WorldWideScience

Sample records for extreme conditions correlations

  1. Modeling conditional correlations of asset returns

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    2015-01-01

    In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM-test is d......In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM......-test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of five...

  2. Modelling conditional correlations of asset returns: A smooth transition approach

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM-test is d......In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM......-test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of ve...

  3. Determination of Correlation for Extreme Metocean Variables

    Directory of Open Access Journals (Sweden)

    Nizamani Zafarullah

    2017-01-01

    Full Text Available Metocean environmental load includes wind, wave and currents. Offshore structures are designed for two environmental load design conditions i.e. extreme and operational load conditions of environmental loads are evaluated. The ccorrelation between load variables using Joint probability distribution, Pearson correlation coefficient and Spearman’s rank correlation coefficients methods in Peninsular Malaysia (PM, Sabah and Sarawak are computed. Joint probability distribution method is considered as a reliable method among three different methods to determine the relationship between load variables. The PM has good correlation between the wind-wave and wave-current; Sabah has both strong relationships of wind-wave and wind-current with 50 year return period; Sarawak has good correlation between wind and current in both 50 years and 100 years return period. Since Sabah has good correlation between the associated load variables, no matter in 50 years or 100 years of return period of load combination. Thus, method 1 of ISO 19901-1, specimen provides guideline for metocean loading conditions, can be adopted for design for offshore structure in Sabah. However, due to weak correlations in PM and Sarawak, this method cannot be applied and method 2, which is current practice in offshore industry, should continueto be used.

  4. Extreme eigenvalues of sample covariance and correlation matrices

    DEFF Research Database (Denmark)

    Heiny, Johannes

    This thesis is concerned with asymptotic properties of the eigenvalues of high-dimensional sample covariance and correlation matrices under an infinite fourth moment of the entries. In the first part, we study the joint distributional convergence of the largest eigenvalues of the sample covariance...... matrix of a p-dimensional heavy-tailed time series when p converges to infinity together with the sample size n. We generalize the growth rates of p existing in the literature. Assuming a regular variation condition with tail index ... eigenvalues are essentially determined by the extreme order statistics from an array of iid random variables. The asymptotic behavior of the extreme eigenvalues is then derived routinely from classical extreme value theory. The resulting approximations are strikingly simple considering the high dimension...

  5. Correlations in condensed matter under extreme conditions a tribute to Renato Pucci on the occasion of his 70th birthday

    CERN Document Server

    2017-01-01

    This book addresses a wide range of topics relating to the properties and behavior of condensed matter under extreme conditions such as intense magnetic and electric fields, high pressures, heat and cold, and mechanical stresses. It is divided into four sections devoted to condensed matter theory, molecular chemistry, theoretical physics, and the philosophy and history of science. The main themes include electronic correlations in material systems under extreme pressure and temperature conditions, surface physics, the transport properties of low-dimensional electronic systems, applications of the density functional theory in molecular systems, and graphene. The book is the outcome of a workshop held at the University of Catania, Italy, in honor of Professor Renato Pucci on the occasion of his 70th birthday. It includes selected invited contributions from collaborators and co-authors of Professor Pucci during his long and successful career, as well as from other distinguished guest authors.

  6. Information-causality and extremal tripartite correlations

    International Nuclear Information System (INIS)

    Yang, Tzyh Haur; Cavalcanti, Daniel; Almeida, Mafalda L; Teo, Colin; Scarani, Valerio

    2012-01-01

    We study the principle of information-causality (IC) in the presence of extremal no-signaling correlations on a tripartite scenario. We prove that all, except one, of the non-local correlations lead to violation of IC. The remaining non-quantum correlation is shown to satisfy any bipartite physical principle. (paper)

  7. Complex Plasma Research Under Extreme Conditions

    International Nuclear Information System (INIS)

    Ishihara, Osamu

    2008-01-01

    Complex plasma research under extreme conditions is described. The extreme conditions include low-dimensionality for self-organized structures of dust particles, dust magnetization in high magnetic field, criticality in phase transition, and cryogenic environment for Coulomb crystals and dust dynamics.

  8. Hygienic diagnosis in extreme conditions

    International Nuclear Information System (INIS)

    Sofronov, G.A.

    1997-01-01

    Review for book by M.P. Zakharchenko, S.A. Lopatin, G.N. Novozhilov, V.I. Zakharov Hygienic diagnosis in extreme conditions is presented discussing the problem of people health preservation under extreme conditions. Hygienic diagnosis is considered illustrated by cases of hostilities (Afghan War), earthquake response in Armenia (1988) and Chernobyl accident response. Attention is paid to the estimation of radiation doses to people and characteristics of main types of dosimeters. The high scientific level of the book is marked

  9. Determining extreme parameter correlation in ground water models

    DEFF Research Database (Denmark)

    Hill, Mary Cole; Østerby, Ole

    2003-01-01

    can go undetected even by experienced modelers. Extreme parameter correlation can be detected using parameter correlation coefficients, but their utility depends on the presence of sufficient, but not excessive, numerical imprecision of the sensitivities, such as round-off error. This work...... investigates the information that can be obtained from parameter correlation coefficients in the presence of different levels of numerical imprecision, and compares it to the information provided by an alternative method called the singular value decomposition (SVD). Results suggest that (1) calculated...... correlation coefficients with absolute values that round to 1.00 were good indicators of extreme parameter correlation, but smaller values were not necessarily good indicators of lack of correlation and resulting unique parameter estimates; (2) the SVD may be more difficult to interpret than parameter...

  10. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  11. Injuries in an Extreme Conditioning Program

    OpenAIRE

    Aune, Kyle T.; Powers, Joseph M.

    2016-01-01

    Background: Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. Hypothesis: The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occ...

  12. Variable ultrasonography findings of extremity lymphangioma: Pathologic correlation

    International Nuclear Information System (INIS)

    Oh, Jong Young; Nam, Kyung Jin; Lee, Ki Nam; Kim, Chan Sung; Lee, Jin Hwa; Kim, Dae Chul

    2002-01-01

    The great majority of lymphangiomas occur in the neck (75%) and axilla (20%), but extremity lymphangioma is rare. We correlate variable sonographic features of extremity lymphangioma with pathologic findings. We reviewed the sonographic findings of extremity lymphangioma in 14 patients (M:F=8:6). The all cases were histologically confirmed by operation. The variable sonographic features of extremity lymphangioma were compared to pathologic findings. The multilocular cystic mass with ill defined boundaries was distinctive sonographic appearance of extremity lymphangioma. But there were variable sonographic findings such as heterogeneous echogenic mass or homogeneous echogenic portion. The histologic section of echogenic lesion reveals clusters of abnormal

  13. Atomic collisions under extreme conditions in space

    International Nuclear Information System (INIS)

    Itikawa, Yukikazu

    1987-01-01

    In space, atoms and molecules are often placed under the extreme conditions which are very difficult to be realized on Earth. For instance, extremely hot and dense plasmas are found in and around various stellar objects (e.g., neutron stars) on one hand and extremely cold and diffuse gases prevail in interstellar space on the other. There is so strong a magnetic field that electron clouds in atoms and molecules are distorted. The study of atomic collisions under the extreme conditions is not only helpful in understanding the astrophysical environment but also reveals new aspects of the physics of atoms and molecules. This paper is an invitation to the study. (References are not exhaustive but only provide a clue with which more details can be found.) (author)

  14. Extreme Conditions Modeling Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Neary, Vincent Sinclair [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lawon, Michael J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weber, Jochem [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consisted of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .

  15. Rational Calibration of Four IEC 61400-1 Extreme External Conditions

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2008-01-01

    Based on a set of asymptotic statistical models on closed form this paper presents a rational and consistent calibration of four extreme external conditions defined in the International Electrotechnical Commission (IEC) 61400-1 standard: extreme operating gust, extreme wind shear, extreme coheren...... and proposed specifications of the magnitudes of the extreme external wind conditions are highlighted and discussed using an illustrative example based on two selected terrain types. Copyright © 2008 John Wiley & Sons, Ltd....... gust with direction change and extreme wind direction change. These four extreme external conditions are used in the definition of six of the IEC 61400-1 ultimate load cases. The statistical models are based on simple and easily accessible mean wind speed and turbulence characteristics...

  16. Correlation dimension and phase space contraction via extreme value theory

    Science.gov (United States)

    Faranda, Davide; Vaienti, Sandro

    2018-04-01

    We show how to obtain theoretical and numerical estimates of correlation dimension and phase space contraction by using the extreme value theory. The maxima of suitable observables sampled along the trajectory of a chaotic dynamical system converge asymptotically to classical extreme value laws where: (i) the inverse of the scale parameter gives the correlation dimension and (ii) the extremal index is associated with the rate of phase space contraction for backward iteration, which in dimension 1 and 2, is closely related to the positive Lyapunov exponent and in higher dimensions is related to the metric entropy. We call it the Dynamical Extremal Index. Numerical estimates are straightforward to obtain as they imply just a simple fit to a univariate distribution. Numerical tests range from low dimensional maps, to generalized Henon maps and climate data. The estimates of the indicators are particularly robust even with relatively short time series.

  17. The PROMIS physical function correlates with the QuickDASH in patients with upper extremity illness.

    Science.gov (United States)

    Overbeek, Celeste L; Nota, Sjoerd P F T; Jayakumar, Prakash; Hageman, Michiel G; Ring, David

    2015-01-01

    To assess disability more efficiently with less burden on the patient, the National Institutes of Health has developed the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function-an instrument based on item response theory and using computer adaptive testing (CAT). Initially, upper and lower extremity disabilities were not separated and we were curious if the PROMIS Physical Function CAT could measure upper extremity disability and the Quick Disability of Arm, Shoulder and Hand (QuickDASH). We aimed to find correlation between the PROMIS Physical Function and the QuickDASH questionnaires in patients with upper extremity illness. Secondarily, we addressed whether the PROMIS Physical Function and QuickDASH correlate with the PROMIS Depression CAT and PROMIS Pain Interference CAT instruments. Finally, we assessed factors associated with QuickDASH and PROMIS Physical Function in multivariable analysis. A cohort of 93 outpatients with upper extremity illnesses completed the QuickDASH and three PROMIS CAT questionnaires: Physical Function, Pain Interference, and Depression. Pain intensity was measured with an 11-point ordinal measure (0-10 numeric rating scale). Correlation between PROMIS Physical Function and the QuickDASH was assessed. Factors that correlated with the PROMIS Physical Function and QuickDASH were assessed in multivariable regression analysis after initial bivariate analysis. There was a moderate correlation between the PROMIS Physical Function and the QuickDASH questionnaire (r=-0.55, p<0.001). Greater disability as measured with the PROMIS and QuickDASH correlated most strongly with PROMIS Depression (r=-0.35, p<0.001 and r=0.34, p<0.001 respectively) and Pain Interference (r=-0.51, p<0.001 and r=0.74, p<0.001 respectively). The factors accounting for the variability in PROMIS scores are comparable to those for the QuickDASH except that the PROMIS Physical Function is influenced by other pain conditions while the QuickDASH is

  18. Response of Simple, Model Systems to Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Rodney C. [Univ. of Michigan, Ann Arbor, MI (United States); Lang, Maik [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO2, GeO2, CeO2, TiO2, HfO2, SnO2, ZnO and ZrO2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphization of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.

  19. Extreme conditions (p, T, H)

    Energy Technology Data Exchange (ETDEWEB)

    Mesot, J [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    The aim of this paper is to summarize the sample environment which will be accessible at the SINQ. In order to illustrate the type of experiments which will be feasible under extreme conditions of temperature, magnetic field and pressure at the SINQ a few selected examples are also given. (author) 7 figs., 14 refs.

  20. Near-extreme system condition and near-extreme remaining useful time for a group of products

    International Nuclear Information System (INIS)

    Wang, Hai-Kun; Li, Yan-Feng; Huang, Hong-Zhong; Jin, Tongdan

    2017-01-01

    When a group of identical products is operating in field, the aggregation of failures is a catastrophe to engineers and customers who strive to develop reliable and safe products. In order to avoid a swarm of failures in a short time, it is essential to measure the degree of dispersion from different failure times in a group of products to the first failure time. This phenomenon is relevant to the crowding of system conditions near the worst one among a group of products. The group size in this paper represents a finite number of products, instead of infinite number or a single product. We evaluate the reliability of the product fleet from two aspects. First, we define near-extreme system condition and near-extreme failure time for offline solutions, which means no online observations. Second, we apply them to a continuous degradation system that breaks down when it reaches a soft failure threshold. By using particle filtering in the framework of prognostics and health management for a group of products, we aim to estimate near-extreme system condition and further predict the remaining useful life (RUL) using online solutions. Numerical examples are provided to demonstrate the effectiveness of the proposed method. - Highlights: • The aggregation of failures is measured for a group of identical products. • The crowding of failures is quantitated by the near-extreme evaluations. • Near-extreme system condition are given for offline solutions. • Near-extreme remaining useful time are provided for online solutions.

  1. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  2. Injuries in an Extreme Conditioning Program.

    Science.gov (United States)

    Aune, Kyle T; Powers, Joseph M

    2016-10-19

    Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occur to the shoulder and back. Cross-sectional study. Level 4. This is a retrospective survey of injuries reported by athletes participating in an ECP. An injury survey was sent to 1100 members of Iron Tribe Fitness, a gym franchise with 5 locations across Birmingham, Alabama, that employs exercises consistent with an ECP in this study. An injury was defined as a physical condition resulting from ECP participation that caused the athlete to either seek medical treatment, take time off from exercising, or make modifications to his or her technique to continue. A total of 247 athletes (22%) completed the survey. The majority (57%) of athletes were male (n = 139), and 94% of athletes were white (n = 227). The mean age of athletes was 38.9 years (±8.9 years). Athletes reported participation in the ECP for, on average, 3.6 hours per week (± 1.2 hours). Eighty-five athletes (34%) reported that they had sustained an injury while participating in the ECP. A total of 132 injuries were recorded, yielding an estimated incidence of 2.71 per 1000 hours. The shoulder or upper arm was the most commonly injured body site, accounting for 38 injuries (15% of athletes). Athletes with a previous shoulder injury were 8.1 times as likely to injure their shoulder in the ECP compared with athletes with healthy shoulders. The trunk, back, head, or neck (n = 29, 12%) and the leg or knee (n = 29, 12%) were the second most commonly injured sites. The injury incidence rate among athletes with study estimates the incidence of

  3. Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions.

    Science.gov (United States)

    Schwager, Monika; Johst, Karin; Jeltsch, Florian

    2006-06-01

    Recent theoretical studies have shown contrasting effects of temporal correlation of environmental fluctuations (red noise) on the risk of population extinction. It is still debated whether and under which conditions red noise increases or decreases extinction risk compared with uncorrelated (white) noise. Here, we explain the opposing effects by introducing two features of red noise time series. On the one hand, positive autocorrelation increases the probability of series of poor environmental conditions, implying increasing extinction risk. On the other hand, for a given time period, the probability of at least one extremely bad year ("catastrophe") is reduced compared with white noise, implying decreasing extinction risk. Which of these two features determines extinction risk depends on the strength of environmental fluctuations and the sensitivity of population dynamics to these fluctuations. If extreme (catastrophic) events can occur (strong noise) or sensitivity is high (overcompensatory density dependence), then temporal correlation decreases extinction risk; otherwise, it increases it. Thus, our results provide a simple explanation for the contrasting previous findings and are a crucial step toward a general understanding of the effect of noise color on extinction risk.

  4. Application of Electro Chemical Machining for materials used in extreme conditions

    Science.gov (United States)

    Pandilov, Z.

    2018-03-01

    Electro-Chemical Machining (ECM) is the generic term for a variety of electrochemical processes. ECM is used to machine work pieces from metal and metal alloys irrespective of their hardness, strength or thermal properties, through the anodic dissolution, in aerospace, automotive, construction, medical equipment, micro-systems and power supply industries. The Electro Chemical Machining is extremely suitable for machining of materials used in extreme conditions. General overview of the Electro-Chemical Machining and its application for different materials used in extreme conditions is presented.

  5. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology

    Directory of Open Access Journals (Sweden)

    Pabulo Henrique Rampelotto

    2010-06-01

    Full Text Available In the last decades, substantial changes have occurred regarding what scientists consider the limits of habitable environmental conditions. For every extreme environmental condition investigated, a variety of microorganisms have shown that not only can they tolerate these conditions, but that they also often require these extreme conditions for survival. Microbes can return to life even after hundreds of millions of years. Furthermore, a variety of studies demonstrate that microorganisms can survive under extreme conditions, such as ultracentrifugation, hypervelocity, shock pressure, high temperature variations, vacuums, and different ultraviolet and ionizing radiation intensities, which simulate the conditions that microbes could experience during the ejection from one planet, the journey through space, as well as the impact in another planet. With these discoveries, our knowledge about the biosphere has grown and the putative boundaries of life have expanded. The present work examines the recent discoveries and the principal advances concerning the resistance of microorganisms to extreme environmental conditions, and analyzes its contributions to the development of the main themes of astrobiology: the origins of life, the search for extraterrestrial life, and the dispersion of life in the Universe.

  6. Injuries in an Extreme Conditioning Program

    Science.gov (United States)

    Aune, Kyle T.; Powers, Joseph M.

    2016-01-01

    Background: Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. Hypothesis: The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occur to the shoulder and back. Study Design: Cross-sectional study. Level of Evidence: Level 4. Methods: This is a retrospective survey of injuries reported by athletes participating in an ECP. An injury survey was sent to 1100 members of Iron Tribe Fitness, a gym franchise with 5 locations across Birmingham, Alabama, that employs exercises consistent with an ECP in this study. An injury was defined as a physical condition resulting from ECP participation that caused the athlete to either seek medical treatment, take time off from exercising, or make modifications to his or her technique to continue. Results: A total of 247 athletes (22%) completed the survey. The majority (57%) of athletes were male (n = 139), and 94% of athletes were white (n = 227). The mean age of athletes was 38.9 years (±8.9 years). Athletes reported participation in the ECP for, on average, 3.6 hours per week (± 1.2 hours). Eighty-five athletes (34%) reported that they had sustained an injury while participating in the ECP. A total of 132 injuries were recorded, yielding an estimated incidence of 2.71 per 1000 hours. The shoulder or upper arm was the most commonly injured body site, accounting for 38 injuries (15% of athletes). Athletes with a previous shoulder injury were 8.1 times as likely to injure their shoulder in the ECP compared with athletes with healthy shoulders. The trunk, back, head, or neck (n = 29, 12%) and the leg or knee (n = 29, 12%) were the second most commonly injured sites. The

  7. QCD under extreme conditions: an informal discussion

    CERN Document Server

    Fraga, E.S.

    2015-05-22

    We present an informal discussion of some aspects of strong interactions un- der extreme conditions of temperature and density at an elementary level. This summarizes lectures delivered at the 2013 and 2015 CERN – Latin-American Schools of High-Energy Physics and is aimed at students working in experi- mental high-energy physics.

  8. Correlating Microbial Diversity Patterns with Geochemistry in an Extreme and Heterogeneous Environment of Mine Tailings

    Science.gov (United States)

    Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng

    2014-01-01

    Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions

  9. Safety analysis of casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao, L.; Voelzke, H.; Wolff, D.; Droste, B.

    2004-01-01

    The determination of the inherent safety of casks under extreme impact conditions has been of increasing interest since the terrorist attacks of 11 September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid-seal system. This can be caused, for example, by a direct aircraft crash (or just its engine) as well as by an impact due to the collapse of a building, e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and-with respect to leak-tightness-relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for finite-element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft or fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like the ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected. (author)

  10. Safety analysis of casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao Linan; Voelzke, H.; Wolff, D.; Droste, B.

    2004-01-01

    The determination of the inherent safety of casks also under extreme impact conditions has been of increasing interest since the terrorist attacks from 11th September 2001. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. One of the most critical scenarios for a cask is the centric impact of a dynamic load onto the lid seal system. This can be caused e.g. by direct aircraft crash or its engine as well as by an impact due to the collapse of a building e.g. a nuclear facility storage hall. In this context BAM is developing methods to calculate the deformation of cask components and - with respect to leak tightness - relative displacements between the metallic seals and their counterparts. This paper presents reflections on modelling of cask structures for Finite Element analyses and discusses calculated results of stresses and deformations. Another important aspect is the behaviour of a cask under a lateral impact by aircraft and fragments of a building. Examples of the kinetic reaction (cask acceleration due to the fragments, subsequent contact with neighbouring structures like ground, buildings or casks) are shown and discussed in correlation to cask stresses which are to be expected

  11. Physics of condensed matter at extreme conditions

    International Nuclear Information System (INIS)

    Ross, M.

    1988-01-01

    The study of matter under extreme conditions is a highly interdisciplinary subject with broad applications to materials science, geophysics and astrophysics. High-pressure properties are studied in the laboratory using static and dynamic techniques. The two differ drastically in the methods of generating and measuring pressure and in the fundamentally different nature of the final compressed state. This article covers a very broad range of conditions, intended to present an overview of important recent developments and to emphasize the behavior of materials and the kinds of properties now being studied

  12. Extreme electron correlation effects on the electric properties of atomic anions

    International Nuclear Information System (INIS)

    Canuto, S.

    1994-01-01

    The contribution of the electron correlation effects to the calculated dipole polarizability and hyper-polarizability of the first-row atomic anions is calculated and analyzed. It is shown that the total correlation contribution to the dipole hyperpolarizability is extremely large with the Hartree-Fock model accounting for only a small fraction of the accurate result. The linear and, more pronounced, the nonlinear response of atomic anions to the application of an electric field emphatically shows the effects of the correlated motion of the electrons

  13. The myoglobin of Emperor penguin (Aptenodytes forsteri): amino acid sequence and functional adaptation to extreme conditions.

    Science.gov (United States)

    Tamburrini, M; Romano, M; Giardina, B; di Prisco, G

    1999-02-01

    In the framework of a study on molecular adaptations of the oxygen-transport and storage systems to extreme conditions in Antarctic marine organisms, we have investigated the structure/function relationship in Emperor penguin (Aptenodytes forsteri) myoglobin, in search of correlation with the bird life style. In contrast with previous reports, the revised amino acid sequence contains one additional residue and 15 differences. The oxygen-binding parameters seem well adapted to the diving behaviour of the penguin and to the environmental conditions of the Antarctic habitat. Addition of lactate has no major effect on myoglobin oxygenation over a large temperature range. Therefore, metabolic acidosis does not impair myoglobin function under conditions of prolonged physical effort, such as diving.

  14. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    Science.gov (United States)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  15. Model of geophysical fields representation in problems of complex correlation-extreme navigation

    Directory of Open Access Journals (Sweden)

    Volodymyr KHARCHENKO

    2015-09-01

    Full Text Available A model of the optimal representation of spatial data for the task of complex correlation-extreme navigation is developed based on the criterion of minimum deviation of the correlation functions of the original and the resulting fields. Calculations are presented for one-dimensional case using the approximation of the correlation function by Fourier series. It is shown that in the presence of different geophysical map data fields their representation is possible by single template with optimal sampling without distorting the form of the correlation functions.

  16. Intramuscular vascular malformations of an extremity: findings on MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Kim, E.Y.; Ahn, J.M.; Yoon, H.K.; Do, Y.S.; Kim, S.H.; Choo, S.W.; Choo, I.W.; Suh, Y.L.; Kim, S.M.; Kang, H.S.

    1999-01-01

    Objective. To analyze the findings of intramuscular vascular malformations of an extremity on MR imaging and to correlate these findings with histopathologic examination.Design and patients. The findings on MR imaging and the medical records of 14 patients with an intramuscular vascular malformation of the extremity were retrospectively studied. All patients underwent surgical excision. Diagnoses were based on the results of pathologic examination. Findings on MR imaging were noted and correlated with the histopathologic findings.Results. Intramuscular vascular malformations of an extremity showed multi-septate, honeycomb, or mixed appearance on MR imaging. Multi-septate areas correlated with dilated and communicating vascular spaces with flattened endothelium. Honeycomb areas corresponded to vascular spaces with inconspicuous small lumina and thickened vascular walls. Areas of increased signal intensity on T2-weighted images were found in all intramuscular vascular malformations. Infiltrative margins were more commonly seen in intramuscular lymphaticovenous malformations. Adherence to neurovascular structures and orientation of the lesion along the long axis of the affected muscle were more commonly seen in intramuscular venous malformations.Conclusions. Intramuscular vascular malformations showed either a multi-septate, honeycomb, or mixed appearance, reflecting the size of the vascular spaces and the thickness of the smooth muscles of the vessel walls. Prediction of the subtype of an intramuscular vascular malformation of an extremity on MR imaging seems to be difficult, although there are associated findings that may be helpful in the differential diagnosis of each subtype. (orig.)

  17. Quantitative evaluation of the mitochondrial proteomes of Drosophila melanogaster adapted to extreme oxygen conditions.

    Directory of Open Access Journals (Sweden)

    Songyue Yin

    Full Text Available Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively, examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ. A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.

  18. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  19. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-08-07

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

  20. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Rymantas Kazys

    2015-08-01

    Full Text Available An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%.

  1. What are extreme environmental conditions and how do organisms cope with them?

    Directory of Open Access Journals (Sweden)

    John C. WINGFIELD, J. Patrick KELLEY, Frédéric ANGELIER

    2011-06-01

    Full Text Available Severe environmental conditions affect organisms in two major ways. The environment may be predictably severe such as in deserts, polar and alpine regions, or individuals may be exposed to temporarily extreme conditions through weather, presence of predators, lack of food, social status etc. Existence in an extreme environment may be possible, but then to breed or molt in addition can present major bottlenecks that have resulted in the evolution of hormone-behavior adaptations to cope with unpredictable events. Examples of hormone-behavior adaptations in extreme conditions include attenuated testosterone secretion because territoriality and excess courtship may be too costly when there is one opportunity to reproduce. The individual may even become insensitive to testosterone when target areas of the brain regulating reproductive behavior no longer respond to the hormone. A second example is reduced sensitivity to glucocorticoids following acute stress during the breeding season or molt that allows successful reproduction and/or a vital renewal of the integument to endure extreme conditions during the rest of the year. Reduced sensitivity could involve: (a modulated response of the hypothalamo-pituitary-adrenal axis, (b reduced sensitivity to high glucocorticoid levels, or (c a combination of (a and (b. Moreover, corticosteroid binding proteins (CBP buffer responses to stress by reducing the movement of glucocorticoids into target cells. Finally, intracellular enzymes (11b-hydroxysteroid dehydrogenase and variants can deactivate glucocorticoids entering cells thus reducing interaction with receptors. These mechanisms have important implications for climate change and increasing extremes of weather [Current Zoology 57 (3: 363–374, 2011].

  2. User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data

    Science.gov (United States)

    2018-04-01

    ARL-TN-0876 ● MAR 2018 US Army Research Laboratory User-Defined Meteorological (MET) Profiles from Climatological and Extreme...needed. Do not return it to the originator. ARL-TN-0876 ● MAR 2018 US Army Research Laboratory User-Defined Meteorological (MET...User-Defined Meteorological (MET) Profiles from Climatological and Extreme Condition Data 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  3. Proceedings of the second symposium on science of hadrons under extreme conditions

    International Nuclear Information System (INIS)

    Chiba, Satoshi

    2000-08-01

    The second symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on January 24 to 26, 2000. The symposium was devoted for discussions and presentations of research results in wide variety of fields such as nuclear matter, high-energy nuclear reactions, quantum chromodynamics, supernovae and nucleosynthesis to understand various aspects of hadrons under extreme conditions. The 26 of the presented papers are indexed individually. (J.P.N.)

  4. Behavior under Extreme Conditions: The Titanic Disaster

    OpenAIRE

    Bruno S. Frey; David A. Savage; Benno Torgler

    2011-01-01

    During the night of April 14, 1912, the RMS Titanic collided with an iceberg on her maiden voyage. Two hours and 40 minutes later she sank, resulting in the loss of 1,501 lives—more than two-thirds of her 2,207 passengers and crew. This remains one of the deadliest peacetime maritime disasters in history and by far the most famous. For social scientists, evidence about how people behaved as the Titanic sunk offers a quasi-natural field experiment to explore behavior under extreme conditions o...

  5. Distribution patterns of terricolous and saxicolous lichens in extreme desert conditions

    Science.gov (United States)

    Temina, M.

    2012-04-01

    The investigation of biodiversity in stressful habitats is of great interest because it elucidates relationships between organisms and their environment, as well as revealing the mechanisms of their survival and adaptation to extreme conditions. Deserts represent such stressful habitats where harsh climate and limited resources greatly influence the formation of biota. In order to understand the link between microscale environmental variability in extreme arid conditions and lichen biodiversity patterns, we conducted the present study. For this purpose, the structure and distribution of lichen communities on soil and cobbles at six stations at "Evolution Canyon" III (EC III), Nahal Shaharut, in the extreme southern Negev, Israel, were examined. The opposite slopes of the canyon represented specific ecological niches characterized by sharply different microclimatic conditions. The following characteristics of lichen communities were studied: species richness, systematic diversity, biogeographical elements, frequencies and distribution of species, their morphological and anatomical characteristics, reproductive strategy, and ecological peculiarities. In the research site three environmental variables were evaluated: soil moisture, and temperatures of soil and cobbles. The Canonical Correspondence Analysis was used to study the influence of these ecological variables on the distribution of lichen species. The lichen diversity of EC III was very poor and comprised 12 species (3 cyanoliches on soil vs. 9 phycolichens on cobbles). Most of them belong to a specific group of arid endemic elements, adapted to survive in extreme arid conditions in the deserts of the Levant. The harsh desert conditions of the canyon negatively influence the reproductive ability of lichens. This influence is expressed in the decreased sizes of fruit bodies in some species, and the frequent occurrence of sterile specimens among lichens found in the canyon. A comparative analysis of structure

  6. Human health implications of extreme precipitation events and water quality in California, USA: a canonical correlation analysis

    Directory of Open Access Journals (Sweden)

    Alexander Gershunov, PhD

    2018-05-01

    Full Text Available Background: Pathogens and pollutants collect on the land surface or in infrastructure between strong rainfall episodes and are delivered via storm runoff to areas of human exposure, such as coastal recreational waters. In California, USA, precipitation events are projected to become more extreme and simultaneously decrease in frequency as storm tracks move poleward due to polar-amplified global warming. Precipitation extremes in California are dominated by atmospheric rivers, which carry more moisture in warmer climates. Thus, the physical driver of extreme precipitation events is expected to grow stronger with climate change, and pollutant accumulation and runoff-generated exposure to those pollutants are expected to increase, particularly after prolonged dry spells. Microbiological contamination of coastal waters during winter storms exposes human populations to elevated concentrations of microorganisms such as faecal bacteria, which could cause gastrointestinal and ear infections, and lead to exposure to pathogens causing life-threatening conditions, such as hepatitis A. The aim of this study was to quantitatively assess the effect of precipitation on coastal water quality in California. Methods: We used a recently published catalogue of atmospheric rivers, in combination with historical daily precipitation data and levels of three indicators of faecal bacteria (total and faecal coliforms, and Escherichia coli detected at roughly 500 monitoring locations in coastal waters along California's 840-mile coastline, to explore weekly associations between extreme precipitation events, particularly those related to atmospheric rivers, and the variability in water quality during 2003–09. We identified ten principal components (together explaining >90% of the variability in precipitation and faecal bacteria time-series to reduce the dimensionality of the datasets. We then performed canonical correlation analysis of the principal components to

  7. Tolerances of microorganisms to extreme environmental conditions

    International Nuclear Information System (INIS)

    West, J.M.; Arme, S.C.

    1985-03-01

    Microbial isolates from sites relevant to the disposal of radioactive wastes have been subjected to extreme environmental conditions in order to ascertain their tolerance ability. Two groups were chosen, sulphate reducing bacteria and sulphur oxidising bacteria, because of their potential effects on waste containment. They have been subjected to high temperatures, pressures and radiation (delta-emissions) in optimal media conditions and their ability to tolerate the conditions has been ascertained by epifluorescence microscopy and adenosine tri-phosphate (ATP) analysis followed by 'culture-on' to assess post experimental viability. Results indicate that the sulphate reducers in general, are more tolerant to these conditions than the sulphur oxidisers, some proving to be thermophilic. The sulphate reducer showed increased growth rates, as determined by population numbers, at 50 0 C and survived at 80 0 C, 4,500 psig (310 bar) with no subsequent loss in viability. Gamma irradiation of this group and an isolate of 10 5 rad over 4 hours had no effect on population numbers or viability. Such resistances are not apparent with the sulphur oxidisers whose numbers decreased with increasing radiation dose and are destroyed with pressure. (author)

  8. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  9. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  10. Extreme conditions over Europe and North America: role of the Atlantic Multidecadal Variability

    Science.gov (United States)

    Ruprich-Robert, Yohan; Msadek, Rym; Delworth, Tom

    2016-04-01

    The Atlantic Multidecadal Variability (AMV) is the result and possibly the source of marked modulations of the climate over many areas of the globe. For instance, the relatively warm and dry climate of North America throughout the 30-yr interval of 1931-60, during which the Dust Bowl and the 1950's drought occurred, has been linked to the concomitant warm phase of the AMV. During this period relative warm and wet conditions prevailed over Europe. After 1960, the Atlantic began to cool, and for almost three decades the North American climate turned wetter and cooler whereas Europe experienced cooler and dryer conditions. However, the shortness of the historical observations compared to the AMV period suggested by longer proxy (~60-80yr) does not allow to firmly conclude on the causal effect of the AMV. We use a model approach to isolate the causal role of the AMV on the occurrence of extreme events over Europe and North America. We present experiments based on two GFDL global climate models, a low resolution version, CM2.1 and a higher resolution model for the atmospheric component, FLOR. In both model experiments sea surface temperatures in the North Atlantic sector are restored to the observed AMV pattern, while the other basins are left fully coupled. In order to explore and robustly isolate the AMV impacts on extreme events, we use large ensemble simulations (100 members for CM2.1 and 50 for FLOR) that we run for 20 years. We find that a positive phase of the AMV increases the frequency of occurrence of drought over North America and of extremely cold/warm conditions over Northern/Central Europe during winter/summer. Interestingly, we find that the AMV impacts on these extreme conditions are modulated by the Pacific response to the AMV itself. Members that develop a weak Pacific response show more extreme events over Europe whereas those that develop a strong Pacific response show more extreme events over North America.

  11. Investigating correlations between earthquakes and extreme eventsin self-potential data recorded in a seismicarea of Southestern Appennine Chain (Italy

    Directory of Open Access Journals (Sweden)

    V. Lapenna

    2004-06-01

    Full Text Available The Normalized Wavelet Cross-Correlation Function (NWCCF was used to study correlations between the series of extreme events in self-potential data and earthquakes, both modelled as stochastic point processes. This method gives objective results, robust to the presence of nonstationarities that often affect observational time series. Furthermore, the NWCCF identifies the timescales involved in the cross-correlated behaviour between two point processes. In particular, we analyzed the cross-correlation between the sequence of extreme events in selfpotential data measured at the monitoring station Tito, located in a seismic area of Southern Italy, and the series of earthquakes which occurred in the same area during 2001. To evaluate the influence of rain on the dynamics of geoelectrical variations, we applied the same approach between the selected extreme values and the rain data. We find that the anomalous geoelectrical values seem to cross-correlate with the rain at short and intermediate timescales (t< 500 h, while they significantly cross-correlate only with earthquakes (M = 2.5 at long timescales (t> 500 h.

  12. Wind simulation for extreme and fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Larsen, G.C.; Mann, J.; Ott, S.; Hansen, K.S.; Pedersen, B.J.

    2004-01-01

    Measurements of atmospheric turbulence have been studied and found to deviate from a Gaussian process, in particular regarding the velocity increments over small time steps, where the tails of the pdf are exponential rather than Gaussian. Principles for extreme event counting and the occurrence of cascading events are presented. Empirical extreme statistics agree with Rices exceedence theory, when it is assumed that the velocity and its time derivative are independent. Prediction based on the assumption that the velocity is a Gaussian process underpredicts the rate of occurrence of extreme events by many orders of magnitude, mainly because the measured pdf is non-Gaussian. Methods for simulation of turbulent signals have been developed and their computational efficiency are considered. The methods are applicable for multiple processes with individual spectra and probability distributions. Non-Gaussian processes are simulated by the correlation-distortion method. Non-stationary processes are obtained by Bezier interpolation between a set of stationary simulations with identical random seeds. Simulation of systems with some signals available is enabled by conditional statistics. A versatile method for simulation of extreme events has been developed. This will generate gusts, velocity jumps, extreme velocity shears, and sudden changes of wind direction. Gusts may be prescribed with a specified ensemble average shape, and it is possible to detect the critical gust shape for a given construction. The problem is formulated as the variational problem of finding the most probable adjustment of a standard simulation of a stationary Gaussian process subject to relevant event conditions, which are formulated as linear combination of points in the realization. The method is generalized for multiple correlated series, multiple simultaneous conditions, and 3D fields of all velocity components. Generalization are presented for a single non-Gaussian process subject to relatively

  13. EMA beamline at SIRIUS: extreme condition X-ray methods of analysis

    International Nuclear Information System (INIS)

    Souza Neto, Narcizo

    2016-01-01

    Full text: The EMA beamline (Extreme condition X-ray Methods of Analysis) is one of the hard x-ray undulator beamlines within the first phase of the new synchrotron source in Brazil (Sirius project). This beamline is thought to make a difference where a high brilliance (high flux of up to 2 x 10 14 photons/sec with beam size down to 0.5 x 0.5 μm 2 ) is essential, which is the case for extreme pressures that require small focus and time-resolved that require high photon flux. With that in mind we propose the beamline to have two experimental hutches to cover most of the extreme condition techniques today employed at synchrotron laboratories worldwide. These two stations are thought to provide the general infrastructure for magnets and lasers experiments, which may evolve as new scientific problems appear. In addition to the hutches, support laboratories will be strongly linked and supportive to the experiments at the beamline, covering high pressure instrumentations using diamond anvil cells and pump-and-probe requirements for ultrafast and high power lasers. Along these lines, we will describe the following techniques covered at this beamline: magnetic spectroscopy (XMCD) and scattering (XRMS) under high pressure and very low temperature in order to fully probe both ferromagnetic and antiferromagnetic materials and the dependence with pressure; extreme pressure and temperature XRD and XAS experiments using very small diamond culet anvils and high power lasers. (author)

  14. EMA beamline at SIRIUS: extreme condition X-ray methods of analysis

    Energy Technology Data Exchange (ETDEWEB)

    Souza Neto, Narcizo, E-mail: narcizo.souza@lnls.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil)

    2016-07-01

    Full text: The EMA beamline (Extreme condition X-ray Methods of Analysis) is one of the hard x-ray undulator beamlines within the first phase of the new synchrotron source in Brazil (Sirius project). This beamline is thought to make a difference where a high brilliance (high flux of up to 2 x 10{sup 14} photons/sec with beam size down to 0.5 x 0.5 μm{sup 2}) is essential, which is the case for extreme pressures that require small focus and time-resolved that require high photon flux. With that in mind we propose the beamline to have two experimental hutches to cover most of the extreme condition techniques today employed at synchrotron laboratories worldwide. These two stations are thought to provide the general infrastructure for magnets and lasers experiments, which may evolve as new scientific problems appear. In addition to the hutches, support laboratories will be strongly linked and supportive to the experiments at the beamline, covering high pressure instrumentations using diamond anvil cells and pump-and-probe requirements for ultrafast and high power lasers. Along these lines, we will describe the following techniques covered at this beamline: magnetic spectroscopy (XMCD) and scattering (XRMS) under high pressure and very low temperature in order to fully probe both ferromagnetic and antiferromagnetic materials and the dependence with pressure; extreme pressure and temperature XRD and XAS experiments using very small diamond culet anvils and high power lasers. (author)

  15. Wireless pilot monitoring system for extreme race conditions.

    Science.gov (United States)

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  16. Triticale in the years with extreme weather conditions

    Directory of Open Access Journals (Sweden)

    Nožinić Miloš

    2009-01-01

    Full Text Available Unlike other grain crops, the area under triticale in the Republic of Srpska has been expanding every year. Since the introduction of this plant species in the broad production began a few years ago, the finding of the optimal variety agrotechnique in different environmental conditions has great importance. This paper deals with the results of the trials from seven locations in two very extreme vegetation seasons (2002/03, 2006/07. High yield of triticale on the location Banja Luka (150 m alt. with five triticale varieties in four sowing rates in the replication trial in very unfavorable weather conditions in 2003, points to emphasized triticale tolerance to high temperatures and drought. High grain yield of triticale in the trials on the locations Banja Luka, Butmir (460 m alt. and Živince (230 m alt. was obtained in 2007 too, when all vegetation months had higher mean temperature than long term average, what is a unique appearance in the entire 'meteorological history'. In the paper the appearance of the earliest triticale heading is described and explained. It happened at one production trial on Manjača (250 m alt. in the first decade of March in 2007. On the another location on Manjača (450 m alt., in the macrotrial, rye showed much higher tolerance to extreme soil acidity, than triticale. Obtained results and unusual appearances on triticale are helpful for the further research of the stability and adaptability of more important triticale traits. .

  17. The near-term prediction of drought and flooding conditions in the northeastern United States based on extreme phases of AMO and NAO

    Science.gov (United States)

    Berton, Rouzbeh; Driscoll, Charles T.; Adamowski, Jan F.

    2017-10-01

    A series of hydroclimatic teleconnection patterns were identified between variations in either Atlantic or Pacific oceanic indices with precipitation and discharge anomalies in the northeastern United States. We hypothesized that temporal annual or seasonal changes in discharge could be explained by variations in extreme phases of the Atlantic Multi-decadal Oscillation (AMO index, SST: Sea Surface Temperature anomalies) and the North Atlantic Oscillation (NAO index, SLP: Sea-Level Pressure anomalies) up to three seasons in advance. The Merrimack River watershed, the fourth largest basin in New England, with a drainage area of 13,000 km2, is a compelling study site because it not only provides an opportunity to investigate the teleconnection between hydrologic variables and large-scale climate circulation patterns, but also how those patterns may become obscured by anthropogenic disturbances such as river regulation or urban development. We considered precipitation and discharge data of 21 gauging stations within the Merrimack River watershed, including the Hubbard Brook Experimental Forest (HBEF), NH, with a median record length of 55 years beginning as early as 1904. The discharge anomalies were statistically significant (p-value ≤ 0.2) between extreme positive and negative phases of AMO (1857-2011) and NAO (1900-2011) and revealed the potential teleconnectivity of climate circulation patterns with discharge. Annual and seasonal correlations of discharge were examined with the extreme phases of AMO and NAO at zero-, one-, or two- year/season lags (total of 30 scenarios). When AMO was greater than 0.2, the strongest correlations of AMO and NAO with discharge were observed at headwater catchments. This correlation weakened downstream towards larger regulated and/or developed sub-basins. We introduced a simple approach for near-term prediction of drought and flooding events. An exponential decay function was regressed through the historic occurrence of the relative

  18. Total and Lower Extremity Lean Mass Percentage Positively Correlates With Jump Performance.

    Science.gov (United States)

    Stephenson, Mitchell L; Smith, Derek T; Heinbaugh, Erika M; Moynes, Rebecca C; Rockey, Shawn S; Thomas, Joi J; Dai, Boyi

    2015-08-01

    Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18-35 years, 28 middle-aged participants aged 36-55 years, and 34 older participants aged 56-75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.

  19. Weak diffusion limits of dynamic conditional correlation models

    DEFF Research Database (Denmark)

    Hafner, Christian M.; Laurent, Sebastien; Violante, Francesco

    The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized...... by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered...

  20. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions

    International Nuclear Information System (INIS)

    Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.; Zawislak, F. C.; Oliviero, E.; Fichtner, P. F. P.

    2016-01-01

    The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems under extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors

  1. Conditional Correlation Models of Autoregressive Conditional Heteroskedasticity with Nonstationary GARCH Equations

    DEFF Research Database (Denmark)

    Amado, Cristina; Teräsvirta, Timo

    -run and the short-run dynamic behaviour of the volatilities. The structure of the conditional correlation matrix is assumed to be either time independent or to vary over time. We apply our model to pairs of seven daily stock returns belonging to the S&P 500 composite index and traded at the New York Stock Exchange......In this paper we investigate the effects of careful modelling the long-run dynamics of the volatilities of stock market returns on the conditional correlation structure. To this end we allow the individual unconditional variances in Conditional Correlation GARCH models to change smoothly over time...... by incorporating a nonstationary component in the variance equations. The modelling technique to determine the parametric structure of this time-varying component is based on a sequence of specification Lagrange multiplier-type tests derived in Amado and Teräsvirta (2011). The variance equations combine the long...

  2. Predicting volatility and correlations with Financial Conditions Indexes

    NARCIS (Netherlands)

    Opschoor, A.; van Dijk, D.; van der Wel, M.

    2014-01-01

    We model the impact of financial conditions on asset market volatilities and correlations. We extend the Spline-GARCH model for volatility and DCC model for correlation to allow for inclusion of indexes that measure financial conditions. In our empirical application we consider daily stock returns

  3. Predicting Volatility and Correlations with Financial Conditions Indexes

    NARCIS (Netherlands)

    A. Opschoor (Anne); D.J.C. van Dijk (Dick); M. van der Wel (Michel)

    2014-01-01

    textabstractWe model the impact of financial conditions on asset market volatilities and correlations. We extend the Spline-GARCH model for volatility and DCC model for correlation to allow for inclusion of indexes that measure financial conditions. In our empirical application we consider daily

  4. Proceedings of the third symposium on science of hadrons under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The third symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on January 29 to 31, 2001. The symposium was devoted for discussions and presentations of research results in wide variety of hadron physics such as nuclear matter, high-energy nuclear reactions, quantum chromodynamics, neutron stars, supernovae, nucleosynthesis as well as finite nuclei to understand various aspects of hadrons under extreme conditions. Twenty two papers on these topics presented at the symposium, including a special talk on the present status of JAERI-KEK joint project on high-intensity proton accelerator, aroused lively discussions among approximately 40 participants. The 20 of the presented papers are indexed individually. (J.P.N.)

  5. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  6. Random Sampling of Correlated Parameters – a Consistent Solution for Unfavourable Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Žerovnik, G., E-mail: gasper.zerovnik@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Trkov, A. [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria); Kodeli, I.A. [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Capote, R. [International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria); Smith, D.L. [Argonne National Laboratory, 1710 Avenida del Mundo, Coronado, CA 92118-3073 (United States)

    2015-01-15

    Two methods for random sampling according to a multivariate lognormal distribution – the correlated sampling method and the method of transformation of correlation coefficients – are briefly presented. The methods are mathematically exact and enable consistent sampling of correlated inherently positive parameters with given information on the first two distribution moments. Furthermore, a weighted sampling method to accelerate the convergence of parameters with extremely large relative uncertainties is described. However, the method is efficient only for a limited number of correlated parameters.

  7. Modelling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new Double Smooth Transition Conditional Correlation GARCH model extends the Smooth Transition Conditional Correlation GARCH model of Silvennoinen and Ter¨asvirta (2005) by including...... another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition......, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. The model is applied to a selection of world stock indices, and it is found that time is an important factor affecting...

  8. Proceedings of the workshop on scattering experiments under extreme conditions

    International Nuclear Information System (INIS)

    Sakai, N.; Ikeda, H.; Ando, M.

    1991-10-01

    In the National Laboratory for High Energy Physics (KEK), as the research facilities, there are Photon Factory, the facility for utilizing the booster and University of Tokyo Meson Science Research Center. For the research on physical properties, it is very important to do structural analysis in a broad sense and to observe the behavior of quasiparticles in solids. The X-ray and pulsed neutrons required for these researches can be obtained in a single laboratory in KEK, and it is rare in the world. At this opportunity of the workshop on scattering experiments under extreme conditions, it is hoped that the positive interchange between both PF and booster groups will be carried out. The research on magnetic substances using X-ray is a most noteworthy utilization of synchrotron radiation. The discovery of X-ray resonance magnetic scattering by K. Namikawa is one of the remarkable researches using synchrotron radiation in the world. When the extreme conditions around samples are prepared, the quality of signals for the research on physical properties is to be heightened. In this report, the researches on physical properties under ultrahigh pressure and ultralow temperature are reported. (K.I.)

  9. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  10. MRI findings of neurilemmoma of the extremities: Pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Choong Gon; Kang, Heung Sik; Kim, Joo Wan; Kim, Ho Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of); Suh, Kyung Jin [Kyungpook Natioanl University College of Medicine, Daegu (Korea, Republic of); Song, Chi Sung [Seoul City Boramae Hospital, Seoul (Korea, Republic of)

    1993-07-15

    Neurilemmomas of the extremities are nerve sheath tumors involving peripheral nerves of the extremities. We analyzed MR images of 16 surgically proved tumors in 12 patients and compared the MR images with gross pathologic specimens in two tumors (2/16). Spin echo T1-weighted images were obtained in all the patients but T2-weighted images were obtained in six patients with a gradient echo technique. Gadolinium dimeglumine enhanced T1-weighted images were obtained in 11 patients (15/16). Signal on T1-weighted images was iso or slightly higher than that of the adjacent muscles. Signal on T2-weighted images ranged from homogeneous high to heterogeneous. After Gadolinium injection, all the 15 tumors showed enhancement. Small sized tumors were enhanced homogeneously but there was a tendency to be enhanced heterogeneously to the central portion with peripheral rim enhancement as the size of the tumors increased. Pathologically, the enhanced portion was correlated the with solid portion of the tumors. Also encapsulation of the mass (12/16), suspended nerve strings (9/16) and bony erosion(1/16) were detected. MR characteristics of neurilemmoma include heterogeneity on enhanced T1 and T2 weighted images, encapsulation, and suspended nerve strings. Signal heterogeneity on enhanced T1 and T2 weighted images may be attributed to the variable cellularity, cystic changes, vascularity and focal hemorrhage of the tumors.

