WorldWideScience

Sample records for extravehicular space suits

  1. Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario

    Science.gov (United States)

    1995-01-01

    STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  2. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    Science.gov (United States)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  3. An Ergonomic Evaluation of the Extravehicular Mobility Unit (EMU) Space Suit Hard Upper Torso (HUT) Size Effect on Metabolic, Mobility, and Strength Performance

    Science.gov (United States)

    Reid, Christopher; Harvill, Lauren; England, Scott; Young, Karen; Norcross, Jason; Rajulu, Sudhakar

    2014-01-01

    The objective of this project was to assess the performance differences between a nominally sized Extravehicular Mobility Unit (EMU) space suit and a nominal +1 (plus) sized EMU. Method: This study evaluated suit size conditions by using metabolic cost, arm mobility, and arm strength as performance metrics. Results: Differences between the suit sizes were found only in shoulder extension strength being 15.8% greater for the plus size. Discussion: While this study was able to identify motions and activities that were considered to be practically or statistically different, it does not signify that use of a plus sized suit should be prohibited. Further testing would be required that either pertained to a particular mission critical task or better simulates a microgravity environment that the EMU suit was designed to work in.

  4. Z-2 Prototype Space Suit Development

    Science.gov (United States)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  5. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    Science.gov (United States)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  6. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    Science.gov (United States)

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  7. Space Suit Performance: Methods for Changing the Quality of Quantitative Data

    Science.gov (United States)

    Cowley, Matthew; Benson, Elizabeth; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. To verify that new suits will enable astronauts to perform to their maximum capacity, prototype suits must be built and tested with human subjects. However, engineers and flight surgeons often have difficulty understanding and applying traditional representations of human data without training. To overcome these challenges, NASA is developing modern simulation and analysis techniques that focus on 3D visualization. Early understanding of actual performance early on in the design cycle is extremely advantageous to increase performance capabilities, reduce the risk of injury, and reduce costs. The primary objective of this project was to test modern simulation and analysis techniques for evaluating the performance of a human operating in extra-vehicular space suits.

  8. Robot hands and extravehicular activity

    Science.gov (United States)

    Marcus, Beth

    1987-01-01

    Extravehicular activity (EVA) is crucial to the success of both current and future space operations. As space operations have evolved in complexity so has the demand placed on the EVA crewman. In addition, some NASA requirements for human capabilities at remote or hazardous sites were identified. One of the keys to performing useful EVA tasks is the ability to manipulate objects accurately, quickly and without early or excessive fatigue. The current suit employs a glove which enables the crewman to perform grasping tasks, use tools, turn switches, and perform other tasks for short periods of time. However, the glove's bulk and resistance to motion ultimately causes fatigue. Due to this limitation it may not be possible to meet the productivity requirements that will be placed on the EVA crewman of the future with the current or developmental Extravehicular Mobility Unit (EMU) hardware. In addition, this hardware will not meet the requirements for remote or hazardous operations. In an effort to develop ways for improving crew productivity, a contract was awarded to develop a prototype anthromorphic robotic hand (ARH) for use with an extravehicular space suit. The first step in this program was to perform a a design study which investigated the basic technology required for the development of an ARH to enhance crew performance and productivity. The design study phase of the contract and some additional development work is summarized.

  9. Ultraviolet Testing of Space Suit Materials for Mars

    Science.gov (United States)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  10. Cosmonaut Sergei Krikalev receives assistance from suit technician

    Science.gov (United States)

    1994-01-01

    Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).

  11. EVA Physiology and Medical Considerations Working in the Suit

    Science.gov (United States)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  12. A glimpse from the inside of a space suit: What is it really like to train for an EVA?

    Science.gov (United States)

    Gast, Matthew A.; Moore, Sandra K.

    2011-01-01

    The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA's Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely construct and maintain the orbiting International Space Station. To qualify for flight assignments, astronauts must demonstrate the ability to work safely and efficiently in the physically demanding environment of the space suit, possess an acute ability to resolve unforeseen problems, and implement proper tool protocols to ensure no tools will be lost in space. Through the insights and the lessons learned by actual EVA astronauts and EVA instructors, this paper will take you on a journey through an astronaut's earliest experiences working in the space suit, termed the Extravehicular Mobility Unit (EMU), in the underwater training environment of the NBL. This work details an actual Suit Qualification NBL training event, outlines the numerous challenges the astronauts face throughout their initial training, and the various ways they adapt their own abilities to overcome them. The goal of this paper is to give everyone a small glimpse into what it is really like to work in a space suit.

  13. Compression under a mechanical counter pressure space suit glove

    Science.gov (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, pglove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  14. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    Science.gov (United States)

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.

  15. A method of evaluating efficiency during space-suited work in a neutral buoyancy environment

    Science.gov (United States)

    Greenisen, Michael C.; West, Phillip; Newton, Frederick K.; Gilbert, John H.; Squires, William G.

    1991-01-01

    The purpose was to investigate efficiency as related to the work transmission and the metabolic cost of various extravehicular activity (EVA) tasks during simulated microgravity (whole body water immersion) using three space suits. Two new prototype space station suits, AX-5 and MKIII, are pressurized at 57.2 kPa and were tested concurrently with the operationally used 29.6 kPa shuttle suit. Four male astronauts were asked to perform a fatigue trial on four upper extremity exercises during which metabolic rate and work output were measured and efficiency was calculated in each suit. The activities were selected to simulate actual EVA tasks. The test article was an underwater dynamometry system to which the astronauts were secured by foot restraints. All metabolic data was acquired, calculated, and stored using a computerized indirect calorimetry system connected to the suit ventilation/gas supply control console. During the efficiency testing, steady state metabolic rate could be evaluated as well as work transmitted to the dynamometer. Mechanical efficiency could then be calculated for each astronaut in each suit performing each movement.

  16. The Apollo Number: space suits, self-support, and the walk-run transition.

    Directory of Open Access Journals (Sweden)

    Christopher E Carr

    Full Text Available BACKGROUND: How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g, running, unlike on Earth, uses less energy per distance than walking. METHODOLOGY/PRINCIPAL FINDINGS: The walk-run transition (denoted * correlates with the Froude Number (Fr = v(2/gL, velocity v, gravitational acceleration g, leg length L. Human unsuited Fr* is relatively constant (approximately 0.5 with gravity but increases substantially with decreasing gravity below approximately 0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g or completely (lunar-g support their own weight. We define the Apollo Number (Ap = Fr/M as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run and calculate Ap. We estimated the binary transition between walk/lope (0 and run (1, yielding Fr* (0.36+/-0.11, mean+/-95% CI and Ap* (0.68+/-0.20. CONCLUSIONS/SIGNIFICANCE: The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars.

  17. Optical Breath Gas Sensor for Extravehicular Activity Application

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  18. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  19. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    Science.gov (United States)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  20. Extravehicular mobility unit training and astronaut injuries

    Science.gov (United States)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  1. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    Science.gov (United States)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  2. Innovative hand exoskeleton design for extravehicular activities in space

    CERN Document Server

    Freni, Pierluigi; Randazzo, Luca; Ariano, Paolo

    2014-01-01

    Environmental conditions and pressurized spacesuits expose astronauts to problems of fatigue during lengthy extravehicular activities, with adverse impacts especially on the dexterity, force and endurance of the hands and arms. A state-of-the-art exploration in the field of hand exoskeletons revealed that available products are unsuitable for space applications because of their bulkiness and mass. This book proposes a novel approach to the development of hand exoskeletons, based on an innovative soft robotics concept that relies on the exploitation of electroactive polymers operating as sensors and actuators, on a combination of electromyography and mechanomyography for detection of the user’s will and on neural networks for control. The result is a design that should enhance astronauts’ performance during extravehicular activities. In summary, the advantages of the described approach are a low-weight, high-flexibility exoskeleton that allows for dexterity and compliance with the user’s will.

  3. STS-87 Mission Specialist Winston E. Scott suits up

    Science.gov (United States)

    1997-01-01

    STS-87 Mission Specialist Winston Scott dons his launch and entry suit with the assistance of a suit technician in the Operations and Checkout Building. This is Scotts second space flight. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. He also performed a spacewalk on STS-72.

  4. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

    2014-01-01

    This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

  5. Space Suit Joint Torque Testing

    Science.gov (United States)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  6. Doses due to extra-vehicular activity on space stations

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Feher, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Akatov, Y.; Arkhanguelski, V. [Institute of Biomedical Problems, State Scientific Center, Moscow (Russian Federation); Reitz, G. [DLR Institute of Aerospace Medicine, Cologne, Linder Hohe (Germany)

    2006-07-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 {mu}Gy to 10 Gy range, consisting of a set of CaSO{sub 4}:Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment

  7. Doses due to extra-vehicular activity on space stations

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Feher, I.; Akatov, Y.; Arkhanguelski, V.; Reitz, G.

    2006-01-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 μGy to 10 Gy range, consisting of a set of CaSO 4 :Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment were

  8. Development of a Fan for Future Space Suit Applications

    Science.gov (United States)

    Paul. Heather L.; Converse, David; Dionne, Steven; Moser, Jeff

    2010-01-01

    NASA's next generation space suit system will place new demands on the fan used to circulate breathing gas through the ventilation loop of the portable life support system. Long duration missions with frequent extravehicular activities (EVAs), the requirement for significant increases in reliability and durability, and a mission profile that imposes strict limits on weight, volume and power create the basis for a set of requirements that demand more performance than is available from existing fan designs. This paper describes the development of a new fan to meet these needs. A centrifugal fan was designed with a normal operating speed of approximately 39,400 rpm to meet the ventilation flow requirements while also meeting the aggressive minimal packaging, weight and power requirements. The prototype fan also operates at 56,000 rpm to satisfy a second operating condition associated with a single fan providing ventilation flow to two spacesuits connected in series. This fan incorporates a novel nonmetallic "can" to keep the oxygen flow separate from the motor electronics, thus eliminating ignition potential. The nonmetallic can enables a small package size and low power consumption. To keep cost and schedule within project bounds a commercial motor controller was used. The fan design has been detailed and implemented using materials and approaches selected to address anticipated mission needs. Test data is presented to show how this fan performs relative to anticipated ventilation requirements for the EVA portable life support system. Additionally, data is presented to show tolerance to anticipated environmental factors such as acoustics, shock, and vibration. Recommendations for forward work to progress the technology readiness level and prepare the fan for the next EVA space suit system are also discussed.

  9. Some psychological and engineering aspects of the extravehicular activity of astronauts.

    Science.gov (United States)

    Khrunov, E V

    1973-01-01

    One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some

  10. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    Science.gov (United States)

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  11. Z-1 Prototype Space Suit Testing Summary

    Science.gov (United States)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  12. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    Science.gov (United States)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  13. Analytical Tools for Space Suit Design

    Science.gov (United States)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  14. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  15. Space Suit Joint Torque Measurement Method Validation

    Science.gov (United States)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  16. Antenna Design Considerations for the Advanced Extravehicular Mobility Unit

    Science.gov (United States)

    Bakula, Casey J.; Theofylaktos, Onoufrios

    2015-01-01

    NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.

  17. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    Science.gov (United States)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  18. Extravehicular Activity and Planetary Protection

    Science.gov (United States)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  19. Variable Vector Countermeasure Suit for Space Habitation and Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a visionary system concept that will revolutionize space missions by...

  20. Advanced Extravehicular Helmet Assembly, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The current NASA spacesuit community is focusing on utilizing a 13" hemispherical helmet for the next generation of extravehicular activity spacesuits. This helmet...

  1. Decision Support System Development for Human Extravehicular Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The extension of human presence into deep space will depend on how successfully human planetary extravehicular activities (EVAs) are conducted without real-time...

  2. Advanced extravehicular protective systems for shuttle, space station, lunar base and Mars missions.

    Science.gov (United States)

    Heimlich, P. F.; Sutton, J. G.; Tepper, E. H.

    1972-01-01

    Advances in extravehicular life support system technology will directly influence future space mission reliability and maintainability considerations. To identify required new technology areas, an appraisal of advanced portable life support system and subsystem concepts was conducted. Emphasis was placed on thermal control and combined CO2 control/O2 supply subsystems for both primary and emergency systems. A description of study methodology, concept evaluation techniques, specification requirements, and selected subsystems and systems are presented. New technology recommendations encompassing thermal control, CO2 control and O2 supply subsystems are also contained herein.

  3. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  4. An Integrated Extravehicular Activity Research Plan

    Science.gov (United States)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human-Suit

  5. Characterization of dynamic thermal control schemes and heat transfer pathways for incorporating variable emissivity electrochromic materials into a space suit heat rejection system

    Science.gov (United States)

    Massina, Christopher James

    The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity

  6. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  7. Coupled Human-Space Suit Mobility Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — Current EVA mobility studies only allow for comparisons of how the suit moves when actuated by a human and how the human moves when unsuited. There are now new...

  8. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  9. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    Science.gov (United States)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  10. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  11. Metabolic assessments during extra-vehicular activity

    Science.gov (United States)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  12. Results and Analysis from Space Suit Joint Torque Testing

    Science.gov (United States)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  13. STS-61B Astronaut Ross During ACCESS Extravehicular Activity

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, VA and the Marshall Space Flight Center (MSFC), ACCESS and EASE were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  14. Advanced Gas Sensing Technology for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...

  15. STS-92 Pilot Pam Melroy suits up for launch

    Science.gov (United States)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Pilot Pamela Ann Melroy smiles during suit check before heading out to the Astrovan for the ride to Launch Pad 39A. During the 11-day mission to the International Space Station, four extravehicular activities (EVAs), or spacewalks, are planned for construction. The payload includes the Integrated Truss Structure Z-1 and the third Pressurized Mating Adapter. The Z-1 truss is the first of 10 that will become the backbone of the Space Station, eventually stretching the length of a football field. PMA-3 will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Launch is scheduled for 7:17 p.m. EDT. Landing is expected Oct. 22 at 2:10 p.m. EDT.

  16. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

    Science.gov (United States)

    Anderson, Allison P; Newman, Dava J; Welsch, Roy E

    2015-07-01

    Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

  18. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  19. Use MACES IVA Suit for EVA Mobility Evaluations

    Science.gov (United States)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  20. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    Science.gov (United States)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  1. Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    Science.gov (United States)

    McFarland, Shane M.

    2016-01-01

    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counterpressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions.

  2. Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results

    Science.gov (United States)

    Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.

    1999-09-01

    Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.

  3. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  4. A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

    Science.gov (United States)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    In the design of a new space suit it is necessary to have requirements that define what mobility space suit joints should be capable of achieving in both a system and at the component level. NASA elected to divide mobility into its constituent parts-range of motion (ROM) and torque- in an effort to develop clean design requirements that limit subject performance bias and are easily verified. Unfortunately, the measurement of mobility can be difficult to obtain. Current technologies, such as the Vicon motion capture system, allow for the relatively easy benchmarking of range of motion (ROM) for a wide array of space suit systems. The ROM evaluations require subjects in the suit to accurately evaluate the ranges humans can achieve in the suit. However, when it comes to torque, there are significant challenges for both benchmarking current performance and writing requirements for future suits. This is reflected in the fact that torque definitions have been applied to very few types of space suits and with limited success in defining all the joints accurately. This paper discussed the advantages and disadvantages to historical joint torque evaluation methods, describes more recent efforts directed at benchmarking joint torques of prototype space suits, and provides an outline for how NASA intends to address joint torque in design requirements for the Constellation Space Suit System (CSSS).

  5. Miniature Flexible Humidity Sensitive Patches for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suit technologies demand improved, simplified, long-life regenerative sensing technologies, including humidity sensors, that exceed the performance of...

