic or mundane): forced…

  4. Technology perspectives in the future exploration of extreme environments

    Science.gov (United States)

    Cutts, J.; Balint, T.; Kolawa, El.; Peterson, C.

    2007-08-01

    Solar System exploration is driven by high priority science goals and objectives at diverse destinations, as described in the NRC Decadal Survey and in NASA's 2006 Solar System Exploration (SSE) Roadmap. Proposed missions to these targets encounter extreme environments, including high or low temperatures, high pressure, corrosion, high heat flux, radiation and thermal cycling. These conditions are often coupled, such as low temperature and high radiation at Europa; and high temperature and high pressure near the surface of Venus. Mitigation of these environmental conditions frequently reaches beyond technologies developed for terrestrial applications, for example, by the automotive and oil industries. Therefore, space agencies require dedicated technology developments to enable these future missions. Within NASA, proposed missions are divided into three categories. Competed small (Discovery class) and medium (New Frontiers class) missions are cost capped, thus limiting significant technology developments. Therefore, large (Flagship class) missions are required not only to tackle key science questions which can't be addressed by smaller missions, but also to develop mission enabling technologies that can feed forward to smaller missions as well. In a newly completed extreme environment technology assessment at NASA, we evaluated technologies from the current State of Practice (SoP) to advanced concepts for proposed missions over the next decades. Highlights of this report are discussed here, including systems architectures, such as hybrid systems; protection systems; high temperature electronics; power generation and storage; mobility technologies; sample acquisition and mechanisms; and the need to test these technologies in relevant environments. It is expected that the findings - documented in detail in NASA's Extreme Environments Technologies report - would help identifying future technology investment areas, and in turn enable or enhance planned SSE missions

  5. Human and team performance in extreme environments: Antarctica

    Science.gov (United States)

    Stuster, J.

    1998-01-01

    Analogous experience is often instructive when attempting to understand human behavior in extreme environments. The current paper refers to the experiences of polar explorers and remote duty personnel to help identify the factors that influence individual and team performance when small groups are isolated and confined for long durations. The principal factors discussed include organizational structure, intracrew communications, interpersonal relations, leadership style, personnel selection, and training. Behavioral implications also are addressed for the design of procedures and equipment to facilitate sustained individual and group performance under conditions of isolation and confinement. To be consistent with the theme of the symposium, this paper emphasizes the crew requirements for an international expedition to Mars.

  6. Plasma Physics of Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2014-01-01

    Certain classes of astrophysical objects, namely magnetars and central engines of supernovae and gamma-ray bursts (GRBs), are characterized by extreme physical conditions not encountered elsewhere in the Universe. In particular, they possess magnetic fields that exceed the critical quantum field of 44 teragauss. Figuring out how these complex ultra-magnetized systems work requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD). However, an ultra-strong magnetic field modifies the underlying physics to such an extent that many relevant plasma-physical problems call for building QED-based relativistic quantum plasma physics. In this review, after describing the extreme astrophysical systems of interest and identifying the key relevant plasma-physical problems, we survey the recent progress in the development of such a theory. We discuss how a super-critical field modifies the properties of vacuum and matter and outline the basic theoretical framework f...

  7. Biodegradation and bioremediation of hydrocarbons in extreme environments.

    Science.gov (United States)

    Margesin, R; Schinner, F

    2001-09-01

    Many hydrocarbon-contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, high salt concentrations, or high pressure, Hydrocarbon-degrading microorganisms, adapted to grow and thrive in these environments, play an important role in the biological treatment of polluted extreme habitats. The biodegradation (transformation or mineralization) of a wide range of hydrocarbons, including aliphatic, aromatic, halogenated and nitrated compounds, has been shown to occur in various extreme habitats. The biodegradation of many components of petroleum hydrocarbons has been reported in a variety of terrestrial and marine cold ecosystems. Cold-adapted hydrocarbon degraders are also useful for wastewater treatment. The use of thermophiles for biodegradation of hydrocarbons with low water solubility is of interest, as solubility and thus bioavailability, are enhanced at elevated temperatures. Thermophiles, predominantly bacilli, possess a substantial potential for the degradation of environmental pollutants, including all major classes. Indigenous thermophilic hydrocarbon degraders are of special significance for the bioremediation of oil-polluted desert soil. Some studies have investigated composting as a bioremediation process. Hydrocarbon biodegradation in the presence of high salt concentrations is of interest for the bioremediation of oil-polluted salt marshes and industrial wastewaters, contaminated with aromatic hydrocarbons or with chlorinated hydrocarbons. Our knowledge of the biodegradation potential of acidophilic, alkaliphilic, or barophilic microorganisms is limited.

  8. Biodegradation and bioremediation of hydrocarbons in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Margesin, R.; Schinner, F. [Innsbruck Univ. (Austria). Inst. fuer Mikrobiologie

    2001-07-01

    Many hydrocarbon-contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, high salt concentrations, or high pressure. Hydrocarbon-degrading microorganisms, adapted to grow and thrive in these environments, play an important role in the biological treatment of polluted extreme habitats. The biodegradation (transformation or mineralization) of a wide range of hydrocarbons, including aliphatic, aromatic, halogenated and nitrated compounds, has been shown to occur in various extreme habitats. The biodegradation of many components of petroleum hydrocarbons has been reported in a variety of terrestrial and marine cold ecosystems. Cold-adapted hydrocarbon degraders are also useful for wastewater treatment. The use of thermophiles for biodegradation of hydrocarbons with low water solubility is of interest, as solubility and thus bioavailability, are enhanced at elevated temperatures. Thermophiles, predominantly bacilli, possess a substantial potential for the degradation of environmental pollutants, including all major classes. Indigenous thermophilic hydrocarbon degraders are of special significance for the bioremediation of oil-polluted desert soil. Some studies have investigated composting as a bioremediation process. Hydrocarbon biodegradation in the presence of high salt concentrations is of interest for the bioremediation of oil-polluted salt marshes and industrial wastewaters, contaminated with aromatic hydrocarbons or with chlorinated hydrocarbons. Our knowledge of the biodegradation potential of acidophilic, alkaliphilic, or barophilic microorganisms is limited. (orig.)

  9. Heatshield for Extreme Entry Environment Technology (HEEET)

    Science.gov (United States)

    Venkatapathy, E.; Ellerby, D.; Stackpoole, M..; Peterson, K.; Gage, P.; Beerman, A.; Blosser, M.; Chinnapongse, R.; Dillman, R.; Feldman, J.; Gasch, M.; Munk, M.; Prabhu, D.; Poteet, C.

    2013-01-01

    Heat-shield for Extreme Entry Technology (HEEET) project is based on the 3-D Woven TPS, an emerging innovative and game changing technology funded by SMD and STMD to fill the ablative TPS gap that exists currently for reaching the depths of Saturn and Venus. Woven TPS technology will address the challenges currently faced by the Venus, Saturn, and higher speed sample return mission Science community due to lack of availability of the only TPS, namely Carbon Phenolic and enable the Science community to move forward with proposals in this decade with Woven TPS. This presentation describes the approach in maturing the technology in the next three years enabling NF-4 mission proposers to address the challenges of Venus, Saturn or higher speed sample return missions.

  10. Extreme Environment Ceramic-to-Metal Seal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will demonstrate the feasibility of large ceramic to metal joints/seals that can tolerate extreme environments. The immediate...

  11. Diving In Extreme Environments:: The Scientific Diving Experience

    OpenAIRE

    Lang, Michael A.

    2012-01-01

    The scope of extreme-environment diving defined within this work encompasses diving modes outside of the generally accepted no-decompression, open-circuit, compressed-air diving limits on selfcontained underwater breathing apparatus (scuba) in temperate or warmer waters. Extreme-environment diving is scientifically and politically interesting. The scientific diving operational safety and medical framework is the cornerstone from which diving takes place in the scientific community. From this ...

  12. Hetero-Interfaces for Extreme Electronic Environments

    Science.gov (United States)

    2014-07-23

    describing the intrinsic behavior. In the original intrinsic hypothesis, it was described as the electrostatic field reaching the band gap energy...ELECTRONIC ENVIRONMENTS Quasi-two-dimensional electron gas (Q-2D-EG) forms at the interface between two perovskite band insulators; LaAlO3 (LAO) and...SrO)0 or ( TiO2 )0 – intersecting with negatively charged (AlO2)1- or positively charged (LaO)1+ layers, respectively. (this latter "LaO" layer

  13. The epidemiology of extreme hiking injuries in volcanic environments.

    Science.gov (United States)

    Heggie, Travis W; Heggie, Tracey M

    2012-01-01

    The objective of this review was to summarize the epidemiological literature for extreme hikers in volcanic environments and describe the incidence, nature and severity of injuries, the factors contributing to the injuries, and strategies for preventing injuries. Due to the relative newness of extreme hiking in volcanic environments, there are only a small handful of studies addressing the topic. Moreover, these studies are primarily focused on extreme hikers in Hawaii Volcanoes National Park. These studies found that the majority of extreme hikers in volcanic environments are inexperienced and unfamiliar with the potential hazards present in volcanic environments. The studies found that upper respiratory irritation resulting from exposure to volcanic gases and dehydration and scrapes, abrasions, lacerations, and thermal burns to the extremities were common injuries. The severity of the injuries ranged from simple on-site treat-and-release incidents to more severe incidents and even death. This review reveals a need for well-designed epidemiologic research from volcanic destinations outside of Hawaii that identify the nature and severity of injuries along with the factors contributing to injury incidents. There is also a demonstrated need for studies identifying preventive measures that reduce both the occurrence and severity of extreme hiking incidents in volcanic environments.

  14. Motor Controller for Extreme Environments Based on SiGe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a motor-control subsystem capable of operation in extreme environments, including those to be encountered on the Moon and Mars....

  15. Colors of extreme exoEarth environments

    CERN Document Server

    Hegde, Siddharth

    2012-01-01

    Context. The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the Habitable Zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. Aims. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to and importance as a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. Methods. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow up spectroscopy. Results. Many surface environments on Earth ...

  16. Autonomous Mission Design in Extreme Orbit Environments

    Science.gov (United States)

    Surovik, David Allen

    An algorithm for autonomous online mission design at asteroids, comets, and small moons is developed to meet the novel challenges of their complex non-Keplerian orbit environments, which render traditional methods inapplicable. The core concept of abstract reachability analysis, in which a set of impulsive maneuvering options is mapped onto a space of high-level mission outcomes, is applied to enable goal-oriented decision-making with robustness to uncertainty. These nuanced analyses are efficiently computed by utilizing a heuristic-based adaptive sampling scheme that either maximizes an objective function for autonomous planning or resolves details of interest for preliminary analysis and general study. Illustrative examples reveal the chaotic nature of small body systems through the structure of various families of reachable orbits, such as those that facilitate close-range observation of targeted surface locations or achieve soft impact upon them. In order to fulfill extensive sets of observation tasks, the single-maneuver design method is implemented in a receding-horizon framework such that a complete mission is constructed on-the-fly one piece at a time. Long-term performance and convergence are assured by augmenting the objective function with a prospect heuristic, which approximates the likelihood that a reachable end-state will benefit the subsequent planning horizon. When state and model uncertainty produce larger trajectory deviations than were anticipated, the next control horizon is advanced to allow for corrective action -- a low-frequency form of feedback control. Through Monte Carlo analysis, the planning algorithm is ultimately demonstrated to produce mission profiles that vary drastically in their physical paths but nonetheless consistently complete all goals, suggesting a high degree of flexibility. It is further shown that the objective function can be tuned to preferentially minimize fuel cost or mission duration, as well as to optimize

  17. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.

    2011-01-01

    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  18. Microenvironmental Ecology of Phototrophs from Extreme Environments

    DEFF Research Database (Denmark)

    Trampe, Erik

    and finalized in part of my master thesis and presents a new multicolor (red, green, and blue excitation light) system for microscopic imaging of variable chlorophyll fluorescence. In addition to a thorough description of the commercially available imaging system, we developed an additional custom build......In the three manuscripts presented in part one of this thesis, I analyse the physicochemical parameters, microenvironmental ecology and species composition of microbial phototrophs in ikaite tufa columns. This work was not easy, and encompassed underwater sampling and microsensor work demanding...... of which have now been tentatively identified taxonomically, and their phylogenetic relationships been evaluated (Manuscript 3). Part 2 of the thesis includes three manuscripts that focus on cyanobacteria that have evolved special photopigments in contrast to other cyanobacteria. In Manuscript 4 we show...

  19. Self-healing cable for extreme environments

    Science.gov (United States)

    Huston, Dryver R. (Inventor); Tolmie, Bernard R. (Inventor)

    2009-01-01

    Self-healing cable apparatus and methods disclosed. The self-healing cable has a central core surrounded by an adaptive cover that can extend over the entire length of the self-healing cable or just one or more portions of the self-healing cable. The adaptive cover includes an axially and/or radially compressible-expandable (C/E) foam layer that maintains its properties over a wide range of environmental conditions. A tape layer surrounds the C/E layer and is applied so that it surrounds and axially and/or radially compresses the C/E layer. When the self-healing cable is subjected to a damaging force that causes a breach in the outer jacket and the tape layer, the corresponding localized axially and/or radially compressed portion of the C/E foam layer expands into the breach to form a corresponding localized self-healed region. The self-healing cable is manufacturable with present-day commercial self-healing cable manufacturing tools.

  20. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    Science.gov (United States)

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  1. [Hormonal changes in response to extreme environment factors].

    Science.gov (United States)

    Koubassov, R V

    2014-01-01

    In this paper presented current state about hormonal changes in sympathetic-adrenal, hypophysis-adrenal, hypophysis-gonads and thyroid levels from extreme environment factors. It's shown that hypophysis gonads and thyroid endocrine links along with sympathetic adrenal, hypophysis adrenal axes are very important relevance in response to extreme environment factors and organism adaptation. In this time a hormonal secretion changes corresponds as interrelated reactions cascade in mechanisms of homeostasis maintenance. A studying of this mechanisms and revealing of its role in stress pathogenesis is fundamental biomedical investigation task. A problem solving allow to perfect prophylactic and treatment methods against stress diseases.

  2. Mitochondrial Plasticity With Exercise Training and Extreme Environments

    DEFF Research Database (Denmark)

    Boushel, Robert; Lundby, Carsten; Qvortrup, Klaus

    2014-01-01

    Mitochondria form a reticulum in skeletal muscle. Exercise training stimulates mitochondrial biogenesis, yet an emerging hypothesis is that training also induces qualitative regulatory changes. Substrate oxidation, oxygen affinity and biochemical coupling efficiency may be differentially regulated...... with training and exposure to extreme environments. Threshold training doses inducing mitochondrial up-regulation remain to be elucidated considering fitness level. SUMMARY: Muscle mitochondrial are responsive to training and environment, yet thresholds for volume vs. regulatory changes and their physiological...

  3. Bounding Extreme Spacecraft Charging in the Lunar Environment

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda N.

    2008-01-01

    Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.

  4. Improving diversity in cultures of bacteria from an extreme environment

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter

    2013-01-01

    The ikaite columns in the Ikka Fjord in Greenland represent one of the few permanently cold and alkaline environments on Earth, and the interior of the columns is home to a bacterial community adapted to these extreme conditions. The community is characterized by low cell numbers imbedded...

  5. JD3 - Neutron Stars: Timing in Extreme Environments

    NARCIS (Netherlands)

    Belloni, Tomaso M.; Méndez, Mariano; Zhang, Chengmin

    2009-01-01

    The space-time around Neutron Stars is indeed an extreme environment. Whether they are in accreting binary systems, isolated or in non-accreting binaries (perhaps with another Neutron Star), Neutron Stars provide a window onto physical processes not accessible by other means. In particular, the stud

  6. JD3 - Neutron Stars: Timing in Extreme Environments

    NARCIS (Netherlands)

    Belloni, Tomaso M.; Méndez, Mariano; Zhang, Chengmin

    2010-01-01

    The space-time around Neutron Stars is indeed an extreme environment. Whether they are in accreting binary systems, isolated or in non-accreting binaries (perhaps with another Neutron Star), Neutron Stars provide a window onto physical processes not accessible by other means. In particular, the stud

  7. Flexible Electronics-Based Transformers for Extreme Environments

    Science.gov (United States)

    Quadrelli, Marco B.; Stoica, Adrian; Ingham, Michel; Thakur, Anubhav

    2015-01-01

    This paper provides a survey of the use of modular multifunctional systems, called Flexible Transformers, to facilitate the exploration of extreme and previously inaccessible environments. A novel dynamics and control model of a modular algorithm for assembly, folding, and unfolding of these innovative structural systems is also described, together with the control model and the simulation results.

  8. Mitochondrial plasticity with exercise training and extreme environments.

    Science.gov (United States)

    Boushel, Robert; Lundby, Carsten; Qvortrup, Klaus; Sahlin, Kent

    2014-10-01

    Mitochondria form a reticulum in skeletal muscle. Exercise training stimulates mitochondrial biogenesis, yet an emerging hypothesis is that training also induces qualitative regulatory changes. Substrate oxidation, oxygen affinity, and biochemical coupling efficiency may be regulated differentially with training and exposure to extreme environments. Threshold training doses inducing mitochondrial upregulation remain to be elucidated considering fitness level.

  9. Imaging polarimetry of circumstellar environments with the Extreme Polarimeter

    NARCIS (Netherlands)

    Rodenhuis, M.|info:eu-repo/dai/nl/325801843; Canovas, H.; Jeffers, S.V.|info:eu-repo/dai/nl/326052658; Min, M.|info:eu-repo/dai/nl/277318416; Keller, C.U.|info:eu-repo/dai/nl/304824550

    2010-01-01

    Three successful observation campaigns have been conducted with the Extreme Polarimeter, an imaging polarimeter for the study of circumstellar environments in scattered light at visible wavelengths. A contrast ratio between the central star and the circumstellar source of 10-5 can be achieved with p

  10. A neuroscience approach to optimizing brain resources for human performance in extreme environments.

    Science.gov (United States)

    Paulus, Martin P; Potterat, Eric G; Taylor, Marcus K; Van Orden, Karl F; Bauman, James; Momen, Nausheen; Padilla, Genieleah A; Swain, Judith L

    2009-07-01

    Extreme environments requiring optimal cognitive and behavioral performance occur in a wide variety of situations ranging from complex combat operations to elite athletic competitions. Although a large literature characterizes psychological and other aspects of individual differences in performances in extreme environments, virtually nothing is known about the underlying neural basis for these differences. This review summarizes the cognitive, emotional, and behavioral consequences of exposure to extreme environments, discusses predictors of performance, and builds a case for the use of neuroscience approaches to quantify and understand optimal cognitive and behavioral performance. Extreme environments are defined as an external context that exposes individuals to demanding psychological and/or physical conditions, and which may have profound effects on cognitive and behavioral performance. Examples of these types of environments include combat situations, Olympic-level competition, and expeditions in extreme cold, at high altitudes, or in space. Optimal performance is defined as the degree to which individuals achieve a desired outcome when completing goal-oriented tasks. It is hypothesized that individual variability with respect to optimal performance in extreme environments depends on a well "contextualized" internal body state that is associated with an appropriate potential to act. This hypothesis can be translated into an experimental approach that may be useful for quantifying the degree to which individuals are particularly suited to performing optimally in demanding environments.

  11. Applying positive psychology in the study of extreme environments.

    Science.gov (United States)

    Suedfeld, P

    2001-12-01

    Positive psychology orientation for the selection of personnel for isolated, confined environments and extreme and unusual environments is presented. It is suggested that personnel for isolated environments be selected for their ability to live and work in such an environment. The traditional negative psychology orientation focuses on characteristics such as demanding work, long stretches of empty time, unusual circadian rhythms, problems with group and interpersonal relationships, narrowed cognitive focus, cross-cultural differences, flattened leadership hierarchy, excessive interpersonal intimacy, and interaction with off site management. A positive psychology orientation focuses on the natural grandeur of the environment, mystery, efficiency, coziness, comfort, novelty and familiarity, improvisation, free time, time out from daily hassles, and social group characteristics such as camaraderie, intimacy, inderdependence, superordinate goals, and belonging to an elite group.

  12. Biodegradation of Aromatic Hydrocarbons in an Extremely Acidic Environment

    Science.gov (United States)

    Stapleton, Raymond D.; Savage, Dwayne C.; Sayler, Gary S.; Stacey, Gary

    1998-01-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values. PMID:9797263

  13. Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2010-09-01

    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

  14. Phospholipid and Respiratory Quinone Analyses From Extreme Environments

    Science.gov (United States)

    Pfiffner, S. M.

    2008-12-01

    Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.

  15. Studies on Actinomycetal Resources under Extreme Environments in the West of China

    Science.gov (United States)

    Li, W.

    2005-12-01

    s: Actinomycetes play a quite important role in natural ecological system and they are also profile producers of antibiotics, antitumor agents, enzymes, enzyme inhibitors and immunomodifiers. which have been widely applied in industry, agriculture, forestry and pharmaceutical industry. In the past, the research work on actinomycetes was mainly concentrated on that of common habitats. Actinomycetes resources under extreme environments (including extreme high and low temperature, extreme high or low pH, high salt concentration etc.) have received comparatively little attention from microbiologists. Actinomycetes are regarded as one kind of sideline microorganisms and those under extreme environments are better materials for biological evolution and phylogenetic development in research. There are much more unknown species and much more worth researching for actinomycetes under extreme environments. There are many extreme environmental resources in the west of China. For example, wide range snow-mountains, basified soil and lakes, widely distributed acid and alkaline hot-springs in Yunnan provinces; more than 73.3 million hektares basified soil and salt lakes in Xinjiang Province and many unusual environments in Qinghai Province and other western Provinces. They were mostly precious natural resources and were destroyed, relatively fewer can provided us with unique conditions for study on actinomycetal resources under extreme environments. In recent years, our main work was focusing on study of extremophilic actinomycetal resources in the west of China by using conventional cultivation-methods and culture-independent methods (PCR-clone and DGGE/TGGE, etc), Results showed that large amount of unknown microbial resources (including actinomycetal resources) existed in natural extreme environments. Additionally, lots of new taxa were isolated and characterized using a polyphasic approach. Further, we got some new compounds with different bioactivities from these

  16. Distributed Motor Controller (DMC) for Operation in Extreme Environments

    Science.gov (United States)

    McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don

    2012-01-01

    This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.

  17. Qualification of UHF Antenna for Extreme Martian Thermal Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert

    2013-01-01

    The purpose of this development was to validate the use of the external Rover Ultra High Frequency (RUHF) antenna for space under extreme thermal environments to be encountered during the surface operations of the Mars Science Laboratory (MSL) mission. The antenna must survive all ground operations plus the nominal 670 Martian sol mission that includes summer and winter seasons of the Mars thermal environment.The qualification effort was to verify that the RUHF antenna design and its bonding and packaging processes are adequate to survive the harsh environmental conditions. The RUHF is a quadrifilar helix antenna mounted on the MSL Curiosity rover deck. The main components of the RUHF antenna are the helix structure, feed cables, and hybrid coupler, and the high-power termination load. In the case of MSL rover externally mounted hardware, not only are the expected thermal cycle depths severe, but there are temperature offsets between the Mars summer and winter seasons. The total number of temperature cycles needed to be split into two regimes of summer cycles and winter cycles. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed prior to the start of the qualification test. Functional RF tests were performed intermittently during chamber breaks over the course of the qualification test. For the RF return loss measurements, the antenna was tested in a controlled environment outside the thermal chamber with a vector network analyzer that was calibrated over the antenna s operational frequency range. A total of 2,010 thermal cycles were performed. Visual inspection showed a dulling of the solder material. This change will not affect the performance of the antenna. No other changes were observed. RF tests were performed on the RUHF helix antenna, hybrid, and load after the 2,010 qualification cycles test

  18. Exascale Co-design for Modeling Materials in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Timothy C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  19. Fabrication of Diamond Based Sensors for Use in Extreme Environments

    Directory of Open Access Journals (Sweden)

    Gopi K. Samudrala

    2015-04-01

    Full Text Available Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This method can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. We demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.

  20. Directional Dependence for Dark Matter Annihilation in Extreme Astrophysical Environments

    Science.gov (United States)

    Valadie, O. Grahm; Tinsley, Todd

    2017-01-01

    This research explores the directional dependence that extreme magnetic fields have on the annihilation of dark matter into electron-positron pairs. We take the neutralino of the Minimally Supersymmetric Standard Model (MSSM) as our dark matter candidate and assume magnetic field strengths on the order of the critical field (Bc 1013 G). This is characteristic of extreme astrophysical environments in which dark matter may accumulate. We will present the results for the annihilation cross section at varying incoming particle direction. In addition, we will present how these results differ with neutralino mass and energy, as well as with the magnetic field strength. Our goal is to demonstrate the ways that the direction of the magnetic field affects the states of the final electron and positron. This work is supported by NASA/Arkansas Space Grant Consortium and the Hendrix Odyssey Program.

  1. NEEMO - NASA's Extreme Environment Mission Operations: On to a NEO

    Science.gov (United States)

    Bell, M. S.; Baskin, P. J.; Todd, W. L.

    2011-01-01

    During NEEMO missions, a crew of six Aquanauts lives aboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory the world's only undersea laboratory located 5.6 km off shore from Key Largo, Florida. The Aquarius habitat is anchored 62 feet deep on Conch Reef which is a research only zone for coral reef monitoring in the Florida Keys National Marine Sanctuary. The crew lives in saturation for a week to ten days and conducts a variety of undersea EVAs (Extra Vehicular Activities) to test a suite of long-duration spaceflight Engineering, Biomedical, and Geoscience objectives. The crew also tests concepts for future lunar exploration using advanced navigation and communication equipment in support of the Constellation Program planetary exploration analog studies. The Astromaterials Research and Exploration Science (ARES) Directorate and Behavioral Health and Performance (BHP) at NASA/Johnson Space Center (JSC), Houston, Texas support this effort to produce a high-fidelity test-bed for studies of human planetary exploration in extreme environments as well as to develop and test the synergy between human and robotic curation protocols including sample collection, documentation, and sample handling. The geoscience objectives for NEEMO missions reflect the requirements for Lunar Surface Science outlined by the LEAG (Lunar Exploration Analysis Group) and CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials) white paper [1]. The BHP objectives are to investigate best meas-ures and tools for assessing decrements in cogni-tive function due to fatigue, test the feasibility study examined how teams perform and interact across two levels, use NEEMO as a testbed for the development, deployment, and evaluation of a scheduling and planning tool. A suite of Space Life Sciences studies are accomplished as well, ranging from behavioral health and performance to immunology, nutrition, and EVA suit design results of which will

  2. Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms

    Science.gov (United States)

    Sheldon, Douglas J.

    2012-01-01

    Wireless sensors connected in a local network offer revolutionary exploration capabilities, but the current solutions do not work in extreme environments of low temperatures (200K) and low to moderate radiation levels (<50 krad). These sensors (temperature, radiation, infrared, etc.) would need to operate outside the spacecraft/ lander and be totally independent of power from the spacecraft/lander. Flash memory field-programmable gate arrays (FPGAs) are being used as the main signal processing and protocol generation platform in a new receiver. Flash-based FPGAs have been shown to have at least 100 reduced standby power and 10 reduction operating power when compared to normal SRAM-based FPGA technology.

  3. Fault Tolerant Magnetic Bearing Testing and Conical Magnetic Bearing Development for Extreme Temperature Environments

    Science.gov (United States)

    Keith, Theo G., Jr.; Clark, Daniel

    2004-01-01

    During the six month tenure of the grant, activities included continued research of hydrostatic bearings as a viable backup-bearing solution for a magnetically levitated shaft system in extreme temperature environments (1000 F), developmental upgrades of the fault-tolerant magnetic bearing rig at the NASA Glenn Research Center, and assisting in the development of a conical magnetic bearing for extreme temperature environments, particularly turbomachinery. It leveraged work from the ongoing Smart Efficient Components (SEC) and the Turbine-Based Combined Cycle (TBCC) program at NASA Glenn Research Center. The effort was useful in providing technology for more efficient and powerful gas turbine engines.

  4. Psychological factors in exceptional, extreme and torturous environments.

    Science.gov (United States)

    Leach, John

    2016-01-01

    Our cognitive system has adapted to support goal-directed behaviour within a normal environment. An abnormal environment is one to which we are not optimally adapted but can accommodate through the development of coping strategies. These abnormal environments can be 'exceptional', e.g., polar base, space station, submarine, prison, intensive care unit, isolation ward etc.; 'extreme', marked by more intense environmental stimuli and a real or perceived lack of control over the situation, e.g., surviving at sea in a life-raft, harsh prison camp etc.; or 'tortuous', when specific environmental stimuli are used deliberately against a person in an attempt to undermine his will or resistance. The main factors in an abnormal environment are: psychological (isolation, sensory deprivation, sensory overload, sleep deprivation, temporal disorientation); psychophysiological (thermal, stress positions), and psychosocial (cultural humiliation, sexual degradation). Each single factor may not be considered tortuous, however, if deliberately structured into a systemic cluster may constitute torture under legal definition. The individual experience of extremis can be pathogenic or salutogenic and attempts are being made to capitalise on these positive experiences whilst ameliorating the more negative aspects of living in an abnormal environment.

  5. Whole lot of parts: stress in extreme environments.

    Science.gov (United States)

    Steel, G Daniel

    2005-06-01

    Stress has been a central interest for researchers of human behavior in extreme and unusual environments and also for those who are responsible for planning and carrying out expeditions involving such environments. This paper compares the actuarial and case study methods for predicting reactions to stress. Actuarial studies are useful, but do not tap enough variables to allow us to predict how a specific individual will cope with the rigors of an individual mission. Case histories provide a wealth of detail, but few investigators understand the challenges of properly applying this method. This study reviews some of the strengths and weaknesses of the actuarial and case history methods, and presents a four celled taxonomy of stress based on method (actuarial and case history) and effects (distress and eustress). For both research and operational purposes, the person, the setting, and time should not be considered independently; rather, it is an amalgam of these variables that provides the proper basis of analysis.

  6. Microbes Thriving in Extreme Environments: How Do They Do It?

    Directory of Open Access Journals (Sweden)

    Prameela Jha

    2014-12-01

    Full Text Available Our knowledge about habitat of microorganisms appears diminutive when we witness amazing flexibility in choice of survival under various conditions. Extremophiles refers to the organisms living and carrying out vital life processes at extreme conditions of temperature, pressure, pH, salt concentration among others and this is why they have attracted attention of researchers worldwide. There is a continuous quest to unreveal the probable mechanism or structural and functional adaptations that make extremophiles survive under other holistic conditions. There occur modifications primarily in cell membrane, DNA, RNA, protein and enzymes in order to render fit microbial cell to its external environment. Thus, extremophiles are robust source of high temperature and alkali stable enzymes. Various enzymes as lipase and protease have found several applications in food and cosmetic industry while Taq polymerase from bacteria Thermus aquaticus has revolutionized entire scene of molecular biology. Present review focuses on extremophiles, their structural and molecular adaptations to overcome unfavorable conditions of environment.

  7. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments.

    Science.gov (United States)

    Yang, Ji; Li, Wen-Rong; Lv, Feng-Hua; He, San-Gang; Tian, Shi-Lin; Peng, Wei-Feng; Sun, Ya-Wei; Zhao, Yong-Xin; Tu, Xiao-Long; Zhang, Min; Xie, Xing-Long; Wang, Yu-Tao; Li, Jin-Quan; Liu, Yong-Gang; Shen, Zhi-Qiang; Wang, Feng; Liu, Guang-Jian; Lu, Hong-Feng; Kantanen, Juha; Han, Jian-Lin; Li, Meng-Hua; Liu, Ming-Jun

    2016-10-01

    Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8-9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (1500 m) versus low-altitude region (600 mm), and arid zone (400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change.

  8. Extreme environments in the forests of Ushuaia, Argentina

    Science.gov (United States)

    D'Antoni, Hector; Rothschild, Lynn; Schultz, Cynthia; Burgess, Seth; Skiles, J. W.

    2007-11-01

    A survey over two mountain slopes (Glaciar Martial and Cerro Guanaco) in the vicinity of Ushuaia (Tierra del Fuego, Argentina) showed normal results for the region in terms of chlorophyll concentration in the leaves of the dominant tree species Nothofagus antarctica, N. pumilio and N. betuloides, and soil variables such as temperature, moisture, pH, and concentration of nitrogen, sodium and potassium. Solar radiation, on the other hand, showed high values of ultraviolet over the 200-400 nm range, suggesting that the environment is extreme in terms of incoming solar radiation. The forest canopy absorbs and/or reflects a significant amount of that radiation. In separate analyses we showed that these tree species contain UV-absorbing pigments (cyanidin, delphidin, and flavonol glycosides). We submit that the rippled and glossy surface of leaves serves as a reflection/backscattering mechanism that protects their inner structure and function. The presence of krummholz (= twisted, dwarf trees) in the upper end of the forest shows the effects of an extreme environment.

  9. Re-Configurable Electronics Characterization under Extreme Thermal Environment

    Science.gov (United States)

    Stoica, Adrian; Lacayo, Veronica; Ramesham, Rajeshuni; Keymeulen, Didier; Zebulum, Ricardo; Neff, Joe; Burke, Gary; Daud, Taher

    2005-01-01

    The need for reconfigurable electronics is driven by requirements to survive longer missions and harsher environments. It is possible to compensate for degradations in Extreme Environments (EE). EE has effect on electronics: circuits are designed to exploit device characteristics and when a certain temperature or radiation range is exceeded the circuit function gradually degrades. It is possible to employ Hardening by reconfiguration (HBR) to mitigate drifts, degradation, or damage on electronic devices in EE by using reconfigurable devices and an adaptive self-reconfiguration of circuit topology. In this manner degraded components can be salvaged, and completely damaged components can be bypassed. The challenge of conventional design is replaced with that of designing a recover process that automatically performs the (re) design in place of the designer. The objective of testing a Digital Signal Processor (DSP) under the extreme temperatures was to determine the lowest temperature at which the DAP can operate. The objective of testing a Xilinx VirtexII Pro FPGA board was to initially find our whether the evaluation board and the FPGA would survive and continue at temperature ranges from -180 C, and 120 C. The Virtex II functioned correctly at the temperatures tested. The next test was done on the GM-C filter building block using the same temperature range as the Virtex II. The current lower and upper limits were shown to be reduced as the temperature gets lower. The device function can be recovered by increasing the Vb from .08V to .85V. The negative and positive saturation voltages increases as the temperature gets higher. The function of the device can be recovered by decreasing the Vb from .8V to around .75V. The next test was performed to test the recovery of the GmC low pass filter through Vb in a filter circuit. The test indicate that bias voltage control adjustment is an efficient mechanism for circuit recovery at extreme temperatures.

  10. Heatshield for Extreme Entry Environment Technology (HEEET) Development Status

    Science.gov (United States)

    Ellerby, Don; Gage, Peter; Kazemba, Cole; Mahzari, Milad; Nishioka, Owen; Peterson, Keith; Stackpoole, Mairead; Venkatapathy, Ethiraj; Young, Zion; Poteet, Carl; Splinter, Scott; Fowler, Mike; Kellerman, Charles

    2016-01-01

    The Heat shield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD and SMD co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASAs high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI managed mission cost (PIMMC) for investigations utilizing the Heat Shield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment. The HEEET ablative TPS utilizes 3D weaving technology to manufacture a dual layer material architecture. The 3-D weaving allows for flat panels to be woven. The dual layer consists of a top layer designed to withstand the extreme external environment while the inner or insulating layer by design, is designed to achieve low thermal conductivity, and it keeps the heat from conducting towards the structure underneath. Both arc jet testing combined with material properties have been used to develop thermal response models that allows for comparison of performance with heritage carbon phenolic. A 50 mass efficiency is achieved by the dual layer construct compared to carbon phenolic for a broad range of missions both to Saturn and Venus. The 3-D woven flat preforms are molded to achieve the shape as they are compliant and then resin infusion with curing forms a rigid panels. These panels are then bonded on to the aeroshell structure. Gaps

  11. Extreme Space Weather Events and Charging Hazard Assessments in Lunar Environments

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda N.; Blackwell, William C., Jr.

    2008-01-01

    The sunlit lunar surface charges to positive potentials with mean values of a few tens of volts where photoelectron currents dominate the charging process. In contrast, surfaces in darkness may charge to negative potentials on the order of a few hundred volts when the charging process is dominated by hot electron populations in the absence of solar photons. Recently, observations of electron beams measured by instruments on spacecraft in low lunar orbit have been interpreted as evidence for extreme lunar surface potentials exceeding a few kilovolts suggesting that lunar orbital and surface plasma environments may contain charging risks similar to geostationary orbit during extreme space weather conditions. Space system design for successful operation in a wide range of lunar environments will therefore require evaluation of charging hazards during extreme space weather conditions. We present results from a study of space weather environments conducted to obtained credible extreme charging environments for use in charging hazard assessments for lunar missions including extreme conditions encountered when the Moon is in the solar wind, the magnetosheath, and the Earth's magnetotail.

  12. In-Situ Micromechanical Testing in Extreme Environments

    Science.gov (United States)

    Lupinacci, Amanda Sofia

    In order to design engineering applications that can withstand extreme environments, we must first understand the underlying deformation mechanisms that can hinder material performance. It is not enough to characterize the mechanical properties alone, we must also characterize the microstructural changes as well so that we can understand the origin of material degradation. This dissertation focuses on two different extreme environments. The first environment is the cryogenic environment, where we focus on the deformation behavior of solder below the ductile to brittle transition temperature (DBTT). The second environment is the irradiated environment, where we focus on the effects that ion beam irradiation has on both the mechanical properties and microstructure of 304 stainless steel. Both classes of materials and testing environments utilize novel in situ micromechanical testing techniques inside a scanning electron microscope which enhances our ability to link the observed deformation behavior with its associated mechanical response. Characterizing plasticity mechanisms below the DBTT is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at -142 °C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity while at -142 °C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (100) orientation and a non-symmetric (45¯1) orientation. The deformation mechanisms were found to be the same for both orientations. This approach was also extended to a more complex solder alloy that is commonly used in industry, Sn96. In the case of the solder alloy more complex geometries

  13. Electro-Mechanical Systems for Extreme Space Environments

    Science.gov (United States)

    Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg

    2011-01-01

    Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller

  14. Characterization of Polarizing Splitter Optics in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Ryand; Olson, Matthew; Morelli, Gregg

    2013-01-04

    Development of laser systems capable of surviving extreme conditions experienced in military applications requires mounts and components that are able to survive these conditions. The characterization of mounted and/or bonded optical assemblies in harsh environments is critical for the development of laser and optical systems for functionality in these extreme conditions. Customized mounts, bonding assemblies and packaging strategies are utilized to develop and field reliable and robust optical subassemblies. Thin film polarizers operating at 45o and polarizing beam splitter cubes were chosen for initial testing based on past experiences, advancements in optical coating and construction technologies and material properties. Shock, vibration, shear strength, tensile strength and temperature testing are performed on mounted polarizing beam splitter cubes and thin film polarizers from two manufacturers. Previous testing showed that polarizing beam splitter cubes constructed using epoxy would become damaged in the laser resonator. The cubes being tested in this report are constructed using epoxy- free direct optical contact bonding. Thin film polarizers operating at 45o are chosen opposed to Brewster’s angle thin film polarizers to reduce the size and simplify design and construction since an optical wedge is not required. The components and mounts are each environmentally tested beyond the manufacturers’ specifications for shock, vibration, and temperature. Component functionality is monitored during and after the environmental testing. Experimental results from the testing will be discussed as will the impact on future laser resonator designs.

  15. Integrating Simulation and Data for Materials in Extreme Environments

    Science.gov (United States)

    Germann, Timothy

    2014-03-01

    We are using large-scale molecular dynamics (MD) simulations to study the response of nanocrystalline metals such as tantalum to uniaxial (e.g., shock) compression. With modern petascale-class platforms, we are able to model sample sizes with edge lengths over one micrometer, which match the length and time scales experimentally accessible at Argonne's Advanced Photon Source (APS) and SLAC's Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, as well as outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. The current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach. I will demonstrate this approach and our initial assessments, using the newly emerging capabilities at new 4th generation synchrotron light sources as an experimental driver.

  16. Examining personal values in extreme environment contexts: Revisiting the question of generalizability

    Science.gov (United States)

    Smith, N.; Sandal, G. M.; Leon, G. R.; Kjærgaard, A.

    2017-08-01

    Land-based extreme environments (e.g. polar expeditions, Antarctic research stations, confinement chambers) have often been used as analog settings for spaceflight. These settings share similarities with the conditions experienced during space missions, including confinement, isolation and limited possibilities for evacuation. To determine the utility of analog settings for understanding human spaceflight, researchers have examined the extent to which the individual characteristics (e.g., personality) of people operating in extreme environments can be generalized across contexts (Sandal, 2000) [1]. Building on previous work, and utilising new and pre-existing data, the present study examined the extent to which personal value motives could be generalized across extreme environments. Four populations were assessed; mountaineers (N =59), military personnel (N = 25), Antarctic over-winterers (N = 21) and Mars simulation participants (N = 12). All participants completed the Portrait Values Questionnaire (PVQ; Schwartz; 2) capturing information on 10 personal values. Rank scores suggest that all groups identified Self-direction, Stimulation, Universalism and Benevolence as important values and acknowledged Power and Tradition as being low priorities. Results from difference testing suggest the extreme environment groups were most comparable on Self-direction, Stimulation, Benevolence, Tradition and Security. There were significant between-group differences on five of the ten values. Overall, findings pinpointed specific values that may be important for functioning in challenging environments. However, the differences that emerged on certain values highlight the importance of considering the specific population when comparing results across extreme settings. We recommend that further research examine the impact of personal value motives on indicators of adjustment, group working, and performance. Information from such studies could then be used to aid selection and

  17. Mechanisms of interfacial reactivity in near surface and extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Univ. of California, San Diego, CA (United States); Balaska, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weare, John [Univ. of California, San Diego, CA (United States); Fulton, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bogatko, Stuart [Univ. of California, San Diego, CA (United States); Balasubramanian, Mahalingam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cauet, Emilie [Univ. of California, San Diego, CA (United States); Kerisit, Sebastien [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Felmy, Andrew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schenter, Gregory [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weare, Jonathan [U of Chicago

    2017-01-09

    +, Co2+, Mn2+, Fe3+, Cr3+. Calculations on these systems are demanding because of their open electronic shells, and high ionic charge. Principal Investigator: Professor John Weare (University of California, San Diego) The prediction of the interactions of geochemical fluids with minerals, nanoparticles, and colloids under extreme near surface conditions of temperature (T) and pressure (P) is a grand challenge research need in geosciences (U.S. DOE 2007, Basic Research Needs for Geosciences: Facilitating the 21st Energy Systems.). To evaluate the impact of these processes on energy production and management strategies it is necessary to have a high level of understanding of the interaction between complex natural fluids and mineral formations. This program emphasizes 1st principle parameter free simulations of complex chemical processes in solutions, in the mineral phase, and in the interfaces between these phases The development of new computational tools (with emphasis on oxide materials and reaction dynamics) tailored to treat wide range of conditions and time scales experienced in such geochemical applications is has been developed. Because of the sensitivity of the interaction in these systems to electronic structure and local bonding environments, and of the need to describe bond breaking/formation, our simulations are based on interactions calculated at the electronic structure level (ab-initio molecular dynamics, AIMD). The progress in the computational aspects of program may be summarized in terms of the following themes (objectives); Development of efficient parameter free dynamical simulation technology based on 1st principles force and energy calculations especially adapted for geochemical applications (e.g., mineral, interfaces and aqueous solutions) (continuing program); Calculation of the dynamics of water structure of in the surface-water interface of transition metal oxides and oxihydroxides; and

  18. Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments.

    Science.gov (United States)

    Jorquera, Milko A; Maruyama, Fumito; Ogram, Andrew V; Navarrete, Oscar U; Lagos, Lorena M; Inostroza, Nitza G; Acuña, Jacquelinne J; Rilling, Joaquín I; de La Luz Mora, María

    2016-10-01

    Chile is topographically and climatically diverse, with a wide array of diverse undisturbed ecosystems that include native plants that are highly adapted to local conditions. However, our understanding of the diversity, activity, and role of rhizobacteria associated with natural vegetation in undisturbed Chilean extreme ecosystems is very poor. In the present study, the combination of denaturing gradient gel electrophoresis and 454-pyrosequencing approaches was used to describe the rhizobacterial community structures of native plants grown in three representative Chilean extreme environments: Atacama Desert (ATA), Andes Mountains (AND), and Antarctic (ANT). Both molecular approaches revealed the presence of Proteobacteria, Bacteroidetes, and Actinobacteria as the dominant phyla in the rhizospheres of native plants. Lower numbers of operational taxonomic units (OTUs) were observed in rhizosphere soils from ATA compared with AND and ANT. Both approaches also showed differences in rhizobacterial community structures between extreme environments and between plant species. The differences among plant species grown in the same environment were attributed to the higher relative abundance of classes Gammaproteobacteria and Alphaproteobacteria. However, further studies are needed to determine which environmental factors regulate the structures of rhizobacterial communities, and how (or if) specific bacterial groups may contribute to the growth and survival of native plants in each Chilean extreme environments.

  19. Improving diversity in cultures of bacteria from an extreme environment.

    Science.gov (United States)

    Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter

    2013-08-01

    The ikaite columns in the Ikka Fjord in Greenland represent one of the few permanently cold and alkaline environments on Earth, and the interior of the columns is home to a bacterial community adapted to these extreme conditions. The community is characterized by low cell numbers imbedded in a calcium carbonate matrix, making extraction of bacterial cells and DNA a challenge and limiting molecular and genomic studies of this environment. To utilize this genetic resource, cultivation at high pH and low temperature was studied as a method for obtaining biomass and DNA from the fraction of this community that would not otherwise be amenable to genetic analyses. The diversity and community dynamics in mixed cultures of bacteria from ikaite columns was investigated using denaturing gradient gel electrophoresis and pyrosequencing of 16S rDNA. Both medium composition and incubation time influenced the diversity of the culture and many hitherto uncharacterized genera could be brought into culture by extended incubation time. Extended incubation time also gave rise to a more diverse community with a significant number of rare species not detected in the initial community.