  11. MRI findings of neurilemmoma of the extremities: Pathologic correlation

    International Nuclear Information System (INIS)

    Choi, Choong Gon; Kang, Heung Sik; Kim, Joo Wan; Kim, Ho Chul; Suh, Kyung Jin; Song, Chi Sung

    1993-01-01

    Neurilemmomas of the extremities are nerve sheath tumors involving peripheral nerves of the extremities. We analyzed MR images of 16 surgically proved tumors in 12 patients and compared the MR images with gross pathologic specimens in two tumors (2/16). Spin echo T1-weighted images were obtained in all the patients but T2-weighted images were obtained in six patients with a gradient echo technique. Gadolinium dimeglumine enhanced T1-weighted images were obtained in 11 patients (15/16). Signal on T1-weighted images was iso or slightly higher than that of the adjacent muscles. Signal on T2-weighted images ranged from homogeneous high to heterogeneous. After Gadolinium injection, all the 15 tumors showed enhancement. Small sized tumors were enhanced homogeneously but there was a tendency to be enhanced heterogeneously to the central portion with peripheral rim enhancement as the size of the tumors increased. Pathologically, the enhanced portion was correlated the with solid portion of the tumors. Also encapsulation of the mass (12/16), suspended nerve strings (9/16) and bony erosion(1/16) were detected. MR characteristics of neurilemmoma include heterogeneity on enhanced T1 and T2 weighted images, encapsulation, and suspended nerve strings. Signal heterogeneity on enhanced T1 and T2 weighted images may be attributed to the variable cellularity, cystic changes, vascularity and focal hemorrhage of the tumors

  12. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  13. Correlation between Space and Atmospheric March 2012 Extreme Events

    Science.gov (United States)

    Anagnostopoulos, Georgios C.

    2015-04-01

    Previous studies have provided statistical evidence of a solar cycle correlation between space weather and meteorological phenomena. In this study we present a case study, the March 2012 events, with a strong evidence of such a correlation between space and atmospheric extreme events. March 2012 phenomena, beside a great CME (March 7) and a following superstorm, has been most known in the scientific community as well as in the public from the historic heat wave in USA. This event was not anticipated by solely atmospheric models (called a "black swan event":http://www.esrl.noaa.gov/psd/csi/events/2012/marchheatwave/anticipation.html). Furthermore, various extreme phenomena as high temperatures, intense rainfalls and ice extent at middle and high latitudes followed the March 7, 2012 CME all over the globe (USA, Europe, Australia, Antartic), while unusual measurements of various atmospheric and ionospheric quantities were observed by a series of satellites (TIMED, MODIS, NOAA etc.) In this study we concentrate to (a) the unusual high maximum of temperature in north-east USA (highest values since 1910) and (b) intense winds, rainfalls and fluctuating (>1500 V/m) geolectric fields in South East Europe (Greece). These events were observed almost simultaneously with geomagnetic storms and unusual radiation belt electron precipitation (RBEP) events on days 6-9, 10-12 and 26-28.3.2012 (two CMEs and one CIR). The most striking result is the time coincidence of variations of several space and meteorological measurements, which, for instance, most probably suggests a direct influence of the RBEP on the intense rainfalls observed in Greece. It is also possible that the RBEP at polar latitudes was responsible for the positive North Atlantic Oscillation effect evaluated at those times, which contributed to the global middle and high latitude weather variations. Our study provides an example of possible space weather utility to the atmospheric models, and, therefore, to the

  14. Global characteristics of extreme winters from a multi-millennial simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, PO Box 1, Aspendale (Australia)

    2011-10-15

    Output from a multi-millennial simulation with the CSIRO Mark 2 coupled global climatic model has been analysed to determine the principal characteristics of extreme winters over the globe for ''present conditions''. Thus, this study is not concerned with possible changes in winter conditions associated with anthropogenically induced climatic change. Defining an extreme winter as having a surface temperature anomaly of below -2 standard deviations (sd) revealed a general occurrence rate over the globe of between 100 and 200 over a 6,000-year period of the simulation, with somewhat higher values over northwest North America. For temperature anomalies below -3 sd the corresponding occurrence rate drops to about 10. Spatial correlation studies revealed that extreme winters over regions in Europe, North America or Asia were very limited geographically, with time series of the surface temperature anomalies for these regions having mutual correlation coefficients of about 0.2. The temporal occurrence rates of winters (summers) having sd below -3 (above +3) were very asymmetric and sporadic, suggesting that such events arise from stochastic influences. Multi-year sequences of extreme winters were comparatively rare events. Detailed analysis revealed that the temporal and spatial evolution of the monthly surface temperature anomalies associated with an individual extreme winter were well replicated in the simulation, as were daily time series of such anomalies. Apart from an influence of the North Atlantic Oscillation on extreme winters in Europe, other prominent climatic oscillations were very poorly correlated with such winters. Rather modest winter temperature anomalies were found in the southern hemisphere. (orig.)

  15. Effective interactions for extreme isospin conditions; Interactions effectives pour des conditions extremes d`isospin

    Energy Technology Data Exchange (ETDEWEB)

    Chabanat, E.

    1995-01-01

    One of the main goal in nuclear physics research is the study of nuclei in extreme conditions of spin and isospin. The more performing tools for theoretical predictions in this field are microscopic methods such as the Hartree-Fock one based on independent particle approximation. The main ingredient for such an approach is the effective nucleon-nucleon interaction. The actual trend being the study of nuclei more and more far from the stability valley, it is necessary to cast doubt over the validity of usual effective interaction. This work constitute a study on the way one can construct a new interaction allowing some theoretical predictions on nuclei far from the stability. We have thus made a complete study of symmetric infinite nuclear matter and asymmetric one up to pure neutron matter. One shows that the asymmetry coefficient, which was considered until now as fixing isospin properties, is not sufficient to have a correct description of very exotic isospin states. A new type of constraint is shown for fixing this degree of freedom: the neutron matter equation of state. One include this equation of state, taken from a theoretical model giving a good description of radii and masses of neutron stars. One can thus expect to build up new Skyrme interaction with realistic properties of ground state of very neutron-rich nuclei. (author). 63 refs., 68 figs., 15 tabs.

  16. Organizing of medical ensurance of human population under extreme conditions. Summaries of reports of scientific-practical conference

    International Nuclear Information System (INIS)

    1994-01-01

    Summary of reports are presented of Scientific-Practical conference on the organizing of medical ensurance of human population under extreme conditions including radiation accidents. The conference held in Moscow in October, 1994. It covered problems of organizing medical ensurance of population, medical surveillance problems, sanitary-hygienic and epidemiological problems (including radiation protection), and medical provision problems under extreme conditions

  17. Influence of the emotional state on behavior in extreme conditions of competitive sports activities

    Directory of Open Access Journals (Sweden)

    V.A. Malakhov

    2014-04-01

    Full Text Available Purpose : establish a communication pattern of emotional intensity and level of extreme environment in which activity is performed. Materials : in the study involved 600 men aged 18-22 years. Results : the effect of the emotional state on the efficiency of the motor activity that flowed under extreme conditions. Set individual characteristics flow sports activities in extreme conditions. First used in the special semantic space for the orderly presentation of research results parachute jumps. The monogram built in semantic fields allows to establish the frequency response range of individual heartbeats and the optimal frequency for maximum performance. On the basis of established regularities of the "reflex of readiness" assessment methodology given emotional stress, which reflects the readiness of an individual to perform a parachute jump. An objective indicator of preparedness measures is a violation of the symmetry of the flow and haptic reflex and serial dynamometry. Conclusions : in using semantic spaces reflects the flowing of reflex of biological caution and accompaniment reflex. In the basis of constructing estimates of emotional stress are the regularities of mean arterial pressure as nonspecific reactions. Measure of extent of confused is estimated by variability of accompaniment reflex. Breach of symmetry in mean arterial pressure and the amplitude - frequency response accompaniment reflex, determine the validity of staying in extreme conditions. Introduction of the measure in using semantic spaces allows by selective data to establish the overall structure of the studied process.

  18. Influence of the emotional state on behavior in extreme conditions of competitive sports activities

    Directory of Open Access Journals (Sweden)

    Malakhov V.A.

    2014-03-01

    Full Text Available Purpose : establish a communication pattern of emotional intensity and level of extreme environment in which activity is performed. Materials : in the study involved 600 men aged 18-22 years. Results : the effect of the emotional state on the efficiency of the motor activity that flowed under extreme conditions. Set individual characteristics flow sports activities in extreme conditions. First used in the special semantic space for the orderly presentation of research results parachute jumps. The monogram built in semantic fields allows to establish the frequency response range of individual heartbeats and the optimal frequency for maximum performance. On the basis of established regularities of the "reflex of readiness" assessment methodology given emotional stress, which reflects the readiness of an individual to perform a parachute jump. An objective indicator of preparedness measures is a violation of the symmetry of the flow and haptic reflex and serial dynamometry. Conclusions : in using semantic spaces reflects the flowing of reflex of biological caution and accompaniment reflex. In the basis of constructing estimates of emotional stress are the regularities of mean arterial pressure as nonspecific reactions. Measure of extent of confused is estimated by variability of accompaniment reflex. Breach of symmetry in mean arterial pressure and the amplitude - frequency response accompaniment reflex, determine the validity of staying in extreme conditions. Introduction of the measure in using semantic spaces allows by selective data to establish the overall structure of the studied process.

  19. Improving multisensor estimation of heavy-to-extreme precipitation via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Kim, Beomgeun; Seo, Dong-Jun; Noh, Seong Jin; Prat, Olivier P.; Nelson, Brian R.

    2018-01-01

    A new technique for merging radar precipitation estimates and rain gauge data is developed and evaluated to improve multisensor quantitative precipitation estimation (QPE), in particular, of heavy-to-extreme precipitation. Unlike the conventional cokriging methods which are susceptible to conditional bias (CB), the proposed technique, referred to herein as conditional bias-penalized cokriging (CBPCK), explicitly minimizes Type-II CB for improved quantitative estimation of heavy-to-extreme precipitation. CBPCK is a bivariate version of extended conditional bias-penalized kriging (ECBPK) developed for gauge-only analysis. To evaluate CBPCK, cross validation and visual examination are carried out using multi-year hourly radar and gauge data in the North Central Texas region in which CBPCK is compared with the variant of the ordinary cokriging (OCK) algorithm used operationally in the National Weather Service Multisensor Precipitation Estimator. The results show that CBPCK significantly reduces Type-II CB for estimation of heavy-to-extreme precipitation, and that the margin of improvement over OCK is larger in areas of higher fractional coverage (FC) of precipitation. When FC > 0.9 and hourly gauge precipitation is > 60 mm, the reduction in root mean squared error (RMSE) by CBPCK over radar-only (RO) is about 12 mm while the reduction in RMSE by OCK over RO is about 7 mm. CBPCK may be used in real-time analysis or in reanalysis of multisensor precipitation for which accurate estimation of heavy-to-extreme precipitation is of particular importance.

  20. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    Science.gov (United States)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  1. Flood protection diversification to reduce probabilities of extreme losses.

    Science.gov (United States)

    Zhou, Qian; Lambert, James H; Karvetski, Christopher W; Keisler, Jeffrey M; Linkov, Igor

    2012-11-01

    Recent catastrophic losses because of floods require developing resilient approaches to flood risk protection. This article assesses how diversification of a system of coastal protections might decrease the probabilities of extreme flood losses. The study compares the performance of portfolios each consisting of four types of flood protection assets in a large region of dike rings. A parametric analysis suggests conditions in which diversifications of the types of included flood protection assets decrease extreme flood losses. Increased return periods of extreme losses are associated with portfolios where the asset types have low correlations of economic risk. The effort highlights the importance of understanding correlations across asset types in planning for large-scale flood protection. It allows explicit integration of climate change scenarios in developing flood mitigation strategy. © 2012 Society for Risk Analysis.

  2. Macroeconomic determinants of conditional stock-bond correlation ...

    African Journals Online (AJOL)

    The study focuses on the dependence of stock-bond returns correlation on inflation and interest rate, and attempts to explain conditional stock-bond correlation using the argument that these variables' effects change based on levels of their volatilities as suggested by rational present value asset pricing theory, rather than ...

  3. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2016-07-01

    Full Text Available The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2On after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects.

  4. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Science.gov (United States)

    Li, Zheng; Vendrell, Oriol

    2016-01-01

    The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects. PMID:26798842

  5. Life under Multiple Extreme Conditions: Diversity and Physiology of the Halophilic Alkalithermophiles

    Science.gov (United States)

    Wiegel, Juergen

    2012-01-01

    Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth. PMID:22492435

  6. "On-off-on" switchable sensor: a fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications.

    Science.gov (United States)

    Wan, Shulin; Zheng, Yang; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2014-11-26

    A novel spiropyran that responds to both extreme acid and extreme alkali and has an "on-off-on" switch is reported. Benzoic acid at the indole N-position and carboxyl group at the indole 6-position contribute to the extreme acid response. The ionizations of carboxyl and phenolic hydroxyl groups cause the extreme alkali response. Moreover, the fluorescent imaging in bacterial cells under extreme pH conditions supports the mechanism of pH response.

  7. The extreme condition analyzing for NEMPI shielding of electronic system in high-intensity pulsed radiation diagnosing

    International Nuclear Information System (INIS)

    Cheng Xiaolei; Liu Fang; Ouyang Xiaoping

    2012-01-01

    The difficulty for estimating the NEMPI (electromagnetic pulsed interference caused by the nuclear reaction) on the electronic system in high-intensity pulsed radiation diagnosing is analyzed in this article. To solve the difficulty, a method called 'Extreme Condition Analyzing' is presented for estimating the NEMPI conservatively and reliably. Through an extreme condition hypothesizing which could be described as 'Entire Coupling of Electric Field Energy', the E max (maximum electric field intensity which could be endured by the electronic system in the high-intensity pulsed radiation) could be figured out without any other information of the EMP caused by the nuclear reaction. Then a feasibility inspection is introduced, to confirm that the EMPI shielding request according to E max is not too extreme to be achieved. (authors)

  8. Financialization, Crisis and Commodity Correlation Dynamics

    OpenAIRE

    Annastiina Silvennoinen; Susan Thorp

    2010-01-01

    We study bi-variate conditional volatility and correlation dynamics for individual commodity futures and financial assets from May 1990-July 2009 using DSTCC-GARCH (Silvennoinen and Terasvirta 2009). These models allow correlation to vary smoothly between extreme states via transition functions driven by indicators of market conditions. Expected stock volatility and money manager open interest in futures markets are relevant transition variables. Results point to increasing integration betwee...

  9. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions

    Directory of Open Access Journals (Sweden)

    Serge Suanez

    2015-07-01

    Full Text Available Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France over the past decade (2004–2014 has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i astronomic tide; (ii storm surge; and (iii vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL data sets obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo and field runup measurements (Rmax was obtained (R2 85%. The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.

  10. Molecular Mechanisms of Survival Strategies in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Federica Migliardo

    2012-12-01

    Full Text Available Today, one of the major challenges in biophysics is to disclose the molecular mechanisms underlying biological processes. In such a frame, the understanding of the survival strategies in extreme conditions received a lot of attention both from the scientific and applicative points of view. Since nature provides precious suggestions to be applied for improving the quality of life, extremophiles are considered as useful model-systems. The main goal of this review is to present an overview of some systems, with a particular emphasis on trehalose playing a key role in several extremophile organisms. The attention is focused on the relation among the structural and dynamic properties of biomolecules and bioprotective mechanisms, as investigated by complementary spectroscopic techniques at low- and high-temperature values.

  11. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  12. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    Science.gov (United States)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  13. Mean versus extreme climate in the Mediterranean region and its sensitivity to future global warming conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, H.; Hense, A. [Meteorological Inst., Univ. Bonn (Germany)

    2005-06-01

    The Mediterranean region (MTR) has been supposed to be very sensitive to changes in land surface and atmospheric greenhouse-gas (GHG) concentrations. Particularly, an intensification of climate extremes may be associated with severe socio-economic implications. Here, we present an analysis of climate mean and extreme conditions in this subtropical area based on regional climate model experiments, simulating the present-day and possible future climate. The analysis of extreme values (EVs) is based on the assumption that the extremes of daily precipitation and near-surface temperature are well fitted by the Generalized Pareto distribution (GPD). Return values of extreme daily events are determined using the method of L-moments. Particular emphasis is laid on the evaluation of the return values with respect to the uncertainty range of the estimate as derived from a Monte Carlo sampling approach. During the most recent 25 years the MTR has become dryer in spring but more humid especially in the western part in autumn and winter. At the same time, the whole region has been subject to a substantial warming. The strongest rainfall extremes are simulated in autumn over the Mediterranean Sea around Italy. Temperature extremes are most pronounced over the land masses, especially over northern Africa. Given the large uncertainty of the EV estimate, only 1-year return values are further analysed. During recent decades, statistically significant changes in extremes are only found for temperature. Future climate conditions may come along with a decrease in mean and extreme precipitation during the cold season, whereas an intensification of the hydrological cycle is predicted in summer and autumn. Temperature is predominantly affected over the Iberian Peninsula and the eastern part of the MTR. In many grid boxes, the signals are blurred out due to the large amount of uncertainty in the EV estimate. Thus, a careful analysis is required when making inferences about the future

  14. Eddy correlation measurements in wet environmental conditions

    Science.gov (United States)

    Cuenca, R. H.; Migliori, L.; O Kane, J. P.

    2003-04-01

    The lower Feale catchment is a low-lying peaty area of 200 km^2 situated in southwest Ireland that is subject to inundation by flooding. The catchment lies adjacent to the Feale River and is subject to tidal signals as well as runoff processes. Various mitigation strategies are being investigated to reduce the damage due to flooding. Part of the effort has required development of a detailed hydrologic balance for the study area which is a wet pasture environment with local field drains that are typically flooded. An eddy correlation system was installed in the summer of 2002 to measure components of the energy balance, including evapotranspiration, along with special sensors to measure other hydrologic variables particular to this study. Data collected will be essential for validation of surface flux models to be developed for this site. Data filtering is performed using a combination of software developed by the Boundary-Layer Group (BLG) at Oregon State University together with modifications made to this system for conditions at this site. This automated procedure greatly reduces the tedious inspection of individual records. The package of tests, developed by the BLG for both tower and aircraft high frequency data, checks for electronic spiking, signal dropout, unrealistic magnitudes, extreme higher moment statistics, as well as other error scenarios not covered by the instrumentation diagnostics built into the system. Critical parameter values for each potential error were developed by applying the tests to real fast response turbulent time series. Potential instrumentation problems, flux sampling problems, and unusual physical situations records are flagged for removal or further analysis. A final visual inspection step is required to minimize rejection of physically unusual but real behavior in the time series. The problems of data management, data quality control, individual instrumentation sensitivity, potential underestimation of latent and sensible heat

  15. Life at extreme conditions: neutron scattering studies of biological molecules suggest that evolution selected dynamics

    International Nuclear Information System (INIS)

    Zaccai, Joseph Giuseppe

    2008-01-01

    The short review concentrates on recent work performed at the neutrons in biology laboratories of the Institut Laue Langevin and Institut de Biologie Structurale in Grenoble. Extremophile organisms have been discovered that require extreme conditions of temperature, pressure or solvent environment for survival. The existence of such organisms poses a significant challenge in understanding the physical chemistry of their proteins, in view of the great sensitivity of protein structure and stability to the aqueous environment and to external conditions in general. Results of neutron scattering measurements on the dynamics of proteins from extremophile organisms, in vitro as well as in vivo, indicated remarkably how adaptation to extreme conditions involves forces and fluctuation amplitudes that have been selected specifically, suggesting that evolutionary macromolecular selection proceeded via dynamics. The experiments were performed on a halophilic protein, and membrane adapted to high salt, a thermophilic enzyme adapted to high temperature and its mesophilic (adapted to 37 degC) homologue; and in vivo for psychrophilic, mesophilic, thermophilic and hyperthermophilic bacteria, adapted respectively to temperatures of 4 degC, 37 degC, 75 degC and 85 degC. Further work demonstrated the existence of a water component of exceptionally low mobility in an extreme halophile from the Dead Sea, which is not present in mesophile bacterial cells. (author)

  16. Thermoregulatory value of cracking-clay soil shelters for small vertebrates during extreme desert conditions.

    Science.gov (United States)

    Waudby, Helen P; Petit, Sophie

    2017-05-01

    Deserts exhibit extreme climatic conditions. Small desert-dwelling vertebrates have physiological and behavioral adaptations to cope with these conditions, including the ability to seek shelter. We investigated the temperature (T) and relative humidity (RH) regulating properties of the soil cracks that characterize the extensive cracking-clay landscapes of arid Australia, and the extent of their use by 2 small marsupial species: fat-tailed and stripe-faced dunnarts (Sminthopsis crassicaudata and Sminthopsis macroura). We measured hourly (over 24-h periods) the T and RH of randomly-selected soil cracks compared to outside conditions, during 2 summers and 2 winters. We tracked 17 dunnarts (8 Sminthopsis crassicaudata and 9 Sminthopsis macroura) to quantify their use of cracks. Cracks consistently moderated microclimate, providing more stable conditions than available from non-crack points, which often displayed comparatively dramatic fluctuations in T and RH. Both dunnart species used crack shelters extensively. Cracks constitute important shelter for small animals during extreme conditions by providing a stable microclimate, which is typically cooler than outside conditions in summer and warmer in winter. Cracks likely play a fundamental sheltering role by sustaining the physiological needs of small mammal populations. Globally, cracking-clay areas are dominated by agricultural land uses, including livestock grazing. Management of these systems should focus not only on vegetation condition, but also on soil integrity, to maintain shelter resources for ground-dwelling fauna. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  17. Offshore wind turbine risk quantification/evaluation under extreme environmental conditions

    International Nuclear Information System (INIS)

    Taflanidis, Alexandros A.; Loukogeorgaki, Eva; Angelides, Demos C.

    2013-01-01

    A simulation-based framework is discussed in this paper for quantification/evaluation of risk and development of automated risk assessment tools, focusing on applications to offshore wind turbines under extreme environmental conditions. The framework is founded on a probabilistic characterization of the uncertainty in the models for the excitation, the turbine and its performance. Risk is then quantified as the expected value of some risk consequence measure over the probability distributions considered for the uncertain model parameters. Stochastic simulation is proposed for the risk assessment, corresponding to the evaluation of some associated probabilistic integral quantifying risk, as it allows for the adoption of comprehensive computational models for describing the dynamic turbine behavior. For improvement of the computational efficiency, a surrogate modeling approach is introduced based on moving least squares response surface approximations. The assessment is also extended to a probabilistic sensitivity analysis that identifies the importance of each of the uncertain model parameters, i.e. risk factors, towards the total risk as well as towards each of the failure modes contributing to this risk. The versatility and computational efficiency of the advocated approaches is finally exploited to support the development of standalone risk assessment applets for automated implementation of the probabilistic risk quantification/assessment. -- Highlights: ► A simulation-based risk quantification/assessment framework is discussed. ► Focus is on offshore wind turbines under extreme environmental conditions. ► Approach is founded on probabilistic description of excitation/system model parameters. ► Surrogate modeling is adopted for improved computational efficiency. ► Standalone risk assessment applets for automated implementation are supported

  18. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  19. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

    International Nuclear Information System (INIS)

    Fyodorov, Yan V; Bouchaud, Jean-Philippe

    2008-01-01

    We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)

  20. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

    Energy Technology Data Exchange (ETDEWEB)

    Fyodorov, Yan V [School of Mathematical Sciences, University of Nottingham, Nottingham NG72RD (United Kingdom); Bouchaud, Jean-Philippe [Science and Finance, Capital Fund Management 6-8 Bd Haussmann, 75009 Paris (France)

    2008-09-19

    We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)

  1. Bridge Management Strategy Based on Extreme User Costs for Bridge Network Condition

    Directory of Open Access Journals (Sweden)

    Ladislaus Lwambuka

    2014-01-01

    Full Text Available This paper presents a practical approach for prioritization of bridge maintenance within a given bridge network. The maintenance prioritization is formulated as a multiobjective optimization problem where the simultaneous satisfaction of several conflicting objectives includes minimization of maintenance costs, maximization of bridge deck condition, and minimization of traffic disruption and associated user costs. The prevalence of user cost during maintenance period is twofold; the first case refers to the period of dry season where normally the traffic flow is diverted to alternative routes usually resurfaced to regain traffic access. The second prevalence refers to the absence of alternative routes which is often the case in the least developed countries; in this case the user cost referred to results from the waiting time while the traffic flow is put on hold awaiting accomplishment of the maintenance activity. This paper deals with the second scenario of traffic closure in the absence of alternative diversion routes which in essence results in extreme user cost. The paper shows that the multiobjective optimization approach remains valid for extreme cases of user costs in the absence of detour roads as often is the scenario in countries with extreme poor road infrastructure.

  2. Extreme wind conditions for a Danish offshore site

    DEFF Research Database (Denmark)

    Hansen, Kurt S.

    2000-01-01

    This paper presents an analysis of extreme wind speed gust values measured at a shallow water offshore site and at a coastal onshore site in Denmark. An estimate of 50-year extreme values has been evaluated using a new statistical method. In addition a mean gust shape is determined, based on a la...

  3. Investigating the Effects of Simulated Space conditions on Novel Extremely Halophilic Archaea: Halovarius Luteus gen. nov., sp. nov.

    Science.gov (United States)

    Feshangsaz, Niloofar; Van Loon, ing.. Jack J. W. A.; Nazmi, Kamran; Semsarha, Farid

    2016-07-01

    Studying halophiles from different environments of Earth provide new insights into our search for life in the universe. Haloarchaea show some unique characteristics and physiological adaptations like acidic proteins against harsh environments such as natural brine with salt concentration approaching saturation (5 M) and regions with low active water. These properties make haloarchaea interesting candidate for astrobiological studies. Halovarius luteus gen. nov., sp. nov. a novel extremely halophilic archaeon from Urmia salt lake, in Iran has been chosen to explore its resistance against a series of extreme conditions. The aim of this study is to assess the resistance of strain DA50T under the effects of simulated space conditions like simulated microgravity, hypergravity, and desiccation. In this paper we will discuss the results of these studies where we specifically focus on changes in carotenoid pigments production and whole cell proteome. This is the first report of very novel Iranian archaea in response to extreme space conditions. The pigments were extracted by acetone and methanol. Pigments were analyzed by scanning the absorbance spectrum in the UV-VIS spectrophotometer. And they were separated by TLC. Whole protein from cell lysate supernatant was extracted after lysis with Bacterial Protein Extraction Reagent and fractionated by RP-HPLC using C18 column. Proteome analyzed by electrophoresis (SDS-PAGE), and MALDI-TOF. Carotenoid pigments are formed under different extreme conditions such as dry environment and gravitational changes. Also the protein composition exhibits alterations after exposure to the same conditions. Our conclusion is that pigments and proteins formation depend on the growth circumstances. Halophiles use this as an adaptation to survive under different environmental conditions.

  4. Ecological and biological systems under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, V S; Nenishkiene, V B

    1989-01-01

    The behaviour of biological and ecological systems under extreme conditions (high and low temperatures, electromagnetic fields of different frequencies, ultraviolet. X-ray and gamma radiation) is analyzed. The ecosystems of macro- and microalgae living in salt, brackinsh and fresh waters are considered in the evolutional aspect basing on their chemical and biochemical composition taking into account the mechanism of radionuclide uptake by water plant cells, osmotic regulation, water and ice structures, combined water in a living organism. The problems of life-support in cosmic flights and of mastering the planets of the Solar system, for instance Mars and Venus, utilizing some microalgae and bacteria with high adaptive properties are discussed. Abnormal water points and their role in the metabolism of a water plant cell are estimated. The 'life niches' are determined at the temperatures exceeding 100 deg C and the possibility of existence for living organisms in high pressure and temperature is grounded. Attempts are made to change the metabolism of the plant and animal cell by subjecting it to the action of electromagnetic and thermal fields, heavy water, chemical and pharmocological substances changing the structure of bound water. 333 refs.; 79 tabs.

  5. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  6. Neoadjuvant radiation in primary extremity liposarcoma: correlation of MRI features with histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, Jeremy R. [Harvard Medical School, Department of Radiology, Brigham and Women' s Hospital, Boston, MA (United States); Tirumani, Sree Harsha; Shinagare, Atul B.; Jagannathan, Jyothi P.; Ramaiya, Nikhil H. [Harvard Medical School, Department of Radiology, Brigham and Women' s Hospital, Boston, MA (United States); Harvard Medical School, Department of Imaging, Dana-Farber Cancer Institute, Boston, MA (United States); Tirumani, Harika [Harvard Medical School, Department of Imaging, Dana-Farber Cancer Institute, Boston, MA (United States); University of Arkansas Medical Sciences, Department of Radiology, Little Rock, AR (United States); Hornick, Jason L. [Harvard Medical School, Department of Pathology, Brigham and Women' s Hospital, Boston, MA (United States)

    2016-05-15

    To evaluate MRI features of response of primary extremity liposarcoma (LPS) to neoadjuvant radiation therapy (RT) with histopathologic correlation. In this IRB-approved study including 125 patients with extremity LPS treated with neoadjuvant RT from 2000 to 2013, MRI of the primary tumour in 18 patients (5 pleomorphic LPS, 13 myxoid LPS) before and after RT were reviewed by two radiologists by consensus. Histopathology of the surgical specimens was reviewed by a pathologist with expertise in sarcomas. In the pleomorphic LPS cohort, 3/5 tumours increased in size; 3/5 decreased in enhancing component; and 3/5 increased in peritumoral oedema, intratumoral haemorrhage, and necrosis. In the myxoid LPS cohort, 12/13 tumours decreased in size, 8/13 decreased in enhancing component, and 5/13 increased in internal fat following RT. Histopathology showed ≥50 % residual tumour in 1/5 pleomorphic LPS and 2/13 myxoid LPS. Hyalinization/necrosis of ≥75 % was noted in 4/5 pleomorphic LPS and 11/13 myxoid LPS. Cytodifferentiation was noted in 1/5 pleomorphic and 9/13 myxoid LPS. While pleomorphic LPS showed an increase in size, peritumoral oedema, intratumoral haemorrhage, and necrosis on MRI following neoadjuvant RT, myxoid LPS showed a decrease in size and enhancement with an increase in internal fat. (orig.)

  7. Correlation-study about the ambient dose rate and the weather conditions

    Science.gov (United States)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  8. Extremity doses of medical staff involved in interventional radiology and cardiology: Correlations and annual doses (hands and legs)

    International Nuclear Information System (INIS)

    Krim, S.; Brodecki, M.; Carinou, E.; Donadille, L.; Jankowski, J.; Koukorava, C.; Dominiek, J.; Nikodemova, D.; Ruiz-Lopez, N.; Sans-Merce, M.; Struelens, L.; Vanhavere, F.

    2011-01-01

    An intensive measurement campaign was launched in different hospitals in Europe within work package 1 of the ORAMED project (Optimization of RAdiation protection for MEDical staff). Its main objective was to obtain a set of standardized data on extremity and eye lens doses for staff in interventional radiology (IR) and cardiology (IC) and to optimize staff protection. The monitored procedures were divided in three main categories: cardiac, general angiography and endoscopic retrograde cholangio-pancreatography(ERCP) procedures. Using a common measurement protocol, information such as the protective equipment used (lead table curtain, transparent lead glass ceiling screen, patient shielding, whole body shielding or special cabin etc.) as well as Kerma Area Product (KAP) values and access of the catheter were recorded. This study was performed with a final database of more than 1300 procedures performed in 34 European hospitals. Its objectives were firstly to determine if the measured extremity doses could be correlated to the KAP values; secondly to check if the doses to the eyes could be linked to the doses to the hands (finger or wrist positions) and finally if the doses to the fingers could be estimated based on the doses to the wrists. General correlations were very difficult to find and their strength was mostly influenced by three main parameters: the X-ray tube configuration, the room collective radioprotective equipment and the access of the catheter. The KAP value can provide a simple mean to estimate the extremity doses of the operator given that it is assessed correctly for the operator when he is actually using the X-ray tube. Moreover, this study showed that the doses to the left finger are strongly correlated to the doses to the left wrist when no ceiling shield is used. It is also possible to estimate the doses to the eyes given the doses to the left finger or left wrist but the X-ray tube configuration and the access have to be considered. The annual

  9. Establishment and performance of an experimental green roof under extreme climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M., E-mail: pkklein@ou.edu [School of Meteorology, University of Oklahoma, Norman, OK (United States); Coffman, Reid, E-mail: rcoffma4@kent.edu [College of Architecture and Environmental Design, Kent State University, Kent, OH (United States)

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  10. Establishment and performance of an experimental green roof under extreme climatic conditions

    International Nuclear Information System (INIS)

    Klein, Petra M.; Coffman, Reid

    2015-01-01

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  11. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    DEFF Research Database (Denmark)

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translatio...... of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions....

  12. Studies in the statistical and thermal properties of hadronic matter under some extreme conditions

    International Nuclear Information System (INIS)

    Chase, K.C.; Mekjian, A.Z.; Bhattacharyya, P.

    1997-01-01

    The thermal and statistical properties of hadronic matter under some extreme conditions are investigated using an exactly solvable canonical ensemble model. A unified model describing both the fragmentation of nuclei and the thermal properties of hadronic matter is developed. Simple expressions are obtained for quantities such as the hadronic equation of state, specific heat, compressibility, entropy, and excitation energy as a function of temperature and density. These expressions encompass the fermionic aspect of nucleons, such as degeneracy pressure and Fermi energy at low temperatures and the ideal gas laws at high temperatures and low density. Expressions are developed which connect these two extremes with behavior that resembles an ideal Bose gas with its associated Bose condensation. In the thermodynamic limit, an infinite cluster exists below a certain critical condition in a manner similar to the sudden appearance of the infinite cluster in percolation theory. The importance of multiplicity fluctuations is discussed and some recent data from the EOS collaboration on critical point behavior of nuclei can be accounted for using simple expressions obtained from the model. copyright 1997 The American Physical Society

  13. Matter Under Extreme Conditions: The Early Years

    Science.gov (United States)

    Keeler, R. Norris; Gibson, Carl H.

    2012-03-01

    Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent ki- netic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >1025 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when infla- tion ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak tur- bulence until the plasma-gas transition give chains of protogalaxies with the morphology of tur- bulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Pro- togalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmologi- cal event.

  14. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Directory of Open Access Journals (Sweden)

    R. García-Herrera

    2005-02-01

    Full Text Available This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal and Madrid (Spain. Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid. The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP, 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air

  15. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    Directory of Open Access Journals (Sweden)

    R. García-Herrera

    2005-02-01

    Full Text Available This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal and Madrid (Spain. Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid. The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value.

    The analysis of Sea Level Pressure (SLP, 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly

  16. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  17. Reliability of offshore wind power production under extreme wind conditions. Deliverable D 9.5. Work Package 9: Electrical grid

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Zeni, Lorenzo

    years, with each year simulated with five random seeds, leading to a total of 25 annual wind power time series for six large offshore wind farms, summing up to a little over 330 wind turbines. Two storm control strategies were used. The analysis involved several aspects inspired from reliability studies....... The aspects investigated are storm events occurrences and durations, storm control strategy impact on the capacity factor (lost production), the loss of production (power produced from wind drops below a certain threshold due to high wind speeds and storm controller) and finally, the wind power production......Reliability of offshore wind production under extreme wind conditions was investigated in this report. The wind power variability from existing and future large offshore wind farms in Western Denmark were simulated using the Correlated Wind model developed at Risø. The analysis was done for five...

  18. Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda.

    Science.gov (United States)

    Prasher, Bhavana; Negi, Sapna; Aggarwal, Shilpi; Mandal, Amit K; Sethi, Tav P; Deshmukh, Shailaja R; Purohit, Sudha G; Sengupta, Shantanu; Khanna, Sangeeta; Mohammad, Farhan; Garg, Gaurav; Brahmachari, Samir K; Mukerji, Mitali

    2008-09-09

    Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individual's basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates. Normal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types. Individuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A significant enrichment of

  19. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Netrananda; Yamashiki, Yosuke; Takara, Kaoru [Kyoto University, Disaster Prevention Research Institute, Innovative Disaster Prevention Technology and Policy Research Laboratory, Gokasho, Uji City, Kyoto (Japan); Behera, Swadhin K. [JAMSTEC, Research Institute for Global Change, Yokohama, Kanagawa (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan); Yamagata, Toshio [University of Tokyo, School of Science, Bunkyo-ku, Tokyo (Japan); JAMSTEC, Application Laboratory, Yokohama (Japan)

    2012-10-15

    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Nina conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Nino Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Nino events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Nino for September-November season only. (orig.)

  20. Intravascular papillary endothelial hyperplasia of the extremities: MR imaging findings with pathologic correlation

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Suh, Jin-Suck; Lim, Byung Il; Yang, Woo Ick; Shin, Kyoo-Ho

    2004-01-01

    We report the MRI findings of three cases of intravascular papillary endothelial hyperplasia (IPEH) of the extremities with correlation of the pathologic findings. The IPEH is a non-neoplastic reactive lesion within the vessels and is commonly associated with thrombi. Signal intensity of the IPEH is complex due to the thrombi and the PEH itself. The thrombi are characterized by a slightly hyperintense signal on T1- and T2-weighted images compared with that of muscle when it comes at the medium stage of hemorrhage. Papillary endothelial hyperplastic tissue appears either as iso- or hyperintense to the muscle on T2- and T1-weighted images and shows variable enhancement on Gd-DTPA-enhanced images. (orig.)

  1. Proceedings of the first symposium on science of hadrons under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi; Maruyama, Toshiki [eds.

    1999-08-01

    The first symposium on Science of Hadrons under Extreme Conditions, organized by the Research Group for Hadron Science, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on March 11 and 12, 1999. The symposium was devoted for discussions and presentations of research results in wide variety of fields such as observation of X-ray pulsars, theoretical studies of nuclear matter, nuclear structure, low- and high-energy nuclear reactions and QCD. Thirty seven papers on these topics presented at the symposium are indexed individually. (J.P.N.)

  2. Extreme river flow dependence in Northern Scotland

    Science.gov (United States)

    Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.

    2012-04-01

    Various methods for the spatial analysis of hydrologic data have been developed recently. Here we present results using the conditional probability approach proposed by Keef et al. [Appl. Stat. (2009): 58,601-18] to investigate spatial interdependence in extreme river flows in Scotland. This approach does not require the specification of a correlation function, being mostly suitable for relatively small geographical areas. The work is motivated by the Flood Risk Management Act (Scotland (2009)) which requires maps of flood risk that take account of spatial dependence in extreme river flow. The method is based on two conditional measures of spatial flood risk: firstly the conditional probability PC(p) that a set of sites Y = (Y 1,...,Y d) within a region C of interest exceed a flow threshold Qp at time t (or any lag of t), given that in the specified conditioning site X > Qp; and, secondly the expected number of sites within C that will exceed a flow Qp on average (given that X > Qp). The conditional probabilities are estimated using the conditional distribution of Y |X = x (for large x), which can be modeled using a semi-parametric approach (Heffernan and Tawn [Roy. Statist. Soc. Ser. B (2004): 66,497-546]). Once the model is fitted, pseudo-samples can be generated to estimate functionals of the joint tails of the distribution of (Y,X). Conditional return level plots were directly compared to traditional return level plots thus improving our understanding of the dependence structure of extreme river flow events. Confidence intervals were calculated using block bootstrapping methods (100 replicates). We report results from applying this approach to a set of four rivers (Dulnain, Lossie, Ewe and Ness) in Northern Scotland. These sites were chosen based on data quality, spatial location and catchment characteristics. The river Ness, being the largest (catchment size 1839.1km2) was chosen as the conditioning river. Both the Ewe (441.1km2) and Ness catchments have

  3. Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions

    Science.gov (United States)

    Kumar, Prashant; Gulshan

    2017-12-01

    A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.

  4. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    Science.gov (United States)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  5. Noise sensitivity of portfolio selection in constant conditional correlation GARCH models

    Science.gov (United States)

    Varga-Haszonits, I.; Kondor, I.

    2007-11-01

    This paper investigates the efficiency of minimum variance portfolio optimization for stock price movements following the Constant Conditional Correlation GARCH process proposed by Bollerslev. Simulations show that the quality of portfolio selection can be improved substantially by computing optimal portfolio weights from conditional covariances instead of unconditional ones. Measurement noise can be further reduced by applying some filtering method on the conditional correlation matrix (such as Random Matrix Theory based filtering). As an empirical support for the simulation results, the analysis is also carried out for a time series of S&P500 stock prices.

  6. Correlation analysis of extremely low-frequency variations of the natural electromagnetic Earth field and the problem of detecting periodical gravitational radiation

    International Nuclear Information System (INIS)

    Balakin, A.B.; Murzakhanov, Z.G.; Grunskaya, L.V.

    1994-01-01

    A proposal on the experimental detection of extremely low-frequency variations of the electromagnetic Earth field at the gravitational-wave frequency and method for correlation processing results of the experiments are described. 14 refs

  7. Influence of Extreme Storage Conditions on Extra Virgin Olive Oil Parameters: Traceability Study

    Directory of Open Access Journals (Sweden)

    Alfredo Escudero

    2016-01-01

    Full Text Available This study reflects the effect of extreme storage conditions on several extra virgin olive oil (EVOO varieties (arbequina, hojiblanca, and picual. The conditions were simulated in the laboratory, by means of heating treatments in stove at different temperatures (40 and 60°C and times (two and three weeks. The aim is the evaluation of the deterioration of the quality parameters and minority components, which are responsible for the nutritional and therapeutic properties (fatty acids, polyphenols, pigments, and tocopherols, and organoleptic qualities. The quality criteria and limits used in this work are according to International Olive Council. The results contribute to the control of the traSceability for the commercialization of the EVOO.

  8. Exertional Rhabdomyolysis after an Extreme Conditioning Competition: A Case Report

    Directory of Open Access Journals (Sweden)

    Ramires Alsamir Tibana

    2018-04-01

    Full Text Available This case report describes an instance of exercise-induced rhabdomyolysis caused by an extreme conditioning program (ECP competition. A 35-year-old female presented with abdominal pain and soreness, which began one day after she completed two days of ECPcompetition composed of five workouts. Three days after competition, creatine kinase (CK was 77,590 U/L accompanied by myalgia and abnormal liver function tests, while renal function was normal and this resulted in a diagnosis of rhabdomyolysis. A follow-up examination revealed that her serum level of CK was still elevated to 3034 U/L on day 10 and 1257 U/L on day 25 following the ECP competition. The subject reported myalgia even up to 25 days after the ECP competition. Exertional rhabdomyolysis can be observed in ECP athletes following competition and highlights a dangerous condition, which may be increasing in recent years due to the massive expansion of ECP popularity and a growing number of competitions. Future research should investigate the causes of rhabdomyolysis that occur as a result of ECP, especially training methods and/or tasks developed specifically for these competitions.

  9. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  10. Measurement Properties of the Lower Extremity Functional Scale: A Systematic Review.

    Science.gov (United States)

    Mehta, Saurabh P; Fulton, Allison; Quach, Cedric; Thistle, Megan; Toledo, Cesar; Evans, Neil A

    2016-03-01

    Systematic review of measurement properties. Many primary studies have examined the measurement properties, such as reliability, validity, and sensitivity to change, of the Lower Extremity Functional Scale (LEFS) in different clinical populations. A systematic review summarizing these properties for the LEFS may provide an important resource. To locate and synthesize evidence on the measurement properties of the LEFS and to discuss the clinical implications of the evidence. A literature search was conducted in 4 databases (PubMed, MEDLINE, Embase, and CINAHL), using predefined search terms. Two reviewers performed a critical appraisal of the included studies using a standardized assessment form. A total of 27 studies were included in the review, of which 18 achieved a very good to excellent methodological quality level. The LEFS scores demonstrated excellent test-retest reliability (intraclass correlation coefficients ranging between 0.85 and 0.99) and demonstrated the expected relationships with measures assessing similar constructs (Pearson correlation coefficient values of greater than 0.7). The responsiveness of the LEFS scores was excellent, as suggested by consistently high effect sizes (greater than 0.8) in patients with different lower extremity conditions. Minimal detectable change at the 90% confidence level (MDC90) for the LEFS scores varied between 8.1 and 15.3 across different reassessment intervals in a wide range of patient populations. The pooled estimate of the MDC90 was 6 points and the minimal clinically important difference was 9 points in patients with lower extremity musculoskeletal conditions, which are indicative of true change and clinically meaningful change, respectively. The results of this review support the reliability, validity, and responsiveness of the LEFS scores for assessing functional impairment in a wide array of patient groups with lower extremity musculoskeletal conditions.

  11. Extreme hydrothermal conditions at an active plate-bounding fault

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  12. Extreme hydrothermal conditions at an active plate-bounding fault.

    Science.gov (United States)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  13. IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia

    Science.gov (United States)

    Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio

    2012-10-01

    Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.

  14. Experimental and theoretical study of electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Festa, Floriane

    2013-01-01

    Matter in extreme conditions belongs to Warm Dense Matter regime which lays between dense plasma regime and condensed matter. This regime is still not well known, indeed it is very complex to generate such plasma in the laboratory to get experimental data and validate models. The goal of this thesis is to study electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy. Experimentally aluminum has reached high densities and high temperatures, up to now unexplored. An X-ray source has also been generated to probe highly compressed aluminum. Two spectrometers have recorded aluminum absorption spectra and aluminum density and temperature conditions have been deduced thanks to optical diagnostics. Experimental spectra have been compared to ab initio spectra, calculated in the same conditions. The theoretical goal was to validate the calculation method in high densities and high temperatures regime with the study of K-edge absorption modifications. We also used absorption spectra to study the metal-non metal transition which takes place at low density (density ≤ solid density). This transition could be study with electronic structure modifications of the system. (author) [fr

  15. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy-dispersive...

  16. Heavy fermions and extreme conditions

    International Nuclear Information System (INIS)

    Cheikine, Ilia

    2000-01-01

    Three heavy electron systems, CeCu 2 Si 2 , CePd 2 Si 2 and UGe 2 , were investigated by transport, quantum oscillations (CePd 2 Si 2 ) and neutron diffraction (UGe 2 ) measurements. The experiments were performed under extreme conditions of very low temperature, high magnetic field and hydrostatic pressure. In the case of CeCu 2 Si 2 , we followed the evolution of the magnetic A-phase that is found to collapse rapidly under pressure. We found evidence for a relation between the A-phase and the presence of a maximum in the temperature dependence of H c2 . Our analysis showed that at low pressure, the sign of the exchange integral should be negative, thus superconductivity is enhanced by an increase in the paramagnetic susceptibility as in the Jaccarino-Peter effect. The anisotropy of the initial slope of H c2 and therefore that of the effective mass was found to change under pressure. For CePd 2 Si 2 , both the de Haas-van Alphen effect at ambient pressure and the electrical resistivity under pressure were studied. The latter reveals a non-Fermi liquid behavior in the vicinity of the antiferromagnetic quantum critical point, P c ∼ kbar. The analysis of H c2 at P c shows that the superconducting state is well described by a weak coupling, clean limit model with a slightly anisotropic orbital limit and a strongly anisotropic paramagnetic one. UGe 2 is shown to demonstrate the coexistence of ferromagnetism and superconductivity that develops just below the ferromagnetic quantum critical point, P c ∼16 kbar. The measurements of the resistivity under pressure point to a possible existence of another phase boundary and thus another quantum critical point, P x ∼ 12 kbar, within the ferromagnetic state. The P-T phase diagram containing both P c and P x was sketched, and a possible relation between P x and the development of superconductivity was discussed. The temperature dependence of H c2 demonstrates a variety of novel behaviors, which cannot be understood within

  17. A joint analysis of wave and surge conditions for past and present extrem events in the south-western Baltic Sea

    Science.gov (United States)

    Groll, Nikolaus; Gaslikova, Lidia

    2017-04-01

    Extreme marine events in the south-western Baltic Sea like the historic storm in 1872 are rare, but have large impacts on human safety and coastal infrastructure. The aforementioned extreme storm event of 1872 and has cost over 250 human lives, left severely damaged infrastructure and caused land loss due to coastal erosion. Recent extreme events also result in drastic impacts to coastal regions. Using results from numerical wave and hydrodynamic model simulations we will present a joint analysis of wave and water level conditions for selected extreme events. For the historic event the numerical models have been forced by reconstructed wind and pressure fields from pressure readings. Simulated atmospheric conditions from reanalysis have been used for the more recent events. The height of the water level due to the possible previous inflow of water masses in the Baltic Sea basin, as well as possible seiches and swell effects have been incorporated in the simulations. We will discuss similarities and differences between the historic and the more recent marine hazard events.

  18. Conditions for monogamy of quantum correlations in multipartite systems

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in

    2016-09-07

    Highlights: • Monogamy of quantum correlations. • Monogamous quantum correlation measures remain so on raising of power. • Non-monogamous quantum correlations remain so on lowering of power. • Monogamy of a convex quantum correlation measure for an arbitrary multipartite pure quantum state leads to its monogamy for the mixed states. • A new monogamy inequality for quantum correlations, stronger than the standard one. - Abstract: Monogamy of quantum correlations is a vibrant area of research because of its potential applications in several areas in quantum information ranging from quantum cryptography to co-operative phenomena in many-body physics. In this paper, we investigate conditions under which monogamy is preserved for functions of quantum correlation measures. We prove that a monogamous measure remains monogamous on raising its power, and a non-monogamous measure remains non-monogamous on lowering its power. We also prove that monogamy of a convex quantum correlation measure for arbitrary multipartite pure quantum state leads to its monogamy for mixed states in the same Hilbert space. Monogamy of squared negativity for mixed states and that of entanglement of formation follow as corollaries of our results.

  19. Sediment Dynamics Within Buffer Zone and Sinkhole Splay Areas Under Extreme Soil Disturbance Conditions.

    Science.gov (United States)

    Schoonover, Jon E; Crim, Jackie F; Williard, Karl W J; Groninger, John W; Zaczek, James J; Pattumma, Klairoong

    2015-09-01

    Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees (Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year(-1) translating to a sediment loss rate of 46.1 metric ton year(-1) from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year(-1)) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.

  20. Extreme environments select for reproductive assurance: evidence from evening primroses (Oenothera).

    Science.gov (United States)

    Evans, Margaret E K; Hearn, David J; Theiss, Kathryn E; Cranston, Karen; Holsinger, Kent E; Donoghue, Michael J

    2011-07-01

    Competing evolutionary forces shape plant breeding systems (e.g. inbreeding depression, reproductive assurance). Which of these forces prevails in a given population or species is predicted to depend upon such factors as life history, ecological conditions, and geographical context. Here, we examined two such predictions: that self-compatibility should be associated with the annual life history or extreme climatic conditions. We analyzed data from a clade of plants remarkable for variation in breeding system, life history and climatic conditions (Oenothera, sections Anogra and Kleinia, Onagraceae). We used a phylogenetic comparative approach and Bayesian or hybrid Bayesian tests to account for phylogenetic uncertainty. Geographic information system (GIS)-based climate data and ecological niche modeling allowed us to quantify climatic conditions. Breeding system and reproductive life span are not correlated in Anogra and Kleinia. Instead, self-compatibility is associated with the extremes of temperature in the coldest part of the year and precipitation in the driest part of the year. In the 60 yr since this pattern was anticipated, this is the first demonstration of a relationship between the evolution of self-compatibility and climatic extremes. We discuss possible explanations for this pattern and possible implications with respect to anthropogenic climate change. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  1. Bunched black (and grouped grey) swans: Dissipative and non-dissipative models of correlated extreme fluctuations in complex geosystems

    Science.gov (United States)

    Watkins, N. W.