  6. Benchmarking Evaluation Results for Prototype Extravehicular Activity Gloves

    Science.gov (United States)

    Aitchison, Lindsay; McFarland, Shane

    2012-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of four prototype gloves developed by Flagsuit LLC, Final Frontier Designs, LLC Dover, and David Clark Company as compared to the Phase VI. All of the companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test

  7. The Variable Vector Countermeasure Suit (V2Suit for Space Habitation and Exploration

    Directory of Open Access Journals (Sweden)

    Kevin R Duda

    2015-04-01

    Full Text Available The Variable Vector Countermeasure Suit (V2Suit for Space Habitation and Exploration is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs and control moment gyroscopes (CMGs within miniaturized modules placed on body segments to provide a viscous resistance during movements against a specified direction of down – initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from down initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  8. Space Suit Simulator (S3) for Partial Gravity EVA Experimentation and Training, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Pressurized space suits impose high joint torques on the wearer, reducing mobility for upper and lower body motions. Using actual space suits in training or...

  9. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    Science.gov (United States)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  10. Multipurpose Cooling Garment for Improved Space Suit Environmental Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these...

  11. An Approach for Performance Assessments of Extravehicular Activity Gloves

    Science.gov (United States)

    Aitchison, Lindsay; Benosn, Elizabeth

    2014-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of two sets of prototype EVA gloves developed ILC Dover and David Clark Company as compared to the Phase VI. Both companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design-to hand

  12. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    Science.gov (United States)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  13. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles

    Science.gov (United States)

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  14. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    Science.gov (United States)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  15. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    Science.gov (United States)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  16. Space engineering

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  17. The Influence of Robotic Assistance on Reducing Neuromuscular Effort and Fatigue during Extravehicular Activity Glove Use

    Science.gov (United States)

    Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a

  18. ASIM - an Instrument Suite for the International Space Station

    DEFF Research Database (Denmark)

    Neubert, Torsten; Crosby, B.; Huang, T.-Y.

    2009-01-01

    ASIM (Atmosphere-Space Interactions Monitor) is an instrument suite for studies of severe thunderstorms and their effects on the atmosphere and ionosphere. The instruments are designed to observe transient luminous events (TLEs)—sprites, blue jets and elves—and terrestrial gamma-ray flashes (TGFs...

  19. Advanced EVA Suit Camera System Development Project

    Science.gov (United States)

    Mock, Kyla

    2016-01-01

    The National Aeronautics and Space Administration (NASA) at the Johnson Space Center (JSC) is developing a new extra-vehicular activity (EVA) suit known as the Advanced EVA Z2 Suit. All of the improvements to the EVA Suit provide the opportunity to update the technology of the video imagery. My summer internship project involved improving the video streaming capabilities of the cameras that will be used on the Z2 Suit for data acquisition. To accomplish this, I familiarized myself with the architecture of the camera that is currently being tested to be able to make improvements on the design. Because there is a lot of benefit to saving space, power, and weight on the EVA suit, my job was to use Altium Design to start designing a much smaller and simplified interface board for the camera's microprocessor and external components. This involved checking datasheets of various components and checking signal connections to ensure that this architecture could be used for both the Z2 suit and potentially other future projects. The Orion spacecraft is a specific project that may benefit from this condensed camera interface design. The camera's physical placement on the suit also needed to be determined and tested so that image resolution can be maximized. Many of the options of the camera placement may be tested along with other future suit testing. There are multiple teams that work on different parts of the suit, so the camera's placement could directly affect their research or design. For this reason, a big part of my project was initiating contact with other branches and setting up multiple meetings to learn more about the pros and cons of the potential camera placements we are analyzing. Collaboration with the multiple teams working on the Advanced EVA Z2 Suit is absolutely necessary and these comparisons will be used as further progress is made for the overall suit design. This prototype will not be finished in time for the scheduled Z2 Suit testing, so my time was

  20. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  1. The European space suit, a design for productivity and crew safety

    Science.gov (United States)

    Skoog, A. Ingemar; Berthier, S.; Ollivier, Y.

    In order to fulfil the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today - and will be for several years - a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: • easy donning/doffing thru rear entry, • suit ergonomy optimisation, • display of operational information in alpha-numerical and graphical from, and • voice processing for operations and safety critical information. Concerning crew safety the major design features are: • a lower R-factor for emergency EVA operations thru incressed suit pressure, • zero prebreath conditions for normal operations, • visual and voice processing of all safety critical functions, and • an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  2. Astronaut Ronald Evans is suited up for EVA training

    Science.gov (United States)

    1972-01-01

    Astronaut Ronald E. Evans, command module pilot of the Apollo 17 lunar landing mission, is assisted by technicians in suiting up for extravehicular activity (EVA) training in a water tank in bldg 5 at the Manned Spacecraft Center (49970); Evans participates in EVA training in a water tank in bldg 5 at the Manned Spacecraft Center. The structure in the picture simulates the Scientific Instrument Module (SIM) bay of the Apollo 17 Service Module (49971).

  3. Solid-solid phase change thermal storage application to space-suit battery pack

    Science.gov (United States)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  4. The ESA's Space Trajectory Analysis software suite

    Science.gov (United States)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  5. Space operations and the human factor

    Science.gov (United States)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  6. Maintaining Adequate Carbon Dioxide Washout for an Advanced Extravehicular Mobility Unit

    Science.gov (United States)

    Chullen, Cinda; Navarro, Moses; Conger, Bruce; Korona, Adam; McMillin, Summer; Norcross, Jason; Swickrath, Mike

    2013-01-01

    Over the past several years, NASA has realized tremendous progress in technology development that is aimed at the production of an Advanced Extravehicular Mobility Unit (AEMU). Of the many functions provided by the spacesuit and portable life support subsystem within the AEMU, delivering breathing gas to the astronaut along with removing the carbon dioxide (CO2) remains one of the most important environmental functions that the AEMU can control. Carbon dioxide washout is the capability of the ventilation flow in the spacesuit helmet to provide low concentrations of CO2 to the crew member to meet breathing requirements. CO2 washout performance is a critical parameter needed to ensure proper and sufficient designs in a spacesuit and in vehicle applications such as sleep stations and hygiene compartments. Human testing to fully evaluate and validate CO2 washout performance is necessary but also expensive due to the levied safety requirements. Moreover, correlation of math models becomes challenging because of human variability and movement. To supplement human CO2 washout testing, a breathing capability will be integrated into a suited manikin test apparatus to provide a safe, lower cost, stable, easily modeled alternative to human testing. Additionally, this configuration provides NASA Johnson Space Center (JSC) the capability to evaluate CO2 washout under off-nominal conditions that would otherwise be unsafe for human testing or difficult due to fatigue of a test subject. Testing has been under way in-house at JSC and analysis has been initiated to evaluate whether the technology provides sufficient performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an extravehicular activity. This paper will review recent CO2 washout testing and analysis activities, testing planned in-house with a spacesuit simulator, and the associated analytical work

  7. Space Toxicology

    Science.gov (United States)

    James, John T.

    2011-01-01

    Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.

  8. A Software Suite for Testing SpaceWire Devices and Networks

    Science.gov (United States)

    Mills, Stuart; Parkes, Steve

    2015-09-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.

  9. MULTIFUNCTIONAL, SELF-HEALING HYBRIDSIL MATERIALS FOR EVA SPACE SUIT PRESSURE GARMENT SYSTEMS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A Phase II SBIR transition of NanoSonic's high flex HybridSil space suit bladder and glove materials will provide a pivotal funding bridge toward Phase III...

  10. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    Science.gov (United States)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on

  11. Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project

    Science.gov (United States)

    Roberson, Luke Bennett

    2014-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tampa

  12. NASA Research Announcement Phase 2 Final Report for the Development of a Power Assisted Space Suit Glove

    Science.gov (United States)

    Lingo, Robert; Cadogan, Dave; Sanner, Rob; Sorenson, Beth

    1997-01-01

    The main goal of this program was to develop an unobtrusive power-assisted EVA glove metacarpalphalangeal (MCP) joint that could provide the crew member with as close to nude body performance as possible, and to demonstrate the technology feasibility of power assisted space suit components in general. The MCP joint was selected due to its being representative of other space suit joints, such as the shoulder, hip and carpometacarpal joint, that would also greatly benefit from this technology. In order to meet this objective, a development team of highly skilled and experienced personnel was assembled. The team consisted of two main entities. The first was comprised of ILC's experienced EVA space suit glove designers, who had the responsibility of designing and fabricating a low torque MCP joint which would be compatible with power assisted technology. The second part of the team consisted of space robotics experts from the University of Maryland's Space Systems Laboratory. This team took on the responsibility of designing and building the robotics aspects of the power-assist system. Both parties addressed final system integration responsibilities.

  13. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    Science.gov (United States)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  14. Extravehicular Activity (EVA) Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  15. Carbon Dioxide Washout Testing Using Various Inlet Vent Configurations in the Mark-III Space Suit

    Science.gov (United States)

    Korona, F. Adam; Norcross, Jason; Conger, Bruce; Navarro, Moses

    2014-01-01

    Requirements for using a space suit during ground testing include providing adequate carbon dioxide (CO2) washout for the suited subject. Acute CO2 exposure can lead to symptoms including headache, dyspnea, lethargy, and eventually unconsciousness or even death. Symptoms depend on several factors including inspired partial pressure of CO2 (ppCO2), duration of exposure, metabolic rate of the subject, and physiological differences between subjects. Computational Fluid Dynamics (CFD) analysis has predicted that the configuration of the suit inlet vent has a significant effect on oronasal CO2 concentrations. The main objective of this test was to characterize inspired oronasal ppCO2 for a variety of inlet vent configurations in the Mark-III suit across a range of workload and flow rates. Data and trends observed during testing along with refined CFD models will be used to help design an inlet vent configuration for the Z-2 space suit. The testing methodology used in this test builds upon past CO2 washout testing performed on the Z-1 suit, Rear Entry I-Suit, and the Enhanced Mobility Advanced Crew Escape Suit. Three subjects performed two test sessions each in the Mark-III suit to allow for comparison between tests. Six different helmet inlet vent configurations were evaluated during each test session. Suit pressure was maintained at 4.3 psid. Suited test subjects walked on a treadmill to generate metabolic workloads of approximately 2000 and 3000 BTU/hr. Supply airflow rates of 6 and 4 actual cubic feet per minute were tested at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored real-time via gas analyzers with sampling tubes connected to the oronasal mask. Metabolic rate was calculated from the CO2 production measured by an additional gas analyzer at the air outlet from the suit. Real-time metabolic rate measurements were used to adjust the treadmill workload to meet

  16. Tracking Historical NASA EVA Training: Lifetime Surveillance of Astronaut Health (LSAH) Development of the EVA Suit Exposure Tracker (EVA SET)

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2017-01-01

    During a spacewalk, designated as extravehicular activity (EVA), an astronaut ventures from the protective environment of the spacecraft into the vacuum of space. EVAs are among the most challenging tasks during a mission, as they are complex and place the astronaut in a highly stressful environment dependent on the spacesuit for survival. Due to the complexity of EVA, NASA has conducted various training programs on Earth to mimic the environment of space and to practice maneuvers in a more controlled and forgiving environment. However, rewards offset the risks of EVA, as some of the greatest accomplishments in the space program were accomplished during EVA, such as the Apollo moonwalks and the Hubble Space Telescope repair missions. Water has become the environment of choice for EVA training on Earth, using neutral buoyancy as a substitute for microgravity. During EVA training, an astronaut wears a modified version of the spacesuit adapted for working in water. This high fidelity suit allows the astronaut to move in the water while performing tasks on full-sized mockups of space vehicles, telescopes, and satellites. During the early Gemini missions, several EVA objectives were much more difficult than planned and required additional time. Later missions demonstrated that "complex (EVA) tasks were feasible when restraints maintained body position and underwater simulation training ensured a high success probability".1,2 EVA training has evolved from controlling body positioning to perform basic tasks to complex maintenance of the Hubble Space Telescope and construction of the International Space Station (ISS). Today, preparation is centered at special facilities built specifically for EVA training, such as the Neutral Buoyancy Laboratory (NBL) at NASA's Johnson Space Center ([JSC], Houston) and the Hydrolab at the Gagarin Cosmonaut Training Centre ([GCTC], Star City, outside Moscow). Underwater training for an EVA is also considered hazardous duty for NASA

  17. Using Piezoelectric Ceramics for Dust Mitigation of Space Suits

    Science.gov (United States)

    Angel, Heather K.

    2004-01-01

    The particles that make up moon dust and Mars soil can be hazardous to an astronaut s health if not handled properly. In the near future, while exploring outer space, astronauts plan to wander the surfaces of unknown planets. During these explorations, dust and soil will cling to their space suits and become imbedded in the fabric. The astronauts will track moon dust and mars soil back into their living quarters. This not only will create a mess with millions of tiny air-born particles floating around, but will also be dangerous in the case that the fine particles are breathed in and become trapped in an astronaut s lungs. research center are investigating ways to remove these particles from space suits. This problem is very difficult due to the nature of the particles: They are extremely small and have jagged edges which can easily latch onto the fibers of the fabric. For the past summer, I have been involved in researching the potential problems, investigating ways to remove the particles, and conducting experiments to validate the techniques. The current technique under investigation uses piezoelectric ceramics imbedded in the fabric that vibrate and shake the particles free. The particles will be left on the planet s surface or collected a vacuum to be disposed of later. The ceramics vibrate when connected to an AC voltage supply and create a small scale motion similar to what people use at the beach to shake sand off of a beach towel. Because the particles are so small, similar to volcanic ash, caution must be taken to make sure that this technique does not further inbed them in the fabric and make removal more difficult. Only a very precise range of frequency and voltage will produce a suitable vibration. My summer project involved many experiments to determine the correct range. Analysis involved hands on experience with oscilloscopes, amplifiers, piezoelectrics, a high speed camera, microscopes and computers. perfect this technology. Someday, vibration to

  18. Measurement of Carbon Dioxide Accumulation and Physiological Function in the Launch and Entry and Advanced Crew Escape Suits

    Science.gov (United States)

    Bishop, Phillip; Greenisen, M. C.

    1997-01-01

    The Launch and Entry Suit (LES) and Advanced Crew Escape Suit (ACES) are worn by astronauts for launch and entry. Previous work by Waligora, et al., 1992, Waligora and Gilbert, 1992, and Dalrymple 1996, have found that carbon dioxide (CO2) accumulation in the LES/ACES helmet may be problematic. CO2 accumulation is important because high inspired levels of CO2 reduce physical function and pose a safety hazard (e.g. levels of CO2 accumulation of 3.6% in the Extravehicular Mobility Unit are sufficient to terminate Extra Vehicular Activities). My task was to design a suitable test protocol for determining the important physiological aspects of LES/ACES use. Three basic issues arose. First was the determination of the astronaut's CO2 inspiration during visor-down use at rest and during walking at 3.5 mph. A sub-issue was the impact of a pneumotach on CO2 since it has been previously observed that when the Aerosport pneumotach was used, performance seemed improved, which might be attributable to a lowered respiration rate when using the pneumotach. The second issue was the energy costs of waLking in the LES/ACES with various G-suit inflation levels, since G-suit inflation increases metabolic costs and metabolic costs influence the C02 production in the LES/ACES helmet. Since G-suit inflation improves orthostatic tolerance after space flight, but likely increases the energy costs of walking, the balance between G-suit inflation and C02 accumulation is an important safety consideration. The third issue which arose from pilot work was the substantial reduction in physical function after a 10 min visor-down period prior to walk.

  19. Human-Robot Teaming in a Multi-Agent Space Assembly Task

    Science.gov (United States)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower. An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of humans with the survivability and physical capabilities of robots is proposed and illustrated by example. Such teams are useful for large-scale, complex missions requiring dispersed manipulation, locomotion and sensing capabilities. To study collaboration modalities within a multi-agent EVA team, a 1-g test is conducted with humans and robots working together in various supporting roles.

  20. Miniature Sensor Probe for O2, CO2, and H2O Monitoring in Space Suits, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...

  1. Development of an advanced rocket propellant handler's suit

    Science.gov (United States)

    Doerr, DonaldF.

    2001-08-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability, and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit.

  2. Development of the ISS EMU Dashboard Software

    Science.gov (United States)

    Bernard, Craig; Hill, Terry R.