  20. Biofilms and planktonic cells of Deinococcus geothermalis in extreme environments

    Science.gov (United States)

    Panitz, Corinna; Reitz, Guenther; Rabbow, Elke; Rettberg, Petra; Flemming, Hans-Curt; Wingender, Jost; Froesler, Jan

    In addition to the several extreme environments on Earth, Space can be considered as just another exceptional environment with a unique mixture of stress factors comprising UV radiation, vacuum, desiccation, temperature, ionizing radiation and microgravity. Life that processes in these environments can depend on the life forms and their state of living. The question is whether there are different strategies for individual microorganisms compared to communities of the same organisms to cope with the different factors of their surroundings. Comparative studies of the survi-val of these communities called biofilms and planktonic cell samples of Deinococcus geothermalis stand at the focal point of the presented investigations. A biofilm is a structured community of microorganisms that live encapsulated in a matrix of extracellular polymeric substances on a surface. Microorganisms living in a biofilm usually have significantly different properties to cooperate than individually living microorganisms of the same species. An advantage of the biofilm is increased resistance to various chemical and physical effects, while the dense extracellular matrix and the outer layer of the cells protect the interior of the microbial consortium. The space experiment BOSS (Biofilm organisms surfing Space) as part the ESA experimental unit EXPOSE R-2 with a planned launch date in July 2014 will be subsequently mounted on the Russian Svesda module outside the ISS. An international team of scientists coordinated by Dr. P. Rettberg will investigate the hypothesis whether microorganisms organized as biofilm outmatch the same microorganisms exposed individually in the long-term survival of the harsh environmental conditions as they occur in space and on Mars. Another protective function in the samples could be dust par-ticles for instance Mars regolith simulant contained inside the biofilms or mixed with the planktonic cells, as additional shelter especially against the extraterrestrial UV

  1. Tardigrades living in extreme environments have naturally selected prerequisites useful to space conquer

    Science.gov (United States)

    Guidetti, Roberto; Tiziana, Altiero; Cesari, Michele; Rizzo, Angela Maria; Bertolani, Roberto; Galletta, Giuseppe; Dalessandro, Maurizio; Rebecchi, Lorena

    Extreme habitats are highly selective and can host only living organisms possessing specific adaptations to stressors. Among extreme habitats, space environment has particular charac-teristics of radiations, vacuum, microgravity and temperature, which induce rapid changes in living systems. Consequently, the response of multicellular complex organisms, able to colo-nize extreme environments, to space stresses can give very useful information on the ability to withstand a single stress or stress combinations. This knowledge on changes in living systems in space, with their similarity to the ageing processes, offers the opportunity to improve human life both on Earth and in space. Even though experimentation in space has often been carried out using unicellular organisms, multicellular organisms are very relevant in order to develop the appropriate countermeasures to avoid the risks imposed by environmental space in humans. The little attention received by multicellular organisms is probably due, other than to difficul-ties in the manipulation of biological materials in space, to the presence of only few organisms with the potential to tolerate environmental space stresses. Among them, tardigrades are small invertebrates representing an attractive animal model to study adaptive strategies for surviving extreme environments, including space environment. Tardigrades are little known microscopic aquatic animals (250-800 m in body length) distributed in different environments (from the deep sea to high mountains and deserts all over the world), and frequently inhabiting very unstable and unpredictable habitats (e.g. interstices of mosses, lichens, leaf litter, freshwater ponds, cryoconite holes). Their ability to live in the extreme environments is related to a wide variety of their life histories and adaptive strategies. A widespread and crucial strategy is cryptobiosis, a form of quiescence. It includes strategies such as anhydrobiosis and cryobiosis, characterized by

  2. Moving in extreme environments: inert gas narcosis and underwater activities

    OpenAIRE

    Clark, James E

    2015-01-01

    Exposure to the underwater environment for pleasure or work poses many challenges on the human body including thermal stress, barotraumas, decompression sickness as well as the acute effects of breathing gases under pressure. With the popularity of recreational self-contained underwater breathing apparatus (SCUBA) diving on the increase and deep inland dive sites becoming more accessible, it is important that we understand the effects of breathing pressurised gas at depth can have on the body...

  3. IR DirectFET Extreme Environments Evaluation Final Report

    Science.gov (United States)

    Burmeister, Martin; Mottiwala, Amin

    2008-01-01

    In 2007, International Rectifier (IR) introduced a new version of its DirectFET metal oxide semiconductor field effect transistor (MOSFET) packaging. The new version (referred to as 'Version 2') enhances device moisture resistance, makes surface mount (SMT) assembly of these devices to printed wiring boards (PWBs) more repeatable, and subsequent assembly inspection simpler. In the present study, the National Aeronautics Space Administration (NASA) Jet Propulsion Laboratory (JPL), in collaboration with Stellar Microelectronics (Stellar), continued an evaluation of the DirectFET that they started together in 2006. The present study focused on comparing the two versions of the DirectFET and examining the suitability of the DirectFET devices for space applications. This study evaluated both versions of two DirectFET packaged devices that had both been shown in the 2006 study to have the best electrical and thermal properties: the IRF6635 and IRF6644. The present study evaluated (1) the relative electrical and thermal performance of both versions of each device, (2) the performance through high reliability testing, and (3) the performance of these devices in combination with a range of alternate solder alloys in the extreme thermal environments of deep space....

  4. Annual fish: developmental adaptations for an extreme environment.

    Science.gov (United States)

    Berois, Nibia; Arezo, María J; Papa, Nicolás G; Clivio, Graciela A

    2012-01-01

    Annual fish are freshwater teleosts found in South America and Africa that are exposed to an extremely variable environment. They develop and reproduce in seasonal ponds that dry during the summer eliminating the entire adult population. Remarkably, desiccation-resistant embryos survive in these dry ponds that hatch during the next rainy season when the ponds are recreated. Among vertebrates, they represent one of the most remarkable extremophiles. They share several features with other fish models; however, they exhibit unique traits related to their peculiar life cycle. Epiboly is temporally and spatially uncoupled from organogenesis, and the embryos can undergo reversible developmental arrests (diapauses). These attributes make them a useful model to study diverse topics in developmental biology using a comparative and evolutionary approach. In this article, different aspects related to annual fish biology, taxonomy and phylogenetic considerations, reproductive strategy, and developmental characteristics with special focus on arrests, are summarized. The current challenge is to document and determine the factors that generate such high diversity and unique adaptations of annual fish. To understand this complexity, interdisciplinary approaches are being employed taking into consideration evolutionary biology, ethology, reproductive strategies, regulation of developmental mechanisms, and senescence.

  5. Reconfiguration of Analog Electronics for Extreme Environments: Problem or Solution?

    Science.gov (United States)

    Stoica, Adrian; Zebulum, Ricardo; Keymeulen, Didier; Guo, Xin

    2005-01-01

    This paper argues in favor of adaptive reconfiguration as a technique to expand the operational envelope of analog electronics for extreme environments (EE). In addition to hardening-by-process and hardening-by-design, "hardening-by-reconfiguration", when applicable, could be used to mitigate drifts, degradation, or damage on electronic devices (chips) in EE, by using re-configurable devices and an adaptive self-reconfiguration of their circuit topology. Conventional circuit design exploits device characteristics within a certain temperature/radiation range; when that is exceeded, the circuit function degrades. On a reconfigurable device, although component parameters change in EE, as long as devices still operate, albeit degraded, a new circuit design, suitable for new parameter values, may be mapped into the reconfigurable structure to recover the initial circuit function. Partly degraded resources are still used, while completely damaged resources are bypassed. Designs suitable for various environmental conditions can be determined prior to operation or can be determined in-situ, by adaptive reconfiguration algorithms running on built-in digital controllers. Laboratory demonstrations of this technique were performed by JPL in several independent experiments in which bulk CMOS reconfigurable devices were exposed to, and degraded by, low temperatures (approx. 196 C), high temperatures (approx.300 C) or radiation (300kRad TID), and then recovered by adaptive reconfiguration using evolutionary search algorithms. Taking this technology from Technology Readiness Level (TRL) 3 to TRL 5 is the target of a current NASA project.

  6. Expanding Health Technology Assessments to Include Effects on the Environment

    DEFF Research Database (Denmark)

    Marsh, Kevin; Ganz, Michael Lee; Hsu, John

    2016-01-01

    decision makers. Health care is an important and sizable sector of the economy that could warrant closer policy attention to its impact on the environment. Considerable work is needed to track decision makers' demands, augment the environmental evidence base, and develop robust methods for capturing...

  7. Electronic Components and Circuits for Extreme Temperature Environments

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with

  8. Extreme Environment Simulation - Current and New Capabilities to Simulate Venus and Other Planetary Bodies

    Science.gov (United States)

    Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy

    2014-01-01

    Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes

  9. Significance of Environmental Variables on Flight Electronics and Design Concerns for Extreme Environments

    Science.gov (United States)

    Hazeli, K.; Kingstedt, O. T.

    2017-05-01

    It is critical to investigate the performance of electronic systems and their components under the environments experienced during proposed missions to improve spacecraft and robotic vehicle functionality and performance in extreme environments.

  10. A Fault-Oblivious Extreme-Scale Execution Environment (FOX)

    Energy Technology Data Exchange (ETDEWEB)

    Van Hensbergen, Eric; Speight, William; Xenidis, Jimi

    2013-03-15

    IBM Research’s contribution to the Fault Oblivious Extreme-scale Execution Environment (FOX) revolved around three core research deliverables: • collaboration with Boston University around the Kittyhawk cloud infrastructure which both enabled a development and deployment platform for the project team and provided a fault-injection testbed to evaluate prototypes • operating systems research focused on exploring role-based operating system technologies through collaboration with Sandia National Labs on the NIX research operating system and collaboration with the broader IBM Research community around a hybrid operating system model which became known as FusedOS • IBM Research also participated in an advisory capacity with the Boston University SESA project, the core of which was derived from the K42 operating system research project funded in part by DARPA’s HPCS program. Both of these contributions were built on a foundation of previous operating systems research funding by the Department of Energy’s FastOS Program. Through the course of the X-stack funding we were able to develop prototypes, deploy them on production clusters at scale, and make them available to other researchers. As newer hardware, in the form of BlueGene/Q, came online, we were able to port the prototypes to the new hardware and release the source code for the resulting prototypes as open source to the community. In addition to the open source coded for the Kittyhawk and NIX prototypes, we were able to bring the BlueGene/Q Linux patches up to a more recent kernel and contribute them for inclusion by the broader Linux community. The lasting impact of the IBM Research work on FOX can be seen in its effect on the shift of IBM’s approach to HPC operating systems from Linux and Compute Node Kernels to role-based approaches as prototyped by the NIX and FusedOS work. This impact can be seen beyond IBM in follow-on ideas being incorporated into the proposals for the Exasacale Operating

  11. Expanding Health Technology Assessments to Include Effects on the Environment.

    Science.gov (United States)

    Marsh, Kevin; Ganz, Michael L; Hsu, John; Strandberg-Larsen, Martin; Gonzalez, Raquel Palomino; Lund, Niels

    2016-01-01

    There is growing awareness of the impact of human activity on the climate and the need to stem this impact. Public health care decision makers from Sweden and the United Kingdom have started examining environmental impacts when assessing new technologies. This article considers the case for incorporating environmental impacts into the health technology assessment (HTA) process and discusses the associated challenges. Two arguments favor incorporating environmental impacts into HTA: 1) environmental changes could directly affect people's health and 2) policy decision makers have broad mandates and objectives extending beyond health care. Two types of challenges hinder this process. First, the nascent evidence base is insufficient to support the accurate comparison of technologies' environmental impacts. Second, cost-utility analysis, which is favored by many HTA agencies, could capture some of the value of environmental impacts, especially those generating health impacts, but might not be suitable for addressing broader concerns. Both cost-benefit and multicriteria decision analyses are potential methods for evaluating health and environmental outcomes, but are less familiar to health care decision makers. Health care is an important and sizable sector of the economy that could warrant closer policy attention to its impact on the environment. Considerable work is needed to track decision makers' demands, augment the environmental evidence base, and develop robust methods for capturing and incorporating environmental data as part of HTA.

  12. Evidence of Molecular Adaptation to Extreme Environments and Applicability to Space Environments

    Directory of Open Access Journals (Sweden)

    Filipović, M. D.

    2008-06-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: {it Escherichia coli (E. coli K12}, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0D C ({it Metarhizium frigidum (M.~frigidum} and {it Methanococcoides burtonii (M.~burtonii} and 110D C ({it Methanopyrus kandleri (M.~kandleri}. Although not all the components of heat adaptation can be attributed to novel genes, the {it chaperones} known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved {it chaperons} found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique {it chaperone TF55}. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The followinghyperthermophile genomes incorporated in this software were used forthese studies: {it Methanocaldococcus jannaschii (M.~jannaschii, M.~kandleri, Archaeoglobus fulgidus (A.~fulgidus} and threespecies of {it Pyrococcus}. Common genes were annotated and groupedaccording to their roles in cellular processes where such informationwas available and proteins not previously implicated in theheat-adaptation of hyperthermophiles were identified. Additionalexperimental data are needed in order to learn more about theseproteins. To address non-gene based components of thermaladaptation

  13. Evidence of molecular adaptation to extreme environments and applicability to space environments

    Directory of Open Access Journals (Sweden)

    Filipović M.

    2008-01-01

    Full Text Available This is initial investigation of gene signatures responsible for adapting microscopic life to the extreme Earth environments. We present preliminary results on identification of the clusters of orthologous groups (COGs common to several hyperthermophiles and exclusion of those common to a mesophile (non-hyperthermophile: Escherichia coli (E. coli K12, will yield a group of proteins possibly involved in adaptation to life under extreme temperatures. Comparative genome analyses represent a powerful tool in discovery of novel genes responsible for adaptation to specific extreme environments. Methanogens stand out as the only group of organisms that have species capable of growth at 0ºC (Metarhizium frigidum (M. frigidum and Methanococcoides burtonii (M. burtonii and 110ºC (Methanopyrus kandleri (M. kandleri. Although not all the components of heat adaptation can be attributed to novel genes, the chaperones known as heat shock proteins stabilize the enzymes under elevated temperature. However, highly conserved chaperons found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique chaperone TF55. Our aim was to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The following hyperthermophile genomes incorporated in this software were used for these studies: Methanocaldococcus jannaschii (M. jannaschii, M. kandleri, Archaeoglobus fulgidus (A. fulgidus and three species of Pyrococcus. Common genes were annotated and grouped according to their roles in cellular processes where such information was available and proteins not previously implicated in the heat-adaptation of hyperthermophiles were identified. Additional experimental data are needed in order to learn more about these proteins. To address non-gene based components of thermal adaptation, all sequenced extremophiles were

  14. New chemical evolution analytical solutions including environment effects

    CERN Document Server

    Spitoni, E

    2015-01-01

    In the last years, more and more interest has been devoted to analytical solutions, including inflow and outflow, to study the metallicity enrichment in galaxies. In this framework, we assume a star formation rate which follows a linear Schmidt law, and we present new analytical solutions for the evolution of the metallicity (Z) in galaxies. In particular, we take into account environmental effects including primordial and enriched gas infall, outflow, different star formation efficiencies, and galactic fountains. The enriched infall is included to take into account galaxy-galaxy interactions. Our main results can be summarized as: i) when a linear Schmidt law of star formation is assumed, the resulting time evolution of the metallicity Z is the same either for a closed-box model or for an outflow model. ii) The mass-metallicity relation for galaxies which suffer a chemically enriched infall, originating from another evolved galaxy with no pre-enriched gas, is shifted down in parallel at lower Z values, if co...

  15. Moving in extreme environments: inert gas narcosis and underwater activities.

    Science.gov (United States)

    Clark, James E

    2015-01-01

    Exposure to the underwater environment for pleasure or work poses many challenges on the human body including thermal stress, barotraumas, decompression sickness as well as the acute effects of breathing gases under pressure. With the popularity of recreational self-contained underwater breathing apparatus (SCUBA) diving on the increase and deep inland dive sites becoming more accessible, it is important that we understand the effects of breathing pressurised gas at depth can have on the body. One of the common consequences of hyperbaric gas is the narcotic effect of inert gas. Nitrogen (a major component of air) under pressure can impede mental function and physical performance at depths of as little as 10 m underwater. With increased depth, symptoms can worsen to include confusion, disturbed coordination, lack of concentration, hallucinations and unconsciousness. Narcosis has been shown to contribute directly to up to 6% of deaths in divers and is likely to be indirectly associated with other diving incidents at depth. This article explores inert gas narcosis, the effect on divers' movement and function underwater and the proposed physiological mechanisms. Also discussed are some of the factors that affect the susceptibility of divers to the condition. In conclusion, understanding the cause of this potentially debilitating problem is important to ensure that safe diving practices continue.

  16. A Fault-oblivious Extreme-scale Execution Environment

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, Ponnuswamy [The Ohio State Univ., Columbus, OH (United States)

    2016-08-31

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. We propose a new approach to the data and work distribution model provided by system software based on the unifying formalism of an abstract file system. The proposed hierarchical data model provides simple, familiar visibility and access to data structures through the file system hierarchy, while providing fault tolerance through selective redundancy. The hierarchical task model features work queues whose form and organization are represented as file system objects. Data and work are both first class entities. By exposing the relationships between data and work to the runtime system, information is available to optimize execution time and provide fault tolerance. The data distribution scheme provides replication (where desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it possible to take advantage of locality. The user, tools, and applications, including legacy applications, can interface with the data, work queues, and one another through the abstract file model. This runtime environment will provide multiple interfaces to support traditional Message Passing Interface applications, languages developed under DARPA's High Productivity Computing Systems program, as well as other, experimental programming models. We will validate our runtime system with pilot codes on existing platforms and will use simulation to validate for exascale-class platforms. In this final report, we summarize research

  17. Enabling Structured Exploration of Workflow Performance Variability in Extreme-Scale Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin; Stephan, Eric G.; Raju, Bibi; Altintas, Ilkay; Elsethagen, Todd O.; Krishnamoorthy, Sriram

    2015-11-15

    Workflows are taking an Workflows are taking an increasingly important role in orchestrating complex scientific processes in extreme scale and highly heterogeneous environments. However, to date we cannot reliably predict, understand, and optimize workflow performance. Sources of performance variability and in particular the interdependencies of workflow design, execution environment and system architecture are not well understood. While there is a rich portfolio of tools for performance analysis, modeling and prediction for single applications in homogenous computing environments, these are not applicable to workflows, due to the number and heterogeneity of the involved workflow and system components and their strong interdependencies. In this paper, we investigate workflow performance goals and identify factors that could have a relevant impact. Based on our analysis, we propose a new workflow performance provenance ontology, the Open Provenance Model-based WorkFlow Performance Provenance, or OPM-WFPP, that will enable the empirical study of workflow performance characteristics and variability including complex source attribution.

  18. Evidence of molecular adaptation to extreme environments and applicability to space environments

    CERN Document Server

    Filipovic, M D; Ognjanovic, M

    2008-01-01

    This is initial study of a gene signatures responsible for adapting microscopic life to the life in extreme Earth environments. We present a results on ID of the clusters of COGs common to several hyperthermophiles and exclusion of those common to a mesophile: E.coli.K12, will yield a group of proteins possibly involved in adaptation to life under extreme T. Methanogens stand out as the only group of organisms that have species capable of growth at 0C (M.frigidum and M.burtonii) and 110C (M.kandleri). Not all the components of heat adaptation can be attributed to novel genes, the chaperones known as heat shock proteins stabilize the enzymes under elevated temperature. Highly conserved chaperons found in bacteria and eukaryots are not present in hyperthermophilic Archea, rather, they have a unique chaperone TF55. Our aim is to use software which we specifically developed for extremophile genome comparative analyses in order to search for additional novel genes involved in hyperthermophile adaptation. The follo...

  19. New insights into microbial adaptation to extreme saline environments

    Directory of Open Access Journals (Sweden)

    Vauclare P.

    2014-02-01

    Full Text Available Extreme halophiles are microorganisms adapted to low water activity living at the upper salt concentration that life can tolerate. We review here recent data that specify the main factors, which determine their peculiar salt-dependent biochemistry. The data suggested that evolution proceeds by stage to modify the molecular dynamics properties of the entire proteome. Extreme halophiles therefore represent tractable models to understand how fast and to what extent microorganisms adapt to environmental changes. Halophiles are also robust organisms, capable to resist multiple stressors. Preliminary studies indicated that they have developed a cellular response specifically aimed to survive when the salt condition fluctuates. Because of these properties halophilic organisms deserve special attention in the search for traces of life on other planets.

  20. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  1. Nanomaterials in Extreme Environments: Fundamentals and Applications Rostislav A. Andrievski and Arsen V. Khatchoyan

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram

    2016-10-01

    Nanomaterials in Extreme Environments Rostislav A. Andrievski and Arsen V. Khatchoyan Springer, 2016 106 pages, $99.00 (e-book $69.99) ISBN 978–3-319–25331–2 This slim volume is an extensive review of our current understanding of the response of nanostructured materials to extreme operating conditions, such as high temperature, flux of high energy neutrons, high pressure, mechanical stress, and oxidizing environments. The emphasis is on metallic materials, especially Cu alloys. Graphene-based materials, fullerenes, polymeric materials, nano-glasses and glass-ceramics are not covered by this review. The book has six chapters including an introduction and a brief conclusion. The introduction documents the growth of scientific interest in nanostructured materials and stresses the need to study the behavior of nanomaterials under extreme conditions. This chapter also presents Herbert Gleiter’s classification of nanomaterials into twelve groups based on the shapes of the nanoscale features and chemical composition of the components of the nanostructure. The second chapter deals with the high temperature environment and the thermodynamics and kinetics of grain growth. The authors identify the lack of reliable thermodynamic data as a key limitation in this field. The discussion brings out the interplay of structural relaxation, redistribution of excess free volume, diffusion, and recrystallization in multicomponent nanostructures at elevated temperature. Chapter 3 focuses on the effects of ion and neutron irradiation on the structure and properties of nanomaterials. The authors do a good job of highlighting recent studies on the radiation tolerance of nanocrystalline oxides and rapid grain growth under irradiation. The material addresses both fission and fusion reactor applications. Chapter 4 reviews the effects of severe plastic deformation and cyclic loading on nanostructure formation and phase transformation. This chapter also explores the challenge of

  2. Fungi living in diverse extreme habitats of the marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Raghukumar, C.; Manohar, C.S.

    . Fungi are capable of withstanding high salinity conditions, such as those in intertidal mangrove environments and salt pans. Cold water, psychrotolerant fungi have been identified from polar waters. Numerous studies have shown that fungi grow actively...

  3. Evaluation of pediatric lower extremity fractures managed with external fixation: outcomes in a deployed environment.

    Science.gov (United States)

    Eichinger, Josef K; McKenzie, Colin S; Devine, John G

    2012-01-01

    External fixation of pediatric lower extremity fractures is usually reserved for severe, open fractures in polytraumatized patients, but it is often the only available treatment option for deployed military surgeons. We analyzed the outcomes and complications of 17 consecutive pediatric long bone fractures treated with external fixation at a Forward Surgical Team facility in an austere environment during Operation Enduring Freedom in Afghanistan during a 12-month period. Treatment consisted of uniplanar external fixation for 12 femoral shaft fractures (11 closed), 4 tibial shaft fractures (all open), and 1 subtrochanteric fracture (closed) in 14 males and 3 females with an average age of 7.4 years. All 17 fractures went on to union with no incidences of refracture. Complications included 1 broken pin and 3 pin site infections treated with wound care and oral antibiotics. In a deployed environment, external fixation is the treatment method of choice for lower extremity fractures by virtue of patient, environment, equipment, and mission factors. This case series validates the usage of a simple, uniplanar external fixator for a variety of open and closed pediatric long bone fractures as evidenced by the successful union rate and low number of complications.

  4. Rapid self-organized criticality: Fractal evolution in extreme environments

    Science.gov (United States)

    Halley, Julianne D.; Warden, Andrew C.; Sadedin, Suzanne; Li, Wentian

    2004-09-01

    We introduce the phenomenon of rapid self-organized criticality (RSOC) and show that, like some models of self-organized criticality (SOC), RSOC generates scale-invariant event distributions and 1/f noise. Unlike SOC, however, RSOC persists despite more than an order of magnitude variation in driving rate and displays extremely thick and dynamic branching geometry. Starting with an initial set of parameter values, we perform two numerical experiments in which nonequilibrium RSOC systems are tuned towards their critical points. The approach to the critical state is tracked using average branching rates, which must equal 1 if systems are genuinely critical.

  5. Star formation in extreme environments : The effects of cosmic rays and mechanical heating

    NARCIS (Netherlands)

    Meijerink, R.; Spaans, M.; Loenen, A. F.; van der Werf, Paul P.

    Context. The molecular interstellar medium in extreme environments, such as Arp 220, but also NGC 253 appears to have extremely high cosmic ray (CR) rates (10(3)-10(4) x Milky Way) and substantial mechanical heating from supernova driven turbulence. Aims. We explore the consequences of high CR rates

  6. Thermal Protection System Materials (TPSM): Heat Shield for Extreme Entry Environment Technology (HEEET) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Heatshield for Extreme Entry Environ­ment Technology (HEEET) project seeks to mature a game changing Woven Ther­mal Protection System (TPS) technology to...

  7. Evolution of Fish in Extreme Environments : Insights from the Magadi tilapia (Alcolapia grahami)

    OpenAIRE

    Kavembe, Geraldine Dorcas

    2015-01-01

    Extreme environments such as soda lakes are largely unexplored habitats where a surprising number of often endemic species thrive regardless of multiple co-occurring abiotic stresses, depleted food resources and restricted dispersal abilities. Their distinct geochemistry, ecological boundaries, simplified biota and high levels of endemism strikingly resemble the features found on islands that have long been used for evolutionary studies. Extreme environments thus represent prime natural labor...

  8. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    OpenAIRE

    Angeles Aguilera

    2013-01-01

    A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of...

  9. Thermal Testing of Woven TPS Materials in Extreme Entry Environments

    Science.gov (United States)

    Gonzales, G.; Stackpoole, M.

    2014-01-01

    NASAs future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, high pressures and short entry durations, in order for CP to be feasible from a mass perspective. In 2012 the Game Changing Development Program in NASAs Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASAs most challenging entry missions. The high entry conditions pose certification challenges in existing ground based test facilities. Recent updates to NASAs IHF and AEDCs H3 high temperature arcjet test facilities enable higher heatflux (2000 Wcm2) and high pressure (5 atm) testing of TPS. Some recent thermal tests of woven TPS will be discussed in this paper. These upgrades have provided a way to test higher entry conditions of potential outer planet and Venus missions and provided a baseline against carbon phenolic material. The results of these tests have given preliminary insight to sample configuration and physical recession profile characteristics.

  10. Using scaling fluctuation analysis to quantify anthropogenic changes in regional and global precipitation, including extremes

    Science.gov (United States)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    Anthropic precipitation changes affect the mean and the magnitude and frequency of extreme events, and therefore potentially have severe consequences in all aspects of human life. Unfortunately, - unlike the anthropic temperature changes - precipitation changes of anthropic origin have been proven difficult to establish with high statistical significance. For example, when changes have been established for individual precipitation products, the serious divergences found between products reflect our limited ability to estimate areal precipitation even at global scales. In addition to data issues, the usual approaches to assessing changes in precipitation also have methodological issues that hamper their identification. Here we discuss how the situation can be clarified by the systematic application of scaling fluctuation analysis - for example, to determine the scales at which the anthropogenic signal exceeds the natural variability noise (we find that it is roughly 20 years). Following a recent approach for estimating anthropogenic temperature changes we directly determine the effective sensitivity of the precipitation rate to a doubling of CO2. The novelty in this approach is that it takes CO2 as a surrogate for all anthropogenic forcings and estimates the trend based on the forcing rather than time - the usual approach. This leads both to an improved signal to noise ratio and, when compared to the usual estimates of trends, it augments their statistical significance; we further improve the signal to noise ratio by considering precipitation over the ocean where anthropogenic increases are strongest, finding that there are statistically significant trends at the 3 to 4 standard deviation level. This approach also permits the first direct estimate of the increases in global precipitation with temperature: we find 1.71±0.62 %/K which is close to that found by GCM's (2 - 3%/K) and is well below the value of ≈ 6 - 7%/K predicted on the basis of increases in humidity

  11. The Lusi drone: a mutidisciplinary tool to access extreme environments.

    Science.gov (United States)

    Romeo, Giovanni; Mazzini, Adriano; Alessandro, Iarocci; Di Stefano, Giuseppe; Benedetti, Paolo

    2014-05-01

    Active eruptions are notoriously inaccessible for monitoring and sampling. The "Lusi drone" is a hexacopter developed and assembled in order to complete multidisciplinary studies in such inaccessible environments. The Lusi drone is equipped with three gimbaled cameras that can complete video, photogrammetry, and thermal surveys during the missions. Two different prototypes of remote controlled gas containers can vacuum multiple samples when required. A remote controlled winch is able to deploy 1) a logger to monitor high temperature (up to 250° C) variations of erupted fluids (water-gas) and 2) a specifically designed sampler to collect solid and fluid specimens at preselected coordinates. A GPS-connected software allows to pre-plan the full mission of the drone and to constantly communicate and monitor its position. The device is solid, stable even with significant wind, affordable, and easy to transport. The Lusi drone has been successfully used at the active Lusi eruption site in Indonesia and proved to be an excellent tool to study harsh environments, where operations with more conventional methods are too expensive, dangerous or simply impossible.

  12. Predictors of Behavior and Performance in Extreme Environments: The Antarctic Space Analogue Program

    Science.gov (United States)

    Palinkas, Lawrence A.; Gunderson, E K. Eric; Holland, A. W.; Miller, Christopher; Johnson, Jeffrey C.

    2000-01-01

    To determine which, if any, characteristics should be incorporated into a select-in approach to screening personnel for long-duration spaceflight, we examined the influence of crewmember social/ demographic characteristics, personality traits, interpersonal needs, and characteristics of station physical environments on performance measures in 657 American men who spent an austral winter in Antarctica between 1963 and 1974. During screening, subjects completed a Personal History Questionnaire which obtained information on social and demographic characteristics, the Deep Freeze Opinion Survey which assessed 5 different personality traits, and the Fundamental Interpersonal Relations Orientation-Behavior (FIRO-B) Scale which measured 6 dimensions of interpersonal needs. Station environment included measures of crew size and severity of physical environment. Performance was assessed on the basis of combined peer-supervisor evaluations of overall performance, peer nominations of fellow crewmembers who made ideal winter-over candidates, and self-reported depressive symptoms. Social/demographic characteristics, personality traits, interpersonal needs, and characteristics of station environments collectively accounted for 9-17% of the variance in performance measures. The following characteristics were significant independent predictors of more than one performance measure: military service, low levels of neuroticism, extraversion and conscientiousness, and a low desire for affection from others. These results represent an important first step in the development of select-in criteria for personnel on long-duration missions in space and other extreme environments. These criteria must take into consideration the characteristics of the environment and the limitations they place on meeting needs for interpersonal relations and task performance, as well as the characteristics of the individuals and groups who live and work in these environments.

  13. Predictors of Behavior and Performance in Extreme Environments: The Antarctic Space Analogue Program

    Science.gov (United States)

    Palinkas, Lawrence A.; Gunderson, E K. Eric; Holland, A. W.; Miller, Christopher; Johnson, Jeffrey C.

    2000-01-01

    To determine which, if any, characteristics should be incorporated into a select-in approach to screening personnel for long-duration spaceflight, we examined the influence of crewmember social/ demographic characteristics, personality traits, interpersonal needs, and characteristics of station physical environments on performance measures in 657 American men who spent an austral winter in Antarctica between 1963 and 1974. During screening, subjects completed a Personal History Questionnaire which obtained information on social and demographic characteristics, the Deep Freeze Opinion Survey which assessed 5 different personality traits, and the Fundamental Interpersonal Relations Orientation-Behavior (FIRO-B) Scale which measured 6 dimensions of interpersonal needs. Station environment included measures of crew size and severity of physical environment. Performance was assessed on the basis of combined peer-supervisor evaluations of overall performance, peer nominations of fellow crewmembers who made ideal winter-over candidates, and self-reported depressive symptoms. Social/demographic characteristics, personality traits, interpersonal needs, and characteristics of station environments collectively accounted for 9-17% of the variance in performance measures. The following characteristics were significant independent predictors of more than one performance measure: military service, low levels of neuroticism, extraversion and conscientiousness, and a low desire for affection from others. These results represent an important first step in the development of select-in criteria for personnel on long-duration missions in space and other extreme environments. These criteria must take into consideration the characteristics of the environment and the limitations they place on meeting needs for interpersonal relations and task performance, as well as the characteristics of the individuals and groups who live and work in these environments.

  14. The Extreme Chemical Environments Associated with Dying Stars

    Science.gov (United States)

    Ziurys, Lucy

    Mass loss from dying stars is the main avenue by which material enters the interstellar medium, and eventually forms solar systems and planets. When stars consume all the hydrogen burning in their core, they start to burn helium, first in their centers, and then in a surrounding shell. During these phases, the so-called ``giant branches,'' large instabilities are created, and stars begin to shed their outer atmospheres, producing so-called circumstellar envelopes. Molecules form readily in these envelopes, in part by LTE chemistry at the base of the stellar photosphere, and also by radical reactions in the outer regions. Eventually most stars shed almost all their mass, creating ``planetary nebulae,'' which consist of a hot, ultraviolet-emitting white dwarf surrounded by the remnant stellar material. The environs in such nebulae are not conducive to chemical synthesis; yet molecular gas exits. The ejecta from these nebulae then flows into the interstellar medium, becoming the starting material for diffuse clouds, which subsequently collapse into dense clouds and then stars. This molecular ``life cycle'' is repeated many times in the course of the evolution of our Galaxy. We have been investigating the interstellar molecular life cycle, in particular the chemical environments of circumstellar shells and planetary nebulae, through both observational and laboratory studies. Using the facilities of the Arizona Radio Observatory (ARO), we have conducted broad-band spectral-line surveys to characterize the contrasting chemical and physical properties of carbon (IRC +10216) vs. oxygen-rich envelopes (VY CMa and NML Cyg). The carbon-rich types are clearly more complex in terms of numbers of chemical compounds, but the O-rich variety appear to have more energetic, shocked material. We have also been conducting surveys of polyatomic molecules towards planetary nebulae. Species such as HCN, HCO+, HNC, CCH, and H2CO appear to be common constituents of these objects, and their

  15. Extreme sensitivity of enveloped viruses, including herpes simplex, to long-chain unsaturated monoglycerides and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Sands, J.; Auperin, D.; Snipes, W.

    1979-01-01

    Unsaturated monoglycerides and alcohols of chain lengths of 16 to 18 carbons were found to be extremely potent inactivators of two enveloped viruses, herpes simplex virus type 2 and bacteriophage phi 6. The lipid-containing bacteriophage PM2 was also inactivated by some of these amphiphilic molecules. Treatment of herpes simplex virus type 2 with these compounds at concentrations as low as 0.2 ..mu..M reduced virus survival to 50% in 30 min, making these agents the most potent inactivators of herpes simplex viruses discovered that are not cytotoxic to mammalian cells. Detailed characterizations of the effects of unsaturated monoglycerides and alcohols on bacteriophages phi 6 and PM2 showed that the inactivated phi 6 virion remained nearly intact but that PM2 was almost completely disrupted by the inactivating treatment. Some of the compounds inactivate the viruses even at low temperature (0/sup 0/C). Excess amounts of diglycerides and phospholipids interfere with the inactivating abilities of some of the unsaturated monoglycerides and alcohols against phi 6 and PM2. Our findings suggest that the unsaturated monoglycerides and some of the unsaturated alcohols should be further studied as potential antiviral agents. Particularly for application to herpesvirus-infected areas of the skin and accessible epithelium.

  16. Risk analysis for autonomous underwater vehicle operations in extreme environments.

    Science.gov (United States)

    Brito, Mario Paulo; Griffiths, Gwyn; Challenor, Peter

    2010-12-01

    Autonomous underwater vehicles (AUVs) are used increasingly to explore hazardous marine environments. Risk assessment for such complex systems is based on subjective judgment and expert knowledge as much as on hard statistics. Here, we describe the use of a risk management process tailored to AUV operations, the implementation of which requires the elicitation of expert judgment. We conducted a formal judgment elicitation process where eight world experts in AUV design and operation were asked to assign a probability of AUV loss given the emergence of each fault or incident from the vehicle's life history of 63 faults and incidents. After discussing methods of aggregation and analysis, we show how the aggregated risk estimates obtained from the expert judgments were used to create a risk model. To estimate AUV survival with mission distance, we adopted a statistical survival function based on the nonparametric Kaplan-Meier estimator. We present theoretical formulations for the estimator, its variance, and confidence limits. We also present a numerical example where the approach is applied to estimate the probability that the Autosub3 AUV would survive a set of missions under Pine Island Glacier, Antarctica in January-March 2009.

  17. Small RNA transcriptomes of mangroves evolve adaptively in extreme environments.

    Science.gov (United States)

    Wen, Ming; Lin, Xingqin; Xie, Munan; Wang, Yushuai; Shen, Xu; Liufu, Zhongqi; Wu, Chung-I; Shi, Suhua; Tang, Tian

    2016-01-01

    MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments.

  18. Nonlinear optical field sensors in extreme electromagnetic and acoustic environments

    Science.gov (United States)

    Garzarella, Anthony; Wu, Dong Ho

    2014-03-01

    Sensors based on electro-optic (EO) and magneto-optic (MO) crystals measure external electric and magnetic fields through changes in birefringence which the fields induce on the nonlinear crystals. Due to their small size and all-dielectric structure, EO and MO sensors are ideal in environments involving very large electromagnetic powers. Conventional antennas and metallic probes not only present safety hazards, due to their metallic structure and the presence of large currents, but they can also perturb the very fields they intend to measure. In the case of railguns, the large electromagnetic signals are also accompanied by tremendous acoustic noise, which presents a noise background that the sensors must overcome. In this presentation, we describe extensive data obtained from fiber optic EO and MO sensors used in the railgun of the Naval Research Laboratory. Along with the field measurements obtained, we will describe the interactions between the acoustic noise and the nonlinear crystals (most notably, photoelastic effects), the noise equivalent fields they produce, and methods they could be suppressed through the optical and geometrical configurations of the sensor so that the signal to noise ratio can be maximized.

  19. Self-Recovery Experiments in Extreme Environments Using a Field Programmable Transistor Array

    Science.gov (United States)

    Stoica, Adrian; Keymeulen, Didier; Arslan, Tughrul; Duong, Vu; Zebulum, Ricardo; Ferguson, Ian; Guo, Xin

    2004-01-01

    Temperature and radiation tolerant electronics, as well as long life survivability are key capabilities required for future NASA missions. Current approaches to electronics for extreme environments focus on component level robustness and hardening. However, current technology can only ensure very limited lifetime in extreme environments. This paper describes novel experiments that allow adaptive in-situ circuit redesign/reconfiguration during operation in extreme temperature and radiation environments. This technology would complement material/device advancements and increase the mission capability to survive harsh environments. The approach is demonstrated on a mixed-signal programmable chip (FPTA-2), which recovers functionality for temperatures until 28 C and with total radiation dose up to 250kRad.

  20. Eye injuries in the extreme environment ultra-marathon runner.

    Science.gov (United States)

    Cope, Thomas Adam; Kropelnicki, Anna

    2015-06-02

    We present the case of an ultra-marathon runner who developed a painful irritated eye due to prolonged exposure to high wind speed and sub-zero temperatures causing transient freezing and subsequent abrasion of the cornea. We recommend that all ultra-marathon runners racing in windy or exposed conditions should wear wrap-around eye protection or goggles. If runners present to checkpoints or after the race to primary care or the emergency department with ocular pain, corneal freezing and abrasions should be considered. Management should include ocular examination and withdrawing the runner from harmful conditions.

  1. A Fault Oblivious Extreme-Scale Execution Environment

    Energy Technology Data Exchange (ETDEWEB)

    McKie, Jim

    2014-11-20

    The FOX project, funded under the ASCR X-stack I program, developed systems software and runtime libraries for a new approach to the data and work distribution for massively parallel, fault oblivious application execution. Our work was motivated by the premise that exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today’s machines. To deliver the capability of exascale hardware, the systems software must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. Our OS research has prototyped new methods to provide efficient resource sharing, synchronization, and protection in a many-core compute node. We have experimented with alternative task/dataflow programming models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in active development through open source projects. Concepts from FOX are being pursued in next generation exascale operating systems. Our OS work focused on adaptive, application tailored OS services optimized for multi → many core processors. We developed a new operating system NIX that supports role-based allocation of cores to processes which was released to open source. We contributed to the IBM FusedOS project, which promoted the concept of latency-optimized and throughput-optimized cores. We built a task queue library based on distributed, fault tolerant key-value store and identified scaling issues. A second fault tolerant task parallel library was developed, based on the Linda tuple space model, that used low level interconnect primitives for optimized communication. We designed fault tolerance mechanisms for task parallel computations

  2. Looking for Life in Extreme Environments on Earth and Beyond: Professional Development Workshop for Educators

    Science.gov (United States)

    Droppo, R.; Pratt, L.; Suchecki, P. C.

    2010-08-01

    The Looking for Life in Extreme Environments workshop held at Indiana University Bloomington in July of 2009 was the first in a series of workshops for high-school teachers that are currently in development. The workshops' modules are based on the research of faculty members in the Departments of Geological Sciences, Biology, and Astronomy, the School of Education, and the School of Public and Environmental Affairs at Indiana University Bloomington; the modules use lessons from Exploring Deep-Subsurface Life. Earth Analogues for Possible Life on Mars: Lessons and Activities, curricular materials that were produced and edited by Lisa Pratt and Ruth Droppo and published by NASA in 2008. Exploring Deep-Subsurface Life is a workbook, a DVD (with closed-captioning), and a CD with the lessons in digital text format for adaptation to classroom needs and printing. Each lesson includes the National Education Standards that apply to the materials. The workbook's lessons are written with three considerations: Life Domains, Cellular Metabolism, and Extreme Environments and Microbes. Students are challenged to build, draw, measure, discuss, and participate in laboratory processes and experiments that help them understand and describe microbes and their environments. In the Capstone, the students write a grant proposal based on the three lessons' analogues. The DVD is collection of videotaped interviews with scientists in laboratories at Michigan State, Princeton, and Indiana University, who are working on water and gas samples they collected from deep gold mines in South Africa and the Canadian Arctic. The interview materials and some animated graphics are compiled into four video pieces that support and compliment the accompanying workbook lessons and activities, and offer students insight into the excitement of scientific discovery.

  3. Experimental selection for Drosophila survival in extremely low O(2 environment.

    Directory of Open Access Journals (Sweden)

    Dan Zhou

    Full Text Available BACKGROUND: Cellular hypoxia, if severe enough, results usually in injury or cell death. Our research in this area has focused on the molecular mechanisms underlying hypoxic tissue injury to explore strategies to prevent injury or enhance tolerance. The current experiments were designed to determine the genetic basis for adaptation to long term low O(2 environments. METHODOLOGY/PRINCIPAL FINDINGS: With long term experimental selection over many generations, we obtained a Drosophila melanogaster strain that can live perpetually in extremely low, normally lethal, O(2 condition (as low as 4% O(2. This strain shows a dramatic phenotypic divergence from controls, including a decreased recovery time from anoxic stupor, a higher rate of O(2 consumption in hypoxic conditions, and a decreased body size and mass due to decreased cell number and size. Expression arrays showed that about 4% of the Drosophila genome altered in expression and about half of the alteration was down-regulation. The contribution of some altered transcripts to hypoxia tolerance was examined by testing the survival of available corresponding P-element insertions (and their excisions under extremely low O(2 conditions. We found that down-regulation of several candidate genes including Best1, broad, CG7102, dunce, lin19-like and sec6 conferred severe hypoxia tolerance in Drosophila. CONCLUSIONS/SIGNIFICANCE: We have identified a number of genes that play an important role in the survival of a selected Drosophila strain in extremely low O(2 conditions, selected by decreasing O(2 availability over many generations. Because of conservation of pathways, we believe that such genes are critical in hypoxia adaptation in physiological or pathological conditions not only in Drosophila but also in mammals.

  4. Microorganisms in extreme environments with a view to astrobiology in the outer solar system

    Science.gov (United States)

    Seckbach, Joseph; Chela-Flores, Julian

    2015-09-01

    We review the various manifestations of the evolution of life in extreme environments. We review those aspects of extremophiles that are most relevant for astrobiology. We are aware that geothermal energy triggering sources of heat in oceanic environments are not unique to our planet, a fact that was exposed by the Voyager mission images of volcanic activity on Io, the Jovian moon. Such activity exceeded by far what was known form terrestrial geology. The science of astrobiology has considered the possible presence of several moon oceans in the vicinity of both giant gas and icy planets. These watery environments include, not only Europa (strongly suggested by data from the Galileo mission), but the Voyager flybys exposed, not only the unusual geothermal activity on Io, but also the possible presence of subsurface oceans and some geothermal activity on the Neptune's moon Triton. More recently, calculations of Hussmann and coworkers with available data do not exclude that even Uranus moons may be candidates for bearing subsurface oceans. These possibilities invite a challenge that we gladly welcome, of preliminary discussions of habitability of extremophiles in so far novel environments for the science of astrobiology. Nevertheless, such exploration is currently believed to be feasible with the new generations of missions suggested for the time window of 2030 - 2040, or even earlier. We are envisaging, not only the current exploration of the moons of Saturn, but in the coming years we expect to go beyond to Uranus and Neptune to include dwarf planets and trans-neptunian worlds. Consequently, it is necessary to begin questioning whether the Europa-like conditions for the evolution of microorganisms are repeatable elsewhere. At present three new missions are in the process of being formulated, including the selection of payloads that will be necessary for the exploration of the various so far unexplored moons.

  5. Lightweight Multifunctional Planetary Probe for Extreme Environment Exploration and Locomotion

    Science.gov (United States)

    Bayandor, Javid (Principal Investigator); Schroeder, Kevin; Samareh, Jamshid

    2017-01-01

    The demand to explore new worlds requires the development of advanced technologies that enable landed science on uncertain terrains or in hard to reach locations. As a result, contemporary Entry, Descent, Landing, (EDL) and additional locomotion (EDLL) profiles are becoming increasingly more complex, with the introduction of lifting/guided entries, hazard avoidance on descent, and a plethora of landing techniques including airbags and the skycrane maneuver. The inclusion of each of these subsystems into a mission profile is associated with a substantial mass penalty. This report explores the new all-in-one entry vehicle concept, TANDEM, a new combined EDLL concept, and compares it to the current state of the art EDL systems. The explored system is lightweight and collapsible and provides the capacity for lifting/guided entry, guided descent, hazard avoidance, omnidirectional impact protection and surface locomotion without the aid of any additional subsystems. This Phase I study explored: 1. The capabilities and feasibility of the TANDEM concept as an EDLL vehicle. 2. Extensive impact analysis to ensure mission success in unfavorable landing conditions, and safe landing in Tessera regions. 3. Development of a detailed design for a conceptual mission to Venus. As a result of our work it was shown that: 1. TANDEM provides additional benefits over the Adaptive, Deployable Entry Placement Technology (ADEPT) including guided descent and surface locomotion, while reducing the mass by 38% compared to the ADEPT-VITaL mission. 2. Demonstrated that the design of tensegrity structures, and TANDEM specifically, grows linearly with an increase in velocity, which was previously unknown. 3. Investigation of surface impact revealed a promising results that suggest a properly configured TANDEM vehicle can safely land and preform science in the Tessera regions, which was previously labeled by the Decadal Survey as, largely inaccessible despite its high scientific interest. This work

  6. Effect of environment on extremely severe road traffic crashes:retrospective epidemic analysis during 2000-2001

    Institute of Scientific and Technical Information of China (English)

    覃华丽; 赵新才; 周继红; 邱俊; 杨在亮; 蒋志泉; 朱秉忠

    2004-01-01

    Objective: To make an epidemiological analysis of the effect of environment on extremely severe road traffic crashes (RTCs). Methods: Epidemiologic data of extremely severe RTCs associated with environmental factors, including weather, topography, road conditions and other traffic conditions in Mainland China during 2000-2001, were collected and analyzed. Results: (1) During 2000-2001, there were 3 365 extremely severe RTCs with 13 666 deaths, 12 204 injuries and a direct economical loss of 136 million RMB. (2) Most extremely severe RTCs occurred in fine weather days and in the daytime. The high occurrence sites were plain areas, horizontal and straight roads, Grade B and C roads, ordinary road segment, and asphalt, smooth and mixed roads. (3) Compared with other RTCs, extremely severe RTCs were more likely to happen under following conditions: on cloudy, snowing, misty and blustering days; in hill and mountainous areas; on crooked and sloping roads; on freeway, Grade A, B, and C roads; mixed roads; ordinary, bridge, narrow and transitional roads; sand and dirt-roads; without traffic control measures; night without lighting. (4) Extremely severe RTCs of mountainous area or crooked and sloping roads were most severe in terms of deaths and injures per crash. Conclusions: Extremely severe RTCs are closely related with environmental factors. Rational road programming, enhancing road establishment and improving road conditions are probably effective measures to reduce the road traffic injuries.

  7. Heatshield for Extreme Entry Environment Technology: Results from Acreage and Integrated Seams Arcjet Testing

    Science.gov (United States)

    Venkatapathy, Ethiraj

    2016-01-01

    This invited talk will give a brief overview of the integrated heat-shield system design that requires seams and the extreme environment conditions that HEEET should be demonstrated to be capable of thermal performance without fail. We have tested HEEET across many different facilities and at conditions that are extreme. The presentation will highlight the performance of both the acreage as well as integrated seam at these conditions. The Invite talks are 10 min and hence this presentation will be short.