    2013-01-01

    I review the hierarchy of approaches to complex systems, focusing particularly on stochastic equations. I discuss how the main models advocated by the late Benoit Mandelbrot fit into this classification, and how they continue to contribute to cross-disciplinary approaches to the increasingly important problems of correlated extreme events and unresolved scales. The ideas have broad importance, with applications ranging across science areas as diverse as the heavy tailed distributions of intense rainfall in hydrology, after which Mandelbrot named the "Noah effect"; the problem of correlated runs of dry summers in climate, after which the "Joseph effect" was named; and the intermittent, bursty, volatility seen in finance and fluid turbulence.

  2. On the Performance of Carbon Nanotubes in Extreme Conditions and in the Presence of Microwaves

    Science.gov (United States)

    2013-01-01

    been considered for use as transparent conductors include: transparent conducting oxides (TCOs), intrinsically conducting polymers (ICPs), graphene ...optical transmission properties, but are extremely sensitive to environmental conditions (such as temperature and humidity). Graphene has recently...during the dicing procedure, silver paint was applied to the sample to serve as improvised contact/probe-landing points. Figure 1 shows the CNT thin

  3. A note on the conditional correlation between energy prices: Evidence from future markets

    International Nuclear Information System (INIS)

    Marzo, Massimiliano; Zagaglia, Paolo

    2008-01-01

    We model the joint movements of daily returns on one-month futures for crude oil, heating oil and natural gas through the multivariate GARCH with dynamic conditional correlations and elliptical distributions introduced by Pelagatti and Rondena [Pelagatti, M.M., Rondena, S., 2007. 'Dynamic Conditional Correlation with Elliptical Distributions', unpublished manuscript. Universita di Milano - Bicocca, August]. Futures prices of crude and heating oil covary strongly. The conditional correlation between the futures prices of natural gas and crude oil has been rising over the last 5 years. However, this correlation has been low on average over two thirds of the sample, suggesting that future markets have no established tradition of pricing natural gas as a function of developments on oil markets. (author)

  4. The Extreme Male Brain Theory and Gender Role Behaviour in Persons with an Autism Spectrum Condition

    Science.gov (United States)

    Stauder, J. E. A.; Cornet, L. J. M.; Ponds, R. W. H. M.

    2011-01-01

    According to the Extreme Male Brain theory persons with autism possess masculinised cognitive traits. In this study masculinisation of gender role behaviour is evaluated in 25 persons with an autism spectrum condition (ASC) and matched controls with gender role behaviour as part of a shortened version of the Minnesota Multiphasic Personality…

  5. Performance of PICS bags under extreme conditions in the sahel zone of Niger.

    Science.gov (United States)

    Baoua, Ibrahim B; Bakoye, Ousmane; Amadou, Laouali; Murdock, Larry L; Baributsa, Dieudonne

    2018-03-01

    Experiments in Niger assessed whether extreme environmental conditions including sunlight exposure affect the performance of triple-layer PICS bags in protecting cowpea grain against bruchids. Sets of PICS bags and woven polypropylene bags as controls containing 50 kg of naturally infested cowpea grain were held in the laboratory or outside with sun exposure for four and one-half months. PICS bags held either inside or outside exhibited no significant increase in insect damage and no loss in weight after 4.5 months of storage compared to the initial values. By contrast, woven bags stored inside or outside side by side with PICS bags showed several-fold increases in insects present in or on the grain and significant losses in grain weight. Grain stored inside in PICS bags showed no reduction in germination versus the initial value but there was a small but significant drop in germination of grain in PICS bags held outside (7.6%). Germination rates dropped substantially more in grain stored in woven bags inside (16.1%) and still more in woven bags stored outside (60%). PICS bags held inside and outside retained their ability to maintain internal reduced levels of oxygen and elevated levels of carbon dioxide. Exposure to extreme environmental conditions degraded the external polypropylene outer layer of the PICS triple-layer bag. Even so, the internal layers of polyethylene were more slowly degraded. The effects of exposure to sunlight, temperature and humidity variation within the sealed bags are described.

  6. A statistical methodology for the estimation of extreme wave conditions for offshore renewable applications

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kalogeri, Christina; Galanis, George

    2015-01-01

    and post-process outputs from a high resolution numerical wave modeling system for extreme wave estimation based on the significant wave height. This approach is demonstrated through the data analysis at a relatively deep water site, FINO 1, as well as a relatively shallow water area, coastal site Horns...... as a characteristic index of extreme wave conditions. The results from the proposed methodology seem to be in a good agreement with the measurements at both the relatively deep, open water and the shallow, coastal water sites, providing a potentially useful tool for offshore renewable energy applications. © 2015...... Rev, which is located in the North Sea, west of Denmark. The post-processing targets at correcting the modeled time series of the significant wave height, in order to match the statistics of the corresponding measurements, including not only the conventional parameters such as the mean and standard...

  7. Diamonds on Diamond: structural studies at extreme conditions on the Diamond Light Source.

    Science.gov (United States)

    McMahon, M I

    2015-03-06

    Extreme conditions (EC) research investigates how the structures and physical and chemical properties of materials change when subjected to extremes of pressure and temperature. Pressures in excess of one million times atmospheric pressure can be achieved using a diamond anvil cell, and, in combination with high-energy, micro-focused radiation from a third-generation synchrotron such as Diamond, detailed structural information can be obtained using either powder or single-crystal diffraction techniques. Here, I summarize some of the research drivers behind international EC research, and then briefly describe the techniques by which high-quality diffraction data are obtained. I then highlight the breadth of EC research possible on Diamond by summarizing four examples from work conducted on the I15 and I19 beamlines, including a study which resulted in the first research paper from Diamond. Finally, I look to the future, and speculate as to the type of EC research might be conducted at Diamond over the next 10 years. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. A new fluorescent pH probe for extremely acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Jiang, Zheng [School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Xiao, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Bi, Fu-Zhen [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-04-01

    A new coumarin-based fluorescent probe can detect highly acidic conditions in both solution and bacteria with high selectivity and sensitivity. Highlights: • A new fluorescence probe for very low pH was synthesized and characterized. • The probe can monitor pH in solution and bacteria. • The two-step protonation of N atoms of the probe leads to fluorescence quenching. Abstract: A novel turn-off fluorescent probe based on coumarin and imidazole moiety for extremely acidic conditions was designed and developed. The probe with pKa = 2.1 is able to respond to very low pH value (below 3.5) with high sensitivity relying on fluorescence quenching at 460 nm in fluorescence spectra or the ratios of absorbance maximum at 380 nm to that at 450 nm in UV–vis spectra. It can quantitatively detect pH value based on equilibrium equation, pH = pKa -log[(Ix - Ib)/(Ia - Ix)]. It had very short response time that was less than 1 min, good reversibility and nearly no interference from common metal ions. Moreover, using ¹H NMR analysis and theoretical calculation of molecular orbital, we verified that a two-step protonation process of two N atoms of the probe leaded to photoinduced electron transfer (PET), which was actually the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. Furthermore, the probe was also applied to imaging strong acidity in bacteria, E.coli and had good effect. This work illustrates that the new probe could be a practical and ideal pH indicator for strongly acidic conditions with good biological significance.

  9. The need of the change of the conceptualisation of hydrologic processes under extreme conditions – taking reference evapotranspiration as an example

    Directory of Open Access Journals (Sweden)

    S. Liu

    2015-06-01

    Full Text Available What a hydrological model displays is the relationships between the output and input in daily, monthly, yearly and other temporal scales. In the case of climate change or other environment changes, the input of the hydrological model may show a gradual or abrupt change. There have been numerous documented studies to explore the response of output of the hydrological models to the change of the input with scenario simulation. Most of the studies assumed that the conceptualisation of hydrologic processes will remain, which may be true for the gradual change of the input. However, under extreme conditions the conceptualisation of hydrologic processes may be completely changed. Taking an example of the Allen's formula to calculate crop reference evapotranspiration (ET0 as a simple hydrological model, we analyze the alternation of the extreme in ET0 from 1955 to 2012 at the Chongling Experimental Station located in Hebei Province, China. The relationships between ET0 and the meteorological factors for the average values, minimum (maximum values at daily, monthly and annual scales are revealed. It is found the extreme of the output can follow the extreme of the input better when their relationship is more linear. For non-liner relationship, the extreme of the input cannot at all be reflected from the extreme of the output. Relatively, extreme event at daily scale is harder to be shown than that at monthly scale. The result implicates that a routine model may not be able to catch the response to extreme events and it is even more so as we extrapolate models to higher temperature/CO2 conditions in the future. Some possible choices for the improvements are suggested for predicting hydrological extremes.

  10. Avoiding the False Peaks in Correlation Discrimination

    International Nuclear Information System (INIS)

    Awwal, A.S.

    2009-01-01

    Fiducials imprinted on laser beams are used to perform video image based alignment of the 192 laser beams in the National Ignition Facility (NIF) of Lawrence Livermore National Laboratory. In many video images, matched filtering is used to detect the location of these fiducials. Generally, the highest correlation peak is used to determine the position of the fiducials. However, when the signal to-be-detected is very weak compared to the noise, this approach totally breaks down. The highest peaks act as traps for false detection. The active target images used for automatic alignment in the National Ignition Facility are examples of such images. In these images, the fiducials of interest exhibit extremely low intensity and contrast, surrounded by high intensity reflection from metallic objects. Consequently, the highest correlation peaks are caused by these bright objects. In this work, we show how the shape of the correlation is exploited to isolate the valid matches from hundreds of invalid correlation peaks, and therefore identify extremely faint fiducials under very challenging imaging conditions

  11. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    Science.gov (United States)

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  12. Correlation functions for Hermitian many-body systems: Necessary conditions

    International Nuclear Information System (INIS)

    Brown, E.B.

    1994-01-01

    Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at t=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated

  13. Necessary and sufficient conditions for big bangs, bounces, crunches, rips, sudden singularities and extremality events

    International Nuclear Information System (INIS)

    Cattoen, Celine; Visser, Matt

    2005-01-01

    Until recently, the physically relevant singularities occurring in FRW cosmologies had traditionally been thought to be limited to the 'big bang', and possibly a 'big crunch'. However, over the last few years, the zoo of cosmological singularities considered in the literature has become considerably more extensive, with 'big rips' and 'sudden singularities' added to the mix, as well as renewed interest in nonsingular cosmological events such as 'bounces' and 'turnarounds'. In this paper we present an extensive catalogue of such cosmological milestones, both at the kinematical and dynamical level. First, using generalized power series, purely kinematical definitions of these cosmological events are provided in terms of the behaviour of the scale factor a(t). The notion of a 'scale-factor singularity' is defined, and its relation to curvature singularities (polynomial and differential) is explored. Second, dynamical information is extracted by using the Friedmann equations (without assuming even the existence of any equation of state) to place constraints on whether or not the classical energy conditions are satisfied at the cosmological milestones. We use these considerations to derive necessary and sufficient conditions for the existence of cosmological milestones such as bangs, bounces, crunches, rips, sudden singularities and extremality events. Since the classification is extremely general and, modulo certain technical assumptions, is complete, the corresponding results are to a high degree model independent: in particular, we provide a characterization of the class of bangs, crunches and sudden singularities for which the dominant energy condition is satisfied

  14. Forecasting of flowrate under rolling motion flow instability condition based on on-line sequential extreme learning machine

    International Nuclear Information System (INIS)

    Chen Hanying; Gao Puzhen; Tan Sichao; Tang Jiguo; Hou Xiaofan; Xu Huiqiang; Wu Xiangcheng

    2015-01-01

    The coupling of multiple thermal-hydraulic parameters can result in complex flow instability in natural circulation system under rolling motion. A real-time thermal-hydraulic condition prediction is helpful to the operation of systems in such condition. A single hidden layer feedforward neural networks algorithm named extreme learning machine (ELM) is considered as suitable method for this application because of its extremely fast training time, good accuracy and simplicity. However, traditional ELM assumes that all the training data are ready before the training process, while the training data is received sequentially in practical forecasting of flowrate. Therefore, this paper proposes a forecasting method for flowrate under rolling motion based on on-line sequential ELM (OS-ELM), which can learn the data one by one or chunk-by-chunk. The experiment results show that the OS-ELM method can achieve a better forecasting performance than basic ELM method and still keep the advantage of fast training and simplicity. (author)

  15. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  16. Continuous Sub-daily Rainfall Simulation for Regional Flood Risk Assessment - Modelling of Spatio-temporal Correlation Structure of Extreme Precipitation in the Austrian Alps

    Science.gov (United States)

    Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.

    2017-12-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic

  17. Extreme pressure differences at 0900 NZST and winds across New Zealand

    Science.gov (United States)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are

  18. Generalized randomly amplified linear system driven by Gaussian noises: Extreme heavy tail and algebraic correlation decay in plasma turbulence

    International Nuclear Information System (INIS)

    Steinbrecher, Gyoergy; Weyssow, B.

    2004-01-01

    The extreme heavy tail and the power-law decay of the turbulent flux correlation observed in hot magnetically confined plasmas are modeled by a system of coupled Langevin equations describing a continuous time linear randomly amplified stochastic process where the amplification factor is driven by a superposition of colored noises which, in a suitable limit, generate a fractional Brownian motion. An exact analytical formula for the power-law tail exponent β is derived. The extremely small value of the heavy tail exponent and the power-law distribution of laminar times also found experimentally are obtained, in a robust manner, for a wide range of input values, as a consequence of the (asymptotic) self-similarity property of the noise spectrum. As a by-product, a new representation of the persistent fractional Brownian motion is obtained

  19. Psychological and psycho-vegetative technologies of diagnostics and correction the behavior of professionals working in extreme conditions (state of problem and prospective studies

    Directory of Open Access Journals (Sweden)

    Bulygina V.G.

    2016-10-01

    Full Text Available The article is devoted to promising areas of research regulatory processes (self-control оf the professionals working in special and extreme conditions of professional activity. The actuality of creation a comprehensive compact of the selection methods, adaptation the technologies to professional tasks, methods of psychological assistance of the specialists of hazardous occupations was shown. It was done an overview of foreign studies of the features of psychological regulation and self-control in stressful situations, neurophysiological correlates of self-control and aggressive behavior. The results of trainings of the development of the capacity for self-control, increasing resistance to the negative effects of mental exhaustion, were described. There were expounded the results of domestic investigations of the association between the self-regulation of behavior and profile of reactivity among mentally healthy and ill persons. The necessity of the development of psychodiagnostic and psychological programs for specialists in the professions of risk, aimed to improve the efficiency of regulatory processes for the adaptation to the conditions of professional activity.

  20. Are recent severe floods in Xiang River basin of China linked with the increase extreme precipitation?

    Science.gov (United States)

    Cheng, L.; Du, J.

    2015-12-01

    The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in

  1. Extremal dependencies and rank correlations in power law networks

    NARCIS (Netherlands)

    Volkovich, Y.; Litvak, Nelli; Zwart, B.; Jie, Z.

    2009-01-01

    We analyze dependencies in complex networks characterized by power laws (Web sample, Wikipedia sample and a preferential attachment graph) using statistical techniques from the extreme value theory and the theory of multivariate regular variation. To the best of our knowledge, this is the first

  2. Rare Neural Correlations Implement Robotic Conditioning with Delayed Rewards and Disturbances

    Science.gov (United States)

    Soltoggio, Andrea; Lemme, Andre; Reinhart, Felix; Steil, Jochen J.

    2013-01-01

    Neural conditioning associates cues and actions with following rewards. The environments in which robots operate, however, are pervaded by a variety of disturbing stimuli and uncertain timing. In particular, variable reward delays make it difficult to reconstruct which previous actions are responsible for following rewards. Such an uncertainty is handled by biological neural networks, but represents a challenge for computational models, suggesting the lack of a satisfactory theory for robotic neural conditioning. The present study demonstrates the use of rare neural correlations in making correct associations between rewards and previous cues or actions. Rare correlations are functional in selecting sparse synapses to be eligible for later weight updates if a reward occurs. The repetition of this process singles out the associating and reward-triggering pathways, and thereby copes with distal rewards. The neural network displays macro-level classical and operant conditioning, which is demonstrated in an interactive real-life human-robot interaction. The proposed mechanism models realistic conditioning in humans and animals and implements similar behaviors in neuro-robotic platforms. PMID:23565092

  3. Extreme heat and runoff extremes in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    M. Zappa

    2007-06-01

    Full Text Available The hydrological response of Swiss river basins to the 2003 European summer heatwave was evaluated by a combined analysis of historical discharge records and specific applications of distributed hydrological modeling. In the summer of 2003, the discharge from headwater streams of the Swiss Central Plateau was only 40%–60% of the long-term average. For alpine basins runoff was about 60%–80% of the average. Glacierized basins showed the opposite behavior. According to the degree of glacierization, the average summer runoff was close or even above average. The hydrological model PREVAH was applied for the period 1982–2005. Even if the model was not calibrated for such extreme meteorological conditions, it was well able to simulate the hydrological responses of three basins. The aridity index φ describes feedbacks between hydrological and meteorological anomalies, and was adopted as an indicator of hydrological drought. The anomalies of φ and temperature in the summer of 2003 exceeded the 1982–2005 mean by more than 2 standard deviations. Catchments without glaciers showed negative correlations between φ and discharge R. In basins with about 15% glacierization, φ and R were not correlated. River basins with higher glacier percentages showed a positive correlation between φ and R. Icemelt was positively correlated with φ and reduced the variability of discharge with larger amounts of meltwater. Runoff generation from the non-glaciated sub-areas was limited by high evapotranspiration and reduced precipitation. The 2003 summer heatwave could be a precursor to similar events in the near future. Hydrological models and further data analysis will allow the identification of the most sensitive regions where heatwaves may become a recurrent natural hazard with large environmental, social and economical impacts.

  4. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins

    Science.gov (United States)

    Zheng, Yong-Fei; Chen, Ren-Xu

    2017-09-01

    Regional metamorphism at extreme conditions refers either to Alpine-type metamorphism at low geothermal gradients of geothermal gradients of >30 °C/km. Extreme pressures refer to those above the polymorphic transition of quartz to coesite, so that ultrahigh-pressure (UHP) eclogite-facies metamorphism occurs at mantle depths of >80 km. Extreme temperatures refer to those higher than 900 °C at crustal depths of ≤80 km, so that ultrahigh-temperature (UHT) granulite-facies metamorphism occurs at medium to high pressures. While crustal subduction at the low geothermal gradients results in blueschist-eclogite facies series without arc volcanism, heating of the thinned orogenic lithosphere brings about the high geothermal gradients for amphibolite-granulite facies series with abundant magmatism. Therefore, UHP metamorphic rocks result from cold lithospheric subduction to the mantle depths, whereas UHT metamorphic rocks are produced by hot underplating of the asthenospheric mantle at the crustal depths. Active continental rifting is developed on the thinned lithosphere in response to asthenospheric upwelling, and this tectonism is suggested as a feasible mechanism for regional granulite-facies metamorphism, with the maximum temperature depending on the extent to which the mantle lithosphere is thinned prior to the rifting. While lithospheric compression is associated with subduction metamorphism in accretionary and collisional orogens, the thinned orogenic lithosphere undergoes extension due to the asthenospheric upwelling to result in orogen-parallel rifting metamorphism and magmatism. Thus, the rifting metamorphism provides a complement to the subduction metamorphism and its operation marks the asthenospheric heating of the orogenic lithosphere. Because of the partial melting and melt extraction of the lower continental crust, contemporaneous granite-migmatite-granulite associations may serve as a petrological indicator of rifting orogeny that is superimposed on

  5. Extremely correlated Fermi liquid theory of the t-J model in 2 dimensions: low energy properties

    Science.gov (United States)

    Shastry, B. Sriram; Mai, Peizhi

    2018-01-01

    Low energy properties of the metallic state of the two-dimensional t-J model are presented for second neighbor hopping with hole-doping (t\\prime ≤slant 0) and electron-doping (t\\prime > 0), with various superexchange energy J. We use a closed set of equations for the Greens functions obtained from the extremely correlated Fermi liquid theory. These equations reproduce the known low energies features of the large U Hubbard model in infinite dimensions. The density and temperature dependent quasiparticle weight, decay rate and the peak spectral heights over the Brillouin zone are calculated. We also calculate the resistivity, Hall conductivity, Hall number and cotangent Hall angle. The spectral features display high thermal sensitivity at modest T for density n≳ 0.8, implying a suppression of the effective Fermi-liquid temperature by two orders of magnitude relative to the bare bandwidth. The cotangent Hall angle exhibits a T 2 behavior at low T, followed by an interesting kink at higher T. The Hall number exhibits strong renormalization due to correlations. Flipping the sign of t\\prime changes the curvature of the resistivity versus T curves between convex and concave. Our results provide a natural route for understanding the observed difference in the temperature dependent resistivity of strongly correlated electron-doped and hole-doped matter.

  6. Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks

    Science.gov (United States)

    Hu, Yanqing; Havlin, Shlomo; Makse, Hernán A.

    2014-04-01

    A fundamental problem in network science is to predict how certain individuals are able to initiate new networks to spring up "new ideas." Frequently, these changes in trends are triggered by a few innovators who rapidly impose their ideas through "viral" influence spreading, producing cascades of followers and fragmenting an old network to create a new one. Typical examples include the rise of scientific ideas or abrupt changes in social media, like the rise of Facebook to the detriment of Myspace. How this process arises in practice has not been conclusively demonstrated. Here, we show that a condition for sustaining a viral spreading process is the existence of a multiplex-correlated graph with hidden "influence links." Analytical solutions predict percolation-phase transitions, either abrupt or continuous, where networks are disintegrated through viral cascades of followers, as in empirical data. Our modeling predicts the strict conditions to sustain a large viral spreading via a scaling form of the local correlation function between multilayers, which we also confirm empirically. Ultimately, the theory predicts the conditions for viral cascading in a large class of multiplex networks ranging from social to financial systems and markets.

  7. Crystallization and Thermoelectric Transport in Semiconductor Micro- and Nanostructures Under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gokirmak, Ali [Univ. of Connecticut, Storrs, CT (United States); Silva, Helena [Univ. of Connecticut, Storrs, CT (United States)

    2017-08-30

    This project focused on thermoelectric transport in semiconductor micro and nanostructures where moderate and typical operating voltages and currents lead to extreme thermal gradients and current densities. Models that describe behavior of semiconducting materials typically assume an equilibrium condition or slight deviations from it. In these cases the generation-recombination processes are assumed to have reached a local equilibrium for a given temperature. Hence, free carrier concentrations and their mobilities, band-gap, thermal conductivity, thermoelectric properties, mobility of atoms and mechanical properties of the material, can be described as a function of temperature. In the case of PN junctions under electrical bias, carrier concentrations can change up to ~ 1020 cm-3 and a drift-diffusion approximation is typically used to obtain the carrier concentrations while assuming that the material properties do not change. In non-equilibrium conditions, the assumption that the material properties remain the same may not be valid. While the increased conduction-band electron concentration may not have a drastic effect on the material, large hole concentration is expected to soften the material as ‘a hole’ comes into existence as a broken bond in the lattice. As the hole density approaches 1022 cm-3, the number of bonds holding the lattice together is significantly reduced, making it easier to break additional bonds, reduce band-gap and inhibit phonon transport. As these holes move away from where they were generated, local properties are expected to deviate significantly from the equilibrium case. Hence, temperature alone is not sufficient to describe the behavior of the material. The behavior of the solid material close to a molten region (liquid-solid interfaces) is also expected to deviate from the equilibrium case as a function of hole injection rate, which can be drastically increased or decreased in the presence of an electric field. In the past years

  8. Hemoglobin system of Sparus aurata: Changes in fishes farmed under extreme conditions

    International Nuclear Information System (INIS)

    Campo, Salvatore; Nastasi, Giancarlo; D'Ascola, Angela; Campo, Giuseppe M.; Avenoso, Angela; Traina, Paola; Calatroni, Alberto; Burrascano, Emanuele; Ferlazzo, Alida; Lupidi, Giulio; Gabbianelli, Rosita; Falcioni, Giancarlo

    2008-01-01

    In order to gain more knowledge on the stress responses of gilhead seabream (Sparus aurata) under extreme conditions, this study investigated the functional properties of the hemoglobin system and globin gene expression under hypoxia and low salinity. The oxygen affinity for the two hemoglobin components present inside the S. aurata erythrocyte was practically identical as was the influence of protons and organic phosphates (Root effect). The quantification of S. aurata hemoglobin fractions performed by HPLC and the data on gene expression of globin chains assayed by PCR indicate that under hypoxia and low salinity there is a change in the ratio between the two different hemoglobin components. The result indicating that the distinct hemoglobins present in S. aurata erythrocyte have almost identical functional properties, does not explain the adaptive response (expression change) following exposure of the animal to hypoxia or low salinity on the basis of their function as oxygen transporter. We hypothesize that other parallel biological functions that the hemoglobin molecule is known to display within the erythrocyte are involved in adaptive molecular mechanisms. The autoxidation-reduction cycle of hemoglobin could be involved in the response to particular living conditions

  9. Correlation of denitrification-accepted fraction of electrons with NAD(P)H fluorescence for Pseudomonas aeruginosa performing simultaneous denitrification and respiration at extremely low dissolved oxygen conditions.

    Science.gov (United States)

    Chen, Fan; Xia, Qing; Ju, Lu-Kwang

    2004-01-01

    In cystic fibrosis airway infection, Pseudomonas aeruginosa forms a microaerobic biofilm and undergoes significant physiological changes. It is important to understand the bacterium's metabolism at microaerobic conditions. In this work, the culture properties and two indicators (the denitrification-accepted e- fraction and an NAD(P)H fluorescence fraction) for the culture's "fractional approach" to a fully anaerobic denitrifying state were examined in continuous cultures with practically zero DO but different aeration rates. With decreasing aeration, specific OUR decreased while specific NAR and NIR increased and kept Y(ATP/S) relatively constant. P. aeruginosa thus appeared to effectively compensate for energy generation at microaerobic conditions with denitrification. At the studied dilution rate of 0.06 h(-1), the maximum specific OUR was 2.8 mmol O2/g cells-h and the Monod constant for DO, in the presence of nitrate, was extremely low (Y(X/S) increased significantly (from 0.24 to 0.34) with increasing aeration, attributed to a roughly opposite trend of Y(ATP/X) (ATP generation required for cell growth). As for the denitrification-accepted e- fraction and the fluorescence fraction, both decreased with increasing aeration as expected. The two fractions, however, were not directly proportional. The fluorescence fraction changed more rapidly than the e- fraction at very low aeration rates, whereas the opposite was true at higher aeration. The results demonstrated the feasibility of using online NAD(P)H fluorescence to monitor sensitive changes of cellular physiology and provided insights to the shift of e- -accepting mechanisms of P. aeruginosa under microaerobic conditions.

  10. Matter in Extreme Conditions Instrument - Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is

  11. Establishment and performance of an experimental green roof under extreme climatic conditions.

    Science.gov (United States)

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  12. Directional analysis of extreme winds under mixed climate conditions

    CSIR Research Space (South Africa)

    Kruger, A

    2013-07-01

    Full Text Available Directional statistics provide design engineers with the opportunity to realise considerable cost savings, but these are not yet provided for in the South African standard for wind loading. The development of the directional statistics of extreme...

  13. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    Science.gov (United States)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  14. Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Luchner, J.; Onof, C.

    2017-01-01

    extreme precipitation over Denmark generated by the regional climate model (RCM) HIRHAM-ECEARTH at different spatial resolutions (8, 12, 25 and 50km), three RCM from the RiskChange project at 8km resolution and three RCMs from ENSEMBLES at 25km resolution at temporal aggregations from 1 to 48h...... are more skewed than the observational dataset, which leads to an overestimation by the higher spatial resolution simulations. Nevertheless, in general, under current conditions RCM simulations at high spatial resolution represent extreme events and high-order moments better. The changes projected...

  15. Older women with dementia can perform fast alternating forearm movements and performance is correlated with tests of lower extremity function

    Directory of Open Access Journals (Sweden)

    Bramell-Risberg E

    2013-02-01

    Full Text Available Eva Bramell-Risberg,1 Gun-Britt Jarnlo,2 Sölve Elmståhl11Division of Geriatric Medicine, 2Division of Physiotherapy, Department of Health Sciences, Lund University, Lund, SwedenBackground: The purpose of this work was to study the performance and reliability of a test of fast alternating forearm movements and its relationship with measures of lower extremity function in older women with dementia.Methods: Fast alternating movements was studied in 26 female patients (mean age 81.7 ± 5.9 years with dementia and 34 controls (mean age 87.5 ± 4.7 years. Subgroup analyses for those aged 80–89 years were performed due to significant differences in the mean ages of the study groups. Test–retest reliability for alternating forearm movements was studied in 11 patients (mean age 80.3 ± 6.7 years and 10 controls (mean age 87.4 ± 1.6 years. Pulses generated were transformed to an analog signal shown on a modified electrocardiogram. Numbers of cycles at 10 and 15 seconds were calculated for the right and left hand. Walking 2 × 15 m and the Get-Up-and Go (GUG test were performed at self-selected and maximal speed. Associations between tests of upper and lower extremity function were sought in eight patients (mean age 85 ± 2.7 years and 16 controls (mean age 85.1 ± 2.8 years and also according to types of dementia in nine patients with probable Alzheimer's disease and 10 patients with other types of dementia.Results: Patients with dementia could perform the test and had significantly fewer cycles (P = 0.02–0.006 at both 10 and 15 seconds compared with controls after age adjustment. A higher number of cycles was associated with higher self-selected walking speeds in patients (r = -0.79. Test–retest reliability for alternating forearm movements was high for both patients (intraclass correlation 0.88–0.94 and controls (intraclass correlation 0.74–0.94.Conclusion: Alternating forearm movements at fast speed can be used as a reliable test in both

  16. Preference conditioning in healthy individuals: correlates with hazardous drinking.

    Science.gov (United States)

    Balodis, Iris M; Lockwood, Kathleen P; Magrys, Sylvia A; Olmstead, Mary C

    2010-06-01

    Conditioned reward is a classic measure of drug-induced brain changes in animal models of addiction. The process can be examined in humans using the Conditioned Pattern Preference (CPP) task, in which participants associate nonverbal cues with reward but demonstrate low awareness of this conditioning. Previously, we reported that alcohol intoxication does not affect CPP acquisition in humans, but our data indicated that prior drug use may impact conditioning scores. To test this possibility, the current study examined the relationship between self-reported alcohol use and preference conditioning in the CPP task. Working memory was assessed during conditioning by asking participants to count the cues that appeared at each location on a computer screen. Participants (69 female and 23 male undergraduate students) completed the Alcohol Use Disorders Identification Test (AUDIT) and the Rutgers Alcohol Problem Index (RAPI) as measures of hazardous drinking. Self-reported hazardous drinking was significantly correlated with preference conditioning in that individuals who scored higher on these scales exhibited an increased preference for the reward-paired cues. In contrast, hazardous drinking did not affect working memory errors on the CPP task. These findings support evidence that repeated drug use sensitizes neural pathways mediating conditioned reward and point to a neurocognitive disposition linking substance misuse and responses to reward-paired stimuli. The relationship between hazardous drinking and conditioned reward is independent of changes in cognitive function, such as working memory.

  17. Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia

    Science.gov (United States)

    Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep

    2014-05-01

    dates involving observations from multiple sites (rain gauges). The approach combines the POT (Peaks Over Threshold) with 'declustering' of the data to approximate independence based on the autocorrelation structure of each rainfall series. The cross correlation among sites is considered also to develop the event's criteria yielding a rational choice of the extreme dates given the 'spotty' nature of the intense convection. Based on the identified dates, we are developing a supporting tool for forecasting extreme rainfall based on the corresponding large-scale meteorological patterns (LSMPs). The LSMPs methodology focuses on the larger-scale patterns that the model are better able to forecast, as those larger-scale patterns create the conditions fostering the local EWE. Bootstrap resampling method is applied to highlight the key features that statistically significant with the extreme events. Grotjahn, R., and G. Faure. 2008: Composite Predictor Maps of Extraordinary Weather Events in the Sacramento California Region. Weather and Forecasting. 23: 313-335.

  18. Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities.

    Science.gov (United States)

    Edmunds, Kyle; Gíslason, Magnús; Sigurðsson, Sigurður; Guðnason, Vilmundur; Harris, Tamara; Carraro, Ugo; Gargiulo, Paolo

    2018-01-01

    Sarcopenic muscular degeneration has been consistently identified as an independent risk factor for mortality in aging populations. Recent investigations have realized the quantitative potential of computed tomography (CT) image analysis to describe skeletal muscle volume and composition; however, the optimum approach to assessing these data remains debated. Current literature reports average Hounsfield unit (HU) values and/or segmented soft tissue cross-sectional areas to investigate muscle quality. However, standardized methods for CT analyses and their utility as a comorbidity index remain undefined, and no existing studies compare these methods to the assessment of entire radiodensitometric distributions. The primary aim of this study was to present a comparison of nonlinear trimodal regression analysis (NTRA) parameters of entire radiodensitometric muscle distributions against extant CT metrics and their correlation with lower extremity function (LEF) biometrics (normal/fast gait speed, timed up-and-go, and isometric leg strength) and biochemical and nutritional parameters, such as total solubilized cholesterol (SCHOL) and body mass index (BMI). Data were obtained from 3,162 subjects, aged 66-96 years, from the population-based AGES-Reykjavik Study. 1-D k-means clustering was employed to discretize each biometric and comorbidity dataset into twelve subpopulations, in accordance with Sturges' Formula for Class Selection. Dataset linear regressions were performed against eleven NTRA distribution parameters and standard CT analyses (fat/muscle cross-sectional area and average HU value). Parameters from NTRA and CT standards were analogously assembled by age and sex. Analysis of specific NTRA parameters with standard CT results showed linear correlation coefficients greater than 0.85, but multiple regression analysis of correlative NTRA parameters yielded a correlation coefficient of 0.99 (Pbiometrics, SCHOL, and BMI, and particularly highlight the value of the

  19. Extreme obesity: sociodemographic, familial and behavioural correlates in The Netherlands

    NARCIS (Netherlands)

    Merkus, M. P.; Mathus-Vliegen, L. M.; Broekhoff, C.; Heijnen, A. M.

    1995-01-01

    To investigate the relationship between sociodemographic, behavioural, and family characteristics and the body mass index (BMI) (weight (kg)/height (m2)) of extremely obese people. Self reported sociodemographic, behavioural, and familial characteristics and weight and height were obtained by postal

  20. Correlation functions of Coulomb branch operators

    Energy Technology Data Exchange (ETDEWEB)

    Gerchkovitz, Efrat [Weizmann Institute of Science,Rehovot 76100 (Israel); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Ishtiaque, Nafiz [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics, University of Waterloo,Waterloo, ON N2L 3G1 (Canada); Karasik, Avner; Komargodski, Zohar [Weizmann Institute of Science,Rehovot 76100 (Israel); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2017-01-24

    We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the “minimal' non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt{sup ∗} equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.

  1. Non-empirical exchange-correlation parameterizations based on exact conditions from correlated orbital theory.

    Science.gov (United States)

    Haiduke, Roberto Luiz A; Bartlett, Rodney J

    2018-05-14

    Some of the exact conditions provided by the correlated orbital theory are employed to propose new non-empirical parameterizations for exchange-correlation functionals from Density Functional Theory (DFT). This reparameterization process is based on range-separated functionals with 100% exact exchange for long-range interelectronic interactions. The functionals developed here, CAM-QTP-02 and LC-QTP, show mitigated self-interaction error, correctly predict vertical ionization potentials as the negative of eigenvalues for occupied orbitals, and provide nice excitation energies, even for challenging charge-transfer excited states. Moreover, some improvements are observed for reaction barrier heights with respect to the other functionals belonging to the quantum theory project (QTP) family. Finally, the most important achievement of these new functionals is an excellent description of vertical electron affinities (EAs) of atoms and molecules as the negative of appropriate virtual orbital eigenvalues. In this case, the mean absolute deviations for EAs in molecules are smaller than 0.10 eV, showing that physical interpretation can indeed be ascribed to some unoccupied orbitals from DFT.

  2. Non-empirical exchange-correlation parameterizations based on exact conditions from correlated orbital theory

    Science.gov (United States)

    Haiduke, Roberto Luiz A.; Bartlett, Rodney J.

    2018-05-01

    Some of the exact conditions provided by the correlated orbital theory are employed to propose new non-empirical parameterizations for exchange-correlation functionals from Density Functional Theory (DFT). This reparameterization process is based on range-separated functionals with 100% exact exchange for long-range interelectronic interactions. The functionals developed here, CAM-QTP-02 and LC-QTP, show mitigated self-interaction error, correctly predict vertical ionization potentials as the negative of eigenvalues for occupied orbitals, and provide nice excitation energies, even for challenging charge-transfer excited states. Moreover, some improvements are observed for reaction barrier heights with respect to the other functionals belonging to the quantum theory project (QTP) family. Finally, the most important achievement of these new functionals is an excellent description of vertical electron affinities (EAs) of atoms and molecules as the negative of appropriate virtual orbital eigenvalues. In this case, the mean absolute deviations for EAs in molecules are smaller than 0.10 eV, showing that physical interpretation can indeed be ascribed to some unoccupied orbitals from DFT.

  3. PREDICTION OF THE EXTREMAL SHAPE FACTOR OF SPHEROIDAL PARTICLES

    Directory of Open Access Journals (Sweden)

    Daniel Hlubinka

    2011-05-01

    Full Text Available In the stereological unfolding problem for spheroidal particles the extremal shape factor is predicted. The theory of extreme values has been used to show that extremes of the planar shape factor of particle sections tend to the same limit distribution as extremes of the original shape factor for both the conditional and marginal distribution. Attention is then paid to the extreme shape factor conditioned by the particle size. Normalizing constants are evaluated for a parametric model and the numerical procedure is tested on real data from metallography.

  4. Quadrupole beam-transport experiment for heavy ions under extreme space charge conditions

    International Nuclear Information System (INIS)

    Chupp, W.; Faltens, A.; Hartwig, E.C.

    1983-03-01

    A Cs ion-beam-transport experiment is in progress to study beam behavior under extreme space-charge conditions. A five-lens section matches the beam into a periodic electrostatic quadrupole FODO channel and its behavior is found to agree with predictions. With the available parameters (less than or equal to 200 keV, less than or equal to 20 mA, πepsilon/sub n/ greater than or equal to 10 - 7 π rad-m, up to 41 periods) the transverse (betatron) occillation frequency (nu) can be depressed down to one-tenth of its zero current value (nu/sub 0/), where nu/sup 2/ = nu/sub 0//sup 2/ -#betta#/sub p/ 2 /2, and #betta#/sub p/ is the beam plasma frequency. The current can be controlled by adjustment of the gun and the emittance can be controlled independently by means of a set of charged grids

  5. Recent studies of transplutonium compounds: new directions and use of extreme conditions

    International Nuclear Information System (INIS)

    Peterson, J.R.; Begun, G.M.; Gibson, J.K.

    1987-01-01

    The number of bulk-phase compounds prepared and characterized for each of the transplutonium (TPu) elements drops off precipitously with increasing atomic number. However, efforts have been made to increase the number of TPu compounds known and also the range of investigative methods applied to their characterization. The results of a worldwide survey to determine the status of the preparation of new TPu compounds and/or the application of new investigative techniques to the study of such compounds in bulk will be presented. The focus will then shift to Oak Ridge projects: extreme conditions of pressure and/or temperature are being used for synthesis and for absorption and raman spectral studies; single crystals of trihalides are being grown for spectral and magnetic studies; new ternary chalcogenide-halide compounds are being characterized; vaporization thermodynamics of TPu compounds are being determined; and attempts to stabilize unusual oxidation states are being carried out

  6. Clinical applications of SPECT/CT in imaging the extremities

    International Nuclear Information System (INIS)

    Huellner, Martin W.; Strobel, Klaus

    2014-01-01

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  7. Clinical applications of SPECT/CT in imaging the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W. [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland)

    2014-05-15

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  8. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  9. Daily extreme precipitation indices and their impacts on rice yield—A case study over the tropical island in China

    Science.gov (United States)

    Li, Mao-Fen; Luo, Wei; Li, Hailiang; Liu, Enping; Li, Yuping

    2018-04-01

    Frequent occurrences of extreme precipitation events have significant impacts on agricultural production. Tropical agriculture has been playing an important role in national economy in China. A precise understanding of variability in extreme precipitation indices and their impacts on crop yields are of great value for farmers and policy makers at county level, particularly in tropical China where almost all agriculture is rainfed. This research has studied observed trends in extreme precipitation indices (a total of 10) during 1988-2013 over Hainan island, tropical China. Mann-Kendall nonparametric test was adopted for trend detection and the results showed that most of precipitation indices showed increasing trend. Since rice is the most important staple food in Hainan island, the impacts of extreme precipitation indices on rice yields were also analyzed through simple correlations. In general, the rainy days and rain intensity in late rice growing season showed increasing trend over Hainan island. The rice yield presented ninth-degree polynomial technological trend at all stations and increasing trend for early rice yield. Late rice yield showed a decreasing trend in some parts of Hainan island. Spearman rank correlation coefficient indicated that the correlation was more pronounced between extreme precipitation indices and yields at Haikou site for early rice, and Haikou, Sanya, and Qionghai stations for late rice, respectively. Further results also indicated that there were statistically significant positive trends of R10 and R20 (number of days with precipitation ≥10 mm and precipitation ≥20 mm, respectively) from July to November at Haikou (located in north of Hainan island), and this positive trend may be a disadvantage for late rice yield. The cut-off value of extreme precipitation indices and its correlation with rice yield anomaly indices for Hainan island provided a foundation for vulnerability assessment as well as a contribution to set up

  10. Assessing Vegetation Response to Soil Moisture Fluctuation under Extreme Drought Using Sentinel-2

    Directory of Open Access Journals (Sweden)

    Harry West

    2018-06-01

    Full Text Available The aim of this study was to determine the extent to which Sentinel-2 Normalised Difference Vegetation Index (NDVI reflects soil moisture conditions, and whether this product offers an improvement over Landsat-8. Based on drought exposure, cloud-free imagery availability, and measured soil moisture, five sites in the Southwestern United States were selected. These sites, normally dry to arid, were in various states of drought. A secondary focus was therefore the performance of the NDVI under extreme conditions. Following supervised classification, the NDVI values for one-kilometre radius areas were calculated. Sentinel-2 NDVI variants using Spectral Bands 8 (10 m spatial resolution, 5, 6, 7, and 8A (20 m spatial resolution were calculated. Landsat-8 NDVI was calculated at 30 m spatial resolution. Pearson correlation analysis was undertaken for NDVI against moisture at various depths. To assess the difference in correlation strength, a principal component analysis was performed on the combination of all bands and the combination of the new red-edge bands. Performance of the red-edge NDVI against the standard near infrared (NIR was then evaluated using a Steiger comparison. No significant correlations between Landsat-8 NDVI and soil moisture were found. Significant correlations at depths of less than 30 cm were present between Sentinel-2 NDVI and soil moisture at three sites. The remaining two sites were characterised by low vegetation cover, suggesting a cover threshold of approximately 30–40% is required for a correlation to be present. At all sites of significant positive moisture to NDVI correlation, the linear combination of the red-edge bands produced stronger correlations than the poorer spectral but higher spatial resolution band. NDVI calculated using the higher spectral resolution bands may therefore be of greater use in this context than the higher spatial resolution option. Results suggest potential for the application of Sentinel-2

  11. Acclimatization to extreme heat

    Science.gov (United States)

    Warner, M. E.; Ganguly, A. R.; Bhatia, U.

    2017-12-01

    Heat extremes throughout the globe, as well as in the United States, are expected to increase. These heat extremes have been shown to impact human health, resulting in some of the highest levels of lives lost as compared with similar natural disasters. But in order to inform decision makers and best understand future mortality and morbidity, adaptation and mitigation must be considered. Defined as the ability for individuals or society to change behavior and/or adapt physiologically, acclimatization encompasses the gradual adaptation that occurs over time. Therefore, this research aims to account for acclimatization to extreme heat by using a hybrid methodology that incorporates future air conditioning use and installation patterns with future temperature-related time series data. While previous studies have not accounted for energy usage patterns and market saturation scenarios, we integrate such factors to compare the impact of air conditioning as a tool for acclimatization, with a particular emphasis on mortality within vulnerable communities.

  12. Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon

    Directory of Open Access Journals (Sweden)

    A. Torres-Freyermuth

    2012-12-01

    Full Text Available Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH. This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i laboratory experiments conducted on a physical model (Demirbilek et al., 2007and (ii field observations (Coronado et al., 2007. Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (Hs >2 m. The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions.

  13. Technology development of protein rich concentrates for nutrition in extreme conditions using soybean and meat by-products.

    Science.gov (United States)

    Kalenik, Tatiana K; Costa, Rui; Motkina, Elena V; Kosenko, Tamara A; Skripko, Olga V; Kadnikova, Irina A

    2017-01-01

    There is a need to develop new foods for participants of expeditions in extreme conditions, which must be self-sufficient. These foods should be light to carry, with a long shelf life, tasty and with  high nutrient density. Currently, protein sources are limited mainly to dried and canned meat. In this work, a protein-rich dried concentrate suitable for extreme expeditions was developed using soya, tomato, milk whey and meat by-products. Protein concentrates were developed using minced beef liver and heart, dehydrated and mixed with a soya protein-lycopene coagulate (SPLC) obtained from a solution prepared with germi- nated soybeans and mixed with tomato paste in milk whey, and finally dried. The technological parameters of pressing SPLC and of drying the protein concentrate were optimized using response surface methodology. The optimized technological parameters to prepare the protein concentrates were obtained, with 70:30 being the ideal ratio of minced meat to SPLC. The developed protein concentrates are characterized by a high calorific value of 376 kcal/100 g of dry product, with a water content of 98 g·kg-1, and 641-644 g·kg-1 of proteins. The essential amino acid indices are 100, with minimum essential amino acid content constitut- ing 100-128% of the FAO standard, depending on the raw meat used. These concentrates are also rich in micronutrients such as β-carotene and vitamin C. Analysis of the nutrient content showed that these non-perishable concentrates present a high nutritional value and complement other widely available vegetable concentrates to prepare a two-course meal. The soups and porridges prepared with these concentrates can be classified as functional foods, and comply with army requirements applicable to food products for extreme conditions.

  14. Imaging findings of intravascular papillary endothelial hyperplasia presenting in extremities: correlation with pathological findings.

    Science.gov (United States)

    Lee, Sun Joo; Choo, Hye Jung; Park, Ji Sung; Park, Yeong-Mi; Eun, Choong Ki; Hong, Sung Hwan; Hwang, Ji Young; Lee, In Sook; Lee, Jongmin; Jung, Soo-Jin

    2010-08-01

    To describe magnetic resonance imaging (MRI) and ultrasound (US) findings of intravascular papillary endothelial hyperplasia (IPEH) arising in extremities. Six patients with IPEH confirmed by surgical resection were reviewed retrospectively. Before resection, 3 patients underwent both MRI and US and 3 patients underwent only MRI. Two radiologists retrospectively reviewed MR/US imaging results and correlated them with pathological features. The 6 IPEHs were diagnosed as 4 mixed forms and 2 pure forms. The pre-existing pathology of four mixed forms was intramuscular or intermuscular hemangioma. By MRI, the mixed form of IPEH (n = 4) revealed iso- to slightly high signal intensity containing nodule-like foci of high signal intensity on T1-weighted images (T1WI) and high signal intensity-containing nodule-like foci of low signal intensity on T2-weighted images (T2WI). The pure form of IPEH (n = 2) showed homogeneous iso- signal intensity on T1WI and high and low signal intensity containing nodule-like foci of low signal intensity on T2WI. On gadolinium-enhanced fat-suppressed T1WI, 50% of cases (n = 3: mixed forms) revealed peripheral, septal, and central enhancement. The other IPEHs (n = 3: 1 mixed and 2 pure forms) showed peripheral and septal enhancement or only peripheral enhancement. By US, two mixed forms of IPEH showed well-defined hypoechoic masses containing hyperechoic septa and central portion with vascularities. One pure form of IPEH was a homogeneous hypoechoic mass with septal and peripheral vascularities on color Doppler imaging. The foci of high signal intensity on T1WI, foci of low signal intensity on T2WI, and non-enhancing portions on MRI and the hypoechoic portion on US were histopathologically correlated with thrombi and the peripheral/septal or central enhancing areas on MRI, hyperechoic septa and the central portion on US, and septal/central or peripheral vascularities on color Doppler imaging corresponded to hypertrophic papillary epithelium and

  15. Extreme Conditioning Programs: Potential Benefits and Potential Risks.

    Science.gov (United States)

    Knapik, Joseph J

    2015-01-01

    CrossFit, Insanity, Gym Jones, and P90X are examples of extreme conditioning programs (ECPs). ECPs typically involve high-volume and high-intensity physical activities with short rest periods between movements and use of multiple joint exercises. Data on changes in fitness with ECPs are limited to CrossFit investigations that demonstrated improvements in muscle strength, muscular endurance, aerobic fitness, and body composition. However, no study has directly compared CrossFit or other ECPs to other more traditional forms of aerobic and resistance training within the same investigation. These direct comparisons are needed to more adequately evaluate the effectiveness of ECPs. Until these studies emerge, the comparisons with available literature suggest that improvements in CrossFit, in terms of muscular endurance (push-ups, sit-ups), strength, and aerobic capacity, appear to be similar to those seen in more traditional training programs. Investigations of injuries in ECPs are limited to two observational studies that suggest that the overall injury rate is similar to that seen in other exercise programs. Several cases of rhabdomyolysis and cervical carotid artery dissections have been reported during CrossFit training. The symptoms, diagnosis, and treatment of these are reviewed here. Until more data on ECPs emerge, physical training should be aligned with US Army doctrine. If ECPs are included in exercise programs, trainers should (1) have appropriate training certifications, (2) inspect exercise equipment regularly to assure safety, (3) introduce ECPs to new participants, (4) ensure medical clearance of Soldiers with special health problems before participation in ECPs, (4) tailor ECPs to the individual Soldier, (5) adjust rest periods to optimize recovery and reduce fatigue, (6) monitor Soldiers for signs of overtraining, rhabdomyolysis, and other problems, and (7) coordinate exercise programs with other unit training activities to eliminate redundant activities

  16. Unique Nature of the Quality of Life in the Context of Extreme Climatic, Geographical and Specific Socio-Cultural Living Conditions

    Science.gov (United States)

    Kulik, Anastasia; Neyaskina, Yuliya; Frizen, Marina; Shiryaeva, Olga; Surikova, Yana

    2016-01-01

    This article presents the results of a detailed empirical research, aimed at studying the quality of life in the context of extreme climatic, geographical and specific sociocultural living conditions. Our research is based on the methodological approach including social, economical, ecological and psychological characteristics and reflecting…

  17. Extreme value analysis of meteorological parameters observed during the period 1994-2001 at Kakrapar Atomic Power Station

    International Nuclear Information System (INIS)

    Ramkumar, S.; Dole, M.L.; Nankar, D.P.; Rajan, M.P.; Gurg, R.P.