    2011-01-01

    The EMU (Extra-Vehicular Mobility Unit) Dashboard was developed at NASA s Johnson Space Center to aid in real-time mission support for the ISS (International Space Station) and Shuttle EMU space suit by time synchronizing down-linked video, space suit data and audio from the mission control audio loops. Once the input streams are synchronized and recorded, the data can be replayed almost instantly and has proven invaluable in understanding in-flight hardware anomalies and playing back information conveyed by the crew to missions control and the back room support. This paper will walk through the development from an engineer s idea brought to life by an intern to real time mission support and how this tool is evolving today and its challenges to support EVAs (Extra-Vehicular Activities) and human exploration in the 21st century.

  3. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  4. The Aouda.X space suit simulator and its applications to astrobiology.

    Science.gov (United States)

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.

  5. Space Suits and Crew Survival Systems Branch Education and Public Outreach Support of NASA's Strategic Goals in Fiscal Year 2012

    Science.gov (United States)

    Jennings, Mallory A.

    2013-01-01

    As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientists, and the general public. This is so important to NASA s future that it is one of the agency s strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in achieving this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.

  6. Metabolic and Subjective Results Review of the Integrated Suit Test Series

    Science.gov (United States)

    Norcross, J.R.; Stroud, L.C.; Klein, J.; Desantis, L.; Gernhardt, M.L.

    2009-01-01

    Crewmembers will perform a variety of exploration and construction activities on the lunar surface. These activities will be performed while inside an extravehicular activity (EVA) spacesuit. In most cases, human performance is compromised while inside an EVA suit as compared to a crewmember s unsuited performance baseline. Subjects completed different EVA type tasks, ranging from ambulation to geology and construction activities, in different lunar analog environments including overhead suspension, underwater and 1-g lunar-like terrain, in both suited and unsuited conditions. In the suited condition, the Mark III (MKIII) EVA technology demonstrator suit was used and suit pressure and suit weight were parameters tested. In the unsuited conditions, weight, mass, center of gravity (CG), terrain type and navigation were the parameters. To the extent possible, one parameter was varied while all others were held constant. Tests were not fully crossed, but rather one parameter was varied while all others were left in the most nominal setting. Oxygen consumption (VO2), modified Cooper-Harper (CH) ratings of operator compensation and ratings of perceived exertion (RPE) were measured for each trial. For each variable, a lower value correlates to more efficient task performance. Due to a low sample size, statistical significance was not attainable. Initial findings indicate that suit weight, CG and the operational environment can have a large impact on human performance during EVA. Systematic, prospective testing series such as those performed to date will enable a better understanding of the crucial interactions of the human and the EVA suit system and their environment. However, work remains to be done to confirm these findings. These data have been collected using only unsuited subjects and one EVA suit prototype that is known to fit poorly on a large demographic of the astronaut population. Key findings need to be retested using an EVA suit prototype better suited to a

  7. The exercise and environmental physiology of extravehicular activity

    Science.gov (United States)

    Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor

  8. Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

    Science.gov (United States)

    Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.

    2016-01-01

    The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publication, in 2006 development was started to baseline Extra-Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the Contingency

  9. Space suit glove design with advanced metacarpal phalangeal joints and robotic hand evaluation.

    Science.gov (United States)

    Southern, Theodore; Roberts, Dustyn P; Moiseev, Nikolay; Ross, Amy; Kim, Joo H

    2013-06-01

    One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip--the act of grasping a bar--is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.

  10. Views of the extravehicular activity of Astronaut Stewart during STS 41-B

    Science.gov (United States)

    1984-01-01

    Close up frontal view of Astronaut Robert L. Stewart, mission specialist, as he participates in a extravehicular activity (EVA), a few meters away from the cabin of the shuttle Challenger. The open payload bay is reflected in his helmet visor as he faces the camera. Stewart is wearing the extravehicular mobility unit (EMU) and one of the manned maneuvering units (MMU) developed for this mission.

  11. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    Science.gov (United States)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  12. Advanced Sensor Platform to Evaluate Manloads for Exploration Suit Architectures

    Data.gov (United States)

    National Aeronautics and Space Administration — Space suit manloads are defined as the outer bounds of force that the human occupant of a suit is able to exert onto the suit during motion. They are defined on a...

  13. My Space- a collaboration between Arts & Science to create a suite of informal interactive public engagement initiatives.

    Science.gov (United States)

    Shaw, Niamh, , Dr.; McSweeney, Clair; Smith, Niall, , Dr.; O'Neill, Stephanie; Foley, Cathy; Crawley, Joanna; Phelan, Ronan; Colley, Dan; Henderson, Clare; Conroy, Lorraine

    2015-04-01

    A suite of informal interactive public engagement initiatives, entitled 'MySpace' was created, to promote the importance of Earth science and Space exploration, to ignite curiosity and discover new and engaging platforms for science in the Arts & in STEM Education, and to increase awareness of careers in Ireland's Space and Earth Science industries. Site visits to research centres in Ireland & abroad, interviews with scientists, engineers, and former astronauts were conducted over a 6 month period. A suite of performance pieces emerged from this development phase, based on Dr. Shaw's personal documented journey and the dissemination of her research. These included: 1. 'To Space'- A live multimedia theatre performance aimed at the general public & young adult. Initially presented as a 'Work In Progress' event at The Festival of Curiosity, the full theatre show 'To Space' premiered at Science Gallery, Dublin as part of Tiger Dublin Fringe Arts Festival. Response to the piece was very strong, indicated by audience response, box office sales and theatre reviews in national press and online. A national and international tour is in place for 2015. To Space was performed a total of 10 times and was seen by 680 audiences. 2. An adapted piece for 13-17 year old students -'ToSpace for Secondary Schools'- to increase awareness of Ireland's involvement in Space Exploration & to encourage school leavers to dream big. This show toured nationally as part of World Space week and Science week events in conjunction with ESERO Ireland, CIT Blackrock Castle Observatory, Cork, Armagh Planetarium & Dunsink Observatory. It was performed 12 times and was seen by 570 students. 3. 'My Place in Space', created for families from the very old (60 +) to the very young (3yrs +), this highly interactive workshop highlighted the appeal of science through the wonders of our planet and its place in Space. Presented at Festival of Curiosity, the Mallow Science Fair and at Science week 2014, this

  14. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    Science.gov (United States)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  15. Astronaut Joseph Tanner is assisted into his EMU during training

    Science.gov (United States)

    1994-01-01

    Astronaut Joseph R. Tanner, STS-66 mission specialist, is assisted by Boeing suit expert Steve Voyles in donning the gloves for his extravehicular mobility unit (EMU) as he prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Though no extravehicular activity (EVA) is planned for the mission, at least two astronauts are trained to perform tasks that would require a space walk in the event of failure of remote systems.

  16. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  17. Shallow-Water Nitrox Diving, the NASA Experience

    Science.gov (United States)

    Fitzpatrick, Daniel T.

    2009-01-01

    NASA s Neutral Buoyancy Laboratory (NBL) contains a 6.2 million gallon, 12-meter deep pool where astronauts prepare for space missions involving space walks (extravehicular activity EVA). Training is conducted in a space suit (extravehicular mobility unit EMU) pressurized to 4.0 - 4.3 PSI for up to 6.5 hours while breathing a 46% NITROX mix. Since the facility opened in 1997, over 30,000 hours of suited training has been completed with no occurrence of decompression sickness (DCS) or oxygen toxicity. This study examines the last 5 years of astronaut suited training runs. All suited runs are computer monitored and data is recorded in the Environmental Control System (ECS) database. Astronaut training runs from 2004 - 2008 were reviewed and specific data including total run time, maximum depth and average depth were analyzed. One hundred twenty seven astronauts and cosmonauts completed 2,231 training runs totaling 12,880 exposure hours. Data was available for 96% of the runs. It was revealed that the suit configuration produces a maximum equivalent air depth of 7 meters, essentially eliminating the risk of DCS. Based on average run depth and time, approximately 17% of the training runs exceeded the NOAA oxygen maximum single exposure limits, with no resulting oxygen toxicity. The NBL suited training protocols are safe and time tested. Consideration should be given to reevaluate the NOAA oxygen exposure limits for PO2 levels at or below 1 ATA.

  18. Space Life Sciences Directorate's Position on the Physiological Effects of Exposing the Crewmemeber to Low-Voltage Electrical Hazards During Extravehicular Activity

    Science.gov (United States)

    Hamilton, Douglas; Kramer, Leonard; Mikatarian, Ron; Polk, James; Duncan, Michael; Koontz, Steven

    2010-01-01

    The models predict that, for low voltage exposures in the space suit, physiologically active current could be conducted across the crew member causing catastrophic hazards. Future work with Naval Health Research Center Detachment Directed Energy Bio-effects Laboratory is being proposed to analyze additional current paths across the human torso and upper limbs. These models may need to be verified with human studies.

  19. Questions and Answers for Ken Thomas' "Intra-Extra Vehicular Activity Russian and Gemini Spacesuits" Presentation

    Science.gov (United States)

    Thomas, Kenneth S.

    2016-01-01

    Kenneth Thomas will discuss the Intra-Extra Vehicular Activity Russian & Gemini spacesuits. While the United States and Russia adapted to existing launch- and reentry-type suits to allow the first human ventures into the vacuum of space, there were differences in execution and capabilities. Mr. Thomas will discuss the advantages and disadvantages of this approach compared to exclusively intravehicular or extra-vehicular suit systems.

  20. STS-61B Astronauts Ross and Spring Work on Experimental Assembly of Structures in Extravehicular

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). This STS-61B onboard photo depicts astronauts Ross and Spring working on EASE. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  1. Extravehicular Activity Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an

  2. Efforts to Reduce International Space Station Crew Maintenance Time in the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Etter,David; Rector, Tony; Boyle, robert; Zande, Chris Vande

    2012-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.

  3. STS-76 Payload Cmdr Ronald Sega suits up

    Science.gov (United States)

    1996-01-01

    STS-76 Payload Commander Ronald M. Sega is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. The third docking between the Russian Space Station Mir and the U.S. Space Shuttle marks the second trip into space for Sega, who recently served a five-month assignment in Russia as operations director for NASA activities there. Once suitup activities are completed the six-member STS-76 flight crew will depart for Launch Pad 39B, where the Space Shuttle Atlantis is undergoing final preparations for liftoff during an approximately seven-minute launch window opening around 3:13 a.m. EST, March 22.

  4. EVA Suit Microbial Leakage Investigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during...

  5. Integrated Suit Test 1 - A Study to Evaluate Effects of Suit Weight, Pressure, and Kinematics on Human Performance during Lunar Ambulation

    Science.gov (United States)

    Gernhardt, Michael L.; Norcross, Jason; Vos, Jessica R.

    2008-01-01

    In an effort to design the next generation Lunar suit, NASA has initiated a series of tests aimed at understanding the human physiological and biomechanical affects of space suits under a variety of conditions. The first of these tests was the EVA Walkback Test (ICES 2007-01-3133). NASA-JSC assembled a multi-disciplinary team to conduct the second test of the series, titled Integrated Suit Test 1 (IST-1), from March 6 through July 24, 2007. Similar to the Walkback Test, this study was performed with the Mark III (MKIII) EVA Technology Demonstrator suit, a treadmill, and the Partial Gravity Simulator in the Space Vehicle Mock-Up Facility at Johnson Space Center. The data collected for IST-1 included metabolic rates, ground reaction forces, biomechanics, and subjective workload and controllability feedback on both suited and unsuited (shirt-sleeve) astronaut subjects. For IST-1 the center of gravity was controlled to a nearly perfect position while the weight, pressure and biomechanics (waist locked vs. unlocked) were varied individually to evaluate the effects of each on the ability to perform level (0 degree incline) ambulation in simulated Lunar gravity. The detailed test methodology and preliminary key findings of IST-1 are summarized in this report.

  6. Mini AERCam Inspection Robot for Human Space Missions

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

    2004-01-01

    The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

  7. EDL Sensor Suite, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Air Data Systems (OADS) L.L.C. proposes a LIDAR based remote measurement sensor suite capable of satisfying a significant number of the desired sensing...

  8. Aboard the Space Shuttle.

    Science.gov (United States)

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  9. The ZPIC educational code suite

    Science.gov (United States)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  10. STS-82 Pilot Scott J. 'Doc' Horowitz Suit Up

    Science.gov (United States)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz puts on a glove of his launch and entry suit with assistance from a suit technician in the Operations and Checkout Building. This is Horowitz''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  11. Continued Advancement of Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    Science.gov (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda

    2015-01-01

    The Development of a new, robust, portable life support system (PLSS) is currently a high NASA priority in order to support longer and safer extravehicular activity (EVA) missions that will be necessary as space travel extends to near-Earth asteroids and eventually Mars. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. The Metal Oxide (MetOx) canister has a finite CO2 adsorption capacity and therefore in order to extend mission times, the unit would have to be larger and heavier, which is undesirable; therefore new CO2 control technologies must be developed. While recent work has centered on the use of alternating sorbent beds that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that vents CO2 to space but retains oxygen(O2). A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Conventional gas separation membranes do not have adequate selectivity for use in the PLSS, but the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous film filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a recently completed Phase II Small Business Innovative Research project, Reaction Systems developed a new reactive liquid that has effectively zero vapor pressure, making it an ideal candidate for use in an SLM. Results obtained with the SLM in a flat sheet configuration with representative pressures of CO2, O2, and water (H2O) have shown that the CO2 permeation rate and CO2/O2 selectivity requirements have been met. In addition, the SLM vents moisture to space very effectively. The SLM has also been prepared and tested in a hollow fiber form, which will be

  12. Instrumented Suit Hard Upper Torso (HUT) for Ergonomic Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — It is well known that the EVA suit (EMU) has the potential to cause crew injury and decreased performance. Engineering data on the suit interaction of the human...

  13. Astronaut John Grunsfeld during EVA training in the WETF

    Science.gov (United States)

    1995-01-01

    Astronaut John M. Grunsfeld, STS-67 mission specialist, gives a salute as he is about to be submerged in a 25-feet deep pool in JSC's Weightless Environment Training Facility (WETF). Wearing a special training version of the Extravehicular Mobility Unit (EMU) space suit and assisted by several JSC SCUBA-equipped divers, Grunsfeld was later using the pool to rehearse contingency space walk chores.

  14. Innovative Robot Archetypes for In-Space Construction and Maintenance

    Science.gov (United States)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  15. HPC Benchmark Suite NMx, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation Inc., (IAI) and University of Central Florida (UCF) propose to develop a comprehensive numerical test suite for benchmarking current and...

  16. Development and Test of Robotically Assisted Extravehicular Activity Gloves

    Science.gov (United States)

    Rogers, Jonathan M.; Peters, Benjamin J.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    Over the past two years, the High Performance EVA Glove (HPEG) project under NASA's Space Technology Mission Directorate (STMD) funded an effort to develop an electromechanically-assisted space suit glove. The project was a collaboration between the Johnson Space Center's Software, Robotics, and Simulation Division and the Crew and Thermal Systems division. The project sought to combine finger actuator technology developed for Robonaut 2 with the softgoods from the ILC Phase VI EVA glove. The Space Suit RoboGlove (SSRG) uses a system of three linear actuators to pull synthetic tendons attached to the glove's fingers to augment flexion of the user's fingers. To detect the user's inputs, the system utilizes a combination of string potentiometers along the back of the fingers and force sensitive resistors integrated into the fingertips of the glove cover layer. This paper discusses the development process from initial concepts through two major phases of prototypes, and the results of initial human testing. Initial work on the project focused on creating a functioning proof of concept, designing the softgoods integration, and demonstrating augmented grip strength with the actuators. The second year of the project focused on upgrading the actuators, sensors, and software with the overall goal of creating a system that moves with the user's fingers in order to reduce fatigue associated with the operation of a pressurized glove system. This paper also discusses considerations for a flight system based on this prototype development and address where further work is required to mature the technology.