  8. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    Science.gov (United States)

    Angeles Aguilera, Angeles

    2013-07-01

    A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).

  9. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    Directory of Open Access Journals (Sweden)

    Angeles Aguilera

    2013-07-01

    Full Text Available A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain.

  10. Joint probability analysis of extreme precipitation and storm tide in a coastal city under changing environment.

    Directory of Open Access Journals (Sweden)

    Kui Xu

    Full Text Available Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm tide are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm tide or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm tide and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt's tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm tide is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05. The design joint return period (RP of extreme precipitation and storm tide is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm tide, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment.

  11. Joint probability analysis of extreme precipitation and storm tide in a coastal city under changing environment.

    Science.gov (United States)

    Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling

    2014-01-01

    Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm tide are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm tide or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm tide and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt's tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm tide is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm tide is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm tide, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment.

  12. Extreme Environments Development of Decision Processes and Training Programs for Medical Policy Formulation

    Science.gov (United States)

    Stough, Roger

    2004-01-01

    The purpose of this workshop was to survey existing health and safety policies as well as processes and practices for various extreme environments; to identify strengths and shortcomings of these processes; and to recommend parameters for inclusion in a generic approach to policy formulation, applicable to the broadest categories of extreme environments. It was anticipated that two additional workshops would follow. The November 7, 2003 workshop would be devoted to the evaluation of different model(s) and a concluding expert evaluation of the usefulness of the model using a policy formulation example. The final workshop was planned for March 2004.

  13. Sample environment for in situ synchrotron corrosion studies of materials in extreme environments

    Science.gov (United States)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Motta, Arthur T.; Weidner, Randy; Anderson, Thomas; Ecker, Lynne E.

    2016-10-01

    A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoring the oxidation of metallic zirconium during exposure to steam at 350 °C. The in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during the early stages of corrosion, which can provide a better understanding of the oxidation process.

  14. Occurrence, activity and contribution of anammox in some freshwater extreme environments.

    Science.gov (United States)

    Zhu, Guibing; Xia, Chao; Shanyun, Wang; Zhou, Leiliu; Liu, Lu; Zhao, Siyan

    2015-12-01

    Anaerobic ammonium oxidation (anammox) widely occurs in marine ecosystems, and it plays an important role in the global nitrogen cycle. But in freshwater ecosystems its occurrence, distribution and contribution, especially in extreme environments, are still not well known. In this study, anammox process was investigated in some extreme environments of freshwater ecosystems, such as those with high (above 75°C) and low (below -35°C) temperature, high (pH > 8) and low (pH  300 mg kg(-1) ). The polymerase chain reaction (PCR) screening results showed that anammox bacteria were widespread in the examined sediments from freshwater extreme environments. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.94 × 10(4) to 8.05 × 10(6) hydrazine synthase (hzsB) gene copies g(-1) dry soil. (15) N-labelled incubation experiments indicated the occurrence of anammox in all examined sediments and the potential anammox rates ranged from 0.02 to 6.24 nmol N g(-1)  h(-1) , with a contribution of 3.45-58.74% of the total N2 production. In summary, these results demonstrate the occurrence of anammox in these extreme environments, inferring that anammox may harbour a wide ecological niche in the freshwater ecosystems.

  15. Constructing and screening a metagenomic library of a cold and alkaline extreme environment

    DEFF Research Database (Denmark)

    Glaring, Mikkel Andreas; Vester, Jan Kjølhede; Stougaard, Peter

    2017-01-01

    Natural cold or alkaline environments are common on Earth. A rare combination of these two extremes is found in the permanently cold (less than 6 °C) and alkaline (pH above 10) ikaite columns in the Ikka Fjord in Southern Greenland. Bioprospecting efforts have established the ikaite columns...

  16. Potential contributions of extremophiles to hydrocarbon resources in marine extreme environments:A review

    Institute of Scientific and Technical Information of China (English)

    WANG Jiasheng; WANG Yongbiao; LI Qing

    2007-01-01

    To understand the potential mechanism of marine extremophiles participating in the formation and the evolution of hydrocarbon resources in marine extreme environments,some typical kinds of extremophiles and their distributions in marine hydrothermal and cold vents are discussed and evaluated respectively.The potential relationship between extremophile activities and hydrocarbon resources in marine extreme environments are then discussed in details.It could be now preliminary concluded that archaea and bacteria are the two main kinds of extremophiles in marine extreme environments.The dominating microbe communities in hydrothermal vents are heterotrophic zymogens,sulfate reducers and methanogens,while the ANME-2 group(Methanosarcinales) surrounded by sulfate-reducing bacteria and ANME-1 group dominate in cold vents.Marine extremophiles would be able to use CH,and H2S to synthesize energy for metabolism and to support food chains for other unique macrobiota nearby,which together present a high abundance but a low diversity with distinct characteristics of horizontal and vertical distributions.Marine extremophiles might play an important role either directly or indirectly in the processes of hydrocarbon formation and subsequent alteration,and could indicate the evolution of hydrocarbon resources in marine extreme environments.Our research thus has a great significance both in theoretical approach of potential hydrocarbon resources formed by marine extremophile activities and in practical exploration of the potential hydrocarbonsource sedimentary layers formed in the Earth history or the potential strata in southern China.

  17. Photosynthesis in extreme environments: responses to different light regimes in the Antarctic alga Koliella antarctica.

    Science.gov (United States)

    La Rocca, Nicoletta; Sciuto, Katia; Meneghesso, Andrea; Moro, Isabella; Rascio, Nicoletta; Morosinotto, Tomas

    2015-04-01

    Antarctic algae play a fundamental role in polar ecosystem thanks to their ability to grow in an extreme environment characterized by low temperatures and variable illumination. Here, for prolonged periods, irradiation is extremely low and algae must be able to harvest light as efficiently as possible. On the other side, at low temperatures even dim irradiances can saturate photosynthesis and drive to the formation of reactive oxygen species. Colonization of this extreme environment necessarily required the optimization of photosynthesis regulation mechanisms by algal organisms. In order to investigate these adaptations we analyzed the time course of physiological and morphological responses to different irradiances in Koliella antarctica, a green microalga isolated from Ross Sea (Antarctica). Koliella antarctica not only modulates cell morphology and composition of its photosynthetic apparatus on a long-term acclimation, but also shows the ability of a very fast response to light fluctuations. Koliella antarctica controls the activity of two xanthophyll cycles. The first, involving lutein epoxide and lutein, may be important for the growth under very low irradiances. The second, involving conversion of violaxanthin to antheraxanthin and zeaxanthin, is relevant to induce a fast and particularly strong non-photochemical quenching, when the alga is exposed to higher light intensities. Globally K. antarctica thus shows the ability to activate a palette of responses of the photosynthetic apparatus optimized for survival in its natural extreme environment.

  18. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: an explanation of how mesophilic organisms can rapidly colonise extremely toxic environments.

    Science.gov (United States)

    García-Balboa, C; Baselga-Cervera, B; García-Sanchez, A; Igual, J M; Lopez-Rodas, V; Costas, E

    2013-11-15

    Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These "lucky mutants" could allow for the evolutionary rescue of populations faced with rapid environmental change.

  19. TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments

    Science.gov (United States)

    Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.

    2016-01-01

    "Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment

  20. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments

    Energy Technology Data Exchange (ETDEWEB)

    García-Balboa, C.; Baselga-Cervera, B. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); García-Sanchez, A.; Igual, J.M. [Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), PO Box 257, 37071 Salamanca (Spain); Lopez-Rodas, V. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); Costas, E., E-mail: ecostas@vet.ucm.es [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2013-11-15

    Highlights: •Some microalgae species survive to extreme environments in ponds of residual waters from uranium mining. •Adaptation of microalgae to U arose very fast. •Spontaneous mutations that confer large adaptive value were able to produce the adaptation to residual waters of U mining. •Adaptation to more extreme waters of U mining is only possible after the recombination subsequent to sexual mating. •Resistant microalgae bio-adsorbs uranium to the cell wall and internalises uranium inside the cytoplasm. -- Abstract: Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These “lucky mutants” could allow for the evolutionary rescue of populations faced with rapid environmental change.

  1. Digital Learning Network Education Events of NASA's Extreme Environments Mission Operations

    Science.gov (United States)

    Paul, Heather; Guillory, Erika

    2007-01-01

    NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and web casting. The DLN has created a series of live education videoconferences connecting NASA s Extreme Environment Missions Operations (NEEMO) team to students across the United States. The programs are also extended to students around the world live web casting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO Crewmembers including NASA astronauts, engineers and scientists inform and inspire students about the importance of exploration and share the impact of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration s underwater laboratory. With this program, NASA continues the Agency s tradition of investing in the nation's education programs. It is directly tied to the Agency's major education goal of attracting and retaining students in science, technology, and engineering disciplines. Before connecting with the aquanauts, the students conduct experiments of their own designed to coincide with mission objectives. This paper describes the events that took place in September 2006.

  2. An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  3. Reaction Product Identification in Extreme Chemical Environments by Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    Molecular rotational spectroscopy has several advantages for detection of reaction intermediates and products under extreme laboratory conditions. Rotational spectroscopy has high sensitivity to the molecular structure and provides high spectral resolution in low pressure environments. Furthermore, quantum chemistry provides accurate estimates of the spectroscopic parameters. As a result, rotational spectroscopy can identify molecular species in complex reaction mixtures without the need for chromatographic separation and without the need for a previously recorded ``library spectrum'' of the molecule. The application of chirped pulse Fourier transform rotational spectroscopy methods for the identification of molecules of astrochemical interest formed in pulsed discharge sources will be described including recent advances for high-throughput mm-wave spectroscopy. The set of reaction products created in the experiment can provide insight into the reaction mechanism. Reactions involving the CN radical will be discussed. These reactions can be barrierless making them candidates for interstellar gas reactions. The possibility that interstellar cyanomethanimine is produced by gas phase radical-neutral reactions instead of surface chemistry on grain-supported ices will be discussed using recent spatially resolved chemical images in Sagittarius B2 observed with the Jansky Very Large Array. This work supported by NSF CHE 1213200.

  4. Development and Testing of Mechanism Technology for Space Exploration in Extreme Environments

    Science.gov (United States)

    Tyler, Tony R.; Levanas, Greg; Mojarradi, Mohammad M.; Abel, Phillip B.

    2011-01-01

    The NASA Jet Propulsion Lab (JPL), Glenn Research Center (GRC), Langley Research Center (LaRC), and Aeroflex, Inc. have partnered to develop and test actuator hardware that will survive the stringent environment of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators have been built and tested in a unique low temperature test bed with motor interface temperatures as low as 14 degrees Kelvin. Several years of work have resulted in specialized electro-mechanical hardware to survive extreme space exploration environments, a test program that verifies and finds limitations of the designs at extreme temperatures, and a growing knowledge base that can be leveraged by future space exploration missions.

  5. Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    Science.gov (United States)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    2013-01-01

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where the reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  6. Exploring knowledge about microbes living in the extreme environments – the resources review

    Directory of Open Access Journals (Sweden)

    Urszula K. Czyżewska

    2011-06-01

    Full Text Available Extremophiles are organisms that tolerate or require to live the extreme ranges of variation ofthe environmental factors such as temperature, pH, salinity, concentrations of heavy metals, highhydrostatic pressure, ionizing radiation, ultraviolet, availability of water, light, oxygen, and nutritionallylimited environments, etc. Exposure to such diverse factors caused, in the light of evolutionary changes,the appearence of many biochemical adaptations. In most cases, extremophiles are unicellular organismsbelonging to the Archaea domain, but there are also representatives of other domains (Bacteria,Eucaryota and multicellular organisms. The diversity of the Internet resources and printed materials(scientific publications reflect areas of this interest. Special characteristics of extremophiles are ofinterest to researchers in various fields of biological sciences (astrobiology, ecology, biotechnology,biospeleology. The purpose of this article is to review the most representative resources aboutmicroorganisms living in extreme environments and indicate the directions of the future research.

  7. EVOLUTION OF THE CIRCADIAN CLOCK IN EXTREME ENVIRONMENT: LESSONS FROM CAVEFISH.

    OpenAIRE

    Cavallari, Nicola

    2010-01-01

    Evolution has been strongly influenced by the daily cycles of temperature and light imposed by the rotation of the Earth. Fascinating demonstrations of this are seen in extreme environments such as caves where some animals have remained completely isolated from the day-night cycle for millions of years. Most of these species show convergent evolution, sharing a range of striking physical properties such as eye loss. One fundamental issue is whether “hypogean” species retain a functional circa...

  8. GNC of the SphereX Robot for Extreme Environment Exploration on Mars

    OpenAIRE

    Kalita, Himangshu; Nallapu, Ravi teja; Warren, Andrew; Thangavelautham, Jekan

    2017-01-01

    Wheeled ground robots are limited from exploring extreme environments such as caves, lava tubes and skylights. Small robots that can utilize unconventional mobility through hopping, flying or rolling can overcome these limitations. Mul-tiple robots operating as a team offer significant benefits over a single large ro-bot, as they are not prone to single-point failure, enable distributed command and control and enable execution of tasks in parallel. These robots can complement large rovers and...

  9. Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status for NF Missions

    Science.gov (United States)

    Ellerby, D.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.; Kazemba, C.; Ma, J.; Mahzari, M.; Milos, F.; Nishioka, O.; Peterson, K.; Poteet, C.; Prabhu, D.; Splinter, S.; Stackpoole, M.; Venkatapathy, E.; Young, Z.

    2016-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  10. Heatshield for Extreme Entry Environment Technology (HEEET) - Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.; Ma, J.; Milos, F.; Nishioka, O.; Poteet, C.; Splinter, S.; Stackpoole, M.; Venkatapathy, E.; Young, Z.

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  11. Heatshield for Extreme Entry Environment Technology (HEEET) Enabling Missions Beyond Heritage Carbon Phenolic

    Science.gov (United States)

    Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzaes, G.; Hamm, K.; Kazemba, C.; Ma, J.; Mahzari, M.; Milos, F.; Nishioka, O.; Peterson, K.; Poteet, C.; Prabhu, D.; Splinter, S.; Stackpoole, M.; Venkatapathy, E.; Young, Z.

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  12. Heatshield for Extreme Entry Environment Technology (HEEET) for Missions to Saturn and Beyond

    Science.gov (United States)

    Ellerby, D.; Blosser, M.; Chinnapongse, R.; Fowler, M.; Gasch, M.; Hamm, K.; Kazemba, C.; Ma, J.; Milos, F.; Nishioka, O.; Poteet, C.; Splinter, S.; Stackpoole, M.; Venkatapathy, E.; Young, Z.; Gasch, Matthew J.

    2015-01-01

    This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.

  13. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  14. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  15. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-12-02

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  16. Alteration of a human intestinal microbiota under extreme life environment in the Antarctica.

    Science.gov (United States)

    Jin, Jong-Sik; Touyama, Mutsumi; Yamada, Shin; Yamazaki, Takashi; Benno, Yoshimi

    2014-01-01

    The human intestinal microbiota (HIM) settles from birth and continues to change phenotype by some factors (e.g. host's diet) throughout life. However, the effect of extreme life environment on human HIM composition is not well known. To understand HIM fluctuation under extreme life environment in humans, fecal samples were collected from six Japanese men on a long Antarctic expedition. They explored Antarctica for 3 months and collected their fecal samples at once-monthly intervals. Using terminal restriction fragment length polymorphism (T-RFLP) and real time polymerase chain reaction (PCR) analysis, the composition of HIM in six subjects was investigated. Three subjects presented restoration of HIM after the expedition compared versus before and during the expedition. Two thirds samples collected during the expedition belonged to the same cluster in dendrogram. However, all through the expedition, T-RFLP patterns showed interindividual variability. Especially, Bifidobacterium spp. showed a tendency to decrease during and restore after the expedition. A reduction of Bifidobacterium spp. was observed in five subjects the first 1 month of the expedition. Bacteroides thetaiotaomicron, which is thought to proliferate during emotional stress, significantly decreased in one subject, indicating that other factors in addition to emotional stress may affect the composition of HIM in this study. These findings could be helpful to understand the effect of extreme life environment on HIM.

  17. Life on the Edge-the Biology of Organisms Inhabiting Extreme Environments: An Introduction to the Symposium.

    Science.gov (United States)

    Lindgren, Annie R; Buckley, Bradley A; Eppley, Sarah M; Reysenbach, Anna-Louise; Stedman, Kenneth M; Wagner, Josiah T

    2016-10-01

    Life persists, even under extremely harsh conditions. While the existence of extremophiles is well known, the mechanisms by which these organisms evolve, perform basic metabolic functions, reproduce, and survive under extreme physical stress are often entirely unknown. Recent technological advances in terms of both sampling and studying extremophiles have yielded new insight into their evolution, physiology and behavior, from microbes and viruses to plants to eukaryotes. The goal of the "Life on the Edge-the Biology of Organisms Inhabiting Extreme Environments" symposium was to unite researchers from taxonomically and methodologically diverse backgrounds to highlight new advances in extremophile biology. Common themes and new insight that emerged from the symposium included the important role of symbiotic associations, the continued challenges associated with sampling and studying extremophiles and the important role these organisms play in terms of studying climate change. As we continue to explore our planet, especially in difficult to reach areas from the poles to the deep sea, we expect to continue to discover new and extreme circumstances under which life can persist.

  18. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity

    Directory of Open Access Journals (Sweden)

    María Sofía Urbieta

    2015-07-01

    Full Text Available The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  19. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.

    Science.gov (United States)

    Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-07-08

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  20. Consideration of Task Performance for Robots Engaged in Extremely Dangerous Environment in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Mo; Han, Kee Soo; Yi, Sung Deok; Kim, Seoung Rae [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of); Choi, Young [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    After Fukushima Daiichi Nuclear Accident, it is started to pay more attention to operation and accident of nuclear power plants (NPPs). For domestic nuclear industry, it was recommended to establish corresponding strategies against accidents due to extremely dangerous natural disasters. Each nuclear power plant is also preparing to establish strategies to secure nuclear safety functions by estimating the counterplans for extreme accidents. Robots are particularly being used to access the areas where those are dangerous for human beings to access or to restore the accident. Robot technologies in NPPs are emerging cutting-edge technologies that are just a start except the developed countries like USA, Japan, etc. But they are carefully considered because they have the advantages of performing tasks in extremely dangerous environment in NPPs instead of human beings. In this study, the applicability of robots will be considered in extremely dangerous environment in NPPs. Accurate judgment of the inside situation of the plant and quick actions in the extreme condition like earthquake accompanied by loss of all AC powers should be considered as major function in terms of prevention of accident spread. According to the reported stress test results of domestic NPPs, the difficult things for operators to carry out in extreme conditions can be predictable, therefore the active use of robots as accident mitigation strategies will be helpful to reduce the unnecessary spending for facility improvement. Current trend of domestic and foreign robot technology development focuses on the information search of the inside of the plant and development of preventive maintenance of NPPs. As seen actually in Fukushima Daiichi, main roles of robots place emphasis on measuring the inside radiation level accessing to the area where operator cannot access and delivering information which can support operator's decision-making and actions. Therefore, it is considered that development of

  1. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment

    Science.gov (United States)

    Kelley, Joanna L.; Peyton, Justin T.; Fiston-Lavier, Anna-Sophie; Teets, Nicholas M.; Yee, Muh-Ching; Johnston, J. Spencer; Bustamante, Carlos D.; Lee, Richard E.; Denlinger, David L.

    2014-01-01

    The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment. PMID:25118180

  2. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.

    Science.gov (United States)

    Kelley, Joanna L; Peyton, Justin T; Fiston-Lavier, Anna-Sophie; Teets, Nicholas M; Yee, Muh-Ching; Johnston, J Spencer; Bustamante, Carlos D; Lee, Richard E; Denlinger, David L

    2014-08-12

    The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment.

  3. An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  4. Evaporation from Bare Soil in Extremely Arid Environment in Southern Israel

    Institute of Scientific and Technical Information of China (English)

    WANGXUEFENG; XUFUAN; 等

    1996-01-01

    Microlysimeters of different sizes(5cm 10cm and 15cm in length) were used extensively in the present study of the measurements of soil evaporation in situ in an extremely arid area in southern Israel,All of the data obtained from the microlysimeters were used to evaluate two conventional evaporation models developed by Black et al.and Ritchie,respectively.Our results indicated that the models could overestimate total cumulative evaporation by about 30% in the extremely arid environment.Reducing the power factor of the conventional model by a factor of 0.1 produced good agreement between the measured and simulated cumulative evaporation.Microlysimeter method proved to be a simple and accurate approach for the evaluation of soil evaporation.

  5. A 200 C Universal Gate Driver Integrated Circuit for Extreme Environment Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Leon M [ORNL; Huque, Mohammad A [ORNL; Islam, Syed K [ORNL; Blalock, Benjamin J [ORNL

    2012-01-01

    High-temperature power converters (dc-dc, dc-ac, etc.) have enormous potential in extreme environment applications, including automotive, aerospace, geothermal, nuclear, and well logging. For successful realization of such high-temperature power conversion modules, the associated control electronics also need to perform at high temperature. This paper presents a silicon-on-insulator (SOI) based high-temperature gate driver integrated circuit (IC) incorporating an on-chip low-power temperature sensor and demonstrating an improved peak output current drive over our previously reported work. This driver IC has been primarily designed for automotive applications, where the underhood temperature can reach 200 C. This new gate driver prototype has been designed and implemented in a 0.8 {micro}m, 2-poly, and 3-metal bipolar CMOS-DMOS (Double-Diffused Metal-Oxide Semiconductor) on SOI process and has been successfully tested for up to 200 C ambient temperature driving a SiC MOSFET and a SiC normally-ON JFET. The salient feature of the proposed universal gate driver is its ability to drive power switches over a wide range of gate turn-ON voltages such as MOSFET (0 to 20 V), normally-OFF JFET (-7 to 3 V), and normally-ON JFET (-20 to 0 V). The measured peak output current capability of the driver is around 5 A and is thus capable of driving several power switches connected in parallel. An ultralow-power on-chip temperature supervisory circuit has also been integrated into the die to safeguard the driver circuit against excessive die temperature ({ge}220 C). This approach utilizes increased diode leakage current at higher temperature to monitor the die temperature. The power consumption of the proposed temperature sensor circuit is below 10 {micro}W for operating temperature up to 200 C.

  6. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility

    Directory of Open Access Journals (Sweden)

    Nieto Pamela A

    2008-11-01

    uptake systems could reflect their obligatory occupation of extremely low pH environments where high concentrations of soluble iron may always be available and were oxidized sulfur species might not compromise iron speciation dynamics. Presence of bacterioferritin in the Acidithiobacilli, polyphosphate accumulation functions and variants of FieF-like diffusion facilitators in both Acidithiobacilli and Leptospirilla, indicate that they may remove or store iron under conditions of variable availability. In addition, the Fe(II-oxidizing capacity of both A. ferrooxidans and Leptospirilla could itself be a way to evade iron stress imposed by readily available Fe(II ions at low pH. Fur regulatory sites have been predicted for a number of gene clusters including iron related and non-iron related functions in both the Acidithiobacilli and Leptospirilla, laying the foundation for the future discovery of iron regulated and iron-phosphate coordinated regulatory control circuits. Conclusion In silico analyses of the genomes of acidophilic bacteria are beginning to tease apart the mechanisms that mediate iron uptake and homeostasis in low pH environments. Initial models pinpoint significant differences in abundance and diversity of iron management mechanisms between Leptospirilla and Acidithiobacilli, and begin to reveal how these two groups respond to iron cycling and iron fluctuations in naturally acidic environments and in industrial operations. Niche partitions and ecological successions between acidophilic microorganisms may be partially explained by these observed differences. Models derived from these analyses pave the way for improved hypothesis testing and well directed experimental investigation. In addition, aspects of these models should challenge investigators to evaluate alternative iron management strategies in non-acidophilic model organisms.

  7. "An Environment Built to Include Rather than Exclude Me": Creating Inclusive Environments for Human Well-Being.

    Science.gov (United States)

    Layton, Natasha A; Steel, Emily J

    2015-09-08

    Contemporary discourses which challenge the notion of health as the "absence of disease" are prompting changes in health policy and practice. People with disability have been influential in progressing our understanding of the impact of contextual factors in individual and population health, highlighting the impact of environmental factors on functioning and inclusion. The World Health Organization's (WHO) more holistic definition of health as "wellbeing" is now applied in frameworks and legislation, and has long been understood in occupational therapy theory. In practice, however, occupational therapists and other professionals often address only local and individual environmental factors to promote wellbeing, within systems and societies that limit equity in population health and restrict inclusion in communities. This paper presents an in-depth analysis of the supports and accommodations identified by a cohort of individuals (n-100) living with disability. A range of environmental facilitators and barriers were identified in peoples' experience of "inclusive community environs" and found to influence inclusion and wellbeing. The roles and responsibilities of individuals, professionals, and society to enact change in environments are discussed in light of these findings. Recommendations include a focus on the subjective experience of environments, and application of theory from human rights and inclusive economics to address the multiple dimensions and levels of environments in working towards inclusion and wellbeing.

  8. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  9. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    Science.gov (United States)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  10. Can we colonize the solar system? Human biology and survival in the extreme space environment.

    Science.gov (United States)

    Launius, Roger D

    2010-09-01

    Throughout the history of the space age the dominant vision for the future has been great spaceships plying the solar system, and perhaps beyond, moving living beings from one planet to another. Spacesuited astronauts would carry out exploration, colonization, and settlement as part of a relentlessly forward looking movement of humanity beyond Earth. As time has progressed this image has not changed appreciably even as the full magnitude of the challenges it represents have become more and more apparent. This essay explores the issues associated with the human movement beyond Earth and raises questions about whether humanity will ever be able to survive in the extreme environment of space and the other bodies of the solar system. This paper deals with important historical episodes as well as wider conceptual issues about life in space. Two models of expansion beyond Earth are discussed: (1) the movement of microbes and other types of life on Earth that can survive the space environment and (2) the modification of humans into cyborgs for greater capability to survive in the extreme environments encountered beyond this planet.

  11. Ion Pair in Extreme Aqueous Environments, Molecular-Based and Electric Conductance Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chialvo, Ariel A [ORNL; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Simonson, J Michael {Mike} [ORNL; Palmer, Donald [ORNL; Cole, David R [ORNL

    2009-01-01

    We determine by molecular-based simulation the density profiles of the Na+!Cl! ion-pair association constant in steam environments along three supercritical isotherms to interrogate the behavior of ion speciation in dilute aqueous solutions at extreme conditions. Moreover, we describe a new ultra-sensitive flow-through electric conductance apparatus designed to bridge the gap between the currently lowest steam-density conditions at which we are experimentally able to attain electric conductance measurements and the theoretically-reachable zero-density limit. Finally, we highlight important modeling challenges encountered near the zero-density limit and discuss ways to overcome them.

  12. Bipolar integrated circuits in SiC for extreme environment operation

    Science.gov (United States)

    Zetterling, Carl-Mikael; Hallén, Anders; Hedayati, Raheleh; Kargarrazi, Saleh; Lanni, Luigia; Malm, B. Gunnar; Mardani, Shabnam; Norström, Hans; Rusu, Ana; Saveda Suvanam, Sethu; Tian, Ye; Östling, Mikael

    2017-03-01

    Silicon carbide (SiC) integrated circuits have been suggested for extreme environment operation. The challenge of a new technology is to develop process flow, circuit models and circuit designs for a wide temperature range. A bipolar technology was chosen to avoid the gate dielectric weakness and low mobility drawback of SiC MOSFETs. Higher operation temperatures and better radiation hardness have been demonstrated for bipolar integrated circuits. Both digital and analog circuits have been demonstrated in the range from room temperature to 500 °C. Future steps are to demonstrate some mixed signal circuits of greater complexity. There are remaining challenges in contacting, metallization, packaging and reliability.

  13. Greenhouses in extreme environments: The Arthur Clarke Mars Greenhouse design and operation overview

    Science.gov (United States)

    Giroux, Richard; Berinstain, Alain; Braham, Stephen; Graham, Thomas; Bamsey, Matthew; Boyd, Keegan; Silver, Matthew; Lussier-Desbiens, Alexis; Lee, Pascal; Boucher, Marc; Cowing, Keith; Dixon, Michael

    2006-01-01

    Since its deployment on Devon Island, Canadian High Arctic, in 2002, the Haughton Mars Project's Arthur Clarke Mars Greenhouse (ACMG) has supported extreme environment related scientific and operation research that is relevant to Mars analogue studies - each at a specific level of fidelity and complexity. The Greenhouse serves as an initial experimental test-bed supporting field research, from which lessons may be learned to support the design and implementation of future field facilities, and enabling higher fidelity demonstrations. This paper provides an overall description of the ACMG, describes the different subsystems, explains its operational modes, details some results over the three years of operation and discusses future development plans.

  14. Tolerance of anhydrobiotic eggs of the Tardigrade Ramazzottius varieornatus to extreme environments.

    Science.gov (United States)

    Horikawa, Daiki D; Yamaguchi, Ayami; Sakashita, Tetsuya; Tanaka, Daisuke; Hamada, Nobuyuki; Yukuhiro, Fumiko; Kuwahara, Hirokazu; Kunieda, Takekazu; Watanabe, Masahiko; Nakahara, Yuichi; Wada, Seiichi; Funayama, Tomoo; Katagiri, Chihiro; Higashi, Seigo; Yokobori, Shin-Ichi; Kuwabara, Mikinori; Rothschild, Lynn J; Okuda, Takashi; Hashimoto, Hirofumi; Kobayashi, Yasuhiko

    2012-04-01

    Tardigrades are tiny (less than 1 mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.

  15. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  16. A study of meteorological variables in some extreme environments via cross correlations

    Science.gov (United States)

    Cruz-Kuri, L.; McKay, C. P.; Navarro-Gonzalez, R.

    Some of us have been studying soils in the Atacama Desert, Chile and in Pico de Orizaba, Mexico. The Atacama, is an extreme, arid, temperate desert that extends across 1000 km with monthly mean air temperatures between 16 to 14°C and is remarkably uniform throughout the year (±3°C). Pico de Orizaba (19° N) is a mountain that possesses a glacier and has tropical alpine environments. Both of such environments are of interest as models for Mars. Meteorological data for the Yungay area of the Atacama Desert, as well as meteorological data of the Northern and Southern faces of Pico de Orizaba have been collected. Both sets of data were analyzed using the cross correlation technique of multivariate time series. In this report we describe some of the patterns found for these statistics.

  17. “An Environment Built to Include Rather than Exclude Me”: Creating Inclusive Environments for Human Well-Being

    Directory of Open Access Journals (Sweden)

    Natasha A. Layton

    2015-09-01

    Full Text Available Contemporary discourses which challenge the notion of health as the “absence of disease” are prompting changes in health policy and practice. People with disability have been influential in progressing our understanding of the impact of contextual factors in individual and population health, highlighting the impact of environmental factors on functioning and inclusion. The World Health Organization’s (WHO more holistic definition of health as “wellbeing” is now applied in frameworks and legislation, and has long been understood in occupational therapy theory. In practice, however, occupational therapists and other professionals often address only local and individual environmental factors to promote wellbeing, within systems and societies that limit equity in population health and restrict inclusion in communities. This paper presents an in-depth analysis of the supports and accommodations identified by a cohort of individuals (n-100 living with disability. A range of environmental facilitators and barriers were identified in peoples’ experience of “inclusive community environs” and found to influence inclusion and wellbeing. The roles and responsibilities of individuals, professionals, and society to enact change in environments are discussed in light of these findings. Recommendations include a focus on the subjective experience of environments, and application of theory from human rights and inclusive economics to address the multiple dimensions and levels of environments in working towards inclusion and wellbeing.

  18. Biota and Biomolecules in Extreme Environments on Earth: Implications for Life Detection on Mars

    Directory of Open Access Journals (Sweden)

    Joost W. Aerts

    2014-10-01

    Full Text Available The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces, particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions “what to look for”, “where to look”, and “how to

  19. Biota and biomolecules in extreme environments on Earth: implications for life detection on Mars.

    Science.gov (United States)

    Aerts, Joost W; Röling, Wilfred F M; Elsaesser, Andreas; Ehrenfreund, Pascale

    2014-10-13

    The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces), particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions "what to look for", "where to look", and "how to look for it" require more of

  20. Applying systems biology methods to the study of human physiology in extreme environments.

    Science.gov (United States)

    Edwards, Lindsay M; Thiele, Ines

    2013-03-22

    Systems biology is defined in this review as 'an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems'. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling.

  1. Refuge from predation, the benefit of living in an extreme acidic environment?

    Science.gov (United States)

    Borgonie, Gaëtan; Dierick, Manuel; Houthoofd, Wouter; Willems, Maxime; Jacobs, Patric; Bert, Wim

    2010-12-01

    Organisms living in extreme habitats require costly adaptations to cope with these conditions. Among the suggested potential benefits that trade off these costs is refuge from predation. To study these interactions in extreme environments, samples were taken in the cave Cueva de Villa Luz, Tabasco, Mexico, where more than 32 subterranean springs, some H(2)S rich, rise from the floor. Hydrogen sulfide gas plus oxygen is absorbed by freshwater, and oxidation forms concentrated sulfuric acid. Snottites, whitish hollow mucous tubes, hang from the ceiling of the cave. Fluid drops from these snottites were recorded as having pH values of 0-3. We report the discovery of a new species of nematode that thrives in the highly acidic environment of the snottite. Micro CT scan of snottites reveals a complex interaction between the acidic snottite, nematodes, and abundant nematode-eating mites. The nematode adaptation to low pH probably protects them against mite predation, for which nematodes are most likely the most important source of carbon in this sulfur-driven ecosystem.

  2. Investigation of Loop Heat Pipe Survival and Restart After Extreme Cold Environment Exposure

    Science.gov (United States)

    Golliher, Eric; Ku, Jentung; Licari, Anthony; Sanzi, James

    2010-01-01

    NASA plans human exploration near the South Pole of the Moon, and other locations where the environment is extremely cold. This paper reports on the heat transfer performance of a loop heat pipe (LHP) exposed to extreme cold under the simulated reduced gravitational environment of the Moon. A common method of spacecraft thermal control is to use a LHP with ammonia working fluid. Typically, a small amount of heat is provided either by electrical heaters or by environmental design, such that the LHP condenser temperature never drops below the freezing point of ammonia. The concern is that a liquid-filled, frozen condenser would not restart, or that a thawing condenser would damage the tubing due to the expansion of ammonia upon thawing. This paper reports the results of an experimental investigation of a novel approach to avoid these problems. The LHP compensation chamber (CC) is conditioned such that all the ammonia liquid is removed from the condenser and the LHP is nonoperating. The condenser temperature is then reduced to below that of the ammonia freezing point. The LHP is then successfully restarted.

  3. A walk on the tundra: Host-parasite interactions in an extreme environment.

    Science.gov (United States)

    Kutz, Susan J; Hoberg, Eric P; Molnár, Péter K; Dobson, Andy; Verocai, Guilherme G

    2014-08-01

    Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host-parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host-parasite interactions elsewhere. We specifically examine the impacts of climate change on host-parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host-parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems.

  4. Tracing molecular gas mass in extreme extragalactic environments: an observational study

    CERN Document Server

    Zhu, Ming; Xilouris, Emmanuel M; Kuno, Nario; Lisenfeld, Ute

    2009-01-01

    We present a new observational study of the CO(1-0) line emission as an H2 gas mass tracer under extreme conditions in extragalactic environments. Our approach is to study the full neutral interstellar medium (H2, HI and dust) of two galaxies whose bulk interstellar medium (ISM) resides in environments that mark (and bracket) the excitation extremes of the ISM conditions found in infrared luminous galaxies, the starburst NGC3310 and the quiescent spiral NGC157. Our study maintains a robust statistical notion of the so-called X factor (i.e. a large ensemble of clouds is involved) while exploring its dependency on the very different average ISM conditions prevailing within these two systems. These are constrained by fully-sampled CO(3-2) and CO(1-0) observations, at a matched beam resolution of Half Power Beam Width 15'', obtained with the JCMT the Nobeyama 45-m telescope, combined with sensitive 850 and 450 micron dust emission and HI interferometric images which allow a complete view of all the neutral ISM co...

  5. PRELIMINARY BIOGEOCHEMICAL DATA ON MICROBIAL CARBONATOGENESIS IN ANCIENT EXTREME ENVIRONMENTS (KESS-KESS MOUNDS, MOROCCO

    Directory of Open Access Journals (Sweden)

    ADRIANO GUIDO

    2013-03-01

    Full Text Available The Devonian Kess-Kess mounds, cropping out in the Hamar Laghdad Ridge (SE Morocco, provide a useful case-study for understanding the relationships between the microbial metabolic activities and micrite precipitation in an extreme environment. Very fine dark and white wrinkled laminae record microbial activity and the geochemistry of the organic matter allows the  characterization of the source organisms. The biogeochemical characterization of extracted organic matter was performed through the functional group analyses by FT-IR Spectroscopy. FT-IR parameters indicate a marine origin and low thermal evolution for the organic material. The organic matter is characterized by the presence of stretching ?C=C vibrations attributable to alkene and/or unsaturated carboxylic acids. Preliminary analysis with GC-MS provides evidence for an autochthonous (extreme environment may have implications in astrobiological research considering the recent discovery of carbonate deposits on Mars. 

  6. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings.

    Science.gov (United States)

    Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng; Huang, Li-Nan

    2014-06-01

    Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions.

  7. Correlating Microbial Diversity Patterns with Geochemistry in an Extreme and Heterogeneous Environment of Mine Tailings

    Science.gov (United States)

    Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng

    2014-01-01

    Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions

  8. A Motor Drive Electronics Assembly for Mars Curiosity Rover: An Example of Assembly Qualification for Extreme Environments

    Science.gov (United States)

    Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Weber, Carissa Tudryn; Hunter, Don J.

    2013-01-01

    This paper describes the technology development and infusion of a motor drive electronics assembly for Mars Curiosity Rover under space extreme environments. The technology evaluation and qualification as well as space qualification of the assembly are detailed and summarized. Because of the uncertainty of the technologies operating under the extreme space environments and that a high level reliability was required for this assembly application, both component and assembly board level qualifications were performed.

  9. Heat-shield for Extreme Entry Environment Technology (HEEET) Development Status

    Science.gov (United States)

    Venkatapathy, Ethiraj; Ellerby, Don; Gage, Peter

    2016-01-01

    The Heat shield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD and SMD co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASA's high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI managed mission cost (PIMMC) for investigations utilizing the Heat Shield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment. The HEEET ablative TPS utilizes 3D weaving technology to manufacture a dual layer material architecture. The 3-D weaving allows for flat panels to be woven. The dual layer consists of a top layer designed to withstand the extreme external environment while the inner or insulating layer by design, is designed to achieve low thermal conductivity, and it keeps the heat from conducting towards the structure underneath. Both arc jet testing combined with material properties have been used to develop thermal response models that allows for comparison of performance with heritage carbon phenolic. A 50% mass efficiency is achieved by the dual layer construct compared to carbon phenolic for a broad range of missions both to Saturn and Venus. The 3-D woven flat preforms are molded to achieve the shape as they are compliant and then resin infusion with curing forms a rigid panels. These panels are then bonded on to the aeroshell structure. Gaps

  10. Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey

    Science.gov (United States)

    Miyoshi, Kazuhisa

    2007-01-01

    An investigation was conducted to survey anticipated requirements for solid lubricants in lunar and Martian environments, as well as the effects of these environments on lubricants and their performance and durability. The success of habitats and vehicles on the Moon and Mars, and ultimately, of the human exploration of and permanent human presence on the Moon and Mars, are critically dependent on the correct and reliable operation of many moving mechanical assemblies and tribological components. The coefficient of friction and lifetime of any lubricant generally vary with the environment, and lubricants have very different characteristics under different conditions. It is essential, therefore, to select the right lubrication technique and lubricant for each mechanical and tribological application. Several environmental factors are hazardous to performance integrity on the Moon and Mars. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings (thermal cycling), solar flux, cosmic radiation, and large quantities of dust. The surface of Mars has the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. Solid lubricants and coatings are needed for lunar and Martian applications, where liquid lubricants are ineffective and undesirable, and these lubricants must perform well in the extreme environments of the Moon, Mars, and space, as well as on Earth, where they will be assembled and tested. No solid lubricants and coatings and their systems currently exist or have been validated that meet these requirements, so new solid lubricants must be designed and validated for these applications.

  11. Individual Traits, Personal Values, and Conflict Resolution in an Isolated, Confined, Extreme Environment.

    Science.gov (United States)

    Corneliussen, Jesper G; Leon, Gloria R; Kjærgaard, Anders; Fink, Birgit A; Venables, Noah C

    2017-06-01

    The study of personality traits, personal values, and the emergence of conflicts within groups performing in an isolated, confined, and extreme environment (ICE) may provide insights helpful for the composition and support of space crews for long duration missions. Studied pre/post and over the 2-yr period of the investigation were 10 Danish military personnel deployed to stations in Greenland on a 26-mo staggered rotation. Subjects completed the NEO PI-R, Triarchic Psychopathy Measure, and Portrait Values Questionnaire, and participated in structured interviews. During deployment, questionnaires were completed biweekly and a cognitive function test once a month. Personality findings indicated a generally well-adjusted group, above average in positive personality traits [Conscientiousness T-score = 59.4 (11.41); Agreeableness T-score = 54.4 (9.36)] and boldness. Personal values of benevolence and self-direction were highly rated. The decision when to "pick sides" and intervene during disagreements between group members was viewed as an important component of conflict resolution. There were no changes in positive/negative affect or cognitive function over the annual light/dark cycle. The personal values of group members appear highly compatible for living in a small group ICE environment for an extended period. Disagreements between group members impact the functioning of the entire group, particularly in regard to decisions whether to support one of the individuals or let the argument run its course. Extended training in strategies for conflict resolution are needed in planning for future long duration missions to avoid fault lines forming within the group.Corneliussen JG, Leon GR, Kjærgaard A, Fink BA, Venables NC. Individual traits, personal values, and conflict resolution in an isolated, confined, extreme environment. Aerosp Med Hum Perform. 2017; 88(6):535-543.

  12. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.

    2011-05-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  13. Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure

    Science.gov (United States)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2017-01-01

    There is a need for assessment of uncertainties and hence effects on reliability of design and management of stormwater pipes due to the prevalence of urban floods trigged by modification of land cover and high precipitation intensities respectively due to increasing urbanization and changing climate. Observed annual maximum series (AMS) of extreme precipitation intensities of 17 durations (1-min to 1440-min) and runoff records of 27 years from a 21.255 ha (23% impervious, 35% built-up and 41% open areas) Risvollan catchment in Trondheim City were used. Using a balanced bootstrap resampling (BBRS) with frequency analysis, we quantified considerable uncertainty in precipitation and runoff quantiles due to the sampling variability of systematic observations (e.g., -43% to +49% relative differences from the quantile estimates for the original sample). These differences are higher than suggested increase in design rainfall and floods by many countries for climate change adjustment. The uncertainties in IDF curves and derived design storm hyetographs are found to have large effects on the reliability of sizing of stormwater pipes. The study also indicated low validity of the assumptions on extreme precipitation and runoff relationships in the return period-based method for the partially paved urban catchment: (i) maximum of only 46% of the AMS of extreme precipitation and runoff events occurred concurrently and (ii) T-year return period extreme precipitation events do not necessarily result in T-year flood events. These indicate that there are effects of snowmelt seasonality, and probably catchment moisture states and interactions between the flows in subsurface media and pipes. The results substantiate the need for better understanding of relationships between precipitation and runoff extremes and urban runoff generation process, and importance of uncertainty assessment and application of reliability-based methods for design and management of water infrastructure.

  14. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 C) mixed culture environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chenxi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); Lu, Wenjing; Wang, Hongtao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-07-15

    The effect of pH and medium composition on extreme-thermophilic (70 C) dark fermentative simultaneous hydrogen and ethanol production (process performance and microbial ecology) was investigated. Hydrogen and ethanol yields were optimized with respect to glucose, peptone, FeSO{sub 4}, NaHCO{sub 3}, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations as well as initial pH as independent variables. A combination of low levels of both glucose ({<=}2 g/L) and vitamin solutions ({<=}1 mL/L) and high levels of initial pH ({>=}7), mineral salts solution ({>=}5 mL/L) and FeSO{sub 4} ({>=}100 mg/L) stimulated the hydrogen production, while high level of glucose ({>=}5 g/L) and low levels of both initial pH ({<=}5.5) and mineral salts solution ({<=}1 mL/L) enhanced the ethanol production. High yield of simultaneous hydrogen and ethanol production (1.58 mol H{sub 2}/mol glucose combined with an ethanol yield of 0.90 mol ethanol/mol glucose) was achieved under extreme-thermophilic mixed culture environment. Results obtained showed that the shift of the metabolic pathways favouring either hydrogen or ethanol production was affected by the change in cultivation conditions (pH and medium composition). The mixed culture in this study demonstrated flexible ability for simultaneous hydrogen and ethanol production, depending on pH and nutrients formulation. The microorganisms involved could be regarded as simultaneous hydrogen/ethanol producers, as hydrogen and ethanol fermentation under all conditions was carried out by a group of extreme-thermophilic bacterial species related to Thermoanaerobacter, Thermoanaerobacterium and Caldanaerobacter. (author)

  15. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    Science.gov (United States)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  16. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles

    Science.gov (United States)

    Scotti, Stephen J.; Clay, Christopher; Rezin, Marc

    2003-01-01

    This paper provides an overview of the evolution of structures and materials technology approaches to survive the challenging extreme environments encountered by earth-to-orbit space transportation systems, with emphasis on more recent developments in the USA. The evolution of technology requirements and experience in the various approaches to meeting these requirements has significantly influenced the technology approaches. While previous goals were primarily performance driven, more recently dramatic improvements in costs/operations and in safety have been paramount goals. Technologies that focus on the cost/operations and safety goals in the area of hot structures and thermal protection systems for reusable launch vehicles are presented. Assessments of the potential ability of the various technologies to satisfy the technology requirements, and their current technology readiness status are also presented.

  17. Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field.

    Science.gov (United States)

    Bartoli, Giacomo; Bottega, Stefania; Forino, Laura M C; Ciccarelli, Daniela; Spanò, Carmelina

    2014-02-01

    Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats.

  18. Mitigating Extreme Environments for In-Situ Jupiter and Venus Missions

    Science.gov (United States)

    Balint, Tibor S.; Kolawa, Elizabeth A.; Cutts, James A.

    2006-01-01

    In response to the recommendations by the National Research Council (NRC), NASA's Solar System Exploration (SSE) Roadmap identified the in situ exploration of Venus and Jupiter as high priority science objectives. For Jupiter, deep entry probes are recommended, which would descend to approx.250 km - measured from the 1 bar pressure depth. At this level the pressure would correspond to approx.100 bar and the temperature would reach approx.500(deg)C. Similarly, at the surface of Venus the temperature and pressure conditions are approx.460(deg)C and approx.90 bar. Lifetime of the Jupiter probes during descent can be measured in hours, while in{situ operations at and near the surface of Venus are envisioned over weeks or months. In this paper we discuss technologies, which share commonalities in mitigating these extreme conditions over proposed mission lifetimes, specially focusing on pressure and temperature environments.

  19. Targeted isolation of proteins from natural microbial communities living in an extreme environment.

    Science.gov (United States)

    Singer, Steven W

    2012-01-01

    Microorganisms from extreme environments are often very difficult to cultivate, precluding detailed study by biochemical and physiological techniques. Recent advances in genomic sequencing and proteomic measurements of samples obtained from natural communities have allowed new access to these uncultivated extremophiles and identified abundant proteins that can be isolated directly from natural samples. Here we report the isolation of two abundant heme proteins from low-diversity biofilm microbial communities that thrive in very acidic (pH ~ 1), metal-rich water in a subsurface mine. Purification and detailed characterization of these proteins has afforded new insight into the possible mechanism of Fe(II) oxidation by Leptospirillum Group II, the dominant population in most of these biofilms, and demonstrated that the abundance and posttranslational modifications of one of these proteins is dependent on the lifecycle of the biofilm.