    2003-01-01

    In the design of engineering structures, an understanding of extreme weather conditions that may occur at the site of interest is very essential, so that the structures can be designed to withstand such situations. In this report an analysis of extreme values of meteorological parameters observed at Kakrapar Atomic Power Station site for the period 1994 -2001 is described. The parameters considered are maximum and minimum air temperature, maximum wind speed and gust, and maximum rainfall in a month, in a day, in an hour and annual rainfall. The extreme value analysis reveals that annual rainfall, maximum monthly rainfall, minimum air temperature and maximum wind speed at 10 m obey Fisher-Tippet Type -1 distribution whereas maximum daily rainfall, maximum hourly rainfall, maxinlum air temperature and maximum wind speed at 30 m obey Fisher-Tippet Type -2 distribution function. There is no difference in correlation coefficients and fit both extreme value distribution function. Co-efficients of the distribution functions for each variable are established. Extreme values of parameters corresponding to return periods of 50 and 100 years are derived. These derived extreme values are particularly useful for arriving at suitable design basis values to ensure the safety of any civil structure in and around Kakrapar Atomic Power Station site with respect to stresses due to weather conditions. (author)

  18. A technical basis for the flux corrected local conditions critical heat flux correlation

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    The so-called 'flux-corrected' local conditions CHF correlation was developed at Ontario Hydro in the 1980's and was demonstrated to successfully correlate the Onset of Intermittent Dryout (OID) CHF data for 37-element fuel with a downstream-skewed axial heat flux distribution. However, because the heat flux correction factor appeared to be an ad-hoc, albeit a successful modifying factor in the correlation, there was reluctance to accept the correlation more generally. This paper presents a thermalhydraulic basis, derived from two-phase flow considerations, that supports the appropriateness of the heat flux correction as a local effects modifying factor. (author)

  19. Correlated initial condition for an embedded process by time partitioning

    Czech Academy of Sciences Publication Activity Database

    Velický, Bedřich; Kalvová, Anděla; Špička, Václav

    2010-01-01

    Roč. 81, č. 23 (2010), 235116/1-235116/12 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0361 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : non-equilibrium * Initial conditions * decay of correlations * Green's functions * quantum transport equations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  20. The photochemical reaction of hydrocarbons under extreme thermobaric conditions

    Science.gov (United States)

    Serovaiskii, Aleksandr; Kolesnikov, Anton; Mukhina, Elena; Kutcherov, Vladimir

    2017-10-01

    The photochemical reaction of hydrocarbons was found to play an important role in the experiments with the synthetic petroleum conducted in Diamond Anvil Cell (DAC). Raman spectroscopy with a green laser (514.5 nm) was used for in situ sample analysis. This photochemical effect was investigated in the pressure range of 0.7-5 GPa, in the temperature interval from the ambient conditions to 450°C. The power of laser used in these experiment series was from 0.05 W to 0.6 W. The chemical transformation was observed when the necessary threshold pressure (~2.8 GPa) was reached. This transformation correlated with the luminescence appearance on the Raman spectra and a black opaque spot in the sample was observed in the place where the laser focus was forwarded. The exposure time and laser power (at least in the 0.1-0.5 W range) did not play a role in the 0.1-0.5 GPa range.

  1. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia

    International Nuclear Information System (INIS)

    Forkel, Matthias; Beer, Christian; Thonicke, Kirsten; Cramer, Wolfgang; Bartalev, Sergey; Schmullius, Christiane

    2012-01-01

    Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires can degrade the forest, affect human values, emit huge amounts of carbon and aerosols and alter the land surface albedo. Usually, wind, slope and dry air conditions have been recognized as factors determining fire spread. Here we identify surface moisture as an additional important driving factor for the evolution of extreme fire events in the Baikal region. An area of 127 000 km 2 burned in this region in 2003, a large part of it in regions underlain by permafrost. Analyses of satellite data for 2002–2009 indicate that previous-summer surface moisture is a better predictor for burned area than precipitation anomalies or fire weather indices for larch forests with continuous permafrost. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil, and how coupled mechanisms can lead to extreme events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, vegetation functioning, and fire activity in Earth system models for projecting climate change impacts over the next century. (letter)

  2. Comparison and development of advanced dosimetric techniques to be used under extreme climatic conditions

    International Nuclear Information System (INIS)

    Madhvanath, U.

    1975-08-01

    The post-irradiation fading characteristics of various dosimeters in function of relative humidity of air during storage were tested in specially set up humidity boxes. The temperature and relative humidity were varied between 5deg-35degC and 40-90%, respectively. Fading was 70% and 80% at 2 and 6 days respectively, for Kodak Type 2 film under 28degC and 76% relative humidity. Under these conditions the corresponding values for NTA emulsions were 30% and 80% respectively. Agfa-Gevaert films proved to be less sensitive and gave 20% and 30%, respectively, for the mentioned intervals. When Kodak Type 2 film was sealed in polythene bags, fading was reduced considerably, to appr. 15% in 4 weeks. Alternate storage of exposed films in humid and dry conditions also reduced fading to the same extent. When NTA emulsions were double-sealed with desiccant inside fading was reduced to 10% in 15 days. CaSO 4 :Dy (DRP and Harshaw) showed only 7% fading in 3 months. LiF TLD-100 was more sensitive, 13% in 2 months. Gamma-irradiated Li-borate has faded up to 30% at extreme climatic conditions in 3 months but thermal neutron irradiated Li-borate was resistant against fading for this period

  3. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  4. Upper Extremity Freezing and Dyscoordination in Parkinson’s Disease: Effects of Amplitude and Cadence Manipulations

    Directory of Open Access Journals (Sweden)

    April J. Williams

    2013-01-01

    Full Text Available Purpose. Motor freezing, the inability to produce effective movement, is associated with decreasing amplitude, hastening of movement, and poor coordination. We investigated how manipulations of movement amplitude and cadence affect upper extremity (UE coordination as measured by the phase coordination index (PCI—only previously measured in gait—and freezing of the upper extremity (FO-UE in people with Parkinson's disease (PD who experience freezing of gait (PD + FOG, do not experience FOG (PD-FOG, and healthy controls. Methods. Twenty-seven participants with PD and 18 healthy older adults made alternating bimanual movements between targets under four conditions: Baseline; Fast; Small; SmallFast. Kinematic data were recorded and analyzed for PCI and FO-UE events. PCI and FO-UE were compared across groups and conditions. Correlations between UE PCI, gait PCI, FO-UE, and Freezing of Gait Questionnaire (FOG-Q were determined. Results. PD + FOG had poorer coordination than healthy old during SmallFast. UE coordination correlated with number of FO-UE episodes in two conditions and FOG-Q score in one. No differences existed between PD−/+FOG in coordination or number of FO-UE episodes. Conclusions. Dyscoordination and FO-UE can be elicited by manipulating cadence and amplitude of an alternating bimanual task. It remains unclear whether FO-UE and FOG share common mechanisms.

  5. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  6. Kinetics of Materials at Extreme Conditions: Understanding the Time Dependent Approach to Equilibrium at MaRIE

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mcnabb, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumar, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eggert, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Borg, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerreta, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dattelbaum, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fried, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Greeff, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolken, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    The National Nuclear Security Agency has recently recognized that a long-term need exists to establish a stronger scientific basis for the assessment and qualification of materials and manufacturing processes for the nuclear stockpile and other national security applications. These materials may have undergone substantial changes with age, or may represent new materials that are being introduced because of difficulties associated with reusing or recreating materials used in original stockpile components. Also, with advancements in manufacturing methods, the NNSA anticipates opportunities for an enhanced range of control over fabricated components, an enhanced pace of materials development, and enhanced functionality. The development of qualification standards for these new materials will require the ability to understand and control material characteristics that affect both mechanical and dynamic performance. A unique aspect for NNSA is that the performance requirements for materials are often set by system hydrodynamics, and these materials must perform in extreme environments and loading conditions. Thus, the scientific motivation is to understand “Matter-Radiation Interactions in Extremes (MaRIE).”

  7. Eliciting conditional and unconditional rank correlations from conditional probabilities

    International Nuclear Information System (INIS)

    Morales, O.; Kurowicka, D.; Roelen, A.

    2008-01-01

    Causes of uncertainties may be interrelated and may introduce dependencies. Ignoring these dependencies may lead to large errors. A number of graphical models in probability theory such as dependence trees, vines and (continuous) Bayesian belief nets [Cooke RM. Markov and entropy properties of tree and vine-dependent variables. In: Proceedings of the ASA section on Bayesian statistical science, 1997; Kurowicka D, Cooke RM. Distribution-free continuous Bayesian belief nets. In: Proceedings of mathematical methods in reliability conference, 2004; Bedford TJ, Cooke RM. Vines-a new graphical model for dependent random variables. Ann Stat 2002; 30(4):1031-68; Kurowicka D, Cooke RM. Uncertainty analysis with high dimensional dependence modelling. New York: Wiley; 2006; Hanea AM, et al. Hybrid methods for quantifying and analyzing Bayesian belief nets. In: Proceedings of the 2005 ENBIS5 conference, 2005; Shachter RD, Kenley CR. Gaussian influence diagrams. Manage Sci 1998; 35(5) .] have been developed to capture dependencies between random variables. The input for these models are various marginal distributions and dependence information, usually in the form of conditional rank correlations. Often expert elicitation is required. This paper focuses on dependence representation, and dependence elicitation. The techniques presented are illustrated with an application from aviation safety

  8. Lower extremity kinematics that correlate with success in lateral load transfers over a low friction surface.

    Science.gov (United States)

    Catena, Robert D; Xu, Xu

    2015-01-01

    We previously studied balance during lateral load transfers, but were left without explanation of why some individuals were successful in novel low friction conditions and others were not. Here, we retrospectively examined lower extremity kinematics between successful (SL) and unsuccessful (UL) groups to determine what characteristics may improve low friction performance. Success versus failure over a novel slippery surface was used to dichotomise 35 healthy working-age individuals into the two groups (SL and UL). Participants performed lateral load transfers over three sequential surface conditions: high friction, novel low friction, and practiced low friction. The UL group used a wide stance with rotation mostly at the hips during the high and novel low friction conditions. To successfully complete the practiced low friction task, they narrowed their stance and pivoted both feet and torso towards the direction of the load, similar to the SL group in all conditions. This successful kinematic method potentially results in reduced muscle demand throughout the task. Practitioner Summary: The reason for this paper is to retrospectively examine the different load transfer strategies that are used in a low friction lateral load transfer. We found stance width to be the major source of success, while sagittal plane motion was altered to potentially maintain balance.

  9. Covered Interest-Rate Parity Revisited: an Extreme Value Copula Analysis

    Directory of Open Access Journals (Sweden)

    Mikel Ugando-Peñate

    2015-11-01

    Full Text Available This article studied the covered interest-rate parity (CIP condition under extreme market movements using extreme value theory and extreme value copulas to characterize dependence between extreme interest rate differentials and forward premium. The empirical analysis for the CIP between interest rates for the US dollar and the British pound indicates that there is strong co-movement between interest rate differentials and forward premium at different maturities and in both upper and lower tails. This conclusion would support the existence of the CIP condition under extreme market movements.

  10. Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations

    Science.gov (United States)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2018-03-01

    Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.

  11. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions

    Science.gov (United States)

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen

    2016-01-01

    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5–17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations. PMID:27379105

  12. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    Science.gov (United States)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  13. Condensed Matter NMR under Extreme Conditions: Challenges and Opportunities

    Science.gov (United States)

    Reyes, Arneil

    2006-11-01

    Advances in resistive magnet and power supply technology have made available extremely high magnetic fields suitable for condensed matter broadline NMR experiments. This capability expands the available phase space for investigating a wide variety of materials using magnetic resonance; utilizing the strength of the field to expose or induce new physical phenomena resulting in better understanding of the physics. Continuous fields up to 45T in NHMFL Hybrid magnet have brought new challenges in designing NMR instrumentation. Field strengths and sample space limitations put constraints on RF pulse power, tuning range, bandwidth, and temperature control. The inclusion of other capabilities, including high pressure, optics, and sample rotation requires intricate probe design and construction, while extremely low milliKelvin temperatures are desired in order to explore energy scales where thermal fluctuations are suppressed. Optimization of these devices has been of paramount consideration in NHMFL Condensed Matter NMR user program. Science achieved at high fields, the new initiatives to develop resistively-detected NMR in 2D electron gas and similar systems, and the current new generation Series-Connected Hybrid magnets for NMR work will be discussed. The NHMFL is supported by the National Science Foundation and the State of Florida.

  14. Development of a system for simultaneously generating triple extreme conditions for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Shigeju [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    We have developed new system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of : (1) a liquid-helium cryostat which enables the sample temperature range of 1.7 K to 200 K, (2) a superconducting magnet providing a vertical field up to 5 Tesla with antisymmetric split-coil geometry for polarized-beam experiments, and (3) a non-magnetic clamping high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 Gpa. In the workshop, we will report the outline of the system and some results of performance tests using the system at JRR-3M of JAERI. (author)

  15. Risk from drought and extreme heat in Russian wheat production and its relation to atmospheric blocking and teleconnection patterns

    Science.gov (United States)

    Giannakaki, Paraskevi; Calanca, Pierluigi

    2017-04-01

    Russia has become one of the leading wheat exporters worldwide. Major breakdowns in Russian wheat production induced by extreme weather events are therefore of high significance not only for the domestic but also for the global market. Wheat production in south-western Russia, the main growing area, suffers in particular from the adverse effects of drought and heat waves. For this reason knowledge of the occurrence of this type of extreme events and of the processes that lead to adverse conditions is of paramount importance for risk management. The negative impacts of heat waves and drought are particularly severe when anomalous conditions persist in time. As an example, a blocking event in summer 2010 resulted in one of the warmest and worst drought conditions in Russia's recent history. The latter caused a decline in Russian wheat production by more than 30%, which in turn prompted the Russian government to issue an export ban that lasted until summer 2011. In view of this, the question of course arises of how much of the negative variations in Russian wheat production levels can be explained by blocking events and other features of the large-scale atmospheric circulation. Specific questions are: how often are blocking events over Russia associated with extreme high temperatures and dry conditions? Which of the teleconnection patterns are correlated with drought and heat stress conditions in the area? Answering these questions can contribute to a develop strategies for agricultural risk management. In this contribution we present results of a study that aims at characterizing the occurrence of adverse weather conditions in south-western Russia in relation to atmospheric blocking and teleconnection patterns such as East Atlantic/Western Russia pattern, the Polar/Eurasia pattern, the North Atlantic Oscillation and the Scandinavia pattern. The analysis relies on weather data for 1980-2014 from 130 stations distributed across the wheat production area. The account

  16. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  17. Biological effects of extreme environmental conditions. [considering limits of biosphere

    Science.gov (United States)

    Imshenetskiy, A. A.

    1975-01-01

    Actions of extreme physical and chemical space factors on microorganisms and plants are elaborated in order to establish limits for the biosphere. Considered are effects of low and high temperatures; ionizing and ultraviolet radiation; various gases; and effects of vibration, desiccation and acceleration.

  18. Frequently Asked Questions (FAQ) about Extreme Heat

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  19. Extreme climatic events in relation to global change and their impact on life histories

    Directory of Open Access Journals (Sweden)

    Juan MORENO, Anders Pape Møller

    2011-06-01

    Full Text Available Extreme weather conditions occur at an increasing rate as evidenced by higher frequency of hurricanes and more extreme precipitation and temperature anomalies. Such extreme environmental conditions will have important implications for all living organisms through greater frequency of reproductive failure and reduced adult survival. We review examples of reproductive failure and reduced survival related to extreme weather conditions. Phenotypic plasticity may not be sufficient to allow adaptation to extreme weather for many animals. Theory predicts reduced reproductive effort as a response to increased stochasticity. We predict that patterns of natural selection will change towards truncation selection as environmental conditions become more extreme. Such changes in patterns of selection may facilitate adaptation to extreme events. However, effects of selection on reproductive effort are difficult to detect. We present a number of predictions for the effects of extreme weather conditions in need of empirical tests. Finally, we suggest a number of empirical reviews that could improve our ability to judge the effects of extreme environmental conditions on life history [Current Zoology 57 (3: 375–389, 2011].

  20. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim, E-mail: wadim.jaeger@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Sanchez Espinoza, Victor Hugo [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Hurtado, Antonio [Technical University of Dresden, Institute of Power Engineering, DE-01062 Dresden (Germany)

    2011-06-15

    Highlights: > Implementation of heat transfer correlations for supercritical water into TRACE. > Simulation of several heat transfer experiments with modified TRACE version. > Most correlations are not able to reproduce the experimental results. > Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  1. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  2. Imaging findings of intravascular papillary endothelial hyperplasia presenting in extremities: correlation with pathological findings

    International Nuclear Information System (INIS)

    Lee, Sun Joo; Choo, Hye Jung; Park, Ji Sung; Park, Yeong-Mi; Eun, Choong Ki; Hong, Sung Hwan; Hwang, Ji Young; Lee, In Sook; Lee, Jongmin; Jung, Soo-Jin

    2010-01-01

    To describe magnetic resonance imaging (MRI) and ultrasound (US) findings of intravascular papillary endothelial hyperplasia (IPEH) arising in extremities. Six patients with IPEH confirmed by surgical resection were reviewed retrospectively. Before resection, 3 patients underwent both MRI and US and 3 patients underwent only MRI. Two radiologists retrospectively reviewed MR/US imaging results and correlated them with pathological features. The 6 IPEHs were diagnosed as 4 mixed forms and 2 pure forms. The pre-existing pathology of four mixed forms was intramuscular or intermuscular hemangioma. By MRI, the mixed form of IPEH (n = 4) revealed iso- to slightly high signal intensity containing nodule-like foci of high signal intensity on T1-weighted images (T1WI) and high signal intensity-containing nodule-like foci of low signal intensity on T2-weighted images (T2WI). The pure form of IPEH (n = 2) showed homogeneous iso- signal intensity on T1WI and high and low signal intensity containing nodule-like foci of low signal intensity on T2WI. On gadolinium-enhanced fat-suppressed T1WI, 50% of cases (n = 3: mixed forms) revealed peripheral, septal, and central enhancement. The other IPEHs (n = 3: 1 mixed and 2 pure forms) showed peripheral and septal enhancement or only peripheral enhancement. By US, two mixed forms of IPEH showed well-defined hypoechoic masses containing hyperechoic septa and central portion with vascularities. One pure form of IPEH was a homogeneous hypoechoic mass with septal and peripheral vascularities on color Doppler imaging. The foci of high signal intensity on T1WI, foci of low signal intensity on T2WI, and non-enhancing portions on MRI and the hypoechoic portion on US were histopathologically correlated with thrombi and the peripheral/septal or central enhancing areas on MRI, hyperechoic septa and the central portion on US, and septal/central or peripheral vascularities on color Doppler imaging corresponded to hypertrophic papillary epithelium and

  3. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  4. Correlated binomial models and correlation structures

    International Nuclear Information System (INIS)

    Hisakado, Masato; Kitsukawa, Kenji; Mori, Shintaro

    2006-01-01

    We discuss a general method to construct correlated binomial distributions by imposing several consistent relations on the joint probability function. We obtain self-consistency relations for the conditional correlations and conditional probabilities. The beta-binomial distribution is derived by a strong symmetric assumption on the conditional correlations. Our derivation clarifies the 'correlation' structure of the beta-binomial distribution. It is also possible to study the correlation structures of other probability distributions of exchangeable (homogeneous) correlated Bernoulli random variables. We study some distribution functions and discuss their behaviours in terms of their correlation structures

  5. Convergence of Extreme Value Statistics in a Two-Layer Quasi-Geostrophic Atmospheric Model

    Directory of Open Access Journals (Sweden)

    Vera Melinda Gálfi

    2017-01-01

    Full Text Available We search for the signature of universal properties of extreme events, theoretically predicted for Axiom A flows, in a chaotic and high-dimensional dynamical system. We study the convergence of GEV (Generalized Extreme Value and GP (Generalized Pareto shape parameter estimates to the theoretical value, which is expressed in terms of the partial information dimensions of the attractor. We consider a two-layer quasi-geostrophic atmospheric model of the mid-latitudes, adopt two levels of forcing, and analyse the extremes of different types of physical observables (local energy, zonally averaged energy, and globally averaged energy. We find good agreement in the shape parameter estimates with the theory only in the case of more intense forcing, corresponding to a strong chaotic behaviour, for some observables (the local energy at every latitude. Due to the limited (though very large data size and to the presence of serial correlations, it is difficult to obtain robust statistics of extremes in the case of the other observables. In the case of weak forcing, which leads to weaker chaotic conditions with regime behaviour, we find, unsurprisingly, worse agreement with the theory developed for Axiom A flows.

  6. Expert consensus on facilitators and barriers to return-to-work following surgery for non-traumatic upper extremity conditions : A Delphi study

    NARCIS (Netherlands)

    Peters, S. E.; Johnston, V.; Ross, M.; Coppieters, M. W.

    2017-01-01

    This Delphi study aimed to reach consensus on important facilitators and barriers for return-to-work following surgery for non-traumatic upper extremity conditions. In Round 1, experts (n = 42) listed 134 factors, which were appraised in Rounds 2 and 3. Consensus (3/485% agreement) was achieved for

  7. A principle to correlate extreme values of excess thermodynamic functions with partial molar quantities

    Institute of Scientific and Technical Information of China (English)

    尉志武; 刘芸; 周蕊; 薛芳渝

    2001-01-01

    Excess thermodynamic properties are widely used quantitatively for fluids. It was found that at constant temperature and pressure a molar excess quantity of a mutually miscible binary mixture at the extreme points equals the excess partial molar quantities of the two components, i.e.F1E = F2E = FmE , forming a triple cross point. The relationship is hold for properties such as en-thalpy, entropy, Gibbs free energy, and volume, and is applicable for excess functions with multi extreme points. Solutions at extreme points can be referred to as special mixtures. Particularly fora special mixture of Gibbs free energy, activity coefficients of the two components are identical.

  8. A conditional extreme value theory approach in value-at-risk forecasting: Evidence from Southeastern Europe and USA market

    Directory of Open Access Journals (Sweden)

    Totić Selena

    2015-01-01

    Full Text Available As a consequence of the recent financial crisis, the adequacy of different Value-at-Risk (VaR methodologies was heavily questioned. Current practice in VaR assessment relies on modeling the whole distribution of returns. As an alternative, in this paper we model tail behavior of returns, and thus VaR, using conditional Extreme Value Theory (EVT, which combines EVT and GARCH methodology. Moreover, we examine the performance of conditional EVT with the daily returns of seven stock market indices, of which six are from Southeastern Europe (BelexLine, BET, BUX, CROBEX, SBITOP, SOFIX from the period of September 2004 - April 2013, and one from USA market (Standard&Poors 500 Index from the period January 1998 - April 2013. Backtesting of historical daily returns proves that conditional EVT model gives good predictions for all indices and for all confidence levels.

  9. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor Hugo; Hurtado, Antonio

    2011-01-01

    Highlights: → Implementation of heat transfer correlations for supercritical water into TRACE. → Simulation of several heat transfer experiments with modified TRACE version. → Most correlations are not able to reproduce the experimental results. → Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  10. Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions

    Science.gov (United States)

    Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.

    2016-02-01

    The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.

  11. [Injury mechanisms in extreme violence settings].

    Science.gov (United States)

    Arcaute-Velazquez, Fernando Federico; García-Núñez, Luis Manuel; Noyola-Vilallobos, Héctor Faustino; Espinoza-Mercado, Fernando; Rodríguez-Vega, Carlos Eynar

    2016-01-01

    Extreme violence events are consequence of current world-wide economic, political and social conditions. Injury patterns found among victims of extreme violence events are very complex, obeying several high-energy injury mechanisms. In this article, we present the basic concepts of trauma kinematics that regulate the clinical approach to victims of extreme violence events, in the hope that clinicians increase their theoretical armamentarium, and reflecting on obtaining better outcomes. Copyright © 2016. Published by Masson Doyma México S.A.

  12. Thermodynamic correlations for the accident analysis of HTR's

    International Nuclear Information System (INIS)

    Rehm, W.; Jahn, W.; Finken, R.

    1976-12-01

    The thermal properties of Helium and for the case of a depressurized primary circuit, various mixtures of primary cooling gas were taken into consideration. The temperature dependence of the correlations for the thermal properties of the graphite components in the core and for the structural materials in the primary circuit are extrapolated about normal operation conditions. Furthermore the correlations for the effective thermal conductivity, the heat transfer and pressure drop are described for pebble bed HTR's. In addition some important heat transfer data of the steam generator are included. With these correlations, for example accident sequences with failure of the afterheat removal systems are discussed for pebble bed HTR's. It is concluded that the transient temperature behaviour demonstrates the inherent safety features of the HTR in extreme accidents. (orig.) [de

  13. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Science.gov (United States)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  14. Probabilistic analysis of extreme wind events

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [Center for Renewable Energy Sources (CRES), Pikermi Attikis (Greece)

    1997-12-31

    A vital task in wind engineering and meterology is to understand, measure, analyse and forecast extreme wind conditions, due to their significant effects on human activities and installations like buildings, bridges or wind turbines. The latest version of the IEC standard (1996) pays particular attention to the extreme wind events that have to be taken into account when designing or certifying a wind generator. Actually, the extreme wind events within a 50 year period are those which determine the ``static`` design of most of the wind turbine components. The extremes which are important for the safety of wind generators are those associated with the so-called ``survival wind speed``, the extreme operating gusts and the extreme wind direction changes. A probabilistic approach for the analysis of these events is proposed in this paper. Emphasis is put on establishing the relation between extreme values and physically meaningful ``site calibration`` parameters, like probability distribution of the annual wind speed, turbulence intensity and power spectra properties. (Author)

  15. Angiography of the upper extremity

    International Nuclear Information System (INIS)

    Janevski, B.K.

    1982-01-01

    This thesis provides a description of the technical and medical aspects of arteriography of the upper extremity and an extensive analysis of the angiographic anatomy and pathology of 750 selective studies performed in more than 500 patients. A short historical review is provided of angiography as a whole and of arteriography of the hand in particular. The method of percutaneous transfemoral catheterization of the arteries of the upper extremity and particularly the arteries of the hand is considered, discussing the problems the angiographer encounters frequently, describing the angiographic complications which may occur and emphasizing the measures to keep them to a minimum. The use of vasodilators in hand angiography is discussed. A short description of the embryological patterns persisting in the arteries of the arm is included in order to understand the congenital variations of the arteries of the upper extremity. The angiographic patterns and clinical aspects of the most common pathological processes involving the arteries of the upper extremities are presented. Special attention is paid to the correlation between angiography and pathology. (Auth.)

  16. On the boundary conditions and optimization methods in integrated digital image correlation

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Verhaegh, B.J.; Hoefnagels, J.P.M.; Ruybalid, A.; van der Sluis, O.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    In integrated digital image correlation (IDIC) methods attention must be paid to the influence of using a correct geometric and material model, but also to make the boundary conditions in the FE simulation match the real experiment. Another issue is the robustness and convergence of the IDIC

  17. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  18. Significant mean and extreme climate sensitivity of Norway spruce and silver fir at mid-elevation mesic sites in the Alps.

    Directory of Open Access Journals (Sweden)

    Marco Carrer

    Full Text Available Climate forcing is the major abiotic driver for forest ecosystem functioning and thus significantly affects the role of forests within the global carbon cycle and related ecosystem services. Annual radial increments of trees are probably the most valuable source of information to link tree growth and climate at long-term time scales, and have been used in a wide variety of investigations worldwide. However, especially in mountainous areas, tree-ring studies have focused on extreme environments where the climate sensitivity is perhaps greatest but are necessarily a biased representation of the forests within a region. We used tree-ring analyses to study two of the most important tree species growing in the Alps: Norway spruce (Picea abies and silver fir (Abies alba. We developed tree-ring chronologies from 13 mesic mid-elevation sites (203 trees and then compared them to monthly temperature and precipitation data for the period 1846-1995. Correlation functions, principal component analysis and fuzzy C-means clustering were applied to 1 assess the climate/growth relationships and their stationarity and consistency over time, and 2 extract common modes of variability in the species responses to mean and extreme climate variability. Our results highlight a clear, time-stable, and species-specific response to mean climate conditions. However, during the previous-year's growing season, which shows the strongest correlations, the primary difference between species is in their response to extreme events, not mean conditions. Mesic sites at mid-altitude are commonly underrepresented in tree-ring research; we showed that strong climatic controls of growth may exist even in those areas. Extreme climatic events may play a key role in defining the species-specific responses on climatic sensitivity and, with a global change perspective, specific divergent responses are likely to occur even where current conditions are less limited.

  19. Correlations between skin hydration parameters and corneocyte-derived parameters to characterize skin conditions.

    Science.gov (United States)

    Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri

    2018-03-30

    Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.

  20. Improving real-time estimation of heavy-to-extreme precipitation using rain gauge data via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Seo, Dong-Jun; Siddique, Ridwan; Zhang, Yu; Kim, Dongsoo

    2014-11-01

    A new technique for gauge-only precipitation analysis for improved estimation of heavy-to-extreme precipitation is described and evaluated. The technique is based on a novel extension of classical optimal linear estimation theory in which, in addition to error variance, Type-II conditional bias (CB) is explicitly minimized. When cast in the form of well-known kriging, the methodology yields a new kriging estimator, referred to as CB-penalized kriging (CBPK). CBPK, however, tends to yield negative estimates in areas of no or light precipitation. To address this, an extension of CBPK, referred to herein as extended conditional bias penalized kriging (ECBPK), has been developed which combines the CBPK estimate with a trivial estimate of zero precipitation. To evaluate ECBPK, we carried out real-world and synthetic experiments in which ECBPK and the gauge-only precipitation analysis procedure used in the NWS's Multisensor Precipitation Estimator (MPE) were compared for estimation of point precipitation and mean areal precipitation (MAP), respectively. The results indicate that ECBPK improves hourly gauge-only estimation of heavy-to-extreme precipitation significantly. The improvement is particularly large for estimation of MAP for a range of combinations of basin size and rain gauge network density. This paper describes the technique, summarizes the results and shares ideas for future research.

  1. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches. 

  2. Aortic dissection: natural course of disease? Report of two cases representing the extremes of the condition

    International Nuclear Information System (INIS)

    Tollefsen, Isak; Joergensen, Ingrid K.; Woie, Leik; Fossdal, Jan E.

    2001-01-01

    Objective: In a time when diagnostic methods and above all, surgical as well as interventional radiological treatment for aortic aneurysms and aortic dissections have reached a point nobody could think of a few years back, the present authors feel that it is worth while to remind oneself of the natural course of disease in these conditions. Taking into consideration the high morbidity and mortality rate in surgically treated patients with aortic dissection, and the high complication rate per- and postoperatively, it also seems right to ask if a more expectative and conservative approach to the condition sometimes perhaps may be justified. Methods and material: Two case reports are given. One was a 15-year-old boy with Stanford (Daily) type B dissection who statistically ought to have a good prognosis, but who died within 2 h after onset of symptoms. The other patient, a middle-aged woman with Stanford type A dissection, survived for 25 years without operation. Conclusion: These two cases, though not unique viewed separately, we consider to represent the extremes of the condition and also a natural course of disease, while none of them was operated on

  3. Aortic dissection: natural course of disease? Report of two cases representing the extremes of the condition.

    Science.gov (United States)

    Tollefsen, I; Jørgensen, I K; Woie, L; Fossdal, J E

    2001-10-01

    In a time when diagnostic methods and above all, surgical as well as interventional radiological treatment for aortic aneurysms and aortic dissections have reached a point nobody could think of a few years back, the present authors feel that it is worth while to remind oneself of the natural course of disease in these conditions. Taking into consideration the high morbidity and mortality rate in surgically treated patients with aortic dissection, and the high complication rate per- and postoperatively, it also seems right to ask if a more expectative and conservative approach to the condition sometimes perhaps may be justified. Two case reports are given. One was a 15-year-old boy with Stanford (Daily) type B dissection who statistically ought to have a good prognosis, but who died within 2 h after onset of symptoms. The other patient, a middle-aged woman with Stanford type A dissection, survived for 25 years without operation. These two cases, though not unique viewed separately, we consider to represent the extremes of the condition and also a natural course of disease, while none of them was operated on.

  4. Human Performance under Extreme Conditions with Respect to a Resilient Organisation. Proceedings of a CSNI International Workshop, 24-26 February 2015, Brugg, Switzerland

    International Nuclear Information System (INIS)

    2015-01-01

    After the Fukushima Daiichi accident a number of initiatives have been undertaken internationally to learn from the accident and to implement lessons learned to improve nuclear safety. The accident has shown in particular the challenges in supporting reliable human performance under extreme conditions. Acknowledging that further work is needed to be better prepared for the HOF (Human and Organisational Factors) challenges of the extreme conditions that may be present in severe accidents, the NEA's Working Group on Human and Organisational Factors (WGHOF), one of the working groups for the Committee on the Safety of Nuclear Installations (CSNI) initiated a new task with the objectives to: - share experiences and knowledge of human and organisational performance under extreme conditions, - identify specific currently applied HOF principles in nuclear and other high risk industries and compare them with the available knowledge, - provide a basis for improvements and necessary research taking into account HOF issues in the design and use of measures, and - make recommendations with the aim to achieve the best level of human and organisational performance as possible under extreme conditions. In order to move those issues forward WGHOF hosted together with the Swiss Federal Nuclear Safety Inspectorate ENSI a workshop entitled 'Human Performance under Extreme Conditions with respect to a Resilient Organization'. The workshop was conducted with participation of a number of invited key speakers from academic research and a range of industries, including nuclear. Thirty-four experts from 12 countries, the IAEA and OECD/Halden participated. Experts came from nuclear authorities, research centres, technical support organisations, training simulator centres, utilities and from non-nuclear field (aircraft accident investigation, fire fighting, military, design of resilient organisations). From the discussions at the workshop, it is clear that the accident at Fukushima has

  5. Kinematic and neuromuscular relationships between lower extremity clinical movement assessments.

    Science.gov (United States)

    Mauntel, Timothy C; Cram, Tyler R; Frank, Barnett S; Begalle, Rebecca L; Norcross, Marc F; Blackburn, J Troy; Padua, Darin A

    2018-06-01

    Lower extremity injuries have immediate and long-term consequences. Lower extremity movement assessments can assist with identifying individuals at greater injury risk and guide injury prevention interventions. Movement assessments identify similar movement characteristics and evidence suggests large magnitude kinematic relationships exist between movement patterns observed across assessments; however, the magnitude of the relationships for electromyographic (EMG) measures across movement assessments remains largely unknown. This study examined relationships between lower extremity kinematic and EMG measures during jump landings and single leg squats. Lower extremity three-dimensional kinematic and EMG data were sampled from healthy adults (males = 20, females = 20) during the movement assessments. Pearson correlations examined the relationships of the kinematic and EMG measures and paired samples t-tests compared mean kinematic and EMG measures between the assessments. Overall, significant moderate correlations were observed for lower extremity kinematic (r avg  = 0.41, r range  = 0.10-0.61) and EMG (r avg  = 0.47, r range  = 0.32-0.80) measures across assessments. Kinematic and EMG measures were greater during the jump landings. Jump landings and single leg squats place different demands on the body and necessitate different kinematic and EMG patterns, such that these measures are not highly correlated between assessments. Clinicians should, therefore, use multiple assessments to identify aberrant movement and neuromuscular control patterns so that comprehensive interventions can be implemented.

  6. [The heart in extreme sports: hyperbaric activity and microgravity].

    Science.gov (United States)

    Berrettini, Umberto; Landolfi, Angelo; Patteri, Giovanna

    2008-10-01

    The study of the cardiovascular and respiratory modifications in extreme environments could be useful for the understanding of the adaptive mechanisms of the body in particular conditions. The knowledge of how different environmental conditions in terms of extreme pressure, temperature and gravity modify the neurovegetative and cardiovascular system could be useful in daily practice for hypobaric and hyperbaric sports.

  7. Temperature extremes reduce seagrass growth and induce mortality

    International Nuclear Information System (INIS)

    Collier, C.J.; Waycott, M.

    2014-01-01

    Highlights: • Temperature extremes occur during low tide in shallow seagrass meadows. • The effects of temperature extremes were tested experimentally at 35 °C, 40 °C and 43 °C. • 40 °C was a critical threshold with a large impact on growth and mortality. • At 43 °C there was complete mortality after 2–3 days. • Lower light conditions (e.g. poor water quality) led to a greater negative impact. - Abstract: Extreme heating (up to 43 °C measured from five-year temperature records) occurs in shallow coastal seagrass meadows of the Great Barrier Reef at low tide. We measured effective quantum yield (ϕ PSII ), growth, senescence and mortality in four tropical seagrasses to experimental short-duration (2.5 h) spikes in water temperature to 35 °C, 40 °C and 43 °C, for 6 days followed by one day at ambient temperature. Increasing temperature to 35 °C had positive effects on ϕ PSII (the magnitude varied between days and was highly correlated with PPFD), with no effects on growth or mortality. 40 °C represented a critical threshold as there were strong species differences and there was a large impact on growth and mortality. At 43 °C there was complete mortality after 2–3 days. These findings indicate that increasing duration (more days in a row) of thermal events above 40 °C is likely to affect the ecological function of tropical seagrass meadows

  8. Correlation between meteorological conditions and the concentration of radionuclides in the ground layer of atmospheric air

    International Nuclear Information System (INIS)

    Krajny, E.; Osrodka, L.; Wojtylak, M.; Michalik, B.; Skowronek, J.

    2001-01-01

    The main goal of this work was to find correlation between the concentrations of radionuclides in outdoor air and the meteorological conditions like: atmospheric pressure, wind velocity and amount of precipitation. Because the sampling period of radionuclides concentrations in air was relatively long (7 days), the average levels of meteorological parameters have been calculated within the same time. Data of radionuclide concentrations and meteorological data have been analyzed in order to find statistical correlation. The regression analysis and one of AI methods, known as neural network, were applied. In general, analysis of the gathered data does not show any strong correlation between the meteorological conditions and the concentrations of the radionuclides in air. A slightly stronger correlation we found for radionuclides with relatively short half-lives. The only positive correlation has been found between the 7 Be concentration and air temperature (at the significance level α = 0.05). In our opinion, the lack of correlation was caused by a too long sampling time in measurements of radionuclides in outdoor air (a whole week). Results of analysis received by means of the artificial neuron network are better. We were able to find certain groups of meteorological conditions, related with the corresponding concentrations of particular radionuclides in air. Preliminary measurements of radon progeny concentration support the thesis that the link between changes of meteorological parameters and concentrations of radionuclides in ambient air must exist. (author)

  9. A principle to correlate extreme values of excess thermody-namic functions with partial molar quantities

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Excess thermodynamic properties are widely used quantitatively for fluids. It was found that at constant temperature and pressure a molar excess quantity of a mutually miscible binary mixture at the extreme points equals the excess partial molar quantities of the two components, i.e. , forming a triple cross point. The relationship is hold for properties such as enthalpy, entropy, Gibbs free energy, and volume, and is applicable for excess functions with multi extreme points. Solutions at extreme points can be referred to as special mixtures. Particularly for a special mixture of Gibbs free energy, activity coefficients of the two components are identical.

  10. Sources of correlation between experts: Empirical results from two extremes

    International Nuclear Information System (INIS)

    Meyer, M.A.; Booker, J.M.

    1987-04-01

    Through two studies, this report seeks to identify the sources of correlation, or dependence, between experts' estimates. Expert estimates are relied upon as sources of data whenever experimental data is lacking, such as in risk analyses and reliability assessments. Correlation between experts is a problem in the elicitation and subsequent use of subjective estimates. Until now, there have been no data confirming sources of correlation, although the experts' background is commonly speculated to be one. Two different populations of experts were administered questions in their areas of expertise. Data on their professional backgrounds and means of solving the questions were elicited using techniques from educational psychology and ethnography. The results from both studies indicate that the way in which an expert solves the problem is the major source of correlation. The experts' background can not be shown to be an important source of correlation nor to influence his choice of method for problem solution. From these results, some recommendations are given for the elicitation and use of expert opinion

  11. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  12. The Chennai extreme rainfall event in 2015: The Bay of Bengal connection

    Science.gov (United States)

    Boyaj, Alugula; Ashok, Karumuri; Ghosh, Subimal; Devanand, Anjana; Dandu, Govardhan

    2018-04-01

    Southeast India experienced a heavy rainfall during 30 Nov-2 Dec 2015. Particularly, the Chennai city, the fourth major metropolitan city in India with a population of 5 million, experienced extreme flooding and causalities. Using various observed/reanalysed datasets, we find that the concurrent southern Bay of Bengal (BoB) sea surface temperatures (SST) were anomalously warm. Our analysis shows that BoB sea surface temperature anomalies (SSTA) are indeed positively, and significantly, correlated with the northeastern Indian monsoonal rainfall during this season. Our sensitivity experiments carried out with the Weather Research and Forecasting (WRF) model at 25 km resolution suggest that, while the strong concurrent El Niño conditions contributed to about 21.5% of the intensity of the extreme Chennai rainfall through its signals in the local SST mentioned above, the warming trend in BoB SST also contributed equally to the extremity of the event. Further, the El Niño southern oscillation (ENSO) impacts on the intensity of the synoptic events in the BoB during the northeast monsoon are manifested largely through the local SST in the BoB as compared through its signature in the atmospheric circulations over the BoB.

  13. Base Oil-Extreme Pressure Additive Synergy in Lubricants

    Science.gov (United States)

    Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...

  14. Nonstationary frequency analysis of extreme daily precipitation amounts in Southeastern Canada using a peaks-over-threshold approach

    Science.gov (United States)

    Thiombiano, Alida N.; El Adlouni, Salaheddine; St-Hilaire, André; Ouarda, Taha B. M. J.; El-Jabi, Nassir

    2017-07-01

    In this paper, a statistical inference of Southeastern Canada extreme daily precipitation amounts is proposed using a classical nonstationary peaks-over-threshold model. Indeed, the generalized Pareto distribution (GPD) is fitted to excess time series derived from annual averages of independent precipitation amount events above a fixed threshold, the 99th percentile. Only the scale parameter of the fitted distribution is allowed to vary as a function of a covariate. This variability is modeled using B-spline function. Nonlinear correlation and cross-wavelet analysis allowed identifying two dominant climate indices as covariates in the study area, Arctic Oscillation (AO) and Pacific North American (PNA). The nonstationary frequency analysis showed that there is an east-west behavior of the AO index effects on extreme daily precipitation amounts in the study area. Indeed, the higher quantiles of these events are conditional to the AO positive phase in Atlantic Canada, while those in the more southeastern part of Canada, especially in Southern Quebec and Ontario, are negatively related to AO. The negative phase of PNA also gives the best significant correlation in these regions. Moreover, a regression analysis between AO (PNA) index and conditional quantiles provided slope values for the positive phase of the index on the one hand and the negative phase and on the other hand. This statistic allows computing a slope ratio which permits to sustain the nonlinear relation assumption between climate indices and precipitation and the development of the nonstationary GPD model for Southeastern Canada extremes precipitation modeling.

  15. Decrease in hydroclimatic conditions generating floods in the southeast of Belgium over the last 50 years resulting from changes in seasonal snow cover and extreme precipitation events

    Science.gov (United States)

    Wyard, Coraline; Fettweis, Xavier

    2016-04-01

    As a consequence of climate change, several studies concluded that winter flood occurrence could increase in the future in many rivers of northern and western Europe in response to an increase in extreme precipitation events. This study aims to determine if trends in extreme hydroclimatic events generating floods can already be detected over the last century. In particular, we focus on the Ourthe River (southeast of Belgium) which is one of the main tributaries of the Meuse River with a catchment area of 3500 km². In this river, most of the floods occur during winter and about 50% of them are due to rainfall events associated with the melting of the snow which covers the Ardennes during winter. In this study, hydroclimatic conditions favorable to flooding were reconstructed over the 20th century using the regional climate model MAR ("Modèle Atmosphérique Régional") forced by the following reanalyses: the ERA-20C, the ERA-Interim and the NCEP/NCAR-v1. The use of the MAR model allows to compute precipitation, snow depth and run-off resulting from precipitation events and snow melting in any part of the Ourthe river catchment area. Therefore, extreme hydroclimatic events, namely extreme run-off events, which could potentially generate floods, can be reconstructed using the MAR model. As validation, the MAR results were compared to weather station-based data. A trend analysis was then performed in order to study the evolution of conditions favorable to flooding in the Ourthe River catchment. The results show that the MAR model allows the detection of more than 95% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the 1974-2014 period. Conditions favorable to flooding present a negative trend over the last 50 years as a result of a decrease in snow accumulation and in extreme precipitation events. However, significance of these trends depends on the reanalysis used to force the regional climate model as well as the

  16. An influence of extremal edges on boundary extension.

    Science.gov (United States)

    Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P

    2015-08-01

    Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.

  17. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  18. Spatial extreme value analysis to project extremes of large-scale indicators for severe weather.

    Science.gov (United States)

    Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M

    2013-09-01

    Concurrently high values of the maximum potential wind speed of updrafts ( W max ) and 0-6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd.

  19. Predicting the solubility of gases in Nitrile Butadiene Rubber in extreme conditions using molecular simulation

    Science.gov (United States)

    Khawaja, Musab; Molinari, Nicola; Sutton, Adrian; Mostofi, Arash

    In the oil and gas industry, elastomer seals play an important role in protecting sensitive monitoring equipment from contamination by gases - a problem that is exacerbated by the high pressures and temperatures found down-hole. The ability to predict and prevent such permeative failure has proved elusive to-date. Nitrile butadiene rubber (NBR) is a common choice of elastomer for seals due to its resistance to heat and fuels. In the conditions found in the well it readily absorbs small molecular weight gases. How this behaviour changes quantitatively for different gases as a function of temperature and pressure is not well-understood. In this work a series of fully atomistic simulations are performed to understand the effect of extreme conditions on gas solubility in NBR. Widom particle insertion is used to compute solubilities. The importance of sampling and allowing structural relaxation upon compression are highlighted, and qualitatively reasonable trends reproduced. Finally, while at STP it has previously been shown that the solubility of CO2 is higher than that of He in NBR, we observe that under the right circumstances it is possible to reverse this trend.

  20. Inference and testing on the boundary in extended constant conditional correlation GARCH models

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard

    2017-01-01

    We consider inference and testing in extended constant conditional correlation GARCH models in the case where the true parameter vector is a boundary point of the parameter space. This is of particular importance when testing for volatility spillovers in the model. The large-sample properties...

  1. Correlations Between Extreme Atmospheric Hazards and Global Teleconnections: Implications for Multihazard Resilience

    Science.gov (United States)

    Steptoe, H.; Jones, S. E. O.; Fox, H.

    2018-03-01

    Occurrences of concurrent extreme atmospheric hazards represent a significant area of uncertainty for organizations involved in disaster mitigation and risk management. Understanding risks posed by natural disasters and their relationship with global climate drivers is crucial in preparing for extreme events. In this review we quantify the strength of the physical mechanisms linking hazards and atmosphere-ocean processes. We demonstrate how research from the science community may be used to support disaster risk reduction and global sustainable development efforts. We examine peer-reviewed literature connecting 16 regions affected by extreme atmospheric hazards and eight key global drivers of weather and climate. We summarize current understanding of multihazard disaster risk in each of these regions and identify aspects of the global climate system that require further investigation to strengthen our resilience in these areas. We show that some drivers can increase the risk of concurrent hazards across different regions. Organizations that support disaster risk reduction, or underwrite exposure, in multiple regions may have a heightened risk of facing multihazard losses. We find that 15 regional hazards share connections via the El Niño-Southern Oscillation, with the Indian Ocean Dipole, North Atlantic Oscillation, and the Southern Annular Mode being secondary sources of significant regional interconnectivity. From a hazard perspective, rainfall over China shares the most connections with global drivers and has links to both Northern and Southern Hemisphere modes of variability. We use these connections to assess the global likelihood of concurrent hazard occurrence in support of multihazard resilience and disaster risk reduction goals.

  2. Arctic sea ice, Eurasia snow, and extreme winter haze in China.

    Science.gov (United States)

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-03-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.

  3. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  4. Extreme event statistics in a drifting Markov chain

    Science.gov (United States)

    Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur

    2017-07-01

    We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.

  5. Topic Correlation Analysis for Bearing Fault Diagnosis Under Variable Operating Conditions

    Science.gov (United States)

    Chen, Chao; Shen, Fei; Yan, Ruqiang

    2017-05-01

    This paper presents a Topic Correlation Analysis (TCA) based approach for bearing fault diagnosis. In TCA, Joint Mixture Model (JMM), a model which adapts Probability Latent Semantic Analysis (PLSA), is constructed first. Then, JMM models the shared and domain-specific topics using “fault vocabulary” . After that, the correlations between two kinds of topics are computed and used to build a mapping matrix. Furthermore, a new shared space spanned by the shared and mapped domain-specific topics is set up where the distribution gap between different domains is reduced. Finally, a classifier is trained with mapped features which follow a different distribution and then the trained classifier is tested on target bearing data. Experimental results justify the superiority of the proposed approach over the stat-of-the-art baselines and it can diagnose bearing fault efficiently and effectively under variable operating conditions.