  17. Planetary Conjunction: Economics, Politics, and Partnering In Space

    Science.gov (United States)

    2013-06-01

    Andrade Gutierrez Quimica Ltda, Centro Tecnico Aerospacial, Empresa Brasileira de Telecomunicacões, Instituto de Aeronautica e Espaco, and Instituto...Activity (EVA) During Space Transportation System (STS) -82, a Servicing Mission for the Hubble Space Telescope (HST).........................33 13...responsible for the solar array that would power Hubble while in orbit.63 Figure 12: An Extravehicular Activity (EVA) During Space Transportation

  18. HPC Benchmark Suite NMx, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In the phase II effort, Intelligent Automation Inc., (IAI) and University of Central Florida (UCF) propose to develop a comprehensive numerical test suite for...

  19. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    Science.gov (United States)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  20. STS-49 ASEM activities illustrated with PLAID computer graphics

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activities are illustrated with PLAID computer graphics. Two extravehicular mobility unit (EMU) suited crewmembers work on multipurpose experiment support structure (MPESS) (with legs attached) grappled by remote manipulator system (RMS) end effector and positioned in the over-the-nose location (above OV-105's crew compartment). This position has been designated as the assembly area for Space Station Freedom (SSF). This procedure will evaluate the ability to use the RMS to position MPESS carrier and EVA crewmembers forward and above the PLB.

  1. Nonventing Thermal and Humidity Control for EVA Suits, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these...

  2. Dynamic Human-Centered Suit Design: A Computational and Experimental Method

    Data.gov (United States)

    National Aeronautics and Space Administration — Introduction: Manned space flight necessitates an ability to provide life support to crewmembers during multiple mission stages, in the form of space suits. With...

  3. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  4. Modeling the Impact of Space Suit Components and Anthropometry on the Center of Mass of a Seated Crewmember

    Science.gov (United States)

    Rajulu, Sudhakar; Blackledge, Christopher; Ferrer, Mike; Margerum, Sarah

    2009-01-01

    subset of the possible maximum and minimum sized crewmembers, were segmented using point-cloud software to create 17 major body segments. The general approach used to calculate the human mass properties was to utilize center of volume outputs from the software for each body segment and apply a homogeneous density function to determine segment mass 3-D coordinates. Suit components, based on the current consensus regarding predicted suit configuration values, were treated as point masses and were positioned using vector mathematics along the body segments based on anthropometry and COM position. A custom MATLAB script then articulates the body segment and suit positions into a selected seated configuration, using joint angles that characterize a standard seated position and a CEV specific seated position. Additional MATLAB(r) scripts are finally used to calculate the composite COM positions in 3-D space for all 12 manikins in both suited and unsuited conditions for both seated configurations. The analysis focused on two aspects: (1) to quantify how much the whole body COM varied from the smallest to largest subject and (2) the impacts of the suit components on the overall COM in each seat configuration. The location across all boundary manikins of the anterior- posterior COM varied by approximately 7cm, the vertical COM varied by approximately 9-10cm, and the mediolateral COM varied by approximately 1.2 cm from the midline sagittal plane for both seat configurations. This variation was surprisingly large given the relative proportionality of the mass distribution of the human body. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration is in the standard posture, the suited vertical COM shifts inferiorly by up to 1 cm whereas in the CEV posture the vertical COM has no appreciable change. These general differences were due the

  5. A Parametric Model of Shoulder Articulation for Virtual Assessment of Space Suit Fit

    Science.gov (United States)

    Kim, K. Han; Young, Karen S.; Bernal, Yaritza; Boppana, Abhishektha; Vu, Linh Q.; Benson, Elizabeth A.; Jarvis, Sarah; Rajulu, Sudhakar L.

    2016-01-01

    Suboptimal suit fit is a known risk factor for crewmember shoulder injury. Suit fit assessment is however prohibitively time consuming and cannot be generalized across wide variations of body shapes and poses. In this work, we have developed a new design tool based on the statistical analysis of body shape scans. This tool is aimed at predicting the skin deformation and shape variations for any body size and shoulder pose for a target population. This new process, when incorporated with CAD software, will enable virtual suit fit assessments, predictively quantifying the contact volume, and clearance between the suit and body surface at reduced time and cost.

  6. A Noninvasive Miniaturized-Wireless Laser-Doppler Fiber-Optic Sensor for Understanding Distal Fingertip Injuries in Astronauts

    Science.gov (United States)

    Ansari, Rafat R.; Jones, Jeffrey A.; Pollonini, Luca; Rodriquez, Mikael; Opperman, Roedolph; Hochstein, Jason

    2009-01-01

    During extra-vehicular activities (EVAs) or spacewalks astronauts over use their fingertips under pressure inside the confined spaces of gloves/space suits. The repetitive hand motion is a probable cause for discomfort and injuries to the fingertips. We describe a new wireless fiber-optic probe that can be integrated inside the astronaut glove for noninvasive blood perfusion measurements in distal fingertips. In this preliminary study, we present blood perfusion measurements while performing hand-grip exercises simulating the use of space tools.

  7. Astronaut Neil Armstrong in Launch Complex 16 trailer during suiting up

    Science.gov (United States)

    1966-01-01

    Astronaut Neil A. Armstrong, command pilot of the Gemini 8 space flight, sits in the Launch Complex 16 trailer during suiting up operations for the Gemini 8 mission. Suit technician Jim Garrepy assists.

  8. Characterization of the Radiation Shielding Properties of US and Russian EVA Suits

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.; Frank, A.L.

    2001-01-01

    Reported herein are results from the Eril Research, Inc. (ERI) participation in the NASA Johnson Space Center sponsored study characterizing the radiation shielding properties of the two types of space suit that astronauts are wearing during the EVA on-orbit assembly of the International Space Station (ISS). Measurements using passive detectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suits and a tissue equivalent phantom to monoenergetic proton and electron beams at the Loma Linda University Medical Center (LLUMC). During irradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as a function of depth was measured using TLDs exposed behind swatches of the two suit materials and inside the two EVA helmets. Considerable reduction in electron dose was measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to an increase in dose measured in exposures to 60 MeV protons. During 232 MeV proton irradiations, measurements were made with TLDs and CR-39 PNTDs at five organ locations inside a tissue equivalent phantom, exposed both with and without the two EVA suits. The EVA helmets produce a 13 to 27 percent reduction in total dose and a 0 to 25 percent reduction in dose equivalent when compared to measurements made in the phantom head alone. Differences in dose and dose equivalent between the suit and non-suit irradiations for the lower portions of the two EVA suits tended to be smaller. Proton-induced target fragmentation was found to be a significant source of increased dose equivalent, especially within the two EVA helmets, and average quality factor inside the EMU and Orlan-M helmets was 2 to 14 percent greater than that measured in the bare phantom head

  9. Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 1. Biosafety Level 4 Suit Laboratory Suite Entry and Exit Procedures.

    Science.gov (United States)

    Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G

    2016-10-03

    Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.

  10. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  11. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    Science.gov (United States)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  12. Exploiting orbital effects for short-range extravehicular transfers

    Science.gov (United States)

    Williams, Trevor; Baughman, David

    The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.

  13. STS-90 Pilot Scott Altman is suited up for launch

    Science.gov (United States)

    1998-01-01

    STS-90 Pilot Scott Altman is assisted during suit-up activities by Lockheed Suit Technician Valerie McNeil from Johnson Space Center in KSC's Operations and Checkout Building. Altman and the rest of the STS-90 crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His first trip into space, Altman is participating in a life sciences research flight that will focus on the most complex and least understood part of the human body - - the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  14. Compact, Efficient, and Reliable Ventilation Fan for EVA Suits, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced EVA suits for space exploration will need a portable life support system (PLSS) that is compact, lightweight, highly reliable, and meets stringent...

  15. Weightless environment simulation test; Mujuryo simulation shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Yamamoto, T.; Kato, F. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-07-20

    Kawasaki Heavy Industries, Ltd., delivered a Weightless Environment Test System (WETS) to National Space Development Agency of Japan in 1994. This system creates a weightless environment similar to that in space by balancing gravity and buoyancy in the water, and is constituted of a large water tank, facilities to supply air and cooling water to space suits worn in the water, etc. In this report, a weightless environment simulation test and the facilities to supply air and cooling water are described. In the weightless environment simulation test, the astronaut to undergo tests and training wears a space suit quite similar to the suit worn on the orbit, and performs EVA/IVA (extravehicular activities/intravehicular activities) around a JEM (Japanese Experimental Module) mockup installed in the water verifying JEM design specifications, preparing manuals for operations on the orbit, or receives basic space-related drill and training. An EVA weightless environment simulation test No. 3 was accomplished with success in January, 1997, when the supply of breathing water and cooling water to the space suit, etc., were carried out with safety and reliability. 2 refs., 8 figs., 2 tabs.

  16. Mission Specialist Scott Parazynski checks his flight suit

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski gets help with his flight suit in the Operations and Checkout Building from a suit technician George Brittingham. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  17. Virtual Suit Fit Assessment Using Body Shape Model

    Data.gov (United States)

    National Aeronautics and Space Administration — Shoulder injury is one of the most serious risks for crewmembers in long-duration spaceflight. While suboptimal suit fit and contact pressures between the shoulder...

  18. Compact, Efficient, and Reliable Ventilation Fan for EVA Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced EVA suits for space exploration will need a portable life support system (PLSS) that is compact, lightweight, and highly reliable. A key component is a...

  19. Heart Rhythm Monitoring in the Constellation Lunar and Launch/Landing EVA Suit: Recommendations from an Expert Panel

    Science.gov (United States)

    Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David

    2009-01-01

    There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.

  20. Enhancements to the opera-3d suite

    International Nuclear Information System (INIS)

    Riley, C.P.

    1997-01-01

    The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules emdash a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers. copyright 1997 American Institute of Physics

  1. Leveraging Active Knit Technologies for Aerospace Pressure Suit Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Anti-Gravity Suits (AGS) are garments used in astronautics to prevent crew from experiencing orthostatic intolerance (OI) and consequential blackouts while...

  2. STS-95 Mission Specialist Pedro Duque suits up for launch

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, with the European Space Agency, is helped with his flight suit by suit tech Tommy McDonald in the Operations and Checkout Building. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  3. STS-74 M.S. Jerry L. Ross suits up

    Science.gov (United States)

    1995-01-01

    Spaceflight veteran Jerry L. Ross, Mission Specialist 2 on Shuttle Mission STS-74, is assisted by a suit technician as he finishes getting into his launch/entry suit in the Operations and Checkout Building. Ross and four fellow astronauts will depart shortly for Launch Pad 39A, where the Space Shuttle Atlantis awaits a second liftoff attempt during a seven-minute window scheduled to open at approximately 7:30 a.m. EST, Nov. 12.

  4. Development of a computational model for astronaut reorientation.

    Science.gov (United States)

    Stirling, Leia; Willcox, Karen; Newman, Dava

    2010-08-26

    The ability to model astronaut reorientations computationally provides a simple way to develop and study human motion control strategies. Since the cost of experimenting in microgravity is high, and underwater training can lead to motions inappropriate for microgravity, these techniques allow for motions to be developed and well-understood prior to any microgravity exposure. By including a model of the current space suit, we have the ability to study both intravehicular and extravehicular activities. We present several techniques for rotating about the axes of the body and show that motions performed by the legs create a greater net rotation than those performed by the arms. Adding a space suit to the motions was seen to increase the resistance torque and limit the available range of motion. While rotations about the body axes can be performed in the current space suit, the resulting motions generated a reduced rotation when compared to the unsuited configuration. 2010 Elsevier Ltd. All rights reserved.

  5. Automation and Robotics for Space-Based Systems, 1991

    Science.gov (United States)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  6. SUIT

    DEFF Research Database (Denmark)

    Algreen-Ussing, Gregers; Wedebrunn, Ola

    2003-01-01

    Leaflet om project SUIT udgivet af European Commission. Tryksagen forklarer i korte ord resultatet af projektet SUIT. Kulturværdier i Miljøspørgsmål. Vurdering af projekter og indvirkning på miljø....

  7. Research and development at the Marshall Space Flight Center Neutral Buoyancy Simulator

    Science.gov (United States)

    Kulpa, Vygantas P.

    1987-01-01

    The Neutral Buoyancy Simulator (NBS), a facility designed to imitate zero-gravity conditions, was used to test the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS). Neutral Buoyancy Simulator applications and operations; early space structure research; development of the EASE/ACCESS experiments; and improvement of NBS simulation are summarized.

  8. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    Science.gov (United States)

    Paul, Heather; Jennings, Mallory A.; Lamberth, Erika Guillory

    2012-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  9. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  10. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-05-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  11. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  12. Advanced Extravehicular Activity Pressure Garment Requirements Development

    Science.gov (United States)

    Ross, Amy

    2014-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the by what method the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun, in other cases no effort has been initiated to close the gap. Status of ongoing efforts and potential approaches to open gaps are discussed.

  13. Advanced Sensor Platform to Evaluate Manloads For Exploration Suit Architectures

    Science.gov (United States)

    McFarland, Shane; Pierce, Gregory

    2016-01-01

    Space suit manloads are defined as the outer bounds of force that the human occupant of a suit is able to exert onto the suit during motion. They are defined on a suit-component basis as a unit of maximum force that the suit component in question must withstand without failure. Existing legacy manloads requirements are specific to the suit architecture of the EMU and were developed in an iterative fashion; however, future exploration needs dictate a new suit architecture with bearings, load paths, and entry capability not previously used in any flight suit. No capability currently exists to easily evaluate manloads imparted by a suited occupant, which would be required to develop requirements for a flight-rated design. However, sensor technology has now progressed to the point where an easily-deployable, repeatable and flexible manloads measuring technique could be developed leveraging recent advances in sensor technology. INNOVATION: This development positively impacts schedule, cost and safety risk associated with new suit exploration architectures. For a final flight design, a comprehensive and accurate man loads requirements set must be communicated to the contractor; failing that, a suit design which does not meet necessary manloads limits is prone to failure during testing or worse, during an EVA, which could cause catastrophic failure of the pressure garment posing risk to the crew. This work facilitates a viable means of developing manloads requirements using a range of human sizes & strengths. OUTCOME / RESULTS: Performed sensor market research. Highlighted three viable options (primary, secondary, and flexible packaging option). Designed/fabricated custom bracket to evaluate primary option on a single suit axial. Manned suited manload testing completed and general approach verified.

  14. A comparison of two Shuttle launch and entry suits - Reach envelope, isokinetic strength, and treadmill tests

    Science.gov (United States)

    Schafer, Lauren E.; Rajulu, Sudhakar L.; Klute, Glenn K.

    1992-01-01

    A quantification has been conducted of any existing differences between the performance, in operational conditions, of the Space Shuttle crew Launch Entry Suit (LES) and the new Advanced Crew Escape Suit (ACES). While LES is a partial-pressure suit, the ACES system which is being considered as a replacement for LES is a full-pressure suit. Three tests have been conducted with six subjects to ascertain the suits' reach envelope, strength, and treadmill performance. No significant operational differences were found between the two suit designs.

  15. Goal driven kinematic simulation of flexible arm robot for space station missions

    Science.gov (United States)

    Janssen, P.; Choudry, A.

    1987-01-01

    Flexible arms offer a great degree of flexibility in maneuvering in the space environment. The problem of transporting an astronaut for extra-vehicular activity using a space station based flexible arm robot was studied. Inverse kinematic solutions of the multilink structure were developed. The technique is goal driven and can support decision making for configuration selection as required for stability and obstacle avoidance. Details of this technique and results are given.