  20. A SiGe BiCMOS Instrumentation Channel for Extreme Environment Applications

    Directory of Open Access Journals (Sweden)

    Chandradevi Ulaganathan

    2010-01-01

    Full Text Available An instrumentation channel is designed, implemented, and tested in a 0.5-μm SiGe BiCMOS process. The circuit features a reconfigurable Wheatstone bridge network that interfaces an assortment of external sensors to signal processing circuits. Also, analog sampling is implemented in the channel using a flying capacitor configuration. The analog samples are digitized by a low-power multichannel A/D converter. Measurement results show that the instrumentation channel supports input signals up to 200 Hz and operates across a wide temperature range of -180°C to 125°C. This work demonstrates the use of a commercially available first generation SiGe BiCMOS process in designing circuits suitable for extreme environment applications.

  1. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy.

    Science.gov (United States)

    Kimura, Sakurako; Bryan, Christopher G; Hallberg, Kevin B; Johnson, D Barrie

    2011-08-01

    The geochemical dynamics and composition of microbial communities within a low-temperature (≈ 8.5°C), long-abandoned (> 90 years) underground pyrite mine (Cae Coch, located in north Wales) were investigated. Surface water percolating through fractures in the residual pyrite ore body that forms the roof of the mine becomes extremely acidic and iron-enriched due to microbially accelerated oxidative dissolution of the sulfide mineral. Water droplets on the mine roof were found to host a very limited diversity of exclusively autotrophic microorganisms, dominated by the recently described psychrotolerant iron/sulfur-oxidizing acidophile Acidithiobacillus ferrivorans, and smaller numbers of iron-oxidizing Leptospirillum ferrooxidans. In contrast, flowing water within the mine chamber was colonized with vast macroscopic microbial growths, in the form of acid streamers and microbial stalactites, where the dominant microorganisms were Betaproteobacteria (autotrophic iron oxidizers such as 'Ferrovum myxofaciens' and a bacterium related to Gallionella ferruginea). An isolated pool within the mine showed some similarity (although greater biodiversity) to the roof droplets, and was the only site where archaea were relatively abundant. Bacteria not previously associated with extremely acidic, metal-rich environments (a Sphingomonas sp. and Ralstonia pickettii) were found within the abandoned mine. Data supported the hypothesis that the Cae Coch ecosystem is underpinned by acidophilic, mostly autotrophic, bacteria that use ferrous iron present in the pyrite ore body as their source of energy, with a limited role for sulfur-based autotrophy. Results of this study highlight the importance of novel bacterial species (At. ferrivorans and acidophilic iron-oxidizing Betaproteobacteria) in mediating mineral oxidation and redox transformations of iron in acidic, low-temperature environments. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    Science.gov (United States)

    Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.

  3. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    Science.gov (United States)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  4. Music for All: Including young people with intellectual disability in a university environment.

    Science.gov (United States)

    Rickson, Daphne; Warren, Penny

    2017-01-01

    We investigated a continuing education course in creative music making, initiated to promote the inclusion of young people with intellectual disability in a university setting. Despite organizers' attempts to foster diversity within the student cohort, enrolments were almost exclusively from students who had intellectual disability. Being in the university environment, and in a place of higher learning, seemed to be valued by some. However, students' main focus was on group musicking in a dedicated music room rather than interacting with the wider university community. Those who did not identify as disabled believed it was important to continue to address the barriers to wider inclusion. While acknowledging the risks around mediating the social interactions of young people with intellectual disability, we argue that future courses should include activities specifically designed to bring them to classes with typical students and to the wider activities of the university.

  5. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    Science.gov (United States)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  6. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment.

    Science.gov (United States)

    Jessop, Tim S; Letnic, Mike; Webb, Jonathan K; Dempster, Tim

    2013-10-07

    Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot-dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion.

  7. A Multi-Wavelength View of the Environments of Extreme Clustered Star Formation

    Science.gov (United States)

    De Buizer, James M.

    2017-01-01

    It is believed that the vast majority of, if not all, stars form within OB clusters. Most theories of star formation assume a star forms in isolation and ignore the fact that the cluster environment and, especially, the presence of extremely energetic and high mass young stellar objects nearby, may have a profound impact on the formation process of a typical cluster member. Giant HII (GHII) regions are Galactic analogs to starburst regions seen in external galaxies, hosting the most active areas of clustered star formation. As such, GHII regions represent a population of objects that can reveal a wealth of information on the environment of the earliest stages of clustered star formation and how it is affected by feedback from the most massive cluster members. This study employs new mid-infrared imaging data obtained from the airborne observatory, SOFIA, as well as archival imaging data from the near-infrared to cm radio wavelengths to create a rich multi-wavelength dataset of a dozen galactic GHII regions. These data allow quantification of the detailed physical conditions within GHII regions individually and as a population on both global and small scales.

  8. Extreme operative temperatures are better descriptors of the thermal environment than mean temperatures.

    Science.gov (United States)

    Camacho, Agustín; Trefaut Rodrigues, Miguel; Navas, Carlos

    2015-01-01

    In ecological studies of thermal biology the thermal environment is most frequently described using the mean or other measures of central tendency in environmental temperatures. However, this procedure may hide biologically relevant thermal variation for ectotherms, potentially misleading interpretations. Extremes of operative temperatures (EOT) can help with this problem by bracketing the thermal environment of focal animals. Within this paper, we quantify how mean operative temperatures relate to the range of simultaneously available operative temperatures (a measure of error). We also show how EOT: 1) detect more thermal differences among microsites than measures of central tendency, like the mean OT, 2) allow inferring on microsite use by ectothermic animals, and 3) clarify the relationships between field operative temperatures and temperatures measured at weather stations (WS). To do that, we explored operative temperatures measured at four sites of the Brazilian Caatingas and their correspondent nearest weather stations. We found that the daily mean OT can hide temperature ranges of 41 °C simultaneously available at our study sites. In addition, EOT detected more thermal differences among microsites than central quantiles. We also show how EOT allow inferring about microsite use of ectothermic animals in a given site. Finally, the daily maximum temperature and the daily temperature range measured at WSs predicted well the minimum available field OT at localities many kilometers away. Based on our results, we recommend the use of EOT, instead of mean OT, in thermal ecology studies.

  9. A milestone toward understanding PDR properties in the extreme environment of LMC-30Dor

    CERN Document Server

    Chevance, M; Lebouteiller, V; Godard, B; Cormier, D; Galliano, F; Hony, S; Indebetouw, R; Bourlot, J Le; Lee, M Y; Petit, F Le; Pellegrini, E; Roueff, E; Wu, R

    2016-01-01

    More complete knowledge of galaxy evolution requires understanding the process of star formation and interaction between the interstellar radiation field and the interstellar medium in galactic environments traversing a wide range of physical parameter space. Here we focus on the impact of massive star formation on the surrounding low metallicity ISM in 30 Doradus in the Large Magellanic Cloud. A low metal abundance, as is the case of some galaxies of the early universe, results in less ultra-violet shielding for the formation of the molecular gas necessary for star formation to proceed. The half-solar metallicity gas in this region is strongly irradiated by the super star cluster R136, making it an ideal laboratory to study the structure of the ISM in an extreme environment. Our spatially resolved study investigates the gas heating and cooling mechanisms, particularly in the photo-dissociation regions where the chemistry and thermal balance are regulated by far-ultraviolet photons (6 eV< h\

  10. Extremely environment-hard and low work function transfer-mold field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Masayuki, E-mail: m-nakamoto@rie.shizuoka.ac.jp [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan); Moon, Jonghyun [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2013-06-15

    Extremely environment-hard and low work function field-emitter arrays (FEAs) were fabricated by a transfer-mold emitter fabrication method to produce highly reliable vacuum nanoelectronic devices able to operate stably at low voltage in highly oxidizing atmospheres. Amorphous carbon (a-C) having a work function of 3.6 eV and sp{sup 3} fraction of 85.6% prepared by plasma-enhanced chemical vapor deposition was used as the emitter material. The field-emission characteristics of the obtained transfer-mold FEAs strongly depended on their work function and morphology. The environment-hard characteristics of the transfer-mold a-C FEAs were compared with those of the transfer-mold titanium nitride FEAs and nickel FEAs. X-ray photoelectron spectroscopy was used to confirm the stable chemical states of the FEAs after oxygen radical treatment. The small amount of material oxidized (6.3%) at the surface of the a-C FEAs compared with 11.8% for the TiN-FEAs and 39.0% for Ni FEAs after oxygen radical treatment explained their almost constant work function in oxidizing atmospheres. The emission fluctuation rates of transfer-mold a-C FEAs without resistive layers under in situ radical treatment were as low as ±5.0%, compared with 5–100% for conventional FEAs with resistive layers not under highly oxidizing atmospheres. Therefore, the present environment-hard and low work function transfer-mold a-C FEAs are expected to be useful for reliable vacuum nanoelectronic devices.

  11. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    Science.gov (United States)

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  12. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  13. Extreme environments in the critical zone: Linking acidification hazard of acid sulfate soils in mound spring discharge zones to groundwater evolution and mantle degassing.

    Science.gov (United States)

    Shand, Paul; Gotch, Travis; Love, Andrew; Raven, Mark; Priestley, Stacey; Grocke, Sonia

    2016-10-15

    A decrease in flow from the iconic travertine mound springs of the Great Artesian Basin in South Australia has led to the oxidation of hypersulfidic soils and extreme soil acidification, impacting their unique groundwater dependent ecosystems. The build-up of pyrite in these systems occurred over millennia by the discharge of deep artesian sulfate-containing groundwaters through organic-rich subaqueous soils. Rare iron and aluminium hydroxysulfate minerals form thick efflorescences due to high evaporation rates in this arid zone environment, and the oxidised soils pose a significant risk to local aquatic and terrestrial ecosystems. The distribution of extreme acidification hazard is controlled by regional variations in the hydrochemistry of groundwater. Geochemical processes fractionate acidity and alkalinity into separate parts of the discharge zone allowing potentially extreme environments to form locally. Differences in groundwater chemistry in the aquifer along flow pathways towards the spring discharge zone are related to a range of processes including mineral dissolution and redox reactions, which in turn are strongly influenced by degassing of the mantle along deep crustal fractures. There is thus a connection between shallow critical zone ecosystems and deep crustal/mantle processes which ultimately control the formation of hypersulfidic soils and the potential for extreme geochemical environments.

  14. An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.

  15. Moving in extreme environments: open water swimming in cold and warm water.

    Science.gov (United States)

    Tipton, Michael; Bradford, Carl

    2014-01-01

    Open water swimming (OWS), either 'wild' such as river swimming or competitive, is a fast growing pastime as well as a part of events such as triathlons. Little evidence is available on which to base high and low water temperature limits. Also, due to factors such as acclimatisation, which disassociates thermal sensation and comfort from thermal state, individuals cannot be left to monitor their own physical condition during swims. Deaths have occurred during OWS; these have been due to not only thermal responses but also cardiac problems. This paper, which is part of a series on 'Moving in Extreme Environments', briefly reviews current understanding in pertinent topics associated with OWS. Guidelines are presented for the organisation of open water events to minimise risk, and it is concluded that more information on the responses to immersion in cold and warm water, the causes of the individual variation in these responses and the precursors to the cardiac events that appear to be the primary cause of death in OWS events will help make this enjoyable sport even safer.

  16. Disease transmission in an extreme environment: nematode parasites infect reindeer during the Arctic winter.

    Science.gov (United States)

    Carlsson, Anja M; Justin Irvine, R; Wilson, Kenneth; Piertney, Stuart B; Halvorsen, Odd; Coulson, Stephen J; Stien, Audun; Albon, Steve D

    2012-07-01

    Parasitic nematodes are found in almost all wild vertebrate populations but few studies have investigated these host-parasite relationships in the wild. For parasites with free-living stages, the external environment has a major influence on life-history traits, and development and survival is generally low at sub-zero temperatures. For reindeer that inhabit the high Arctic archipelago of Svalbard, parasite transmission is expected to occur in the summer, due to the extreme environmental conditions and the reduced food intake by the host in winter. Here we show experimentally that, contrary to most parasitic nematodes, Marshallagia marshalli of Svalbard reindeer is transmitted during the Arctic winter. Winter transmission was demonstrated by removing parasites in the autumn, using a novel delayed-release anthelmintic bolus, and estimating re-infection rates in reindeer sampled in October, February and April. Larval stages of nematodes were identified using molecular tools, whereas adult stages were identified using microscopy. The abundance of M. marshalli adult worms and L4s increased significantly from October to April, indicating that reindeer were being infected with L3s from the pasture throughout the winter. To our knowledge, this study is the first to experimentally demonstrate over-winter transmission of a gastro-intestinal nematode parasite in a wild animal. Potential mechanisms associated with this unusual transmission strategy are discussed in light of our knowledge of the life-history traits of this parasite.

  17. Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin.

    Science.gov (United States)

    Tamburrini, M; Condò, S G; di Prisco, G; Giardina, B

    1994-04-15

    The functional properties of the single haemoglobin (Hb) of Emperor penguin (Aptenodytes forsteri) have been investigated at different temperatures as a function of proton and organic phosphate concentration. The complete amino acid sequence has been established. Comparison with that of human HbA shows 12 substitutions in the contact regions of alpha beta dimers. In addition to overall similarities shared with most of the avian Hbs previously described, this Hb shows significant differences, which could be related to the peculiar behaviour of this penguin. In particular we may consider that: (1) the shape of the Bohr effect curve seems well adapted for gas exchange during very prolonged dives, preserving penguin Hb from a sudden and not controlled stripping of oxygen; (2) the very minor enthalpy change observed at lower pH could be an example of molecular adaptation, through which oxygen delivery becomes essentially insensitive to exposure to the extremely low temperatures of the environment. Moreover, the small alkaline Bohr effect has been found to be only chloride-linked, since the pH dependence of the oxygen affinity is totally abolished in the absence of this ion. These functional characteristics are discussed on the basis of the primary structure of alpha and beta-chains.

  18. Present knowledge of the bacterial microflora in the extreme environment of sugar thick juice.

    Science.gov (United States)

    Justé, Annelies; Lievens, Bart; Frans, Ingeborg; Klingeberg, Michael; Michiels, Chris W; Willems, Kris A

    2008-09-01

    The diversity of the bacterial population in sugar thick juice, an intermediate product in the production of beet sugar, which exhibits an extreme, osmophilic environment with a water activity value (a(w)) less than 0.86, was assessed with both culture-dependent and -independent 16S ribosomal RNA (rRNA) gene-based analyses. In comparison with previous studies, the number of different thick juice bacterial species increased from 29 to 72. Remarkably, a limited, gram-positive, culturable flora, encompassing species of Bacillus, Staphylococcus and mainly Tetragenococcus dominated thick juice during storage, while a more heterogeneous and unculturable fraction of Acinetobacter, Sporolactobacillus and Thermus species could be detected in freshly produced thick juice. Notably, almost all bacteria detected in the thick juice were also detected in the air, emphasising the importance of further investigation and assessment of strategies to reduce (air) contamination during processing and storage. The discovery of the contamination source may be used for the development of management strategies for thick juice degradation resulting from microbial activity.

  19. Time-of-flight Extreme Environment Diffractometer at the Helmholtz-Zentrum Berlin.

    Science.gov (United States)

    Prokhnenko, Oleksandr; Stein, Wolf-Dieter; Bleif, Hans-Jürgen; Fromme, Michael; Bartkowiak, Maciej; Wilpert, Thomas

    2015-03-01

    The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized. In this paper, we report on the design and performance of EXED with an emphasis on the unique instrument capabilities. The latter comprise variable wavelength resolution and wavelength band, control of the incoming beam divergence, the possibility to change the angular positions of detectors and their distance to the sample, and use of event recording and offline histogramming. These features combined make EXED easily tunable to the requirements of a particular problem, from conventional diffraction to small angle neutron scattering. The instrument performance is demonstrated by several reference measurements and user experiments.

  20. Planetary protection in the extreme environments of low-mass stars

    CERN Document Server

    Vidotto, A A; Morin, J; Donati, J -F; Lang, P; Russell, A J B

    2013-01-01

    Recent results showed that the magnetic field of M-dwarf (dM) stars, currently the main targets in searches for terrestrial planets, is very different from the solar one, both in topology as well as in intensity. In particular, the magnetised environment surrounding a planet orbiting in the habitable zone (HZ) of dM stars can differ substantially to the one encountered around the Earth. These extreme magnetic fields can compress planetary magnetospheres to such an extent that a significant fraction of the planet's atmosphere may be exposed to erosion by the stellar wind. Using observed surface magnetic maps for a sample of 15 dM stars, we investigate the minimum degree of planetary magnetospheric compression caused by the intense stellar magnetic fields. We show that hypothetical Earth-like planets with similar terrestrial magnetisation (~1G) orbiting at the inner (outer) edge of the HZ of these stars would present magnetospheres that extend at most up to 6.1 (11.7) planetary radii. To be able to sustain an E...

  1. DISCOVERY OF PULSATIONS, INCLUDING POSSIBLE PRESSURE MODES, IN TWO NEW EXTREMELY LOW MASS, He-CORE WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Bell, Keaton J.; Harrold, Samuel T. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Gianninas, A.; Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2013-03-10

    We report the discovery of the second and third pulsating extremely low mass (ELM) white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 M{sub Sun} and effective temperatures below 10, 000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes that are also present. J1112 is a T{sub eff} =9590 {+-} 140 K and log g =6.36 {+-} 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792 and 2855 s. In this star, we also see short-period variability, strongest at 134.3 s, well short of the expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a T{sub eff} =9900 {+-} 140 K and log g =6.80 {+-} 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335 and 3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.

  2. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  3. Assessment of SOI AND Gate, Type CHT-7408, for Operation in Extreme Temperature Environments

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Dones, Keishla Rivera

    2009-01-01

    Electronic parts based on silicon-on-insulator (SOI) technology are finding widespread applications due to their ability to operate in harsh environments and the benefits they offer as compared to their silicon counterparts. Due to their construction, they are tailored for high temperature operation and show good tolerance to radiation events. In addition, their inherent design lessens the formation of parasitic junctions, thereby reducing leakage currents, decreasing power consumption, and enhancing speed. These devices are typically rated in temperature capability from -55 C to about +225 C, and their characteristics over this temperature range are documented in data sheets. Since electronics in some of NASA space exploration missions are required to operate under extreme temperature conditions, both cold and hot, their characteristic behavior within the full temperature spectrum must be determined to establish suitability for use in space applications. The effects of extreme temperature exposure on the performance of a new commercial-off-the-shelf (COTS) SOI AND gate device were evaluated in this work. The high temperature, quad 2-inputs AND gate device, which was recently introduced by CISSOID, is fabricated using a CMOS SOI process. Some of the specifications of the CHT-7408 chip are listed in a table. By supplying a constant DC voltage to one gate input and a 10 kHz square wave into the other associated gate input, the chip was evaluated in terms of output response, output rise (t(sub r)) and fall times (tf), and propagation delays (using a 50% level between input and output during low to high (tPLH) and high to low (tPHL) transitions). The supply current of the gate circuit was also obtained. These parameters were recorded at various test temperatures between -195 C and +250 C using a Sun Systems environmental chamber programmed at a temperature rate of change of 10 C/min. In addition, the effects of thermal cycling on this chip were determined by exposing

  4. Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism

    DEFF Research Database (Denmark)

    Greve, Bo Bjørn

    2009-01-01

    Spindle-shaped virus-like particles are abundant in extreme geothermal environments, from which five spindle-shaped viral species have been isolated to date. They infect members of the hyperthermophilic archaeal genus Sulfolobus, and constitute the Fuselloviridae, a family of double-stranded DNA...

  5. Modular SiGe 130 nm Cell Library for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space missions utilizing application-specific integrated circuits (ASICs) under extreme conditions have a critical need for high performance analog cell...

  6. Nutritional Assessment During a 14-d Saturation Dive: the NASA Extreme Environment Mission Operation V Project

    Science.gov (United States)

    Smith, S. M.; Davis-Street, J. E.; Fesperman, J. V.; Smith, M. D.; Rice, B. L.; Zwart, S. R.

    2006-01-01

    Ground-based analogs of spaceflight are an important means of studying physiological and nutritional changes associated with space travel, particularly since exploration missions are anticipated, and flight research opportunities are limited. A clinical nutritional assessment of the NASA Extreme Environment Mission Operation V (NEEMO) crew (4 M, 2 F) was conducted before, during, and after the 14-d saturation dive. Blood and urine samples were collected before (D-12 and D-1), during (MD 7 and MD 12), and after (R + 0 and R + 7) the dive. The foods were typical of the spaceflight food system. A number of physiological changes were reported both during the dive and post dive that are also commonly observed during spaceflight. Serum hemoglobin and hematocrit were decreased (P less than 0.05) post dive. Serum ferritin and ceruloplasmin significantly increased during the dive, while transferring receptors tended to go down during the dive and were significantly decreased by the last day (R + 0). Along with significant hematological changes, there was also evidence for increased oxidative damage and stress during the dive. 8-hydroxydeoxyguanosine was elevated (P less than 0.05) during the dive, while glutathione peroxidase and superoxide disrnutase activities were decreased (P less than 0.05) during the dive. Serum C-reactive protein (CRP) concentration also tended to increase during the dive, suggesting the presence of a stress-induced inflammatory response, Decreased leptin during the dive (P less than 0.05) may also be related to the increased stress. Similar to what is observed during spaceflight, subjects had decreased energy intake and weight loss during the dive. Together, these similarities to spaceflight provide a model to further define the physiological effects of spaceflight and investigate potential countermeasures.

  7. Comparative community genomics in the Dead Sea: an increasingly extreme environment.

    Science.gov (United States)

    Bodaker, Idan; Sharon, Itai; Suzuki, Marcelino T; Feingersch, Roi; Shmoish, Michael; Andreishcheva, Ekaterina; Sogin, Mitchell L; Rosenberg, Mira; Maguire, Michael E; Belkin, Shimshon; Oren, Aharon; Béjà, Oded

    2010-03-01

    Owing to the extreme salinity ( approximately 10 times saltier than the oceans), near toxic magnesium levels (approximately 2.0 M Mg(2+)), the dominance of divalent cations, acidic pH (6.0) and high-absorbed radiation flux rates, the Dead Sea represents a unique and harsh ecosystem. Measures of microbial presence (microscopy, pigments and lipids) indicate that during rare bloom events after exceptionally rainy seasons, the microbial communities can reach high densities. However, most of the time, when the Dead Sea level is declining and halite is precipitating from the water column, it is difficult to reliably measure the presence of microorganisms and their activities. Although a number of halophilic Archaea have been previously isolated from the Dead Sea, polar lipid analyses of biomass collected during Dead Sea blooms suggested that these isolates were not the major components of the microbial community of these blooms. In this study, in an effort to characterize the perennial microbial community of the Dead Sea and compare it with bloom assemblages, we performed metagenomic analyses of concentrated biomass from hundreds of liters of brine and of microbial material from the last massive Dead Sea bloom. The difference between the two conditions was reflected in community composition and diversity, in which the bloom was different and less diverse from the residual brine population. The distributional patterns of microbial genes suggested Dead Sea community trends in mono- and divalent cation metabolisms as well as in transposable elements. This may indicate possible mechanisms and pathways enabling these microbes to survive in such a harsh environment.

  8. A systematic review including meta-analysis of work environment and depressive symptoms.

    Science.gov (United States)

    Theorell, Töres; Hammarström, Anne; Aronsson, Gunnar; Träskman Bendz, Lil; Grape, Tom; Hogstedt, Christer; Marteinsdottir, Ina; Skoog, Ingmar; Hall, Charlotte

    2015-08-01

    Depressive symptoms are potential outcomes of poorly functioning work environments. Such symptoms are frequent and cause considerable suffering for the employees as well as financial loss for the employers. Accordingly good prospective studies of psychosocial working conditions and depressive symptoms are valuable. Scientific reviews of such studies have pointed at methodological difficulties but still established a few job risk factors. Those reviews were published some years ago. There is need for an updated systematic review using the GRADE system. In addition, gender related questions have been insufficiently reviewed. Inclusion criteria for the studies published 1990 to June 2013: 1. European and English speaking countries. 2. Quantified results describing the relationship between exposure (psychosocial or physical/chemical) and outcome (standardized questionnaire assessment of depressive symptoms or interview-based clinical depression). 3. Prospective or comparable case-control design with at least 100 participants. 4. Assessments of exposure (working conditions) and outcome at baseline and outcome (depressive symptoms) once again after follow-up 1-5 years later. 5. Adjustment for age and adjustment or stratification for gender. Studies filling inclusion criteria were subjected to assessment of 1.) relevance and 2.) quality using predefined criteria. Systematic review of the evidence was made using the GRADE system. When applicable, meta-analysis of the magnitude of associations was made. Consistency of findings was examined for a number of possible confounders and publication bias was discussed. Fifty-nine articles of high or medium high scientific quality were included. Moderately strong evidence (grade three out of four) was found for job strain (high psychological demands and low decision latitude), low decision latitude and bullying having significant impact on development of depressive symptoms. Limited evidence (grade two) was shown for psychological

  9. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Skliar, Mikhail [Univ. of Utah, Salt Lake City, UT (United States)

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmental temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested

  10. A milestone toward understanding PDR properties in the extreme environment of LMC-30 Doradus

    Science.gov (United States)

    Chevance, M.; Madden, S. C.; Lebouteiller, V.; Godard, B.; Cormier, D.; Galliano, F.; Hony, S.; Indebetouw, R.; Le Bourlot, J.; Lee, M.-Y.; Le Petit, F.; Pellegrini, E.; Roueff, E.; Wu, R.

    2016-05-01

    Context. More complete knowledge of galaxy evolution requires understanding the process of star formation and the interaction between the interstellar radiation field and interstellar medium (ISM) in galactic environments traversing a wide range of physical parameter space. We focus on the impact of massive star formation on the surrounding low metallicity ISM in 30 Doradus in the Large Magellanic Cloud (LMC). A low metal abundance, which can characterizes some galaxies of the early Universe, results in less ultraviolet (UV) shielding for the formation of the molecular gas necessary for star formation to proceed. The half-solar metallicity gas in this region is strongly irradiated by the super star cluster R136, making it an ideal laboratory to study the structure of the ISM in an extreme environment. Aims: Our goal is to construct a comprehensive, self-consistent picture of the density, radiation field, and ISM structure in the most active star-forming region in the LMC, 30 Doradus. Our spatially resolved study investigates the gas heating and cooling mechanisms, particularly in the photodissociation regions (PDR) where the chemistry and thermal balance are regulated by far-UV photons (6 eV parallel geometry and a uniform medium, we find a total extinction AVmax of 1-3 mag, which corresponds to a PDR cloud size of 0.2 to 3pc with small CO depth scale of 0.06 to 0.5 pc. At least 90% of the [C ii] originates in PDRs in this region, while a significant fraction of the LFIR (up to 70% in some places) can be associated with an ionized gas component. The high [O iii]/[C ii] ratio (2 to 60) throughout the observed map, correlated with the filling factor, reveals the porosity of the ISM in this region, which is traversed by hard UV photons surrounding small PDR clumps. We also determine the three-dimensional structure of the gas, showing that the clouds are distributed 20 to 80 pc away from the main ionizing cluster, R136. The reduced images are only available at the CDS

  11. Development of in-vessel neutron flux monitor equipped with microfission chambers to withstand the extreme ITER environment

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masao, E-mail: ishikawa.masao@jaea.go.jp; Takeda, Keigo; Itami, Kiyoshi

    2016-11-01

    Highlights: • The in-vessel components of MFC system must withstand the extreme ITER environment. • To verify this, the thermal cycle test and the vibration tests were conducted. • Both tests were conducted under much severer conditions than ITER environment. • Soundness verification tests after the tests indicated that no problemswere found. • It is shown that the in-vessel component is sufficiently robust ITER environment. - Abstract: Via thermal cycling and vibration tests, this study aims to demonstrate that the in-vessel components of the microfission chamber (MFC) system can withstand the extreme International Thermonuclear Experimental Reactor (ITER) environment. In thermal cycle tests, the signal cable of the device was bent into a smaller radius and it was given more bends than those in its actual configuration within ITER. A faster rate of temperature change than that under the typical ITER baking scenario was then imposed on in-vessel components. For the vibration tests, strong 10 G vibrational accelerations with frequencies ranging from 30 Hz to 2000 Hz were imposed to the detector and the connector of the in-vessel components to simulate various types of electromagnetic events. Soundness verification tests of the in-vessel components conducted after thermal cycling and vibration testing indicated that problems related to the signal transmission cable functioning were not found. Thus, it was demonstrated that the in-vessel components of the MFC can withstand the extreme environment within ITER.

  12. External Contamination Environment at ISS Included: Selected Results from Payloads Contamination Mapping Delivery 3 Package

    Science.gov (United States)

    Olsen, Randy; Huang, Alvin; Steagall, Courtney; Kohl, Nathaniel; Koontz, Steve; Worthy, Erica

    2017-01-01

    The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  13. Two spatial scales in a bleaching event: Corals from the mildest and the most extreme thermal environments escape mortality

    KAUST Repository

    Pineda, Jesús

    2013-07-28

    In summer 2010, a bleaching event decimated the abundant reef flat coral Stylophora pistillata in some areas of the central Red Sea, where a series of coral reefs 100–300 m wide by several kilometers long extends from the coastline to about 20 km offshore. Mortality of corals along the exposed and protected sides of inner (inshore) and mid and outer (offshore) reefs and in situ and satellite sea surface temperatures (SSTs) revealed that the variability in the mortality event corresponded to two spatial scales of temperature variability: 300 m across the reef flat and 20 km across a series of reefs. However, the relationship between coral mortality and habitat thermal severity was opposite at the two scales. SSTs in summer 2010 were similar or increased modestly (0.5°C) in the outer and mid reefs relative to 2009. In the inner reef, 2010 temperatures were 1.4°C above the 2009 seasonal maximum for several weeks. We detected little or no coral mortality in mid and outer reefs. In the inner reef, mortality depended on exposure. Within the inner reef, mortality was modest on the protected (shoreward) side, the most severe thermal environment, with highest overall mean and maximum temperatures. In contrast, acute mortality was observed in the exposed (seaward) side, where temperature fluctuations and upper water temperature values were relatively less extreme. Refuges to thermally induced coral bleaching may include sites where extreme, high-frequency thermal variability may select for coral holobionts preadapted to, and physiologically condition corals to withstand, regional increases in water temperature.

  14. Life in extreme environments: single molecule force spectroscopy as a tool to explore proteins from extremophilic organisms.

    Science.gov (United States)

    Tych, Katarzyna M; Hoffmann, Toni; Batchelor, Matthew; Hughes, Megan L; Kendrick, Katherine E; Walsh, Danielle L; Wilson, Michael; Brockwell, David J; Dougan, Lorna

    2015-04-01

    Extremophiles are organisms which survive and thrive in extreme environments. The proteins from extremophilic single-celled organisms have received considerable attention as they are structurally stable and functionally active under extreme physical and chemical conditions. In this short article, we provide an introduction to extremophiles, the structural adaptations of proteins from extremophilic organisms and the exploitation of these proteins in industrial applications. We provide a review of recent developments which have utilized single molecule force spectroscopy to mechanically manipulate proteins from extremophilic organisms and the information which has been gained about their stability, flexibility and underlying energy landscapes.

  15. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Baczewski, Andrew David; Shulenburger, Luke; Desjarlais, Michael Paul; Magyar, Rudolph J.

    2014-02-01

    In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

  16. PRTs and Their Bonding for Long-Duration, Extreme-Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Cucullu, Gordon C., III; Mikhaylov, Rebecca L.

    2012-01-01

    Research was conducted on the qualification of Honeywell platinum resistance thermometer (PRT) bonding for use in the Mars Science Laboratory (MSL). This is the first time these sensors will be used for Mars-related projects. Different types of PRTs were employed for the Mars Exploration Rover (MER) project, and several reliability issues were experienced, even for a shortduration mission like MER compared to MSL. Therefore, the development of a qualification process for the Honeywell PRT bonding was needed for the MSL project. Reliability of the PRT sensors, and their bonding processes, is a key element to understand the health of the hardware during all stages of the project, and particularly during surface operations on Mars. Three extreme temperature summer season cycles and three winter season cycles (total: 1983 thermal cycles) were completed, and no Honeywell PRT failures associated with the bonding process were found. Seventy-eight PRTs were bonded onto six different substrate materials using four different adhesives during the thermal cycling, which included a planetary protection cycle to +125 C for two hours, three protoflight/qualification cycles (-135 to 70 C), 1,384 summer cycles (-105 to 40 C), and 599 winter cycles (-130 to 15 C). There were no observed changes in PRT resistances, bonding characteristics, or damage identified from the package evaluation as a result of the qualification tests.

  17. Microbial ecology of extreme environments: Antarctic yeasts and growth in substrate-limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1985-01-01

    The high, dry valleys of the Ross Desert of Antarctic, characterized by extremely low temperatures, aridity and a depauperate biota, are used as an analog of the postulated extreme climates of other planetary bodies of the Solar System to test the hypothesis that if life could be supported by Ross, it might be possible where similar conditions prevail. The previously considered sterility of the Ross Desert soil ecosystem has yielded up an indigenous yeast, Cryptoccus vishniacci, which is able to resist the extremes of cold, wet and dry freezing, and long arid periods, while making minimal nutritional demands on the soil.

  18. A first overview of textile fibers, including microplastics, in indoor and outdoor environments.

    Science.gov (United States)

    Dris, Rachid; Gasperi, Johnny; Mirande, Cécile; Mandin, Corinne; Guerrouache, Mohamed; Langlois, Valérie; Tassin, Bruno

    2017-02-01

    Studies about microplastics in various environments highlighted the ubiquity of anthropogenic fibers. As a follow-up of a recent study that emphasized the presence of man-made fibers in atmospheric fallout, this study is the first one to investigate fibers in indoor and outdoor air. Three different indoor sites were considered: two private apartments and one office. In parallel, the outdoor air was sampled in one site. The deposition rate of the fibers and their concentration in settled dust collected from vacuum cleaner bags were also estimated. Overall, indoor concentrations ranged between 1.0 and 60.0 fibers/m(3). Outdoor concentrations are significantly lower as they range between 0.3 and 1.5 fibers/m(3). The deposition rate of the fibers in indoor environments is between 1586 and 11,130 fibers/day/m(2) leading to an accumulation of fibers in settled dust (190-670 fibers/mg). Regarding fiber type, 67% of the analyzed fibers in indoor environments are made of natural material, primarily cellulosic, while the remaining 33% fibers contain petrochemicals with polypropylene being predominant. Such fibers are observed in marine and continental studies dealing with microplastics. The observed fibers are supposedly too large to be inhaled but the exposure may occur through dust ingestion, particularly for young children.

  19. Converging Indicators for Assessing Individual Differences in Adaptation to Extreme Environments: Preliminary Report

    Science.gov (United States)

    Cowings, Patricia S.; Toscano, William B.; DeRoshia, Charles W.; Taylor, Bruce; Hines, Seleimah; Bright, Andrew; Dodds, Anika

    2006-01-01

    This paper describes the development and validation of a new methodology for assessing the deleterious effects of spaceflight on crew health and performance. It is well known that microgravity results in various physiological alterations, e.g., headward fluid shifts which can impede physiological adaptation. Other factors that may affect crew operational efficiency include disruption of sleep-wake cycles, high workload, isolation, confinement, stress and fatigue. From an operational perspective, it is difficult to predict which individuals will be most or least affected in this unique environment given that most astronauts are first-time flyers. During future lunar and Mars missions space crews will include both men and women of multi-national origins, different professional backgrounds, and various states of physical condition. Therefore, new methods or technologies are needed to monitor and predict astronaut performance and health, and to evaluate the effects of various countermeasures on crew during long duration missions. This paper reviews several studies conducted in both laboratory and operational environments with men and women ranging in age between 18 to 50 years. The studies included the following: soldiers performing command and control functions during mobile operations in enclosed armored vehicles; subjects participating in laboratory tests of an anti-motion sickness medication; subjects exposed to chronic hypergravity aboard a centrifuge, and subject responses to 36-hours of sleep deprivation. Physiological measurements, performance metrics, and subjective self-reports were collected in each study. The results demonstrate that multivariate converging indicators provide a significantly more reliable method for assessing environmental effects on performance and health than any single indicator.

  20. Extreme Environment Circuit Blocks for Spacecraft Power & Propulsion System & Other High Reliability Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Chronos Technology (DIv of FMI, Inc.) proposes to design, fabricate, and deliver a performance proven, and commercially available set of extreme high operating...

  1. A Miniature Extreme Environment Powder Delivery System (M-PoDS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a low mass, low volume, gas based system that will acquire size selective powdered samples from the extreme ambient (such as Mars or Venus...

  2. A lesson from science in polar extreme environments: ethics and social values for primary school

    Science.gov (United States)

    La Longa, Federica; Crescimbene, Massimo; Alfonsi, Lucilla; Romano, Vincenzo; Cesaroni, Claudio

    2015-04-01

    experiences (doing); to develop civics path linked to "sense of belonging and citizenship", that will make the children aware that Antarctica does not belong to anyone but it belongs to everybody: it is a common and unique good (being). The proposed work is an example of how it is possible, by means of educational paths, promote and support integration values between human beings and nature also in extreme environments as the Antarctic continent.

  3. Instrument developments for chemical and physical characterization, mapping and sampling of extreme environments (Antarctic sub ice environment)

    Science.gov (United States)

    Vogel, S. W.; Powell, R. D.; Griffith, I.; Lawson, T.; Schiraga, S.; Ludlam, G.; Oen, J.

    2009-12-01

    A number of instrumentation is currently under development designed to enable the study of subglacial environments in Antarctica through narrow kilometer long boreholes. Instrumentation includes: - slim line Sub-Ice ROV (SIR), - Geochemical Instrumentation Package for Sub Ice Environments (GIPSIE) to study geochemical fluxes in water and across the sediment water interface (CO2, CH4, dO, NH4, NO3, Si, PO4, pH, redox, T, H2, HS, O2, N2O, CTD, particle size, turbidity, color camera, current meter and automated water sampler) with real-time telemetry for targeted sampling, - long term energy-balance mooring system, - active source slide hammer sediment corer, and - integration of a current sensor into the ITP profiler. The instrumentation design is modular and suitable for remote operated as well as autonomous long-term deployment. Of interest to the broader science community is the development of the GIPSIE and efforts to document the effect of sample recovery from depth on the sample chemistry. The GIPSIE is a geochemical instrumentation package with life stream telemetry, allowing for user controlled targeted sampling of water column and the water sediment interphase for chemical and biological work based on actual measurements and not a preprogrammed automated system. The porewater profiler (pH, redox, T, H2, HS, O2, N2O) can penetrate the upper 50 cm of sediment and penetration is documented with real time video. Associated with GIPSIE is an on-site lab set-up, utilizing a set of identical sensors. Comparison between the insitu measurements and measurements taken onsite directly after samples are recovered from depth permits assessing the effect of sample recovery on water and sediment core chemistry. Sample recovery related changes are mainly caused by changes in the pressure temperature field and exposure of samples to atmospheric conditions. Exposure of anaerobic samples to oxygen is here a specific concern. Recovery from depth effects in generally p

  4. Psychological Adaptation to Extreme Environments: Effects of Team Composition on Individual Adaptation

    Science.gov (United States)

    Wood, J.; Hysong, S. J.; Lugg, D. J.; Harm, D. L.

    1999-01-01

    This study is part of an ongoing program of research examining the psychological effects of isolation and confinement on individual adaptation, productivity and group relations in Antarctic winter personnel. This environment is used as an analogue for long-duration space mission scenarios, such as a space station sojourn, or a mission to Mars. Earlier results from this and other environments have demonstrated that: (1) most changes in psychological well-being are event-related and of relatively short duration; and (2) the greatest problem facing most individuals is interpersonal conflict. Content analysis of responses to open-ended questions has identified the numerous enjoyable aspects of Antarctic living, and confirmed that many of the problems reported were interpersonal in nature, and that problems varied significantly by station. Current work is exploring the effects of team assignment on the self-reported psychological changes and self-evaluations of members of isolated teams. This work includes identifying the dimensions by which subjects determine how well they are functioning. These dimensions (e.g., work, social life, internal emotional state) appear to play an important role in how subjects evaluate many aspects of life in isolation.

  5. Potential transformation of trace species including aircraft exhaust in a cloud environment. The `Chedrom model`

    Energy Technology Data Exchange (ETDEWEB)

    Ozolin, Y.E.; Karol, I.L. [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.

  6. Understanding the Adaptation of Halobacterium Species NRC-1 to Its Extreme Environment through Computational Analysis of Its Genome Sequence

    Science.gov (United States)

    Kennedy, Sean P.; Ng, Wailap Victor; Salzberg, Steven L.; Hood, Leroy; DasSarma, Shiladitya

    2001-01-01

    The genome of the halophilic archaeon Halobacterium sp. NRC-1 and predicted proteome have been analyzed by computational methods and reveal characteristics relevant to life in an extreme environment distinguished by hypersalinity and high solar radiation: (1) The proteome is highly acidic, with a median pI of 4.9 and mostly lacking basic proteins. This characteristic correlates with high surface negative charge, determined through homology modeling, as the major adaptive mechanism of halophilic proteins to function in nearly saturating salinity. (2) Codon usage displays the expected GC bias in the wobble position and is consistent with a highly acidic proteome. (3) Distinct genomic domains of NRC-1 with bacterial character are apparent by whole proteome BLAST analysis, including two gene clusters coding for a bacterial-type aerobic respiratory chain. This result indicates that the capacity of halophiles for aerobic respiration may have been acquired through lateral gene transfer. (4) Two regions of the large chromosome were found with relatively lower GC composition and overrepresentation of IS elements, similar to the minichromosomes. These IS-element-rich regions of the genome may serve to exchange DNA between the three replicons and promote genome evolution. (5) GC-skew analysis showed evidence for the existence of two replication origins in the large chromosome. This finding and the occurrence of multiple chromosomes indicate a dynamic genome organization with eukaryotic character. PMID:11591641

  7. Measurement with verification of stationary signals and noise in extremely quiet environments: measuring below the noise floor.

    Science.gov (United States)

    Ellingson, Roger M; Gallun, Frederick J; Bock, Guillaume

    2015-03-01

    It can be problematic to measure stationary acoustic sound pressure level in any environment when the target level approaches or lies below the minimum measureable sound pressure level of the measurement system itself. This minimum measureable level, referred to as the inherent measurement system noise floor, is generally established by noise emission characteristics of measurement system components such as microphones, preamplifiers, and other system circuitry. In this paper, methods are presented and shown accurate measuring stationary levels within 20 dB above and below this system noise floor. Methodology includes (1) measuring inherent measurement system noise, (2) subtractive energy based, inherent noise adjustment of levels affected by system noise floor, and (3) verifying accuracy of inherent noise adjustment technique. While generalizable to other purposes, the techniques presented here were specifically developed to quantify ambient noise levels in very quiet rooms used to evaluate free-field human hearing thresholds. Results obtained applying the methods to objectively measure and verify the ambient noise level in an extremely quiet room, using various measurement system noise floors and analysis bandwidths, are presented and discussed. The verified results demonstrate the adjustment method can accurately extend measurement range to 20 dB below the measurement system noise floor, and how measurement system frequency bandwidth can affect accuracy of reported noise levels.

  8. How Do Modern Extreme Hydrothermal Environments Inform the Identification of Martian Habitability? The Case of the El Tatio Geyser Field

    Directory of Open Access Journals (Sweden)

    Roberto Barbieri

    2014-11-01

    Full Text Available Despite the success in knowledge gained by the Mars missions in the last two decades, the search for traces of life on Mars is still in progress. The reconstruction of (paleo- environments on Mars have seen a dramatic increase, in particular with regard to the potentially habitable conditions, and it is now possible to recognize a significant role to subaerial hydrothermal processes. For this reason, and because the conditions of the primordial Earth—when these extreme environments had to be common—probably resembled Mars during its most suitable time to host life, research on terrestrial extreme hydrothermal habitats may assist in understanding how to recognize life on Mars. A number of geological and environmental reasons, and logistics opportunities, make the geothermal field of El Tatio, in the Chilean Andes an ideal location to study.

  9. Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism

    DEFF Research Database (Denmark)

    Redder, Peter; Peng, Xu; Brügger, Kim;

    2009-01-01

    Spindle-shaped virus-like particles are abundant in extreme geothermal environments, from which five spindle-shaped viral species have been isolated to date. They infect members of the hyperthermophilic archaeal genus Sulfolobus, and constitute the Fuselloviridae, a family of double-stranded DNA ...... that the spacers of the Sulfolobus CRISPR antiviral system are not biased to the highly similar regions of the fusellovirus genomes....

  10. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment.

    Science.gov (United States)

    Howard, Mia M; Bell, Terrence H; Kao-Kniffin, Jenny

    2017-06-15

    We show that choice of soil microbiome transfer method, i.e. direct soil transfers and a common soil wash procedure, dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region. After 3 weeks of incubation in commercial potting mix, microbiomes were most similar to the source soil when a greater volume of initial soil was transferred (5% v/v transfer), and least similar when using a soil wash. Abundant operational taxonomic units were substantially affected by transfer method, suggesting that compounds transferred from the source soil, shifts in biotic interactions, or both, play an important role in their success. © FEMS 2017.

  11. Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observations including the El Nino of 1997-1998

    Science.gov (United States)

    McKay, Christopher P.; Friedmann, E. Imre; Gomez-Silva, Benito; Caceres-Villanueva, Luis; Andersen, Dale T.; Landheim, Ragnhild

    2003-01-01

    The Atacama along the Pacific Coast of Chile and Peru is one of the driest and possibly oldest deserts in the world. It represents an extreme habitat for life on Earth and is an analog for life in dry conditions on Mars. We report on four years (September 1994-October 1998) of climate and moisture data from the extreme arid region of the Atacama. Our data are focused on understanding moisture sources and their role in creating suitable environments for photosynthetic microorganisms in the desert surface. The average air temperature was 16.5 degrees C and 16.6 degrees C in 1995 and 1996, respectively. The maximum air temperature recorded was 37.9 degrees C, and the minimum was -5.7 degrees C. Annual average sunlight was 336 and 335 W m(-2) in 1995 and 1996, respectively. Winds averaged a few meters per second, with strong fohn winds coming from the west exceeding 12 m s(-1). During our 4 years of observation there was only one significant rain event of 2.3 mm, which occurred near midnight local time. We suggest that this event was a rainout of a heavy fog. It is of interest that the strong El Nino of 1997-1998 brought heavy rainfall to the deserts of Peru, but did not bring significant rain to the central Atacama in Chile. Dew occurred at our station frequently following high nighttime relative humidity, but is not a significant source of moisture in the soil or under stones. Groundwater also does not contribute to surface moisture. Only the one rain event of 2.3 mm resulted in liquid water in the soil and beneath stones for a total of only 65-85 h over 4 years. The paucity of liquid water under stones is consistent with the apparent absence of hypolithic (under-stone) cyanobacteria, the only known primary producers in such extreme deserts.

  12. Everyone's Included: Supporting Young Children with Autism Spectrum Disorders in a Responsive Classroom Learning Environment.

    Science.gov (United States)

    Winterman, Kathleen G.; Sapona, Regina H.