  6. Assessment extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea

    Science.gov (United States)

    Dvornikov, Anton; Martyanov, Stanislav; Ryabchenko, Vladimir; Eremina, Tatjana; Isaev, Alexey; Sein, Dmitry

    2017-04-01

    Extreme hydrometeorological conditions in the Gulf of Bothnia, the Baltic Sea, are estimated paying a special attention to the area of the future construction of nuclear power plant (NPP) "Hanhikivi-1" (24° 16' E, 64° 32' N). To produce these estimates, long-term observations and results from numerical models of water and ice circulation and wind waves are used. It is estimated that the average annual air temperature in the vicinity of the station is +3° C, summer and winter extreme temperature is equal to 33.3° C and -41.5° C, respectively. Model calculations of wind waves have shown that the most dangerous (in terms of the generation of wind waves in the NPP area) is a north-west wind with the direction of 310°. The maximum height of the waves in the Gulf of Bothnia near the NPP for this wind direction with wind velocity of 10 m/s is 1.2-1.4 m. According to the model estimates, the highest possible level of the sea near the NPP is 248 cm, the minimum level, -151 cm, respectively for the western and eastern winds. These estimates are in good agreement with observations on the sea level for the period 1922-2015 at the nearest hydrometeorological station Raahe (Finland). In order to assess the likely impact of the NPP on the marine environment numerical experiments for the cold (2010) and warm year (2014) have been carried out. These calculations have shown that permanent release of heat into the marine environment from the operating NPP for the cold year (2010) will increase the temperature in the upper layer of 0-250m zone by 10°C in winter - spring and by 8°C in summer - early autumn, and in the bottom layer of 0-250m zone by 5°C in winter - spring and 3°C in summer - early autumn. For the warm year (2014), these temperature changes are smaller. Ice cover in both cases will disappear in two - kilometer vicinity of the NPP. These effects should be taken into account when assessing local climate changes in the future

  7. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovich, G., E-mail: gfox@mcmaster.ca [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Kovalev, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Aguirre, M.H. [Laboratory of Advanced Microscopy, Institute of Nanoscience of Aragón, University of Zaragoza, 50018 Zaragoza (Spain); Yamamoto, K. [Materials Research Laboratory, Kobe Steel Ltd, 1-5-5 Takatsuda-dai, Nishi-ku, Kobe 651-2271, Hyogo (Japan); Veldhuis, S. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Gershman, I. [All-Russian Railway Research Institute, 10 Third Mytishchinskaya Street, Moscow 29851 (Russian Federation); Rashkovskiy, A. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Endrino, J.L. [Albengoa Research, Energia Solar 1, Palmas Altas, Seville 41014 (Spain); Beake, B. [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dosbaeva, G. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada); Wainstein, D. [Surface Phenomena Researches Group, CNIICHERMET, 9/23, 2-nd Baumanskaya Street, Moscow 105005 (Russian Federation); Yuan, Junifeng; Bunting, J.W. [Department of Mechanical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L7 (Canada)

    2014-04-01

    Highlights: • The evolution of self-organization under extreme frictional conditions has been studied. • Comprehensive characterization of the tribo-films was made using various surface analytical techniques. • During the running-in stage, mullite tribo-ceramics predominate on the surface of the nano-multilayer coating, establishing a functional hierarchy within the layer of tribo-films. • It is possible to control tribo-film evolution during self-organization by means of an increase in structural complexity and the non-equilibrium state of the surface engineered layer. - Abstract: The evolution of the self-organization process where dissipative structures are formed under the extreme frictional conditions associated with high performance dry machining of hardened steels has been studied in detail. The emphasis was on the progressive studies of surface transformations within multilayer and monolayer TiAlCrSiYN-based PVD coatings during the running-in stage of wear when self-organization process occurs. The coating layer was characterized by high resolution electron energy-loss spectroscopy (HREELS). It is shown that the nano-multilayer coating possesses higher non-equilibrium structure in comparison to the monolayer. Comprehensive studies of the tribo-films (dissipative structures) formed on the friction surface were made using a number of advanced surface characterization techniques such as X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES). The data obtained for the tribo-films was combined with the detailed TEM studies of the structural and phase transformations within the underlying coating layer. This data was related to the micro-mechanical characteristics of the coating layer and its wear resistance. It was demonstrated that the evolution of the self-organization process is strongly controlled by the characteristics of the tribo-films formed at different stages of the wear process. Within running-in stage (after

  8. Final Report for Project. Quark matter under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Incera, Vivian [Univ. of Texas, El Paso, TX (United States); Ferrer, Efrain [Univ. of Texas, El Paso, TX (United States)

    2015-12-31

    The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report “Reaching for the Horizon” has been “to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.” The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.

  9. Final Report for Project. Quark matter under extreme conditions

    International Nuclear Information System (INIS)

    Incera, Vivian; Ferrer, Efrain

    2015-01-01

    The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report 'Reaching for the Horizon' has been 'to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.' The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.

  10. Extreme Water Deficit in Brazil Detected from Space

    Science.gov (United States)

    Vieira Getirana

    2016-01-01

    Extreme droughts have caused significant socioeconomic and environmental damage worldwide. In Brazil, ineffective energy development and water management policies have magnified the impacts of recent severe droughts, which include massive agricultural losses, water supply restrictions, and energy rationing. Spaceborne remote sensing data advance our understanding of the spatiotemporal variability of large-scale droughts and enhance the detection and monitoring of extreme water-related events. In this study, data derived from the Gravity Recovery and Climate Experiment (GRACE) mission are used to detect and quantify an extended major drought over eastern Brazil and provide estimates of impacted areas and region-specific water deficits. Two structural breakpoint detection methods were applied to time series of GRACE-based terrestrial water storage anomalies (TWSA), determining when two abrupt changes occurred. One, in particular, defines the beginning of the current drought. Using TWSA, a water loss rate of 26.1 cmyr21 over southeastern Brazil was detected from 2012 to 2015. Based on analysis of Global Land Data Assimilation System(GLDAS) outputs, the extreme drought is mostly related to lower-than-usual precipitation rates, resulting in high soil moisture depletion and lower-than-usual rates of evapotranspiration. A reduction of 2023 of precipitation over an extended period of 3 years is enough to raise serious water scarcity conditions in the country. Correlations between monthly time series of both grid-based TWSA and ground-based water storage measurements at 16 reservoirs located within southeastern Brazil varied from 0.42 to 0.82. Differences are mainly explained by reservoir sizes and proximity to the drought nucleus.

  11. The impact of extreme weather conditions on the life of settlers in the Central Russia in X - XVI centuries

    Science.gov (United States)

    Graves, Irina; Nizovtsev, Viacheslav; Erman, Natalia

    2017-04-01

    A special place in the reconstruction of climate dynamics takes an analysis of extraordinary meteorological phenomena. These extreme weather events in the first place impact the functioning of, the rhythm and dynamics of the landscapes and determine not only the features of economy, but also certain aspects of historical development. In the analysis of primary chronicles and published data, along with the direct climatic characteristics (hot, warm, cold, wet, dry, etc.) a lot of attention was paid to abnormal (extreme) natural phenomena and indirect indications of climate variability (floods, crop failures, hunger years, epidemics, etc.). As a result, tables were compiled reflecting climatic basic characteristics and extremes for each year since 900 BC. X-XI centuries was a period of minor climatic optimum - the climate was warmer and drier than the modern one. In addition to higher temperatures (up to 1-3C above than mordern), during this period there were no severe winters. A small amount of summer rainfall has led to a reduction in the number of small water reservoirs and flooding rivers. This is evidenced by Slavic settlements on floodplains of a number of rivers in the Moscow region. It is in this favorable climatic time the way "from the Vikings to the Greeks" was open. Catastrophic natural events had a minimum repeatability. For example, during the X century the Russian chronicles mentioned 41 extreme event, but for the XIII century - 102. Most of the villages and towns were located on the low floodplain terraces of rivers. The main farmland was concentrated there as well. In the "period of contrasts" (XIII - XIV centuries) there was an increase of intra-seasonal climate variability, humidity and widespread reduction in summer temperatures by 1-2C. The number of extreme weather events increased: cold prolonged winters, long rains in summers, cold weather returns in the early summer, early frosts in late summer - early autumn. Such conditions often

  12. Language barriers in Hispanic patients: relation to upper-extremity disability.

    Science.gov (United States)

    Menendez, Mariano E; Eberlin, Kyle R; Mudgal, Chaitanya S; Ring, David

    2015-06-01

    Although upper-extremity disability has been shown to correlate highly with various psychosocial aspects of illness (e.g., self-efficacy, depression, kinesiophobia, and pain catastrophizing), the role of language in musculoskeletal health status is less certain. In an English-speaking outpatient hand surgery office setting, we sought to determine (1) whether a patient's primary native language (English or Spanish) is an independent predictor of upper-extremity disability and (2) whether there are any differences in the contribution of measures of psychological distress to disability between native English- and Spanish-speaking patients. A total of 122 patients (61 native English speakers and 61 Spanish speakers) presenting to an orthopaedic hand clinic completed sociodemographic information and three Patient-Reported Outcomes Measurement Information System (PROMIS)-based computerized adaptive testing questionnaires: PROMIS Pain Interference, PROMIS Depression, and PROMIS Upper-Extremity Physical Function. Bivariate and multivariable linear regression modeling were performed. Spanish-speaking patients reported greater upper-extremity disability, pain interference, and symptoms of depression than English-speaking patients. After adjusting for sociodemographic covariates and measures of psychological distress using multivariable regression modeling, the patient's primary language was not retained as an independent predictor of disability. PROMIS Depression showed a medium correlation (r = -0.35; p Spanish-speaking patients. PROMIS Pain Interference had a large correlation with disability in both patient cohorts (Spanish-speaking: r = -0.66; p immigration to the USA did not correlate with disability among Spanish speakers. Primary language has less influence on symptom intensity and magnitude of disability than psychological distress and ineffective coping strategies. Interventions to optimize mood and to reduce pain interference should be considered in

  13. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    of adaptation strategies, but these changes are subject to uncertainties. The focus of this PhD thesis is the quantification of uncertainties in changes in extreme precipitation. It addresses two of the main sources of uncertainty in climate change impact studies: regional climate models (RCMs) and statistical...... downscaling methods (SDMs). RCMs provide information on climate change at the regional scale. SDMs are used to bias-correct and downscale the outputs of the RCMs to the local scale of interest in adaptation strategies. In the first part of the study, a multi-model ensemble of RCMs from the European ENSEMBLES...... project was used to quantify the uncertainty in RCM projections over Denmark. Three aspects of the RCMs relevant for the uncertainty quantification were first identified and investigated. These are: the interdependency of the RCMs; the performance in current climate; and the change in the performance...

  14. Predicting extreme rainfall over eastern Asia by using complex networks

    International Nuclear Information System (INIS)

    He Su-Hong; Gong Yan-Chun; Huang Yan-Hua; Wu Cheng-Guo; Feng Tai-Chen; Gong Zhi-Qiang

    2014-01-01

    A climate network of extreme rainfall over eastern Asia is constructed for the period of 1971–2000, employing the tools of complex networks and a measure of nonlinear correlation called event synchronization (ES). Using this network, we predict the extreme rainfall for several cases without delay and with n-day delay (1 ≤ n ≤ 10). The prediction accuracy can reach 58% without delay, 21% with 1-day delay, and 12% with n-day delay (2 ≤ n ≤ 10). The results reveal that the prediction accuracy is low in years of a weak east Asia summer monsoon (EASM) or 1 year later and high in years of a strong EASM or 1 year later. Furthermore, the prediction accuracy is higher due to the many more links that represent correlations between different grid points and a higher extreme rainfall rate during strong EASM years. (geophysics, astronomy, and astrophysics)

  15. Reduced brachial flow-mediated vasodilation in young adult ex extremely low birth weight preterm: a condition predictive of increased cardiovascular risk?

    Science.gov (United States)

    Bassareo, P P; Fanos, V; Puddu, M; Demuru, P; Cadeddu, F; Balzarini, M; Mercuro, G

    2010-10-01

    Sporadic data present in literature report how preterm birth and low birth weight constitute the risk factors for the development of cardiovascular diseases in later life. To assess the presence of potential alterations to endothelial function in young adults born preterm at extremely low birth weight (Cesarea, Israel). Endothelial function was significantly reduced in ex-ELBW subjects compared to C (1.94 +/- 0.37 vs. 2.68 +/- 0.41, p < 0.0001). Moreover, this function correlated significantly with gestational age (r = 0.56, p < 0.0009) and birth weight (r = 0.63, p < 0.0001). The results obtained reveal a significant decrease in endothelial function of ex-ELBW subjects compared to controls, underlining a probable correlation with preterm birth and low birth weight. Taken together, these results suggest that an ELBW may underlie the onset of early circulatory dysfunction predictive of increased cardiovascular risk.

  16. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    Science.gov (United States)

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhancing the Extreme Climate Index (ECI) to monitor climate extremes for an index-based insurance scheme across Africa

    Science.gov (United States)

    Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.

    2017-12-01

    Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.

  18. "Bunched Black Swans" in Complex Geosystems: Cross-Disciplinary Approaches to the Additive and Multiplicative Modelling of Correlated Extreme Bursts

    Science.gov (United States)

    Watkins, N. W.; Rypdal, M.; Lovsletten, O.

    2012-12-01

    For all natural hazards, the question of when the next "extreme event" (c.f. Taleb's "black swans") is expected is of obvious importance. In the environmental sciences users often frame such questions in terms of average "return periods", e.g. "is an X meter rise in the Thames water level a 1-in-Y year event ?". Frequently, however, we also care about the emergence of correlation, and whether the probability of several big events occurring in close succession is truly independent, i.e. are the black swans "bunched". A "big event", or a "burst", defined by its integrated signal above a threshold, might be a single, very large, event, or, instead, could in fact be a correlated series of "smaller" (i.e. less wildly fluctuating) events. Several available stochastic approaches provide quantitative information about such bursts, including Extreme Value Theory (EVT); the theory of records; level sets; sojourn times; and models of space-time "avalanches" of activity in non-equilibrium systems. Some focus more on the probability of single large events. Others are more concerned with extended dwell times above a given spatiotemporal threshold: However, the state of the art is not yet fully integrated, and the above-mentioned approaches differ in fundamental aspects. EVT is perhaps the best known in the geosciences. It is concerned with the distribution obeyed by the extremes of datasets, e.g. the 100 values obtained by considering the largest daily temperature recorded in each of the years of a century. However, the pioneering work from the 1920s on which EVT originally built was based on independent identically distributed samples, and took no account of memory and correlation that characterise many natural hazard time series. Ignoring this would fundamentally limit our ability to forecast; so much subsequent activity has been devoted to extending EVT to encompass dependence. A second group of approaches, by contrast, has notions of time and thus possible non

  19. Liquid Water Restricts Habitability in Extreme Deserts

    Science.gov (United States)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  20. An Invariant-Preserving ALE Method for Solids under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Christon, Mark A [Los Alamos National Laboratory

    2012-07-17

    We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore

  1. Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit

    International Nuclear Information System (INIS)

    Zhou, Yongxi; Ernzerhof, Matthias; Bahmann, Hilke

    2015-01-01

    Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, various interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials

  2. Conditioning, Correlation and Entropy Generation in Maxwell’s Demon

    Directory of Open Access Journals (Sweden)

    Neal G. Anderson

    2013-10-01

    Full Text Available Maxwell’s Demon conspires to use information about the state of a confined molecule in a Szilard engine (randomly frozen into a state subspace by his own actions to derive work from a single-temperature heat bath. It is widely accepted that, if the Demon can achieve this at all, he can do so without violating the Second Law only because of a counterbalancing price that must be paid to erase information when the Demon’s memory is reset at the end of his operating cycle. In this paper, Maxwell’s Demon is analyzed within a “referential” approach to physical information that defines and quantifies the Demon’s information via correlations between the joint physical state of the confined molecule and that of the Demon’s memory. On this view, which received early emphasis in Fahn’s 1996 classical analysis of Maxwell’s Demon, information is erased not during the memory reset step of the Demon’s cycle, but rather during the expansion step, when these correlations are destroyed. Dissipation and work extraction are analyzed here for a Demon that operates a generalized quantum mechanical Szilard engine embedded in a globally closed composite, which also includes a work reservoir, a heat bath and the remainder of the Demon’s environment. Memory-engine correlations lost during the expansion step, which enable extraction of work from the Demon via operations conditioned on the memory contents, are shown to be dissipative when this decorrelation is achieved unconditionally so no work can be extracted. Fahn’s essential conclusions are upheld in generalized form, and his quantitative results supported via appropriate specialization to the Demon of his classical analysis, all without external appeal to classical thermodynamics, the Second Law, phase space conservation arguments or Landauer’s Principle.

  3. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    International Nuclear Information System (INIS)

    Kilpua, E. K. J.; Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J.; Miyahara, H.; Kataoka, R.; Liu, Y. D.

    2015-01-01

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field

  4. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kilpua, E. K. J. [Department of Physics, University Helsinki (Finland); Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J. [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto Univeristy (Finland); Miyahara, H. [Musashino Art University, 1-736 Ogawa-cho, Kodaira-shi, Tokyo 187-8505 (Japan); Kataoka, R. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-06-20

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.

  5. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  6. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions.

    Science.gov (United States)

    Munson, Linda; Terio, Karen A; Kock, Richard; Mlengeya, Titus; Roelke, Melody E; Dubovi, Edward; Summers, Brian; Sinclair, Anthony R E; Packer, Craig

    2008-06-25

    Extreme climatic conditions may alter historic host-pathogen relationships and synchronize the temporal and spatial convergence of multiple infectious agents, triggering epidemics with far greater mortality than those due to single pathogens. Here we present the first data to clearly illustrate how climate extremes can promote a complex interplay between epidemic and endemic pathogens that are normally tolerated in isolation, but with co-infection, result in catastrophic mortality. A 1994 canine distemper virus (CDV) epidemic in Serengeti lions (Panthera leo) coincided with the death of a third of the population, and a second high-mortality CDV epidemic struck the nearby Ngorongoro Crater lion population in 2001. The extent of adult mortalities was unusual for CDV and prompted an investigation into contributing factors. Serological analyses indicated that at least five "silent" CDV epidemics swept through the same two lion populations between 1976 and 2006 without clinical signs or measurable mortality, indicating that CDV was not necessarily fatal. Clinical and pathology findings suggested that hemoparsitism was a major contributing factor during fatal epidemics. Using quantitative real-time PCR, we measured the magnitude of hemoparasite infections in these populations over 22 years and demonstrated significantly higher levels of Babesia during the 1994 and 2001 epidemics. Babesia levels correlated with mortalities and extent of CDV exposure within prides. The common event preceding the two high mortality CDV outbreaks was extreme drought conditions with wide-spread herbivore die-offs, most notably of Cape buffalo (Syncerus caffer). As a consequence of high tick numbers after the resumption of rains and heavy tick infestations of starving buffalo, the lions were infected by unusually high numbers of Babesia, infections that were magnified by the immunosuppressive effects of coincident CDV, leading to unprecedented mortality. Such mass mortality events may become

  7. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions.

    Directory of Open Access Journals (Sweden)

    Linda Munson

    Full Text Available Extreme climatic conditions may alter historic host-pathogen relationships and synchronize the temporal and spatial convergence of multiple infectious agents, triggering epidemics with far greater mortality than those due to single pathogens. Here we present the first data to clearly illustrate how climate extremes can promote a complex interplay between epidemic and endemic pathogens that are normally tolerated in isolation, but with co-infection, result in catastrophic mortality. A 1994 canine distemper virus (CDV epidemic in Serengeti lions (Panthera leo coincided with the death of a third of the population, and a second high-mortality CDV epidemic struck the nearby Ngorongoro Crater lion population in 2001. The extent of adult mortalities was unusual for CDV and prompted an investigation into contributing factors. Serological analyses indicated that at least five "silent" CDV epidemics swept through the same two lion populations between 1976 and 2006 without clinical signs or measurable mortality, indicating that CDV was not necessarily fatal. Clinical and pathology findings suggested that hemoparsitism was a major contributing factor during fatal epidemics. Using quantitative real-time PCR, we measured the magnitude of hemoparasite infections in these populations over 22 years and demonstrated significantly higher levels of Babesia during the 1994 and 2001 epidemics. Babesia levels correlated with mortalities and extent of CDV exposure within prides. The common event preceding the two high mortality CDV outbreaks was extreme drought conditions with wide-spread herbivore die-offs, most notably of Cape buffalo (Syncerus caffer. As a consequence of high tick numbers after the resumption of rains and heavy tick infestations of starving buffalo, the lions were infected by unusually high numbers of Babesia, infections that were magnified by the immunosuppressive effects of coincident CDV, leading to unprecedented mortality. Such mass mortality

  8. Climate Extremes Promote Fatal Co-Infections during Canine Distemper Epidemics in African Lions

    Science.gov (United States)

    Munson, Linda; Terio, Karen A.; Kock, Richard; Mlengeya, Titus; Roelke, Melody E.; Dubovi, Edward; Summers, Brian; Sinclair, Anthony R. E.; Packer, Craig

    2008-01-01

    Extreme climatic conditions may alter historic host-pathogen relationships and synchronize the temporal and spatial convergence of multiple infectious agents, triggering epidemics with far greater mortality than those due to single pathogens. Here we present the first data to clearly illustrate how climate extremes can promote a complex interplay between epidemic and endemic pathogens that are normally tolerated in isolation, but with co-infection, result in catastrophic mortality. A 1994 canine distemper virus (CDV) epidemic in Serengeti lions (Panthera leo) coincided with the death of a third of the population, and a second high-mortality CDV epidemic struck the nearby Ngorongoro Crater lion population in 2001. The extent of adult mortalities was unusual for CDV and prompted an investigation into contributing factors. Serological analyses indicated that at least five “silent” CDV epidemics swept through the same two lion populations between 1976 and 2006 without clinical signs or measurable mortality, indicating that CDV was not necessarily fatal. Clinical and pathology findings suggested that hemoparsitism was a major contributing factor during fatal epidemics. Using quantitative real-time PCR, we measured the magnitude of hemoparasite infections in these populations over 22 years and demonstrated significantly higher levels of Babesia during the 1994 and 2001 epidemics. Babesia levels correlated with mortalities and extent of CDV exposure within prides. The common event preceding the two high mortality CDV outbreaks was extreme drought conditions with wide-spread herbivore die-offs, most notably of Cape buffalo (Syncerus caffer). As a consequence of high tick numbers after the resumption of rains and heavy tick infestations of starving buffalo, the lions were infected by unusually high numbers of Babesia, infections that were magnified by the immunosuppressive effects of coincident CDV, leading to unprecedented mortality. Such mass mortality events may

  9. XBeach-G: a tool for predicting gravel barrier response to extreme storm conditions

    Science.gov (United States)

    Masselink, Gerd; Poate, Tim; McCall, Robert; Roelvink, Dano; Russell, Paul; Davidson, Mark

    2014-05-01

    Gravel beaches protect low-lying back-barrier regions from flooding during storm events and their importance to society is widely acknowledged. Unfortunately, breaching and extensive storm damage has occurred at many gravel sites and this is likely to increase as a result of sea-level rise and enhanced storminess due to climate change. Limited scientific guidance is currently available to provide beach managers with operational management tools to predict the response of gravel beaches to storms. The New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG) project aims to improve our understanding of storm impacts on gravel coastal environments and to develop a predictive capability by modelling these impacts. The NUPSIG project uses a 5-pronged approach to address its aim: (1) analyse hydrodynamic data collected during a proto-type laboratory experiment on a gravel beach; (2) collect hydrodynamic field data on a gravel beach under a range of conditions, including storm waves with wave heights up to 3 m; (3) measure swash dynamics and beach response on 10 gravel beaches during extreme wave conditions with wave heights in excess of 3 m; (4) use the data collected under 1-3 to develop and validate a numerical model to model hydrodynamics and morphological response of gravel beaches under storm conditions; and (5) develop a tool for end-users, based on the model formulated under (4), for predicting storm response of gravel beaches and barriers. The aim of this presentation is to present the key results of the NUPSIG project and introduce the end-user tool for predicting storm response on gravel beaches. The model is based on the numerical model XBeach, and different forcing scenarios (wave and tides), barrier configurations (dimensions) and sediment characteristics are easily uploaded for model simulations using a Graphics User Interface (GUI). The model can be used to determine the vulnerability of gravel barriers to storm events, but can also be

  10. Dissociating indifferent, directional, and extreme responding in personality data

    DEFF Research Database (Denmark)

    Zettler, Ingo; Lang, Jonas W B; Hülsheger, Ute R

    2015-01-01

    - and observer reports of personality traits. The three-process model captures indifferent, directional, and extreme responding. Substantively, we hypothesize that, and test whether, trait Honesty-Humility is negatively linked to extreme responding. METHOD: We applied the three-process model to personality data......-process model. Second, we show that the various response processes show a pattern of correlations across traits and rating sources which is in line with the idea that indifferent and extreme responding are person-specific tendencies, whereas directional responding is content-specific. Third, we report findings...... of N = 577 dyads (self- and observer reports of the HEXACO Personality Inventory-Revised) of Dutch and German respondents. RESULTS: First, we provide evidence that indifferent, directional, and extreme responding can be separated from each other in personality data through the use of the three...

  11. Operational early warning platform for extreme meteorological events

    Science.gov (United States)

    Mühr, Bernhard; Kunz, Michael

    2015-04-01

    Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.

  12. On two-point boundary correlations in the six-vertex model with domain wall boundary conditions

    Science.gov (United States)

    Colomo, F.; Pronko, A. G.

    2005-05-01

    The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.

  13. Extreme Radio Flares and Associated X-Ray Variability from Young Stellar Objects in the Orion Nebula Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan [Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Reid, Mark J.; Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Rivilla, Victor M. [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125, Firenze (Italy); Rau, Urvashi; Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)

    2017-08-01

    Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look for the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.

  14. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  15. Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device.

    Science.gov (United States)

    Pfützner, Andreas; Pesach, Gidi; Nagar, Ron

    2017-06-01

    Injectable life-saving drugs should not be exposed to temperatures 30°C/86°F. Frequently, weather conditions exceed these temperature thresholds in many countries. Insulin is to be kept at 4-8°C/~ 39-47°F until use and once opened, is supposed to be stable for up to 31 days at room temperature (exception: 42 days for insulin levemir). Extremely hot or cold external temperature can lead to insulin degradation in a very short time with loss of its glucose-lowering efficacy. Combined chemical and engineering solutions for heat protection are employed in ViViCap-1 for disposable insulin pens. The device works based on vacuum insulation and heat consumption by phase-change material. Laboratory studies with exposure of ViViCap-1 to hot outside conditions were performed to evaluate the device performance. ViViCap-1 keeps insulin at an internal temperature phase-change process and 'recharges' the device for further use. ViViCap-1 performed within its specifications. The small and convenient device maintains the efficacy and safety of using insulin even when carried under hot weather conditions.

  16. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Kou, Nannan; Zhao, Fu

    2011-01-01

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants.

  17. Development and performance test of a system available for generating multiple extreme conditions for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kawano, Shinji; Fukui, Susumu; Moriai, Atsushi; Ohtomo, Akitoshi; Ichimura, Shigeki; Onodera, Akifumi; Amita, F.; Katano, Susumu

    1998-01-01

    We have developed unique system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of: (i) a liquid-helium cryostat variable for sample temperature from 1.7 K to 200 K, (ii) a superconducting magnet providing a vertical field up to ±5 T with an antisymmetric split-coil geometry for polarized-beam experiments, and (iii) a non-magnetic piston-cylinder high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 GPa. In the presentation, we will report the outline of the system and some results of performance tests at KURRI and JRR-3M of JAERI. (author)

  18. Meteorological Drivers of Extreme Air Pollution Events

    Science.gov (United States)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  19. Studies of nuclei under the extreme conditions of density, temperature, isospin asymmetry and the phase diagram of hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    2016-10-18

    The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.

  20. Extreme quantile estimation for dependent data with applications to finance

    OpenAIRE

    Drees, Holger

    2002-01-01

    The asymptotic normality of a class of estimators for extreme quantiles is established under mild structural conditions on the observed stationary \\beta-mixing time series. Consistent estimators of the asymptotic variance are introduced, which render possible the construction of asymptotic confidence intervals for the extreme quantiles. Moreover, it is shown that many well-known time series models satisfy our conditions. Then the theory is applied to a time series of returns of a stock in...

  1. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2014-01-01

    Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

  2. Liquid Water Restricts Habitability in Extreme Deserts.

    Science.gov (United States)

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  3. A correlation for single phase turbulent mixing in square rod arrays under highly turbulent conditions

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Kwon, Young Min; Chang, Won Pyo; Lee, Yong Bum

    2006-01-01

    The existing experimental data related to the turbulent mixing factor in rod arrays is examined and a new definition of the turbulent mixing factor is introduced to take into account the turbulent mixing of fluids with various Prandtl numbers. The new definition of the mixing factor is based on the eddy diffusivity of energy. With this definition of the mixing factor, it was found that the geometrical parameter, δ ij /D h , correlates the turbulent mixing data better than S/d, which has been used frequently in existing correlations. Based on the experimental data for a highly turbulent condition in square rod arrays, a correlation describing turbulent mixing dependent on the parameter δ ij /D h has been developed. The correlation is insensitive to the Re number and it takes into account the effect of the turbulent Prandtl number. The proposed correlation predicts a reasonable mixing even at a lower S/d ratio

  4. The correlations of work conditions with unhealthy lifestyles and occupational health problems of casino croupiers in Macau.

    Science.gov (United States)

    Hu, Sydney X; Luk, Andrew; Leong, Carmen; U, Cecilia; Van, Florence

    2013-06-01

    The Macau economy and employment of residents rely heavily on the gaming industry. It is important that the working conditions in casinos are not harmful to the health of the casino employees. This study examines the correlations between work conditions, unhealthy lifestyles and occupational health problems amongst casino croupiers in Macau. Its findings will provide casino managers and policy makers with evidence and awareness of the workplace health risks for the casino workers. The data were gathered by a questionnaire survey of 1,042 croupiers, which represents roughly 5 % of the croupier population in Macau. Work conditions were measured by worker satisfaction towards the biological, chemical and physical elements in their work environments. Unhealthy lifestyles were measured by practices of excessive drinking, smoking, electronic game playing and addictive substance use as well as gambling. Occupational health problems were measured by experiences of work related illnesses or symptoms. Results showed that high percentages of respondents were dissatisfied with the work conditions. On average each croupier experienced 10 work related health problems in the past 7 days. Over 5 % of the respondents drank more than three glasses of alcohol a day, 24 % smoked cigarettes, 12 % took addictive substances, 14 % gambled in the past 7 days. The analysis showed that dissatisfaction with work conditions did not correlate with unhealthy lifestyles but were strongly and significantly correlated with stress-related occupational health problems (R = 0.377-0.479, P related policies can be introduced.

  5. Primary hypoparathyroidism presenting as basal ganglia calcification secondary to extreme hypocalcemia

    Directory of Open Access Journals (Sweden)

    Edite Marques Mendes

    2018-01-01

    Full Text Available Hypoparathyroidism is a rare endocrine disorder characterized by low serum calcium and parathyroid hormone levels. The most common cause is parathyroid iatrogenic surgical removal. However, innumerous and rarer conditions can cause hypoparathyroidism. The authors describe a 27-year-old man that presented in emergency department with confusion, amnesia and decreased attention span. A cerebral computed tomography revealed bilateral extensive calcification in the basal ganglia. A complete work-up revealed low serum calcium, high serum phosphorus and low parathyroid hormone, leading to the diagnosis of idiopathic primary hypoparathyroidism. Initial intravenous therapy with calcium gluconate and calcitriol was administered, with clinical and analytical improvement. The authors describe a rare condition, with an exuberant cerebral presentation and extreme hypocalcemia, which did not directly correlate to the severity of symptoms. Not only this is a treatable disorder that may have catastrophic results if overlooked but also its symptoms may be completely reversed with prompt treatment.

  6. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.

    Science.gov (United States)

    Whiteside, Jessica H; Lindström, Sofie; Irmis, Randall B; Glasspool, Ian J; Schaller, Morgan F; Dunlavey, Maria; Nesbitt, Sterling J; Smith, Nathan D; Turner, Alan H

    2015-06-30

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.

  7. Assessment of Severe Extremity Wound Bioburden at the Time of Definitive Wound Closure or Coverage: Correlation With Subsequent Postclosure Deep Wound Infection (Bioburden Study).

    Science.gov (United States)

    Bosse, Michael J; Murray, Clinton K; Carlini, Anthony R; Firoozabadi, Reza; Manson, Theodore; Scharfstein, Daniel O; Wenke, Joseph C; Zadnik, Mary; Castillo, Renan C

    2017-04-01

    Infection remains the most common and significant complication after high-energy fractures. The Bioburden Study is a multicenter, prospective, observational cohort study of wound bacterial bioburden and antibiotic care in severe open lower extremity fractures. The aims of this study are to (1) characterize the contemporary extremity wound "bioburden" at the time of definitive wound closure; (2) determine the concordance between polymerase chain reaction results and hospital microbiology; (3) determine, among those who develop deep infections, the concordance between the pathogens at wound closure and at deep infection; and (4) compare the probability of deep infection between those who did and did not receive an appropriate course of antibiotics based on bioburden at the time of wound closure. To address these aims, sites collected tissue samples from severe lower extremity injuries at the time of wound closure and at first surgery for treatment of a deep infection, nonunion, flap failure, amputation, or other complications (because these surgeries may be due to undetected infection). Otherwise, if no further surgical treatment occurred, participants were followed for 12 months. The study was conducted at 38 US trauma centers and has enrolled 655 participants aged 18-64 years. This is the first large multi-institutional study evaluating the wound bioburden of severe open tibia fractures and correlating this bioburden with the risk of wound complications after definitive soft tissue closure.

  8. On causality of extreme events

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2016-06-01

    Full Text Available Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in one element correspond to the appearance of extreme events in a second one. The metric is able to detect non-linear causalities; to analyse both cross-sectional and longitudinal data sets; and to discriminate between real causalities and correlations caused by confounding factors. We validate the metric through synthetic data, dynamical and chaotic systems, and data representing the human brain activity in a cognitive task. We further show how the proposed metric is able to outperform classical causality metrics, provided non-linear relationships are present and large enough data sets are available.

  9. PROFESSIONAL MOBILITY AND COMPETENCE CORRELATION OF RURAL SCHOOLS TEACHERS IN THE CONDITIONS OF EDUCATION MODERNIZATION

    OpenAIRE

    Olga Vladimirovna Gavrilova; Elena Aleksandrovna Zakharova

    2017-01-01

    Purpose. The article deals with the problem of teacher's professional activity in conditions of education modernization. The subject of analysis is professional mobility and competence correlation of rural schools teachers and the conditions of its formation. The authors’ aim to reveal the concepts of teacher’s "professional mobility", "professional competence" in rural schools and to determine its nature and structure in the changing paradigm of education. Results. The results of this wo...

  10. TYPHOID FEVER WITH FATAL OUTCOME IN PEOPLE WITH SEVERE TROPHOLOGICAL FAILURE IN EXTREME CONDITIONS

    Directory of Open Access Journals (Sweden)

    Yu. I. Lyashenko

    2017-01-01

    Full Text Available For purpose of clinical and morphological characterization of typhoid fever with fatal outcome was perform analysis of medical documentation as well as postmortem studies of internal tissues in 36men aged 21 to 34 years with severe body weight loss and in the conditions of combat stress in period from 1983 to 1985. The results of the study find a number of clinical and pathomorphological features of typhoid fever in patients with body weight deficiency that were in extreme conditions. Focal changes of the central nervous system were detected. The defeat of the respiratory system was characterized from the first days of the disease by bronchitis, and in the subsequent development of pneumonia, plevritis and empyema of the pleura. Majority of patients had symptoms of cardiovascular and renal failure. In died in the first week of the disease and in 2/3 parts – in a later period were combined with the symptoms of infectious-toxic encephalopathy and severe acute respiratory failure. All died had postmortem dystrophic changes of cardiomyocytes, and in patients had fatal outcome in 2–5 weeks – also focal or diffuse myocarditis. In a third of the patients who died, the disease was complicated by intestinal perforations. In a number of cases, peritonitis was a consequence of necrosis of mesenteric lymph nodes. In all patients with a fatal outcome, hemorrhagic (thrombohemorrhagic syndrome was diagnosed. A significant proportion of patients posthumously detected signs of sepsis and other complications, many of which could be the cause of death.

  11. Hip and upper extremity kinematics in youth baseball pitchers.

    Science.gov (United States)

    Holt, Taylor; Oliver, Gretchen D

    2016-01-01

    The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, P = 0.002) and at ball release (r = 0.536, P = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.

  12. Modelling of spatio-temporal precipitation relevant for urban hydrology with focus on scales, extremes and climate change

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen

    -correlation lengths for sub-daily extreme precipitation besides having too low intensities. Especially the wrong spatial correlation structure is disturbing from an urban hydrological point of view as short-term extremes will cover too much ground if derived directly from bias corrected regional climate model output...... of precipitation are compared and used to rank climate models with respect to performance metrics. The four different observational data sets themselves are compared at daily temporal scale with respect to climate indices for mean and extreme precipitation. Data density seems to be a crucial parameter for good...... happening in summer and most of the daily extremes in fall. This behaviour is in good accordance with reality where short term extremes originate in convective precipitation cells that occur when it is very warm and longer term extremes originate in frontal systems that dominate the fall and winter seasons...

  13. Extremely high wall-shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  14. Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations

    Science.gov (United States)

    You, Qinglong; Jiang, Zhihong; Wang, Dai; Pepin, Nick; Kang, Shichang

    2017-09-01

    Understanding changes in temperature extremes in a warmer climate is of great importance for society and for ecosystem functioning due to potentially severe impacts of such extreme events. In this study, temperature extremes defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) from CMIP5 models are evaluated by comparison with homogenized gridded observations at 0.5° resolution across the Tibetan Plateau (TP) for 1961-2005. Using statistical metrics, the models have been ranked in terms of their ability to reproduce similar patterns in extreme events to the observations. Four CMIP5 models have good performance (BNU-ESM, HadGEM2-ES, CCSM4, CanESM2) and are used to create an optimal model ensemble (OME). Most temperature extreme indices in the OME are closer to the observations than in an ensemble using all models. Best performance is given for threshold temperature indices and extreme/absolute value indices are slightly less well modelled. Thus the choice of model in the OME seems to have more influences on temperature extreme indices based on thresholds. There is no significant correlation between elevation and modelled bias of the extreme indices for both the optimal/all model ensembles. Furthermore, the minimum temperature (Tmin) is significanlty positive correlations with the longwave radiation and cloud variables, respectively, but the Tmax fails to find the correlation with the shortwave radiation and cloud variables. This suggests that the cloud-radiation differences influence the Tmin in each CMIP5 model to some extent, and result in the temperature extremes based on Tmin.

  15. A combination of extreme environmental conditions favor the prevalence of Endospore-forming Firmicutes

    Directory of Open Access Journals (Sweden)

    Sevasti Filippidou

    2016-11-01

    Full Text Available Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy. We collected 71 samples from geothermal and mineral environments characterized by none (null, single or multiple limiting environmental factors (temperature, pH, UV radiation and specific mineral composition. To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene in relation to total bacterial GCN (16S rRNA gene, as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes

  16. Brownian gas models for extreme-value laws

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2013-01-01

    In this paper we establish one-dimensional Brownian gas models for the extreme-value laws of Gumbel, Weibull, and Fréchet. A gas model is a countable collection of independent particles governed by common diffusion dynamics. The extreme-value laws are the universal probability distributions governing the affine scaling limits of the maxima and minima of ensembles of independent and identically distributed one-dimensional random variables. Using the recently introduced concept of stationary Poissonian intensities, we construct two gas models whose global statistical structures are stationary, and yield the extreme-value laws: a linear Brownian motion gas model for the Gumbel law, and a geometric Brownian motion gas model for the Weibull and Fréchet laws. The stochastic dynamics of these gas models are studied in detail, and closed-form analytical descriptions of their temporal correlation structures, their topological phase transitions, and their intrinsic first-passage-time fluxes are presented. (paper)

  17. Brachial index does not reflect upper extremity functionality following surgery for vascular trauma

    Directory of Open Access Journals (Sweden)

    Erdal Simsek

    2014-04-01

    Full Text Available OBJECTIVES: Vascular injuries to the upper extremities requiring surgical repair are common after accidents. However, neither postoperative functionality nor hemodynamic status of the extremity are routinely described. We evaluated the postoperative functional and hemodynamic status of patients with vascular traumas in the upper extremities. METHODS: 26 patients who suffered penetrating vascular traumas in the upper extremities from November 2008 to December 2011 were retrospectively evaluated. Data on first approach, surgical technique employed and early postoperative outcomes were recorded. Further data on the post-discharge period, including clinical functional status of the arm, Doppler ultrasonography and brachial-brachial index were also evaluated. RESULTS: Average follow up was 33.5±10.8 months. Right (1.05±0.09 and left (1.04±0.08 brachial indexes were measured during follow up,. Doppler ultrasonography showed arterial occlusion in 4 patients (15%. Near-normal brachial-brachial indexes was observed in all four of these patients with occlusion of one of the upper extremity arteries, even though they exhibited limited arm function for daily work. CONCLUSIONS: Evaluation of the postoperative outcomes of this small series of patients with penetrating vascular traumas in the upper extremity revealed that 15% of them suffered occlusion of one artery of the upper extremity. Artery occlusion did not correlate with brachial-brachial Doppler index, probably due to rich collateral circulation, but occlusion was associated with an extremity that was dysfunctional for the purposes of daily work. The result of the brachial-brachial index does not therefore correlate with functionality.

  18. Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland

    Directory of Open Access Journals (Sweden)

    R. Auchmann

    2012-02-01

    Full Text Available We analyze weather and climate during the "Year without Summer" 1816 using sub-daily data from Geneva, Switzerland, representing one of the climatically most severely affected regions. The record includes twice daily measurements and observations of air temperature, pressure, cloud cover, wind speed, and wind direction as well as daily measurements of precipitation. Comparing 1816 to a contemporary reference period (1799–1821 reveals that the coldness of the summer of 1816 was most prominent in the afternoon, with a shift of the entire distribution function of temperature anomalies by 3–4 °C. Early morning temperature anomalies show a smaller change for the mean, a significant decrease in the variability, and no changes in negative extremes. Analyzing cloudy and cloud-free conditions separately suggests that an increase in the number of cloudy days was to a significant extent responsible for these features. A daily weather type classification based on pressure, pressure tendency, and wind direction shows extremely anomalous frequencies in summer 1816, with only one day (compared to 20 in an average summer classified as high-pressure situation but a tripling of low-pressure situations. The afternoon temperature anomalies expected from only a change in weather types was much stronger negative in summer 1816 than in any other year. For precipitation, our analysis shows that the 80% increase in summer precipitation compared to the reference period can be explained by 80% increase in the frequency of precipitation, while no change could be found neither in the average intensity of precipitation nor in the frequency distribution of extreme precipitation. In all, the analysis shows that the regional circulation and local cloud cover played a dominant role. It also shows that the summer of 1816 was an example of extreme climate, not extreme weather.

  19. Test fields cannot destroy extremal black holes

    International Nuclear Information System (INIS)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2016-01-01

    We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr–Newman or Kerr–Newman–anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes. (paper)

  20. Investigating Extreme Lifestyles through Mangrove Transcriptomics

    Science.gov (United States)

    Dassanayake, Maheshi

    2009-01-01

    Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…

  1. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    OpenAIRE

    Garcia-Herrera , R.; Diaz , J.; Trigo , R. M.; Hernández , E.

    2005-01-01

    This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal) and Madrid (Spain). Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid). The impact of most intense heat events is very ...

  2. Correlation between radiosensitivity of transplanted solid tumor and nutritive condition of host animal

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K [Showa Univ., Tokyo (Japan). School of Medicine

    1975-04-01

    Studies on radiosensitivity of the transplanted tumor were carried out and the following results were obtained: 1. Radiosensitivity of the tumor ran parallel to the growth rate. 2. Malnutrition of the host after irradiation made the tumor radiosensitive, probably because the sublethally damaged tumor cell did not recover. 3. Mitotic index correlated well with radiosensitivity, and the low mitotic index caused by starvation made the tumor cell recover poorly. 4. The DNA synthetic rate measured by means of iodine labeled IUdR did not successfully correlate with the mitotic rate, presumably because of the role of thymidine pool size in this experiment. 5. The serum protein level possibly with the tumor growth, which modified the radiosensitivity. 6. Serum oxygen was difficult to interpret, however, it might be compensated by erythrocytosis in a starved condition.

  3. The Correlation between Radon Emission Concentration and Subsurface Geological Condition

    Science.gov (United States)

    Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi

    2018-03-01

    Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological

  4. Potential changes in the extreme climate conditions at the regional scale: from observed data to modelling approaches and towards probabilistic climate change information

    International Nuclear Information System (INIS)

    Gachon, P.; Radojevic, M.; Harding, A.; Saad, C.; Nguyen, V.T.V.

    2008-01-01

    The changes in the characteristics of extreme climate conditions are one of the most critical challenges for all ecosystems, human being and infrastructure, in the context of the on-going global climate change. However, extremes information needed for impacts studies cannot be obtained directly from coarse scale global climate models (GCMs), due mainly to their difficulties to incorporate regional scale feedbacks and processes responsible in part for the occurrence, intensity and duration of extreme events. Downscaling approaches, namely statistical and dynamical downscaling techniques (i.e. SD and RCM), have emerged as useful tools to develop high resolution climate change information, in particular for extremes, as those are theoretically more capable to take into account regional/local forcings and their feedbacks from large scale influences as they are driven with GCM synoptic variables. Nevertheless, in spite of the potential added values from downscaling methods (statistical and dynamical), a rigorous assessment of these methods are needed as inherent difficulties to simulate extremes are still present. In this paper, different series of RCM and SD simulations using three different GCMs are presented and evaluated with respect to observed values over the current period and over a river basin in southern Quebec, with future ensemble runs, i.e. centered over 2050s (i.e. 2041-2070 period using the SRES A2 emission scenario). Results suggest that the downscaling performance over the baseline period significantly varies between the two downscaling techniques and over various seasons with more regular reliable simulated values with SD technique for temperature than for RCM runs, while both approaches produced quite similar temperature changes in the future from median values with more divergence for extremes. For precipitation, less accurate information is obtained compared to observed data, and with more differences among models with higher uncertainties in the

  5. Drought assessment in the Duero basin (Central Spain) by means of multivariate extreme value statistics

    Science.gov (United States)

    Kallache, M.

    2012-04-01

    Droughts cause important losses. On the Iberian Peninsula, for example, non-irrigated agriculture and the tourism sector are affected in regular intervals. The goal of this study is the description of droughts and their dependence in the Duero basin in Central Spain. To do so, daily or monthly precipitation data is used. Here cumulative precipitation deficits below a threshold define meteorological droughts. This drought indicator is similar to the commonly used standard precipitation index. However, here the focus lies on the modeling of severe droughts, which is done by applying multivariate extreme value theory (MEVT) to model extreme drought events. Data from several stations are assessed jointly, thus the uncertainty of the results is reduced. Droughts are a complex phenomenon, their severity, spatial extension and duration has to be taken into account. Our approach captures severity and spatial extension. In general we find a high correlation between deficit volumes and drought duration, thus the duration is not explicitely modeled. We apply a MEVT model with asymmetric logistic dependence function, which is capable to model asymptotic dependence and independence (cf. Ramos and Ledford, 2009). To summarize the information on the dependence in the joint tail of the extreme drought events, we utilise the fragility index (Geluk et al., 2007). Results show that droughts also occur frequently in winter. Moreover, it is very common for one site to suffer dry conditions, whilst neighboring areas experience normal or even humid conditions. Interpolation is thus difficult. Bivariate extremal dependence is present in the data. However, most stations are at least asymptotically independent. The according fragility indices are important information for risk calculations. The emerging spatial patterns for bivariate dependence are mostly influenced by topography. When looking at the dependence between more than two stations, it shows that joint extremes can occur more

  6. Genetic correlations among body condition score, yield and fertility in multiparous cows using random regression models

    OpenAIRE

    Bastin, Catherine; Gillon, Alain; Massart, Xavier; Bertozzi, Carlo; Vanderick, Sylvie; Gengler, Nicolas

    2010-01-01

    Genetic correlations between body condition score (BCS) in lactation 1 to 3 and four economically important traits (days open, 305-days milk, fat, and protein yields recorded in the first 3 lactations) were estimated on about 12,500 Walloon Holstein cows using 4-trait random regression models. Results indicated moderate favorable genetic correlations between BCS and days open (from -0.46 to -0.62) and suggested the use of BCS for indirect selection on fertility. However, unfavorable genetic c...

  7. Modeling correlated information change: from conditional beliefs to quantum conditionals

    NARCIS (Netherlands)

    Baltag, A.; Smets, S.

    In this paper, we propose a unified logical framework for representing and analyzing various forms of correlated information change. Our main thesis is that “logical dynamics,” in the sense of van Benthem (Exploring logical dynamics. CSLI Publications, Stanford, 1996; Logical dynamics of information

  8. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

    Science.gov (United States)

    Yao, Junqiang; Chen, Yaning; Zhao, Yong; Mao, Weiyi; Xu, Xinbing; Liu, Yang; Yang, Qing

    2018-02-01

    Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981-1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998-2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature ( Tnav), it correlates negatively with the number of warmest night days ( Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.