  16. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    Science.gov (United States)

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  17. Fuel Oxidizer Reaction Products (FORP) Contamination of Service Module (SM) and Release of N-nitrosodimethylamine(NDMA)in a Humid Environment from Crew EVA Suits Contaminated with FORP

    Science.gov (United States)

    Schmidl, William; Mikatarian, Ron; Lam, Chiu-Wing; West, Bil; Buchanan, Vanessa; Dee, Louis; Baker, David; Koontz, Steve

    2004-01-01

    The Service Module (SM) is an element of the Russian Segment of the International Space Station (ISS). One of the functions of the SM is to provide attitude control for the ISS using thrusters when the U.S. Control Moment Gyros (CMG's) must be desaturated. Prior to an Extravehicular Activity (EVA) on the Russian Segment, the Docking Compartment (DC1) is depressurized, as it is used as an airlock. When the DC1 is depressurized, the CMG's margin of momentum is insufficient and the SM attitude control thrusters need to fire to desaturate the CMG's. SM roll thruster firings induce contamination onto adjacent surfaces with Fuel Oxidizer Reaction Products (FORP). FORP is composed of both volatile and non-volatile components. One of the components of FORP is the potent carcinogen N-nitrosdimethylamine (NDMA). Since the EVA crewmembers often enter the area surrounding the thrusters for tasks on the aft end of the SM and when translating to other areas of the Russian Segment, the presence of FORP is a concern. This paper will discuss FORP contamination of the SM surfaces, the release of NDMA in a humid environment from crew EVA suits, if they happen to be contaminated with FORP, and the toxicological risk associated with the NDMA release.

  18. Habitability and Human Factors Contributions to Human Space Flight

    Science.gov (United States)

    Sumaya, Jennifer Boyer

    2011-01-01

    This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.

  19. Clementine sensor suite

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  20. Inertial motion capture system for biomechanical analysis in pressure suits

    Science.gov (United States)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  1. Development of the DL/H-1 full pressure suit for private spaceflight

    Science.gov (United States)

    León, Pablo de; Harris, Gary L.

    2010-06-01

    The objective of this paper is to detail the need for full pressure suits to protect spaceflight participants during the experimental phases of flight testing of new space vehicles. It also details the objectives, historical background, basis for design, problems encountered by the designers and final development of the DL/H-1 full pressure suit. It will include justification for its use and results of the initial tests in the high altitude chamber and spacecraft simulator at the J.D. Odegard School of Aerospace Sciences at the University of North Dakota. For the test flights of early commercial space vehicles and tourist suborbital spacecrafts, emergency protection from the rarified air of the upper atmosphere and the vacuum of low Earth orbit almost certainly will be a requirement. Suborbital vehicles could be operating in "space equivalent conditions" for as long as 30 min to as much as several hours. In the case of cabin pressure loss, without personal protection, catastrophic loss of crew and vehicle could result. This paper explains the different steps taken by the authors who designed and built a preflight hardware pressure suit that can meet the physiological and comfort requirements of the tourist suborbital industry and the early commercial private spaceflight community. The suborbital tourist and commercial spaceflight industry have unique problems confronting the pressure suit builder such as unpressurized comfort, reasonable expense, unique sizing of the general population, decompression complications of persons not fitting a past military physiology profile and equipment weight issues. In addition, the lack of a certifying agency or guidance from international or national aviation authorities has created the opportunity for the emerging civilian pressure suit industry to create a new safety standard by which it can regulate itself in the same way the recreational SCUBA diving industry has since the late 1950s.

  2. Advanced Extra-Vehicular Activity Pressure Garment Requirements Development

    Science.gov (United States)

    Ross, Amy; Aitchison, Lindsay; Rhodes, Richard

    2015-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the method by which the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun; in other cases no effort has been initiated to close the gap. Status of on-going efforts and potential approaches to open gaps are discussed.

  3. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  4. Construction in space - Toward a fresh definition of the man/machine relation

    Science.gov (United States)

    Watters, H. H.; Stokes, J. W.

    1979-01-01

    The EVA (extravehicular activity) project forming part of the space construction process is reviewed. The manual EVA constuction, demonstrated by the crew of Skylab 3 by assembling a modest space structure in the form of the twin-pole sunshade, is considered, indicating that the experiment dispelled many doubts about man's ability to execute routine and contingency EVA operations. Tests demonstrating the feasibility of remote teleoperator rendezvous, station keeping, and docking operations, using hand controllers for direct input and television for feedback, are noted. Future plans for designing space construction machines are mentioned.

  5. A Laser-Based Diagnostic Suite for Hypersonic Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR effort, Los Gatos Research (LGR) proposes to develop a suite of laser-based diagnostics for the study of reactive and non-reactive hypersonic flows....

  6. Modeling the Impact of Space Suit Components and Anthropometry on the Center of Mass of a Seated Crewmember

    Science.gov (United States)

    Blackledge, Christopher; Margerum, Sarah; Ferrer, Mike; Morency, Richard; Rajulu, Sudhakar

    2010-01-01

    The Crew Impact Attenuation System (CIAS) is the energy-absorbing strut concept that dampens Orion Crew Exploration Vehicle (CEV) landing loads to levels sustainable by the crew. Significant COM variations across suited crew configurations would amplify the inertial effects of the pallet and potentially create unacceptable crew loading during launch and landing. The objective of this study was to obtain data needed for dynamic simulation models by quantifying the effects of posture, suit components, and the expected range of anthropometry on the COM of a seated individual. Several elements are required for the COM calculation of a suited human in a seated position: anthropometry, body segment mass, suit component mass, suit component location relative to the body, and joint angles defining the seated posture. Three-dimensional (3D) human body models, suit mass data, and vector calculus were utilized to compute the COM positions for 12 boundary manikins in two different seated postures. The analysis focused on two objectives: (1) quantify how much the wholebody COM varied from the smallest to largest subject and (2) quantify the effects of the suit components on the overall COM in each seat configuration. The location of the anterior-posterior COM varied across all boundary manikins by about 7 cm, and the vertical COM varied by approximately 9 to 10 cm. The mediolateral COM varied by 1.2 cm from the midline sagittal plane for both seat configurations. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration was in the standard posture the suited vertical COM shifted inferiorly by as much as 1 cm, whereas in the CEV posture the vertical COM had no appreciable change. These general differences were due to the high proportion of suit mass located in the boots and lower legs and their corresponding distance from the body COM

  7. 21st Century Extravehicular Activities: Synergizing Past and Present Training Methods for Future Spacewalking Success

    Science.gov (United States)

    Moore, Sandra K.; Gast, Matthew A.

    2009-01-01

    Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind." were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the the spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first space walk in June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill-set and subsequently the training methods, changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the Skylab, Space Shuttle; and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.

  8. Radiation dose assessment in space missions. The MATROSHKA experiment

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2010-01-01

    The exact determination of radiation dose in space is a demanding and challenging task. Since January 2004, the International Space Station is equipped with a human phantom which is a key part of the MATROSHKA Experiment. The phantom is furnished with thousands of radiation sensors for the measurement of depth dose distribution, which has enabled the organ dose calculation and has demonstrated that personal dosemeter at the body surface overestimates the effective dose during extra-vehicular activity by more than a factor two. The MATROSHKA results serve to benchmark models and have therefore a large impact on the extrapolation of models to outer space. (author)

  9. Observation planning algorithm of a Japanese space-borne sensor: Hyperspectral Imager SUIte (HISUI) onboard International Space Station (ISS) as platform

    Science.gov (United States)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.

  10. Development and Testing of Compression Technologies Using Advanced Materials for Mechanical Counter-Pressure Planetary Exploration Suits

    Data.gov (United States)

    National Aeronautics and Space Administration — Mechanical counterpressure (MCP) space suits have the potential to greatly improve the mobility of astronauts as they conduct planetary exploration activities. MCP...

  11. Radiation dosimetry for the space shuttle program

    International Nuclear Information System (INIS)

    Jones, K.L.; Richmond, R.G.; Cash, B.L.

    1985-01-01

    Radiation measurements aboard the Space Shuttle are made to record crew doses for medical records, to verify analytical shielding calculations used in dose predictions and to provide dosimetry support for radiation sensitive payloads and experiments. Low cost systems utilizing thermoluminescent dosimeters, nuclear track detectors and activation foils have been developed to fulfill these requirements. Emphasis has been placed on mission planning and dose prediction. As a result, crew doses both inside the orbiter and during extra-vehicular activities have been reasonable low. Brief descriptions of the space radiation environment, dose prediction models, and radiation measurement systems are provided, along with a summary of the results for the first fourteen Shuttle flights

  12. Investigation of humidity control via membrane separation for advanced Extravehicular Mobility Unit (EMU) application

    Science.gov (United States)

    Newbold, D. D.; Ray, R. J.; Pledger, W. A.; Mccray, S. B.; Brown, M. F.

    1989-01-01

    This paper describes the development of a membrane-based process for dehumidifying the Extravehicular Mobility Unit (EMU). The membrane process promises to be smaller, lighter, and more energy efficient than the other technologies for dehumidification. The dehydration membranes were tested for 90 days at conditions expected to be present in the EMU. The results of these tests indicate that membrane-based technology can effectively control humidity in the EMU.

  13. Space-based multifunctional end effector systems functional requirements and proposed designs

    Science.gov (United States)

    Mishkin, A. H.; Jau, B. M.

    1988-01-01

    The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested

  14. Validation suite for MCNP

    International Nuclear Information System (INIS)

    Mosteller, Russell D.

    2002-01-01

    Two validation suites, one for criticality and another for radiation shielding, have been defined and tested for the MCNP Monte Carlo code. All of the cases in the validation suites are based on experiments so that calculated and measured results can be compared in a meaningful way. The cases in the validation suites are described, and results from those cases are discussed. For several years, the distribution package for the MCNP Monte Carlo code1 has included an installation test suite to verify that MCNP has been installed correctly. However, the cases in that suite have been constructed primarily to test options within the code and to execute quickly. Consequently, they do not produce well-converged answers, and many of them are physically unrealistic. To remedy these deficiencies, sets of validation suites are being defined and tested for specific types of applications. All of the cases in the validation suites are based on benchmark experiments. Consequently, the results from the measurements are reliable and quantifiable, and calculated results can be compared with them in a meaningful way. Currently, validation suites exist for criticality and radiation-shielding applications.

  15. Effects of the space environment on the health and safety of space workers

    Science.gov (United States)

    Hull, W. E.

    1980-07-01

    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation.

  16. Effects of the space environment on the health and safety of space workers

    Science.gov (United States)

    Hull, W. E.

    1980-01-01

    Large numbers of individuals are required to work in space to assemble and operate a Solar Power Satellite. The physiological and behavioral consequences for large groups of men and women who perform complex tasks in the vehicular or extravehicular environments over long periods of orbital stay time were considered. The most disturbing consequences of exposure to the null gravity environment found relate to: (1) a generalized cardiovascular deconditioning along with loss of a significant amount of body fluid volume; (2) loss of bone minerals and muscle mass; and (3) degraded performance of neutral mechanisms which govern equilibrium and spatial orientation.

  17. Human tolerance to space flight

    Science.gov (United States)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  18. Airport Gate Activity Monitoring Tool Suite for Improved Turnaround Prediction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this research is to create a suite of tools for monitoring airport gate activities with the objective of improving aircraft turnaround. Airport ramp...

  19. Closed-Loop, Non-Venting Thermal Control for Mars EVA Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA seeks new thermal control technology for EVA suits on Mars. The system must be closed-loop and non-venting, have negligible impact on the Martian environment,...

  20. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    Science.gov (United States)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  1. PLRP-3: Operational Perspectives of Conducting Science-Driven Extravehicular Activity with Communications Latency

    Science.gov (United States)

    Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.

    2016-01-01

    The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.

  2. 21st Century extravehicular activities: Synergizing past and present training methods for future spacewalking success

    Science.gov (United States)

    Moore, Sandra K.; Gast, Matthew A.

    2010-10-01

    Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind" were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the true spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first spacewalk in the June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill set and subsequently the training methods changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the SkyLab, Space Shuttle, and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA's success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.

  3. Energy Storage Technology Development for Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  4. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  5. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  6. Flexible Polymer Sensor for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Perception Robotics has developed an innovative new type of compliant tactile sensing solution, a polymeric skin (PolySkinTM) that can be molded into any form...

  7. Impact of low gravity on water electrolysis operation

    Science.gov (United States)

    Powell, F. T.; Schubert, F. H.; Lee, M. G.

    1989-01-01

    Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload.

  8. Instant Spring Tool Suite

    CERN Document Server

    Chiang, Geoff

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A tutorial guide that walks you through how to use the features of Spring Tool Suite using well defined sections for the different parts of Spring.Instant Spring Tool Suite is for novice to intermediate Java developers looking to get a head-start in enterprise application development using Spring Tool Suite and the Spring framework. If you are looking for a guide for effective application development using Spring Tool Suite, then this book is for you.

  9. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  10. Extra Dose Due to Extravehicular Activity During the NASA4 Mission, Measured by an On-Board TLD System

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Hejja, I.; Lang, E.; Feher, I. [Budapest (Hungary)

    1999-07-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO{sub 4}:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO{sub 4}:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 {mu}Gy.h{sup -1} at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET. (author)

  11. Walking a mile in another's shoes: The impact of wearing an Age Suit.

    Science.gov (United States)

    Lavallière, Martin; D'Ambrosio, Lisa; Gennis, Angelina; Burstein, Arielle; Godfrey, Kathryn M; Waerstad, Hilde; Puleo, Rozanne M; Lauenroth, Andreas; Coughlin, Joseph F

    2017-01-01

    The "Age Suit" described in this article was developed to enable future designers, business leaders, and engineers to experience navigating the world as many older adults must. Tools such as this Age Suit offer the opportunity to "walk a mile" in another's shoes to develop empathy that can result in better design of spaces, goods, and services to meet the needs of a rapidly growing older population. This work first examined, through a series of clinical tests, whether younger adults' physical capacities were reduced in a direction consistent with aging by wearing a suit developed by the MIT AgeLab. An experiential learning task was then completed with the suit to understand its impact on completion of an instrumental activity of daily living. Results showed that younger adults wearing the suit experienced changes in task performance consistent with expected changes associated with aging. Participants' self-reports from the experiential learning task indicated that they were able to empathize with older adults regarding some issues they face while completing a grocery shopping task. Future research with the suit should involve a wider range of individuals from the population and examine what effect participants' levels of fitness have on the experience of wearing the suit.

  12. Astronaut Anna Fisher Suits Up for NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  13. Astronaut Anna Fisher Suiting Up For NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  14. Astronaut Anna Fisher Suited Up For NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  15. RAJA Performance Suite

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    The RAJA Performance Suite is designed to evaluate performance of the RAJA performance portability library on a wide variety of important high performance computing (HPC) algorithmic lulmels. These kernels assess compiler optimizations and various parallel programming model backends accessible through RAJA, such as OpenMP, CUDA, etc. The Initial version of the suite contains 25 computational kernels, each of which appears in 6 variants: Baseline SequcntiaJ, RAJA SequentiaJ, Baseline OpenMP, RAJA OpenMP, Baseline CUDA, RAJA CUDA. All variants of each kernel perform essentially the same mathematical operations and the loop body code for each kernel is identical across all variants. There are a few kernels, such as those that contain reduction operations, that require CUDA-specific coding for their CUDA variants. ActuaJ computer instructions executed and how they run in parallel differs depending on the parallel programming model backend used and which optimizations are perfonned by the compiler used to build the Perfonnance Suite executable. The Suite will be used primarily by RAJA developers to perform regular assessments of RAJA performance across a range of hardware platforms and compilers as RAJA features are being developed. It will also be used by LLNL hardware and software vendor panners for new defining requirements for future computing platform procurements and acceptance testing. In particular, the RAJA Performance Suite will be used for compiler acceptance testing of the upcoming CORAUSierra machine {initial LLNL delivery expected in late-2017/early 2018) and the CORAL-2 procurement. The Suite will aJso be used to generate concise source code reproducers of compiler and runtime issues we uncover so that we may provide them to relevant vendors to be fixed.

  16. Battery and Fuel Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  17. Battery and Fuel Cell Development for NASA's Exploration Missions

    Science.gov (United States)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  18. Apparatus for storing protective suits

    International Nuclear Information System (INIS)

    Englemann, H.J.; Koller, J.; Schrader, H.R.; Schade, G.; Pedrerol, J.