    2002-01-01

    This case study discusses how Jon, a boy with autism, was fully included into general education classrooms in grades K-2 that implemented tenets of the "Responsive Classroom." The guiding principles of a responsive classroom approach, benefits for children with autism, and the need for collaboration among professionals are discussed.…

  13. Utility of sea snakes as bio-indicators for diverse marine environments including coral reefs

    DEFF Research Database (Denmark)

    Redsted Rasmussen, Arne

    2016-01-01

    be a valuable tool to accomplish this goal. Recent research shows that a group of sea snakes (the sea kraits Laticauda spp.) specialised on eels as prey, bears the promise of being useful bio-indicators for surveying the Anguilliform fish (eel like fish) in coral reefs(Brischoux, Bonnet, & Legagneux, 2009...... including coral reefs. Choosing sea snakes as bio-indicators in a broader sense is not possible with the present knowledge on the group today. It is therefore most needed to get more knowledge on sea snake biology to make it possible to use them as marine indicator species to measure e.g. biodiversity...

  14. Textile technology for the vital signs monitoring in telemedicine and extreme environments.

    Science.gov (United States)

    Di Rienzo, Marco; Meriggi, Paolo; Rizzo, Francesco; Castiglioni, Paolo; Lombardi, Carolina; Ferratini, Maurizio; Parati, Gianfranco

    2010-05-01

    This paper illustrates two extensive applications of a smart garment we previously developed for the monitoring of ECG, respiration, and movement. In the first application, the device, named Maglietta Interattiva Computerizzata (MagIC), was used for the home monitoring of cardiac patients. The used platform included MagIC for signals collection, a touchscreen computer with a dedicated software for data handling, and a universal mobile telecommunications system (UMTS) dongle for data transmission, via email, to three cardiologists. Three patients daily-performed 3-min telemonitoring sessions for 30 days by using the platform. The whole system behaved correctly in 85 out of 90 sessions. In five instances, a second session was required due to UMTS traffic congestion. Only in three sessions, cardiologists asked the patient to repeat the acquisition because of poor signal quality. In the second application, MagIC was used to evaluate the effects of high-altitude hypoxia on sleep and 24 h daily life in 30 healthy subjects at 3500 and 5400 m above sea level on Mount Everest slopes. The use of MagIC garment was reported to be simple and requiring short instrumentation time even in the demanding expedition environment. The signal quality was adequate in 111 out of 115 recordings and 90% of the subjects found the vest comfortable.

  15. Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen.

    Science.gov (United States)

    Sicot, F X; Mesnage, M; Masselot, M; Exposito, J Y; Garrone, R; Deutsch, J; Gaill, F

    2000-09-29

    The annelid Alvinella pompejana is probably the most heat-tolerant metazoan organism known. Previous results have shown that the level of thermal stability of its interstitial collagen is significantly greater than that of coastal annelids and of vent organisms, such as the vestimentiferan Riftia pachyptila, living in colder parts of the deep-sea hydrothermal environment. In order to investigate the molecular basis of this thermal behavior, we cloned and sequenced a large cDNA molecule coding the fibrillar collagen of Alvinella, including one half of the helical domain and the entire C-propeptide domain. For comparison, we also cloned the 3' part of the homologous cDNA from Riftia. Comparison of the corresponding helical domains of these two species, together with that of the previously sequenced domain of the coastal lugworm Arenicola marina, showed that the increase in proline content and in the number of stabilizing triplets correlate with the outstanding thermostability of the interstitial collagen of A. pompejana. Phylogenetic analysis showed that triple helical and the C-propeptide parts of the same collagen molecule evolve at different rates, in favor of an adaptive mechanism at the molecular level. Copyright 2000 Academic Press.

  16. Sialyte(TM)-Based Composite Pressure Vessels for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While traveling to Venus, electronics and instruments go through enormous pressure, temperature, and atmospheric environment changes. In the past, this has caused...

  17. Summary of presentation for research on social structure, agreement, and conflict in groups in extreme and isolated environments

    Science.gov (United States)

    1990-01-01

    Despite a vast amount of research, little is known concerning the effect of group structure, and individuals' understanding of that structure, on conflict in Antarctic groups. The overall objective of the research discussed is to determine the interrelationships of group structure, social cognition, and group function and conflict in isolated and extreme environments. In the two decades following WWII, a large body of research focused on the physiological, psychological, and social psychological factors affecting the functioning of individuals and groups in a variety of extreme and isolated environments in both the Arctic and Antarctic. There are two primary reasons for further research of this type. First, Antarctic polar stations are considered to be natural laboratories for the social and behavioral sciences and provide an opportunity to address certain theoretical and empirical questions concerned with agreement and conflict in social groups in general and group behavior in extreme, isolated environments in particular. Recent advances in the analysis of social networks and intracultural variation have improved the methods and have shifted the theoretical questions. The research is motivated by three classes of questions: (1) What are the characteristics of the social relations among individuals working and living together in extreme and isolated environments?; (2) What do individuals understand about their group, how does that understanding develop, and how is it socially distributed?; and (3) What is the relationship between that understanding and the functioning of the social group? Answers to these questions are important if we are to advance our knowledge of how individuals and groups adapt to extreme environments. Second, although Antarctic winter-over candidates may be evaluated as qualified on the basis of individual characteristics, they may fail to adapt because of certain characteristics of the social group. Consequently, the ability of winter

  18. HotSense: a high temperature piezoelectric platform for sensing and monitoring in extreme environments (Conference Presentation)

    Science.gov (United States)

    Stevenson, Tim; Wines, Thomas; Martin, David; Vickers, William; Laws, Michael

    2016-04-01

    Effective monitoring of asset integrity subject to corrosion and erosion while minimizing the exposure of personnel to difficult and hazardous working environments has always been a major problem in many industries. One solution of this problem is permanently installed ultrasonic monitoring equipment which can continuously provide information on the rate of corrosion or cracking, even in the most severe environments and at extreme temperatures to prevent the need for shutdown. Here, a permanently installed 5 MHz ultrasonic monitoring system based on our HotSense® technology is designed and investigated. The system applicability for wall thickness, crack monitoring and weld inspection in high temperature environments is demonstrated through experimental studies on a range of Schedule 40 pipes at temperatures up to 350 °C continuously. The applicability for this technology to be distributed to Aerospace and Nuclear sectors are also explored and preliminary results discussed.

  19. Geochemistry meets Biochemistry: Minimal Metabolic Systems in Extremely Thermophilic Bacteria from Geothermal Environments.

    Science.gov (United States)

    Robb, F. T.; DiRuggiero, J.; Davila, J.; Schwartz, M.

    2002-05-01

    A growing body of research confirms that extreme thermophiles can grow at temperatures of at least 113.5oC, at elevated pressures. Other archaeal isolates can thrive in hostile chemical conditions, for example pH 0.8. We, and others have shown that hyperthermophiles have novel heat shock proteins and other chaperonins that permit them to maintain native protein structures in unfavorable conditions. They are also able to survive using individual gases and gas mixtures We have determined the complete genome sequence of a bacterial isolate from thermal mats on the Kamchatka Peninsula that grows on a salts medium with carbon monoxide as its sole energy and carbon source. It forms hydrogen in proportion with CO consumption. The minimal size of its genome, 2.1 megabase pairs, and its ability to form spores have led us to propose that this autotrophic bacterium can serve as a model for ancestral microbial cells. We have isolated a new class of thermophilic, extremely radiation resistant bacteria from Yellowstone National Park that can withstand space vacuum for extended periods. In collaboration with NASA Goddard, we have exposed filters coated with one of these isolates to space vacuum and to extreme UV during a sounding rocket flight at White Sands. Deinococcus radiodurans, the most desiccation and radiation resistant organism characterized so far, was exposed as a control. The new isolate was slightly more desiccation resistant than D. radiodurans, and significantly more resistant than D. radiodurans to extreme UV at 34 nm. These studies may provide insights into the potential for viable bacterial cells to survive transmission through space, a phenomenon usually referred to as panspermia.

  20. Survival in extreme environments – on the current knowledge of adaptations in tardigrades

    DEFF Research Database (Denmark)

    Møbjerg, Nadja; Halberg, Kenneth Agerlin; Jørgensen, Aslak

    2011-01-01

    of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially...... to below )20 C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation....

  1. Survival in extreme environments - on the current knowledge of adaptations in tardigrades.

    Science.gov (United States)

    Møbjerg, N; Halberg, K A; Jørgensen, A; Persson, D; Bjørn, M; Ramløv, H; Kristensen, R M

    2011-07-01

    Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation.

  2. Women and Couples in Isolated Extreme Environments: Applications for Long-Duration Missions

    Science.gov (United States)

    Leon, G. R.; Sandal, G. M.

    four women from Greenland, Denmark, UK and Russia who traversed the Greenland ice by ski. The participants did not know each other prior to the expedition. Three were classified as "the right stuff' based on PCI findings. Diary and post-expedition reports indicated that incidents of interpersonal tension were often related to fatigue, homesickness, pain or cold. The participants also indicated that respect and tolerance for differences between them, as weIl as mutual emotional support were crucial factors for the successful completion of the expedition. Group 3 consisted of 3 married couples and the 2 1/2 year old child of the leader and his wife. Five of the crew sailed a small boat from Norway to the Canadian High Arctic; the leader's wife and child joined the team in Greenland. Over a 9 month period, the icelocked boat was ilie center of habitation, scientific, and other activities. Three of the group carried out a 6 week exploratory trek at the end of the winter-over. Participants completed the MPQ prior to the expedition, a WRF over the entire Arctic period, and a semi-structured personality interview at the close of the interval during which the entire group was together. AlI participants scored relatively highest on the Absorption scale, manifested in the salutory experience of enjoying and becoming engrossed in the beauty of the environment. WRF and interview findings indicated that team members consistently reported that the emotional support of and ability to confide in their partner were extremely important in alleviating interpersonal tensions with other team members, and contributed to the overall effective functioning of the group. Reported level of emotional response to stress and coping patterns used while in the stationary habitat were consistent with WRF responses during the later exploratory trek. The woman team member on the trek reported more discomfort regarding personal hygiene issues and fear of injury .In alI groups, the salience of the

  3. Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program develops fiber optic transceivers that offer wide bandwidth (1 Mbps to 10 Gbps) and operate in space environments targeted by NASA for robotic...

  4. Perspectives of extreme sample environment in neutron scattering and consequences for instrumentation

    Indian Academy of Sciences (India)

    Michael Steiner

    2008-11-01

    Because neutrons can penetrate bulky pieces of matter, increasingly complex sample environment is requested by the users of neutron beams. This corresponds to the ever-growing complexity of the scientific problems addressed by neutron scatterers. Until now such requirements could be satisfied by sample environment, which could be added to the instruments without major modifications. Now it becomes evident, that for certain applications further progress is possible only by bringing the neutrons to the sample environment instead of bringing the sample environment to the neutrons. As one of the first examples of this concept we will discuss the high field magnet (HFM), which Hahn-Meitner-Institute Berlin (HMI) and the National High Magnetic Field Laboratory Tallahassy (NHFML) are constructing jointly for BENSC at HMI. At BENSC the HMI has built in the meantime a dedicated instrument based on the TOF principle to be equipped with the HFM to enable experiments at fields up to 25 T.

  5. Radiation Hardened High Speed Fiber Optic Transceivers for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of transceiver offering wide bandwidth (1 Mbps to 10 Gbps) that operates in space environments targeted by NASA for robotic exploration....

  6. STRUCTURAL SCALE LIFE PREDICTION OF AERO STRUCTURES EXPERIENCING COMBINED EXTREME ENVIRONMENTS

    Science.gov (United States)

    2017-07-01

    superiority of tomorrow’s USAF. These platforms experience long-duration, combined and intense, thermo-mechanical-acoustic loads over significant...analysts’ past experience , a heavy reliance on testing, and limited choices to tailor material attributes. 15. SUBJECT TERMS lifing, combined environment...6 Figure 3. Correlation Between Mean Life and Deviation of Mean life with the Addition of New Metallic Systems of

  7. Defining Population Health Vulnerability Following an Extreme Weather Event in an Urban Pacific Island Environment: Honiara, Solomon Islands.

    Science.gov (United States)

    Natuzzi, Eileen S; Joshua, Cynthia; Shortus, Matthew; Reubin, Reginald; Dalipanda, Tenneth; Ferran, Karen; Aumua, Audrey; Brodine, Stephanie

    2016-08-03

    Extreme weather events are common and increasing in intensity in the southwestern Pacific region. Health impacts from cyclones and tropical storms cause acute injuries and infectious disease outbreaks. Defining population vulnerability to extreme weather events by examining a recent flood in Honiara, Solomon Islands, can help stakeholders and policymakers adapt development to reduce future threats. The acute and subacute health impacts following the April 2014 floods were defined using data obtained from hospitals and clinics, the Ministry of Health and in-country World Health Organization office in Honiara. Geographical information system (GIS) was used to assess morbidity and mortality, and vulnerability of the health system infrastructure and households in Honiara. The April flash floods were responsible for 21 acute deaths, 33 injuries, and a diarrhea outbreak that affected 8,584 people with 10 pediatric deaths. A GIS vulnerability assessment of the location of the health system infrastructure and households relative to rivers and the coastline identified 75% of the health infrastructure and over 29% of Honiara's population as vulnerable to future hydrological events. Honiara, Solomon Islands, is a rapidly growing, highly vulnerable urban Pacific Island environment. Evaluation of the mortality and morbidity from the April 2014 floods as well as the infectious disease outbreaks that followed allows public health specialists and policy makers to understand the health system and populations vulnerability to future shocks. Understanding the negative impacts natural disaster have on people living in urban Pacific environments will help the government as well as development partners in crafting resilient adaptation development.

  8. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert

    Directory of Open Access Journals (Sweden)

    Jacek eWierzchos

    2015-09-01

    Full Text Available The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits – conceptually called rock’s habitable architecture. Additionally self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another

  9. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert

    Science.gov (United States)

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F.; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits—conceptually called “rock's habitable architecture.” Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of

  10. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert.

    Science.gov (United States)

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.

  11. A new extreme environment for aerobic anoxygenic phototrophs: biological soil crusts.

    Science.gov (United States)

    Csotonyi, Julius T; Swiderski, Jolantha; Stackebrandt, Erko; Yurkov, Vladimir

    2010-01-01

    Biological soil crusts improve the health of arid or semiarid soils by enhancing water content, nutrient relations and mechanical stability, facilitated largely by phototrophic microorganisms. Until recently, only oxygenic phototrophs were known from soil crusts. A recent study has demonstrated the presence of aerobic representatives of Earth's second major photosynthetic clade, the evolutionarily basal anoxygenic phototrophs. Three Canadian soil crust communities yielded pink and orange aerobic anoxygenic phototrophic strains possessing the light-harvesting pigment bacteriochlorophyll a. At relative abundances of 0.1-5.9% of the cultivable bacterial community, they were comparable in density to aerobic phototrophs in other documented habitats. 16S rDNA sequence analysis revealed the isolates to be related to Methylobacterium, Belnapia, Muricoccus and Sphingomonas. This result adds a new type of harsh habitat, dry soil environments, to the environments known to support aerobic anoxygenic phototrophs.

  12. Toward Advanced Human Reliability Programs. Structural Development Considerations and Options for Extreme Risk Environments

    Science.gov (United States)

    1992-05-01

    performance inefficiency psychopathy errors/accidents self-destructive behavior target (non)detection sleeping disturbanco-s reduced productivity suicide...levels sufficiently high to warrant treatment (Rahe, 1988; Steinglass and Gerrity, 1990; GTA 21-3-6, 1986). D. DECISION MAKING IN EXTREMF RISK ENVIRONMENTS...warning mechanism for the individual and the organization that help was or would be needed (with a clear focus on treatment vice separation). 4. It could

  13. Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara.

    Science.gov (United States)

    Quadri, Inès; Hassani, Imene Ikrame; l'Haridon, Stéphane; Chalopin, Morgane; Hacène, Hocine; Jebbar, Mohamed

    2016-01-01

    Halophilic archaea were isolated from different chotts and sebkha, dry salt lakes and salt flat respectively, of the Algerian Sahara and characterized using phenotypic and phylogenetic approaches. From 102 extremely halophilic strains isolated, forty three were selected and studied. These strains were also screened for their antagonistic potential and the production of hydrolytic enzymes. Sequencing of the 16S rRNA genes and phylogenetic analysis allowed the identification of 10 archaeal genera within the class Halobacteria: Natrinema (13 strains), Natrialba (12 strains), Haloarcula (4 strains), Halopiger (4 strains), Haloterrigena (3 strains), Halorubrum (2 strains), Halostagnicola (2 strains), Natronococcus, Halogeometricum and Haloferax (1 strain each). The most common producers of antimicrobial compounds belong to the genus Natrinema while the most hydrolytic isolates, with combined production of several enzymes, belong to the genus Natrialba. The strain affiliated to Halopiger djelfamassilliensis was found to produce some substances of interest (halocins, anti-Candida, enzymes). After partial purification and characterization of one of the strains Natrinema gari QI1, we found similarities between the antimicrobial compound and the halocin C8. Therefore, the gene encoding halocin C8 was amplified and sequenced.

  14. Polar Microalgae: New Approaches towards Understanding Adaptations to an Extreme and Changing Environment.

    Science.gov (United States)

    Lyon, Barbara R; Mock, Thomas

    2014-01-28

    Polar Regions are unique and highly prolific ecosystems characterized by extreme environmental gradients. Photosynthetic autotrophs, the base of the food web, have had to adapt physiological mechanisms to maintain growth, reproduction and metabolic activity despite environmental conditions that would shut-down cellular processes in most organisms. High latitudes are characterized by temperatures below the freezing point, complete darkness in winter and continuous light and high UV in the summer. Additionally, sea-ice, an ecological niche exploited by microbes during the long winter seasons when the ocean and land freezes over, is characterized by large salinity fluctuations, limited gas exchange, and highly oxic conditions. The last decade has been an exciting period of insights into the molecular mechanisms behind adaptation of microalgae to the cryosphere facilitated by the advancement of new scientific tools, particularly "omics" techniques. We review recent insights derived from genomics, transcriptomics, and proteomics studies. Genes, proteins and pathways identified from these highly adaptable polar microbes have far-reaching biotechnological applications. Furthermore, they may provide insights into life outside this planet, as well as glimpses into the past. High latitude regions also have disproportionately large inputs into global biogeochemical cycles and are the region most sensitive to climate change.

  15. Raman spectroscopy of the Dukhan sabkha: identification of geological and biogeological molecules in an extreme environment.

    Science.gov (United States)

    Edwards, Howell G M; Sadooni, Fadhil; Vítek, Petr; Jehlicka, Jan

    2010-07-13

    The characterization of minerals and biogeological deposits in a terrestrial Arabian sabkha has a direct relevance for the exploration of Mars since the discovery by the NASA rovers Spirit and Opportunity of evaporate minerals on Mars that could have arisen from aquifers and subsurface water movement. The recognition of carbonates and sulphates in Gusev Crater has afforded an additional impetus to these studies, as relict or extant microbial extremophilic organisms could have colonized these geological matrices, as has been recorded on Earth. Here, we describe the Raman spectroscopic analysis of specimens of evaporitic materials sampled from the Dukhan sabkha, the largest inland sabkha in the Persian Gulf. With daily temperatures reaching in excess of 60 degrees C and extreme salinity, we have identified the characteristic Raman signatures of key biomolecular compounds in association with evaporitic minerals and geological carbonate and sulphate matrices, which indicate that extremophilic cyanobacterial colonies are existent there. This evidence, the first to be acquired spectroscopically from such a region, establishes a platform for further studies using remote, portable Raman instrumentation that will inform the potential of detection of similar systems on the Martian surface or subsurface in future space missions. A comparison is made between the results from this study and the previous analysis of a gypsum/halite sabkha where the extremophilic molecular signatures were better preserved.

  16. Mechanical Development of a Very Non-Standard Patch Array Antenna for Extreme Environments

    Science.gov (United States)

    Hughes, Richard; Chamberlain, Neil; Jakoboski, Julie; Petkov, Mihail

    2012-01-01

    This paper describes the mechanical development of patch antenna arrays for the Juno mission. The patch arrays are part of a six-frequency microwave radiometer instrument that will be used to measure thermal emissions from Jupiter. The very harsh environmental conditions in Jupiter orbit, as well as a demanding launch environment, resulted in a design that departs radically from conventional printed circuit patch antennas. The paper discusses the development and qualification of the Juno patch array antennas, with emphasis on the materials approach that was devised to mitigate the effects of electron charging in Jupiter orbit.

  17. Remote, Real-time Investigations of Extreme Environments Using High Power and Bandwidth Cabled Observatories: The OOI Regional Scale Nodes

    Science.gov (United States)

    Kelley, D. S.; Delaney, J. R.

    2012-12-01

    Methane hydrate deposits and hydrothermal vents are two of the most extreme environments on Earth. Seismic events and flow of gases from the seafloor support and modulate novel microbial communities within these systems. Although studied intensely for several decades, significant questions remain about the flux of heat, volatiles and microbial material from the subsurface to the hydrosphere in these dynamic environments. Quantification of microbial communities, their structure and abundances, and metabolic activities is in an infant state. To better understand these systems, the National Science Foundation's Ocean Observatory Initiative has installed high power (8 kW), high bandwidth (10 Gb/s) nodes on the seafloor that provide access to active methane seeps at Southern Hydrate Ridge, and at the most magmatically robust volcano on the Juan de Fuca Ridge - Axial Seamount. The real-time interactive capabilities of the cabled observatory are critical to studying gas-hydrate systems because many of the key processes occur over short time scales. Events such as bubble plume formation, the creation of collapse zones, and increased seepage in response to earthquakes require adaptive response and sampling capabilities. To meet these challenges a suite of instruments will be connected to the cable in 2013. These sensors include full resolution sampling by upward-looking sonars, fluid and gas chemical characterization by mass spectrometers and osmo samplers, long-term duration collection of seep imagery from cameras, and in situ manipulation of chemical sensors coupled with flow meters. In concert, this instrument suite will provide quantification of transient and more stable chemical fluxes. Similarly, at Axial Seamount the high bandwidth and high power fiber optic cables will be used to communicate with and power a diverse array of sensors at the summit of the volcano. Real-time high definition video will provide unprecedented views of macrofaunal and microbial communities

  18. Thermal-Acoustic Fatigue of a Multilayer Thermal Protection System in Combined Extreme Environments

    Directory of Open Access Journals (Sweden)

    Liu Liu

    2014-06-01

    Full Text Available In order to ensure integrity of thermal protection system (TPS structure for hypersonic vehicles exposed to severe operating environments, a study is undertaken to investigate the response and thermal-acoustic fatigue damage of a representative multilayer TPS structure under combined thermal and acoustic loads. An unsteady-state flight of a hypersonic vehicle is composed of a series of steady-state snapshots, and for each snapshot an acoustic load is imposed to a static steady-state TPS structure. A multistep thermal-acoustic fatigue damage intensity analysis procedure is given and consists of a heat transfer analysis, a nonlinear thermoelastic analysis, and a random response analysis under a combined loading environment and the fatigue damage intensity has been evaluated with two fatigue analysis techniques. The effects of thermally induced deterministic stress and nondeterministic dynamic stress due to the acoustic loading have been considered in the damage intensity estimation with a maximum stress fatigue model. The results show that the given thermal-acoustic fatigue intensity estimation procedure is a viable approach for life prediction of TPS structures under a typical mission cycle with combined loadings characterized by largely different time-scales. A discussion of the effects of the thermal load, the acoustic load, and fatigue analysis methodology on the fatigue damage intensity has been provided.

  19. Extreme Environment Effects on Cognitive Functions: A Longitudinal Study in High Altitude in Antarctica.

    Science.gov (United States)

    Barkaszi, Irén; Takács, Endre; Czigler, István; Balázs, László

    2016-01-01

    This paper focuses on the impact of long-term Antarctic conditions on cognitive processes. Behavioral responses and event-related potentials were recorded during an auditory distraction task and an attention network paradigm. Participants were members of the over-wintering crew at Concordia Antarctic Research Station. Due to the reduced partial pressure of oxygen this environment caused moderate hypoxia. Beyond the hypoxia, the fluctuation of sunshine duration, isolation and confinement were the main stress factors of this environment. We compared 6 measurement periods completed during the campaign. Behavioral responses and N1/MMN (mismatch negativity), N1, N2, P3, RON (reorientation negativity) event-related potential components have been analyzed. Reaction time decreased in both tasks in response to repeated testing during the course of mission. The alerting effect increased, the inhibition effect decreased and the orienting effect did not change in the ANT task. Contrary to our expectations the N2, P3, RON components related to the attentional functions did not show any significant changes. Changes attributable to early stages of information processing were observed in the ANT task (N1 component) but not in the distraction task (N1/MMN). The reaction time decrements and the N1 amplitude reduction in ANT task could be attributed to sustained effect of practice. We conclude that the Antarctic conditions had no negative impacts on cognitive activity despite the presence of numerous stressors.

  20. Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments

    Science.gov (United States)

    Ramesham, Rajeshuni

    2013-01-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages of high interconnect density, very good thermal and electrical performance, and compatibility with standard surface-mount packaging assembly processes. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short- and long-term space missions. Certain planetary satellites require operations of thermally uncontrolled hardware under extremely cold and hot temperatures with large diurnal temperature change from day to night. The planetary protection requires the hardware to be baked at +125 C for 72 hours to kill microbugs to avoid any biological contamination, especially for sample return missions. Therefore, the present CCGA package reliability research study has encompassed the temperature range of 185 to +125 C to cover various NASA deep space missions. Advanced 1152 and 1272 CCGA packaging interconnects technology test hardware objects have been subjected to ex treme temperature thermal cycles from 185 to +125 C. X-ray inspections of CCGA packages have been made before thermal cycling. No anomalous behavior and process problems were observed in the x-ray images. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of increasing number of thermal cycles. Electrical continuity measurements of daisy chains have shown no anomalies, even until 596 thermal cycles. Optical inspections of hardware have shown a significant fatigue for CCGA 1152 packages over CCGA 1272 packages. No catastrophic failures have been observed yet in the results. Process qualification and assembly are required to optimize the CCGA assembly processes. Optical inspections of CCGA boards have been made after 258 and 596 thermal

  1. Galactic Dark Matter Halos and Globular Cluster Populations. III. Extension to Extreme Environments

    Science.gov (United States)

    Harris, William E.; Blakeslee, John P.; Harris, Gretchen L. H.

    2017-02-01

    The total mass {M}{GCS} in the globular cluster (GC) system of a galaxy is empirically a near-constant fraction of the total mass {M}h\\equiv {M}{bary}+{M}{dark} of the galaxy across a range of 105 in galaxy mass. This trend is radically unlike the strongly nonlinear behavior of total stellar mass M ⋆ versus M h . We discuss extensions of this trend to two more extreme situations: (a) entire clusters of galaxies and (b) the ultra-diffuse galaxies (UDGs) recently discovered in Coma and elsewhere. Our calibration of the ratio {η }M={M}{GCS}/{M}h from normal galaxies, accounting for new revisions in the adopted mass-to-light ratio for GCs, now gives {η }M=2.9× {10}-5 as the mean absolute mass fraction. We find that the same ratio appears valid for galaxy clusters and UDGs. Estimates of {η }M in the four clusters we examine tend to be slightly higher than for individual galaxies, but more data and better constraints on the mean GC mass in such systems are needed to determine if this difference is significant. We use the constancy of {η }M to estimate total masses for several individual cases; for example, the total mass of the Milky Way is calculated to be {M}h=1.1× {10}12 {M}ȯ . Physical explanations for the uniformity of {η }M are still descriptive, but point to a picture in which massive dense star clusters in their formation stages were relatively immune to the feedback that more strongly influenced lower-density regions where most stars form.

  2. Extreme Environment SiC Wireless Sensor Suite for Nuclear Thermal Propulsion Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There are a number of critical telemetry measurements to be monitored under continuous field operation, including temperature data across the reactor chamber and the...

  3. Evaluation of unmanned airborne vehicles and mobile robotic telesurgery in an extreme environment.

    Science.gov (United States)

    Harnett, Brett M; Doarn, Charles R; Rosen, Jacob; Hannaford, Blake; Broderick, Timothy J

    2008-08-01

    As unmanned extraction vehicles become a reality in the military theater, opportunities to augment medical operations with telesurgical robotics become more plausible. This project demonstrated an experimental surgical robot using an unmanned airborne vehicle (UAV) as a network topology. Because battlefield operations are dynamic and geographically challenging, the installation of wireless networks is not a feasible option at this point. However, to utilize telesurgical robotics to assist in the urgent medical care of wounded soldiers, a robust, high bandwidth, low latency network is requisite. For the first time, a mobile surgical robotic system was deployed to an austere environment and surgeons were able to remotely operate the systems wirelessly using a UAV. Two University of Cincinnati surgeons were able to remotely drive the University of Washington's RAVEN robot's end effectors. The network topology demonstrated a highly portable, quickly deployable, bandwidth-sufficient and low latency wireless network required for battlefield use.

  4. 'Extreme mass spectrometry': the role of mass spectrometry in the study of the Antarctic environment.

    Science.gov (United States)

    Magi, Emanuele; Tanwar, Shivani

    2014-11-01

    A focus on the studies of the Antarctic environment that have been performed by mass spectrometry is presented herein; our aim is to give evidence of the essential role of this instrumental technique in the framework of the scientific research in Antarctica, with a comprehensive review on the main literature of the last two decades. Due to the wideness of the topic, the present review is limited to the determination of organic pollutants, natural molecules and biomarkers in Antarctica, thus excluding elemental analysis and studies on inorganic species. The work has been divided into five sections, on the basis of the considered environmental compartment: air; ice and snow; seawater, pack ice and lakes; soil and sediments; and organisms and biomarkers.

  5. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events.

    Science.gov (United States)

    Vincenzi, Simone

    2014-08-06

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an 'extinction window' of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the 'extinction window', although genetic variance had a smaller role than population size in predicting contemporary risk of extinction.

  6. Massive stars dying alone: The extremely remote environment of SN 2009ip

    CERN Document Server

    Smith, Nathan; Mauerhan, Jon C

    2016-01-01

    We present late-time HST images of the site of supernova (SN) 2009ip taken almost 3 yr after its bright 2012 luminosity peak. SN 2009ip is now slightly fainter in broad filters than the progenitor candidate detected by HST in 1999. The current source continues to be dominated by ongoing late-time CSM interaction that produces strong H-alpha emission and a weak pseudo-continuum, as found previously for 1-2 yr after explosion. The intent of these observations was to search for evidence of recent star formation in the local (1kpc; 10 arcsec) environment around SN 2009ip, in the remote outskirts of its host spiral galaxy NGC 7259. We can rule out the presence of any massive star-forming complexes like 30 Dor or the Carina Nebula at the SN site or within a few kpc. If the progenitor of SN 2009ip was really a 50-80 Msun star as archival HST images suggested, then it is strange that there is no sign of this type of massive star formation anywhere in the vicinity. A possible explanation is that the progenitor was the...

  7. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments.

    Science.gov (United States)

    Plath, Martin; Pfenninger, Markus; Lerp, Hannes; Riesch, Rüdiger; Eschenbrenner, Christoph; Slattery, Patrick A; Bierbach, David; Herrmann, Nina; Schulte, Matthias; Arias-Rodriguez, Lenin; Rimber Indy, Jeane; Passow, Courtney; Tobler, Michael

    2013-09-01

    We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RI(s)) was negatively correlated with the strength of natural selection (RI(m)), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  8. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction

    Science.gov (United States)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2014-07-01

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  9. Two-dimensional resonant magnetic soft X-ray scattering set-up for extreme sample environment.

    Science.gov (United States)

    Stanescu, Stefan; Mocuta, Cristian; Merlet, Frederic; Barbier, Antoine

    2013-01-01

    The newly built MagSAXS (magnetic small-angle X-ray scattering) set-up dedicated to the direct two-dimensional measurement of magnetic scattering using polarized synchrotron radiation in extreme sample environments is presented. Pure optical transport of the image is used to record the magnetic scattering with a two-dimensional CCD visible-light camera. The set-up is able to probe magnetic correlation lengths from the micrometer down to the nanometer scale. A detailed layout is presented along with preliminary results obtained at several beamlines at Synchrotron SOLEIL. The presented examples underline the wide range of possible applications spanning from correlation lengths determination to Fourier transform holography.

  10. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction.

    Science.gov (United States)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2014-07-31

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  11. The design of the inelastic neutron scattering mode for the Extreme Environment Diffractometer with the 26 T High Field Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, Maciej, E-mail: maciej.bartkowiak@helmholtz-berlin.de; Stüßer, Norbert; Prokhnenko, Oleksandr

    2015-10-11

    The Extreme Environment Diffractometer is a neutron time-of-flight instrument, designed to work with a constant-field hybrid magnet capable of reaching fields over 26 T, unprecedented in neutron science; however, the presence of the magnet imposes both spatial and technical limitations on the surrounding instrument components. In addition to the existing diffraction and small-angle neutron scattering modes, the instrument will operate also in an inelastic scattering mode, as a direct time-of-flight spectrometer. In this paper we present the Monte Carlo ray-tracing simulations, the results of which illustrate the performance of the instrument in the inelastic-scattering mode. We describe the focussing neutron guide and the chopper system of the existing instrument and the planned design for the instrument upgrade. The neutron flux, neutron spatial distribution, divergence distribution and energy resolution are calculated for standard instrument configurations.

  12. Rain Characteristics and Large-Scale Environments of Precipitation Objects with Extreme Rain Volumes from TRMM Observations

    Science.gov (United States)

    Zhou, Yaping; Lau, William K M.; Liu, Chuntao

    2013-01-01

    This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.

  13. Extreme Environments Facilitate Hybrid Superiority – The Story of a Successful Daphnia galeata × longispina Hybrid Clone

    Science.gov (United States)

    Griebel, Johanna; Gießler, Sabine; Poxleitner, Monika; Navas Faria, Amanda; Yin, Mingbo; Wolinska, Justyna

    2015-01-01

    Hybridization within the animal kingdom has long been underestimated. Hybrids have often been considered less fit than their parental species. In the present study, we observed that the Daphnia community of a small lake was dominated by a single D. galeata × D. longispina hybrid clone, during two consecutive years. Notably, in artificial community set-ups consisting of several clones representing parental species and other hybrids, this hybrid clone took over within about ten generations. Neither the fitness assay conducted under different temperatures, or under crowded and non-crowded environments, nor the carrying capacity test revealed any outstanding life history parameters of this hybrid clone. However, under simulated winter conditions (i.e. low temperature, food and light), the hybrid clone eventually showed a higher survival probability and higher fecundity compared to parental species. Hybrid superiority in cold-adapted traits leading to an advantage of overwintering as parthenogenetic lineages might consequently explain the establishment of successful hybrids in natural communities of the D. longispina complex. In extreme cases, like the one reported here, a superior hybrid genotype might be the only clone alive after cold winters. Overall, superiority traits, such as enhanced overwintering here, might explain hybrid dominance in nature, especially in extreme and rapidly changing environments. Although any favoured gene complex in cyclic parthenogens could be frozen in successful clones independent of hybridization, we did not find similarly successful clones among parental species. We conclude that the emergence of the observed trait is linked to the production of novel recombined hybrid genotypes. PMID:26448651

  14. Using eXtreme Programming in a StudentEnvironment: A Case Study

    OpenAIRE

    2010-01-01

    With the advent of shorter time to market of software products there an increasing requirement for techniques and methods to improve the productivity levels in software development together with a requirement for increased flexibility and the introduction of late changes. This in turn has lead to the introduction of a set of techniques known as ―Agile methods which include one methodology known as ―eXtreme Programming. This is a collection of values, principles, and practices. Since these met...

  15. Nutritional Guidance for Military Field Operations in Temperate and Extreme Environments

    Science.gov (United States)

    1993-06-01

    suffering from AMS include Cream of Wheat or oatmeal,I instant mashed potatoes, instant rice, Ramen noodles , crackers, bread, and vanilla pudding. A...canned fruit, granola bars, crackers Fig Newtons, hot chocolate, juices, hot and cold breakfast cereals, instant mashed potatoes, rice, Cup of Noodles ...or fresh), instant mashed potatoes, rice, couscous, noodles , MRE and T ration cakes (except pound cake), crackers, Fig Newtons, and pouch bread. High

  16. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment.

    Science.gov (United States)

    Edwards, K J; Gihring, T M; Banfield, J F

    1999-08-01

    Microbial populations, their distributions, and their aquatic environments were studied over a year (1997) at an acid mine drainage (AMD) site at Iron Mountain, Calif. Populations were quantified by fluorescence in situ hybridizations with group-specific probes. Probes were used for the domains Eucarya, Bacteria, and Archaea and the two species most widely studied and implicated for their role in AMD production, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans. Results show that microbial populations, in relative proportions and absolute numbers, vary spatially and seasonally and correlate with geochemical and physical conditions (pH, temperature, conductivity, and rainfall). Bacterial populations were in the highest proportion (>95%) in January. Conversely, archaeal populations were in the highest proportion in July and September ( approximately 50%) and were virtually absent in the winter. Bacterial and archaeal populations correlated with conductivity and rainfall. High concentrations of dissolved solids, as reflected by high conductivity values (up to 125 mS/cm), occurred in the summer and correlated with high archaeal populations and proportionally lower bacterial populations. Eukaryotes were not detected in January, when total microbial cell numbers were lowest (numbers of prokaryotes (10(8) to 10(9) cells/ml). T. ferrooxidans was in highest abundance (>30%) at moderate pHs and temperatures ( approximately 2.5 and 20 degrees C) in sites that were peripheral to primary acid-generating sites and lowest (0 to 5%) at low-pH sites (pH approximately 0.5) that were in contact with the ore body. L. ferrooxidans was more widely distributed with respect to geochemical conditions (pH = 0 to 3; 20 to 50 degrees C) but was more abundant at higher temperatures and lower pHs ( approximately 40 degrees C; pH approximately 0.5) than T. ferrooxidans.

  17. Massive stars dying alone: the extremely remote environment of SN 2009ip

    Science.gov (United States)

    Smith, Nathan; Andrews, Jennifer E.; Mauerhan, Jon C.

    2016-12-01

    We present late-time Hubble Space Telescope (HST) images of the site of supernova (SN) 2009ip taken almost 3 yr after its bright 2012 luminosity peak. SN 2009ip is now slightly fainter in broad filters than the progenitor candidate detected by HST in 1999. The current source continues to be dominated by ongoing late-time circumstellar material interaction that produces strong Hα emission and a weak pseudo-continuum, as found previously for 1-2 yr after explosion. The intent of these observations was to search for evidence of recent star formation in the local (˜1 kpc; 10 arcsec) environment around SN 2009ip, in the remote outskirts of its host spiral galaxy NGC 7259. We can rule out the presence of any massive star-forming complexes like 30 Dor or the Carina nebula at the SN site or within a few kpc. If the progenitor of SN 2009ip was really a 50-80 M⊙ star as archival HST images suggested, then it is strange that there is no sign of this type of massive star formation anywhere in the vicinity. A possible explanation is that the progenitor was the product of a merger or binary mass transfer, rejuvenated after a lifetime that was much longer than 4-5 Myr, allowing its natal H II region to have faded. A smaller region like the Orion nebula would be an unresolved but easily detected point source. This is ruled out within ˜1.5 kpc around SN 2009ip, but a small H II region could be hiding in the glare of SN 2009ip itself. Later images after a few more years have passed are needed to confirm that the progenitor candidate is truly gone and to test for the possibility of a small H II region or cluster at the SN position.

  18. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt.

    Science.gov (United States)

    Gadanho, Mário; Libkind, Diego; Sampaio, José Paulo

    2006-10-01

    In the Iberian Pyrite Belt (IPB), acid rock drainage gives rise to aquatic habitats with low pH and high concentrations of heavy metals, a situation that causes important environmental problems. We investigated the occurrence and diversity of yeasts in two localities of the IPB: São Domingos (Portugal) and Rio Tinto (Spain). Yeast isolation was performed on conventional culture media (MYP), acidified (pH 3) media (MYP3), and on media prepared with water from the study sites (MYPw). The main goal of the study was to determine the structure of the yeast community; a combination of molecular methods was used for accurate species identifications. Our results showed that the largest fraction of the yeast community was recovered on MYPw rather than on MYP and MYP3. Twenty-seven yeast species were detected, 48% of which might represent undescribed taxa. Among these, an undescribed species of the genus Cryptococcus required low pH for growth, a property that has not been observed before in yeasts. The communities of S. Domingos and R. Tinto showed a considerable resemblance, and eight yeast species were simultaneously found in both localities. Taking into consideration the physicochemical parameters studied, we propose a hierarchic organization of the yeast community in terms of high-, intermediate-, or low-stress conditions of the environment. According to this ranking, the acidophile yeast Cryptococcus sp. 5 is considered the most tolerant species, followed by Cryptococcus sp. 3 and Lecytophora sp. Species occurring in situations of intermediate environmental stress were Candida fluviatilis, Rhodosporidium toruloides, Williopsis californica, and three unidentified yeasts belonging to Rhodotorula and Cryptococcus.

  19. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes.

    Science.gov (United States)

    Falagán, Carmen; Sánchez-España, Javier; Johnson, David Barrie

    2014-01-01

    The indigenous microbial communities of two extremely acidic, metal-rich stratified pit lakes, located in the Iberian Pyrite Belt (Spain), were identified, and their roles in mediating transformations of carbon, iron, and sulfur were confirmed. A combined cultivation-based and culture-independent approach was used to elucidate microbial communities at different depths and to examine the physiologies of isolates, which included representatives of at least one novel genus and several species of acidophilic Bacteria. Phosphate availability correlated with redox transformations of iron, and this (rather than solar radiation) dictated where primary production was concentrated. Carbon fixed and released as organic compounds by acidophilic phototrophs acted as electron donors for acidophilic heterotrophic prokaryotes, many of which catalyzed the dissimilatory reduction in ferric iron; the ferrous iron generated was re-oxidized by chemolithotrophic acidophiles. Bacteria that catalyze redox transformations of sulfur were also identified, although these Bacteria appeared to be less abundant than the iron oxidizers/reducers. Primary production and microbial numbers were greatest, and biogeochemical transformation of carbon, iron, and sulfur, most intense, within a zone of c. 8-10 m depth, close to the chemocline, in both pit lakes. Archaea detected in sediments included two Thaumarchaeota clones, indicating that members of this recently described phylum can inhabit extremely acidic environments.

  20. Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)

    Science.gov (United States)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  1. Performances in extreme environments: effects of hyper/hypobarism and hypogravity on skeletal muscle

    Directory of Open Access Journals (Sweden)

    Gerardo Bosco

    2010-09-01

    Full Text Available Many environmental factors may affect muscle plasticity but some have exclusive characteristics that allow them to play a key role to maintain the muscle capacity to generate force; these factors are: i the oxygen availability and ii the load applied to muscle fibres. Hyperbarism is a condition that occurs when a man is subjected to pressure increases. To keep the lungs from collapsing, the air is supplied to him under high pressure which exposes the blood in the lungs to high alveolar gas pressures. Under this condition, the PO2 become sufficiently increased, serious disorders may occur, such as modification of oxygen delivery and/or oxygen availability to permit regular muscle contraction. Also altitude hypobaric hypoxia induces modification of muscle capacity to generate work. Prolonged exposure to high altitude leads significant loss in body mass, thigh muscle mass, muscle fiber area and volume density of muscle mitochondria. Spaceflight results in a number of adaptations to skeletal muscle, including atrophy and early muscle fatigue. Muscle atrophy is observed in a wide range of muscles, with the most extensive loss occurring in the legs, because astronauts are no longer needed to support the body's weight. This review will describe the background on these topics suggesting the strategies to correct the specific muscle changes in presence of environmental stresses, such as the alteration in oxygen-derived signaling pathways or the metabolic consequence of microgravity that may indicate rational interventions to maintain muscle mass and function.

  2. Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment.

    Science.gov (United States)

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars.

  3. Detection of trace amino acid biomarkers in ice from extreme environments with the Mars Organic Analyzer

    Science.gov (United States)

    Jayarajah, Christine; Jayarajah, Christine; Botta, Oliver; Aubrey, Andrew; Parker, Eric; Bada, Jeffrey; Mathies, Richard

    A portable microfabricated capillary electrophoresis (CE) system named the Mars Organic Analyzer (MOA) has been developed to analyze fluorescently-labeled biomarkers including amino acids, amines, nucleobases, and amino sugars with the goal of life detection on Mars (1,2). This system consists of a multilayer microfabricated glass wafer containing electrophoresis channels as well as microfluidic valves and pumps for sample manipulation, a confocal laser excitation and fluorescence detection system, and integrated CE power supplies. The MOA has been successfully field tested in the Panoche Valley, CA and in the Atacama Desert, Chile, detecting amino acids at the ppb levels (3). In addition, this technology has been shown to be effective in screening the formation of biogenic amines during fermentation (4). The MOA is a part of the Urey instrument package that has been selected for the 2013 European ExoMars mission by ESA. The identification of recent gully erosion sites, observations of ice on and beneath the surface of Mars, and the discovery of large reservoirs of sub-surface ice on Mars point to water-ice as an important target for astrobiological analyses (5). In addition, the ice moons Europa and Enceladus are of astrobiological interest due to the possibility that they may contain liquid water under their ice crusts. Consequently, we explore here the use of the MOA instrument for the analysis of amino acids in polar ice samples. Soil extracts as well as concentrated icecore samples tend to be highly saline and inhomogeneous. Furthermore, brine pockets in ice form potential refugia for extant extra-terrestrial life, rendering near surface ice a key target for the search for a record of past life on the planet (6). Therefore, we have determined the effect of salinity on sample injection parameters in ice-core samples retrieved from Greenland. The amino acids valine, alanine/serine, glycine, glutamic acid, and aspartic acid were found in the parts

  4. Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals.

    Science.gov (United States)

    Connor, Richard C

    2007-04-29

    Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.

  5. Extreme rainfall events in karst environments: the case study of September 2014 in the Gargano area (southern Italy)

    Science.gov (United States)

    Martinotti, Maria Elena; Pisano, Luca; Trabace, Maria; Marchesini, Ivan; Peruccacci, Silvia; Rossi, Mauro; Amoruso, Giuseppe; Loiacono, Pierluigi; Vennari, Carmela; Vessia, Giovanna; Parise, Mario; Brunetti, Maria Teresa

    2015-04-01

    In the first week of September 2014, the Gargano Promontory (Apulia, SE Italy) was hit by an extreme rainfall event that caused several landslides, floods and sinkholes. As a consequence of the floods, two people lost their lives and severe socio-economic damages were reported. The highest peaks of rainfall were recorded between September 3rd and 6th at the Cagnano Varano and San Marco in Lamis rain gauges with a maximum daily rainfall (over 230 mm) that is about 30% the mean annual rainfall. The Gargano Promontory is characterized by complex orographic conditions, with the highest elevation of about 1000 m a.s.l. The geological setting consists of different types of carbonate deposits affected by intensive development of karst processes. The morphological and climatic settings of the area, associated with frequent extreme rainfall events can cause various types of geohazards (e.g., landslides, floods, sinkholes). A further element enhancing the natural predisposition of the area to the occurrence of landslides, floods and sinkholes is an intense human activity, characterized by an inappropriate land use and management. In order to obtain consistent and reliable data on the effects produced by the storm, a systematic collection of information through field observations, a critical analysis of newspaper articles and web-news, and a co-operation with the Regional Civil Protection and local geologists started immediately after the event. The information collected has been organized in a database including the location, the occurrence time and the type of geohazard documented with photographs. The September 2014 extreme rainfall event in the Gargano Promontory was also analyzed to validate the forecasts issued by the Italian national early-warning system for rainfall-induced landslides (SANF), developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Italian national Department for Civil Protection (DPC). SANF compares rainfall measurements and

  6. Computer game-based upper extremity training in the home environment in stroke persons: a single subject design

    Science.gov (United States)

    2014-01-01

    Background The objective of the present study was to assess whether computer game-based training in the home setting in the late phase after stroke could improve upper extremity motor function. Methods Twelve subjects with prior stroke were recruited; 11 completed the study. Design The study had a single subject design; there was a baseline test (A1), a during intervention test (B) once a week, a post-test (A2) measured directly after the treatment phase, plus a follow-up (C) 16–18 weeks after the treatment phase. Information on motor function (Fugl-Meyer), grip force (GrippitR) and arm function in activity (ARAT, ABILHAND) was gathered at A1, A2 and C. During B, only Fugl-Meyer and ARAT were measured. The intervention comprised five weeks of game-based computer training in the home environment. All games were designed to be controlled by either the affected arm alone or by both arms. Conventional formulae were used to calculate the mean, median and standard deviations. Wilcoxon’s signed rank test was used for tests of dependent samples. Continuous data were analyzed by methods for repeated measures and ordinal data were analyzed by methods for ordered multinomial data using cumulative logistic models. A p-value of game time and changes in the outcomes investigated in this study. Conclusion The results indicate that computer game-based training could be a promising approach to improve upper extremity function in the late phase after stroke, since in this study, changes were achieved in motor function and activity capacity. PMID:24625289

  7. Extremophiles and extreme environments

    National Research Council Canada - National Science Library

    Rampelotto, Pabulo Henrique

    2013-01-01

    Over the last decades, the study of extremophiles has providing ground breaking discoveries that challenge the paradigms of modern biology and make us rethink intriguing questions such as "what is life...