  9. Statistical and dynamical downscaling assessments of precipitation extremes in the Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Hertig, Elke; Seubert, Stefanie; Jacobeit, Jucundus [Augsburg Univ. (Germany). Inst. of Geography; Paxian, Andreas; Vogt, Gernot; Paeth, Heiko [Wuerzburg Univ. (Germany). Inst. of Geography and Geology

    2012-02-15

    Extreme precipitation events in the Mediterranean area have been defined by different percentile-based indices of extreme precipitation for autumn and winter: the number of events exceeding the 95{sup th} percentile of daily precipitation, percentage, total amount, and mean daily intensity of precipitation from these events. Results from statistical downscaling applying canonical correlation analysis as well as from dynamical downscaling using the regional climate model REMO are mapped for the 1961-1990 baseline period as well as for the magnitude of change for the future time slice 2021-2050 in relation to the former period. Direct output of the coupled global circulation model ECHAM5 is used as an additional source of information. A qualitative comparison of the two different downscaling techniques indicates that under the present climate both the dynamical and the statistical techniques have skill to reproduce extreme precipitation in the Mediterranean area. A good representation of the frequency of extreme precipitation events arises from the statistical downscaling approach, whereas the intensity of such events is adequately modelled by the dynamical downscaling. Concerning the change of extreme precipitation in the Mediterranean area until the mid-21{sup st} century, it is projected that the frequency of extreme precipitation events will decrease in most parts of the Mediterranean area in autumn and winter. The change of the mean intensity of such events shows a rather heterogeneous pattern with intensity increases in winter most likely at topographical elevations exposed to the West, where the uplift of humid air profits by the increase of atmospheric moisture under climate change conditions. For the precipitation total from events exceeding the 95{sup th} percentile of daily precipitation, widespread decreases are indicated in autumn, whereas in winter increases occur over the western part of the Iberian Peninsula and southern France, and reductions over

  10. Extreme conditioning programs and injury risk in a US Army Brigade Combat Team.

    Science.gov (United States)

    Grier, Tyson; Canham-Chervak, Michelle; McNulty, Vancil; Jones, Bruce H

    2013-01-01

    Brigades and battalions throughout the US Army are currently implementing a variety of exercise and conditioning programs with greater focus on preparation for mission-specific tasks. An Army physical therapy clinic working with a light infantry brigade developed the Advanced Tactical Athlete Conditioning (ATAC) program. The ATAC program is a unique physical training program consisting of high-intensity aquatic exercises, tactical agility circuits, combat core conditioning, and interval speed training. Along with ATAC, battalions have also incorporated components of fitness programs such as the Ranger Athlete Warrior program and CrossFit (Crossfit, Inc, Santa Monica, CA) an extreme conditioning program (ECP). To determine if these new programs (ATAC, ECP) had an effect on injury rates and physical fitness. Surveys were administered to collect personal characteristics, tobacco use, personal physical fitness training, Army physical fitness test results, and self-reported injuries. Medical record injury data were obtained 6 months before and 6 months after the implementation of the new program. Predictors of injury risk were assessed using multivariate logistic regression. Odds ratios (OR) and 95% confidence intervals (CI) were reported. Injury incidence among Soldiers increased 12% for overall injuries and 16% for overuse injuries after the implementation of the ATAC/ECPs. However, injury incidence among Soldiers not participating in ATAC/ECPs also increased 14% for overall injuries and 10% for overuse injuries. Risk factors associated with higher injury risk for Soldiers participating in ATAC/ECPs included: greater mileage run per week during unit physical training (OR (>16 miles per week÷≤7 miles per week)=2.24, 95% CI, 1.33-3.80); higher body mass index (BMI) (OR (BMI 25-29.9÷BMI<25)=1.77, 95% CI, 1.29-2.44), (OR (BMI =30÷BMI<25)=2.72, 95% CI, 1.67-4.43); cigarette use (OR (smoker÷nonsmoker)=1.80, 95% CI, 1.34-2.42); poor performance on the 2-mile run during

  11. A Generalized Framework for Non-Stationary Extreme Value Analysis

    Science.gov (United States)

    Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.

    2017-12-01

    Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA

  12. Unexpected flood loss correlations across Europe

    Science.gov (United States)

    Booth, Naomi; Boyd, Jessica

    2017-04-01

    Floods don't observe country borders, as highlighted by major events across Europe that resulted in heavy economic and insured losses in 1999, 2002, 2009 and 2013. Flood loss correlations between some countries occur along multi-country river systems or between neighbouring nations affected by the same weather systems. However, correlations are not so obvious and whilst flooding in multiple locations across Europe may appear independent, for a re/insurer providing cover across the continent, these unexpected correlations can lead to high loss accumulations. A consistent, continental-scale method that allows quantification and comparison of losses, and identifies correlations in loss between European countries is therefore essential. A probabilistic model for European river flooding was developed that allows estimation of potential losses to pan-European property portfolios. By combining flood hazard and exposure information in a catastrophe modelling platform, we can consider correlations between river basins across Europe rather than being restricted to country boundaries. A key feature of the model is its statistical event set based on extreme value theory. Using historical river flow data, the event set captures spatial and temporal patterns of flooding across Europe and simulates thousands of events representing a full range of possible scenarios. Some known correlations were identified, such as between neighbouring Belgium and Luxembourg where 28% of events that affect either country produce a loss in both. However, our model identified some unexpected correlations including between Austria and Poland, and Poland and France, which are geographically distant. These correlations in flood loss may be missed by traditional methods and are key for re/insurers with risks in multiple countries. The model also identified that 46% of European river flood events affect more than one country. For more extreme events with a return period higher than 200 years, all events

  13. A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

    International Nuclear Information System (INIS)

    Kim, T; Petersen, M M; Larsen, T J

    2014-01-01

    This paper shows the load comparisons between the numerical simulation and the full-scale load measurement data. First part of this paper includes the comparisons of statistic load in terms of maximum, mean, and minimum values for the selected normal operation cases. The blade root bending moments and tower top bending moments are compared. Second part of this paper introduces the dynamic response comparisons during an extreme wind gust condition where the wind speed changed approximately 10 m/s during three seconds. The rotor speed and blade root flapwise and edgewise bending moment are compared. The nonlinear aeroelastic simulation code HAWC2 is used for the simulations. A very fine agreement between the simulated and the full-scale measured loads is seen for the both comparisons

  14. HERCULES Specialized Course on Synchrotron radiation and neutrons for extreme conditions studies - HSC12 - slides of the presentations

    International Nuclear Information System (INIS)

    Daniel, I.; Itie, J.P.; Meersman, F.; Jacobs, J.; Hantsetters, K. de; Syassen, K.; Krisch, M.; Mezouar, M.; Mac Millan, P.F.; Salmon, P.; Klotz, S.; Pascarelli, S.; Hansen, T.C.

    2011-01-01

    The purpose of this Hercules Specialized Course (HSC12) is to give the participants an introduction to high pressure research at large experimental facilities such as the synchrotron and the neutron reactor. The basic principles of synchrotron radiation and neutrons techniques at extreme conditions of pressure have been illustrated. Cross-disciplinary examples in a representative range of scientific areas, covering fundamental physics, earth and planetary science, chemistry and material science have been dealt with. Most presentations are dedicated to X-ray diffraction, X-ray absorption and neutron scattering of materials (solids, liquids or glasses) at high pressure. Several presentations deal with the experimental set-up and especially the preparation of the diamond anvil. This document is made up of the slides of the presentations. (A.C.)

  15. Automatic residue removal for high-NA extreme illumination

    Science.gov (United States)

    Moon, James; Nam, Byong-Sub; Jeong, Joo-Hong; Kong, Dong-Ho; Nam, Byung-Ho; Yim, Dong Gyu

    2007-10-01

    An epidemic for smaller node has been that, as the device architecture shrinks, lithography process requires high Numerical Aperture (NA), and extreme illumination system. This, in turn, creates many lithography problems such as low lithography process margin (Depth of Focus, Exposure Latitude), unstable Critical Dimension (CD) uniformity and restricted guideline for device design rule and so on. Especially for high NA, extreme illumination such as immersion illumination systems, above all the related problems, restricted design rule due to forbidden pitch is critical and crucial issue. This forbidden pitch is composed of numerous optical effects but majority of these forbidden pitch compose of photo resist residue and these residue must be removed to relieve some room for already tight design rule. In this study, we propose automated algorithm to remove photo resist residue due to high NA and extreme illumination condition. This algorithm automatically self assembles assist patterns based on the original design layout, therefore insuring the safety and simplicity of the generated assist pattern to the original design and removes any resist residue created by extreme illumination condition. Also we tested our automated algorithm on full chip FLASH memory device and showed the residue removal effect by using commercial verification tools as well as on actual test wafer.

  16. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    Science.gov (United States)

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions

    International Nuclear Information System (INIS)

    Wang Wei; Qi Xin; Yue Yuan

    2011-01-01

    This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory, an effective exchange field associated with the Dy—Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis.

    Science.gov (United States)

    Ter-Avetisyan, S; Ramakrishna, B; Doria, D; Sarri, G; Zepf, M; Borghesi, M; Ehrentraut, L; Stiel, H; Steinke, S; Priebe, G; Schnürer, M; Nickles, P V; Sandner, W

    2009-10-01

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  19. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis

    International Nuclear Information System (INIS)

    Ter-Avetisyan, S.; Ramakrishna, B.; Doria, D.; Sarri, G.; Zepf, M.; Borghesi, M.; Ehrentraut, L.; Stiel, H.; Steinke, S.; Schnuerer, M.; Nickles, P. V.; Sandner, W.; Priebe, G.

    2009-01-01

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  20. Exploring societal solidarity in the context of extreme prematurity.

    Science.gov (United States)

    Hendriks, Manya J; Bucher, Hans Ulrich; Klein, Sabine D; Streuli, Jürg C; Baumann-Hölzle, Ruth; Fauchère, Jean-Claude

    2017-03-21

    Extreme prematurity can result in long-term disabilities. Its impact on society is often not taken into account and deemed controversial. Our study examined attitudes of the Swiss population regarding extreme prematurity and people's perspectives regarding the question of solidarity with disabled people. We conducted a nationwide representative anonymous telephone survey with 1210 Swiss residents aged 18 years or older. We asked how people estimate their own personal solidarity, the solidarity of their social environment and the solidarity across the country with disabled persons. Spearman's correlation calculations were used to assess if a correlation exists between solidarity and setting financial limits to intensive care and between solidarity and withholding neonatal intensive care. According to 36.0% of the respondents intensive medical care should not be withheld from extremely preterm infants, even if their chances for an acceptable quality of life were poor. For 28.8%, intensive care should be withheld from these infants, and 26.9% held an intermediate position depending on the situation. A total of 31.5% were against setting a financial limit to treatment of extremely preterm newborns with an uncertain future quality of life, 34.2% were in favour and 26.9% were deliberating. A majority (88.8%) considered their solidarity toward disabled people as substantial; the solidarity of their personal environment and of the society at large was estimated as high by 79.1% and 48.6%, respectively. The Swiss population expressed a high level of solidarity which may alleviate some pressure on parents and health care providers in the decision-making process in neonatal intensive care units. In addition, there was no relationship between solidarity and people's willingness to pay for the care or withholding treatment of extremely preterm babies.

  1. Opacity calculations for extreme physical systems: code RACHEL

    Science.gov (United States)

    Drska, Ladislav; Sinor, Milan

    1996-08-01

    Computer simulations of physical systems under extreme conditions (high density, temperature, etc.) require the availability of extensive sets of atomic data. This paper presents basic information on a self-consistent approach to calculations of radiative opacity, one of the key characteristics of such systems. After a short explanation of general concepts of the atomic physics of extreme systems, the structure of the opacity code RACHEL is discussed and some of its applications are presented.

  2. Cross-cultural adaptation and validation of the Japanese version of the Toronto Extremity Salvage Score (TESS) for patients with malignant musculoskeletal tumors in the upper extremities.

    Science.gov (United States)

    Akiyama, Toru; Uehara, Kosuke; Ogura, Koichi; Shinoda, Yusuke; Iwata, Shintaro; Saita, Kazuo; Tanzawa, Yoshikazu; Nakatani, Fumihiko; Yonemoto, Tsukasa; Kawano, Hirotaka; Davis, Aileen M; Kawai, Akira

    2017-01-01

    The Toronto Extremity Salvage Score (TESS) is a widely used disease-specific patient-completed questionnaire for the assessment of physical function in patients with musculoskeletal tumors; however, there had not been the validated Japanese version of the TESS. The aim of this study was to validate the Japanese version of the TESS in patients with musculoskeletal tumors in the upper extremity. After developing a Japanese version of the TESS, the questionnaire was administered to 53 patients to examine its reliability and validity in comparison with the Musculoskeletal Tumor Society (MSTS) scoring system and Short Form-36 (SF-36). Test-retest reliability with intraclass correlation coefficient (0.93) and internal consistency with Cronbach's alpha (0.90) were excellent. Factor analysis showed that the construct structure consisted of 3-item clusters, and the Akaike Information Criterion network also demonstrated that the items could be divided into 3 domains according to their content. The TESS strongly correlated with the MSTS rating scale (r = 0.750; P TESS had low correlations with the SF-36 mental health and role-emotional subscales and the MSTS scoring system manual dexterity domain. Our study suggests that the TESS is a reliable and valid instrument to measure patient-reported physical functioning in patients with upper extremity sarcoma. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  3. Expert consensus on facilitators and barriers to return-to-work following surgery for non-traumatic upper extremity conditions: a Delphi study.

    Science.gov (United States)

    Peters, S E; Johnston, V; Ross, M; Coppieters, M W

    2017-02-01

    This Delphi study aimed to reach consensus on important facilitators and barriers for return-to-work following surgery for non-traumatic upper extremity conditions. In Round 1, experts ( n = 42) listed 134 factors, which were appraised in Rounds 2 and 3. Consensus (⩾85% agreement) was achieved for 13 facilitators (high motivation to return-to-work; high self-efficacy for return-to-work and recovery; availability of modified/alternative duties; flexible return-to-work arrangements; positive coping skills; limited heavy work exertion; supportive return-to-work policies; supportive supervisor/management; no catastrophic thinking; no fear avoidance to return-to-work; no fear avoidance to pain/activity; return to meaningful work duties; high job satisfaction) and six barriers (mood disorder diagnosis; pain/symptoms at more than one musculoskeletal site; heavy upper extremity exertions at work; lack of flexible return-to-work arrangements; lack of support from supervisor/management; high level of pain catastrophizing). Future prognostic studies are required to validate these biopsychosocial factors to further improve return-to-work outcomes. V.

  4. Validation of nonlinear FEA models of a thin-walled elbow under extreme loading conditions for Sodium-cooled Fast Reactors

    International Nuclear Information System (INIS)

    Watakabe, Tomoyoshi; Wakai, Takashi; Jin, Chuanrong; Usui, Yoshiya; Sakai, Shinkichi; Ooshika, Junji; Tsukimori, Kazuyuki

    2015-01-01

    For the purpose of confirming failure modes and safety margin, some studies on the ultimate strength of thin-walled piping components for Sodium-cooled Fast Reactors (SFRs) under extreme loading conditions such as large earthquakes have been reported these several years. Nonlinear finite element analysis has been applied in these studies to simulate buckling and yielding with large deformation, whose accuracy is dependent on the element type, the mesh size, the elasto-plastic model and so on. It is important to check the validation of a finite element model for nonlinear analysis especially under extreme loading conditions. This paper presents static and dynamic analyses of a thin-walled elbow with large deformation under large seismic loading, and discusses the validation of the FEA models comparing with experimental results. The finite element analysis models in this study are generated by shell elements for a stainless steel pipe elbow of diameter-to-thickness ratio 59:1 similar to the main pipe of SFRs, which is used for shaking table tests. At first, a static analysis is carried out for an in-plane monotonic bending test, in order to confirm that the shell element is appropriate to the large deformation analysis and the material parameters are proper for the strain level in the experiments. And then, a dynamic in-plane bending test with the maximum acceleration of 11.7G is simulated by the nonlinear FEA with stiffness-proportional damping. The influence of mesh sizes on results is investigated, to determine proper mesh sizes and reduce the computational cost. Finally, comparing the results of the FEM analyses with those of experiments, it is concluded that the appropriately generated FEA models are effective and give accurate results for nonlinear analyses of the thin-walled elbow under large seismic loading. (author)

  5. Scale orientated analysis of river width changes due to extreme flood hazards

    Directory of Open Access Journals (Sweden)

    G. Krapesch

    2011-08-01

    Full Text Available This paper analyses the morphological effects of extreme floods (recurrence interval >100 years and examines which parameters best describe the width changes due to erosion based on 5 affected alpine gravel bed rivers in Austria. The research was based on vertical aerial photos of the rivers before and after extreme floods, hydrodynamic numerical models and cross sectional measurements supported by LiDAR data of the rivers. Average width ratios (width after/before the flood were calculated and correlated with different hydraulic parameters (specific stream power, shear stress, flow area, specific discharge. Depending on the geomorphological boundary conditions of the different rivers, a mean width ratio between 1.12 (Lech River and 3.45 (Trisanna River was determined on the reach scale. The specific stream power (SSP best predicted the mean width ratios of the rivers especially on the reach scale and sub reach scale. On the local scale more parameters have to be considered to define the "minimum morphological spatial demand of rivers", which is a crucial parameter for addressing and managing flood hazards and should be used in hazard zone plans and spatial planning.

  6. Extreme value prediction of the wave-induced vertical bending moment in large container ships

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2015-01-01

    increase the extreme hull girder response significantly. Focus in the present paper is on the influence of the hull girder flexibility on the extreme response amidships, namely the wave-induced vertical bending moment (VBM) in hogging, and the prediction of the extreme value of the same. The analysis...... in the present paper is based on time series of full scale measurements from three large container ships of 8600, 9400 and 14000 TEU. When carrying out the extreme value estimation the peak-over-threshold (POT) method combined with an appropriate extreme value distribution is applied. The choice of a proper...... threshold level as well as the statistical correlation between clustered peaks influence the extreme value prediction and are taken into consideration in the present paper....

  7. CORRELATION ANALYSIS OF DRIVING CONDITIONS AND ON-ROAD EMISSIONS TRENDS FOR VEHICLES

    Directory of Open Access Journals (Sweden)

    Jawad H. Al-rifai

    2017-01-01

    Full Text Available This paper presents the impact of road grade, vehicle speed, nu mber of vehicles and vehicle type on vehicle emissions. ANOVA analyses were conducte d among different driving conditions and vehicle emissions to discover the signif icant effects of driving conditions on measured emission rates. This study is intended t o improve the understanding of vehicle emission levels in Jordan. Gas emissio ns in real-world driving conditions were measured by a por table emissions measurement un it over six sections of an urban road. The road grade, speed, type and number of veh icles were found to have a significant influence on the rate of gas emissions. Road grade and diesel-fueled vehicles were positively correlate d with average emission rates . The average emission rates were higher at speeds ranging between 60–69 km/h than at three other speed ranges. The results of ANOVA showed a strong and consistent reg ression between rates of emissions measured and grade, speed and diesel vehicle parameters. The grade parameter contributed the most to the rate of emissions compare d to other parameters. Gasoline vehicles contributed the least.

  8. Extreme Heat: A Prevention Guide to Promote Your Personal Health and Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  9. Correlation of oral hygiene practices, smoking and oral health conditions with self perceived halitosis amongst undergraduate dental students.

    Science.gov (United States)

    Setia, Saniya; Pannu, Parampreet; Gambhir, Ramandeep Singh; Galhotra, Virat; Ahluwalia, Pooja; Sofat, Anjali

    2014-01-01

    The present study was undertaken to determine the prevalence of oral hygiene practices, smoking habits and halitosis among undergraduate dental students and correlating the oral hygiene practices, oral health conditions to the prevalence of self perceived oral malodour. A self-administered questionnaire was distributed among 277 male and female students. A questionnaire was developed to assess the self-reported perception of oral breath, awareness of bad breath, timing of bad breath, oral hygiene practices, caries and bleeding gums, dryness of the mouth, smoking and tongue coating. The results indicate female students had better oral hygiene practices. Significantly less self-reported oral bad breath (P = 0.007) was found in female dental students (40%) as compared to their male counterparts (58%). It was found that smoking and dryness of mouth had statistically significant correlation with halitosis (P = 0.026, P = 0.001). Presence of other oral conditions such as tongue coating and dental caries and bleeding gums also showed higher prevalence of halitosis in dental students. A direct correlation exists between oral hygiene practices and oral health conditions with halitosis. Females exhibited better oral hygiene practices and less prevalence of halitosis as compared to male students.

  10. Spatial correlation of probabilistic earthquake ground motion and loss

    Science.gov (United States)

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  11. The waviness of the extratropical jet and daily weather extremes

    Science.gov (United States)

    Röthlisberger, Matthias; Martius, Olivia; Pfahl, Stephan

    2016-04-01

    In recent years the Northern Hemisphere mid-latitudes have experienced a large number of weather extremes with substantial socio-economic impact, such as the European and Russian heat waves in 2003 and 2010, severe winter floods in the United Kingdom in 2013/2014 and devastating winter storms such as Lothar (1999) and Xynthia (2010) in Central Europe. These have triggered an engaged debate within the scientific community on the role of human induced climate change in the occurrence of such extremes. A key element of this debate is the hypothesis that the waviness of the extratropical jet is linked to the occurrence of weather extremes, with a wavier jet stream favouring more extremes. Previous work on this topic is expanded in this study by analyzing the linkage between a regional measure of jet waviness and daily temperature, precipitation and wind gust extremes. We show that indeed such a linkage exists in many regions of the world, however this waviness-extremes linkage varies spatially in strength and sign. Locally, it is strong only where the relevant weather systems, in which the extremes occur, are affected by the jet waviness. Its sign depends on how the frequency of occurrence of the relevant weather systems is correlated with the occurrence of high and low jet waviness. These results go beyond previous studies by noting that also a decrease in waviness could be associated with an enhanced number of some weather extremes, especially wind gust and precipitation extremes over western Europe.

  12. Upper-extremity phocomelia reexamined: a longitudinal dysplasia.

    Science.gov (United States)

    Goldfarb, Charles A; Manske, Paul R; Busa, Riccardo; Mills, Janith; Carter, Peter; Ezaki, Marybeth

    2005-12-01

    In contrast to longitudinal deficiencies, phocomelia is considered a transverse, intercalated segmental dysplasia. Most patients demonstrate severe, but not otherwise classifiable, upper-extremity deformities, which usually cannot be placed into one of three previously described phocomelia groups. Additionally, these phocomelic extremities do not demonstrate true segmental deficits; the limb is also abnormal proximal and distal to the segmental defect. The purpose of this investigation was to present evidence that upper-extremity abnormalities in patients previously diagnosed as having phocomelia in fact represent a proximal continuum of radial or ulnar longitudinal dysplasia. The charts and radiographs of forty-one patients (sixty extremities) diagnosed as having upper-extremity phocomelia were reviewed retrospectively. On the basis of the findings on the radiographs, the disorders were categorized into three groups: (1) proximal radial longitudinal dysplasia, which was characterized by an absent proximal part of the humerus, a nearly normal distal part of the humerus, a completely absent radius, and a radial-sided hand dysplasia; (2) proximal ulnar longitudinal dysplasia, characterized by a short one-bone upper extremity that bifurcated distally and by severe hand abnormalities compatible with ulnar dysplasia; and (3) severe combined dysplasia, with type A characterized by an absence of the forearm segment (i.e., the radius and ulna) and type B characterized by absence of the arm and forearm (i.e., the hand attached to the thorax). Twenty-nine limbs in sixteen patients could be classified as having proximal radial longitudinal dysplasia. Systemic medical conditions such as thrombocytopenia-absent radius syndrome were common in those patients, but additional musculoskeletal conditions were rare. Twenty limbs in seventeen patients could be classified as having proximal ulnar longitudinal dysplasia. Associated musculoskeletal abnormalities, such as proximal femoral

  13. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect

    Science.gov (United States)

    Teets, Nicholas M.; Peyton, Justin T.; Colinet, Herve; Renault, David; Kelley, Joanna L.; Kawarasaki, Yuta; Lee, Richard E.; Denlinger, David L.

    2012-01-01

    Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world’s southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions. PMID:23197828

  14. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    Science.gov (United States)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  15. Quantitative lymphoscintigraphy in post-mastectomy lymphedema: correlation with circumferential measurements

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon Young; Lee, Kyung Han; Kim, Sang Eun; Kim, Byung Tae; Hwang, Jee Hea; Lee, Byung Boong [Samsung Medical Center, Seoul (Korea, Republic of)

    1997-07-01

    An objective measure for the severity and progression is important for the management of lymphedema. To evaluate the usefulness of lympho-scintigraphy in this regard, we compared various quantitative indices from upper extremity lymphoscintigraphy with circumferential measurements, before and after physiotheraphy. Upper extremity lymphoscintigraphy was performed in 38 patients with unilateral postmastectomy lymphedema. Tc-99m antimony sulfide colloid (37 MBq) was injected s.c. into the second and third interdigital spaces. The injection sites were imaged immediately after injection. After standardized exercise for 15 min, upper extremity images were acquired 30 min, 1 hr and 2 hr after injection. The clearance of the injection site (CL), and % uptake in regional lymph nodes (%LN) and soft tissue of the extremity (i.e., the degree of dermal backflow) (%EXT) compared to the initial injection site were calculated. Circumference of each extremity was measured at 7 levels; the severity of lymphedema was expressed as the percentage difference of total circumferential difference (TCD) between healthy and edematous extremities compared to the total circumference of healthy extremity (%TCD). In 19 patients who received physiotherapy, the therapeutic effect was measured by % decrease of TCD (%DTCD) before and after therapy (Raines. et al., 1977). The quantitative indices calculated in the image at 2 hr p.i. had better correlation with either %TCD or %DTCD than those from earlier images (Table). The CL, %LN and %EXT of edematous extremity had a significant correlation with TCD. The %EXT was correlated best with either TCD or %DTCD. The results suggest that the %EXT which corresponds to the degree of dermal backflow may be a simple and useful quantitative index for evaluating the severity and progression in lymphedema and predicting the effect of therapy.

  16. Quantitative lymphoscintigraphy in post-mastectomy lymphedema: correlation with circumferential measurements

    International Nuclear Information System (INIS)

    Choi, Joon Young; Lee, Kyung Han; Kim, Sang Eun; Kim, Byung Tae; Hwang, Jee Hea; Lee, Byung Boong

    1997-01-01

    An objective measure for the severity and progression is important for the management of lymphedema. To evaluate the usefulness of lympho-scintigraphy in this regard, we compared various quantitative indices from upper extremity lymphoscintigraphy with circumferential measurements, before and after physiotheraphy. Upper extremity lymphoscintigraphy was performed in 38 patients with unilateral postmastectomy lymphedema. Tc-99m antimony sulfide colloid (37 MBq) was injected s.c. into the second and third interdigital spaces. The injection sites were imaged immediately after injection. After standardized exercise for 15 min, upper extremity images were acquired 30 min, 1 hr and 2 hr after injection. The clearance of the injection site (CL), and % uptake in regional lymph nodes (%LN) and soft tissue of the extremity (i.e., the degree of dermal backflow) (%EXT) compared to the initial injection site were calculated. Circumference of each extremity was measured at 7 levels; the severity of lymphedema was expressed as the percentage difference of total circumferential difference (TCD) between healthy and edematous extremities compared to the total circumference of healthy extremity (%TCD). In 19 patients who received physiotherapy, the therapeutic effect was measured by % decrease of TCD (%DTCD) before and after therapy (Raines. et al., 1977). The quantitative indices calculated in the image at 2 hr p.i. had better correlation with either %TCD or %DTCD than those from earlier images (Table). The CL, %LN and %EXT of edematous extremity had a significant correlation with TCD. The %EXT was correlated best with either TCD or %DTCD. The results suggest that the %EXT which corresponds to the degree of dermal backflow may be a simple and useful quantitative index for evaluating the severity and progression in lymphedema and predicting the effect of therapy

  17. Extremely Short Optical Pulses and Ads/CFT Compliance

    Directory of Open Access Journals (Sweden)

    Konobeeva N.N.

    2015-01-01

    Full Text Available Dynamics of few cycle optical pulses in non-Fermi liquid was considered. Energy spectrum of non-Fermi liquid was taken from the AdS/CFT compliance. Conditions of quasiparticle excitation existence were defined. Non-Fermi liquid parameters impact on the shape of few cycle pulses were estimated. It was shown that extremely short optical pulse propagation in the non-Fermi liquid is a stable pattern. The value of chemical potential has a significant impact on extremely short pulse shape. An increase in initial pulse amplitude does not result in pulse-shape distortions under its propagation in considered medium that is why the non-Fermi liquid can be used in applications inherent in extremely short pulse processing.

  18. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant "Hanhikivi-1" on the local thermal regime

    Science.gov (United States)

    Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Eremina, Tatjana R.; Isaev, Alexey V.; Sein, Dmitry V.

    2017-04-01

    The results of the study aimed to assess the influence of future nuclear power plant Hanhikivi-1 upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.

  19. Baryon number nonconservation in extreme conditions

    International Nuclear Information System (INIS)

    Matveev, V.A.; Rubakov, V.A.; Tavkhelidze, A.N.; Shaposhnikov, M.E.

    1988-01-01

    In gauge theories with the left-right asymmetric fermionic content (e.g. in standard electroweak theory) fermion number F is not conserved due to the anomaly. It is shown that anomalous processes, while being exponentially suppressed, under normal conditions, are in fact rapid. The mechanism of fermionic number nonconservation connected with a level crossing phenomenon in external gauge fields is described. The theory and experimental consequences of monopole catalysis of a proton decay is reviewed. It is shown that cold dense fermionic matter is stable only up to some limiting density. It is demonstrated that there is no exponential suppression of the rate F nonconservation at high temperatures. The cosmological implications of this fact are discussed. The strong anomalous fermionic number violation in decays of superheavy fermions technibaryons is considered

  20. Extreme value modelling of Ghana stock exchange index.

    Science.gov (United States)

    Nortey, Ezekiel N N; Asare, Kwabena; Mettle, Felix Okoe

    2015-01-01

    Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana stock exchange all-shares index (2000-2010) by applying the extreme value theory (EVT) to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before the EVT method was applied. The Peak Over Threshold approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model's goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the value at risk and expected shortfall risk measures at some high quantiles, based on the fitted GPD model.

  1. Deficient conditioned pain modulation after spinal cord injury correlates with clinical spontaneous pain measures.

    Science.gov (United States)

    Albu, Sergiu; Gómez-Soriano, Julio; Avila-Martin, Gerardo; Taylor, Julian

    2015-02-01

    The contribution of endogenous pain modulation dysfunction to clinical and sensory measures of neuropathic pain (NP) has not been fully explored. Habituation, temporal summation, and heterotopic noxious conditioning stimulus-induced modulation of tonic heat pain intensity were examined in healthy noninjured subjects (n = 10), and above the level of spinal cord injury (SCI) in individuals without (SCI-noNP, n = 10) and with NP (SCI-NP, n = 10). Thermoalgesic thresholds, Cz/AFz contact heat evoked potentials (CHEPs), and phasic or tonic (30 seconds) heat pain intensity were assessed within the C6 dermatome. Although habituation to tonic heat pain intensity (0-10) was reported by the noninjured (10 s: 3.5 ± 0.3 vs 30 s: 2.2 ± 0.5 numerical rating scale; P = 0.003), loss of habituation was identified in both the SCI-noNP (3.8 ± 0.3 vs 3.6 ± 0.5) and SCI-NP group (4.2 ± 0.4 vs 4.9 ± 0.8). Significant temporal summation of tonic heat pain intensity was not observed in the 3 groups. Inhibition of tonic heat pain intensity induced by heterotopic noxious conditioning stimulus was identified in the noninjured (-29.7% ± 9.7%) and SCI-noNP groups (-19.6% ± 7.0%), but not in subjects with SCI-NP (+1.1% ± 8.0%; P pain modulation response correlated positively with Cz/AFz CHEP amplitude (ρ = 0.8; P = 0.015) and evoked heat pain intensity (ρ = 0.8; P = 0.007) in the SCI-NP group. Stepwise regression analysis revealed that the mean conditioned pain modulation (R = 0.72) correlated with pain severity and pressing spontaneous pain in the SCI-NP group. Comprehensive assessment of sensory dysfunction above the level of injury with tonic thermal test and conditioning stimuli revealed less-efficient endogenous pain modulation in subjects with SCI-NP.

  2. Multidecadal oscillations in rainfall and hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2013-04-01

    Many studies have anticipated a worldwide increase in the frequency and intensity of precipitation extremes and floods since the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extreme quantiles, it is shown that hydrological extremes have oscillatory behaviour at multidecadal time scales. Results are based on nearly independent extremes extracted from long-term historical time series of precipitation intensities and river flows. Study regions include Belgium - The Netherlands (Meuse basin), Ethiopia (Blue Nile basin) and Ecuador (Paute basin). For Belgium - The Netherlands, the past 100 years showed larger and more hydrological extremes around the 1910s, 1950-1960s, and more recently during the 1990-2000s. Interestingly, the oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930-1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years. References: Ntegeka V., Willems P. (2008), 'Trends and multidecadal oscillations in rainfall extremes, based on a more than 100 years time series of 10 minutes rainfall intensities at Uccle, Belgium', Water Resources Research, 44, W07402, doi:10.1029/2007WR006471 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water

  3. Are extreme hydro-meteorological events a prerequisite for extreme water quality impacts? Exploring climate impacts on inland and coastal waters

    Science.gov (United States)

    Michalak, A. M.; Balaji, V.; Del Giudice, D.; Sinha, E.; Zhou, Y.; Ho, J. C.

    2017-12-01

    Questions surrounding water sustainability, climate change, and extreme events are often framed around water quantity - whether too much or too little. The massive impacts of extreme water quality impairments are equally compelling, however. Recent years have provided a host of compelling examples, with unprecedented harmful algal blooms developing along the West coast, in Utah Lake, in Lake Erie, and off the Florida coast, and huge hypoxic dead zones continuing to form in regions such as Lake Erie, the Chesapeake Bay, and the Gulf of Mexico. Linkages between climate change, extreme events, and water quality impacts are not well understood, however. Several factors explain this lack of understanding, including the relative complexity of underlying processes, the spatial and temporal scale mismatch between hydrologists and climatologists, and observational uncertainty leading to ambiguities in the historical record. Here, we draw on a number of recent studies that aim to quantitatively link meteorological variability and water quality impacts to test the hypothesis that extreme water quality impairments are the result of extreme hydro-meteorological events. We find that extreme hydro-meteorological events are neither always a necessary nor a sufficient condition for the occurrence of extreme water quality impacts. Rather, extreme water quality impairments often occur in situations where multiple contributing factors compound, which complicates both attribution of historical events and the ability to predict the future incidence of such events. Given the critical societal importance of water quality projections, a concerted program of uncertainty reduction encompassing observational and modeling components will be needed to examine situations where extreme weather plays an important, but not solitary, role in the chain of cause and effect.

  4. Risk assessment of precipitation extremes in northern Xinjiang, China

    Science.gov (United States)

    Yang, Jun; Pei, Ying; Zhang, Yanwei; Ge, Quansheng

    2018-05-01

    This study was conducted using daily precipitation records gathered at 37 meteorological stations in northern Xinjiang, China, from 1961 to 2010. We used the extreme value theory model, generalized extreme value (GEV) and generalized Pareto distribution (GPD), statistical distribution function to fit outputs of precipitation extremes with different return periods to estimate risks of precipitation extremes and diagnose aridity-humidity environmental variation and corresponding spatial patterns in northern Xinjiang. Spatiotemporal patterns of daily maximum precipitation showed that aridity-humidity conditions of northern Xinjiang could be well represented by the return periods of the precipitation data. Indices of daily maximum precipitation were effective in the prediction of floods in the study area. By analyzing future projections of daily maximum precipitation (2, 5, 10, 30, 50, and 100 years), we conclude that the flood risk will gradually increase in northern Xinjiang. GEV extreme value modeling yielded the best results, proving to be extremely valuable. Through example analysis for extreme precipitation models, the GEV statistical model was superior in terms of favorable analog extreme precipitation. The GPD model calculation results reflect annual precipitation. For most of the estimated sites' 2 and 5-year T for precipitation levels, GPD results were slightly greater than GEV results. The study found that extreme precipitation reaching a certain limit value level will cause a flood disaster. Therefore, predicting future extreme precipitation may aid warnings of flood disaster. A suitable policy concerning effective water resource management is thus urgently required.

  5. Characterization of extremely low frequency magnetic fields from diesel, gasoline and hybrid cars under controlled conditions.

    Science.gov (United States)

    Hareuveny, Ronen; Sudan, Madhuri; Halgamuge, Malka N; Yaffe, Yoav; Tzabari, Yuval; Namir, Daniel; Kheifets, Leeka

    2015-01-30

    This study characterizes extremely low frequency (ELF) magnetic field (MF) levels in 10 car models. Extensive measurements were conducted in three diesel, four gasoline, and three hybrid cars, under similar controlled conditions and negligible background fields. Averaged over all four seats under various driving scenarios the fields were lowest in diesel cars (0.02 μT), higher for gasoline (0.04-0.05 μT) and highest in hybrids (0.06-0.09 μT), but all were in-line with daily exposures from other sources. Hybrid cars had the highest mean and 95th percentile MF levels, and an especially large percentage of measurements above 0.2 μT. These parameters were also higher for moving conditions compared to standing while idling or revving at 2500 RPM and higher still at 80 km/h compared to 40 km/h. Fields in non-hybrid cars were higher at the front seats, while in hybrid cars they were higher at the back seats, particularly the back right seat where 16%-69% of measurements were greater than 0.2 μT. As our results do not include low frequency fields (below 30 Hz) that might be generated by tire rotation, we suggest that net currents flowing through the cars' metallic chassis may be a possible source of MF. Larger surveys in standardized and well-described settings should be conducted with different types of vehicles and with spectral analysis of fields including lower frequencies due to magnetization of tires.

  6. The Reliability of Quality of Upper Extremity Skills Test in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Nazila Akbar-Fahimi

    2012-01-01

    Full Text Available Objective: The aim of this study was to survey the reliability of Intra-rater and Inter-rater with and without video camera assessment in children with spastic cerebral palsy. Materials & Methods: In this cross-sectional study, we validate the Quality of Upper Extremity Skill Test questionnaire. Fifty children with hemiplegia aged 19 to 95 months (mean age 61.31 ± 25.7 month were enrolled in our study using non random available approach. After obtaining parents’ consent, intra-rater assessment was performed in one session and intera rater assessment with camera after 10 days. Then, the third examiner did the reassessment using film observation of 46 children from 50. Spearman correlation for survey the reliability of intra-rater & inter rater with & without video recording assessment & gross motor function classification system 66 for determined functionality of child were used. Results: Intra-rater correlation was 0.774-0.996, Inter-rater correlation was 0.663-0.998 and correlation for video camera assessment was 0.710-0.974 for the first and third evaluation and 0.652-0.938 for second and third evaluation. P value for sub scales and total score was P<0.01. Conclusion: There is a high correlation in Intra rater and inter rater assessment with and without video recording in Quality of Upper Extremity Skill Test in children with cerebral palsy. So that it can be used as a reliable test to evaluate Quality of Upper Extremity Skills in these children.

  7. Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations.

    Science.gov (United States)

    Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria

    2014-08-14

    Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.

  8. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    Science.gov (United States)

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  9. MR manifestation of lower extremity rhabdomyolysis caused by crush injury in earthquake

    International Nuclear Information System (INIS)

    Li Zhengyan; Zou Ling; Song Bin; Liu Chang; Sun Jiayu; Zhang Weiwei; Zhang Cuiping

    2008-01-01

    Objective: Rhabdomyolysis (RM) is a common disorder resulting from a large variety of causes. Acute injury is one of the main reasons. The purpose is to describe the MRI manifestations of rhabdomyolysis caused by 5.12 Wenchuan earthquake in Sichuan province and to discuss their importance in diagnosis and treatment of rhabdomyolysison in clinic practice. Methods: Three patients with rhabdomyolysis caused by earthquake were studied via 1.5 T MRI. In all the patients, T 1 and T 2 weighted sequences with and without fat suppression, and short time inversion recovery (STIR) of both lower extremities were obtained in axial, coronal and sagittal planes. All patients were given contrast material during imaging, and MRA (magnetic resonance angiography) of both lower extremity vessels were performed. The MRI characteristics of damaged extremities in 3 cases were studied. Results: MRI showed swelling of the affected muscles and subcutaneous fat tissue on both T 1 and T 2 weighted images. The margins of involved muscles were blurred. On T 1 weighted images, swollen muscles showed equal or slightly decreased intensity with small patterns of increased intensity in some local areas. On T 2 weighted and STIR sequences, the affected muscles showed inhomogeneous increased signal intensity with clearer margin. Slight fluid collection in spatium intermusculare was observed. Contrast-enhanced scanning showed nonhomologous intensification of damaged muscles, the enhancement inside the muscles was decreased when compared with normal muscles. The locations of all these abnormal intensity were correlated with the injury history and clinic physical examinations. MRA showed no lower extremity vessels were affected. Conclusion: MRI has very high sensitivity in detecting the injury of muscles. It's very useful in evaluating the extent and severity of muscles affected in rhabdomyolysis caused by trauma. Also it's very valuable to evaluate the condition of blood vessels in involved extremity

  10. The Effects of Forest Area Changes on Extreme Temperature Indexes between the 1900s and 2010s in Heilongjiang Province, China

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    2017-12-01

    Full Text Available Land use and land cover changes (LUCC are thought to be amongst the most important impacts exerted by humans on climate. However, relatively little research has been carried out so far on the effects of LUCC on extreme climate change other than on regional temperatures and precipitation. In this paper, we apply a regional weather research and forecasting (WRF climate model using LUCC data from Heilongjiang Province, that was collected between the 1900s and 2010s, to explore how changes in forest cover influence extreme temperature indexes. Our selection of extreme high, low, and daily temperature indexes for analysis in this study enables the calculation of a five-year numerical integration trail with changing forest space. Results indicate that the total forested area of Heilongjiang Province decreased by 28% between the 1900s and 2010s. This decrease is most marked in the western, southwestern, and northeastern parts of the province. Our results also reveal a remarkable correlation between change in forested area and extreme high and low temperature indexes. Further analysis enabled us to determine that the key factor explaining increases in extreme high temperature indexes (i.e., calculated using the number of warm days, warm nights, as well as tropical nights, and summer days is decreasing forest area; data also showed that this factor caused a decrease in extreme low temperature indexes (i.e., calculated using the number of cold days and cold nights, as well as frost days, and ice days and an increase in the maximum value of daily minimum temperature. Spatial data demonstrated that there is a significant correlation between forest-to-farmland conversion and extreme temperature indexes throughout most of our study period. Spatial data demonstrated that there is a significant correlation between forest-to-farmland conversion and extreme temperature indexes throughout most of our study period. Positive correlations are also present between

  11. Understanding the Impacts of Climate and Hydrologic Extremes on Diarrheal Diseases in Southwestern Amazon

    Science.gov (United States)

    Fonseca, P. A. M.

    2015-12-01

    Bacterial diarrheal diseases have a high incidence rate during and after flooding episodes. In the Brazilian Amazon, flood extreme events have become more frequent, leading to high incidence rates for infant diarrhea. In this study we aimed to find a statistical association between rainfall, river levels and diarrheal diseases in children under 5, in the river Acre basin, in the State of Acre (Brazil). We also aimed to identify the time-lag and annual season of extreme rainfall and flooding in different cities in the water basin. The results using Tropical Rainfall Measuring Mission (TRMM) Satellite rainfall data show robustness of these estimates against observational stations on-ground. The Pearson coefficient correlation results (highest 0.35) indicate a time-lag, up to 4 days in three of the cities in the water-basin. In addition, a correlation was also tested between monthly accumulated rainfall and the diarrheal incidence during the rainy season (DJF). Correlation results were higher, especially in Acrelândia (0.7) and Brasiléia and Epitaciolândia (0.5). The correlation between water level monthly averages and diarrheal diseases incidence was 0.3 and 0.5 in Brasiléia and Epitaciolândia. The time-lag evidence found in this paper is critical to inform stakeholders, local populations and civil defense authorities about the time available for preventive and adaptation measures between extreme rainfall and flooding events in vulnerable cities. This study was part of a pilot application in the state of Acre of the PULSE-Brazil project (http://www.pulse-brasil.org/tool/), an interface of climate, environmental and health data to support climate adaptation. The next step of this research is to expand the analysis to other climate variables on diarrheal diseases across the whole Brazilian Amazon Basin and estimate the relative risk (RR) of a child getting sick. A statistical model will estimate RR based on the observed values and seasonal forecasts (higher

  12. Consortium for Health and Military Performance and American College of Sports Medicine consensus paper on extreme conditioning programs in military personnel.

    Science.gov (United States)

    Bergeron, Michael F; Nindl, Bradley C; Deuster, Patricia A; Baumgartner, Neal; Kane, Shawn F; Kraemer, William J; Sexauer, Lisa R; Thompson, Walter R; O'Connor, Francis G

    2011-01-01

    A potential emerging problem associated with increasingly popularized extreme conditioning programs (ECPs) has been identified by the military and civilian communities. That is, there is an apparent disproportionate musculoskeletal injury risk from these demanding programs, particularly for novice participants, resulting in lost duty time, medical treatment, and extensive rehabilitation. This is a significant and costly concern for the military with regard to effectively maintaining operational readiness of the Force. While there are certain recognized positive aspects of ECPs that address a perceived and/or actual unfulfilled conditioning need for many individuals and military units, these programs have limitations and should be considered carefully. Moreover, certain distinctive characteristics of ECPs appear to violate recognized accepted standards for safely and appropriately developing muscular fitness and are not uniformly aligned with established and accepted training doctrine. Accordingly, practical solutions to improve ECP prescription and implementation and reduce injury risk are of paramount importance.

  13. Measuring risk of crude oil at extreme quantiles

    Directory of Open Access Journals (Sweden)

    Saša Žiković

    2011-06-01

    Full Text Available The purpose of this paper is to investigate the performance of VaR models at measuring risk for WTI oil one-month futures returns. Risk models, ranging from industry standards such as RiskMetrics and historical simulation to conditional extreme value model, are used to calculate commodity market risk at extreme quantiles: 0.95, 0.99, 0.995 and 0.999 for both long and short trading positions. Our results show that out of the tested fat tailed distributions, generalised Pareto distribution provides the best fit to both tails of oil returns although tails differ significantly, with the right tail having a higher tail index, indicative of more extreme events. The main conclusion is that, in the analysed period, only extreme value theory based models provide a reasonable degree of safety while widespread VaR models do not provide adequate risk coverage and their performance is especially weak for short position in oil.

  14. Upper extremity peripheral neuropathies: role and impact of MR imaging on patient management

    International Nuclear Information System (INIS)

    Andreisek, Gustav; Burg, Doris; Studer, Ansgar; Weishaupt, Dominik

    2008-01-01

    To investigate the role of MR imaging (MRI) in the evaluation of peripheral nerve lesions of the upper extremities and to assess its impact on the patient management. Fifty-one patients with clinical evidence of radial, median, and/or ulnar nerve lesions and unclear or ambiguous clinical findings had MRI of the upper extremity at 1.5 T. MR images and clinical data were reviewed by two blinded radiologists and a group of three clinical experts, respectively, with regard to radial, median, and/or ulnar nerve, as well as muscle abnormalities. MRI and clinical findings were correlated using Spearman's (p) rank correlation test. The impact of MRI on patient management was assessed by the group of experts and ranked as ''major,'' ''moderate,'' or ''no'' impact. The correlation of MRI and clinical findings was moderate for the assessment of the median/radial nerve and muscles (p=0.51/0.51/0.63, respectively) and weak for the ulnar nerve (p=0.40). The impact of MRI on patient management was assessed as ''major'' in 24/51 (47%), ''moderate'' in 19/51 (37%), and ''no'' in 8/51 (16%) patients. MRI in patients with upper extremity peripheral neuropathies and unclear or ambiguous clinical findings substantially influences the patient management. (orig.)

  15. Theoretical and experimental study of single particle tracking in extreme conditions: single photon imaging

    International Nuclear Information System (INIS)

    Cajgfinger, T.

    2012-10-01

    This manuscript presents my thesis on the high frame rate (500 frames / second) single-photon detector electron-bombarded CMOS (ebCMOS). The first section compares three ultra-sensitive detectors and their methods for improving photon sensitivity: the CMOS low noise (sCMOS), the electron-multiplying CCD (emCCD) with signal multiplication by pixel and the ebCMOS with amplification by applied electric field. The method developed to detect single photon impacts with intra-pixel resolution on the ebCMOS sensor is presented. The second section compares the localization accuracy of these detectors in extreme conditions of very low photon flux (<10 photons/frame). First the theoretical limit is calculated using the Cramer-Rao lower bound for significant parameter sets. An experimental comparison of the detectors is then described. The setup provides one or more point sources controlled in position, signal and background noise. The results allow a comparison of the experimental effectiveness, purity and localization accuracy. The last section describes two experiments with the ebCMOS camera. The first aims at tracking hundreds of quantum dots simultaneously at the Nanoptec center. The second focuses on the swimming of bacteria at the surface at the Joliot Curie Institute. The point sources tracking algorithm using single photons and the Kalman filter implementation developed for these experiments is also described. (author)

  16. Mandelbrot's Extremism

    NARCIS (Netherlands)

    Beirlant, J.; Schoutens, W.; Segers, J.J.J.

    2004-01-01

    In the sixties Mandelbrot already showed that extreme price swings are more likely than some of us think or incorporate in our models.A modern toolbox for analyzing such rare events can be found in the field of extreme value theory.At the core of extreme value theory lies the modelling of maxima

  17. Hydrological impacts of precipitation extremes in the Huaihe River Basin, China.

    Science.gov (United States)

    Yang, Mangen; Chen, Xing; Cheng, Chad Shouquan

    2016-01-01

    Precipitation extremes play a key role in flooding risks over the Huaihe River Basin, which is important to understand their hydrological impacts. Based on observed daily precipitation and streamflow data from 1958 to 2009, eight precipitation indices and three streamflow indices were calculated for the study of hydrological impacts of precipitation extremes. The results indicate that the wet condition intensified in the summer wet season and the drought condition was getting worse in the autumn dry season in the later years of the past 50 years. The river basin had experienced higher heavy rainfall-related flooding risks in summer and more severe drought in autumn in the later of the period. The extreme precipitation events or consecutive heavy rain day events led to the substantial increases in streamflow extremes, which are the main causes of frequent floods in the Huaihe River Basin. The large inter-annual variation of precipitation anomalies in the upper and central Huaihe River Basin are the major contributor for the regional frequent floods and droughts.

  18. Extreme Hurricane-Generated Waves in Gulf of Mexico

    National Research Council Canada - National Science Library

    Alberto, Carlos; Fernandes, Santos

    2005-01-01

    .... Although WaveWatchIII (WW3) is used by many operational forecasting centers around the world, there is a lack of field studies to evaluate its accuracy in regional applications and under extreme conditions, such as Hurricanes...

  19. Regional frequency analysis of short duration rainfall extremes using gridded daily rainfall data as co-variate

    DEFF Research Database (Denmark)

    Madsen, H.; Gregersen, Ida Bülow; Rosbjerg, Dan

    2017-01-01

    with daily measurements. The Poisson rate is positively correlated to the mean annual precipitation for all durations considered (1 min to 48 hours). The mean intensity can be assumed constant over Denmark for durations up to 1 hour. For durations larger than 1 hour the mean intensity is significantly...... correlated to the mean extreme daily precipitation. A Generalised Pareto distribution with a regional constant shape parameter is adopted. Compared to previous regional studies in Denmark a general increase in extreme rainfall intensity for durations up to 1 hour is found, whereas for larger durations both...