    1975-01-01

    Arrangements are described for storing one or more protective suits when contaminated on the outside. In order to permit a person wearing a contaminated suit to leave a contaminated area safely, and without contaminating the environment, it has hitherto been the practice for the suit to be passed through a 'lock' and cleansed under decontaminating showers whilst still being worn. This procedure is time wasting and not always completely effective, and it may be necessary to provide a second suit for use whilst the first suit is being decontaminated. Repeated decontamination may also result in undue wear and tear. The arrangements described provide a 'lock' chamber in which a contaminated suit may be stowed away without its interior becoming contaminated, thus allowing repeated use by persons donning and shedding it. (U.K.)

  19. Pharmacy settles suit.

    Science.gov (United States)

    1998-10-02

    A suit was filed by an HIV-positive man against a pharmacy that inadvertently disclosed his HIV status to his ex-wife and children. His ex-wife tried to use the information in a custody battle for their two children. The suit against the pharmacy was settled, but the terms of the settlement remain confidential.

  20. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    Science.gov (United States)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  1. Development of an automated checkout, service and maintenance system for a Space Station EVAS

    Science.gov (United States)

    Abeles, Fred J.; Tri, Terry; Blaser, Robert

    1988-01-01

    The development of a new operational system for the Space Station will minimize the time normally spent on performing on-orbit checkout, servicing, and maintenance of an extravehicular activity system of the Space Station. This system, the Checkout, Servicing, and Maintenance System (COSM), is composed of interactive control software interfacing with software simulations of hardware components. The major elements covered in detail include the controller, the EMU simulator and the regenerative life support system. The operational requirements and interactions of the individual elements as well as the protocols are also discussed.

  2. Human Activity Behavior and Gesture Generation in Virtual Worlds for Long- Duration Space Missions. Chapter 8

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Damer, Bruce; Brodsky, Boris; vanHoff, Ron

    2007-01-01

    A virtual worlds presentation technique with embodied, intelligent agents is being developed as an instructional medium suitable to present in situ training on long term space flight. The system combines a behavioral element based on finite state automata, a behavior based reactive architecture also described as subsumption architecture, and a belief-desire-intention agent structure. These three features are being integrated to describe a Brahms virtual environment model of extravehicular crew activity which could become a basis for procedure training during extended space flight.

  3. Medical support and technology for long-duration space missions

    Science.gov (United States)

    Furukawa, S.; Nicogossian, A.; Buchanan, P.; Pool, S. L.

    1982-01-01

    The current philosophy and development directions being taken towards realization of medical systems for use on board space stations are discussed. Data was gained on the performance of physical examinations, venipuncture and blood flow, blood smear and staining, white blood cell differential count, throat culture swab and colony count, and microscopy techniques during a 28-day period of the Skylab mission. It is expected that the advent of Shuttle flights will rapidly increase the number of persons in space, create a demand for in-space rather than on-earth medical procedures, and necessitate treatments for disorders without the provision for an early return to earth. Attention is being given to pressurized environment and extravehicular conditions of treatment, the possibilities of the use of the OTV for moving injured or ill crewmembers to other space stations, and to isolation of persons with communicable diseases from station crews.

  4. From Model Rockets to Spacewalks: an Astronaut Physician’s Journey and the Science of the United States’ Space Program*

    OpenAIRE

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can ...

  5. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  6. Non-Venting Thermal and Humidity Control for EVA Suits

    Science.gov (United States)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  7. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  8. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  9. STS-95 Mission Specialist Duque suits up during TCDT

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, representing the European Space Agency, suits up in the Operations and Checkout Building prior to his trip to Launch Pad 39-B. Duque and the rest of the STS-95 crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  10. Development of Power Assisting Suit

    Science.gov (United States)

    Yamamoto, Keijiro; Ishii, Mineo; Hyodo, Kazuhito; Yoshimitsu, Toshihiro; Matsuo, Takashi

    In order to realize a wearable power assisting suit for assisting a nurse to carry a patient in her arms, the power supply and control systems of the suit have to be miniaturized, and it has to be wireless and pipeline-less. The new wearable suit consists of shoulders, arms, back, waist and legs units to be fitted on the nurse's body. The arms, waist and legs have new pneumatic rotary actuators driven directly by micro air pumps supplied by portable Ni-Cd batteries. The muscle forces are sensed by a new muscle hardness sensor utilizing a sensing tip mounted on a force sensing film device. An embedded microcomputer is used for the calculations of control signals. The new wearable suit was applied practically to a human body and a series of movement experiments that weights in the arms were held and taken up and down was performed. Each unit of the suit could transmit assisting torque directly to each joint verifying its practicability.

  11. The vTAS suite: A simulator for classical and multiplexed three-axis neutron spectrometers

    International Nuclear Information System (INIS)

    Boehm, M.; Filhol, A.; Raoul, Y.; Kulda, J.; Schmidt, W.; Schmalzl, K.; Farhi, E.

    2013-01-01

    The vTAS suite provides graphical assistance to prepare and perform inelastic neutron scattering experiments on a TAS instrument, including latest multiplexed instrumental configurations, such as FlatCone, IMPS and UFO. The interactive display allows for flexible translation between instrument positions in real space and neutron scattering conditions represented in reciprocal space. It is a platform independent public domain software tool, available for download from the website of the Institut Laue Langevin (ILL).

  12. Evaluating Suit Fit Using Performance Degradation

    Science.gov (United States)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2011-01-01

    The Mark III suit has multiple sizes of suit components (arm, leg, and gloves) as well as sizing inserts to tailor the fit of the suit to an individual. This study sought to determine a way to identify the point an ideal suit fit transforms into a bad fit and how to quantify this breakdown using mobility-based physical performance data. This study examined the changes in human physical performance via degradation of the elbow and wrist range of motion of the planetary suit prototype (Mark III) with respect to changes in sizing and as well as how to apply that knowledge to suit sizing options and improvements in suit fit. The methods implemented in this study focused on changes in elbow and wrist mobility due to incremental suit sizing modifications. This incremental sizing was within a range that included both optimum and poor fit. Suited range of motion data was collected using a motion analysis system for nine isolated and functional tasks encompassing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm only. The results were then compared across sizing configurations. The results of this study indicate that range of motion may be used as a viable parameter to quantify at what stage suit sizing causes a detriment in performance; however the human performance decrement appeared to be based on the interaction of multiple joints along a limb, not a single joint angle. The study was able to identify a preliminary method to quantify the impact of size on performance and to develop a means to gauge tolerances around optimal size. More work is needed to improve the assessment of optimal fit and to compensate for multiple joint interactions.

  13. Modeling Coronal Mass Ejections with the Multi-Scale Fluid-Kinetic Simulation Suite

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Borovikov, S. N.; Wu, S. T.; Yalim, M. S.; Kryukov, I. A.; Colella, P. C.; Van Straalen, B.

    2017-01-01

    The solar eruptions and interacting solar wind streams are key drivers of geomagnetic storms and various related space weather disturbances that may have hazardous effects on the space-borne and ground-based technological systems as well as on human health. Coronal mass ejections (CMEs) and their interplanetary counterparts, interplanetary CMEs (ICMEs), belong to the strongest disturbances and therefore are of great importance for the space weather predictions. In this paper we show a few examples of how adaptive mesh refinement makes it possible to resolve the complex CME structure and its evolution in time while a CME propagates from the inner boundary to Earth. Simulations are performed with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). (paper)

  14. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    Science.gov (United States)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  15. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  16. Adobe Creative Suite 4 Bible

    CERN Document Server

    Padova, Ted

    2009-01-01

    As one of the few books to cover integration and workflow issues between Photoshop, Illustrator, InDesign, GoLive, Acrobat, and Version Cue, this comprehensive reference is the one book that Creative Suite users need; Two well-known and respected authors cover topics such as developing consistent color-managed workflows, moving files among the Creative Suite applications, preparing files for print or the Web, repurposing documents, and using the Creative Suite with Microsoft Office documents; More than 1,200 pages are packed with valuable advice and techniques for tackling common everyday issu

  17. NPP Visible Infrared Imager-Radiometer Suite (VIIRS) Diffuse Attenuation Coefficient for Downwelling Irradiance (KD) Global Mapped Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Visible and Infrared Imager/Radiometer Suite (VIIRS) is a multi-disciplinary instrument that is being flown on the Joint Polar Satellite System (JPSS) series of...

  18. STS-93 Pilot Ashby suits up before launch

    Science.gov (United States)

    1999-01-01

    In the Operations and Checkout Building during final launch preparations for the second time, STS-93 Pilot Jeffrey S. Ashby waves after donning his launch and entry suit while a suit tech adjusts his boot. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS- 93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Eileen M. Collins, Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  19. A monograph of the National Space Transportation System Office (NSTSO) integration activities conducted at the NASA Lyndon B. Johnson Space Center for the EASE/ACCESS payload flown on STS 61-B

    Science.gov (United States)

    Chassay, Charles

    1987-01-01

    The integration process of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) for the Experimental Assembly of Structures in Extravehicular activity (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) payload is provided as a subset to the standard payload integration process used by the NASA Space Transportation System (STS) to fly payloads on the Space Shuttle. The EASE/ACCESS payload integration activities are chronologically reviewed beginning with the initiation of the flight manifesting and integration process. The development and documentation of the EASE/ACCESS integration requirements are also discussed along with the implementation of the mission integration activities and the engineering assessments supporting the flight integration process. In addition, the STS management support organizations, the payload safety process leading to the STS 61-B flight certification, and the overall EASE/ACCESS integration schedule are presented.

  20. Improved airline-type supplied-air plastic suit

    International Nuclear Information System (INIS)

    Jolley, L. Jr.; Zippler, D.B.; Cofer, C.H.; Harper, J.A.

    1978-06-01

    Two piece supplied-air plastic suits are used extensively at the Savannah River Plant for personnel protection against inhalation of airborne plutonium and tritium. Worker comfort and noise level problems gave impetus to development of an improved suit and aid distribution system. The resulting plastic suit and development work are discussed. The plastic suit unit cost is less than $20, the hearing zone noise level is less than 75 dBA, protection factors exceed 10,000, and user comfort is approved. This suit is expected to meet performance requirements for unrestricted use

  1. tmLQCD: a program suite to simulate Wilson twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Urbach, Carsten [Institut fuer Physik, Humboldt-Universitaet, Berlin (Germany)

    2009-05-15

    We discuss a program suite for simulating Quantum Chromodynamics on a 4-dimensional space-time lattice. The basic Hybrid Monte Carlo algorithm is introduced and a number of algorithmic improvements are explained. We then discuss the implementations of these concepts as well as our parallelisation strategy in the actual simulation code. Finally, we provide a user guide to compile and run the program. (orig.)

  2. tmLQCD: a program suite to simulate Wilson twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Jansen, Karl; Urbach, Carsten

    2009-05-01

    We discuss a program suite for simulating Quantum Chromodynamics on a 4-dimensional space-time lattice. The basic Hybrid Monte Carlo algorithm is introduced and a number of algorithmic improvements are explained. We then discuss the implementations of these concepts as well as our parallelisation strategy in the actual simulation code. Finally, we provide a user guide to compile and run the program. (orig.)

  3. Benefits of a Single-Person Spacecraft for Weightless Operations

    Science.gov (United States)

    Griffin, Brand Norman

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work. For planetary operations space suits are still the logical choice; however for safe and rapid access to the weightless environment, spacecraft offer compelling advantages. FlexCraft, a concept for a single-person spacecraft, enables any-time access to space for short or long excursions by different astronauts. For the International Space Station (ISS), going outside is time-consuming, requiring pre-breathing, donning a fitted space suit, and pumping down an airlock. For each ISS EVA this is between 12.5 and 16 hours. FlexCraft provides immediate access to space because it operates with the same cabin atmosphere as its host. Furthermore, compared to the space suit pure oxygen environment, a mixed gas atmosphere lowers the fire risk and allows use of conventional materials and systems. For getting to the worksite, integral propulsion replaces hand-over-hand translation or having another crew member operate the robotic arm. This means less physical exertion and more time at the work site. Possibly more important, in case of an emergency, FlexCraft can return from the most distant point on ISS in less than a minute. The one-size-fits-all FlexCraft means no on-orbit inventory of parts or crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used, there is no suit trauma and because the work is not strenuous, no rest days are required. Furthermore, there is no need to collect hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job. FlexCraft is an efficient solution for asteroid exploration allowing all crew to use one vehicle with no risk of contamination. And, because FlexCraft is a vehicle, its design offers better radiation and micro-meteoroid protection than space suits.

  4. Defining Constellation Suit Helmet Field of View Requirements Employing a Mission Segment Based Reduction Process

    Science.gov (United States)

    McFarland, Shane

    2009-01-01

    Field of view has always been a design feature paramount to helmets, and in particular space suits, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. For Project Constellation, a different approach to helmet requirement maturation was utilized; one that was less a direct function of body position and suit pressure and more a function of the mission segment in which the field of view will be required. Through taxonimization of various parameters that affect suited field of view, as well as consideration for possible nominal and contingency operations during that mission segment, a reduction process was employed to condense the large number of possible outcomes to only six unique field of view angle requirements that still captured all necessary variables while sacrificing minimal fidelity.

  5. High Performance Arm for an Exploration Space Suit, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Final Frontier Design (FFD) proposes to develop and deliver an advanced pressure garment arm with low torque and high Range of Motion (ROM), and increased...

  6. Space station automation and robotics study. Operator-systems interface

    Science.gov (United States)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  7. EXPOSE-E: an ESA astrobiology mission 1.5 years in space.

    Science.gov (United States)

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, André; Panitz, Corinna; Horneck, Gerda; von Heise-Rotenburg, Ralf; Hoppenbrouwers, Tom; Willnecker, Rainer; Baglioni, Pietro; Demets, René; Dettmann, Jan; Reitz, Guenther

    2012-05-01

    The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110 nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10 s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.

  8. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Nadir Profile Science Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi-NPP satellite monitors ozone from space. OMPS will collect total column and vertical profile ozone data...

  9. NOAA JPSS Ozone Mapping and Profiler Suite (OMPS) Nadir Total Column Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi NPP satellite monitors ozone from space. OMPS will collect total column and vertical profile ozone data...

  10. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  11. Monitoring Human Performance During Suited Operations: A Technology Feasibility Study Using EMU Gloves

    Science.gov (United States)

    Bekdash, Omar; Norcross, Jason; McFarland, Shane

    2015-01-01

    Mobility tracking of human subjects while conducting suited operations still remains focused on the external movement of the suit and little is known about the human movement within it. For this study, accelerometers and bend sensitive resistors were integrated into a custom carrier glove to quantify range of motion and dexterity from within the pressurized glove environment as a first stage feasibility study of sensor hardware, integration, and reporting capabilities. Sensors were also placed on the exterior of the pressurized glove to determine if it was possible to compare a glove joint angle to the anatomical joint angle of the subject during tasks. Quantifying human movement within the suit was feasible, with accelerometers clearly detecting movements in the wrist and reporting expected joint angles at maximum flexion or extension postures with repeatability of plus or minus 5 degrees between trials. Bend sensors placed on the proximal interphalangeal and distal interphalangeal joints performed less well. It was not possible to accurately determine the actual joint angle using these bend sensors, but these sensors could be used to determine when the joint was flexed to its maximum and provide a general range of mobility needed to complete a task. Further work includes additional testing with accelerometers and the possible inclusion of hardware such as magnetometers or gyroscopes to more precisely locate the joint in 3D space. We hope to eventually expand beyond the hand and glove and develop a more comprehensive suit sensor suite to characterize motion across more joints (knee, elbow, shoulder, etc.) and fully monitor the human body operating within the suit environment.

  12. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  13. The Flight Telerobotic Servicer (FTS) - A focus for automation and robotics on the Space Station

    Science.gov (United States)

    Hinkal, Sanford W.; Andary, James F.; Watzin, James G.; Provost, David E.