  8. Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes

    Science.gov (United States)

    Shadrin, Nickolai V.; Anufriieva, Elena V.; Amat, Francisco; Eremin, Oleg Yu.

    2015-11-01

    A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities; we need to take it into account to understand plankton dynamics. Hypersaline water bodies in Crimea, the largest peninsula in the Black Sea, constitute a very characteristic and peculiar habitat type in the region. We examined the presence of crustacean resting stages in sediments of dried up sites of the Crimean hypersaline lakes. Sediment samples were taken in 9 different lakes. Experiments performed on the hatching of these resting stages showed the presence of Moina salina (Cladocera), parthenogenetic Artemia and Artemia urmiana (Anostraca), Eucypris mareotica ( inflata) (Ostracoda), and Cletocamptus retrogressus (Harpacticoida). Comparing the experimental results obtained with clean dried brine shrimp cysts and those kept in sediment samples, it was noted that clean cysts hatched much faster than those from sediments did. Some components in bottom sediments slow down and desynchronize hatching from resting eggs in different groups of crustaceans. The sediments of different lakes inhibited the nauplii output from Artemia and ostracod resting eggs to different degrees. More data are needed before we can discuss the reasons of this inhibition. The nonsynchronous output of active stages from the bottom resting ones may be an adaptation that allows crustacean species to exist in extreme and unpredictably changing environments, avoiding the risk that all may emerge at once under unsuitable conditions.

  9. Comparing the Consumption of CPU Hours with Scientific Output for the Extreme Science and Engineering Discovery Environment (XSEDE).

    Science.gov (United States)

    Knepper, Richard; Börner, Katy

    2016-01-01

    This paper presents the results of a study that compares resource usage with publication output using data about the consumption of CPU cycles from the Extreme Science and Engineering Discovery Environment (XSEDE) and resulting scientific publications for 2,691 institutions/teams. Specifically, the datasets comprise a total of 5,374,032,696 central processing unit (CPU) hours run in XSEDE during July 1, 2011 to August 18, 2015 and 2,882 publications that cite the XSEDE resource. Three types of studies were conducted: a geospatial analysis of XSEDE providers and consumers, co-authorship network analysis of XSEDE publications, and bi-modal network analysis of how XSEDE resources are used by different research fields. Resulting visualizations show that a diverse set of consumers make use of XSEDE resources, that users of XSEDE publish together frequently, and that the users of XSEDE with the highest resource usage tend to be "traditional" high-performance computing (HPC) community members from astronomy, atmospheric science, physics, chemistry, and biology.

  10. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project

    Science.gov (United States)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Smith, Myra D.; Rice, Barbara L.; Zwart, Sara R.

    2004-01-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P < 0.05) after the dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  11. Silicified virus-like nanoparticles in an extreme thermal environment: implications for the preservation of viruses in the geological record.

    Science.gov (United States)

    Peng, X; Xu, H; Jones, B; Chen, S; Zhou, H

    2013-11-01

    Biofilms that grow around Gumingquan hot spring (T = 71 °C, pH = 9.2) in the Rehai geothermal area, Tengchong, China, are formed of various cyanobacteria, Firmicutes, Aquificae, Thermodesulfobacteria, Desulfurococcales, and Thermoproteales. Silicified virus-like nanoparticles, 40-200 nm in diameter, are common inside the microbial cells and the extracellular polymeric substances around the cells. These nanoparticles, which are formed of a core encased by a silica cortex, are morphologically akin to known viruses and directly comparable to silicified virus-like particles that were produced in biofilms cultured in the laboratory. The information obtained from examination of the natural and laboratory-produced samples suggests that viruses can be preserved by silicification, especially while they are still encased in their host cells. These results expand our views of virus-host mineral interaction in extreme thermal environments and imply that viruses can be potentially preserved and identified in the geological record.

  12. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment.

    Science.gov (United States)

    Lugo, Mónica A; Reinhart, Kurt O; Menoyo, Eugenia; Crespo, Esteban M; Urcelay, Carlos

    2015-02-01

    Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here, the root endophytes were characterized of 42 plants from an arid region of Argentina. Colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs) was related to plant functional type (PFT), family, and phylogenetic relatedness. Overall, three main findings were observed. Firstly, only moderate levels of endophyte associations were found across all taxa (e.g., most Poaceae were not colonized by endophytes despite numerous accounts of colonization by AMF and DSEs). We determined 69% of plant taxa associated with some form of root endophyte but levels were lower than other regional studies. Secondly, comparisons by PFT and phylogeny were often qualitatively similar (e.g., succulents and Portulacineae consistently lacked AMF; variation occurred among terrestrial vs. epiphytic bromeliads) and often differed from comparisons based on plant family. Thirdly, comparisons by plant family often failed to account for important variation either within families (e.g., Bromeliaceae and Poaceae) or trait conservatism among related families (i.e., Rosidae consistently lacked DSEs and Portulacineae lacked AMF). This study indicates the value of comparing numerous taxa based on PFTs and phylogenetic similarity. Overall, the results suggest an uncertain benefit of endophytes in extremely arid environments where plant traits like succulence may obviate the need to establish associations.

  13. Comparing the Consumption of CPU Hours with Scientific Output for the Extreme Science and Engineering Discovery Environment (XSEDE.

    Directory of Open Access Journals (Sweden)

    Richard Knepper

    Full Text Available This paper presents the results of a study that compares resource usage with publication output using data about the consumption of CPU cycles from the Extreme Science and Engineering Discovery Environment (XSEDE and resulting scientific publications for 2,691 institutions/teams. Specifically, the datasets comprise a total of 5,374,032,696 central processing unit (CPU hours run in XSEDE during July 1, 2011 to August 18, 2015 and 2,882 publications that cite the XSEDE resource. Three types of studies were conducted: a geospatial analysis of XSEDE providers and consumers, co-authorship network analysis of XSEDE publications, and bi-modal network analysis of how XSEDE resources are used by different research fields. Resulting visualizations show that a diverse set of consumers make use of XSEDE resources, that users of XSEDE publish together frequently, and that the users of XSEDE with the highest resource usage tend to be "traditional" high-performance computing (HPC community members from astronomy, atmospheric science, physics, chemistry, and biology.

  14. Reinforced Feedback in Virtual Environment for Rehabilitation of Upper Extremity Dysfunction after Stroke: Preliminary Data from a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Paweł Kiper

    2014-01-01

    Full Text Available Objectives. To study whether the reinforced feedback in virtual environment (RFVE is more effective than traditional rehabilitation (TR for the treatment of upper limb motor function after stroke, regardless of stroke etiology (i.e., ischemic, hemorrhagic. Design. Randomized controlled trial. Participants. Forty-four patients affected by stroke. Intervention. The patients were randomized into two groups: RFVE (N=23 and TR (N=21, and stratified according to stroke etiology. The RFVE treatment consisted of multidirectional exercises providing augmented feedback provided by virtual reality, while in the TR treatment the same exercises were provided without augmented feedbacks. Outcome Measures. Fugl-Meyer upper extremity scale (F-M UE, Functional Independence Measure scale (FIM, and kinematics parameters (speed, time, and peak. Results. The F-M UE (P=0.030, FIM (P=0.021, time (P=0.008, and peak (P=0.018, were significantly higher in the RFVE group after treatment, but not speed (P=0.140. The patients affected by hemorrhagic stroke significantly improved FIM (P=0.031, time (P=0.011, and peak (P=0.020 after treatment, whereas the patients affected by ischemic stroke improved significantly only speed (P=0.005 when treated by RFVE. Conclusion. These results indicated that some poststroke patients may benefit from RFVE program for the recovery of upper limb motor function. This trial is registered with NCT01955291.

  15. Reaction of Basaltic Materials under High-Fidelity Venus Surface Conditions using the Glenn Extreme Environment Rig: First Results

    Science.gov (United States)

    Radoman-Shaw, Brandon; Harvey, Ralph; Costa, Gustavo; Nakley, Leah Michelle; Jacobson, Nathan S.

    2016-01-01

    Both historical and current investigations of Venus suggest that atmosphererock interactions play a critical role in the evolution of its atmosphere and crust. We have begun a series of systematic experiments designed to further our understanding of atmosphere-driven weathering and secondary mineralization of basaltic materials that may be occurring on Venus today. Our experiments expose representative igneous phases (mineral, glasses and rocks) to a high-fidelity simulation of Venus surface conditions using the NASA Glenn Extreme Environment Rig (GEER) located at the NASA Glenn Research Center in Cleveland, Ohio. GEER is a very large (800L) vessel capable of producing a long-term, high fidelity simulation of both the physical conditions (750 K and 92 bar) and atmospheric chemistry (down to the ppb-level) asso-ciated with the Venusian surface. As of this writing we have just finished the first of several planned experiments: a 42-day exposure of selected mineral, rocks and volcanic glasses. Our goal is to identify and prioritize the reactions taking place and better our understanding of their importance in Venus' climate history.

  16. Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx) Annual Report - Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Germann, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McPherson, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Belak, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-25

    All activities of the Exascale Co-design Center for Materials in Extreme Environments (Ex- MatEx) are focused on the two ultimate goals of the project: (1) demonstrating and delivering a prototype scale-bridging materials science application based upon adaptive physics refinement, and (2) identifying the requirements for the exascale ecosystem that are necessary to perform computational materials science simulations (both single- and multi-scale). During the first year of ExMatEx, our focus was on establishing how we do computational materials science, by developing an initial suite of flexible proxy applications. These “proxy apps” are the primary vehicle for the co-design process, involving assessments and tradeoff evaluations both within the ExMatEx team, and with the entire exascale ecosystem. These interactions have formed the basis of our second year activities. The set of artifacts from these co-design interactions are the lessons learned, that are used to re-express the applications and algorithms within the context of emerging architectures, programming models, and runtime systems.

  17. The role of crown architecture for light harvesting and carbon gain in extreme light environments assessed with a structurally realistic 3-D model

    OpenAIRE

    2000-01-01

    Main results from different studies of crown architecture adaptation to extreme light environments are presented. Light capture and carbon gain by plants from low (forest understory) and high (open Mediterranean-type ecosystems) light environments were simulated with a 3-D model (YPLANT), which was developed specifically to analyse the structural features that determine light interception and photosynthesis at the whole plant level. Distantly related taxa with contrasting architectures exhibi...

  18. Bioinformatic Approaches Including Predictive Metagenomic Profiling Reveal Characteristics of Bacterial Response to Petroleum Hydrocarbon Contamination in Diverse Environments.

    Science.gov (United States)

    Mukherjee, Arghya; Chettri, Bobby; Langpoklakpam, James S; Basak, Pijush; Prasad, Aravind; Mukherjee, Ashis K; Bhattacharyya, Maitree; Singh, Arvind K; Chattopadhyay, Dhrubajyoti

    2017-04-24

    Microbial remediation of oil polluted habitats remains one of the foremost methods for restoration of petroleum hydrocarbon contaminated environments. The development of effective bioremediation strategies however, require an extensive understanding of the resident microbiome of these habitats. Recent developments such as high-throughput sequencing has greatly facilitated the advancement of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological characteristics from these large datasets remain a considerable challenge. In this study, we have implemented recently developed bioinformatic tools for analyzing 65 16S rRNA datasets from 12 diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of the resident bacterial communities. Using metagenomes predicted from 16S rRNA gene sequences through PICRUSt, we have comprehensively described phylogenetic and functional compositions of these habitats and additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. Additionally, we show that significantly over-represented taxa often contribute to either or both, hydrocarbon degradation and additional important functions. Our findings reveal significant differences between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes.

  19. Metagenomic Analysis of Hot Springs in Central India Reveals Hydrocarbon Degrading Thermophiles and Pathways Essential for Survival in Extreme Environments

    Science.gov (United States)

    Saxena, Rituja; Dhakan, Darshan B.; Mittal, Parul; Waiker, Prashant; Chowdhury, Anirban; Ghatak, Arundhuti; Sharma, Vineet K.

    2017-01-01

    Extreme ecosystems such as hot springs are of great interest as a source of novel extremophilic species, enzymes, metabolic functions for survival and biotechnological products. India harbors hundreds of hot springs, the majority of which are not yet explored and require comprehensive studies to unravel their unknown and untapped phylogenetic and functional diversity. The aim of this study was to perform a large-scale metagenomic analysis of three major hot springs located in central India namely, Badi Anhoni, Chhoti Anhoni, and Tattapani at two geographically distinct regions (Anhoni and Tattapani), to uncover the resident microbial community and their metabolic traits. Samples were collected from seven distinct sites of the three hot spring locations with temperature ranging from 43.5 to 98°C. The 16S rRNA gene amplicon sequencing of V3 hypervariable region and shotgun metagenome sequencing uncovered a unique taxonomic and metabolic diversity of the resident thermophilic microbial community in these hot springs. Genes associated with hydrocarbon degradation pathways, such as benzoate, xylene, toluene, and benzene were observed to be abundant in the Anhoni hot springs (43.5–55°C), dominated by Pseudomonas stutzeri and Acidovorax sp., suggesting the presence of chemoorganotrophic thermophilic community with the ability to utilize complex hydrocarbons as a source of energy. A high abundance of genes belonging to methane metabolism pathway was observed at Chhoti Anhoni hot spring, where methane is reported to constitute >80% of all the emitted gases, which was marked by the high abundance of Methylococcus capsulatus. The Tattapani hot spring, with a high-temperature range (61.5–98°C), displayed a lower microbial diversity and was primarily dominated by a nitrate-reducing archaeal species Pyrobaculum aerophilum. A higher abundance of cell metabolism pathways essential for the microbial survival in extreme conditions was observed at Tattapani. Taken together

  20. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    Science.gov (United States)

    Street, Kenneth (Inventor); Voronov, Oleg A (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  1. Successful Recovery and Transplantation of 11 Organs Including Face, Bilateral Upper Extremities, and Thoracic and Abdominal Organs From a Single Deceased Organ Donor.

    Science.gov (United States)

    Tullius, Stefan G; Pomahac, Bohdan; Kim, Heung Bae; Carty, Matthew J; Talbot, Simon G; Nelson, Helen M; Delmonico, Francis L

    2016-10-01

    We report on the to date largest recovery of 11 organs from a single deceased donor with the transplantation of face, bilateral upper extremities, heart, 1 lung, liver (split for 2 recipients), kidneys, pancreas, and intestine. Although logistically challenging, this case demonstrates the feasibility and safety of the recovery of multiple thoracic and abdominal organs with multiple vascular composite allotransplants and tissues. Our experience of 8 additional successful multiple vascular composite allotransplants, thoracic, and abdominal organ recoveries suggests that such procedures are readily accomplishable from the same deceased donor.

  2. Archaeal Haloarcula californiae Icosahedral Virus 1 Highlights Conserved Elements in Icosahedral Membrane-Containing DNA Viruses from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Tatiana A. Demina

    2016-07-01

    Full Text Available Despite their high genomic diversity, all known viruses are structurally constrained to a limited number of virion morphotypes. One morphotype of viruses infecting bacteria, archaea, and eukaryotes is the tailless icosahedral morphotype with an internal membrane. Although it is considered an abundant morphotype in extreme environments, only seven such archaeal viruses are known. Here, we introduce Haloarcula californiae icosahedral virus 1 (HCIV-1, a halophilic euryarchaeal virus originating from salt crystals. HCIV-1 also retains its infectivity under low-salinity conditions, showing that it is able to adapt to environmental changes. The release of progeny virions resulting from cell lysis was evidenced by reduced cellular oxygen consumption, leakage of intracellular ATP, and binding of an indicator ion to ruptured cell membranes. The virion contains at least 12 different protein species, lipids selectively acquired from the host cell membrane, and a 31,314-bp-long linear double-stranded DNA (dsDNA. The overall genome organization and sequence show high similarity to the genomes of archaeal viruses in the Sphaerolipoviridae family. Phylogenetic analysis based on the major conserved components needed for virion assembly—the major capsid proteins and the packaging ATPase—placed HCIV-1 along with the alphasphaerolipoviruses in a distinct, well-supported clade. On the basis of its virion morphology and sequence similarities, most notably, those of its core virion components, we propose that HCIV-1 is a member of the PRD1-adenovirus structure-based lineage together with other sphaerolipoviruses. This addition to the lineage reinforces the notion of the ancient evolutionary links observed between the viruses and further highlights the limits of the choices found in nature for formation of a virion.

  3. Adventure and Extreme Sports.

    Science.gov (United States)

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure.

  4. Multidimensional extremal dependence coefficients

    OpenAIRE

    2017-01-01

    Extreme values modeling has attracting the attention of researchers in diverse areas such as the environment, engineering, or finance. Multivariate extreme value distributions are particularly suitable to model the tails of multidimensional phenomena. The analysis of the dependence among multivariate maxima is useful to evaluate risk. Here we present new multivariate extreme value models, as well as, coefficients to assess multivariate extremal dependence.

  5. Research Progress of Adaptation Mechanism and Application of Extreme Microbes Toward Extreme Environment%极端微生物对极端环境的适应机理及应用研究进展

    Institute of Scientific and Technical Information of China (English)

    孟素香; 曹健

    2014-01-01

    Extreme microbes grow in the extreme environments,so they must own special cell structure,physiological mechanism and gene etc.In this paper,the latest studies on the survival mechanism,classification and application of six kinds of extreme microbes were reviewed,which can provide some theoretical basis for utilization and metabolites exploitation of extreme microbes strains resource.%极端微生物在极端环境中生长繁殖,其必然有适应恶劣环境下的特殊细胞结构、生理机制、遗传基因等。对近几年的六大类极端微生物在分类、生存机制和应用方面的最新研究进展进行综述,为极端微生物菌种资源利用及代谢产物开发提供了一些理论依据。

  6. Interagency Command and Control Approaches in Amazon Environment to Include, Trust, Cultural and Personal Relationship into a C2 Model

    Science.gov (United States)

    2013-06-01

    makes the interpersonal trust among the officers play a greater role than a simple institutional relationship. AMAZON BRAZILIAN CULTURE...There is a duality in the concept of warmth . The most actions of the Brazilian people are directed by the heart than by reason, and...exchange in Brazilian Amazon environment is stronglly affected by the interpersonal relationship amongthe people involved in

  7. A Motor Drive Electronics Assembly for Mars Curiosity Rover: An Example of Assembly Qualification for Extreme Environments

    Science.gov (United States)

    Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Tudryn Weber, Carissa

    2013-01-01

    In this paper, the technology development and infusion of the motor drive electronics assembly, along with the technology qualification and space qualification, is described and detailed. The process is an example of the qualification methodology for extreme environmen

  8. Structural and Mechanical Characterization of Nanocrystalline Tungsten and Tungsten-Based Alloy Thin Films for Extreme Environment Applications

    Science.gov (United States)

    Martinez, Gustavo

    Extreme environments associated with nuclear applications often results in degradation of the physical, mechanical and thermo-mechanical properties of the materials. Tungsten (W) exhibits unique physical and mechanical properties, which makes tungsten a good candidate for nuclear applications; however, intrinsic W exhibits low fracture toughness at all temperatures in addition to a high ductile to brittle transition. In the present work, nanocrystalline W, W-Y and W-Mo alloys were nanoengineered for nuclear applications. Nanocrystalline tungsten coatings with a thickness of 1 microm were deposited onto Silicon (100) and Sapphire (C-plane) using RF and DC sputtering techniques under various growth conditions. Yttrium content in W-Y alloys has been varied to enhance the irradiation tolerance under optimum concentration. The W, W-Y coatings were characterized to understand the structure and morphology and to establish a mapping of conditions to obtain phase and size controlled materials. The samples were then subjected to depth-controlled irradiation by neutrons and Au3+ ions. Solid solution strengthening was achieved by doping molybdenum (Mo) solute atoms to W matrix under varied sputtering pressures and temperatures with the intention of creating interstitial point defects in the crystals that impede dislocation motion, increasing the hardness and young modulus of the material. The effect of PAr (3-19 mTorr) was also investigated and associated microstructure are significant on the mechanical characteristics; the hardness (H) and modulus of elasticity (Er) of the nc W-Mo thin films were higher at lower pressures but decreases continuously with increasing PAr. Using nano-indentation and nano-scratch technique, mechanical characterization testing was performed before and after irradiation. The structure, mechanics and irradiation stability of the W and W-Y coatings will be presented and discussed to demonstrate that Y-addition coupled with nano-scale features

  9. FOX: A Fault-Oblivious Extreme-Scale Execution Environment Boston University Final Report Project Number: DE-SC0005365

    Energy Technology Data Exchange (ETDEWEB)

    Appavoo, Jonathan [Boston Univ., MA (United States)

    2013-03-17

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. The FOX project explored systems software and runtime support for a new approach to the data and work distribution for fault oblivious application execution. Our major OS work at Boston University focused on developing a new light-weight operating systems model that provides an appropriate context for both multi-core and multi-node application development. This work is discussed in section 1. Early on in the FOX project BU developed infrastructure for prototyping dynamic HPC environments in which the sets of nodes that an application is run on can be dynamically grown or shrunk. This work was an extension of the Kittyhawk project and is discussed in section 2. Section 3 documents the publications and software repositories that we have produced. To put our work in context of the complete FOX project contribution we include in section 4 an extended version of a paper that documents the complete work of the FOX team.

  10. Web Search Engines and Indexing and Ranking the Content Object Including Metadata Elements Available at the Dynamic Information Environments

    Directory of Open Access Journals (Sweden)

    Faezeh sadat Tabatabai Amiri

    2012-10-01

    Full Text Available The purpose of this research was to make exam the indexing and ranking of XML content objects containing Dublin Core and MARC 21 metadata elements in dynamic online information environments by general search engines and comparing them together in a comparative-analytical approach. 100 XML content objects in two groups were analyzed: those with DCXML elements and those with MARCXML elements were published in website http://www.marcdcmi.ir. from late Mordad 1388 till Khordad 1389. Then the website was introduced to Google and Yahoo search engines. Google search engine was able to retrieve fully all the content objects during the study period through their Dublin Core and MARC 21 metadata elements; Yahoo search engine, however, did not respond at all. The indexing of metadata elements embedded in content objects in dynamic online information environments and different between indexing and ranking of them were examined. Findings showed all Dublin Core and MARC 21 metadata elements by Google search engine were indexed. And there was not observed difference between indexing and ranking DCXML and MARCXML metadata elements in dynamic online information environments by Google search engine.

  11. Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides.

    Science.gov (United States)

    Schreiner, Eduard; Nair, Nisanth N; Wittekindt, Carsten; Marx, Dominik

    2011-06-01

    A comprehensive study of free energy landscapes and mechanisms of COS-mediated polymerization of glycine via N-carboxy anhydrides (NCAs, "Leuchs anhydrides") and peptide hydrolysis at the water-pyrite interface at extreme thermodynamic conditions is presented. Particular emphasis is set on the catalytic effects of the mineral surface including the putative role of the ubiquitous sulfur vacancy defects. It is found that the mere presence of a surface is able to change the free energetics of the elementary reaction steps. This effect can be understood in terms of a reduction of entropic contributions to the reactant state by immobilizing the reactants and/or screening them from bulk water in a purely geometric ("steric") sense. Additionally, the pyrite directly participates chemically in some of the reaction steps, thus changing the reaction mechanism qualitatively compared to the situation in bulk water. First, the adsorption of reactants on the surface can preform a product-like structure due to immobilizing and scaffolding them appropriately. Second, pyrite can act as a proton acceptor, thus replacing water in this role. Third, sulfur vacancies are found to increase the reactivity of the surface. The finding that the presence of pyrite speeds up the rate-determining step in the formation of peptides with respect to the situation in bulk solvent while stabilizing the produced peptide against hydrolysis is of particular interest to the hypothesis of prebiotic peptide formation at hydrothermal aqueous conditions. Apart from these implications, the generality of the studied organic reactions are of immediate relevance to many fields such as (bio)geochemistry, biomineralization, and environmental chemistry.

  12. Extreme Programming: Maestro Style

    Science.gov (United States)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  13. Understanding Adaptive Capacity in Real Estate and the Built Environment: Climate Change and Extreme Weather in New York City

    NARCIS (Netherlands)

    Keenan, J.M.

    2016-01-01

    With climate change well underway, cities worldwide are struggling to develop and apply knowledge that will help advance social, environmental and economic adaptation to extreme weather and changing ecologies. Nowhere is this need more pressing than in the design, development and management of the b

  14. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.

    Science.gov (United States)

    El-Atwani, O; Hinks, J A; Greaves, G; Gonderman, S; Qiu, T; Efe, M; Allain, J P

    2014-05-06

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He(+) ion irradiation at 950 °C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60-100 nm) and ultrafine (100-500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials.

  15. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments

    Science.gov (United States)

    El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.

    2014-05-01

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60-100 nm) and ultrafine (100-500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials.

  16. Development of Multiscale Materials Modeling Techniques and Coarse- Graining Strategies for Predicting Materials Degradation in Extreme Irradiation Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2016-01-12

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors [1-8]. This effect of irradiation on materials microstructure and properties is a classic example of an inherently multiscale phenomenon, as schematically illustrated in Figure 1a. Pertinent processes range from the atomic nucleus to structural component length scales, spanning more than 15 orders of magnitude. Time scales bridge more than 22 orders of magnitude, with the shortest being less than a femtosecond [1,8]. Further, the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation- damaged microstructure, including measurements performed in-situ during irradiation. In this article, we review some recent successes through the use of closely coordinated modeling and experimental studies of the defect cluster evolution in irradiated body-centered cubic materials, followed by a discussion of outstanding challenges still to be addressed, which are necessary for the development of comprehensive models of radiation effects in structural materials.

  17. Including parameterization of the discrete ablation process into a planning and simulation environment for robot-assisted laser osteotomy.

    Science.gov (United States)

    Burgner, Jessica; Kahrs, Lüder Alexander; Raczkowsky, Jörg; Wörn, Heinz

    2009-01-01

    Material processing using laser became a widely used method especially in the scope of industrial automation. The systems are mostly based on a precise model of the laser process and the according parameterization. Beside the industrial use the laser as an instrument to treat human tissue has become an integral part in medicine as well. Human tissue as an inhomogeneous material to process, poses the question of how to determine a model, which reflects the interaction processes with a specific laser.Recently it could be shown that the pulsed CO2 laser is suitable to ablate bony and cartilage tissue. Until now this thermo-mechanical bone ablation is not characterized as a discrete process. In order to plan and simulate the ablation process in the correct level of detail, the parameterization is indispensable. We developed a planning and simulation environment, determined parameters by confocal measurements of bony specimen and use these results to transfer planned cutting trajectories into a pulse sequence and corresponding robot locations.

  18. The genome and transcriptome of Trichormus sp. NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Science.gov (United States)

    Qiao, Qin; Huang, Yanyan; Qi, Ji; Qu, Mingzhi; Jiang, Chen; Lin, Pengcheng; Li, Renhui; Song, Lirong; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M. James C.; Chen, Fan; Zhang, Ticao; Zhong, Yang

    2016-01-01

    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP. PMID:27381465

  19. Environmental risk assessment of three selective serotonin reuptake inhibitors in the aquatic environment: a case study including a cocktail scenario.

    Science.gov (United States)

    Styrishave, Bjarne; Halling-Sørensen, Bent; Ingerslev, Flemming

    2011-01-01

    We present an environmental risk assessment of three selective serotonin reuptake inhibitors (SSRIs; citalopram, sertraline, and fluoxetine) in the aquatic environment based on two case scenarios. Abiotic and biotic degradation experiments and sorption estimates were used to predict environmental concentrations of three SSRIs from the wastewater of two psychiatric hospitals, the primary sector, and wastewater entering and leaving wastewater treatment plants (WWTPs). Assuming a sewage treatment retention time of 8 h, abiotic degradation was low, for all three SSRIs inhibitors, ranging between 0 and 2% for hydrolysis and 0 and 6% for photolysis. The biodegradation was also slow, ranging from 0 to 3% within an 8-h period. In untreated sewage, citalopram (CIT) and sertraline (SER) concentrations may be high enough to exert effects on the aquatic biota (CIT: 0.19-10.3 µg/L; SER: 0.14-17.1 µg/L). Removal of the pharmaceuticals is due primarily to sorption in the WWTP. Sertraline was estimated to have the highest concentrations in the sewage effluents, 4.4 and 19.9 ng/L for the two cases, respectively. In treated wastewater, individual SSRI concentrations are probably too low to exert effects on biota. By using concentration addition, a cocktail exposure scenario was estimated. The predicted concentration in the biota calculated from the cocktail effect was 0.05 and 0.16 nmol/g for the two cases, respectively, and SER was found to give the highest contribution to this cocktail effect. The results indicate that the concentrations in the wastewater effluents are one to two orders of magnitude lower than the concentrations likely to cause an effect in the aquatic biota.

  20. The extreme wave interaction with the constructions of the breakwaters including the damping chamber that was filled up with the stones and concrete units

    Science.gov (United States)

    Maximov, Vasily; Nudner, Igor; Revyakin, Alexei

    2010-05-01

    The eight types of the breakwaters constructions including the damping chamber were experimentally studied. The damping chamber has the infilling with the stones, with the concrete units, or with the combinations of the stones and units. The back wall of the damping chamber was impermeable. The construction varies by the volume and by the type of the infilling. The experiments to specify the pressure at the internal walls of the damping chamber, the reflected wave height, and the wave height at the front wall were performed at the hydro flume. This flume has the following dimensions: 43 m length, 0.7 m width, and 1.2 m height. The periodic waves were produced by the shield-type wavemaker. We vary in this research the periods of the waves over the range 0.8 s to 1.64 s, and the wave height over the range 10 cm to 24 cm. The analysis revealed the most improved structure possessing the good wave-protective features.

  1. The Genome of the Self-Fertilizing Mangrove Rivulus Fish, Kryptolebias marmoratus: A Model for Studying Phenotypic Plasticity and Adaptations to Extreme Environments.

    Science.gov (United States)

    Kelley, Joanna L; Yee, Muh-Ching; Brown, Anthony P; Richardson, Rhea R; Tatarenkov, Andrey; Lee, Clarence C; Harkins, Timothy T; Bustamante, Carlos D; Earley, Ryan L

    2016-08-16

    The mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions. Temperature mediates the development of primary males and also sex change between hermaphrodites and secondary males, which makes the system ideal for the study of sex determination and sexual plasticity. Mangrove rivulus also exhibit remarkable adaptations to living in extreme environments, and the system has great promise to shed light on the evolution of terrestrial locomotion, aerial respiration, and broad tolerances to hypoxia, salinity, temperature, and environmental pollutants. Genome assembly of the mangrove rivulus allows the study of genes and gene families associated with the traits described above. Here we present a de novo assembled reference genome for the mangrove rivulus, with an approximately 900 Mb genome, including 27,328 annotated, predicted, protein-coding genes. Moreover, we are able to place more than 50% of the assembled genome onto a recently published linkage map. The genome provides an important addition to the linkage map and transcriptomic tools recently developed for this species that together provide critical resources for epigenetic, transcriptomic, and proteomic analyses. Moreover, the genome will serve as the foundation for addressing key questions in behavior, physiology, toxicology, and evolutionary biology.

  2. The Genome of the Self-Fertilizing Mangrove Rivulus Fish, Kryptolebias marmoratus: A Model for Studying Phenotypic Plasticity and Adaptations to Extreme Environments

    Science.gov (United States)

    Kelley, Joanna L.; Yee, Muh-Ching; Brown, Anthony P.; Richardson, Rhea R.; Tatarenkov, Andrey; Lee, Clarence C.; Harkins, Timothy T.; Bustamante, Carlos D.; Earley, Ryan L.

    2016-01-01

    The mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions. Temperature mediates the development of primary males and also sex change between hermaphrodites and secondary males, which makes the system ideal for the study of sex determination and sexual plasticity. Mangrove rivulus also exhibit remarkable adaptations to living in extreme environments, and the system has great promise to shed light on the evolution of terrestrial locomotion, aerial respiration, and broad tolerances to hypoxia, salinity, temperature, and environmental pollutants. Genome assembly of the mangrove rivulus allows the study of genes and gene families associated with the traits described above. Here we present a de novo assembled reference genome for the mangrove rivulus, with an approximately 900 Mb genome, including 27,328 annotated, predicted, protein-coding genes. Moreover, we are able to place more than 50% of the assembled genome onto a recently published linkage map. The genome provides an important addition to the linkage map and transcriptomic tools recently developed for this species that together provide critical resources for epigenetic, transcriptomic, and proteomic analyses. Moreover, the genome will serve as the foundation for addressing key questions in behavior, physiology, toxicology, and evolutionary biology. PMID:27324916

  3. Variations of the Stellar Initial Mass Function in the Progenitors of Massive Early-type Galaxies and in Extreme Starburst Environments

    Science.gov (United States)

    Chabrier, Gilles; Hennebelle, Patrick; Charlot, Stéphane

    2014-12-01

    We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism derived by Hennebelle & Chabrier. We focus on conditions encountered in progenitors of massive early-type galaxies and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass for fragmentation in a turbulent medium, the peak of the IMF in such environments is shifted toward smaller masses, leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments, we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit for the power-law exponent α ~= -2.7, in agreement with recent observational determinations. This steepening is a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the fragmentation process, as incorporated in the Hennebelle-Chabrier theory. We provide analytical parameterizations of these IMFs in such environments to be used in galaxy evolution calculations. We also calculate the star-formation rates and the mass-to-light ratios expected under such extreme conditions and show that they agree well with the values inferred in starburst environments and massive high-redshift galaxies. This reinforces the paradigm of star formation as being a universal process, i.e., the direct outcome of gravitationally unstable fluctuations in a density field initially generated by large-scale, shock-dominated turbulence. This globally enables us to infer the variations of the stellar IMF and related properties for atypical galactic conditions.

  4. Variations of the stellar initial mass function in the progenitors of massive early-type galaxies and in extreme starburst environments

    Energy Technology Data Exchange (ETDEWEB)

    Chabrier, Gilles [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Hennebelle, Patrick [Laboratoire AIM, CEA/IRFU, F-91191 Gif-sur-Yvette Cedex (France); Charlot, Stéphane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2014-12-01

    We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism derived by Hennebelle and Chabrier. We focus on conditions encountered in progenitors of massive early-type galaxies and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass for fragmentation in a turbulent medium, the peak of the IMF in such environments is shifted toward smaller masses, leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments, we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit for the power-law exponent α ≅ –2.7, in agreement with recent observational determinations. This steepening is a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the fragmentation process, as incorporated in the Hennebelle-Chabrier theory. We provide analytical parameterizations of these IMFs in such environments to be used in galaxy evolution calculations. We also calculate the star-formation rates and the mass-to-light ratios expected under such extreme conditions and show that they agree well with the values inferred in starburst environments and massive high-redshift galaxies. This reinforces the paradigm of star formation as being a universal process, i.e., the direct outcome of gravitationally unstable fluctuations in a density field initially generated by large-scale, shock-dominated turbulence. This globally enables us to infer the variations of the stellar IMF and related properties for atypical galactic conditions.

  5. How extreme are extremes?

    Science.gov (United States)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  6. In Situ Raman Spectral Characteristics of Carbon Dioxide in a Deep-Sea Simulator of Extreme Environments Reaching 300 ℃ and 30 MPa.

    Science.gov (United States)

    Li, Lianfu; Du, Zengfeng; Zhang, Xin; Xi, Shichuan; Wang, Bing; Luan, Zhendong; Lian, Chao; Yan, Jun

    2017-01-01

    Deep-sea carbon dioxide (CO2) plays a significant role in the global carbon cycle and directly affects the living environment of marine organisms. In situ Raman detection technology is an effective approach to study the behavior of deep-sea CO2. However, the Raman spectral characteristics of CO2 can be affected by the environment, thus restricting the phase identification and quantitative analysis of CO2. In order to study the Raman spectral characteristics of CO2 in extreme environments (up to 300 ℃ and 30 MPa), which cover most regions of hydrothermal vents and cold seeps around the world, a deep-sea extreme environment simulator was developed. The Raman spectra of CO2 in different phases were obtained with Raman insertion probe (RiP) system, which was also used in in situ Raman detection in the deep sea carried by remotely operated vehicle (ROV) "Faxian". The Raman frequency shifts and bandwidths of gaseous, liquid, solid, and supercritical CO2 and the CO2-H2O system were determined with the simulator. In our experiments (0-300 ℃ and 0-30 MPa), the peak positions of the symmetric stretching modes of gaseous CO2, liquid CO2, and supercritical CO2 shift approximately 0.6 cm(-1) (1387.8-1388.4 cm(-1)), 0.7 cm(-1) (1385.5-1386.2 cm(-1)), and 2.5 cm(-1) (1385.7-1388.2 cm(-1)), and those of the bending modes shift about 1.0 cm(-1) (1284.7-1285.7 cm(-1)), 1.9 cm(-1) (1280.1-1282.0 cm(-1)), and 4.4 cm(-1) (1281.0-1285.4 cm(-1)), respectively. The Raman spectral characteristics of the CO2-H2O system were also studied under the same conditions. The peak positions of dissolved CO2 varied approximately 4.5 cm(-1) (1282.5-1287.0 cm(-1)) and 2.4 cm(-1) (1274.4-1276.8 cm(-1)) for each peak. In comparison with our experiment results, the phases of CO2 in extreme conditions (0-3000 m and 0-300 ℃) can be identified with the Raman spectra collected in situ. This qualitative research on CO2 can also support the further quantitative

  7. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  8. Early retirement among Danish female cleaners and shop assistants according to work environment characteristics and upper extremity complaints

    DEFF Research Database (Denmark)

    Jensen, Lone Donbæk; Bonde, Jens Peter Ellekilde; Christensen, Michael Victor

    2016-01-01

    -year cohort study with registry-based follow-up of 1430 female cleaners and 579 shop assistants. In subsequent analyses of female cleaners, disability pension and voluntary early retirement were modeled according to work characteristics and upper extremity complaints. RESULTS: The adjusted hazard rate......BACKGROUND: Studies have shown a negative social gradient in the incidence of early retirement. To prevent undesired early retirement, there is a need for knowledge of specific predictors in addition to social factors with a limited potential for change. The main purpose of this study...... was to examine musculoskeletal complaints and working conditions as predictors of early retirement among Danish female cleaners. METHODS: Using Cox regression with an adjustment for extraneous factors, we compared the risk of disability pension and retirement before the nominal retirement age (65 years) in an 11...

  9. Variability among strains of Aspergillus section Nigri with capacity to degrade tannic acid isolated from extreme environments.

    Science.gov (United States)

    Lara-Victoriano, F; Veana, F; Hernández-Castillo, F D; Aguilar, C N; Reyes-Valdés, M H; Rodríguez-Herrera, R

    2017-01-01

    Tannins are polyphenolic compounds that cause astringent flavor and turbidity in food. Tannase is an enzyme that catalyzes the hydrolysis of tannins and is used in food industry. This study was conducted to determine the genetic variability and the tannase alleles variation in fungal strains isolated from soil and plants at five extreme areas of Coahuila, México. Two screening assays under 1 and 20 % of tannic acid were performed, with the isolations. In these assays, it was possible to identify 756 and 128 fungal strains, respectively. The major fungal variability was observed in "Cuatro Ciénegas" with 26 strains. The microorganisms were distributed in 11 groups, which correspond to Aspergillus section Nigri. AN7 and AN1 groups showed the major number of isolates from "Paila" and "Cuatro Ciénegas" locations, respectively. In the last location, the major diversity and specific richness were found. But in "Ojo Caliente," tannase allele conservations were observed.

  10. Nitrogen cycling in an extreme hyperarid environment inferred from δ(15)N analyses of plants, soils and herbivore diet.

    Science.gov (United States)

    Díaz, Francisca P; Frugone, Matías; Gutiérrez, Rodrigo A; Latorre, Claudio

    2016-03-09

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ(15)N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ(15)N and δ(13)C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ(15)N values span the entire gradient, soil δ(15)N values show a positive correlation with aridity as expected. In contrast, foliar δ(15)N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ(15)N values.

  11. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet

    Science.gov (United States)

    Díaz, Francisca P.; Frugone, Matías; Gutiérrez, Rodrigo A.; Latorre, Claudio

    2016-03-01

    Climate controls on the nitrogen cycle are suggested by the negative correlation between precipitation and δ15N values across different ecosystems. For arid ecosystems this is unclear, as water limitation among other factors can confound this relationship. We measured herbivore feces, foliar and soil δ15N and δ13C values and chemically characterized soils (pH and elemental composition) along an elevational/climatic gradient in the Atacama Desert, northern Chile. Although very positive δ15N values span the entire gradient, soil δ15N values show a positive correlation with aridity as expected. In contrast, foliar δ15N values and herbivore feces show a hump-shaped relationship with elevation, suggesting that plants are using a different N source, possibly of biotic origin. Thus at the extreme limits of plant life, biotic interactions may be just as important as abiotic processes, such as climate in explaining ecosystem δ15N values.

  12. Factors affecting the thermal environment of Agassiz’s Desert Tortoise (Gopherus agassizii) cover sites in the Central Mojave Desert during periods of temperature extremes

    Science.gov (United States)

    Mack, Jeremy S.; Berry, Kristin H.; Miller, David; Carlson, Andrea S.

    2015-01-01

    Agassiz's Desert Tortoises (Gopherus agassizii) spend >95% of their lives underground in cover sites that serve as thermal buffers from temperatures, which can fluctuate >40°C on a daily and seasonal basis. We monitored temperatures at 30 active tortoise cover sites within the Soda Mountains, San Bernardino County, California, from February 2004 to September 2006. Cover sites varied in type and structural characteristics, including opening height and width, soil cover depth over the opening, aspect, tunnel length, and surficial geology. We focused our analyses on periods of extreme temperature: in summer, between July 1 and September 1, and winter, between November 1 and February 15. With the use of multivariate regression tree analyses, we found cover-site temperatures were influenced largely by tunnel length and subsequently opening width and soil cover. Linear regression models further showed that increasing tunnel length increased temperature stability and dampened seasonal temperature extremes. Climate change models predict increased warming for southwestern North America. Cover sites that buffer temperature extremes and fluctuations will become increasingly important for survival of tortoises. In planning future translocation projects and conservation efforts, decision makers should consider habitats with terrain and underlying substrate that sustain cover sites with long tunnels and expanded openings for tortoises living under temperature extremes similar to those described here or as projected in the future.

  13. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    Science.gov (United States)

    Giardi, Maria Teresa; Rea, Giuseppina; Lambreva, Maya D; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (-) state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  14. Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Giardi

    Full Text Available Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA (- state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space.

  15. Hydrological extremes and security

    Science.gov (United States)

    Kundzewicz, Z. W.; Matczak, P.

    2015-04-01

    Economic losses caused by hydrological extremes - floods and droughts - have been on the rise. Hydrological extremes jeopardize human security and impact on societal livelihood and welfare. Security can be generally understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. The traditional interpretation of security, focused on the state military capabilities, has been replaced by a wider understanding, including economic, societal and environmental aspects that get increasing attention. Floods and droughts pose a burden and serious challenges to the state that is responsible for sustaining economic development, and societal and environmental security. The latter can be regarded as the maintenance of ecosystem services, on which a society depends. An important part of it is water security, which can be defined as the availability of an adequate quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. Security concerns arise because, over large areas, hydrological extremes - floods and droughts - are becoming more frequent and more severe. In terms of dealing with water-related risks, climate change can increase uncertainties, which makes the state's task to deliver security more difficult and more expensive. However, changes in population size and development, and level of protection, drive exposure to hydrological hazards.

  16. Differential Virus Host-Ranges of the Fuselloviridae of Hyperthermophilic Archaea: Implications for Evolution in Extreme Environments

    Directory of Open Access Journals (Sweden)

    Ruben Michael eCeballos

    2012-08-01

    Full Text Available An emerging model for investigating virus-host interactions in hyperthermophilic Archaea is the Fusellovirus-Sulfolobus system. The host, Sulfolobus, is a hyperthermophilic acidophile endemic to sulfuric volcanic-driven hot springs worldwide. The Fuselloviruses, also known as Sulfolobus Spindle-shaped Viruses (SSVs, are lemon or spindle shaped double-stranded DNA viruses that are also found worldwide. Although a few studies have addressed the host-range for the type virus, SSV1, using common Sulfolobus strains, a comprehensive host-range study for SSV-Sulfolobus systems has not been performed. Herein, we examine six bona fide SSV strains (SSV1, SSV2, SSV3, SSVL1, SSVK1, SSVRH and their respective infection characteristics on multiple hosts from the family Sulfolobaceae. A halo assay was used to determine virus infectivity and host susceptibility. Different SSV strains have different host-ranges with SSV1 exhibiting the narrowest host-range and SSVRH exhibiting the broadest host range. There is no correlation between geographic separation of viruses and their hosts and their relative infectivity and susceptibility. In contrast to previous reports, SSVs can infect hosts beyond the genus Sulfolobus. Furthermore, the Fusellovirus-Sulfolobus system appears to exhibit host-advantage. This work provides a foundation for understanding Fusellovirus biology and virus-host co-evolution in extreme ecosystems, a rapidly emerging field of study.

  17. High levels of interspecific gene flow in an endemic cichlid fish adaptive radiation from an extreme lake environment.

    Science.gov (United States)

    Ford, Antonia G P; Dasmahapatra, Kanchon K; Rüber, Lukas; Gharbi, Karim; Cezard, Timothee; Day, Julia J

    2015-07-01

    Studying recent adaptive radiations in isolated insular systems avoids complicating causal events and thus may offer clearer insight into mechanisms generating biological diversity. Here, we investigate evolutionary relationships and genomic differentiation within the recent radiation of Alcolapia cichlid fish that exhibit extensive phenotypic diversification, and which are confined to the extreme soda lakes Magadi and Natron in East Africa. We generated an extensive RAD data set of 96 individuals from multiple sampling sites and found evidence for genetic admixture between species within Lake Natron, with the highest levels of admixture between sympatric populations of the most recently diverged species. Despite considerable environmental separation, populations within Lake Natron do not exhibit isolation by distance, indicating panmixia within the lake, although individuals within lineages clustered by population in phylogenomic analysis. Our results indicate exceptionally low genetic differentiation across the radiation despite considerable phenotypic trophic variation, supporting previous findings from smaller data sets; however, with the increased power of densely sampled SNPs, we identify genomic peaks of differentiation (FST outliers) between Alcolapia species. While evidence of ongoing gene flow and interspecies hybridization in certain populations suggests that Alcolapia species are incompletely reproductively isolated, the identification of outlier SNPs under diversifying selection indicates the radiation is undergoing adaptive divergence.