  20. The family as a determinant of stunting in children living in conditions of extreme poverty: a case-control study

    Directory of Open Access Journals (Sweden)

    Doubova Svetlana V

    2004-11-01

    Full Text Available Abstract Background Malnutrition in children can be a consequence of unfavourable socioeconomic conditions. However, some families maintain adequate nutritional status in their children despite living in poverty. The aim of this study was to ascertain whether family-related factors are determinants of stunting in young Mexican children living in extreme poverty, and whether these factors differ between rural or urban contexts. Methods A case-control study was conducted in one rural and one urban extreme poverty level areas in Mexico. Cases comprised stunted children aged between 6 and 23 months. Controls were well-nourished children. Independent variables were defined in five dimensions: family characteristics; family income; household allocation of resources and family organisation; social networks; and child health care. Information was collected from 108 cases and 139 controls in the rural area and from 198 cases and 211 controls in the urban area. Statistical analysis was carried out separately for each area; unconditional multiple logistic regression analyses were performed to obtain the best explanatory model for stunting. Results In the rural area, a greater risk of stunting was associated with father's occupation as farmer and the presence of family networks for child care. The greatest protective effect was found in children cared for exclusively by their mothers. In the urban area, risk factors for stunting were father with unstable job, presence of small social networks, low rate of attendance to the Well Child Program activities, breast-feeding longer than six months, and two variables within the family characteristics dimension (longer duration of parents' union and migration from rural to urban area. Conclusions This study suggests the influence of the family on the nutritional status of children under two years of age living in extreme poverty areas. Factors associated with stunting were different in rural and urban communities

  1. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  2. Extreme value analysis of meterological parameters observed at Narora during the period 1989-2001

    International Nuclear Information System (INIS)

    Varakhedkar, V.K.; Dube, B.; Gurg, R.P.

    2002-08-01

    The design of engineering structures requires an understanding of extreme weather conditions that may occur at the site of interest, which is very essential, so that the structures can be designed to withstand weather stresses. In this report an analysis of extreme values of meteorological parameters observed at Narora for the period 1989- 2001 is described. The parameters considered are maximum and minimum air temperature, minimum relative humidity, maximum wind speed, maximum rainfall in a day and month, and annual rainfall. The extreme value analysis reveals that the variables such as annual maximum air temperature, minimum relative humidity and monthly maximum rainfall obey Fisher -Tippet Type -I extreme value distribution where as annual minimum air temperature, maximum hourly wind speed, daily maximum rainfall and maximum and minimum annual rainfall, obey Fisher -Tippet Type -2 extreme value distribution function. Various distribution function parameters for each variable are determined. Extreme values corresponding to return periods of 50 years and 100 years are worked out. These derived extreme values are particularly useful for arriving at suitable design values to ensure the safety of any civil structure in Narora area with respect to stresses due to weather conditions. (author)

  3. Fabrication of Diamond Based Sensors for Use in Extreme Environments

    Directory of Open Access Journals (Sweden)

    Gopi K. Samudrala

    2015-04-01

    Full Text Available Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This method can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. We demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.

  4. Distributing urban resilience to extreme precipitation events with green infrastructure

    Science.gov (United States)

    Montalto, F. A.; Catalano De Sousa, M.; Yu, Z.

    2013-12-01

    New urban green spaces are being designed to manage stormwater, but their performance in a changing climate is untested. Key questions pertain to the ability of these systems to mitigate flood and sewer overflow concerns during impact of extreme events on, and to withstand (biologically and physically) increased frequency and intensity of drought and flood conditions. In this presentation, we present field data characterizing performance of a bioretention area, a stormwater treatment wetland, and a green roof under Hurricane Irene (2011), Superstorm Sandy (2012), and a variety of extreme precipitation events during the summer of 2013. Specifically, we characterize the fate and volume of incident runon and/or precipitation to the facilities during these extreme events, and compare them to long term monitored performance metrics. We also present laboratory test results documenting how vegetation in these facilities stands up to simulated flood and drought conditions. The results are discussed in the context of predicted climate change, specifically associated with the amount and timing of precipitation.

  5. Improving simulated long-term responses of vegetation to temperature and precipitation extremes using the ACME land model

    Science.gov (United States)

    Ricciuto, D. M.; Warren, J.; Guha, A.

    2017-12-01

    While carbon and energy fluxes in current Earth system models generally have reasonable instantaneous responses to extreme temperature and precipitation events, they often do not adequately represent the long-term impacts of these events. For example, simulated net primary productivity (NPP) may decrease during an extreme heat wave or drought, but may recover rapidly to pre-event levels following the conclusion of the extreme event. However, field measurements indicate that long-lasting damage to leaves and other plant components often occur, potentially affecting the carbon and energy balance for months after the extreme event. The duration and frequency of such extreme conditions is likely to shift in the future, and therefore it is critical for Earth system models to better represent these processes for more accurate predictions of future vegetation productivity and land-atmosphere feedbacks. Here we modify the structure of the Accelerated Climate Model for Energy (ACME) land surface model to represent long-term impacts and test the improved model against observations from experiments that applied extreme conditions in growth chambers. Additionally, we test the model against eddy covariance measurements that followed extreme conditions at selected locations in North America, and against satellite-measured vegetation indices following regional extreme events.

  6. How extreme is extreme hourly precipitation?

    Science.gov (United States)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  7. Estimating extreme river discharges in Europe through a Bayesian network

    Science.gov (United States)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo

    2017-06-01

    Large-scale hydrological modelling of flood hazards requires adequate extreme discharge data. In practise, models based on physics are applied alongside those utilizing only statistical analysis. The former require enormous computational power, while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical approach based on Bayesian networks (BNs), a graphical model for dependent random variables. We use a non-parametric BN to describe the joint distribution of extreme discharges in European rivers and variables representing the geographical characteristics of their catchments. Annual maxima of daily discharges from more than 1800 river gauges (stations with catchment areas ranging from 1.4 to 807 000 km2) were collected, together with information on terrain, land use and local climate. The (conditional) correlations between the variables are modelled through copulas, with the dependency structure defined in the network. The results show that using this method, mean annual maxima and return periods of discharges could be estimated with an accuracy similar to existing studies using physical models for Europe and better than a comparable global statistical model. Performance of the model varies slightly between regions of Europe, but is consistent between different time periods, and remains the same in a split-sample validation. Though discharge prediction under climate change is not the main scope of this paper, the BN was applied to a large domain covering all sizes of rivers in the continent both for present and future climate, as an example. Results show substantial variation in the influence of climate change on river discharges. The model can be used to provide quick estimates of extreme discharges at any location for the purpose of obtaining input information for hydraulic modelling.

  8. Identification of Climate Change with Generalized Extreme Value (GEV) Distribution Approach

    International Nuclear Information System (INIS)

    Rahayu, Anita

    2013-01-01

    Some events are difficult to avoid and gives considerable influence to humans and the environment is extreme weather and climate change. Many of the problems that require knowledge about the behavior of extreme values and one of the methods used are the Extreme Value Theory (EVT). EVT used to draw up reliable systems in a variety of conditions, so as to minimize the risk of a major disaster. There are two methods for identifying extreme value, Block Maxima with Generalized Extreme Value (GEV) distribution approach and Peaks over Threshold (POT) with Generalized Pareto Distribution (GPD) approach. This research in Indramayu with January 1961-December 2003 period, the method used is Block Maxima with GEV distribution approach. The result showed that there is no climate change in Indramayu with January 1961-December 2003 period.

  9. The problem of defining contemporary right-wing extremism in political theory

    Directory of Open Access Journals (Sweden)

    Đorić Marija

    2016-01-01

    Full Text Available The subject matter of research in this paper is theoretical controversy related to the definition of right-wing extremism. Given the fact that extremism is a variable, amorphous and insufficiently researched phenomenon, largely conditioned by time, space, political and cultural differences, there is a great confusion in the field of political science when defining right-wing extremism. The problem of researching right-wing extremism is additionally complicated by various terms that are being used in the contemporary literature as its synonyms, such as right-wing radicalism, neo-Fascism, ultra-radicalism, etc. In order to provide the most valid theoretical determination of right-wing extremism, the author provides a detailed analysis of all the components constituting this phenomenon and examines their causality. In the political praxis, the term extremism is extensively abused, which additionally complicates its determination. Videlicet, politicians often use term 'extremist' in order to discredit their political opponents. While during the French revolution aristocracy saw the bourgeoisie as extremists, the members of the working class later stated that the bourgeoisie were extremists. The problem lies in the fact that, in politics, extremists are not only the ones who use violence as modus operandi; indeed, it is also used by political opponents who do not belong to the extreme political option. Another aggravating factor in defining right-wing extremism is that many administrative and academic definitions do not make a clear distinction between extremism and related phenomena, such as terrorism, radicalism and populism. Extremism is most often equaled with terrorism, which gives rise to another problem in defining this phenomenon. The relation between extremism and terrorism is the relation of general and specific. Namely, every act of terrorism is concurrently considered to be an act of extremism, but not vice versa, given the fact that

  10. Clinical application of lower extremity CTA and lower extremity perfusion CT as a method of diagnostic for lower extremity atherosclerotic obliterans

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Il Bong; Dong, Kyung Rae [Dept. Radiological Technology, Gwangju Health University, Gwangju (Korea, Republic of); Goo, Eun Hoe [Dept. Radiological Science, Cheongju University, Cheongju (Korea, Republic of)

    2016-11-15

    The purpose of this study was to assess clinical application of lower extremity CTA and lower extremity perfusion CT as a method of diagnostic for lower extremity atherosclerotic obliterans. From January to July 2016, 30 patients (mean age, 68) were studied with lower extremity CTA and lower extremity perfusion CT. 128 channel multi-detector row CT scans were acquired with a CT scanner (SOMATOM Definition Flash, Siemens medical solution, Germany) of lower extremity perfusion CT and lower extremity CTA. Acquired images were reconstructed with 3D workstation (Leonardo, Siemens, Germany). Site of lower extremity arterial occlusive and stenosis lesions were detected superficial femoral artery 36.6%, popliteal artery 23.4%, external iliac artery 16.7%, common femoral artery 13.3%, peroneal artery 10%. The mean total DLP comparison of lower extremity perfusion CT and lower extremity CTA, 650 mGy-cm and 675 mGy-cm, respectively. Lower extremity perfusion CT and lower extremity CTA were realized that were never be two examination that were exactly the same legions. Future through the development of lower extremity perfusion CT soft ware programs suggest possible clinical applications.

  11. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems

    International Nuclear Information System (INIS)

    Jentsch, A.; Jentsch, A.; Beierkuhnlein, C.

    2008-01-01

    Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21. century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research. (authors)

  12. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    Science.gov (United States)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it

  13. Entropy, extremality, euclidean variations, and the equations of motion

    Science.gov (United States)

    Dong, Xi; Lewkowycz, Aitor

    2018-01-01

    We study the Euclidean gravitational path integral computing the Rényi entropy and analyze its behavior under small variations. We argue that, in Einstein gravity, the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion. This set-up is then generalized to arbitrary theories of gravity, where we show that the respective entanglement entropy functional needs to be extremized. We also extend this result to all orders in Newton's constant G N , providing a derivation of quantum extremality. Understanding quantum extremality for mixtures of states provides a generalization of the dual of the boundary modular Hamiltonian which is given by the bulk modular Hamiltonian plus the area operator, evaluated on the so-called modular extremal surface. This gives a bulk prescription for computing the relative entropies to all orders in G N . We also comment on how these ideas can be used to derive an integrated version of the equations of motion, linearized around arbitrary states.

  14. Extreme Drought Events Revealed in Amazon Tree Ring Records

    Science.gov (United States)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  15. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    Science.gov (United States)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  16. Upper Extremity Functional Evaluation by Fugl-Meyer Assessment Scoring Using Depth-Sensing Camera in Hemiplegic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Won-Seok Kim

    Full Text Available Virtual home-based rehabilitation is an emerging area in stroke rehabilitation. Functional assessment tools are essential to monitor recovery and provide current function-based rehabilitation. We developed the Fugl-Meyer Assessment (FMA tool using Kinect (Microsoft, USA and validated it for hemiplegic stroke patients. Forty-one patients with hemiplegic stroke were enrolled. Thirteen of 33 items were selected for upper extremity motor FMA. One occupational therapist assessed the motor FMA while recording upper extremity motion with Kinect. FMA score was calculated using principal component analysis and artificial neural network learning from the saved motion data. The degree of jerky motion was also transformed to jerky scores. Prediction accuracy for each of the 13 items and correlations between real FMA scores and scores using Kinect were analyzed. Prediction accuracies ranged from 65% to 87% in each item and exceeded 70% for 9 items. Correlations were high for the summed score for the 13 items between real FMA scores and scores obtained using Kinect (Pearson's correlation coefficient = 0.873, P<0.0001 and those between total upper extremity scores (66 in full score and scores using Kinect (26 in full score (Pearson's correlation coefficient = 0.799, P<0.0001. Log transformed jerky scores were significantly higher in the hemiplegic side (1.81 ± 0.76 compared to non-hemiplegic side (1.21 ± 0.43 and showed significant negative correlations with Brunnstrom stage (3 to 6; Spearman correlation coefficient = -0.387, P = 0.046. FMA using Kinect is a valid way to assess upper extremity function and can provide additional results for movement quality in stroke patients. This may be useful in the setting of unsupervised home-based rehabilitation.

  17. 49 CFR 392.14 - Hazardous conditions; extreme caution.

    Science.gov (United States)

    2010-10-01

    ... CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES Driving of Commercial Motor Vehicles § 392.14 Hazardous conditions... nearest point at which the safety of passengers is assured. [33 FR 19732, Dec. 25, 1968, as amended at 60...

  18. Extreme value distributions

    CERN Document Server

    Ahsanullah, Mohammad

    2016-01-01

    The aim of the book is to give a through account of the basic theory of extreme value distributions. The book cover a wide range of materials available to date. The central ideas and results of extreme value distributions are presented. The book rwill be useful o applied statisticians as well statisticians interrested to work in the area of extreme value distributions.vmonograph presents the central ideas and results of extreme value distributions.The monograph gives self-contained of theory and applications of extreme value distributions.

  19. Extreme Precipitation and Flooding: Exposure Characterization and the Association Between Exposure and Mortality in 108 United States Communities, 1987-2005

    Science.gov (United States)

    Severson, R. L.; Peng, R. D.; Anderson, G. B.

    2017-12-01

    There is substantial evidence that extreme precipitation and flooding are serious threats to public health and safety. These threats are predicted to increase with climate change. Epidemiological studies investigating the health effects of these events vary in the methods used to characterize exposure. Here, we compare two sources of precipitation data (National Oceanic and Atmospheric Administration (NOAA) station-based and North American Land Data Assimilation Systems (NLDAS-2) Reanalysis data-based) for estimating exposure to extreme precipitation and two sources of flooding data, based on United States Geological Survey (USGS) streamflow gages and the NOAA Storm Events database. We investigate associations between each of the four exposure metrics and short-term risk of four causes of mortality (accidental, respiratory-related, cardiovascular-related, and all-cause) in the United States from 1987 through 2005. Average daily precipitation values from the two precipitation data sources were moderately correlated (Spearman's rho = 0.74); however, values from the two data sources were less correlated when comparing binary metrics of exposure to extreme precipitation days (Jaccard index (J) = 0.35). Binary metrics of daily flood exposure were poorly correlated between the two flood data sources (Spearman's rho = 0.07; J = 0.05). There was little correlation between extreme precipitation exposure and flood exposure in study communities. We did not observe evidence of a positive association between any of the four exposure metrics and risk of any of the four mortality outcomes considered. Our results suggest, due to the observed lack of agreement between different extreme precipitation and flood metrics, that exposure to extreme precipitation may not serve as an effective surrogate for exposures related to flooding. Furthermore, It is possible that extreme precipitation and flood exposures may often be too localized to allow accurate exposure assessment at the

  20. Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures

    International Nuclear Information System (INIS)

    Semenov, Serguei; Nair, Bindu; Kellam, James; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey; Posukh, Vitaly

    2011-01-01

    Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)-the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper.

  1. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean

    Science.gov (United States)

    Ruffault, Julien; Curt, Thomas; Martin-StPaul, Nicolas K.; Moron, Vincent; Trigo, Ricardo M.

    2018-03-01

    Increasing drought conditions under global warming are expected to alter the frequency and distribution of large and high-intensity wildfires. However, our understanding of the impact of increasing drought on extreme wildfires events remains incomplete. Here, we analyzed the weather conditions associated with the extreme wildfires events that occurred in Mediterranean France during the exceptionally dry summers of 2003 and 2016. We identified that these fires were related to two distinct shifts in the fire weather space towards fire weather conditions that had not been explored before and resulting from specific interactions between different types of drought and different fire weather types. In 2016, a long-lasting press drought intensified wind-driven fires. In 2003, a hot drought combining a heat wave with a press drought intensified heat-induced fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and lead to a higher frequency of extremes wildfires events.

  2. Extreme Temperature Performance of Automotive-Grade Small Signal Bipolar Junction Transistors

    Science.gov (United States)

    Boomer, Kristen; Damron, Benny; Gray, Josh; Hammoud, Ahmad

    2018-01-01

    Electronics designed for space exploration missions must display efficient and reliable operation under extreme temperature conditions. For example, lunar outposts, Mars rovers and landers, James Webb Space Telescope, Europa orbiter, and deep space probes represent examples of missions where extreme temperatures and thermal cycling are encountered. Switching transistors, small signal as well as power level devices, are widely used in electronic controllers, data instrumentation, and power management and distribution systems. Little is known, however, about their performance in extreme temperature environments beyond their specified operating range; in particular under cryogenic conditions. This report summarizes preliminary results obtained on the evaluation of commercial-off-the-shelf (COTS) automotive-grade NPN small signal transistors over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these transistors and to determine suitability for use outside their recommended temperature limits.

  3. Spectral characteristics of the nearshore waves off Paradip, India during monsoon and extreme events

    Digital Repository Service at National Institute of Oceanography (India)

    Aboobacker, V.M.; Vethamony, P.; Sudheesh, K.; Rupali, S.P.

    and directional wave energy spectra distinctly separate out the wave conditions that prevailed off Paradip in the monsoon, fair weather and extreme weather events during the above period. Frequency-energy spectra during extreme events are single peaked...

  4. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  5. Changes in salivary chromogranin A levels in adults with atopic dermatitis are correlated with changes in their condition.

    Science.gov (United States)

    Cai, Liang; Kaneko, Sakae; Morita, Eishin

    2018-05-01

    Stress-induced scratching is an issue in patients with adult atopic dermatitis (AD). Symptoms of stress-induced AD are common in clinical practise. Salivary chromogranin A (CgA) level has research value as a possible index related to a patient's psychological stress. Using saliva, which is easily collectable, we compared two assessments of the severities of AD and stress with the levels of stress proteins in the saliva of 30 patients with AD in the Department of Dermatology of Shimane University between April 2015 and May 2017. The severities of AD and stress were assessed using the Scoring Atopic Dermatitis (SCORAD) score and State-Trait Anxiety Inventory score, respectively. Additionally, the assessments included those of personality using the Tokyo University Egogram (TEG)-II score and quality of life using the Dermatology Life Quality Index score. Simultaneously, we measured their salivary CgA levels. The change in salivary CgA per protein in patients with AD was correlated with their changes in SCORAD score (correlation coefficient, r = 0.596, P = 0.001) and objective SCORAD (r = 0.608, P < 0.001). The changes in CgA per protein correlated with those in TEG-II A (r = 0.370, P = 0.022), while the changes in SCORAD score correlated with those in DLQI (r = 0.309, P = 0.048). Our results suggest that changes in a patient's condition are reflective of the changes in the patient's stress. The changes in salivary CgA level in patients with AD correlated with the changes in their condition. © 2018 Japanese Dermatological Association.

  6. Congenital gangrene of the extremities in a newborn

    African Journals Online (AJOL)

    2011-02-01

    Feb 1, 2011 ... challenges of managing such condition in resource-poor setting. Key words: Extremities ... in the hospital, where pregnancy was supervised, by emergency caesarian ... umbilical catheterization or administration of parenteral drugs. .... severe transient deficiency of antithrombin III, protein. C, and protein ...

  7. Establishing the Turkish version of the SIGAM mobility scale, and determining its validity and reliability in lower extremity amputees.

    Science.gov (United States)

    Yilmaz, Hülya; Gafuroğlu, Ümit; Ryall, Nicola; Yüksel, Selcen

    2018-02-01

    The aim of this study is to adapt the Special Interest Group in Amputee Medicine (SIGAM) mobility scale to Turkish, and to test its validity and reliability in lower extremity amputees. Adaptation of the scale into Turkish was performed by following the steps in American Association of Orthopedic Surgeons (AAOS) guideline. Turkish version of the scale was tested twice on 109 patients who had lower extremity amputations, at hours 0 and 72. The reliability of the Turkish version was tested for internal consistency and test-retest reliability. Structural validity was tested using the "scale validity" method. For this purpose, the scores of the Short Form-36 (SF-36), Functional Ambulation Scale (FAS), Get Up and Go Test, and Satisfaction with the Prosthesis Questionnaire (SATPRO) were calculated, and analyzed using Spearman's correlation test. Cronbach's alpha coefficient was 0.67 for the Turkish version of the SIGAM mobility scale. Cohen's kappa coefficients were between 0.224 and 0.999. Repeatability according to the results of the SIGAM mobility scale (grades A-F) was 0.822. We found significant and strong positive correlations of the SIGAM mobility scale results with the FAS, Get Up and Go Test, SATPRO, and all of the SF-36 subscales. In our study, the Turkish version of the SIGAM mobility scale was found as a reliable, valid, and easy to use scale in everyday practice for measuring mobility in lower extremity amputees. Implications for Rehabilitation Amputation is the surgical removal of a severely injured and nonfunctional extremity, at a level of one or more bones proximal to the body. Loss of a lower extremity is one of the most important conditions that cause functional disability. The Special Interest Group in Amputee Medicine (SIGAM) mobility scale contains 21 questions that evaluate the mobility of lower extremity amputees. Lack of a specific Turkish scale that evaluates rehabilitation results and mobility of lower extremity amputees, and determines their

  8. Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean

    Science.gov (United States)

    Dayan, U.; Nissen, K.; Ulbrich, U.

    2015-11-01

    This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes that produce heavy rain storms. It distinguishes the western and eastern Mediterranean in order to point out specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger-scale circulations. The synoptic systems (tropical and extratropical) that account for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper synoptic-scale-level troughs, and mesoscale convective systems. Under tropical air-mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.

  9. PROFESSIONAL MOBILITY AND COMPETENCE CORRELATION OF RURAL SCHOOLS TEACHERS IN THE CONDITIONS OF EDUCATION MODERNIZATION

    Directory of Open Access Journals (Sweden)

    Olga Vladimirovna Gavrilova

    2017-11-01

    Full Text Available Purpose. The article deals with the problem of teacher's professional activity in conditions of education modernization. The subject of analysis is professional mobility and competence correlation of rural schools teachers and the conditions of its formation. The authors’ aim to reveal the concepts of teacher’s "professional mobility", "professional competence" in rural schools and to determine its nature and structure in the changing paradigm of education. Results. The results of this work are that the authors give the definition of teacher’s "professional competence" and "professional mobility" in rural schools; concern teacher’s professional competence as a part of professional mobility in rural schools and suggest the conditions of studying to improve teacher’s professional competence and mobility. Practical implications. The results of the study can be applied in the field of teachers retraining and advanced training in primary and secondary school.

  10. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  11. Three-body correlations and conditional forces in suspensions of active hard disks

    Science.gov (United States)

    Härtel, Andreas; Richard, David; Speck, Thomas

    2018-01-01

    Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.

  12. The Future of Coral Reefs Subject to Rapid Climate Change: Lessons from Natural Extreme Environments

    Directory of Open Access Journals (Sweden)

    Emma F. Camp

    2018-02-01

    Full Text Available Global climate change and localized anthropogenic stressors are driving rapid declines in coral reef health. In vitro experiments have been fundamental in providing insight into how reef organisms will potentially respond to future climates. However, such experiments are inevitably limited in their ability to reproduce the complex interactions that govern reef systems. Studies examining coral communities that already persist under naturally-occurring extreme and marginal physicochemical conditions have therefore become increasingly popular to advance ecosystem scale predictions of future reef form and function, although no single site provides a perfect analog to future reefs. Here we review the current state of knowledge that exists on the distribution of corals in marginal and extreme environments, and geographic sites at the latitudinal extremes of reef growth, as well as a variety of shallow reef systems and reef-neighboring environments (including upwelling and CO2 vent sites. We also conduct a synthesis of the abiotic data that have been collected at these systems, to provide the first collective assessment on the range of extreme conditions under which corals currently persist. We use the review and data synthesis to increase our understanding of the biological and ecological mechanisms that facilitate survival and success under sub-optimal physicochemical conditions. This comprehensive assessment can begin to: (i highlight the extent of extreme abiotic scenarios under which corals can persist, (ii explore whether there are commonalities in coral taxa able to persist in such extremes, (iii provide evidence for key mechanisms required to support survival and/or persistence under sub-optimal environmental conditions, and (iv evaluate the potential of current sub-optimal coral environments to act as potential refugia under changing environmental conditions. Such a collective approach is critical to better understand the future survival of

  13. Complex layered dental restorations: Are they recognizable and do they survive extreme conditions?

    Science.gov (United States)

    Soon, Alistair S; Bush, Mary A; Bush, Peter J

    2015-09-01

    Recent research has shown that restorative dental materials can be recognized by microscopy and elemental analysis (scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence; SEM/EDS and XRF) and that this is possible even in extreme conditions, such as cremation. These analytical methods and databases of dental materials properties have proven useful in DVI (disaster victim identification) of a commercial plane crash in 2009, and in a number of other victim identification cases. Dental materials appear on the market with ever expanding frequency. With their advent, newer methods of restoration have been proposed and adopted in the dental office. Methods might include placing multiple layers of dental materials, where they have different properties including adhesion, viscosity, or working time. These different dental materials include filled adhesives, flowable resins, glass ionomer cements, composite resins, liners and sealants. With possible combinations of different materials in these restorations, the forensic odontologist is now confronted with a new difficulty; how to recognize each individual material. The question might be posed if it is even possible to perform this task. Furthermore, an odontologist might be called upon to identify a victim under difficult circumstances, such as when presented with fragmented or incinerated remains. In these circumstances the ability to identify specific dental materials could assist in the identification of the deceased. Key to use of this information is whether these new materials and methods are detailed in the dental chart. Visual or radiographic inspection may not reveal the presence of a restoration, let alone the possible complex nature of that restoration. This study demonstrates another scientific method in forensic dental identification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Extreme returns and the contagion effect between the foreign exchange and the stock market: Evidence from Cyprus

    NARCIS (Netherlands)

    Bekiros, S.D.; Georgoutsos, D.A.

    2008-01-01

    In this article we apply the Extreme Value Theory (EVT) in order to estimate the Value-at-Risk (VaR) and the correlation of extreme returns for two inherently unstable markets; the foreign exchange and the stock market. We also derive the corresponding VaR estimates from more 'traditional' methods

  15. Extremely Preterm Birth

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Extremely Preterm Birth Home For Patients Search FAQs Extremely Preterm Birth ... Spanish FAQ173, June 2016 PDF Format Extremely Preterm Birth Pregnancy When is a baby considered “preterm” or “ ...

  16. The dichotomous response of flood and storm extremes to rising global temperatures

    Science.gov (United States)

    Sharma, A.; Wasko, C.

    2017-12-01

    Rising temperature have resulted in increases in short-duration rainfall extremes across the world. Additionally it has been shown (doi:10.1038/ngeo2456) that storms will intensify, causing derived flood peaks to rise even more. This leads us to speculate that flood peaks will increase as a result, complying with the storyline presented in past IPCC reports. This talk, however, shows that changes in flood extremes are much more complex. Using global data on extreme flow events, the study conclusively shows that while the very extreme floods may be rising as a result of storm intensification, the more frequent flood events are decreasing in magnitude. The study argues that changes in the magnitude of floods are a function of changes in storm patterns and as well as pre-storm or antecedent conditions. It goes on to show that while changes in storms dominate for the most extreme events and over smaller, more urbanised catchments, changes in pre-storm conditions are the driving factor in modulating flood peaks in large rural catchments. The study concludes by providing recommendations on how future flood design should proceed, arguing that current practices (or using a design storm to estimate floods) are flawed and need changing.

  17. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: an explanation of how mesophilic organisms can rapidly colonise extremely toxic environments.

    Science.gov (United States)

    García-Balboa, C; Baselga-Cervera, B; García-Sanchez, A; Igual, J M; Lopez-Rodas, V; Costas, E

    2013-11-15

    Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These "lucky mutants" could allow for the evolutionary rescue of populations faced with rapid environmental change. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Overview of the biology of extreme events

    Science.gov (United States)

    Gutschick, V. P.; Bassirirad, H.

    2008-12-01

    . Effects on water and N cycles are already marked. Adaptive responses of plants are very irregularly distributed among species and genotypes, most adaptive responses having been lost over 20 My of minimal or virtually accidental genetic selection for correlated traits. Offsets of plant activity from those of pollinators and pests may amplify direct physiological effects on plants. Another extreme of interest is the insect-mediated mass dieoff of conifers across western North America tied to a rare combination of drought and year-long high temperatures.

  19. Compound extremes of summer temperature and precipitation leading to intensified departures from natural variability.

    Science.gov (United States)

    Mahony, C. R.; Cannon, A. J.

    2017-12-01

    Climate change can drive local climates outside the range of their historical year-to-year variability, straining the adaptive capacity of ecological and human communities. We demonstrate that interactions between climate variables can produce larger and earlier departures from natural variability than is detectable in individual variables. For example, summer temperature (Tx) and precipitation (Pr) are negatively correlated in most terrestrial regions, such that interannual variability lies along an axis from warm-and-dry to cool-and-wet conditions. A climate change trend perpendicular to this axis, towards warmer-wetter conditions, can depart more quickly from the range of natural variability than a warmer-drier trend. This multivariate "departure intensification" effect is evident in all six CMIP5 models that we examined: 23% (9-34%) of the land area of each model exhibits a pronounced increase in 2σ extremesin the Tx-Pr regime relative to Tx or Pr alone. Observational data suggest that Tx-Pr correlations are sufficient to produce departure intensification in distinct regions on all continents. Departures from the historical Tx-Pr regime may produce ecological disruptions, such as in plant-pathogen interactions and human diseases, that could offset the drought mitigation benefits of increased precipitation. Our study alerts researchers and adaptation practitioners to the presence of multivariate climate change signals and compound extremes that are not detectable in individual climate variables.

  20. Satellite-Enhanced Dynamical Downscaling of Extreme Events

    Science.gov (United States)

    Nunes, A.

    2015-12-01

    Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.

  1. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior

    Directory of Open Access Journals (Sweden)

    German S Fox-Rabinovich, Kenji Yamamoto, Ben D Beake, Iosif S Gershman, Anatoly I Kovalev, Stephen C Veldhuis, Myram H Aguirre, Goulnara Dosbaeva and Jose L Endrino

    2012-01-01

    Full Text Available Adaptive wear-resistant coatings produced by physical vapor deposition (PVD are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a nanoscale surface layers of protective tribofilms generated during friction and (b an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality

  2. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior.

    Science.gov (United States)

    Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L

    2012-08-01

    Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear

  3. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.

    Science.gov (United States)

    Wijngaard, René R; Lutz, Arthur F; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B; Immerzeel, Walter W

    2017-01-01

    Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.

  4. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.

    Directory of Open Access Journals (Sweden)

    René R Wijngaard

    Full Text Available Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.

  5. Extreme values of meteorological parameters observed at Kalpakkam during the period 1968-1999

    International Nuclear Information System (INIS)

    Balagurunathan, M.R.; Chandresekharan, E.; Rajan, M.P.; Gurg, R.P.

    2001-05-01

    In the design phase of engineering structures, an understanding of extreme weather conditions that may occur at the site of interest is very essential, so that the structures can be designed to withstand climatological stresses during its life time. In this report an analysis of extreme values of meteorological parameters at Kalpakkam for the period 1968-99, which provide an insight into such situations is described. The extreme value analysis reveals that all the variables obey Fisher-Tippet Type-I extreme value distribution function. Parameter values of extreme value analysis functions are presented for the variables studied and the 50- and 100- year return period extreme values are arrived at. Frequency distribution of rainfall parameters is investigated. Time series of annual rainfall data suggests a cycle of 2-3 years period. (author)

  6. Report 3: Guidance document on practices to model and implement Extreme Weather hazards in extended PSA

    International Nuclear Information System (INIS)

    Alzbutas, R.; Ostapchuk, S.; Borysiewicz, M.; Decker, K.; Kumar, Manorma; Haeggstroem, A.; Nitoi, M.; Groudev, P.; Parey, S.; Potempski, S.; Raimond, E.; Siklossy, T.

    2016-01-01

    The goal of this report is to provide guidance on practices to model Extreme Weather hazards and implement them in extended level 1 PSA. This report is a joint deliverable of work package 21 (WP21) and work package 22 (WP22). The general objective of WP21 is to provide guidance on all of the individual hazards selected at the End Users Workshop. This guidance is focusing on extreme weather hazards, namely: extreme wind, extreme temperature and snow pack. Other hazards, however, are considered in cases where they are correlated/ associated with the hazard under discussion. Guidance developed refers to existing guidance whenever possible. As it was recommended by end users this guidance covers questions of developing integrated and/or separated extreme weathers PSA models. (authors)

  7. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  8. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  9. Predictability of summer extreme precipitation days over eastern China

    Science.gov (United States)

    Li, Juan; Wang, Bin

    2017-08-01

    Extreme precipitation events have severe impacts on human activity and natural environment, but prediction of extreme precipitation events remains a considerable challenge. The present study aims to explore the sources of predictability and to estimate the predictability of the summer extreme precipitation days (EPDs) over eastern China. Based on the region- and season-dependent variability of EPDs, all stations over eastern China are divided into two domains: South China (SC) and northern China (NC). Two domain-averaged EPDs indices during their local high EPDs seasons (May-June for SC and July-August for NC) are therefore defined. The simultaneous lower boundary anomalies associated with each EPDs index are examined, and we find: (a) the increased EPDs over SC are related to a rapid decaying El Nino and controlled by Philippine Sea anticyclone anomalies in May-June; (b) the increased EPDs over NC are accompanied by a developing La Nina and anomalous zonal sea level pressure contrast between the western North Pacific subtropical high and East Asian low in July-August. Tracking back the origins of these boundary anomalies, one or two physically meaningful predictors are detected for each regional EPDs index. The causative relationships between the predictors and the corresponding EPDs over each region are discussed using lead-lag correlation analyses. Using these selected predictors, a set of Physics-based Empirical models is derived. The 13-year (2001-2013) independent forecast shows significant temporal correlation skills of 0.60 and 0.74 for the EPDs index of SC and NC, respectively, providing an estimation of the predictability for summer EPDs over eastern China.

  10. The push-off test: development of a simple, reliable test of upper extremity weight-bearing capability.

    Science.gov (United States)

    Vincent, Joshua I; MacDermid, Joy C; Michlovitz, Susan L; Rafuse, Richard; Wells-Rowsell, Christina; Wong, Owen; Bisbee, Leslie

    2014-01-01

    Longitudinal clinical measurement study. The push-off test (POT) is a novel and simple measure of upper extremity weight-bearing that can be measured with a grip dynamometer. There are no published studies on the validity and reliability of the POT. The relationship between upper extremity self-report activity/participation and impairment measures remain an unexplored realm. The primary purpose of this study is to estimate the intra and inter-rater reliability and construct validity of the POT. The secondary purpose is to estimate the relationship between upper extremity self-report activity/participation questionnaires and impairment measures. A convenience sample of 22 patients with wrist or elbow injuries were tested for POT, wrist/elbow range of motion (ROM), isometric wrist extension strength (WES) and grip strength; and completed two self-report activity/participation questionnaires: Disability of the Arm, Shoulder and the Hand (DASH) and Work Limitations Questionnaire (WLQ-26). POT's inter and intra-rater reliability and construct validity was tested. Pearson's correlations were run between the impairment measures and self-report questionnaires to look into the relationship amongst them. The POT demonstrated high inter-rater reliability (ICC affected = 0.97; 95% C.I. 0.93-0.99; ICC unaffected = 0.85; 95% C.I. 0.68-0.94) and intra-rater reliability (ICC affected = 0.96; 95% C.I. 0.92-0.97; ICC unaffected = 0.92; 95% C.I. 0.85-0.97). The POT was correlated moderately with the DASH (r = -0.47; p = 0.03). While examining the relationship between upper extremity self-reported activity/participation questionnaires and impairment measures the strongest correlation was between the DASH and the POT (r = -0.47; p = 0.03) and none of the correlations with the other physical impairment measures reached significance. At-work disability demonstrated insignificant correlations with physical impairments. The POT test provides a reliable and easily

  11. Identification of extreme motor phenotypes in Huntington's disease.

    Science.gov (United States)

    Braisch, Ulrike; Hay, Birgit; Muche, Rainer; Rothenbacher, Dietrich; Landwehrmeyer, G Bernhard; Long, Jeffrey D; Orth, Michael

    2017-04-01

    The manifestation of motor signs in Huntington's disease (HD) has a well-known inverse relationship with HTT CAG repeat length, but the prediction is far from perfect. The probability of finding disease modifiers is enhanced in individuals with extreme HD phenotypes. We aimed to identify extreme HD motor phenotypes conditional on CAG and age, such as patients with very early or very late onset of motor manifestation. Retrospective data were available from 1,218 healthy controls and 9,743 HD participants with CAG repeats ≥40, and a total of about 30,000 visits. Boundaries (2.5% and 97.5% quantiles) for extreme motor phenotypes (UHDRS total motor score (TMS) and motor age-at-onset) were estimated using quantile regression for longitudinal data. More than 15% of HD participants had an extreme TMS phenotype for at least one visit. In contrast, only about 4% of participants were consistent TMS extremes at two or more visits. Data from healthy controls revealed an upper cut-off of 13 for the TMS representing the extreme of motor ratings for a normal aging population. In HD, boundaries of motor age-at-onset based on diagnostic confidence or derived from the TMS data cut-off in controls were similar. In summary, a UHDRS TMS of more than 13 in an individual carrying the HD mutation indicates a high likelihood of motor manifestations of HD irrespective of CAG repeat length or age. The identification of motor phenotype extremes can be useful in the search for disease modifiers, for example, genetic or environmental such as medication. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Host morphophysiological conditions and environment abiotic factors correlate with bat flies (Streblidae prevalence and intensity in Artibeus Leach, 1821 (Phyllostomidae

    Directory of Open Access Journals (Sweden)

    Priscilla Maria Peixoto Patrício

    2016-04-01

    Full Text Available ABSTRACT: The aim of this study was to correlate Streblidae parasitism rates with temperature and humidity as well as sex, age and reproductive condition of Artibeus bats. Streblidae specimens were collected during two years in the Tinguá Biological Reserve and in two areas inside buffer zone, located in Nova Iguaçu, Rio de Janeiro State and preserved as wet specimens. The abundance of Streblidae species parasitizing Artibeus was analyzed, and no differences were found between them. However, the number of females parasitizing Artibeus fimbriatus was higher. Moreover, regarding sex, Artibeus females were more parasitized, particularly A. fimbriatus and A. lituratus. There was no correlation between mean intensity of infestation and body mass index of Artibeus species, even when correlated to abiotic data. This study contributes to better understand the parasitism on Artibeus by Streblidae, and based on results, it is clear that Streblidae show no preferences in terms of reproductive condition, body size, age, sex, temperature and humidity in parasitizing Artibeus species.

  13. Changing precipitation extremes and flood risk over the conterminous U.S.

    Science.gov (United States)

    Lettenmaier, D. P.

    2017-12-01

    On the basis of first principles, precipitation extremes should increase in a warming climate. Effectively, the atmospheric "heat engine" is expected to turn over more rapidly as the climate warms, due to increased water holding capacity of the atmosphere. Most climate models reflect this behavior, and project that precipitation extremes should increase, at roughly the Clausius-Clapyron rate. From a societal standpoint though, changing precipitation extremes in and of themselves aren't necessarily a concern - rather, the question of societal interest is "are and/or will flood extremes change". Flood extremes of course respond to precipitation extremes, but they are affected by a number of other factors, among them being the duration of precipitation relative to catchment size and channel features, storm orientation relative to catchment orientation, soil characteristics, and antecedent hydrologic conditions. Various studies have shown that over both the conterminous U.S. and globally, there have been slight increases in precipitation extremes (i.e., more than would be expected due to chance. On the other hand, evidence for increases in flooding are less pervasive. I review past work in this area, and suggest the nature of studies that might be conducted going forward to better understand the likely signature of changing precipitation extremes on flooding.

  14. Stochastic Optimal Dispatch of Virtual Power Plant considering Correlation of Distributed Generations

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2015-01-01

    Full Text Available Virtual power plant (VPP is an aggregation of multiple distributed generations, energy storage, and controllable loads. Affected by natural conditions, the uncontrollable distributed generations within VPP, such as wind and photovoltaic generations, are extremely random and relative. Considering the randomness and its correlation of uncontrollable distributed generations, this paper constructs the chance constraints stochastic optimal dispatch of VPP including stochastic variables and its random correlation. The probability distributions of independent wind and photovoltaic generations are described by empirical distribution functions, and their joint probability density model is established by Frank-copula function. And then, sample average approximation (SAA is applied to convert the chance constrained stochastic optimization model into a deterministic optimization model. Simulation cases are calculated based on the AIMMS. Simulation results of this paper mathematic model are compared with the results of deterministic optimization model without stochastic variables and stochastic optimization considering stochastic variables but not random correlation. Furthermore, this paper analyzes how SAA sampling frequency and the confidence level influence the results of stochastic optimization. The numerical example results show the effectiveness of the stochastic optimal dispatch of VPP considering the randomness and its correlations of distributed generations.

  15. The relationship between extreme weather events and crop losses in central Taiwan

    Science.gov (United States)

    Lai, Li-Wei

    2017-09-01

    The frequency of extreme weather events, which cause severe crop losses, is increasing. This study investigates the relationship between crop losses and extreme weather events in central Taiwan from 2003 to 2015 and determines the main factors influencing crop losses. Data regarding the crop loss area and meteorological information were obtained from government agencies. The crops were categorised into the following five groups: `grains', `vegetables', `fruits', `flowers' and `other crops'. The extreme weather events and their synoptic weather patterns were categorised into six and five groups, respectively. The data were analysed using the z score, correlation coefficient and stepwise regression model. The results show that typhoons had the highest frequency of all extreme weather events (58.3%). The largest crop loss area (4.09%) was caused by two typhoons and foehn wind in succession. Extreme wind speed coupled with heavy rainfall is an important factor affecting the losses in the grain and vegetable groups. Extreme wind speed is a common variable that affects the loss of `grains', `vegetables', `fruits' and `flowers'. Consecutive extreme weather events caused greater crop losses than individual events. Crops with long production times suffered greater losses than those with short production times. This suggests that crops with physical structures that can be easily damaged and long production times would benefit from protected cultivation to maintain food security.

  16. Disaster Risks Reduction for Extreme Natural Hazards

    Science.gov (United States)

    Plag, H.; Jules-Plag, S.

    2013-12-01

    Mega disasters associated with extreme natural hazards have the potential to escalate the global sustainability crisis and put us close to the boundaries of the safe operating space for humanity. Floods and droughts are major threats that potentially could reach planetary extent, particularly through secondary economic and social impacts. Earthquakes and tsunamis frequently cause disasters that eventually could exceed the immediate coping capacity of the global economy, particularly since we have built mega cities in hazardous areas that are now ready to be harvested by natural hazards. Unfortunately, the more we learn to cope with the relatively frequent hazards (50 to 100 years events), the less we are worried about the low-probability, high-impact events (a few hundred and more years events). As a consequence, threats from the 500 years flood, drought, volcano eruption are not appropriately accounted for in disaster risk reduction (DRR) discussions. Extreme geohazards have occurred regularly throughout the past, but mostly did not cause major disasters because exposure of human assets to hazards was much lower in the past. The most extreme events that occurred during the last 2,000 years would today cause unparalleled damage on a global scale and could worsen the sustainability crisis. Simulation of these extreme hazards under present conditions can help to assess the disaster risk. Recent extreme earthquakes have illustrated the destruction they can inflict, both directly and indirectly through tsunamis. Large volcano eruptions have the potential to impact climate, anthropogenic infrastructure and resource supplies on global scale. During the last 2,000 years several large volcano eruptions occurred, which under today's conditions are associated with extreme disaster risk. The comparison of earthquakes and volcano eruptions indicates that large volcano eruptions are the low-probability geohazards with potentially the highest impact on our civilization

  17. Functional studies in 79-year-olds. II. Upper extremity function.

    Science.gov (United States)

    Lundgren-Lindquist, B; Sperling, L

    1983-01-01

    As part of the Gerontological and Geriatric Population Study of 79-year-old people in Göteborg, a representative subsample comprising 112 women and 93 men took part in a study of upper extremity function. Thirty-eight per cent of the women and 37% of the men had disorders in the upper extremities. The investigation included tests of co-ordination, static strength in the key-grip and the transversal volar grip, power capacity in opening jars and a bottle, basal movements in the upper extremities in personal hygiene and dressing activities, function in the kitchen e.g. reaching shelves, manual tasks including tests of pronation and supination of the forearm. In the key-grip as well as in the transversal volar grip men showed a generally larger decrease in strength with age than women compared to 70-year-olds in a previous population study. Significant correlations were found between strength in the key-grip and the performance time in the test of co-ordination. Women produced about 66% of the muscular force of the men when opening jars. Significant correlations were found between strength in the transversal volar grip and the maximal torque for opening the jars. Female and male subjects who were not capable of handling the electric plug in the manual ability test had significantly weaker strength in the key-grip. The importance of designing products and adapting the environment so as to correspond to the functional capacity of the elderly, is emphasized.

  18. Performance testing of personnel extremity dosimeters by Korean LiF: Mg, Cu, Na, Si TLD(KLT-300)

    International Nuclear Information System (INIS)

    Kim, J.L.; Lee, J.I.; Chang, S.Y.; Choi, H.S.; Lee, D.H.; Han, S.J.

    2005-01-01

    Full text: As the needs and opportunities for utilization of atomic energy and radiation are increasing, the related industries, medicines, environments are developing and the relevant organizations and companies are also becoming diverse. In result, the types and kinds of the radiation related to occupational environments are becoming diversified. For the whole body dosimeters, the methodology and criteria for the performance evaluation and safety regulations and laws have been prepared in some detail, but for the extremity dosimeters, those are not prepared yet in Korea. The extremity dosimeters are required when the extremity part of our body, such as hand, elbow, and arm below the elbow, the foot, knee, and leg below the knee are exposed to the radiation in specific work environments. The dosimeter irradiation conditions are clearly discriminated between the whole body exposure condition and the extremity exposure condition. By the investigation and analysis of the management status and dose evaluation methods of the extremity dosimeters for the local absorbed dose, the personnel monitoring system of the extremity dosimeter services in Korea can be diagnosed, and the performance testing criteria and procedures can be established. Therefore, this study presents the performance testing results of extremity dosimeters on the finger and arm/leg phantoms by the procedures recommended in the ANSI (American National Standard) N13.32 using KLT-300 TL materials (LiF:Mg,Cu,Nas,Si) which were developed in Korea Atomic Energy Research Institute (KAERI). The results show that the performance index for the two types of phantoms are sufficiently satisfied with the prescribed tolerance level in the all of the test categories listed in the ANSI N13.32. These results and procedures used in this study can be applicable for regulatory body to establish the standard criteria for acceptable performance and testing conditions for personnel extremity dosimeters services in the

  19. Evaluation of BICRON NE MCP DXT-RAD passive extremity dosemeter

    CERN Document Server

    Yuen, P S; Frketich, G; Rotunda, J

    1999-01-01

    Passive extremity dosemeters currently used in dosimetry communities worldwide have shortcomings. In general, an extremity dosemeter has too thick a detector element, and the dosemeter response is highly energy dependent for beta rays with energies ranging from 200 keV to 2 MeV. It often does not have dosemeter identification, causing problems in the chain of custody. It is often read manually, rendering reading/packing operations very labour intensive. As a result of collaboration between AECL and BICRON NE, a new extremity dosemeter, incorporating a highly sensitive LiF:Mg,Cu,P TLD and tentatively code named MCP DXT-RAD, was developed. It has been evaluated for radiological performance against an ISO draft standard for extremity dosemeters in twelve categories: homogeneity, detection threshold, beta ray energy response, beta angular response, photon energy response, photon angular response, reproducibility, stability under various climatic conditions, linearity, residue, self irradiation, and effect of ligh...

  20. Associations between lower extremity muscle mass and metabolic parameters related to obesity in Japanese obese patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Hidetaka Hamasaki

    2015-05-01

    Full Text Available Background. Age-related loss of muscle mass (sarcopenia increases the incidence of obesity in the elderly by reducing physical activity. This sarcopenic obesity may become self-perpetuating, increasing the risks for metabolic syndrome, disability, and mortality. We investigated the associations of two sarcopenic indices, the ratio of lower extremity muscle mass to body weight (L/W ratio and the ratio of lower extremity muscle mass to upper extremity muscle mass (L/U ratio, with metabolic parameters related to obesity in patients with type 2 diabetes and obesity.Methods. Of 148 inpatients with type 2 diabetes treated between October 2013 and April 2014, we recruited 26 with obesity but no physical disability. Daily physical activity was measured by a triaxial accelerometer during a period of hospitalization, and which was also evaluated by our previously reported non-exercise activity thermogenesis questionnaire. We measured body composition by bioelectrical impedance and investigated the correlations of L/W and L/U ratios with body weight, body mass index (BMI, waist circumference (WC, waist-to-hip ratio (WHR, visceral fat area, subcutaneous fat area, serum lipid profile, and daily physical activity.Results. The L/W ratio was significantly and negatively correlated with BMI, WC, WHR, body fat mass, body fat percentage, subcutaneous fat area, and serum free fatty acid concentration, was positively correlated with daily physical activity: the locomotive non-exercise activity thermogenesis score, but was not correlated with visceral fat area. The L/U ratio was significantly and positively correlated with serum high-density lipoprotein cholesterol.Conclusions. High L/W and L/U ratios, indicative of relatively preserved lower extremity muscle mass, were predictive of improved metabolic parameters related to obesity. Preserved muscle fitness in obesity, especially of the lower extremities, may prevent sarcopenic obesity and lower associated risks for

  1. Psychological correlates of performance in female athletes during a 12-week off-season strength and conditioning program.

    Science.gov (United States)

    Jones, Margaret T; Matthews, Tracey D; Murray, Mimi; Van Raalte, Judy; Jensen, Barbara E

    2010-03-01

    Examination of the relationship between performance testing and psychological measures before and after a 12-week strength and conditioning program was the study's purpose. Female NCAA Division-III soccer (n = 28), field hockey (n = 28), and softball (n = 19) athletes completed pre- and post-testing held 12 weeks apart. On day 1, athletes completed informed consent, 3 psychological measures (Profile of Mood States [POMS], Physical Self Perception Profile [PSPP], and Athlete's Self Perception of Physical Abilities [ASPPA]), and 2 strength tests (1 repetition maximum [1RM] bench, 1RM back squat). Day 2 consisted of the 30-yd sprint, pro agility run (PRO), vertical jump (VJ), and standing long jump (SLJ). All sports improved (p psychological measures. Specifically, Physical Strength was correlated with 1RM upper-body (r = 0.49, p Sport Competence correlated with ASPPA ratings of power (r = 0.45, p benefits of strength and conditioning. Furthermore, these results demonstrate how physical changes are related to athletes' physical self-perceptions and self-assessment of ability within their teams.