    1987-01-01

    The concept, fundamental design principles, and capabilities of the FTS, a multipurpose telerobotic system for use on the Space Station and Space Shuttle, are discussed. The FTS is intended to assist the crew in the performance of extravehicular tasks; the telerobot will also be used on the Orbital Maneuvering Vehicle to service free-flyer spacecraft. The FTS will be capable of both teleoperation and autonomous operation; eventually it may also utilize ground control. By careful selection of the functional architecture and a modular approach to the hardware and software design, the FTS can accept developments in artificial intelligence and newer, more advanced sensors, such as machine vision and collision avoidance.

  14. Cytogenetic examination of cosmonauts for space radiation exposure estimation

    Science.gov (United States)

    Snigiryova, G. P.; Novitskaya, N. N.; Fedorenko, B. S.

    2012-08-01

    PurposeTo evaluate radiation induced chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). Materials and methodsCytogenetic examination which has been performed in the period 1992-2008 included the analysis of chromosome aberrations using conventional Giemsa staining method in 202 blood samples from 48 cosmonauts who participated in flights on Mir Orbital Station and ISS. ResultsSpace flights led to an increase of chromosome aberration frequency. Frequency of dicentrics plus centric rings (Dic+Rc) depend on the space flight duration and accumulated dose value. After the change of space stations (from Mir Orbital Station to ISS) the radiation load of cosmonauts based on data of cytogenetic examination decreased. Extravehicular activity also adds to chromosome aberration frequency in cosmonauts' blood lymphocytes. Average doses after the first flight, estimated by the frequency of Dic+Rc, were 227 and 113 mGy Eq for long-term flights (LTF) and 107 and 53 mGy Eq for short-term flights (STF). ConclusionCytogenetic examination of cosmonauts can be applied to assess equivalent doses.

  15. From model rockets to spacewalks: an astronaut physician's journey and the science of the United States' space program.

    Science.gov (United States)

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author's life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA's efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation's plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE).

  16. Functional Mobility Testing: A Novel Method to Create Suit Design Requirements

    Science.gov (United States)

    England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar L.

    2008-01-01

    This study was performed to aide in the creation of design requirements for the next generation of space suits that more accurately describe the level of mobility necessary for a suited crewmember through the use of an innovative methodology utilizing functional mobility. A novel method was utilized involving the collection of kinematic data while 20 subjects (10 male, 10 female) performed pertinent functional tasks that will be required of a suited crewmember during various phases of a lunar mission. These tasks were selected based on relevance and criticality from a larger list of tasks that may be carried out by the crew. Kinematic data was processed through Vicon BodyBuilder software to calculate joint angles for the ankle, knee, hip, torso, shoulder, elbow, and wrist. Maximum functional mobility was consistently lower than maximum isolated mobility. This study suggests that conventional methods for establishing design requirements for human-systems interfaces based on maximal isolated joint capabilities may overestimate the required mobility. Additionally, this method provides a valuable means of evaluating systems created from these requirements by comparing the mobility available in a new spacesuit, or the mobility required to use a new piece of hardware, to this newly established database of functional mobility.

  17. The BRITNeY Suite Animation Tool

    DEFF Research Database (Denmark)

    Westergaard, Michael; Lassen, Kristian Bisgaard

    2006-01-01

    This paper describes the BRITNeY suite, a tool which enables users to create visualizations of formal models. BRITNeY suite is integrated with CPN Tools, and we give an example of how to extend a simple stop-and-wait protocol with a visualization in the form of message sequence charts. We also sh...... examples of animations created during industrial projects to give an impression of what is possible with the BRITNeY suite....

  18. STS-87 Mission Specialist Scott poses in his launch and entry spacesuit at LC 39B during TCDT

    Science.gov (United States)

    1997-01-01

    STS-87 Mission Specialist Winston Scott poses in his orange launch and entry spacesuit with NASA suit technicians at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. Scott will be performing an extravehicular activity (EVA) spacewalk during the mission. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  19. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    Science.gov (United States)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  20. Enabling interoperability in Geoscience with GI-suite

    Science.gov (United States)

    Boldrini, Enrico; Papeschi, Fabrizio; Santoro, Mattia; Nativi, Stefano

    2015-04-01

    GI-suite is a brokering framework targeting interoperability of heterogeneous systems in the Geoscience domain. The framework is composed by different brokers each one focusing on a specific functionality: discovery, access and semantics (i.e. GI-cat, GI-axe, GI-sem). The brokering takes place between a set of heterogeneous publishing services and a set of heterogeneous consumer applications: the brokering target is represented by resources (e.g. coverages, features, or metadata information) required to seamlessly flow from the providers to the consumers. Different international and community standards are now supported by GI-suite, making possible the successful deployment of GI-suite in many international projects and initiatives (such as GEOSS, NSF BCube and several EU funded projects). As for the publisher side more than 40 standards and implementations are supported (e.g. Dublin Core, OAI-PMH, OGC W*S, Geonetwork, THREDDS Data Server, Hyrax Server, etc.). The support for each individual standard is provided by means of specific GI-suite components, called accessors. As for the consumer applications side more than 15 standards and implementations are supported (e.g. ESRI ArcGIS, Openlayers, OGC W*S, OAI-PMH clients, etc.). The support for each individual standard is provided by means of specific profiler components. The GI-suite can be used in different scenarios by different actors: - A data provider having a pre-existent data repository can deploy and configure GI-suite to broker it and making thus available its data resources through different protocols to many different users (e.g. for data discovery and/or data access) - A data consumer can use GI-suite to discover and/or access resources from a variety of publishing services that are already publishing data according to well-known standards. - A community can deploy and configure GI-suite to build a community (or project-specific) broker: GI-suite can broker a set of community related repositories and

  1. Human-Robot Control Strategies for the NASA/DARPA Robonaut

    Science.gov (United States)

    Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.

    2003-01-01

    The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.

  2. STS-93 M.S. Hawley suits up for launch

    Science.gov (United States)

    1999-01-01

    During final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Steven A. Hawley (Ph.D.)gets help donning his launch and entry suit from a suit tech. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Hawley, Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  3. Development of an advanced rocket propellant handler's suit

    Science.gov (United States)

    Doerr, D. F.

    2001-01-01

    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (rights reserved.

  4. STS-110 Extravehicular Activity (EVA)

    Science.gov (United States)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  5. ASDA - Advanced Suit Design Analyzer computer program

    Science.gov (United States)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  6. Morphing: A Novel Approach to Astronaut Suit Sizing

    Science.gov (United States)

    Margerum, Sarah; Clowers, Kurt; Rajulu, Sudhakar

    2006-01-01

    The fitting of a spacesuit to an astronaut is an iterative process consisting of two parts. The first uses anthropometric data to provide an approximation of the suit components that will fit the astronaut. The second part is the subjective fitting, where small adjustments are made based on the astronaut s preference. By providing a better approximation of the correct suit components, the entire fit process time can be reduced significantly. The goals of this project are twofold: (1) To evaluate the effectiveness of the existing sizing algorithm for the Mark III Hybrid suit and (2) to determine what additional components are needed in order to provide adequate sizing for the existing astronaut population. A single subject was scanned using a 3D whole-body scanner (VITUS 3D) in the Mark III suit in eight different poses and four subjects in minimal clothing were also scanned in similar poses. The 3D external body scans of the suit and the subject are overlaid and visually aligned in a customized MATLAB program. The suit components were contracted or expanded linearly along the subjects limbs to match the subjects segmental lengths. Two independent measures were obtained from the morphing program on four subjects and compared with the existing sizing information. Two of the four subjects were in correspondence with the sizing algorithm and morphing results. The morphing outcome for a third subject, incompatible with the suit, suggested that an additional arm element at least 6 inches smaller than the existing smallest suit component would need to be acquired. The morphing result of the fourth subject, deemed incompatible with the suit using the sizing algorithm, indicated a different suit configuration which would be compatible. This configuration matched with the existing suit fit check data.

  7. Development and Evaluation of Titanium Spacesuit Bearings

    Science.gov (United States)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Raymond, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z-series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z-series space suit architecture allows us to reduce mass by an estimated 23 lbs per suit system compared to the previously used stainless steel bearing race designs, without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race- 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility (WSTF) that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approx. 3 years), design parameters for maximum contact stress need to be identified. To identify these design parameters, bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination and design around a cycle life requirement for an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an

  8. Canadarm2 Maneuvers Quest Airlock

    Science.gov (United States)

    2001-01-01

    At the control of Expedition Two Flight Engineer Susan B. Helms, the newly-installed Canadian-built Canadarm2, Space Station Remote Manipulator System (SSRMS) maneuvers the Quest Airlock into the proper position to be mated onto the starboard side of the Unity Node I during the first of three extravehicular activities (EVA) of the STS-104 mission. The Quest Airlock makes it easier to perform space walks, and allows both Russian and American spacesuits to be worn when the Shuttle is not docked with the International Space Station (ISS). American suits will not fit through Russion airlocks at the Station. The Boeing Company, the space station prime contractor, built the 6.5-ton (5.8 metric ton) airlock and several other key components at the Marshall Space Flight Center (MSFC), in the same building where the Saturn V rocket was built. Installation activities were supported by the development team from the Payload Operations Control Center (POCC) located at the MSFC and the Mission Control Center at NASA's Johnson Space Flight Center in Houston, Texas.

  9. EVA Physiology, Systems and Performance [EPSP] Project

    Science.gov (United States)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  10. Suited Contingency Ops Food - 2

    Science.gov (United States)

    Glass, J. W.; Leong, M. L.; Douglas, G. L.

    2014-01-01

    The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.

  11. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  12. Interoperative efficiency in minimally invasive surgery suites.

    Science.gov (United States)

    van Det, M J; Meijerink, W J H J; Hoff, C; Pierie, J P E N

    2009-10-01

    Performing minimally invasive surgery (MIS) in a conventional operating room (OR) requires additional specialized equipment otherwise stored outside the OR. Before the procedure, the OR team must collect, prepare, and connect the equipment, then take it away afterward. These extra tasks pose a thread to OR efficiency and may lengthen turnover times. The dedicated MIS suite has permanently installed laparoscopic equipment that is operational on demand. This study presents two experiments that quantify the superior efficiency of the MIS suite in the interoperative period. Preoperative setup and postoperative breakdown times in the conventional OR and the MIS suite in an experimental setting and in daily practice were analyzed. In the experimental setting, randomly chosen OR teams simulated the setup and breakdown for a standard laparoscopic cholecystectomy (LC) and a complex laparoscopic sigmoid resection (LS). In the clinical setting, the interoperative period for 66 LCs randomly assigned to the conventional OR or the MIS suite were analyzed. In the experimental setting, the setup and breakdown times were significantly shorter in the MIS suite. The difference between the two types of OR increased for the complex procedure: 2:41 min for the LC (p < 0.001) and 10:47 min for the LS (p < 0.001). In the clinical setting, the setup and breakdown times as a whole were not reduced in the MIS suite. Laparoscopic setup and breakdown times were significantly shorter in the MIS suite (mean difference, 5:39 min; p < 0.001). Efficiency during the interoperative period is significantly improved in the MIS suite. The OR nurses' tasks are relieved, which may reduce mental and physical workload and improve job satisfaction and patient safety. Due to simultaneous tasks of other disciplines, an overall turnover time reduction could not be achieved.

  13. From Model Rockets to Spacewalks: an Astronaut Physician’s Journey and the Science of the United States’ Space Program*

    Science.gov (United States)

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA’s efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation’s plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE). PMID:18528479

  14. Benefits of a Single-Person Spacecraft for Weightless Operations. [(Stop Walking and Start Flying)

    Science.gov (United States)

    Griffin, Brand N.

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work.1 A single-person spacecraft with 90 percent efficiency provides productive new capabilities for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. With suits, going outside to inspect, service or repair a spacecraft is time-consuming, requiring pre-breathe time, donning a fitted space suit, and pumping down an airlock. For ISS, this is between 12.5 and 16 hours for each EVA, not including translation and work-site set up. The work is physically demanding requiring a day of rest between EVAs and often results in suit-induced trauma with frequent injury to astronauts fingers2. For maximum mobility, suits use a low pressure, pure oxygen atmosphere. This represents a fire hazard and requires pre-breathing to reduce the risk of decompression sickness (bends). With virtually no gravity, humans exploring asteroids cannot use legs for walking. The Manned Maneuvering Unit offers a propulsive alternative however it is no longer in NASA s flight inventory. FlexCraft is a single person spacecraft operating at the same cabin atmosphere as its host so there is no risk of the bends and no pre-breathing. This allows rapid, any-time access to space for repeated short or long EVAs by different astronauts. Integrated propulsion eliminates hand-over-hand translation or having another crew member operate the robotic arm. The one-size-fits-all FlexCraft interior eliminates the suit part inventory and crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used and because the work is not strenuous no rest days are required. Furthermore, there is no need for hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job.

  15. An Effective Strategy to Build Up a Balanced Test Suite for Spectrum-Based Fault Localization

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-01-01

    Full Text Available During past decades, many automated software faults diagnosis techniques including Spectrum-Based Fault Localization (SBFL have been proposed to improve the efficiency of software debugging activity. In the field of SBFL, suspiciousness calculation is closely related to the number of failed and passed test cases. Studies have shown that the ratio of the number of failed and passed test case has more significant impact on the accuracy of SBFL than the total number of test cases, and a balanced test suite is more beneficial to improving the accuracy of SBFL. Based on theoretical analysis, we proposed an PNF (Passed test cases, Not execute Faulty statement strategy to reduce test suite and build up a more balanced one for SBFL, which can be used in regression testing. We evaluated the strategy making experiments using the Siemens program and Space program. Experiments indicated that our PNF strategy can be used to construct a new test suite effectively. Compared with the original test suite, the new one has smaller size (average 90% test case was reduced in experiments and more balanced ratio of failed test cases to passed test cases, while it has the same statement coverage and fault localization accuracy.

  16. Apollo 10 astronauts in space suits in front of Command Module

    Science.gov (United States)

    1968-01-01

    Three astronauts named as the prime crew of the Apollo 10 space mission. Left to right, are Eugene A. Cernan, lunar module pilot; John W. Young, command module pilot; and Thomas P. Stafford, commander.

  17. E VA Space Suit Power, Avionics, and Software Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in a reliable, robust, and low Size Weight and Power (SWAP) input device that will allow for EVA astronauts to navigate display menu systems. The...

  18. Innovative technology summary report: Sealed-seam sack suits

    International Nuclear Information System (INIS)

    1998-09-01

    Sealed-seam sack suits are an improved/innovative safety and industrial hygiene technology designed to protect workers from dermal exposure to contamination. Most of these disposable, synthetic-fabric suits are more protective than cotton suits, and are also water-resistant and gas permeable. Some fabrics provide a filter to aerosols, which is important to protection against contamination, while allowing air to pass, increasing comfort level of workers. It is easier to detect body-moisture breakthrough with the disposable suits than with cotton, which is also important to protecting workers from contamination. These suits present a safe and cost-effective (6% to 17% less expensive than the baseline) alternative to traditional protective clothing. This report covers the period from October 1996 to August 1997. During that time, sealed-seam sack suits were demonstrated during daily activities under normal working conditions at the C Reactor and under environmentally controlled conditions at the Los Alamos National Laboratory (LANL)

  19. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    Science.gov (United States)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  20. The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite

    Science.gov (United States)

    Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.

    2012-12-01

    The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.

  1. Technical Reference Suite Addressing Challenges of Providing Assurance for Fault Management Architectural Design

    Science.gov (United States)

    Fitz, Rhonda; Whitman, Gerek

    2016-01-01

    Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IV&V) Program, with Software Assurance Research Program support, extracted FM architectures across the IV&V portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IV&V projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management. The identification of particular FM architectures, visibility, and associated IV&V techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. Additionally, the role FM has with regard to strengthened security requirements, with potential to advance overall asset protection of flight software systems, is being addressed with the development of an adverse conditions database encompassing flight software vulnerabilities. Capitalizing on the established framework, this TR suite provides assurance capability for a variety of FM architectures and varied development approaches. Research results are being disseminated across NASA, other agencies, and the

  2. ISS Local Environment Spectrometers (ISLES)

    Science.gov (United States)

    Krause, Linda Habash; Gilchrist, Brian E.