  18. 平面低副四杆机构极位夹角的研究%Research on extreme positional included angle of planar low paired four bar linkage

    Institute of Scientific and Technical Information of China (English)

    张静; 王占英; 王永利; 郝昭

    2009-01-01

    Probation was carried out on the definition of the extreme positional included angle of planar low paired four bar link-ages, and a kind of brand new concept that may solve the practical problem has been put forward. The valuing ranges of extreme posi-tional included angle of planar low paired four bar linkage were ex-tended, which corresponds more with the engineering practice and possesses rather strong practicality, thus provided basis for sche-ming out the machinery with larger quick return level.%对平面低副四杆机构极位夹角的定义进行了探究.提出了一种可以解决实际问题的全新概念,扩展了平面低副四杆机构极位夹角的取值范围,更符合工程实际,具有较强的实用性,为设计出急回程度更大的机械提供了依据.

  19. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  20. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  1. Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment.

    Science.gov (United States)

    González-Toril, Elena; Santofimia, Esther; Blanco, Yolanda; López-Pamo, Enrique; Gómez, Manuel J; Bobadilla, Miguel; Cruz, Rolando; Palomino, Edwin Julio; Aguilera, Ángeles

    2015-11-01

    The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).

  2. Variations of the stellar initial mass function in the progenitors of massive early-type galaxies and in extreme starburst environments

    CERN Document Server

    Chabrier, G; Charlot, P

    2014-01-01

    We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism derived by Hennebelle \\& Chabrier. We focus on conditions encountered in progenitors of massive early type galaxies and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass for fragmentation in a turbulent medium, instead of the standard thermal Jeans mass for purely gravitational fragmentation, the peak of the IMF in such environments is shifted towards smaller masses, leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments, we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit for the power law exponent $\\alpha\\simeq -2.7$, in agreement with recent observational determinations. This steepening is a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the fragmentation proc...

  3. Assessing gene-environment interaction effects of FTO, MC4R and lifestyle factors on obesity using an extreme phenotype sampling design: Results from the HUNT study.

    Science.gov (United States)

    Bjørnland, Thea; Langaas, Mette; Grill, Valdemar; Mostad, Ingrid Løvold

    2017-01-01

    Our aim was to assess the influence of age, gender and lifestyle factors on the effect of the obesity-promoting alleles of FTO and MCR4. The HUNT study comprises health information on the population of Nord-Trøndelag county, Norway. Extreme phenotype participants (gender-wise lower and upper quartiles of waist-hip-ratio and BMI ≥ 35 kg/m2) in the third survey, HUNT3 (2006-08), were genotyped for the single-nucleotide polymorphisms rs9939609 (FTO) and rs17782313 (MC4R); 25686 participants were successfully genotyped. Extreme sampling was chosen to increase power to detect genetic and gene-environment effects on waist-hip-ratio and BMI. Statistical inference was based on linear regression models and a missing-covariate likelihood approach for the extreme phenotype sampling design. Environmental factors were physical activity, diet (artificially sweetened beverages) and smoking. Longitudinal analysis was performed using material from HUNT2 (1995-97). Cross-sectional and longitudinal genetic effects indicated stronger genetic associations with obesity in young than in old, as well as differences between women and men. We observed larger genetic effects among physically inactive compared to active individuals. This interaction was age-dependent and seen mainly in 20-40 year olds. We observed a greater FTO effect among men with a regular intake of artificially sweetened beverages, compared to non-drinkers. Interaction analysis of smoking was mainly inconclusive. In a large all-adult and area-based population survey the effects of obesity-promoting minor-alleles of FTO and MCR4, and interactions with life style factors are age- and gender-related. These findings appear relevant when designing individualized treatment for and prophylaxis against obesity.

  4. Mutation of Photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas Reinhardtii under extreme environment in space

    Science.gov (United States)

    Oxygenic photosynthesis involves capture and conversion of light energy into chemical energy, a process fundamental to life including plant productivity on Earth. Photosynthetic electron transport is catalyzed by two photochemical reaction centres in series, photosystem II (PS II) and photosytem I (...

  5. External perforated window Solar Screens: The effect of screen depth and perforation ratio on energy performance in extreme desert environments

    KAUST Repository

    Sherif, A.

    2012-09-01

    In hot arid desert environments, the solar radiation passing through windows increases the cooling loads and the energy consumption of buildings. Shading of windows can reduce these loads. Unlike the woven solar screens, wooden solar screens have a thickness that provides selective shading properties. Perforated wooden solar screens were traditionally used for windows shading. Developing modern types of these shading systems can lead to significant energy savings. The paper addresses the influence of changing the perforation percentage and depth of these screens on the annual energy loads, hence defining the optimum depth/perforation configurations for various window orientations. Series of experiments were performed using the EnergyPlus simulation software for a typical residential building in the Kharga Oasis, located in the Egyptian desert. A range of perforation percentages and depths were tested. Conclusions prove that external fixed deep perforated solar screens could effectively achieve energy savings up to 30% of the total energy consumption in the West and South orientations. Optimum range of depths and perforation percentages were recommended. These are: 80-90% perforation rate and 1:1 depth/opening width ratio. These lighter and deeper solar screen configurations were found to be more efficient in energy consumption in comparison with the traditional ones. © 2012 Elsevier B.V. All rights reserved.

  6. Enhancement of fermentative hydrogen production in an extreme-thermophilic (70°C) mixed-culture environment by repeated batch cultivation.

    Science.gov (United States)

    Lu, Wenjing; Fan, Gaoyuan; Zhao, Chenxi; Wang, Hongtao; Chi, Zifang

    2012-05-01

    Repeated batch cultivation was applied to enrich hydrogen fermentative microflora under extreme-thermophilic (70°C) environment. Initial inoculums received from a hydrogen producing reactor fed with organic fraction of household solid wastes. In total seven transfers was conducted and maximum hydrogen yield reached 296 ml H(2)/g (2.38 mol/mol) glucose and 252 ml H(2)/g (2.03 mol/mol) for 1 and 2 g/l glucose medium, respectively. It was found that hydrogen production was firstly decreased and got increased gradually from third generation. Acetate was found to be the main metabolic by-product in all batch cultivation. Furthermore, the diversity of bacterial community got decreased after repeated batch cultivation. It was proved that repeated batch cultivation was a good method to enhance the hydrogen production by enriching the mixed cultures of dominant species.

  7. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability.

    Science.gov (United States)

    Uejio, Christopher K; Wilhelmi, Olga V; Golden, Jay S; Mills, David M; Gulino, Sam P; Samenow, Jason P

    2011-03-01

    Extreme heat is an important weather hazard associated with excess mortality and morbidity. We determine the relative importance of heat exposure and the built environment, socioeconomic vulnerability, and neighborhood stability for heat mortality (Philadelphia, PA, USA) or heat distress (Phoenix, AZ, USA), using an ecologic study design. We use spatial Generalized Linear and Mixed Models to account for non-independence (spatial autocorrelation) between neighboring census block groups. Failing to account for spatial autocorrelation can provide misleading statistical results. Phoenix neighborhoods with more heat exposure, Black, Hispanic, linguistically and socially isolated residents, and vacant households made more heat distress calls. Philadelphia heat mortality neighborhoods were more likely to have low housing values and a higher proportion of Black residents. Our methodology can identify important risk factors and geographic areas to target interventions.

  8. Sedimentary and microfaunal evolution in the Quaternary deposits in El Akarit river mouth (Gulf of Gabes, Tunisia): Paleo-environments and extreme events

    Science.gov (United States)

    Ben Rouina, Soumaya; Bassetti, Maria Angela; Touir, Jamel; Trabelsi, Khaled; Berne, Serge

    2016-09-01

    The quantitative study of ostracod and benthic foraminifera assemblages coupled with sedimentary facies, of the AK1 core (6 m-long) retrieved from the El Akarit prodelta (Gulf of Gabes, SE Tunisia) at an elevation of 0 m, enabled us to better understand the dynamics of depositional environments and to identify different stages of the Akarit river mouth evolution. Two major steps were identified: the first (>40,000 yr BP) possibly coincides with the Marine Isotope Stage 5e, onlapping continental Pleistocene deposits. It allowed the settlement of an open lagoon rich in marine microfauna that has become progressively more confined. The second one, late Holocene in age (last 3000 yr BP) is the succession of three extreme events episodes, characterized by very high-energy hydrodynamics and possibly linked to the occurrence of major storms and/or floods.

  9. Solar Weather Ice Monitoring Station (SWIMS). A low cost, extreme/harsh environment, solar powered, autonomous sensor data gathering and transmission system

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2013-12-01

    The Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally respectful materials that when deployed will increase the albedo, enhancing the formation and/preservation of multi-year ice. Small scale deployments using various materials have been done in Canada, California's Sierra Nevada Mountains and a pond in Minnesota to test the albedo performance and environmental characteristics of these materials. SWIMS is a sophisticated autonomous sensor system being developed to measure the albedo, weather, water temperature and other environmental parameters. The system (SWIMS) employs low cost, high accuracy/precision sensors, high resolution cameras, and an extreme environment command and data handling computer system using satellite and terrestrial wireless communication. The entire system is solar powered with redundant battery backup on a floating buoy platform engineered for low temperature (-40C) and high wind conditions. The system also incorporates tilt sensors, sonar based ice thickness sensors and a weather station. To keep the costs low, each SWIMS unit measures incoming and reflected radiation from the four quadrants around the buoy. This allows data from four sets of sensors, cameras, weather station, water temperature probe to be collected and transmitted by a single on-board solar powered computer. This presentation covers the technical, logistical and cost challenges in designing, developing and deploying these stations in remote, extreme environments. Image captured by camera #3 of setting sun on the SWIMS station One of the images captured by SWIMS Camera #4

  10. Eukaryotic diversity at pH extremes

    Directory of Open Access Journals (Sweden)

    Linda A. Amaral-Zettler

    2013-01-01

    Full Text Available Extremely acidic (pH<3 and extremely alkaline (pH>9 environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from 7 diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA gene. A total of 946 Operational Taxonomic Units (OTUs were recovered at a 6% cut-off level (94% similarity across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity Percentage Analysis (SIMPER followed by Indicator OTU Analysis (IOA and Non-metric Multidimensional Scaling (NMDS were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain’s Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments respectively present good models for understanding adaptation and should be targeted for future investigations.

  11. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses

    Directory of Open Access Journals (Sweden)

    Diemer Geoffrey S

    2012-06-01

    Full Text Available Abstract Background Viruses are known to be the most abundant organisms on earth, yet little is known about their collective origin and evolutionary history. With exceptionally high rates of genetic mutation and mosaicism, it is not currently possible to resolve deep evolutionary histories of the known major virus groups. Metagenomics offers a potential means of establishing a more comprehensive view of viral evolution as vast amounts of new sequence data becomes available for comparative analysis. Results Bioinformatic analysis of viral metagenomic sequences derived from a hot, acidic lake revealed a circular, putatively single-stranded DNA virus encoding a major capsid protein similar to those found only in single-stranded RNA viruses. The presence and circular configuration of the complete virus genome was confirmed by inverse PCR amplification from native DNA extracted from lake sediment. The virus genome appears to be the result of a RNA-DNA recombination event between two ostensibly unrelated virus groups. Environmental sequence databases were examined for homologous genes arranged in similar configurations and three similar putative virus genomes from marine environments were identified. This result indicates the existence of a widespread but previously undetected group of viruses. Conclusions This unique viral genome carries implications for theories of virus emergence and evolution, as no mechanism for interviral RNA-DNA recombination has yet been identified, and only scant evidence exists that genetic exchange occurs between such distinct virus lineages. Reviewers This article was reviewed by EK, MK (nominated by PF and AM. For the full reviews, please go to the Reviewers' comments section.

  12. The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria.

    Science.gov (United States)

    Chanal, Angélique; Chapon, Virginie; Benzerara, Karim; Barakat, Mohamed; Christen, Richard; Achouak, Wafa; Barras, Frédéric; Heulin, Thierry

    2006-03-01

    The phylogenetic diversity of prokaryotic communities exposed to arid conditions in the hot desert of Tataouine (south Tunisia) was estimated with a combination of a culture and - molecular-based analysis. Thirty-one isolates, representative of each dominant morphotypes, were affiliated to Actinobacteria, Firmicutes, Proteobacteria and the CFB group while none related to Archaea. Analysis of 16S rRNA gene libraries revealed the presence of species related to Bacteria and Archaea. Sequences related to Archaea were all affiliated to the non-thermophilic Crenarchaeota subgroup. Bacterial sequences were dominated by Proteobacteria, Actinobacteria and Acidobacteria; a few sequences were distributed among eight others phyla, including Thermus/Deinococcus relatives. A correlation between tolerance to desiccation and to radiation has been demonstrated for the radiotolerant bacteria Deinococcus radiodurans. Because bacteria living in the hot desert of Tataouine are one way or another tolerant to desiccation, we investigate whether they could also be tolerant to radiation. Exposition of soil samples to intense gamma radiation yields Bacillus, Thermus/Deinococcus and alpha-Proteobacteria relatives. Four of these strains correspond to radiotolerant species as revealed by evaluation of the resistance levels of the individual cultures. A detailed analysis of the resistance levels for two Thermus/Deinococcus and two alpha-Proteobacteria relatives revealed that they correspond to new radiotolerant species.

  13. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments.

    Science.gov (United States)

    La Farge, Catherine; Williams, Krista H; England, John H

    2013-06-11

    Across the Canadian Arctic Archipelago, widespread ice retreat during the 20th century has sharply accelerated since 2004. In Sverdrup Pass, central Ellesmere Island, rapid glacier retreat is exposing intact plant communities whose radiocarbon dates demonstrate entombment during the Little Ice Age (1550-1850 AD). The exhumed bryophyte assemblages have exceptional structural integrity (i.e., setae, stem structures, leaf hair points) and have remarkable species richness (60 of 144 extant taxa in Sverdrup Pass). Although the populations are often discolored (blackened), some have developed green stem apices or lateral branches suggesting in vivo regrowth. To test their biological viability, Little Ice Age populations emerging from the ice margin were collected for in vitro growth experiments. Our results include a unique successful regeneration of subglacial bryophytes following 400 y of ice entombment. This finding demonstrates the totipotent capacity of bryophytes, the ability of a cell to dedifferentiate into a meristematic state (analogous to stem cells) and develop a new plant. In polar ecosystems, regrowth of bryophyte tissue buried by ice for 400 y significantly expands our understanding of their role in recolonization of polar landscapes (past or present). Regeneration of subglacial bryophytes broadens the concept of Ice Age refugia, traditionally confined to survival of land plants to sites above and beyond glacier margins. Our results emphasize the unrecognized resilience of bryophytes, which are commonly overlooked vis-a-vis their contribution to the establishment, colonization, and maintenance of polar terrestrial ecosystems.

  14. Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron.

    Science.gov (United States)

    Brito, Elcia M S; Piñón-Castillo, Hilda A; Guyoneaud, Rémy; Caretta, César A; Gutiérrez-Corona, J Félix; Duran, Robert; Reyna-López, Georgina E; Nevárez-Moorillón, G Virginia; Fahy, Anne; Goñi-Urriza, Marisol

    2013-01-01

    Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.

  15. Distributional records of Antarctic fungi based on strains preserved in the Culture Collection of Fungi from Extreme Environments (CCFEE Mycological Section associated with the Italian National Antarctic Museum (MNA

    Directory of Open Access Journals (Sweden)

    Laura Selbmann

    2015-07-01

    Full Text Available This dataset includes information regarding fungal strains collected during several Antarctic expeditions: the Italian National Antarctic Research program (PNRA expeditions “X” (1994/1995, “XII” (1996/1997, “XVII” (2001/2002, “XIX” (2003/2004, “XXVI” (2010/2011, the Czech “IPY Expedition” (2007–2009 and a number of strains donated by E. Imre Friedmann (Florida State University in 2001, isolated from samples collected during the U.S.A. Antarctic Expeditions of 1980-1982. Samples, consisting of colonized rocks, mosses, lichens, sediments and soils, were collected in Southern and Northern Victoria Land of the continental Antarctica and in the Antarctic Peninsula. A total of 259 different strains were isolated, belonging to 32 genera and 38 species, out of which 12 represented new taxa. These strains are preserved in the Antarctic section of the Culture Collection of Fungi from Extreme Environments (CCFEE, which represents one of the collections associated with the Italian National Antarctic Museum (MNA, Section of Genoa, Italy, located at the Laboratory of Systematic Botany and Mycology, Department of Ecological and Biological Sciences (DEB, Tuscia University (Viterbo, Italy. The CCFEE hosts a total of 486 Antarctic fungal strains from worldwide extreme environments. Distributional records are reported here for 259 of these strains. The holotypes of the 12 new species included in this dataset are maintained at CCFEE and in other international collections: CBS-KNAW Fungal Biodiversity Centre (Utrecht, Netherlands; DBVPG, Industrial Yeasts Collection (University of Perugia, Italy; DSMZ, German Collection of Microorganisms and Cell Cultures (Brunswick, Germany; IMI, International Mycological Institute (London, U.K..

  16. Eukaryotic diversity at pH extremes.

    Science.gov (United States)

    Amaral-Zettler, Linda A

    2012-01-01

    Extremely acidic (pH 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations.

  17. Transformers For Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Placed on the sunny rim of a permanently-shadowed crater, or at the entrance to a cave, Transformers can be used in conjunction with rover exploration, projecting a...

  18. Neuropsychological Assessment in Extreme Environments

    Science.gov (United States)

    2007-01-01

    time course of a disorder greatly influences the impact and costs associated with that disorder . The time course may also suggest ways to treat the... disorder or understand the mechanism of insult. Banderet, Kane, & Muza (2002) investigated subjective symptoms and cognitive test performance associated...retest data were obtained from this study. Gastaldo et al. (2001) also followed 14 recruits who displayed symptoms associated with delusional

  19. Human Performance in Extreme Environments

    Science.gov (United States)

    Williams, Sunita; Fiedler, Edna R.; Harrison, Albert A.

    2008-01-01

    Even on a bad day, looking down from orbit is a powerful and enjoyable experience, enhanced by the knowledge that time in orbit represents only a tiny fraction of one's life. You look down at Earth and you feel a sense of peace and solidarity. You look at the stars, and because they are not obscured by atmosphere, they are far more abundant than you realized, and they shine very bright. Later on you will reflect on this as one of life's greatest moments. Today astronauts and a few wealthy space tourists have been able to experience staying on the International Space Station. As representatives of humankind in space, astronauts have to get out there and tell people what it's like, and to encourage successive generations of children to consider careers in space. Perhaps the more people who can experience this view, the nicer we will all be to one another. Astronauts must speak authoritatively, without arrogance or a lack of humility. Each astronaut is an emissary who can share his or her experiences and educate people who will not have the opportunity to fly in space. This chapter is a part of that communication process.

  20. Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment.

    Science.gov (United States)

    Aguilera, Angeles; Zettler, Erik; Gómez, Felipe; Amaral-Zettler, Linda; Rodríguez, Nuria; Amils, Ricardo

    2007-11-01

    The eukaryotic community of the Río Tinto (SW, Spain) was surveyed in fall, winter and spring through the combined use of traditional microscopy and molecular approaches, including Denaturing Gradient Gel Electrophoresis (DGGE) and sequence analysis of 18S rRNA gene fragments. Eukaryotic assemblages of surface sediment biofilms collected in January, May and September 2002 were compared from 13 sampling stations along the river. Physicochemical data revealed extremely acidic conditions (the pH ranged from 0.9 to 2.5) with high concentrations of heavy metals, including up to 20 mg l(-1) Fe, 317 mg l(-1) Zn, 47 mg l(-1) As, 42 mg l(-1) Cd and 4 mg l(-1) Ni. In total, 20 taxa were identified, including members of the Bacillariophyta, Chlorophyta and Euglenophyta phyla as well as ciliates, cercomonads, amoebae, stramenopiles, fungi, heliozoans and rotifers. In general, total cell abundances were highest in fall and spring but decreased drastically in winter, and the sampling stations with the most extreme conditions showed the lowest number of cells, as well as the lowest diversity. Species diversity did not vary much during the year. Only the filamentous algae showed a dramatic seasonal change, since they almost disappeared in winter and reached the highest biomass during the summer. Principal Components Analysis (PCA) showed a high inverse correlation between pH and most of the heavy metals analyzed, as well as Dunaliella sp., while Chlamydomonas sp. was directly related to pH during May and September. Three heavy metals (Zn, Cu and Ni) remained separate from the rest and showed an inverse correlation with most of the species analyzed, except for Dunaliella sp.

  1. Extreme Science (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew; Torok, Tamas

    2012-02-27

    On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel.

  2. Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments

    OpenAIRE

    Yuning Chen; Na Liu; Yingze Cao; Xin Lin; Liangxin Xu; Weifeng Zhang; Yen Wei; Lin Feng

    2016-01-01

    A superhydrophilic and underwater superoleophobic surface is fabricated by simply coating silica nanospheres onto a glass fiber membrane through a sol-gel process. Such membrane has a complex framework with micro and nano structures covering and presents a high efficiency (more than 98%) of oil-in-water emulsion separation under harsh environments including strong acidic and concentrated salty conditions. This membrane also possesses outstanding stability since no obvious decline in efficienc...

  3. Extreme Heat

    Science.gov (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...

  4. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  5. The role of crown architecture for light harvesting and carbon gain in extreme light environments assessed with a structurally realistic 3-D model

    Directory of Open Access Journals (Sweden)

    Valladares, Fernando

    2000-06-01

    Full Text Available Main results from different studies of crown architecture adaptation to extreme light environments are presented. Light capture and carbon gain by plants from low (forest understory and high (open Mediterranean-type ecosystems light environments were simulated with a 3-D model (YPLANT, which was developed specifically to analyse the structural features that determine light interception and photosynthesis at the whole plant level. Distantly related taxa with contrasting architectures exhibited similar efficiencies of light interception (functional convergence. Between habitats large differences in architecture existed depending on whether light capture must be maximised or whether excess photon flux density must be avoided. These differences are realised both at the species level and within a species because of plastic adjustments of crown architecture to the external light environment. Realistic, 3-D architectural models are indispensable tools in this kind of comparative studies due to the intrinsic complexity of plant architecture. Their efficient development requires a fluid exchange of ideas between botanists, ecologists and plant modellers.Se presentan los resultados principales de varios estudios sobre las adaptaciones del follaje a ambientes lumínicos extremos. Plantas de ambientes oscuros (sotobosques de bosques templados y tropicales y de ambientes muy luminosos (ecosistemas abiertos de tipo Mediterráneo han sido estudiadas mediante un modelo (YPLANT que permite la reconstrucción tridimensional de la parte aérea de las plantas e identificar los rasgos estructurales que determinan la interceptación de luz y la fotosíntesis y transpiraci6n potencial a nivel de toda la copa. Taxones no relacionados y con arquitecturas muy diferentes mostraron una eficiencia en la interceptaci6n de luz similar (convergencia funcional. La comparación entre hábitat revelo grandes diferencias arquitecturales dependiendo de si la absorción de luz deb

  6. 极端环境下嗜热酸甲烷营养细菌研究进展%Advances in thermoacidophilic methanotrophs from extreme environments

    Institute of Scientific and Technical Information of China (English)

    郑勇; 郑袁明; 张丽梅; 贺纪正

    2009-01-01

    Methane-oxidizing bacteria (methanotrophs) play an important role in the biogeochemical carbon cycle and in controlling global climate change, by converting methane to carbon dioxide or biomass. Although these bacteria have been isolated from a variety of environments, most of which grow best at neutral pH (5-8) and moderate temperature ranges (20-35℃). Based on the phylogenetic analysis, methanotrophs are classified into type I and type II, which belong to the gamma- and alpha-Proteobacteria, respectively. Very recently, three independent studies have isolated methane-oxidizing microorganisms from extreme thermoacidophilic environments with pH values of approximately 1 and temperatures higher than 50℃, these nonproteobacterial strains were all identified as members of the phylum Verrucomicrobia. These new and unusual studies will undoubtedly expand the known phylogenetic and functional diversity of methanotrophs, also indicate that novel methane oxidizing pathways and mechanisms could exist in the methanotrophs. This review illustrates the latest advances in thermoacidophilic methanotrophs, based on the recent three reports on methane oxidation in the extreme environments.%甲烷营养细菌能够将温室气体甲烷(CH4)转化为CO2或生物质,在碳生物地球化学循环及缓解由温室气体导致的全球气候变化方面发挥着重要的作用.甲烷营养细菌生存的条件范围较为广泛,但在中性pH (5~8)和中温(20~35℃)范围内生长最佳.系统进化分析认为,它们均属于γ-或α-变形菌门(Proteobacteria).最近3项独立完成的研究从极端热酸(pH接近1,温度高于50℃)环境中分离获得了具有甲烷氧化(营养)功能的微生物,经鉴定均属于疣微菌门(Verrucomicrobia).这些全新的、不同于以往的研究结果不仅是对现有关于甲烷营养细菌生态学认知的进一步拓展,同时也暗示着可能存在着新型的、由微生物介导的CH4氧化途径与机制. 因此,特

  7. Benthic macrofaunal colonization patterns and preservation of laminated sediments: Observations in an extreme coastal basin environment in the lower Gulf of California

    Science.gov (United States)

    Herguera, J.; Paull, C. K.; Anderson, K.; Gwiazda, R.; Lundsten, E. M.; Kundz, L.; Edwards, B. D.; McGann, M. L.

    2012-12-01

    New observations and cores obtained with the ROV Doc Ricketts operated from the RV/Western Flyer provide a glimpse into a macrofauna barren sea-floor where laminated sediments are known to accumulate on the sea-floor of Alfonso Basin. This basin, located north of La Paz Bay, Baja California, is known to be an important repository of laminated sediments due to a combination of the relatively high input of terrigenous sediments brought in by summer rains, a moderate to high export productivity from its surface waters, and the very low oxygen concentrations at depth bathed by tropical subsurface waters. These laminated sediments are unique repositories of paleoceanographic and paleoclimatic information for its very high resolution records of past conditions comparable to ice core, tree ring, coral and cave records although spanning continuously much further back in time. However, the paleoceanographic community rarely has had the opportunity to visualize the seafloor surface where these sediments are accumulating and examine the biological abundance patterns in these extreme environments. Here we will show results from ROV Doc Ricketts quantitative video transects providing benthic faunal abundance patterns on the seafloor in these highly oxygen depleted bottom waters. These observations are further compared with the underlying stratigraphy. A coring system carried on the ROV allowed us to replicate cores and to collect a transect of 5 closely spaced cores to evaluate the horizontal extent of the observed variability down-core. We will also show some preliminary results from x-radiographs showing the nature of the laminations and its sediment composition based on elemental analysis on organic carbon, carbonate and biogenic opal analysis. New XRF results from a box core will be used to calibrate its terrigenous components with the historical rainfall record and evaluate its potential to reconstruct summer precipitation patterns in this region.

  8. In situ investigation on rapid microstructure evolution in extreme complex environment by developing a new AFBP-TVM sparse tomography algorithm from original CS-XPCMT

    Science.gov (United States)

    Xu, Feng; Dong, Bo; Hu, Xiaofang; Xiao, Yu; Wang, Yang

    2017-09-01

    A new sparse tomography method for observing the rapid internal microstructure evolution of material, called the Algebraic Filtered-Back-Projection and Total Variation Minimization (AFBP-TVM) iteration sparse reconstruction algorithm, was proposed in this paper. The new algorithm was developed by combining the two techniques of the Algebraic Reconstruction Technique (ART) and the Filtered-Back-Projection (FBP) on the basis of analysis in linear space. A series of numerical reconstruction experiments were conducted to validate the new algorithm. The results indicated the new algorithm can obtain satisfactory reconstruction images from 1/6 of the projections that were used in traditional algorithms. So the time spent on projection acquisition process can be reduced to 1/6 of that in traditional tomography method. The quality of images reconstructed by new algorithm was better than other algorithms, which was evaluated by three quantitative parameters. The normalized average absolute distance criterion and the normalized mean square criterion, which were used to evaluate the relative error of the reconstruction results (smaller value means better quality of reconstruction), decreased from 0.3758 to 0.1272 and from 0.1832 to 0.0894 respectively. The standardized covariance criterion, which was used to evaluate the similarity level (greater value means higher accuracy of reconstruction), increased from 92.72% to 99.30%. Finally, the new algorithm was validated under actual experimental conditions. The results indicated that the AFBP-TVM algorithm obtained better reconstruction quality than other algorithms. It meant that the AFBP-TVM algorithm may be a suitable method for in situ investigation on material's rapid internal microstructure evolution in extreme complex environment.

  9. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Merroun, Mohamed L., E-mail: merroun@ugr.es [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Departamento de Microbiologia, Universidad de Granada, Campus Fuentenueva s/n 18071, Granada (Spain); Nedelkova, Marta [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Ojeda, Jesus J. [Cell-Mineral Interface Research Programme, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Experimental Techniques Centre, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Reitz, Thomas [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Fernandez, Margarita Lopez; Arias, Jose M. [Departamento de Microbiologia, Universidad de Granada, Campus Fuentenueva s/n 18071, Granada (Spain); Romero-Gonzalez, Maria [Cell-Mineral Interface Research Programme, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Selenska-Pobell, Sonja [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Precipitation of uranium as U phosphates by natural bacterial isolates. Black-Right-Pointing-Pointer The uranium biomineralization involves the activity of acidic phosphatase. Black-Right-Pointing-Pointer Uranium bioremediation could be achieved via the biomineralization of U(VI) in phosphate minerals. - Abstract: This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase.

  10. Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments.

    Science.gov (United States)

    Chen, Yuning; Liu, Na; Cao, Yingze; Lin, Xin; Xu, Liangxin; Zhang, Weifeng; Wei, Yen; Feng, Lin

    2016-09-06

    A superhydrophilic and underwater superoleophobic surface is fabricated by simply coating silica nanospheres onto a glass fiber membrane through a sol-gel process. Such membrane has a complex framework with micro and nano structures covering and presents a high efficiency (more than 98%) of oil-in-water emulsion separation under harsh environments including strong acidic and concentrated salty conditions. This membrane also possesses outstanding stability since no obvious decline in efficiency is observed after different kinds of oil-in-water emulsions separation, which provides it candidate for comprehensive applicability.

  11. Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments

    Science.gov (United States)

    Chen, Yuning; Liu, Na; Cao, Yingze; Lin, Xin; Xu, Liangxin; Zhang, Weifeng; Wei, Yen; Feng, Lin

    2016-09-01

    A superhydrophilic and underwater superoleophobic surface is fabricated by simply coating silica nanospheres onto a glass fiber membrane through a sol-gel process. Such membrane has a complex framework with micro and nano structures covering and presents a high efficiency (more than 98%) of oil-in-water emulsion separation under harsh environments including strong acidic and concentrated salty conditions. This membrane also possesses outstanding stability since no obvious decline in efficiency is observed after different kinds of oil-in-water emulsions separation, which provides it candidate for comprehensive applicability.

  12. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  13. Using mobile, internet connected deep sea crawlers for spatial and temporal analysis of cold seep ecosystems and the collection of real-time classroom data for extreme environment education.

    Science.gov (United States)

    Purser, Autun; Kwasnitschka, Tom; Duda, Alexander; Schwendner, Jakob; Bamberg, Marlene; Sohl, Frank; Doya, Carol; Aguzzi, Jacopo; Best, Mairi; Llovet, Neus Campanya I.; Scherwath, Martin; Thomsen, Laurenz

    2015-04-01

    Cabled internet and power connectivity with the deep sea allow instruments to operate in the deep sea at higher temporal resolutions than was possible historically, with the reliance on battery life and data storage capacities. In addition to the increase in sensor temporal frequency, cabled infrastructures now allow remote access to and control of mobile platforms on the seafloor. Jacobs University Bremen, in combination with collaborators from the Robotic Exploration of Extreme Environments (ROBEX) project, CSIC Barcelona and Ocean Networks Canada have been operating tracked deep sea crawler vehicles at ~890 m depth at the dynamic Barkley Canyon methane seep site, Pacific Canada during the last ~4 years. The vehicle has been able to explore an area of ~50 m radius, allowing repeated visits to numerous microhabitats. Mounting a range of sensors, including temperature, pressure, conductivity, fluorescence, turbidity, flow and methane concentration sensors, as well as various camera systems a large dataset has been compiled. Several methane pockmarks are present in the survey area, and geological, biological and oceanographic changes have been monitored over a range of timescales. Several publications have been produced, and in this presentation we introduce further data currently under analysis. Cabled internet connectivity further allows mobile platforms to be used directly in education. As part of the ROBEX project, researchers and students from both terrestrial and planetary sciences are using the crawler in an ongoing study project. Students are introduced to statistical methods from both fields during the course and in later stages they can plan their own research using the in-situ crawler, and follow the progress of their investigations live, then analyse the collected data using the techniques introduced during the course. Cabled infrastructures offer a unique facility for spatial investigation of extreme ecosystems over time, and for the 'hands on

  14. Rising Precipitation Extremes across Nepal

    Directory of Open Access Journals (Sweden)

    Ramchandra Karki

    2017-01-01

    Full Text Available As a mountainous country, Nepal is most susceptible to precipitation extremes and related hazards, including severe floods, landslides and droughts that cause huge losses of life and property, impact the Himalayan environment, and hinder the socioeconomic development of the country. Given that the countrywide assessment of such extremes is still lacking, we present a comprehensive picture of prevailing precipitation extremes observed across Nepal. First, we present the spatial distribution of daily extreme precipitation indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI from 210 stations over the period of 1981–2010. Then, we analyze the temporal changes in the computed extremes from 76 stations, featuring long-term continuous records for the period of 1970–2012, by applying a non-parametric Mann−Kendall test to identify the existence of a trend and Sen’s slope method to calculate the true magnitude of this trend. Further, the local trends in precipitation extremes have been tested for their field significance over the distinct physio-geographical regions of Nepal, such as the lowlands, middle mountains and hills and high mountains in the west (WL, WM and WH, respectively, and likewise, in central (CL, CM and CH and eastern (EL, EM and EH Nepal. Our results suggest that the spatial patterns of high-intensity precipitation extremes are quite different to that of annual or monsoonal precipitation. Lowlands (Terai and Siwaliks that feature relatively low precipitation and less wet days (rainy days are exposed to high-intensity precipitation extremes. Our trend analysis suggests that the pre-monsoonal precipitation is significantly increasing over the lowlands and CH, while monsoonal precipitation is increasing in WM and CH and decreasing in CM, CL and EL. On the other hand, post-monsoonal precipitation is significantly decreasing across all of Nepal while winter precipitation is decreasing

  15. 极端环境条件下TLP平台的应力校核%Stress verification of a TLP under extreme wave environment

    Institute of Scientific and Technical Information of China (English)

    闫发锁; 张大刚; 孙丽萍; 戴仰山

    2009-01-01

    计算校核了某TLP平台垂向肘板在极端环境条件下的应力响应.该垂向肘板为TLP立柱与张力支撑系统(TSS)间的连接件,是TLP平台强度评估的关键部位.根据通用的业界标准,平台的环境载荷计算采用三维线性理论,结构分析使用有限元方法.应力数值计算与处理与实测应变片的位置和方向完全一致.平台在位监测的数据使用FFT技术进行了处理,得到了不同时段统计下各浪向的应力谱密度(RAO).数值计算与平台在位实测对比表明,数值模拟的应力谱密度与实测数据吻合较好,业界的分析方法可以在极端条件下对TLP的关键部位进行有效的强度分析.%Stress response of a tension leg platform (TLP) in extreme environments was investigated in this paper. A location on one of the gussets was selected as the object point, where directional stresses were numerically simulated and also experimentally verified by a strain gage. Environmental loading and the platform.s structural strength were analyzed in accordance with industrial standards, utilizing linear wave theory and the finite element method (FEM). The fast Fourier transform technique was used to calculate the stress response amplitude operators (RAO) from the records of measurements. A comparison was performed between the stress RAO of the numerical simulation and that of the actual measurements. The results indicated that the stress RAO of the numerical simulation fitted well with measured data at specified wave headings with different periods.

  16. Optical and photochemical characterization of chromophoric dissolved organic matter from lakes in Terra Nova Bay, Antarctica. Evidence of considerable photoreactivity in an extreme environment.

    Science.gov (United States)

    De Laurentiis, Elisa; Buoso, Sandro; Maurino, Valter; Minero, Claudio; Vione, Davide

    2013-12-17

    Water samples from shallow lakes located in Terra Nova Bay, Antarctica, were taken in the austral summer season and characterized for chemical composition, optical features, fluorescence excitation-emission matrix (EEM) and photoactivity toward the generation of (•)OH, (1)O2, and (3)CDOM* (triplet states of chromophoric dissolved organic matter). The optical properties suggested that CDOM would be largely of aquagenic origin and possibly characterized by limited photochemical processing before sampling. Moreover, the studied samples were highly photoactive and the quantum yields for the generation of (3)CDOM* and partially of (1)O2 and (•)OH were considerably higher compared to water samples from temperate environments. This finding suggests that water in the studied lakes would have considerable ability to photosensitize the degradation of dissolved compounds during the austral summer, possibly including organic pollutants, also considering that the irradiance conditions of the experiments were not far from those observed on the Antarctic coast during the austral summer.

  17. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  18. Statistics of extremes

    CERN Document Server

    Gumbel, E J

    2012-01-01

    This classic text covers order statistics and their exceedances; exact distribution of extremes; the 1st asymptotic distribution; uses of the 1st, 2nd, and 3rd asymptotes; more. 1958 edition. Includes 44 tables and 97 graphs.

  19. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment

    Directory of Open Access Journals (Sweden)

    Gautam P. Sadarangani

    2017-07-01

    Full Text Available There is increasing research interest in technologies that can detect grasping, to encourage functional use of the hand as part of daily living, and thus promote upper-extremity motor recovery in individuals with stroke. Force myography (FMG has been shown to be effective for providing biofeedback to improve fine motor function in structured rehabilitation settings, involving isolated repetitions of a single grasp type, elicited at a predictable time, without upper-extremity movements. The use of FMG, with machine learning techniques, to detect and distinguish between grasping and no grasping, continues to be an active area of research, in healthy individuals. The feasibility of classifying FMG for grasp detection in populations with upper-extremity impairments, in the presence of upper-extremity movements, as would be expected in daily living, has yet to be established. We explore the feasibility of FMG for this application by establishing and comparing (1 FMG-based grasp detection accuracy and (2 the amount of training data necessary for accurate grasp classification, in individuals with stroke and healthy individuals. FMG data were collected using a flexible forearm band, embedded with six force-sensitive resistors (FSRs. Eight participants with stroke, with mild to moderate upper-extremity impairments, and eight healthy participants performed 20 repetitions of three tasks that involved reaching, grasping, and moving an object in different planes of movement. A validation sensor was placed on the object to label data as corresponding to a grasp or no grasp. Grasp detection performance was evaluated using linear and non-linear classifiers. The effect of training set size on classification accuracy was also determined. FMG-based grasp detection demonstrated high accuracy of 92.2% (σ = 3.5% for participants with stroke and 96.0% (σ = 1.6% for healthy volunteers using a support vector machine (SVM. The use of a training set that was 50

  20. Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment

    Science.gov (United States)

    Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A.

    2014-10-01

    In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE) concentrations have been measured in lichens and mosses collected in three French forest sites located in three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition (BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p lichens and mosses at each study sites, indicating a regional integration of atmospheric deposition by both biomonitors. Both TM signature and REE composition of mosses revealed that this biomonitor is highly influenced by throughfall composition, and reflect atmospheric deposition interaction with the forest canopy. This explained the higher enrichment measured in mosses for elements which concentration in deposition were influenced by the canopy, either due to leaching (Mn), direct uptake (Ni), or dry deposition dissolution (Pb, Cu, Cs).

  1. [Experimental Approach to Analysis of the Relationship between Food Environments and Lifestyle-Related Diseases, Including Cardiac Hypertrophy, Fatty Liver, and Fatigue Symptoms].

    Science.gov (United States)

    Horiuchi, Masahisa; Nakakuma, Miwa; Arimura, Emi; Ushikai, Miharu; Yoshida, Goichiro

    2015-01-01

    The food habit is involved in the onset and development of lifestyle-related diseases. In this review I would like to describe a historical case of vitamin B1 deficiency, as well as our case study of fatty acid metabolism abnormality due to carnitine deficiency. In history, the army and navy personnel in Japan at the end of the 19th century received food rations based on a high-carbohydrate diet including white rice, resulting in the onset of beriberi. An epidemiological study by Kenkan Takaki revealed the relationship between the onset of beriberi and rice intake. Then, Takaki was successful in preventing the onset of beriberi by changing the diet. However, the primary cause had yet to be elucidated. Finally, Christian Eijkman established an animal model of beriberi (chickens) showing peripheral neuropathy, and he identified the existence of an anti-beriberi substance, vitamin B1. This is an example of the successful control of a disease by integrating the results of epidemiological and experimental studies. In our study using a murine model of fatty acid metabolism abnormality caused by carnitine deficiency, cardiac abnormality and fatty liver developed depending on the amount of dietary fat. In addition, the mice showed disturbance of orexin neuron activity related to the sleep-arousal system, which is involved in fatigue symptoms under fasting condition, one of the states showing enhanced fatty acid metabolism. These findings suggest that fatty acid toxicity is enhanced when the mice are more dependent on fatty acid metabolism. Almost simultaneously, a human epidemiological study showed that narcolepsy, which is caused by orexin system abnormality, is associated with the polymorphism of the gene coding for carnitine palmitoyltransferase 1B, which is involved in carnitine metabolism. To understand the pathological mechanism of fatty acid toxicity, not only an experimental approach using animal models, but also an epidemiological approach is necessary. The

  2. Geochemical signatures of benthic foraminifera shells from a heat-polluted shallow marine environment provide field evidence for growth and calcification under extreme warmth

    Science.gov (United States)

    Titelboim, Danna; Sadekov, Aleksey; Almogi-Labin, Ahuva; Herut, Barak; Kucera, Michal; Schmidt, Christiane; Hyams-Kaphzan, Orit; Abramovich, Sigal

    2017-04-01

    Shallow marine calcifiers play an important role as marine ecosystem engineers and in the global carbon cycle. Understanding their response to warming is essential to evaluate the fate of marine ecosystems under global change scenarios. So far, most data on thermal tolerance of marine calcifiers have been obtained by manipulative laboratory experiments. Such experiments provide valuable physiological data, but it remains unclear to what degree these observations apply to natural ecosystems. A rare opportunity to test the effect of warming acting on ecosystem-relevant scales is by investigation of heat-polluted coastal areas. Here we study growth and calcification in benthic foraminifera that inhabit a thermally polluted coastal area in Israel, where they are exposed to temperature elevated by 6˚ C above the natural seasonal temperature range and reaching up to ˜42˚ C in summer. Several species of benthic foraminifera have been previously shown to persist throughout the year in the heat-polluted area, allowing us to examine in natural conditions the thermal limits of growth and calcification under extreme temperatures as they are expected to prevail in the future. Live specimens of two known heat tolerant species Lachlanella sp. 1 and Pararotalia calcariformata were collected over a period of one year from two stations, representing thermally polluted and undisturbed (control) shallow hard bottom habitats. Single-chamber element ratios of these specimens were obtained using laser ablation and the Mg/Ca of the last chambers (grown closest to the time of collection) were used to calculate calcification temperatures. Our results provide the first direct field evidence that these foraminifera species not only persist extreme warm temperatures but continue to grow and calcify. Species-specific Mg/Ca thermometry indicates that P. calcariformata precipitate their shells at temperatures as high as 40˚ C and Lachlanella sp. 1 at least up to 36˚ C. Instead, both species

  3. Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon

    Science.gov (United States)

    Cuney, Michel; Mathieu, Régis

    2000-08-01

    The anomalously high Th/La ratio (˜1.14) of the Early Proterozoic silicified sandstones of the Franceville basin (Gabon), compared to Archean and Proterozoic metasedimentary rocks (Th/La ˜0.27), results from extreme light rare earth element (REE) migration during diagenesis. Monazite, which represents the main light REE-bearing phase in the sandstones, was altered by diagenetic brines at 140 °C and 1 kbar. The alteration phase is a microcrystalline Th-silicate phase, indicating low Th solubility at these conditions. Light REEs are simultaneously leached out together with P and U. The increase in Th/La from detrital monazite to residual Th-silicate phase indicates that about 76% of the light REEs were leached out, corresponding to a global amount of 2.01 × 109 metric tons at the scale of the FA Formation in the Franceville basin. Uranium was also leached during monazite alteration and may have contributed significantly to the genesis of the high-grade uranium deposits of the Franceville basin that host the natural nuclear reaction zones.

  4. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy

    Science.gov (United States)

    FLUET, GERARD G.; QIU, QINYIN; KELLY, DONNA; PARIKH, HETA D.; RAMIREZ, DIEGO; SALEH, SOHA; ADAMOVICH, SERGEI V.

    2011-01-01

    Objective To investigate the ability of the New Jersey Institute of Technology Robot Assisted Virtual Rehabilitation (NJIT-RAVR) system training to elicit changes in upper extremity (UE) function in children with hemiplegia secondary to cerebral palsy. Methods Nine children (mean age 9 years, three males) participated in three pilots. Subjects trained 1 hour, 3 days a week for 3 weeks. Two groups performed this protocol as their only intervention. The third group also performed 5–6 hours of constraint-induced movement therapy. Results All subjects participated in a short programme of nine, 60-minute training sessions without adverse effects. As a group, subjects demonstrated statistically significant improvements in Melbourne Assessment of Unilateral Upper Limb Function Test, a composite of three timed UE tasks and several measurements of reaching kinematics. Several subjects demonstrated clinically significant improvements in active shoulder abduction and flexion as well as forearm supination. Conclusion Three small pilots of NJIT-RAVR training demonstrated measurable benefit with no complications, warranting further examination. PMID:20828330

  5. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  6. Acute lower extremity ischaemia

    African Journals Online (AJOL)

    tend to impact at arterial bifurcations, the commonest site being the ... Other ominous signs of advanced ischaemia include bluish ... Recommended standards for lower extremity ischaemia*. Doppler signals ... of the embolectomy procedure. An ... in a cath-lab or angio-suite under local ... We serially measure the aPTT and.

  7. Prediction and experimental comparison of deuterium quadrupole coupling constants in some bifluoride salts: An extreme example of symmetric hydrogen bonding in different crystalline environments

    Science.gov (United States)

    Bacskay, George B.; Gready, Jill E.

    1988-02-01

    The electric field gradient (EFG) at the deuterium nucleus of the bifluoride ion, a linear symmetrically H-bonded system, has been calculated using ab initio Hartree-Fock SCF, singles and doubles CI, and coupled pair functional methods using basis sets ranging from double zeta to the [7,5,2,1;5,4,2] contracted Gaussian set. For the free DF-2 ion, the EFG and the resulting nuclear quadrupole coupling constant (nqcc) are found to be very low and positive in sign, and to display marked dependences on basis set, and the effects of electron correlation and vibrational averaging. In particular, we note a peculiarly extreme basis-set limit problem for deuterium EFGs in symmetric H-bonded molecules. The effects of the crystal lattice on the nqcc have been calculated for the sodium, potassium, and ammonium bifluorides taking into account: the direct contribution of the lattice to the EFG as modeled by a point-charge distribution; its polarizing effect on an individual DF-2 ion using two different methods; and also the effects of librational averaging. The predicted deuterium nqccs and asymmetry parameters (η) in the bifluoride salts are compared with the free-ion values (η necessarily zero). While our predicted nqcc in KDF2 of 55±3 kHz is consistent with the only reported experimental value of 58±10 kHz [R. Blinc et al., Chem. Phys. Lett. 48, 596 (1977)], the calculated η value of 0.07±0.01 is at serious variance with the experimental value of 0.4±0.1. As our treatment of the crystal lattice effects is quite comprehensive this disagreement requires further investigation. We have predicted a significantly higher nqcc for NaDF2 of 83±3 kHz, but, again, with a very small η value of 0.04±0.01.