  2. Are BALQSOs extreme accretors?

    Science.gov (United States)

    Yuan, M. J.; Wills, B. J.

    2002-12-01

    Broad Absorption Line (BAL) QSOs are QSOs with massive absorbing outflows up to 0.2c. Two hypothesis have been suggested in the past about the nature of BALQSOs: Every QSO might have BAL outflow with some covering factor. BALQSOs are those which happen to have outflow along our line of sight. BALQSOs have intrinsically different physical properties than non-BALQSOs. Based on BALQSO's optical emission properties and a large set of correlations linking many general QSO emission line and continuum properties, it has been suggested that BALQSOs might accrete at near Eddington limit with abundant of fuel supplies. With new BALQSO Hβ region spectroscopic observation conducted at UKIRT and re-analysis of literature data for low and high redshift non-BALQSOs, We confirm that BALQSOs have extreme Fe II and [O III] emission line properties. Using results derived from the latest QSO Hβ region reverberation mapping, we calculated Eddington ratios (˙ {M}/˙ {M}Edd) for our BAL and non-BALQSOs. The Fe II and [O III] strengths are strongly correlated with Eddington ratios. Those correlations link Eddington ratio to a large set of general QSO properties through the Boroson & Green Eigenvector 1. We find that BALQSOs have Eddington ratios close to 1. However, all high redshift, high luminosity QSOs have rather high Eddington ratios. We argue that this is a side effect from selecting the brightest objects. In fact, our high redshift sample might constitute BALQSO's high Eddington ratio orientation parent population.

  3. Data-based perfect-deficit approach to understanding climate extremes and forest carbon assimilation capacity

    International Nuclear Information System (INIS)

    Wei, Suhua; Yi, Chuixiang; Hendrey, George; Eaton, Timothy; Rustic, Gerald; Wang, Shaoqiang; Liu, Heping; Krakauer, Nir Y; Wang, Weiguo; Desai, Ankur R; Montagnani, Leonardo; Tha Paw U, Kyaw; Falk, Matthias; Black, Andrew; Bernhofer, Christian; Grünwald, Thomas; Laurila, Tuomas; Cescatti, Alessandro; Moors, Eddy

    2014-01-01

    Several lines of evidence suggest that the warming climate plays a vital role in driving certain types of extreme weather. The impact of warming and of extreme weather on forest carbon assimilation capacity is poorly known. Filling this knowledge gap is critical towards understanding the amount of carbon that forests can hold. Here, we used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on observational data measured by the eddy covariance method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon assimilation capacities of evergreen broadleaf forest (EBF) and deciduous broadleaf forest. The carbon assimilation capacities of Mediterranean forests were highly sensitive to climate extremes, while marine forest climates tended to be insensitive to climate extremes. Our estimates suggest an average global reduction of forest CPC due to unfavorable climate extremes of 6.3 Pg C (∼5.2% of global gross primary production) per growing season over 2001–2010, with EBFs contributing 52% of the total reduction

  4. Peculiarities of the momentum distribution functions of strongly correlated charged fermions

    Science.gov (United States)

    Larkin, A. S.; Filinov, V. S.; Fortov, V. E.

    2018-01-01

    New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.

  5. 360°-View of Quantum Theory and Ab Initio Simulation at Extreme Conditions: 2014 Sanibel Symposium

    International Nuclear Information System (INIS)

    Cheng, Hai-Ping

    2016-01-01

    The Sanibel Symposium 2014 was held February 16-21, 2014, at the King and Prince, St. Simons Island, GA. It was successful in bringing condensed-matter physicists and quantum chemists together productively to drive the emergence of those specialties. The Symposium had a significant role in preparing a whole generation of quantum theorists. The 54th Sanibel meeting looked to the future in two ways. We had 360°-View sessions to honor the exceptional contributions of Rodney Bartlett (70), Bill Butler (70), Yngve Öhrn (80), Fritz Schaefer (70), and Malcolm Stocks (70). The work of these five has greatly impacted several generations of quantum chemists and condensed matter physicists. The ''360°'' is the sum of their ages. More significantly, it symbolizes a panoramic view of critical developments and accomplishments in theoretical and computational chemistry and physics oriented toward the future. Thus, two of the eight 360°-View sessions focused specifically on younger scientists. The 360°-View program was the major component of the 2014 Sanibel meeting. Another four sessions included a sub-symposium on ab initio Simulations at Extreme Conditions, with focus on getting past the barriers of present-day Born-Oppenheimer molecular dynamics by advances in finite-temperature density functional theory, orbital-free DFT, and new all-numerical approaches.

  6. Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.

    Science.gov (United States)

    Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok

    2015-08-25

    The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.

  7. Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme Project

    Directory of Open Access Journals (Sweden)

    C. Jaedicke

    2008-08-01

    Full Text Available Various types of slope processes, mainly landslides and avalanches (snow, rock, clay and debris pose together with floods the main geohazards in Norway. Landslides and avalanches have caused more than 2000 casualties and considerable damage to infrastructure over the last 150 years. The interdisciplinary research project "GeoExtreme" focuses on investigating the coupling between meteorological factors and landslides and avalanches, extrapolating this into the near future with a changing climate and estimating the socioeconomic implications. The main objective of the project is to predict future geohazard changes in a changing climate. A database consisting of more than 20 000 recorded historical events have been coupled with a meteorological database to assess the predictability of landslides and avalanches caused by meteorological conditions. Present day climate and near future climate scenarios are modelled with a global climate model on a stretched grid, focusing on extreme weather events in Norway. The effects of climate change on landslides and avalanche activity are studied in four selected areas covering the most important climatic regions in Norway. The statistical analysis of historical landslide and avalanche events versus weather observations shows strong regional differences in the country. Avalanches show the best correlation with weather events while landslides and rockfalls are less correlated. The new climate modelling approach applying spectral nudging to achieve a regional downscaling for Norway proves to reproduce extreme events of precipitation much better than conventional modelling approaches. Detailed studies of slope stabilities in one of the selected study area show a high sensitivity of slope stability in a changed precipitation regime. The value of elements at risk was estimated in one study area using a GIS based approach that includes an estimation of the values within given present state hazard zones. The ongoing

  8. A hybrid measure-correlate-predict method for long-term wind condition assessment

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille; Hodge, Bri-Mathias

    2014-01-01

    Highlights: • A hybrid measure-correlate-predict (MCP) methodology with greater accuracy is developed. • Three sets of performance metrics are proposed to evaluate the hybrid MCP method. • Both wind speed and direction are considered in the hybrid MCP method. • The best combination of MCP algorithms is determined. • The developed hybrid MCP method is uniquely helpful for long-term wind resource assessment. - Abstract: This paper develops a hybrid measure-correlate-predict (MCP) strategy to assess long-term wind resource variations at a farm site. The hybrid MCP method uses recorded data from multiple reference stations to estimate long-term wind conditions at a target wind plant site with greater accuracy than is possible with data from a single reference station. The weight of each reference station in the hybrid strategy is determined by the (i) distance and (ii) elevation differences between the target farm site and each reference station. In this case, the wind data is divided into sectors according to the wind direction, and the MCP strategy is implemented for each wind direction sector separately. The applicability of the proposed hybrid strategy is investigated using five MCP methods: (i) the linear regression; (ii) the variance ratio; (iii) the Weibull scale; (iv) the artificial neural networks; and (v) the support vector regression. To implement the hybrid MCP methodology, we use hourly averaged wind data recorded at five stations in the state of Minnesota between 07-01-1996 and 06-30-2004. Three sets of performance metrics are used to evaluate the hybrid MCP method. The first set of metrics analyze the statistical performance, including the mean wind speed, wind speed variance, root mean square error, and mean absolute error. The second set of metrics evaluate the distribution of long-term wind speed; to this end, the Weibull distribution and the Multivariate and Multimodal Wind Distribution models are adopted. The third set of metrics analyze

  9. Long-term monitoring reveals cold-water corals in extreme conditions off the southeast US coast

    Science.gov (United States)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Ross, S. W.; Lavaleye, M.; Van Weering, T.

    2011-12-01

    Cold-water corals are common on the SE slope of the US (SEUS) from Florida to Cape Hatteras between depths of 400-600 m. Near Cape Hatteras cold-water corals have formed mound structures that are up to 60 m high, which are mainly covered by living colonies of the coral species Lophelia pertusa. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. The coral areas lie in the vicinity of the Gulf Stream characterized by strong currents transporting relatively warm water northwards along the SEUS slope. Thus far little is known about the environmental conditions inside the SEUS coral communities and particularly the effects of the nearby Gulf Stream. In December 2009 two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Landers recorded temperature, fluorescence, turbidity, and current speed and direction. Furthermore, a sediment trap was mounted on the landers that collected material at a 16-days interval. A first analysis of the lander data shows that instability of the Gulf Stream causes rapid rises in temperature, current speed and turbidity lasting for days to more than a week. Peak temperature and turbidity levels are the highest measured in coral habitats studied so far. We did not see clear cut effects of Gulf Stream instabilities on the near bed flux of phytodetritus as opposed to reports of meanders inducing upwelling and enhanced production in the photic zone. Data analyzed so far suggest that cwc habitats of Cape Lookout experience extreme and adverse conditions for prolonged periods. The findings of this study are compared with methodologically similar studies that have been conducted in

  10. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  11. On the Fermat-Lagrange principle for mixed smooth convex extremal problems

    International Nuclear Information System (INIS)

    Brinkhuis, Ya

    2001-01-01

    A simple geometric condition that can be attached to an extremal problem of a fairly general form included in a family of problems is indicated. This is used to demonstrate that the task of formulating a uniform condition for smooth convex problems can be satisfactorily accomplished. On the other hand, the necessity of this new condition of optimality is proved under certain technical assumptions

  12. Treatment for superficial infusion thrombophlebitis of the upper extremity

    NARCIS (Netherlands)

    Di Nisio, Marcello; Peinemann, Frank; Porreca, Ettore; Rutjes, Anne W. S.

    2015-01-01

    Although superficial thrombophlebitis of the upper extremity represents a frequent complication of intravenous catheters inserted into the peripheral veins of the forearm or hand, no consensus exists on the optimal management of this condition in clinical practice. To summarise the evidence from

  13. Extreme cosmos

    CERN Document Server

    Gaensler, Bryan

    2011-01-01

    The universe is all about extremes. Space has a temperature 270°C below freezing. Stars die in catastrophic supernova explosions a billion times brighter than the Sun. A black hole can generate 10 million trillion volts of electricity. And hypergiants are stars 2 billion kilometres across, larger than the orbit of Jupiter. Extreme Cosmos provides a stunning new view of the way the Universe works, seen through the lens of extremes: the fastest, hottest, heaviest, brightest, oldest, densest and even the loudest. This is an astronomy book that not only offers amazing facts and figures but also re

  14. How extreme is enough to cause a threshold response of ecosystem

    Science.gov (United States)

    Niu, S.; Zhang, F.; Yang, Q.; Song, B.; Sun, J.

    2017-12-01

    Precipitation is a primary determinant of terrestrial ecosystem productivity over much of the globe. Recent studies have shown asymmetric or threshold responses of ecosystem productivity to precipitation gradient. However, it's not clear how extreme is enough to cause a threshold response of ecosystem. We conducted a global meta-analysis of precipitation experiments, a site level precipitation gradient experiment, and a remote sensing data mining on the relationship between precipitation extreme vs NDVI extreme. The meta-analysis shows that ANPP, BNPP, NEE, and other carbon cycle variables, showed similar response magnitudes to either precipitation increase or decrease when precipitation levels were normalized to the medium value of treatments (40%) across all the studies. Overall, the response ratios of these variables were linearly correlated with changes in precipitation amounts and soil water content. In the field gradient study with treatments of 1/12, 1/8. 1/4, 1/2, control, and 5/4 of ambient precipitation, the threshold of NPP, SR, NEE occurred when precipitation was reduced to the level of 1/8-1/12 of ambient precipitation. This means that only extreme drought can induce a threshold response of ecosystem. The regional remote sensing data showed that climate extremes with yearly low precipitation from 1982 to 2013 rarely cause extreme responses of vegetation, further suggesting that it is very difficult to detect threshold responses to natural climatic fluctuation. Our three studies together indicate that asymmetrical responses of vegetation to precipitation are likely detected, but only in very extreme precipitation events.

  15. The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A 'Life at the Frontiers of Energy Research' contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    International Nuclear Information System (INIS)

    Mao, Ho-kwang

    2011-01-01

    'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO 2 , water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO 2 (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

  16. Thermal properties of bentonite under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasicek, R. [Czech Technical Univ., Centre of Experimental Geotechnics, Faculty of Civil Engineering, Prague (Czech Republic)

    2005-07-01

    Centre of Experimental Geotechnics (CEG) deals with the research of the behaviour of bentonite and clays. The measurement of thermal properties is not so frequent test in geotechnical laboratory but in relation to deep repository it is a part which should not be overlooked. The reason is the heat generated by canister with spent nuclear fuel and possible influence of the heat on the materials of the engineered barrier. In the initial stages following the burial of canister with the waste the barrier materials will be exposed to elevated temperature. According to existing information, these temperatures should not exceed 90 C. That heat can induce a creation of cracks and opening of joint between highly compacted blocks. It will predispose the bentonite barrier to penetration of water from surrounding towards to canister. Therefore easy removal of heat through the barrier is required. It is essential that the tests aimed at determining the real values of measured parameters are carried out in conditions identical with those anticipated in a future disposal system. These relatively complicated thermophysical tests are logical continuation of the simple ones, carried out under laboratory temperature and on not fully saturated samples without possibility to measure the swelling pressure. Thermophysical properties and swelling pressure are dominantly influenced by water content (which is influenced by temperature). Therefore is important to realize the tests under different moisture and thermal conditions. These tests are running at the APT-PO1 Analyser, designed to fulfill mentioned requirements - it allows measurement of thermal properties under temperature up to 200 C and swelling pressure up to 20 MPa. The device is capable to register the evolution of temperature, swelling and vapor pressure. The measurement of thermal conductivity and volume heat capacity is realized by the dynamic impulse method with point source of heat. Four types of tests are possible: at

  17. Communication: A novel method for generating molecular mixtures at extreme conditions: The case of hydrogen and oxygen

    International Nuclear Information System (INIS)

    Pravica, Michael; Sneed, Daniel; White, Melanie; Wang, Yonggang

    2014-01-01

    We have successfully created a segregated mixture of hydrogen and oxygen at high pressure in a diamond anvil cell using hard x-ray photochemistry. A keyhole (two holes connected by an opening) sample chamber was created in a metallic gasket to support two segregated powders of ammonia borane and potassium perchlorate, respectively, in each hole at a pressure of ∼5.0 GPa. Both holes were separately irradiated with synchrotron hard x-rays to release molecular oxygen and molecular hydrogen, respectively. Upon irradiation of the first KClO 4 -containing hole, solid reddish-orange O 2 appeared in the region of irradiation and molecular oxygen was found to diffuse throughout the entire sample region. The second ammonia borane-containing hole was then irradiated and H 2 was observed to form via Raman spectroscopy. Water also was observed in the ammonia borane-containing hole and possibly (in the form of ice VII) in the second hole. This unique experiment demonstrates the ability to easily create solid mixtures of simple molecular systems via x-ray irradiation and then react them via further irradiation which will aid the study of chemistry under extreme conditions

  18. Combined dendro-documentary evidence of Central European hydroclimatic springtime extremes over the last millennium

    Science.gov (United States)

    Büntgen, Ulf; Brázdil, Rudolf; Heussner, Karl-Uwe; Hofmann, Jutta; Kontic, Raymond; Kyncl, Tomáš; Pfister, Christian; Chromá, Kateřina; Tegel, Willy

    2011-12-01

    A predicted rise in anthropogenic greenhouse gas emissions and associated effects on the Earth's climate system likely imply more frequent and severe weather extremes with alternations in hydroclimatic parameters expected to be most critical for ecosystem functioning, agricultural yield, and human health. Evaluating the return period and amplitude of modern climatic extremes in light of pre-industrial natural changes is, however, limited by generally too short instrumental meteorological observations. Here we introduce and analyze 11,873 annually resolved and absolutely dated ring width measurement series from living and historical fir ( Abies alba Mill.) trees sampled across France, Switzerland, Germany, and the Czech Republic, which continuously span the AD 962-2007 period. Even though a dominant climatic driver of European fir growth was not found, ring width extremes were evidently triggered by anomalous variations in Central European April-June precipitation. Wet conditions were associated with dynamic low-pressure cells, whereas continental-scale droughts coincided with persistent high-pressure between 35 and 55°N. Documentary evidence independently confirms many of the dendro signals over the past millennium, and further provides insight on causes and consequences of ambient weather conditions related to the reconstructed extremes. A fairly uniform distribution of hydroclimatic extremes throughout the Medieval Climate Anomaly, Little Ice Age and Recent Global Warming may question the common believe that frequency and severity of such events closely relates to climate mean stages. This joint dendro-documentary approach not only allows extreme climate conditions of the industrial era to be placed against the backdrop of natural variations, but also probably helps to constrain climate model simulations over exceptional long timescales.

  19. Impacts of Extreme Events on Human Health. Chapter 4

    Science.gov (United States)

    Bell, Jesse E.; Herring, Stephanie C.; Jantarasami, Lesley; Adrianopoli, Carl; Benedict, Kaitlin; Conlon, Kathryn; Escobar, Vanessa; Hess, Jeremy; Luvall, Jeffrey; Garcia-Pando, Carlos Perez; hide

    2016-01-01

    Increased Exposure to Extreme Events Key Finding 1: Health impacts associated with climate-related changes in exposure to extreme events include death, injury, or illness; exacerbation of underlying medical conditions; and adverse effects on mental health[High Confidence]. Climate change will increase exposure risk in some regions of the United States due to projected increases in the frequency and/or intensity of drought, wildfires, and flooding related to extreme precipitation and hurricanes [Medium Confidence].Disruption of Essential Infrastructure Key Finding 2: Many types of extreme events related to climate change cause disruption of infrastructure, including power, water, transportation, and communication systems, that are essential to maintaining access to health care and emergency response services and safeguarding human health [High Confidence].Vulnerability to Coastal Flooding Key Finding 3: Coastal populations with greater vulnerability to health impacts from coastal flooding include persons with disabilities or other access and functional needs, certain populations of color, older adults, pregnant women and children, low-income populations, and some occupational groups [High Confidence].Climate change will increase exposure risk to coastal flooding due to increases in extreme precipitation and in hurricane intensity and rainfall rates, as well as sea level rise and the resulting increases in storm surge.

  20. TRISO-Coated Fuel Durability Under Extreme Conditions

    International Nuclear Information System (INIS)

    2014-01-01

    The PIs propose to examine TRISO-coated particles (SiC and ZrC coatings) in an integrated two-part study. In the first part, experiments will be performed to assess the reaction kinetics of the carbides under CO-CO2 environments at temperatures up to 1800 degree C. Kinetic model will be applied to describe the degradation. Scanning and transmission electron microscopy will be employed to establish the chemical and microstructure evolution under the imposed environmental conditions. The second part of the proposed work focuses on establishing the role of the high temperature, environmental exposure described above on the mechanical behavior of TRISO-coated particles. Electron microscopy and other advanced techniques will be subsequently performed to evaluate failure mechanisms. The work is expected to reveal relationships between corrosion reactions, starting material characteristics (polytype of SiC, impurity concentration, flaw distribution), flaw healing behavior, and crack growth.

  1. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes

    Science.gov (United States)

    Yongguang Zhang; M. Susan Moran; Mark A. Nearing; Guillermo E. Ponce Campos; Alfredo R. Huete; Anthony R. Buda; David D. Bosch; Stacey A. Gunter; Stanley G. Kitchen; W. Henry McNab; Jack A. Morgan; Mitchel P. McClaran; Diane S. Montoya; Debra P.C. Peters; Patrick J. Starks

    2013-01-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary...

  2. Reliability and validity of the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower limb musculoskeletal disorders.

    Science.gov (United States)

    Negahban, Hossein; Hessam, Masumeh; Tabatabaei, Saeid; Salehi, Reza; Sohani, Soheil Mansour; Mehravar, Mohammad

    2014-01-01

    The aim was to culturally translate and validate the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower extremity musculoskeletal disorders (n = 304). This is a prospective methodological study. After a standard forward-backward translation, psychometric properties were assessed in terms of test-retest reliability, internal consistency, construct validity, dimensionality, and ceiling or floor effects. The acceptable level of intraclass correlation coefficient >0.70 and Cronbach's alpha coefficient >0.70 was obtained for the Persian LEFS. Correlations between Persian LEFS and Short-Form 36 Health Survey (SF-36) subscales of Physical Health component (rs range = 0.38-0.78) were higher than correlations between Persian LEFS and SF-36 subscales of Mental Health component (rs range = 0.15-0.39). A corrected item--total correlation of >0.40 (Spearman's rho) was obtained for all items of the Persian LEFS. Horn's parallel analysis detected a total of two factors. No ceiling or floor effects were detected for the Persian LEFS. The Persian version of the LEFS is a reliable and valid instrument that can be used to measure functional status in Persian-speaking patients with different musculoskeletal disorders of the lower extremity. Implications for Rehabilitation The Persian lower extremity functional scale (LEFS) is a reliable, internally consistent and valid instrument, with no ceiling or floor effects, to determine functional status of heterogeneous patients with musculoskeletal disorders of the lower extremity. The Persian version of the LEFS can be used in clinical and research settings to measure function in Iranian patients with different musculoskeletal disorders of the lower extremity.

  3. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    Science.gov (United States)

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (psimple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (plinear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  4. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant ''Hanhikivi-1'' on the local thermal regime

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Isaev, Alexey V. [Russian Academy of Sciences, St. Petersburg (Russian Federation). P.P. Shirshov Inst. of Oceanology; Eremina, Tatjana R. [Russian State Hydrometeorological Univ., St. Petersburg (Russian Federation); Sein, Dmitry V. [Helmholtz Centre for Polar and Marine Research, Bremerhaven (Germany). Alfred Wegener Inst.

    2017-07-01

    The results of the study aimed to assess the influence of future nuclear power plant ''Hanhikivi-1'' upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.

  5. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.

    Science.gov (United States)

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-12-21

    Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.

  6. Model methodology for estimating pesticide concentration extremes based on sparse monitoring data

    Science.gov (United States)

    Vecchia, Aldo V.

    2018-03-22

    This report describes a new methodology for using sparse (weekly or less frequent observations) and potentially highly censored pesticide monitoring data to simulate daily pesticide concentrations and associated quantities used for acute and chronic exposure assessments, such as the annual maximum daily concentration. The new methodology is based on a statistical model that expresses log-transformed daily pesticide concentration in terms of a seasonal wave, flow-related variability, long-term trend, and serially correlated errors. Methods are described for estimating the model parameters, generating conditional simulations of daily pesticide concentration given sparse (weekly or less frequent) and potentially highly censored observations, and estimating concentration extremes based on the conditional simulations. The model can be applied to datasets with as few as 3 years of record, as few as 30 total observations, and as few as 10 uncensored observations. The model was applied to atrazine, carbaryl, chlorpyrifos, and fipronil data for U.S. Geological Survey pesticide sampling sites with sufficient data for applying the model. A total of 112 sites were analyzed for atrazine, 38 for carbaryl, 34 for chlorpyrifos, and 33 for fipronil. The results are summarized in this report; and, R functions, described in this report and provided in an accompanying model archive, can be used to fit the model parameters and generate conditional simulations of daily concentrations for use in investigations involving pesticide exposure risk and uncertainty.

  7. Prediction of extreme floods in the Central Andes by means of Complex Networks

    Science.gov (United States)

    Boers, Niklas; Bookhagen, Bodo; Barbosa, Henrique; Marwan, Norbert; Kurths, Jürgen; Marengo, Jose

    2014-05-01

    Based on a non-linear synchronisation measure and complex network theory, we present a novel framework for the prediction of extreme events of spatially embedded, interrelated time series. This method is general in the sense that it can be applied to any type of spatially sampled time series with significant interrelations, ranging from climate observables to biological or stock market data. In this presentation, we apply our method to extreme rainfall in South America and show how this leads to the prediction of more than 60% (90% during El Niño conditions) of extreme rainfall events in the eastern Central Andes of Bolivia and northern Argentina, with only 1% false alarms. From paleoclimatic to decadal time scales, the Central Andes continue to be subject to pronounced changes in climatic conditions. In particular, our and past work shows that frequency as well as magnitudes of extreme rainfall events have increased significantly during past decades, calling for a better understanding of the involved climatic mechanisms. Due to their large spatial extend and occurrence at high elevations, these extreme events often lead to severe floods and landslides with disastrous socioeconomic impacts. They regularly affect tens of thousands of people and produce estimated costs of the order of several hundred million USD. Alongside with the societal value of predicting natural hazards, our study provides insights into the responsible climatic features and suggests interactions between Rossby waves in polar regions and large scale (sub-)tropical moisture transport as a driver of subseasonal variability of the South American monsoon system. Predictable extreme events result from the propagation of extreme rainfall from the region of Buenos Aires towards the Central Andes given characteristic atmospheric conditions. Our results indicate that the role of frontal systems originating from Rossby waves in polar latitudes is much more dominant for controlling extreme rainfall in

  8. Further outlooks: extremely uncomfortable; Die weiteren Aussichten: extrem ungemuetlich

    Energy Technology Data Exchange (ETDEWEB)

    Resenhoeft, T.

    2006-07-01

    Climate is changing extremely in the last decades. Scientists dealing with extreme weather, should not only stare at computer simulations. They have also to turn towards psyche, seriously personal experiences, knowing statistics, relativise supposed sensational reports and last not least collecting more data. (GL)

  9. Thermal Implications for Extreme Fast Charge

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  10. Identifying climate analogues for precipitation extremes for Denmark based on RCM simulations from the ENSEMBLES database.

    Science.gov (United States)

    Arnbjerg-Nielsen, K; Funder, S G; Madsen, H

    2015-01-01

    Climate analogues, also denoted Space-For-Time, may be used to identify regions where the present climatic conditions resemble conditions of a past or future state of another location or region based on robust climate variable statistics in combination with projections of how these statistics change over time. The study focuses on assessing climate analogues for Denmark based on current climate data set (E-OBS) observations as well as the ENSEMBLES database of future climates with the aim of projecting future precipitation extremes. The local present precipitation extremes are assessed by means of intensity-duration-frequency curves for urban drainage design for the relevant locations being France, the Netherlands, Belgium, Germany, the United Kingdom, and Denmark. Based on this approach projected increases of extreme precipitation by 2100 of 9 and 21% are expected for 2 and 10 year return periods, respectively. The results should be interpreted with caution as the best region to represent future conditions for Denmark is the coastal areas of Northern France, for which only little information is available with respect to present precipitation extremes.

  11. Statistical analysis of extreme values from insurance, finance, hydrology and other fields

    CERN Document Server

    Reiss, Rolf-Dieter

    1997-01-01

    The statistical analysis of extreme data is important for various disciplines, including hydrology, insurance, finance, engineering and environmental sciences. This book provides a self-contained introduction to the parametric modeling, exploratory analysis and statistical interference for extreme values. The entire text of this third edition has been thoroughly updated and rearranged to meet the new requirements. Additional sections and chapters, elaborated on more than 100 pages, are particularly concerned with topics like dependencies, the conditional analysis and the multivariate modeling of extreme data. Parts I–III about the basic extreme value methodology remain unchanged to some larger extent, yet notable are, e.g., the new sections about "An Overview of Reduced-Bias Estimation" (co-authored by M.I. Gomes), "The Spectral Decomposition Methodology", and "About Tail Independence" (co-authored by M. Frick), and the new chapter about "Extreme Value Statistics of Dependent Random Variables" (co-authored ...

  12. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  13. Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival.

    Science.gov (United States)

    Buch, Andressa Cristhy; Schmelz, Rüdiger M; Niva, Cintia Carla; Correia, Maria Elizabeth Fernandes; Silva-Filho, Emmanoel Vieira

    2017-05-01

    Soil provides many ecosystem services that are essential to maintain its quality and healthy development of the flora, fauna and human well-being. Environmental mercury levels may harm the survival and diversity of the soil fauna. In this respect, efforts have been made to establish limit values of mercury (Hg) in soils to terrestrial fauna. Soil organisms such as earthworms and enchytraeids have intimate contact with trace metals in soil by their oral and dermal routes, reflecting the potentially adverse effects of this contaminant. The main goal of this study was to obtain Hg critical concentrations under normal and extreme conditions of moisture in tropical soils to Enchytraeus crypticus to order to assess if climate change may potentiate their acute and chronic toxicity effects. Tropical soils were sampled from of two Forest Conservation Units of the Rio de Janeiro State - Brazil, which has been contaminated by Hg atmospheric depositions. Worms were exposed to three moisture conditions, at 20%, 50% and 80% of water holding capacity, respectively, and in combination with different Hg (HgCl 2 ) concentrations spiked in three types of tropical soil (two natural soils and one artificial soil). The tested concentrations ranged from 0 to 512mg Hg kg -1 dry weight. Results indicate that the Hg toxicity is higher under increased conditions of moisture, significantly affecting survival and reproduction rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Performance of Chlorella sorokiniana under simulated extreme winter conditions

    NARCIS (Netherlands)

    Cuaresma, M.; Buffing, M.F.; Janssen, M.G.J.; Lobato, C.V.; Wijffels, R.H.

    2012-01-01

    High annual microalgae productivities can only be achieved if solar light is efficiently used through the different seasons. During winter the productivity is low because of the light and temperature conditions. The productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed

  15. Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings

    International Nuclear Information System (INIS)

    Jandin, G.; Liao, H.; Feng, Z.Q.; Coddet, C.

    2003-01-01

    An experimental design matrix was set up in which carbon steel coatings were deposited with a twin wire arc spray gun (TAFA 9000 TM ), using either compressed air or nitrogen as spraying gas. The coating's mechanical properties were studied. Some correlations were made between these properties, spraying conditions and the microstructure of the deposits. Young's modulus was estimated by the single beam method using finite element modeling. Results show that direct relationships do exist between spray conditions, oxide content in the coating and microhardness. Young's modulus of the coatings depends on the lamella thickness and the oxide content. When increasing the compressed air flow rate, Young's modulus increases at first because smaller particles and finer lamellae were made and it decreases later because of a higher oxide content. The increase of nitrogen flow rate lowers the oxide content and increases Young's modulus

  16. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments

    Energy Technology Data Exchange (ETDEWEB)

    García-Balboa, C.; Baselga-Cervera, B. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); García-Sanchez, A.; Igual, J.M. [Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), PO Box 257, 37071 Salamanca (Spain); Lopez-Rodas, V. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); Costas, E., E-mail: ecostas@vet.ucm.es [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2013-11-15

    Highlights: •Some microalgae species survive to extreme environments in ponds of residual waters from uranium mining. •Adaptation of microalgae to U arose very fast. •Spontaneous mutations that confer large adaptive value were able to produce the adaptation to residual waters of U mining. •Adaptation to more extreme waters of U mining is only possible after the recombination subsequent to sexual mating. •Resistant microalgae bio-adsorbs uranium to the cell wall and internalises uranium inside the cytoplasm. -- Abstract: Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These “lucky mutants” could allow for the evolutionary rescue of populations faced with rapid environmental change.

  17. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments

    International Nuclear Information System (INIS)

    García-Balboa, C.; Baselga-Cervera, B.; García-Sanchez, A.; Igual, J.M.; Lopez-Rodas, V.; Costas, E.

    2013-01-01

    Highlights: •Some microalgae species survive to extreme environments in ponds of residual waters from uranium mining. •Adaptation of microalgae to U arose very fast. •Spontaneous mutations that confer large adaptive value were able to produce the adaptation to residual waters of U mining. •Adaptation to more extreme waters of U mining is only possible after the recombination subsequent to sexual mating. •Resistant microalgae bio-adsorbs uranium to the cell wall and internalises uranium inside the cytoplasm. -- Abstract: Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These “lucky mutants” could allow for the evolutionary rescue of populations faced with rapid environmental change

  18. Climatic extremes improve predictions of spatial patterns of tree species

    Science.gov (United States)

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  19. On the Ergodic Secret-Key Agreement over Spatially Correlated Multiple-Antenna Channels with Public Discussion

    KAUST Repository

    Zorgui, Marwen

    2015-09-28

    We consider secret-key agreement with public discussion over multiple-input multiple-output (MIMO) Rayleigh fast-fading channels under correlated environment. We assume that transmit, legitimate receiver and eavesdropper antennas are correlated. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. First, we derive the expression of the secret-key capacity under the considered setup. We prove that the optimal transmit strategy achieving the secret-key capacity consists in transmitting independent Gaussian signals along the eingenvectors of the transmit correlation matrix. The powers allocated to each channel mode are determined as the solution to a numerical optimization problem. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Moreover, we analyze the impact of correlation matrices on the system performance. Finally, we study the system’s performance in the two extreme power regimes. In the high-power regime, we provide closed-form expressions of the gain/loss due to correlation. In the low signal-to-noise ratio (SNR) regime, we investigate the energy efficiency of the system by determining the minimum energy required for sharing a secret-key bit and the wideband slope while highlighting the impact of correlation matrices.

  20. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    Science.gov (United States)

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  1. Extreme hydrothermal conditions at an active plate-bounding fault

    NARCIS (Netherlands)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G.R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre|info:eu-repo/dai/nl/370832132; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-01-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At

  2. Heavy Tail Behavior of Rainfall Extremes across Germany

    Science.gov (United States)

    Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.

    2017-12-01

    Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.

  3. Spatiotemporal extremes of temperature and precipitation during 1960-2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics

    Science.gov (United States)

    Cui, Lifang; Wang, Lunche; Qu, Sai; Singh, Ramesh P.; Lai, Zhongping; Yao, Rui

    2018-05-01

    Recently, extreme climate variation has been studied in different parts of the world, and the present study aims to study the impacts of climate extremes on vegetation. In this study, we analyzed the spatiotemporal variations of temperature and precipitation extremes during 1960-2015 in the Yangtze River Basin (YRB) using the Mann-Kendall (MK) test with Sen's slope estimator and kriging interpolation method based on daily precipitation (P), maximum temperature (T max), and minimum temperature (T min). We also analyzed the vegetation dynamics in the YRB during 1982-2015 using Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets and investigated the relationship between temperature and precipitation extremes and NDVI using Pearson correlation coefficients. The results showed a pronounced increase in the annual mean maximum temperature (T nav) and mean minimum temperature (T xav) at the rate of 0.23 °C/10 years and 0.15 °C/10 years, respectively, during 1960-2015. In addition, the occurrence of warm days and warm nights shows increasing trends at the rate of 1.36 days/10 years and 1.70 days/10 years, respectively, while cold days and cold nights decreased at the rate of 1.09 days/10 years and 2.69 days/10 years, respectively, during 1960-2015. The precipitation extremes, such as very wet days (R95, the 95th percentile of daily precipitation events), very wet day precipitation (R95p, the number of days with rainfall above R95), rainstorm (R50, the number of days with rainfall above 50 mm), and maximum 1-day precipitation (RX1day), all show pronounced increasing trends during 1960-2015. In general, annual mean NDVI over the whole YRB increased at the rate of 0.01/10 years during 1982-2015, with an increasing transition around 1994. Spatially, annual mean NDVI increased in the northern, eastern, and parts of southwestern YRB, while it decreased in the YRD and parts of southern YRB during 1982-2015. The correlation

  4. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  5. Extremal and Degree Conditions for Path Extendability in Digraphs

    NARCIS (Netherlands)

    Zhang, Zan-Bo; Zhang, Xiaoyan; Broersma, Hajo; Lou, Dingjun

    2017-01-01

    In the study of cycles and paths, the meta-conjecture of Bondy that sufficient conditions for Hamiltonicity often imply pancyclicity has motivated research on the existence of cycles and paths of many lengths. Hendry further introduced the stronger concepts of cycle extendability and path

  6. Iatrogenic Lower Extremity Subcutaneous Emphysema after Prolonged Robotic-Assisted Hysterectomy

    Directory of Open Access Journals (Sweden)

    Monica Hagan Vetter

    2015-01-01

    Full Text Available Subcutaneous emphysema is a known complication of carbon dioxide insufflation, an essential component of laparoscopy. The literature contains reports of hypercarbia, pneumothorax, or pneumomediastinum. However, isolated lower extremity subcutaneous emphysema remains a seldom-reported complication. We report a case of unilateral lower extremity subcutaneous emphysema following robotic-assisted hysterectomy, bilateral salpingooophorectomy, staging, and anterior/posterior colporrhaphy for carcinosarcoma and vaginal prolapse. On postoperative day 1, the patient developed tender crepitus and bruising of her right ankle. Radiography confirmed presence of subcutaneous air. Vital signs and laboratory findings were unremarkable. Her symptoms spontaneously improved over time, and she was discharged in good condition on day 2. In stable patients with postoperative extremity swelling or pain with crepitus on exam, the diagnosis of iatrogenic subcutaneous emphysema must be considered.

  7. (When and where) Do extreme climate events trigger extreme ecosystem responses? - Development and initial results of a holistic analysis framework

    Science.gov (United States)

    Hauber, Eva K.; Donner, Reik V.

    2015-04-01

    In the context of ongoing climate change, extremes are likely to increase in magnitude and frequency. One of the most important consequences of these changes is that the associated ecological risks and impacts are potentially rising as well. In order to better anticipate and understand these impacts, it therefore becomes more and more crucial to understand the general connection between climate extremes and the response and functionality of ecosystems. Among other region of the world, Europe presents an excellent test case for studies concerning the interaction between climate and biosphere, since it lies in the transition region between cold polar and warm tropical air masses and thus covers a great variety of different climatic zones and associated terrestrial ecosystems. The large temperature differences across the continent make this region particularly interesting for investigating the effects of climate change on biosphere-climate interactions. However, previously used methods for defining an extreme event typically disregard the necessity of taking seasonality as well as seasonal variance appropriately into account. Furthermore, most studies have focused on the impacts of individual extreme events instead of considering a whole inventory of extremes with their respective spatio-temporal extents. In order to overcome the aforementioned research gaps, this work introduces a new approach to studying climate-biosphere interactions associated with extreme events, which comprises three consecutive steps: (1) Since Europe exhibits climatic conditions characterized by marked seasonality, a novel method is developed to define extreme events taking into account the seasonality in all quantiles of the probability distribution of the respective variable of interest. This is achieved by considering kernel density estimates individually for each observation date during the year, including the properly weighted information from adjacent dates. By this procedure, we obtain

  8. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  9. Extremity dosimetry in nuclear medicine services using thermoluminescent detectors

    International Nuclear Information System (INIS)

    Mebhah, D.; Djeffal, S.; Badreddine, A.; Medjahed, M.

    1993-01-01

    The Radiation Protection and Safety Centre in Algiers provides two types of dosemeters, one for monitoring doses to the whole body and skin and the other one for monitoring doses to the extremities of the body. In nuclear medicine services and radiopharmaceutical laboratories, hands and arms are often closer to a given radiation source than the main part of the body and therefore receive greater doses. In this context, extremity doses have been measured by a ring dosemeter and by a fingertip ultra-thin dosemeter. The ring dosemeter consists of a metallic ring with a circular indentation to hold a LiF chip which is covered with a 10 mg.cm -2 shrinkable black polyamide layer. The ultra-thin dosemeter contains a 5 mg.cm -2 LiF element for measuring doses at a depth of 7 mg.cm -2 . These extremity dosemeters have been characterised before their use in the field. They have also been tested using radioisotopes of various energies. The doses received by the monitored workers were correlated with the amount of the handled activity. The doses obtained using the fingertip and the ring dosemeters are presented and discussed from a radiological point of view. (author)

  10. Hydrogen ion induced ultralow wear of PEEK under extreme load

    Science.gov (United States)

    Yan, Shuai; Wang, Anying; Fei, Jixiong; Wang, Zhenyang; Zhang, Xiaofeng; Lin, Bin

    2018-03-01

    As a high-performance engineering polymer, poly(ether ether ketone) (PEEK) is a perfect candidate material for applications under extreme working conditions. However, its high wear rate greatly shortens its service life. In this study, ultralow friction and wear between PEEK and silicon nitride (Si3N4) under extreme-load conditions (with a mean contact pressure above 100 MPa) are found in acid lubricating solutions. Both friction and wear decrease sharply with decreasing pH. At pH = 1, the friction coefficient decreases by an order of magnitude and the wear rate of the PEEK decreases by two orders of magnitude compared to the results with water lubrication. These reductions in friction and wear occur for different speed, load, and surface roughness conditions. The underlying mechanism can be attributed to the formation of hydrogen-ion-induced electrical double layers on the surfaces of PEEK and Si3N4. The combined effect of the resulting repulsive force, electro-viscosity, and low shear strength of the water layer dramatically reduces both friction and wear.

  11. Quantifying the consequences of changing hydroclimatic extremes on protection levels for the Rhine

    Science.gov (United States)

    Sperna Weiland, Frederiek; Hegnauer, Mark; Buiteveld, Hendrik; Lammersen, Rita; van den Boogaard, Henk; Beersma, Jules

    2017-04-01

    The Dutch method for quantifying the magnitude and frequency of occurrence of discharge extremes in the Rhine basin and the potential influence of climate change hereon are presented. In the Netherlands flood protection design requires estimates of discharge extremes for return periods of 1000 up to 100,000 years. Observed discharge records are too short to derive such extreme return discharges, therefore extreme value assessment is based on very long synthetic discharge time-series generated with the Generator of Rainfall And Discharge Extremes (GRADE). The GRADE instrument consists of (1) a stochastic weather generator based on time series resampling of historical f rainfall and temperature and (2) a hydrological model optimized following the GLUE methodology and (3) a hydrodynamic model to simulate the propagation of flood waves based on the generated hydrological time-series. To assess the potential influence of climate change, the four KNMI'14 climate scenarios are applied. These four scenarios represent a large part of the uncertainty provided by the GCMs used for the IPCC 5th assessment report (the CMIP5 GCM simulations under different climate forcings) and are for this purpose tailored to the Rhine and Meuse river basins. To derive the probability distributions of extreme discharges under climate change the historical synthetic rainfall and temperature series simulated with the weather generator are transformed to the future following the KNMI'14 scenarios. For this transformation the Advanced Delta Change method, which allows that the changes in the extremes differ from those in the means, is used. Subsequently the hydrological model is forced with the historical and future (i.e. transformed) synthetic time-series after which the propagation of the flood waves is simulated with the hydrodynamic model to obtain the extreme discharge statistics both for current and future climate conditions. The study shows that both for 2050 and 2085 increases in discharge

  12. Modeling and simulating command and control for organizations under extreme situations

    CERN Document Server

    Moon, Il-Chul; Kim, Tag Gon

    2013-01-01

    Commanding and controlling organizations in extreme situations is a challenging task in military, intelligence, and disaster management. Such command and control must be quick, effective, and considerate when dealing with the changing, complex, and risky conditions of the situation. To enable optimal command and control under extremes, robust structures and efficient operations are required of organizations. This work discusses how to design and conduct virtual experiments on resilient organizational structures and operational practices using modeling and simulation. The work illustrates key a

  13. Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California

    Science.gov (United States)

    Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.

    2016-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.

  14. 360⁰ -View of Quantum Theory and Ab Initio Simulation at Extreme Conditions: 2014 Sanibel Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Ping [Univ. of Florida, Gainesville, FL (United States)

    2016-09-02

    The Sanibel Symposium 2014 was held February 16-21, 2014, at the King and Prince, St. Simons Island, GA. It was successful in bringing condensed-matter physicists and quantum chemists together productively to drive the emergence of those specialties. The Symposium had a significant role in preparing a whole generation of quantum theorists. The 54th Sanibel meeting looked to the future in two ways. We had 360⁰-View sessions to honor the exceptional contributions of Rodney Bartlett (70), Bill Butler (70), Yngve Öhrn (80), Fritz Schaefer (70), and Malcolm Stocks (70). The work of these five has greatly impacted several generations of quantum chemists and condensed matter physicists. The “360⁰” is the sum of their ages. More significantly, it symbolizes a panoramic view of critical developments and accomplishments in theoretical and computational chemistry and physics oriented toward the future. Thus, two of the eight 360⁰-View sessions focused specifically on younger scientists. The 360⁰-View program was the major component of the 2014 Sanibel meeting. Another four sessions included a sub-symposium on ab initio Simulations at Extreme Conditions, with focus on getting past the barriers of present-day Born-Oppenheimer molecular dynamics by advances in finite-temperature density functional theory, orbital-free DFT, and new all-numerical approaches.

  15. Extreme Politics: on Some Approaches to the Definition of the Category and Boundaries of the Phenomenon

    Directory of Open Access Journals (Sweden)

    Михаил Григорьевич Анохин

    2010-06-01

    Full Text Available The article is dedicated to the actual and underdeveloped problem of defining «extreme politics». The authors suppose that «extreme politics» is a special kind of human activities. Extreme politics is defined by the authors as an activity conducted for power in extreme conditions (situations tied with insufficiency of different resources, lack of time for analysis and long-term prognosis of political situation and political decision-making, deficit of actual information and its free circulation, dominance of authoritative leaders-competitors.

  16. Modular SiGe 130 nm Cell Library for Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA space missions utilizing application-specific integrated circuits (ASICs) under extreme conditions have a critical need for high performance analog cell...

  17. Genotypic Correlation and Path Analysis of Some Traits related to Oil Yield and Grain Yield in Canola (Brassica napus L. under Non-stress and Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Ismaili

    2017-03-01

    Full Text Available Introduction Obtaining varieties with acceptable yield and tolerant to different arid and semi-arid climate condition of Iran is an important goal in canola breeding programs. Selection of genotypes base on one or more traits without regarding to correlation between them, could biases the expected results. Therefore, identifying of genetic correlation among traits especially in environmental stress condition is very important. The use of genotypic correlation helps evaluating the magnitude and direction of associations between characters facilitating the application of indirect selection, because genetic changes in a given trait may change other traits, leading to faster and larger genetic gains in plant breeding programs. Therefore, the selection for another trait may result in indirect response in the low heritable trait, provided the following conditions are satisfied: the genetic correlation between them is substantial, and the heritability of the secondary trait is greater than that of the primary trait. The purpose of this study was estimating the total genotypic variability, genotypic correlations, and path analysis among some important traits for selection criteria for improving seed and oil yield in canola under water deficit stress condition. Materials and Methods For evaluation of genetic correlation among traits and identifying important affecting traits on grain yield and oil yield in canola genotypes, an experiment was conducted based on a randomized complete blocks design with three replications in two different conditions of water deficit (stress and non-stress. Different traits were measured including seed yield, 1000-seed weight, number of seeds per pod, number of pods per plant, silique length, oil content, days to maturity, protein content, plant height and water use efficiency. Genotypic and phenotypic correlation coefficients were calculated for ten characters during growing seasons. The genotypic correlation coefficients

  18. Excess Mortality Attributable to Extreme Heat in New York City, 1997-2013.

    Science.gov (United States)

    Matte, Thomas D; Lane, Kathryn; Ito, Kazuhiko

    2016-01-01

    Extreme heat event excess mortality has been estimated statistically to assess impacts, evaluate heat emergency response, and project climate change risks. We estimated annual excess non-external-cause deaths associated with extreme heat events in New York City (NYC). Extreme heat events were defined as days meeting current National Weather Service forecast criteria for issuing heat advisories in NYC based on observed maximum daily heat index values from LaGuardia Airport. Outcomes were daily non-external-cause death counts for NYC residents from May through September from 1997 to 2013 (n = 337,162). The cumulative relative risk (CRR) of death associated with extreme heat events was estimated in a Poisson time-series model for each year using an unconstrained distributed lag for days 0-3 accommodating over dispersion, and adjusting for within-season trends and day of week. Attributable death counts were computed by year based on individual year CRRs. The pooled CRR per extreme heat event day was 1.11 (95%CI 1.08-1.14). The estimated annual excess non-external-cause deaths attributable to heat waves ranged from -14 to 358, with a median of 121. Point estimates of heat wave-attributable deaths were greater than 0 in all years but one and were correlated with the number of heat wave days (r = 0.81). Average excess non-external-cause deaths associated with extreme heat events were nearly 11-fold greater than hyperthermia deaths. Estimated extreme heat event-associated excess deaths may be a useful indicator of the impact of extreme heat events, but single-year estimates are currently too imprecise to identify short-term changes in risk.

  19. Performance of Portable Ventilators Following Storage at Temperature Extremes.

    Science.gov (United States)

    Blakeman, Thomas C; Rodriquez, Dario; Britton, Tyler J; Johannigman, Jay A; Petro, Michael C; Branson, Richard D

    2016-05-01

    In the current theater of operation, medical devices are often shipped and stored at ambient conditions. The effect of storage at hot and cold temperature extremes on ventilator performance is unknown. We evaluated three portable ventilators currently in use or being evaluated for use by the Department of Defense (731, Impact Instrumentation; T1, Hamilton Medical; and Revel, CareFusion) at temperature extremes in a laboratory setting. The ventilators were stored at temperatures of 60°C and -35°C for 24 hours and were allowed to acclimate to room temperature for 30 minutes before evaluation. The T1 required an extra 15 to 30 minutes of acclimation to room temperature before the ventilator would deliver breaths. All delivered tidal volumes at room temperature and after storage at temperature extremes were less than the ±10% American Society for Testing and Materials standard with the Revel. Delivered tidal volumes at the pediatric settings were less than the ±10% threshold after storage at both temperatures and at room temperature with the 731. Storage at extreme temperature affected the performance of the portable ventilators tested. This study showed that portable ventilators may need an hour or more of acclimation time at room temperature after storage at temperature extremes to operate as intended. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  20. Bias and spread in extreme value theory measurements of probability of error

    Science.gov (United States)

    Smith, J. G.

    1972-01-01

    Extreme value theory is examined to explain the cause of the bias and spread in performance of communications systems characterized by low bit rates and high data reliability requirements, for cases in which underlying noise is Gaussian or perturbed Gaussian. Experimental verification is presented and procedures that minimize these effects are suggested. Even under these conditions, however, extreme value theory test results are not particularly more significant than bit error rate tests.