  8. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  9. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    Science.gov (United States)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast

  10. The Shock Response of Space Bears: The Ability of Life to Survive Some of the Most Extreme Environments Known to Man

    Science.gov (United States)

    Painter, Jonathon; Leighs, James; Appleby-Thomas, Gareth; Hazael, Rachael; McMillan, Paul; Kristensen, Reinhardt

    2013-06-01

    There have been many recent discoveries of life forms living in environments previously thought to be completely uninhabitable. One particularly interesting discovery of this na- ture is the space bear or tardigrade. The name space bear is a colloquialism applied to the tardigrades because of a recent investigation which saw them being exposed to the vacuum of space and intense solar radiation, and surviving. Tardigrades have the ability to dehy- drate themselves, entering a state called cryptobiosis. This state enables them to survive in the vacuum of space. A single stage gas gun has been employed to uniaxially shock load and subsequently recover tardigrades in both regular and cryptobiotic states. Loading histories were calculated via hydrocode modelling. Survival data is presented comparing shocked and control samples for tardigrades both in normal and cryptobiotic states.

  11. Fluorescent minerals - A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments

    Science.gov (United States)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark.

  12. Spatio-temporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16S rRNA analysis

    Science.gov (United States)

    Čanković, Milan; Petrić, Ines; Marguš, Marija; Ciglenečki, Irena

    2017-08-01

    Highly eutrophic and euxinic seawater system of Rogoznica Lake (Croatia) was used as a study site for investigation of distribution, diversity and abundance of sulfate-reducing bacteria (SRB) during stratified conditions in the summer and winter season, by targeting 6 phylogenetic subgroups of SRB. 16S rRNA gene sequences indicated that community cannot be directly related to cultured SRB species but rather that Rogoznica Lake harbors habitat-specific SRB populations associated to bacteria belonging to δ-Proteobacteria with few Firmicutes and Verrucomicrobium-related populations. Clear spatial-temporal shifts in the SRB community structure were observed. Results implied existence of distinct SRB populations between the water column and sediment, as well as higher diversity of the SRB occupying water layer then the ones found in the sediment. Likewise, seasonal variations in populations were observed. While SRB community was more diverse in the winter compared to the summer season in the water layer, situation was opposite in the sediment. Water layer communities seem to be more susceptible to changes of physico-chemical parameters, while those in the sediment have prorogated response to these changes. Results indicate that SRB diversity is still highly underestimated in natural environments, especially in specific habitats such as Rogoznica Lake. Presented data show a complex SRB diversity and distribution supporting the idea that habitat-specific SRB communities are important part of the anaerobic food chain in degradation of organic matter as well as cycling of sulfur and carbon species in the Lake and similar anoxic environment.

  13. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  14. Upper extremity amputations and prosthetics.

    Science.gov (United States)

    Ovadia, Steven A; Askari, Morad

    2015-02-01

    Upper extremity amputations are most frequently indicated by severe traumatic injuries. The location of the injury will determine the level of amputation. Preservation of extremity length is often a goal. The amputation site will have important implications on the functional status of the patient and options for prosthetic reconstruction. Advances in amputation techniques and prosthetic reconstructions promote improved quality of life. In this article, the authors review the principles of upper extremity amputation, including techniques, amputation sites, and prosthetic reconstructions.

  15. Extreme Photonics & Applications

    CERN Document Server

    Hall, Trevor J; Paredes, Sofia A

    2010-01-01

    "Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies. Laser light is an exquisite tool for physical and chemical research. Physicists have recently developed pulsed lasers with such short durations that one laser shot takes the time of one molecular vibration or one electron rotation in an ...

  16. Fluorescent minerals--A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments.

    Science.gov (United States)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient, Null-Point Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of the heat-transfer rate or the heat flux to the surface of a solid body (test sample) using the measured transient temperature rise of a thermocouple located at the null point of a calorimeter that is installed in the body and is configured to simulate a semi-infinite solid. By definition the null point is a unique position on the axial centerline of a disturbed body which experiences the same transient temperature history as that on the surface of a solid body in the absence of the physical disturbance (hole) for the same heat-flux input. 1.2 Null-point calorimeters have been used to measure high convective or radiant heat-transfer rates to bodies immersed in both flowing and static environments of air, nitrogen, carbon dioxide, helium, hydrogen, and mixtures of these and other gases. Flow velocities have ranged from zero (static) through subsonic to hypersonic, total flow enthalpies from 1.16 to greater than 4.65 × 101 MJ/kg (5 × 102 to greater than 2 × 104 ...

  18. MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia.

    Science.gov (United States)

    Biggar, Kyle K; Kornfeld, Samantha F; Maistrovski, Yulia; Storey, Kenneth B

    2012-10-01

    Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at -6 °C for 24 h (P<0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P<0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia.

  19. 现代媒体环境对流动人口反抗方式类型极端化趋向的影响%Effects of Types of Modern Media Environment on the Floating Population Against the Extreme Trend

    Institute of Scientific and Technical Information of China (English)

    马征

    2013-01-01

      新生代流动人口成长在不同于老一代流动人口的社会情境下,成为社会转型时期研究的关注点,而转型期的中国社会正在逐步适应和完成媒体环境的革新,当前媒体环境的多元化及其内涵特性正在使流动人口群体的反抗方式类型发生转变,新生代流动人口反抗信息获取优于老一代流动人口,反抗方式偏好差别大,有极端化发展倾向。%The new generation of migrant population, growing in different from the older generation of floating population's social context, becomes the research focus in the period of social transformation. And the transformation period of China society is being fit and finished the media environment innovation. The diversity and inclusion characteristics of current media environment is changing in the resistance of floating population type, the new generation of migrant population against information is overmatch than the old generation, and has the extreme development tendency.

  20. Extreme Geomagnetic Storms - 1868 - 2010

    Science.gov (United States)

    Vennerstrom, S.; Lefevre, L.; Dumbović, M.; Crosby, N.; Malandraki, O.; Patsou, I.; Clette, F.; Veronig, A.; Vršnak, B.; Leer, K.; Moretto, T.

    2016-05-01

    We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 - 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 - 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence

  1. Extreme conditions (p, T, H)

    Energy Technology Data Exchange (ETDEWEB)

    Mesot, J. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The aim of this paper is to summarize the sample environment which will be accessible at the SINQ. In order to illustrate the type of experiments which will be feasible under extreme conditions of temperature, magnetic field and pressure at the SINQ a few selected examples are also given. (author) 7 figs., 14 refs.

  2. Microenvironmental Ecology of Phototrophs from Extreme Environments

    DEFF Research Database (Denmark)

    Trampe, Erik

    platform, and analyzed physico-chemical properties of the microenvironment by means of microsensor measurements of fine scale scalar irradiance, O2 and pH, in combination with HPLC pigment analysis and assessment of photosynthetic performance of the cyanobacterial biofilms colonizing the Black and Pink...... experiment by means of growth rates, microscopic imaging of photosynthetic capacity, localization of kleptochloroplasts, inorganic carbon uptake, and tracking of fluctuations in pigment content by spectrophotometric and HPLC analysis. We found that D. acuta cells can regulate the pigmentation and function...... of the ikaite matrix, ii) measurements of diurnal fluctuations in irradiance and O2 under different light scenarios, and iii) the first in situ measurements of photosynthetic activity in the tufa columns (Manuscript 1). This was followed up with more detailed lab-based measurements close to the field site...

  3. Hetero-Interfaces For Extreme Electronic Environments

    Science.gov (United States)

    2014-07-23

    between two perovskite insulators (i.e., LaAlO3 on SrTiO3) was first reported in 2004.[1] This unexpected result was related to internal polarization...Han, “Hydrogen adsorption and carrier generation in the LaAlO3-SrTiO3 heterointerfaces: a first principles study,” J. Phys.: Condens. Matter 22...defect structures and polarization discontinuity. In 2006 it was reported for the first time that the conductivity of the hetero-interface could be

  4. Sample Return Systems for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Since the Apollo era, sample return missions have been primarily limited to asteroid sampling. More comprehensive sampling could yield critical information on the...

  5. Sample Return Systems for Extreme Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I we were able to demonstrate that sample return missions utilizing high velocity penetrators (0.1- 1 km/s) could provide substantial new capabilities for...

  6. Stability of Model Membranes in Extreme Environments

    Science.gov (United States)

    Namani, Trishool; Deamer, David W.

    2008-08-01

    The first forms of cellular life required a source of amphiphilic compounds capable of assembling into stable boundary structures. Membranes composed of fatty acids have been proposed as model systems of primitive membranes, but their bilayer structure is stable only within a narrow pH range and low ionic strength. They are particularly sensitive to aggregating effects of divalent cations (Mg+2, Ca+2, Fe+2) that would be present in Archaean sea water. Here we report that mixtures of alkyl amines and fatty acids form vesicles at strongly basic and acidic pH ranges which are resistant to the effects of divalent cations up to 0.1 M. Vesicles formed by mixtures of decylamine and decanoic acid (1:1 mole ratio) are relatively permeable to pyranine, a fluorescent anionic dye, but permeability could be reduced by adding 2 mol% of a polycyclic aromatic hydrocarbon such as pyrene. Permeability to the dye was also reduced by increasing the chain length of the amphiphiles. For instance, 1:1 mole ratio mixtures of dodecylamine and dodecanoic acid were able to retain pyranine dye during and following gel filtration. We conclude that primitive cell membranes were likely to be composed of mixtures of amphiphilic and hydrophobic molecules that manifested increased stability over pure fatty acid membranes.

  7. Extreme Environment Sampling System Deployment Mechanism Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future Venus or Comet mission architectures may feature robotic sampling systems comprised of a Sampling Tool and Deployment Mechanism. Since 2005, Honeybee has been...

  8. Extreme Environment Hybrid Gearbox Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocketstar Robotics proposes the development of a gearbox that uses all ball rolling contact for the highest loaded output gear reduction stage(s), is dry film...

  9. Extreme Environment Hybrid Gearbox Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nearly all mechanism applications require some form of gearbox. Wet lubricated gearbox technologies are limited to the relatively narrow temperature ranges of their...

  10. Advances in Studies on the Acclimation of Antarctic Ice Microalgae to Extreme Environments%南极冰藻对南极极端环境的适应性研究进展

    Institute of Scientific and Technical Information of China (English)

    王以斌; 张爱军; 刘芳明; 郑洲; 缪锦来

    2016-01-01

    南极冰藻是生存在南极海水、海冰及冰川融水等环境中各类微藻的总称,是南极海冰-海水生态系统中重要的生态群体和主要的初级生产力来源。南极冰藻有特殊的适应机制来响应南极地区低温、季节性光照、强紫外辐射和高盐度等极端环境,其环境适应性机制的研究是各国科学家研究的热点。综述了南极冰藻的低温、光照和强紫外辐射适应性及其抗逆基因研究等方面的最新进展,以期从多方面阐述和揭示南极冰藻的极端环境适应机制,使人们能更清晰的了解南极微藻在整个地球化学循环过程中的作用。%Antarctic ice microalgae are the phytoplankton or microalgae that thriving in the pelagic,ice and meltwater environments of the Antarctic,which are the main sources of primary production in an otherwise barren region. Antarctic microalgae possess unique adaptations that allow them to proliferate in extreme conditions characterized by low or freezing temperature,seasonal light,strong ultraviolet radiation and high salinity fluctuations. Thus,understanding the underlying mechanisms of their acclimation has gained strong interests in the past years. This paper then aims to provide a succinct review on the progress,status and new paradigms of research on Antarctic microalgae. These new findings on Antarctic ice microalgae will help us gain deeper insights into the general adaptive mechanisms of all phytoplankton to extreme environment and the potential role of these organisms in the important biogeochemical cycles.

  11. Les milieux extrêmes. Journées d'études du CESTA, Paris, 4-5 octobre 1983 Extreme Environments. Cesta Conference, Paris, 4-5 October 1983

    Directory of Open Access Journals (Sweden)

    Bertrand A. R. V.

    2006-11-01

    Full Text Available Ces journées d'études étaient consacrées aux problèmes impliqués par l'exploration et l'exploitation des milieux extrêmes. On n'a pas cherché à approfondir la notion de milieu extrême mais à en étudier trois principaux : l'espace, les grands fonds marins, les enceintes soumises à de forts rayonnements nucléaires, à travers quatre thèmes de problèmes communs : la robotique, la sécurité, les matériaux et l'intervention humaine. Cette réunion a mis en évidence : - le dilemme constitué par la nécessité d'assurer d'une part la sécurité de la population par l'emploi de techniques fiables donc éprouvées et d'autre part le progrès scientifique dont les techniques nouvelles peuvent être fiables sans être encore éprouvées ; - l'emploi généralisé de la robotique (soudage sous-marin profond, engin submersible non habité à intelligence artificielle. . . ; - la création de matériaux nouveaux (composites à matrice métallique, fibres optique en verre chloré, lubrifiant opérant sous vide. . . - la mise au point de méthodes nouvelles pour l'analyse probabiliste des risques. This conference concentrated on the problems raised by the exploration and productive use of extreme environments. No effort was made to define the concept of an extreme environnent, but three specific ones were considered: space, great sea depths, enclosures subjected Io intense nuclear radiation. There were four topics covering problems encountered in such environments: robotics, safety, materials and human intervention. This meeting brought out the following points: - The dilemma brought on by the need to ensure part of the safety of the population by using reliable, hence proven, techniques at the saure time as scientific progress in which new techniques may be reliable without yet being proven. - The generalized use of robotics (deep subsea welding, unmanned submersible with artificial intelligence, etc. . - The creation of new materials

  12. Extremely Preterm Birth

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm Birth ... Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” or “ ...

  13. Modeling extreme risks in ecology.

    Science.gov (United States)

    Burgman, Mark; Franklin, James; Hayes, Keith R; Hosack, Geoffrey R; Peters, Gareth W; Sisson, Scott A

    2012-11-01

    Extreme risks in ecology are typified by circumstances in which data are sporadic or unavailable, understanding is poor, and decisions are urgently needed. Expert judgments are pervasive and disagreements among experts are commonplace. We outline approaches to evaluating extreme risks in ecology that rely on stochastic simulation, with a particular focus on methods to evaluate the likelihood of extinction and quasi-extinction of threatened species, and the likelihood of establishment and spread of invasive pests. We evaluate the importance of assumptions in these assessments and the potential of some new approaches to account for these uncertainties, including hierarchical estimation procedures and generalized extreme value distributions. We conclude by examining the treatment of consequences in extreme risk analysis in ecology and how expert judgment may better be harnessed to evaluate extreme risks.

  14. The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Liermann, H.-P., E-mail: hanns-peter.liermann@desy.de; Konôpková, Z. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Morgenroth, W. [University of Frankfurt, Frankfurt (Germany); Glazyrin, K.; Bednarčik, J.; McBride, E. E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Petitgirard, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); University of Bayreuth, Bayreuth (Germany); Delitz, J. T.; Wendt, M.; Bican, Y.; Ehnes, A.; Schwark, I.; Rothkirch, A.; Tischer, M.; Heuer, J.; Schulte-Schrepping, H.; Kracht, T.; Franz, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-06-19

    Performance description of the Extreme Conditions Beamline (ECB, P02.2) at PETRA III that is optimized for micro-diffraction at simultaneous high pressure and high and low temperatures created in different diamond anvil cells environments. Additional information of the capabilities of the Extreme Conditions Science Infrastructure for DAC work is provided. A detailed description is presented of the Extreme Conditions Beamline P02.2 for micro X-ray diffraction studies of matter at simultaneous high pressure and high/low temperatures at PETRA III, in Hamburg, Germany. This includes performance of the X-ray optics and instrumental resolution as well as an overview of the different sample environments available for high-pressure studies in the diamond anvil cell. Particularly emphasized are the high-brilliance and high-energy X-ray diffraction capabilities of the beamline in conjunction with the use of fast area detectors to conduct time-resolved compression studies in the millisecond time regime. Finally, the current capability of the Extreme Conditions Science Infrastructure to support high-pressure research at the Extreme Conditions Beamline and other PETRA III beamlines is described.

  15. Extreme geomagnetically induced currents

    Science.gov (United States)

    Kataoka, Ryuho; Ngwira, Chigomezyo

    2016-12-01

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.

  16. The European Extreme Right and Religious Extremism

    Directory of Open Access Journals (Sweden)

    Jean-Yves Camus

    2007-12-01

    Full Text Available The ideology of the Extreme Right in Western Europe is rooted in Catholic fundamentalism and Counter-Revolutionary ideas. However, the Extreme Right, like all other political families, has had to adjust to an increasingly secular society. The old link between religion and the Extreme Right has thus been broken and in fact already was when Fascism overtook Europe: Fascism was secular, sometimes even anti-religious, in its essence. Although Catholic fundamentalists still retain strong positions within the apparatus of several Extreme Right parties (Front National, the vote for the Extreme Right is generally weak among regular churchgoers and strong among non-believers. In several countries, the vote for the Extreme Right is stronger among Protestant voters than among Catholics, since while Catholics may support Christian-Democratic parties, there are very few political parties linked to Protestant churches. Presently, it also seems that Paganism is becoming the dominant religious creed within the Extreme Right. In a multicultural Europe, non-Christian forms of religious fundamentalism such as Islamism also exist with ideological similarities to the Extreme Right, but this is not sufficient to categorize Islamism as a form of Fascism. Some Islamist groups seek alliances with the Extreme Right on the basis of their common dislike for Israel and the West, globalization and individual freedom of thought.

  17. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  18. Discovery of a vast amount of unknown actinomycetes from extreme environments in Xinjiang and Qinghai Province, China%新疆青海极端环境发现大量未知放线菌

    Institute of Scientific and Technical Information of China (English)

    徐丽华; 李文均; 崔晓龙; 李铭刚; 张利平; 徐平; 毛培宏; 文孟良; 李一青; 姜成林

    2003-01-01

    Soil and sediment samples were collected from saline and alkaline soil and lakes in Xinjiang and QinghaiProvince, P. R. China. Halophilic, alkalophilic and psychrophilic actinornycetes and actinohacteria in these samples wereisolated. The strains were identified by using cultural, physiological, biochemical, molecular biological procedures. Onenew family(Yaniaceae), two new genera( Yania and Streptomonospora) and eight new species of halophilic actino-mycetes and actinobacteria, four new species of alkalophilic and one new species of psychrophilic actinomycetes werefound. Basing on the research results that there is a very high density of new or unknown actinomycetes resources inthe extreme environments in Xinjiang and Qinghai, China. It is inexorable that new species contains new genes, newmetabolites, new activities, and must have new use. Actinomycetes under high salt and alkaline environments may bean important source for discovery of new drugs.%从新疆、青海的重盐碱地区、盐湖采集样品,分离其中的嗜盐、嗜碱及低温放线菌.研究了它们在几种盐的不同浓度,不同pH条件下的生长情况.利用多相分类程序进行鉴定,发现嗜盐放线菌、放线细菌的新科1个(Yaniaceae),新属2个(Yania and Streptomonospora),新种8个,嗜碱放线菌新种4个,低温放线菌新种1个.对其中部分新种、新属做了描述.认为新疆、青海的重盐碱地区蕴藏着大量的未知放线菌资源;新菌种必然有新基因,新产物,新活性和新用途,是药物开发的重要来源.

  19. Conceptual Design Report for the Extreme Ecosystems Test Chambers

    Energy Technology Data Exchange (ETDEWEB)

    C. Barnes; J. Beller; K. Caldwell; K. Croft; R. Cherry; W. Landman

    1998-12-01

    This conceptual design supports the creation of Extreme Ecosystems Test Chambers, which will replicate deep subsurface and subocean environments characterized by high pressure (2,000 psi) and subfreezing to high temperature (-4 to 300 degrees F) with differing chemical and saturation conditions. The design provides a system to support research and development that includes heat transfer, phase change issues in porous media, microbiology in extreme environments, and carbon sequestration and extraction. The initial system design is based on the research needs to support the commercial production of methane hydrates from subsurface sediments. The design provides for three pressure vessels: a Down Hole Test Vessel, a Vertical Multi-phase Test Vessel, and a Horizontal Multi-phase Test Vessel.

  20. Legacy to the extreme

    NARCIS (Netherlands)

    A. van Deursen (Arie); T. Kuipers (Tobias); L.M.F. Moonen (Leon)

    2000-01-01

    textabstractWe explore the differences between developing a system using extreme programming techniques, and maintaining a legacy system. We investigate whether applying extreme programming techniques to legacy maintenance is useful and feasible.

  1. Legacy to the extreme

    NARCIS (Netherlands)

    Deursen, A. van; Kuipers, T.; Moonen, L.M.F.

    2000-01-01

    We explore the differences between developing a system using extreme programming techniques, and maintaining a legacy system. We investigate whether applying extreme programming techniques to legacy maintenance is useful and feasible.

  2. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2017-01-01

    Extreme Ocean Waves”, edited by E. Pelinovsky and C. Kharif, second edition, Springer International Publishing, 2016; ISBN: 978-3-319-21574-7, ISBN (eBook): 978-3-319-21575-4The second edition of “Extreme Ocean Waves” published by Springer is an update of a collection of 12 papers edited by Efim Pelinovsky and Christian Kharif following the April 2007 meeting of the General Assembly of the European Geosciences Union. In this edition, three new papers have been added and three more have been substantially revised. Color figures are now included, which greatly aids in reading several of the papers, and is especially helpful in visualizing graphs as in the paper on symbolic computation of nonlinear wave resonance (Tobisch et al.). A note on terminology: extreme waves in this volume broadly encompass different types of waves, including deep-water and shallow-water rogue waves (which are alternatively termed freak waves), and internal waves. One new paper on tsunamis (Viroulet et al.) is now included in the second edition of this volume. Throughout the book, the reader will find a combination of laboratory, theoretical, and statistical/empirical treatment necessary for the complete examination of this subject. In the Introduction, the editors underscore the importance of studying extreme waves, documenting a dramatic instance of damaging extreme waves that recently occurred in 2014.

  3. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  4. The 2015 Oklahoma extreme precipitation: attribution of climate change

    Science.gov (United States)

    Nie, J.; Sobel, A. H.; Shaevitz, D.

    2016-12-01

    In a warming climate precipitation extremes increase disproportionally faster than the mean precipitation does. However, there are large uncertainties of the paces of the precipitation extreme increases among General Circulation Models (GCMs) in the tropics and subtropics, largely due to the deficiencies of convective parameterizations. A hierarchy of models, including regional models and cloud resolving models (CRM) with high resolutions to explicitly resolve convection, can provide insights to better constrain the GCM simulations. In this study, we apply a novel CRM modeling approach, the Column Quasi-Geostrophic (CQG) method, to examine responses of precipitation extreme to climate changes. The CQG approach uses a CRM in a relatively small domain with the large-scale vertical motion, which determines vertical advection of temperature and moisture, incorporated using the quasi-geostrophic omega equation. Comparing with other CRM studies that prescribe the large-scale vertical motion, this method allows us to examine the dynamical component of precipitation increases (, to which the GCMs largely disagree with each other) to warming in addition to the thermodynamical component of increases (about 7% per K). We model the 2015 Oklahoma extreme rainfall event with CQG method, with the present climate and two counterfactual environments representing the pre-industry and an even warmer climate. Results are analyzed to attribute the extreme precipitation to climate changes, and to quantify the involved mechanisms.

  5. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  6. Biology and ecology of the ``Pompeii worm'' (Alvinella pompejana Desbruyères and Laubier), a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments

    Science.gov (United States)

    Desbruyères, D.; Chevaldonné, P.; Alayse, A.-M.; Jollivet, D.; Lallier, F. H.; Jouin-Toulmond, C.; Zal, F.; Sarradin, P.-M.; Cosson, R.; Caprais, J.-C.; Arndt, C.; O'Brien, J.; Guezennec, J.; Hourdez, S.; Riso, R.; Gaill, F.; Laubier, L.; Toulmond, A.

    1998-01-01

    Alvinella pompejana, the "Pompeii worm" lives on active hydrothermal edifices at deep-sea vents of the East Pacific Rise. The physical and chemical patterns of its microhabitat were determined from temperature probe measurements, temperature time series, and on-board and shore-based chemical analyses based on discrete sampling (pH, H 2S, CO 2, CH 4, S 2O 2-3, Ca, Mg, Cu, Cd, Zn). The microhabitat is characterised by high temporal and microscale spatial variability, with temperature values in the range of 20°-45°C at the immediate periphery of tubes but reaching higher, still undetermined, values inside the tubes. The difference observed between in vitro temperature limits for the stability of biomolecules and metabolic rates, and suggested in situ conditions seems to indicate a significant protective role of biological interfaces (tubes and cuticle). Temporal instability possibly also plays an important role in the ability for these worms to colonise such an extreme habitat. The functional role of dominant epibiotic bacteria is discussed in the light of recent biochemical and molecular data: the tube-worm-bacteria system can be considered as a symbiotic entity where carbon is probably metabolised and recycled. Sulphide detoxification occurs by oxidation at the gill level and possibly at the intracellular haemoglobin level. Heavy metals, ingested or absorbed, are trapped in spherocrystals and bound to metallothionein-like proteins. Anatomical, physiological and molecular adaptations to hypoxia allow the worm to successfully colonise the chimneys. A. pompejana lives in an ephemeral environment and must reproduce and disperse accordingly. It is a gonochoric species that displays a pseucopulatory behaviour allowing transfer of sperm to female spermathecae, thus avoiding dispersion of the gametes. The size of the oocytes suggests a lecithotrophic or benthic development. The population size structure is polymodal, indicating discontinuous recruitment. Population

  7. Proposal of Enhanced Extreme Programming Model

    Directory of Open Access Journals (Sweden)

    M. Rizwan Jameel Qureshi

    2015-01-01

    Full Text Available Extreme programming is one of the commonly used agile methodologies in software development. It is very responsive to changing requirements even in the late phases of the project. However, quality activities in extreme programming phases are implemented sequentially along with the activities that work on the functional requirements. This reduces the agility to deliver increments continuously and makes an inverse relationship between quality and agility. Due to this relationship, extreme programming does not consume enough time on making extensive documentation and robust design. To overcome these issues, an enhanced extreme programming model is proposed. Enhanced extreme programming introduces parallelism in the activities' execution through putting quality activities into a separate execution line. In this way, the focus on delivering increments quickly is achieved without affecting the quality of the final output. In enhanced extreme programming, the quality concept is extended to include refinement of all phases of classical extreme programming and creating architectural design based on the refined design documents.

  8. Detectors in Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carini, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carron, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hart, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hasi, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Herrmann, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kenney, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Segal, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomada, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  9. Extreme weather events and infectious disease outbreaks

    OpenAIRE

    McMichael, Anthony J.

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental c...

  10. Forecasting extreme temperature health hazards in Europe

    Science.gov (United States)

    Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L.

    2017-04-01

    Extreme hot temperatures, such as those experienced during a heat wave, represent a dangerous meteorological hazard to human health. Heat disorders such as sunstroke are harmful to people of all ages and responsible for excess mortality in the affected areas. In 2003 more than 50,000 people died in western and southern Europe because of a severe and sustained episode of summer heat [1]. Furthermore, according to the Intergovernmental Panel on Climate Change heat waves are expected to get more frequent in the future thus posing an increasing threat to human lives. Developing appropriate tools for extreme hot temperatures prediction is therefore mandatory to increase public preparedness and mitigate heat-induced impacts. A recent study has shown that forecasts of the Universal Thermal Climate Index (UTCI) provide a valid overview of extreme temperature health hazards on a global scale [2]. UTCI is a parameter related to the temperature of the human body and its regulatory responses to the surrounding atmospheric environment. UTCI is calculated using an advanced thermo-physiological model that includes the human heat budget, physiology and clothing. To forecast UTCI the model uses meteorological inputs, such as 2m air temperature, 2m water vapour pressure and wind velocity at body height derived from 10m wind speed, from NWP models. Here we examine the potential of UTCI as an extreme hot temperature prediction tool for the European area. UTCI forecasts calculated using above-mentioned parameters from ECMWF models are presented. The skill in predicting UTCI for medium lead times is also analysed and discussed for implementation to international health-hazard warning systems. This research is supported by the ANYWHERE project (EnhANcing emergencY management and response to extreme WeatHER and climate Events) which is funded by the European Commission's HORIZON2020 programme. [1] Koppe C. et al., Heat waves: risks and responses. World Health Organization. Health and

  11. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  12. Extreme low temperature tolerance in woody plants

    Directory of Open Access Journals (Sweden)

    George Richard Strimbeck

    2015-10-01

    Full Text Available Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40˚C and minimum temperatures below -60˚C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196˚C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature. Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at extreme low temperature: 1. Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to 30˚C, preventing phase changes that result in irreversible injury. 2. High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. 3. Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.

  13. Extreme Events in Nature and Society

    CERN Document Server

    Albeverio, Sergio; Kantz, Holger

    2006-01-01

    Significant, and usually unwelcome, surprises, such as floods, financial crisis, epileptic seizures, or material rupture, are the topics of Extreme Events in Nature and Society. The book, authored by foremost experts in these fields, reveals unifying and distinguishing features of extreme events, including problems of understanding and modelling their origin, spatial and temporal extension, and potential impact. The chapters converge towards the difficult problem of anticipation: forecasting the event and proposing measures to moderate or prevent it. Extreme Events in Nature and Society will interest not only specialists, but also the general reader eager to learn how the multifaceted field of extreme events can be viewed as a coherent whole.

  14. Classifying Returns as Extreme

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I consider extreme returns for the stock and bond markets of 14 EU countries using two classification schemes: One, the univariate classification scheme from the previous literature that classifies extreme returns for each market separately, and two, a novel multivariate classification scheme tha...

  15. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    Science.gov (United States)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  16. Comparison of different de-noising methods in vocalization environment of laying hens including fan noise%含风机噪声的蛋鸡声音信号去噪方法比较

    Institute of Scientific and Technical Information of China (English)

    曹晏飞; 滕光辉; 余礼根; 李乔伟

    2014-01-01

    Vocalization, which plays an important role in the communication of many animals, could be regarded as an easy way to evaluate the current needs of animals and their state of impaired welfare by non-invasive and continuous monitoring. Modern techniques of sound analysis have provided tools for the quantitative description and statistical analysis of animal vocalization. However, a farmer always regulates the temperature and exchanges fresh air through mechanical ventilation in a poultry house, so that there is often low-frequency fan noise which can complicate the time-frequency features of poultry sound. In order to extract useful sound signals from the laying hens' sounds including fan noise, a digitized sound acquisition platform was built to record the pure sounds of laying hens (Hy-Line Variety Brown), the simple fan noise, and the mixed sounds of them both separately. All data processing and analysis were completed in LabVIEW. First, the time-frequency features of the pure sounds of laying hens, the simple fan noise, and the mixed sounds were analyzed in turn. Then the analog signals of different signal to noise ratios (SNR) were constructed by using the clean sounds of laying hens and fan noise. Finally, the effects of removing fan noise from the analog sound and field sound of laying hens were compared by 2 filters (Infinite Impulse Response, IIR, and Finite Impulse Response, FIR) and 3 wavelet de-noising methods (Stein's Unbiased Risk Estimation, SURE, Universal and Minimax). The results showed that although the characteristic parameters of laying hens' vocalization at different growth stages and in different rearing environments were disparate, the main frequency range of the sound of laying hens in the laying period was about 400-2 500 Hz, while the frequency range of fan noise was under 600 Hz. Root mean square errors (RMSE) of the filters under different SNRs were larger than that of the wavelet de-noising methods. The RMSE of the IIR filter was less

  17. Extreme alien light allows survival of terrestrial bacteria

    Science.gov (United States)

    Johnson, Neil; Zhao, Guannan; Caycedo, Felipe; Manrique, Pedro; Qi, Hong; Rodriguez, Ferney; Quiroga, Luis

    2013-07-01

    Photosynthetic organisms provide a crucial coupling between the Sun's energy and metabolic processes supporting life on Earth. Searches for extraterrestrial life focus on seeking planets with similar incident light intensities and environments. However the impact of abnormal photon arrival times has not been considered. Here we present the counterintuitive result that broad classes of extreme alien light could support terrestrial bacterial life whereas sources more similar to our Sun might not. Our detailed microscopic model uses state-of-the-art empirical inputs including Atomic Force Microscopy (AFM) images. It predicts a highly nonlinear survivability for the basic lifeform Rsp. Photometricum whereby toxic photon feeds get converted into a benign metabolic energy supply by an interplay between the membrane's spatial structure and temporal excitation processes. More generally, our work suggests a new handle for manipulating terrestrial photosynthesis using currently-available extreme value statistics photon sources.

  18. Effects of extreme natural events on the provision of ecosystem services in a mountain environment: The importance of trail design in delivering system resilience and ecosystem service co-benefits.

    Science.gov (United States)

    Tomczyk, Aleksandra M; White, Piran C L; Ewertowski, Marek W

    2016-01-15

    A continued supply of ecosystem services (ES) from a system depends on the resilience of that system to withstand shocks and perturbations. In many parts of the world, climate change is leading to an increased frequency of extreme weather events, potentially influencing ES provision. Our study of the effects of an intense rainfall event in Gorce National Park, Poland, shows: (1) the intense rainfall event impacted heavily on the supply of ES by limiting potential recreation opportunities and reducing erosion prevention; (2) these negative impacts were not only restricted to the period of the extreme event but persisted for up to several years, depending on the pre-event trail conditions and post-event management activities; (3) to restore the pre-event supply of ES, economic investments were required in the form of active repairs to trails, which, in Gorce National Park, were an order of magnitude higher than the costs of normal trail maintenance; and (4) when recreational trails were left to natural restoration, loss of biodiversity was observed, and recovery rates of ES (recreation opportunities and soil erosion prevention) were reduced in comparison to their pre-event state. We conclude that proper trail design and construction provides a good solution to avoid some of the negative impacts of extreme events on recreation, as well as offering co-benefits in terms of protecting biodiversity and enhancing the supply of regulating services such as erosion prevention.

  19. Extremal surface barriers

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Netta; Wall, Aron C. [Department of Physics, University of California,Santa Barbara, CA 93106 (United States)

    2014-03-13

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  20. Analysis of extreme events

    CSIR Research Space (South Africa)

    Khuluse, S

    2009-04-01

    Full Text Available ) determination of the distribution of the damage and (iii) preparation of products that enable prediction of future risk events. The methodology provided by extreme value theory can also be a powerful tool in risk analysis...

  1. Venous Ultrasound (Extremities)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Venous (Extremities) Venous ultrasound uses sound waves to ... limitations of Venous Ultrasound Imaging? What is Venous Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  2. Investigating Extreme Lifestyles through Mangrove Transcriptomics

    Science.gov (United States)

    Dassanayake, Maheshi

    2009-01-01

    Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…

  3. Soil:An Extreme Habitat for Microorganisms?

    Institute of Scientific and Technical Information of China (English)

    M.BOLTER

    2004-01-01

    The question is asked whether soils can be regarded as extreme environments with respect to microorganisms. After defining some extreme environments in a general sense, special properties of extreme environments are compared to soil habitats, with special emphasis laid on time frame and localities. In relation to water availability, nutrients and other properties, such places as aggregates can show properties of extreme habitats. These features, which can act at different levels of the system from the community level down to the cellular level, are summarized as stress factors. The latter,where many switches are located leading to different strategies of survival, is described as the most important one. This raises the question of how organisms have adapted to such conditions. The soil system demands a broad spectrum of adaptations and/or adjustments for a highly variable environment.The soil microorganisms'adaptation can thus be seen as the highest kind of flexibility and is more useful than any other special adaptation.

  4. Isolation and characterization of extreme halophilic archaea

    Energy Technology Data Exchange (ETDEWEB)

    Franze, Madlen; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HZDR Young Investigator Group

    2017-06-01

    Extreme halophilic archaea from the family Halobactereacea represent a dominant part of the microbial community present in saline soils as well as rock salts. By using a culture-dependent approach different Haloarchaea could be isolated and were phylogenetic analysed. Interestingly, isolates closely related to different Halobacterium spp. were found in both environments.

  5. BOLIVAR-tool for analysis and simulation of metocean extreme events

    Science.gov (United States)

    Lopatoukhin, Leonid; Boukhanovsky, Alexander

    2015-04-01

    Metocean extreme events are caused by the combination of multivariate and multiscale processes which depend from each other in different scales (due to short-term, synoptic, annual, year-to-year variability). There is no simple method for their estimation with controllable tolerance. Thus, the extreme analysis in practice is sometimes reduced to the exploration of various methods and models in respect to decreasing the uncertainty of estimates. Therefore, a researcher needs the multifaceted computational tools which cover the various branches of extreme analysis. BOLIVAR is the multi-functional computational software for the researches and engineers who explore the extreme environmental conditions to design and build offshore structures and floating objects. It contains a set of computational modules of various methods for extreme analysis, and a set of modules for the stochastic and hydrodynamic simulation of metocean processes. In this sense BOLIVAR is a Problem Solving Environment (PSE). The BOLIVAR is designed for extreme events analysis and contains a set of computational modules of IDM, AMS, POT, MENU, and SINTEF methods, and a set of modules for stochastic simulation of metocean processes in various scales. The BOLIVAR is the tool to simplify the resource-consuming computational experiments to explore the metocean extremes in univariate and multivariate cases. There are field ARMA models for short-term variability, spatial-temporal random pulse model for synoptic variability (storms and calms alteration), cyclostationare model of annual and year-to-year variability. The combination of above mentioned modules and data sources allows to estimate: omnidirectional and directional extremes (with T-years return periods); multivariate extremes (the set of parameters) and evaluation of their impacts to marine structures and floating objects; extremes of spatial-temporal fields (including the trajectory of T-years storms). An employment of concurrent methods for

  6. Optical modulator including grapene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  7. Visual Impairment, Including Blindness

    Science.gov (United States)

    ... Who Knows What? Survey Item Bank Search for: Visual Impairment, Including Blindness Links updated, April 2017 En ... doesn’t wear his glasses. Back to top Visual Impairments in Children Vision is one of our ...

  8. Extremity fractures in children: a hospital based study in Tehran

    Institute of Scientific and Technical Information of China (English)

    Ali Khaji; Mousa Zargar; Mojgan Karbakhsh

    2010-01-01

    Objective: Although long bone fracture in children is not life-threatening, it may cause major disability, loss of working days and severe psychological distress. We conducted this study to determine the pattern of extremity fracture due to trauma in children.Methods: During one year in six general hospitals in Tehran, trauma patients who were hospitalized for more than 24 hours and sustained injuries within seven days before admission were included in the study. The records of children (≤16 years old) hospitalized in six general hospitals in Tehran due to trauma were reviewed prospectively.Results: During the study period, 1274 children had sustained extremity fractures. Male to female ratio was 3.6/1, with the mean age of (10.3±4.2) years. Falls and traffic crashes were the main causes of injuries, with the percentages of 57.3% and 37.1%, respectively. Simple fall (falling on the ground) consisted 60% of patients that sustained fall-related injuries. Pedestrians and bicycle riders comprised most of the cases that were injured due to traffic crashes. Of our cases, 56.8% sustained fractures in the upper extremities and 43.2% in the lower extremities. Forearm was the most common fracture site (34.1%). Comparing our results in preschool and school-age children, falls were the main cause of injuries in both groups, but fractures of lower extremities were significantly more common in preschool children.Conclusions:Improvement of physical condition of sidewalks and crossings in roads will be necessary for prevention of injuries. More attention to safety of home environment should be paid for control of preschools' injury at home. Education of children and adults is necessary to reduce injuries resulting from road traffic crashes.

  9. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.

    2015-04-10

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas. © 2015 by Annual Reviews. All rights reserved.

  10. Precursors of extreme increments

    CERN Document Server

    Hallerberg, S; Holstein, D; Kantz, H; Hallerberg, Sarah; Altmann, Eduardo G.; Holstein, Detlef; Kantz, Holger

    2006-01-01

    We investigate precursors and predictability of extreme events in time series, which consist in large increments within successive time steps. In order to understand the predictability of this class of extreme events, we study analytically the prediction of extreme increments in AR(1)-processes. The resulting strategies are then applied to predict sudden increases in wind speed recordings. In both cases we evaluate the success of predictions via creating receiver operator characteristics (ROC-plots). Surprisingly, we obtain better ROC-plots for completely uncorrelated Gaussian random numbers than for AR(1)-correlated data. Furthermore, we observe an increase of predictability with increasing event size. Both effects can be understood by using the likelihood ratio as a summary index for smooth ROC-curves.

  11. Cryptococcus ibericus sp. nov., Cryptococcus aciditolerans sp. nov. and Cryptococcus metallitolerans sp. nov., a new ecoclade of anamorphic basidiomycetous yeast species from an extreme environment associated with acid rock drainage in São Domingos pyrite mine, Portugal.

    Science.gov (United States)

    Gadanho, Mário; Sampaio, José Paulo

    2009-09-01

    In this report, we describe three novel asexual basidiomycetous yeast species, Cryptococcus aciditolerans sp. nov. (type strain CBS 10872T=SDY 081T), Cryptococcus ibericus sp. nov. (type strain CBS 10871T=SDY 022T) and Cryptococcus metallitolerans sp. nov. (type strain CBS 10873T=SDY 190T), which were isolated from acid rock drainage collected at the São Domingos mine in southern Portugal. Phylogenetic analysis of molecular sequence data indicated that the novel species belong to the order Filobasidiales of the class Tremellomycetes and form a well-separated clade, next to Cryptococcus gastricus and Cryptococcus gilvescens. Since the novel species also share a peculiar ecology, being able to thrive under extreme environmental conditions characterized by very low pH and high concentrations of heavy metals, we designate this combination of phylogenetic and ecological characteristics as an ecoclade.

  12. Weather and Climate Extremes.

    Science.gov (United States)

    1997-09-01

    Antarctica’s highest (New Zealand Antarctic Society, 1974). This extreme exceeded the record of 58°F (14.4°C) that occurred on 20 October 1956 at Esperanza ... Esperanza (also known as Bahia Esperanza , Hope Bay) was in operation from 1945 through the early 1960s. Meteorological/Climatological Factors: This extreme...cm) Location: Grand Ilet, La R’eunion Island [21°00’S, 55°30’E] Date: 26 January 1980 WORLD’S GREATEST 24-HOUR RAINFALL 72 in (182.5 cm

  13. extRemes 2.0: An Extreme Value Analysis Package in R

    Directory of Open Access Journals (Sweden)

    Eric Gilleland

    2016-08-01

    Full Text Available This article describes the extreme value analysis (EVA R package extRemes version 2.0, which is completely redesigned from previous versions. The functions primarily provide utilities for implementing univariate EVA, with a focus on weather and climate applications, including the incorporation of covariates, as well as some functionality for assessing bivariate tail dependence.

  14. What are extreme environmental conditions and how do organisms cope with them?

    Institute of Scientific and Technical Information of China (English)

    John C. WINGFIELD; J. Patrick KELLEY; Frédéric ANGELIER

    2011-01-01

    Severe environmental conditions affect organisms in two major ways. The environment may be predictably severe such as in deserts, polar and alpine regions, or individuals may be exposed to temporarily extreme conditions through weather, presence of predators, lack of food, social status etc. Existence in an extreme environment may be possible, but then to breed or molt in addition can present major bottlenecks that have resulted in the evolution of hormone-behavior adaptations to cope with unpredictable events. Examples of hormone-behavior adaptations in extreme conditions include attenuated testosterone secretion because territoriality and excess courtship may be too costly when there is one opportunity to reproduce. The individual may even become insensitive to testosterone when target areas of the brain regulating reproductive behavior no longer respond to the hormone. A second example is reduced sensitivity to glucocorticoids following acute stress during the breeding season or molt that allows successful reproduction and/or a vital renewal of the integument to endure extreme conditions during the rest of the year. Reduced sensitivity could involve: (a) modulated response of the hypothalamo-pituitary-adrenal axis, (b) reduced sensitivity to high glucocorticoid levels, or (c) a combination of (a) and (b). Moreover, corticosteroid binding proteins (CBP) buffer responses to stress by reducing the movement of glucocorticoids into target cells. Finally, intracellular enzymes (11β-hydroxysteroid dehy-drogenase and variants) can deactivate glucocorticoids entering cells thus reducing interaction with receptors. These mechanisms have important implications for climate change and increasing extremes of weather.

  15. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  16. Moderate and extreme maternal obesity.

    LENUS (Irish Health Repository)

    Abdelmaboud, M O

    2012-05-01

    The aim of this study was to investigate the prevalence of moderate and extreme obesity among an Irish obstetric population over a 10-year period, and to evaluate the obstetric features of such pregnancies. Of 31,869 women delivered during the years 2000-2009, there were 306 women in the study group, including 173 in the moderate or Class 2 obese category (BMI 35-39.9) and 133 in the extreme or Class 3 obese category (BMI > or = 40).The prevalence of obese women with BMI > or = 35 was 9.6 per 1000 (0.96%), with an upward trend observed from 2.1 per 1000 in the year 2000, to 11.8 per 1000 in the year 2009 (P = 0.001). There was an increase in emergency caesarean section (EMCS) risk for primigravida versus multigravid women, within both obese categories (P < 0.001). However, there was no significant difference in EMCS rates observed between Class 2 and Class 3 obese women, when matched for parity. The prevalence of moderate and extreme obesity reported in this population is high, and appears to be increasing. The increased rates of abdominal delivery, and the levels of associated morbidity observed, have serious implications for such women embarking on pregnancy.

  17. Extreme situations due to gender violence

    Directory of Open Access Journals (Sweden)

    Stela Meneghel

    2012-11-01

    Full Text Available This paper presents a synthesis of the third Critical Paths Seminar, held in Porto Alegre/Brazil in 2011, whose focus was extreme situations of gender violence. The extreme situations are human rights violations that include femicide or murder motivated by the situation of gender; LGBT murders, human rights violations of ethnic and racial minorities, sexual exploitation, violence to women in vulnerable situations and other violence caused by gender. The meeting objective was given space to share experiences, reflect critically and build strategies for facing violence and extreme situations resulting from gender systems.

  18. EXTREMAL CONTROL FOR PHOTOVOLTAIC PANELS

    Directory of Open Access Journals (Sweden)

    Genevieve DAPHIN TANGUY

    2016-11-01

    Full Text Available In this paper a methodology for extremal control of photovoltaic panels has been designed through the use of an embedded polynomial controller using robust approaches and algorithms. Also, a framework for testing solar trackers in a hard ware in the loop (HIL configuration has been established. Efficient gradient based optimization methods were put in place in order to determine the parameters of the employed photovoltaic panel, as well as for computing the Maximum Power Point (MPP. Further a numerical RST controller has been computed in order to allow the panel to follow the movement of the sun to obtain a maximum energetic efficiency. A robustness analysis and correction procedure has been done on the RST polynomial algorithm. The hardware in the loop configuration allows for the development of a test and development platform which can be used for bringing improvements to the current design and also test different control approaches. For this, a microcontroller based solution was chosen. The achieved performances of the closed loop photovoltaic panel (PP system are validated in simulation using the MATLAB / SIMULINK environment and the WinPim & WinReg dedicated software. As it will be seen further in this paper, the extremal control of this design resides in a sequential set of computations used for obtaining the new Maximum Power Point at each change in the system.

  19. [The heart in extreme sports: hyperbaric activity and microgravity].

    Science.gov (United States)

    Berrettini, Umberto; Landolfi, Angelo; Patteri, Giovanna

    2008-10-01

    The study of the cardiovascular and respiratory modifications in extreme environments could be useful for the understanding of the adaptive mechanisms of the body in particular conditions. The knowledge of how different environmental conditions in terms of extreme pressure, temperature and gravity modify the neurovegetative and cardiovascular system could be useful in daily practice for hypobaric and hyperbaric sports.

  20. Statistics of extremes theory and applications

    CERN Document Server

    Beirlant, Jan; Segers, Johan; Teugels, Jozef; De Waal, Daniel; Ferro, Chris

    2006-01-01

    Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including  time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.