    2014-01-01

    In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.

  3. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    Science.gov (United States)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  4. [Antigravity suit used for neurosurgical operations in sitting position].

    Science.gov (United States)

    Szpiro-Zurkowska, A; Milczarek, Z; Marchel, A; Jagielski, J

    1996-01-01

    The aviator's antigravity suit (G-suit) was used for 40 operations on neurosurgical patients operated on in sitting position. The G-suit was filled with air to 0.2 atmosphere (20 kPa) pressure in 26 cases, and 0.3 atm. (30 kPa) in 14 cases. In all cases G-suit filling was followed by central venous pressure rise and mean arterial pressure rise. Venous air embolism was found in 5 (12.5%) patients. No other complications connected with the use of G-suit were observed.

  5. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of Abort Triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of Abort Triggers.

  6. Oracle SOA Suite 11g performance cookbook

    CERN Document Server

    Brasier, Matthew; Wright, Nicholas

    2013-01-01

    This is a Cookbook with interesting, hands-on recipes, giving detailed descriptions and lots of practical walkthroughs for boosting the performance of your Oracle SOA Suite.This book is for Oracle SOA Suite 11g administrators, developers, and architects who want to understand how they can maximise the performance of their SOA Suite infrastructure. The recipes contain easy to follow step-by-step instructions and include many helpful and practical tips. It is suitable for anyone with basic operating system and application server administration experience.

  7. Space Environmental Effects on Colored Coatings and Anodizes

    Science.gov (United States)

    Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.

    1999-01-01

    Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.

  8. Safety in the use of pressurized suits

    International Nuclear Information System (INIS)

    1984-01-01

    This Code of Practice describes the procedures relating to the safe operation of Pressurized Suit Areas and their supporting services. It is directed at personnel responsible for the design and/or operation of Pressurized Suit Areas. (author)

  9. Suites of dwarfs around Nearby giant galaxies

    International Nuclear Information System (INIS)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I.

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ 1 , depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ 1 . All suite members with positive Θ 1 are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n –2 . The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M B = –18 m . We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the Local Group, do not

  10. Sibelius. Karelia Suite, Op. 11 / Robert Layton

    Index Scriptorium Estoniae

    Layton, Robert

    1996-01-01

    Uuest heliplaadist "Sibelius. Karelia Suite, Op. 11. Luonnotar, Op. 70 a. Andante festivo. The Oceanides, Op. 73. King Christian II, Op. 27-Suite. Finlandia, Op. 26a. Gothenburg Symphony Orchester, Neeme Järvi" DG 447 760-2GH (72 minutes: DDD)

  11. The Komplast Experiment: Space Environmental Effects after 12 Years in LEO (and Counting)

    Science.gov (United States)

    Golden, J. L.; Shaevich, S.; Aleksandrov, N. G.; Shumov, A. E.; Novikov, L. S.; Alred, J. A.; Shindo, D. J.; Kravchenko, M.

    2014-01-01

    The Komplast materials experiment was designed by the Khrunichev Space Center, together with other Russian scientific institutes, and has been carried out by Mission Control Moscow since 1998. The purpose is to study the effect of the low earth orbit (LEO) environment on exposed samples of various spacecraft materials. The Komplast experiment began with the launch of the first International Space Station (ISS) module on November 20, 1998. Two of eight experiment panels were retrieved during Russian extravehicular activity in February 2011 after 12 years of LEO exposure, and were subsequently returned to Earth by Space Shuttle "Discovery" on the STS-133/ULF-5 mission. The retrieved panels contained an experiment to detect micrometeoroid and orbital debris (MMOD) impacts, radiation sensors, a temperature sensor, several pieces of electrical cable, both carbon composite and adhesive-bonded samples, and many samples made from elastomeric and fluoroplastic materials. Our investigation is complete and a summary of the results obtained from this uniquely long-duration exposure experiment will be presented.

  12. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  13. Open architecture of smart sensor suites

    Science.gov (United States)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  14. Correction factors for assessing immersion suits under harsh conditions.

    Science.gov (United States)

    Power, Jonathan; Tikuisis, Peter; Ré, António Simões; Barwood, Martin; Tipton, Michael

    2016-03-01

    Many immersion suit standards require testing of thermal protective properties in calm, circulating water while these suits are typically used in harsher environments where they often underperform. Yet it can be expensive and logistically challenging to test immersion suits in realistic conditions. The goal of this work was to develop a set of correction factors that would allow suits to be tested in calm water yet ensure they will offer sufficient protection in harsher conditions. Two immersion studies, one dry and the other with 500 mL of water within the suit, were conducted in wind and waves to measure the change in suit insulation. In both studies, wind and waves resulted in a significantly lower immersed insulation value compared to calm water. The minimum required thermal insulation for maintaining heat balance can be calculated for a given mean skin temperature, metabolic heat production, and water temperature. Combining the physiological limits of sustainable cold water immersion and actual suit insulation, correction factors can be deduced for harsh conditions compared to calm. The minimum in-situ suit insulation to maintain thermal balance is 1.553-0.0624·TW + 0.00018·TW(2) for a dry calm condition. Multiplicative correction factors to the above equation are 1.37, 1.25, and 1.72 for wind + waves, 500 mL suit wetness, and both combined, respectively. Calm water certification tests of suit insulation should meet or exceed the minimum in-situ requirements to maintain thermal balance, and correction factors should be applied for a more realistic determination of minimum insulation for harsh conditions. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    associated 3-spaces obtained as hypersurfaces t = constant, 3-spheroids, are suit- ... pressure. Considering the Vaidya–Tikekar [12] spheroidal geometry, ... a relativistic star in hydrostatic equilibrium having the spheroidal geometry of the .... K = 1, the spheroidal 3-space degenerates into a flat 3-space and when K = 0 it.

  16. STS-93 Commander Collins suits up for launch

    Science.gov (United States)

    1999-01-01

    During the third launch preparations in the Operations and Checkout Building, STS-93 Commander Eileen M. Collins waves while having her launch and entry suit checked. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  17. Problem of Office Suite Training at the University

    Directory of Open Access Journals (Sweden)

    Natalia A. Nastashchuk

    2013-01-01

    Full Text Available Te paper considers the problem of office suite applications training, caused by a rapid change of their versions, variety of software developers and a rapid development of software and hardware platforms. The content of office suite applications training, based on the system of office suite notions, its basic functional and standards of information technologies development (OpenDocument Format Standard, ISO 26300-200Х is presented.

  18. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  19. PLEASE: The Python Low-energy Electron Analysis SuitE – Enabling Rapid Analysis of LEEM and LEED Data

    Directory of Open Access Journals (Sweden)

    Maxwell Grady

    2018-02-01

    Full Text Available PLEASE, the Python Low-energy Electron Analysis SuitE, provides an open source and cross-platform graphical user interface (GUI for rapid analysis and visualization of low energy electron microscopy (LEEM data sets. LEEM and the associated technique, selected area micro-spot low energy electron diffraction (μ-LEED, are powerful tools for analysis of the surface structure for many novel materials. Specifically, these tools are uniquely suited for the characterization of two-dimensional materials. PLEASE offers a user-friendly point-and-click method for extracting intensity-voltage curves from LEEM and LEED data sets. Analysis of these curves provides insight into the atomic structure of the target material surface with unparalleled resolution.

  20. Ross Works on the Assembly Concept for Construction of Erectable Space Structure (ACCESS) During

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  1. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  2. DIPS space exploration initiative safety

    International Nuclear Information System (INIS)

    Dix, T.E.

    1991-01-01

    The Dynamic Isotope Power Subsystem has been identified for potential applications for the Space Exploration Initiative. A qualitative safety assessment has been performed to demonstrate the overall safety adequacy of the Dynamic Isotope Power Subsystem for these applications. Mission profiles were defined for reference lunar and martian flights. Accident scenarios were qualitatively defined for all mission phases. Safety issues were then identified. The safety issues included radiation exposure, fuel containment, criticality, diversion, toxic materials, heat flux to the extravehicular mobility unit, and disposal. The design was reviewed for areas where safety might be further improved. Safety would be improved by launching the fuel separate from the rest of the subsystem on expendable launch vehicles, using a fuel handling tool during unloading of the hot fuel canister, and constructing a cage-like structure around the reversible heat removal system lithium heat pipes. The results of the safety assessment indicate that the DIPS design with minor modifications will produce a low risk concept

  3. Finite Topological Spaces as a Pedagogical Tool

    Science.gov (United States)

    Helmstutler, Randall D.; Higginbottom, Ryan S.

    2012-01-01

    We propose the use of finite topological spaces as examples in a point-set topology class especially suited to help students transition into abstract mathematics. We describe how carefully chosen examples involving finite spaces may be used to reinforce concepts, highlight pathologies, and develop students' non-Euclidean intuition. We end with a…

  4. A new device for the inflation of the antigravity suit.

    Science.gov (United States)

    Brodrick, P M

    1986-02-01

    The 'Schuco' orthopaedic tourniquet inflator can be simply converted into a suitable device for inflating an antigravity suit (G-suit). The antigravity suit may be used on neurosurgical patients undergoing procedures in the sitting position to help prevent hypotension and air embolism. The availability of this device may encourage the more widespread use of an antigravity suit in neuro-anaesthetic practice.

  5. Relating Linear and Volumetric Variables Through Body Scanning to Improve Human Interfaces in Space

    Science.gov (United States)

    Margerum, Sarah E.; Ferrer, Mike A.; Young, Karen S.; Rajulu, Sudhakar

    2010-01-01

    Designing space suits and vehicles for the diverse human population present unique challenges for the methods of traditional anthropometry. Space suits are bulky and allow the operator to shift position within the suit and inhibit the ability to identify body landmarks. Limited suit sizing options also cause variability in fit and performance between similarly sized individuals. Space vehicles are restrictive in volume in both the fit and the ability to collect data. NASA's Anthropometric and Biomechanics Facility (ABF) has utilized 3D scanning to shift from traditional linear anthropometry to explore and examine volumetric capabilities to provide anthropometric solutions for design. Overall, the key goals are to improve the human-system performance and develop new processes to aid in the design and evaluation of space systems. Four case studies are presented that illustrate the shift from purely linear analyses to an augmented volumetric toolset to predict and analyze the human within the space suit and vehicle. The first case study involves the calculation of maximal head volume to estimate total free volume in the helmet for proper air exchange. Traditional linear measurements resulted in an inaccurate representation of the head shape, yet limited data exists for the determination of a large head volume. Steps were first taken to identify and classify a maximum head volume and the resulting comparisons to the estimate are presented in this paper. This study illustrates the gap between linear components of anthropometry and the need for overall volume metrics in order to provide solutions. A second case study examines the overlay of the space suit scans and components onto scanned individuals to quantify fit and clearance to aid in sizing the suit to the individual. Restrictions in space suit size availability present unique challenges to optimally fit the individual within a limited sizing range while maintaining performance. Quantification of the clearance and

  6. STS-93 Pilot Ashby suits up for launch

    Science.gov (United States)

    1999-01-01

    In the Operations and Checkout Building during final launch preparations for the third time, STS-93 Pilot Jeffrey S. Ashby pulls on his glove, part of his launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen Collins, Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  7. Analysis of Human-Spacesuit Interaction

    Science.gov (United States)

    Thomas, Neha

    2015-01-01

    Astronauts sustain injuries of various natures such as finger delamination, joint pain, and redness due to their interaction with the space suit. The role of the Anthropometry and Biomechanics Facility is to understand the biomechanics, environmental variables, and ergonomics of the suit. This knowledge is then used to make suggestions for improvement in future iterations of the space suit assembly to prevent injuries while allowing astronauts maneuverability, comfort, and tactility. The projects I was involved in were the Extravehicular Mobility Unit (EMU) space suit stiffness study and the glove feasibility study. The EMU project looked at the forces exerted on the shoulder, arm, and wrist when subjects performed kinematic tasks with and without a pressurized suit. The glove study consisted of testing three conditions - the Series 4000 glove, the Phase VI glove, and the no glove condition. With more than forty channels of sensor data total, it was critical to develop programs that could analyze data with basic descriptive statistics and generate relevant graphs to help understand what happens within the space suit and glove. In my project I created a Graphical User Interface (GUI) in MATLAB that would help me visualize what each sensor was doing within a task. The GUI is capable of displaying overlain plots and can be synchronized with video. This was helpful during the stiffness testing to visualize how the forces on the arm acted while the subject performed tasks such as shoulder adduction/abduction and bicep curls. The main project of focus, however, was the glove comparison study. I wrote MATLAB programs which generated movies of the strain vectors during specific tasks. I also generated graphs that summarized the differences between each glove for the strain, shear and FSR sensors. Preliminary results indicate that the Phase VI glove places less strain and shear on the hand. Future work includes continued data analysis of surveys and sensor data. In the end

  8. Astronaut Neil Armstrong participates in lunar surface siumlation training

    Science.gov (United States)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  9. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  10. Development on smart suit for dairy work assistance.

    Science.gov (United States)

    Nara, Hiroyuki; Kusaka, Takashi; Tanaka, Takayuki; Yamagishi, Takayuki; Ogura, Shotaroh

    2013-01-01

    Our purpose in this study is to achieve an independent life and a social involvement for the elderly using KEIROKA Technology(fatigue-reduction) which makes it possible to improve the quality of chores and occupations by removing excessive strain and tiredness. The authors have developed power assist suits named "smart suit". The authors have evaluated the effect that the purpose of dairy work assistance, to measure EMG of the worker, compared to the potential of the surface of the non-wearing and wearing "smart suit".

  11. A methodology for automation and robotics evaluation applied to the space station telerobotic servicer

    Science.gov (United States)

    Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.

  12. Immersion Suit Usage Within the RAAF

    Science.gov (United States)

    1992-01-01

    IMMERSION SUIT USED UVIC QDIS HOLDINGS 202. in 12 Sizes, held by ALSS 492SQN REQUIREMENTS No comment USAGE POLICY REFERENCE DIRAF) AAP 7215.004-1 (P3C...held by ALSS 492SQN. REQUIREMENTS No comment ISACE POLICY REFERENCE DIIAF) AAP 7215.004-1 (P3C Flight Manual) RAAF Supplement No 92 USAGE POUICY UVIC...TYPE P3C REFERENCE Telecon FLTLT Toft I I SQNfRESO AVMED Dated 22 Mar 91 IMMERSION SUIT USED UVIC QDIS HOLDINGS No comment REQUIREMENTS No comment USAGE

  13. Alterations in MAST suit pressure with changes in ambient temperature.

    Science.gov (United States)

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  14. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    Science.gov (United States)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective

  15. Satellite Ocean Heat Content Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  16. STS-93 Commander Eileen Collins suits up for launch

    Science.gov (United States)

    1999-01-01

    For the third time, in the Operations and Checkout Building, STS- 93 Commander Eileen M. Collins tries on her helmet with her launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  17. CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation

    Science.gov (United States)

    Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.

  18. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    Science.gov (United States)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  19. Habitat Options to Protect Against Decompression Sickness on Mars

    Science.gov (United States)

    Conkin, J.

    2000-07-01

    Men and women are alive today, although perhaps still in diapers, who will explore the surface of Mars. Two achievable goals to enable this exploration are to use Martian resources, and to provide a safe means for unrestricted access to the surface. A cost-effective approach for Mars exploration is to use the available resources, such as water and atmospheric gases. Nitrogen (N2) and Argon (Ar) in a concentration ratio of 1.68/1.0 are available, and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch absolute (psia). The habitat and space suit must be designed as an integrated, complementary, system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars. However the risk of decompression sickness (DCS) during the extravehicular activity (EVA) in a 3.75 psia suit after exposure to either of the three habitat conditions may limit unrestricted exploration.

  20. Nanoengineered Hybrid Gas Sensors for Spacesuit Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Extravehicular Mobility Units (EVU) are the necessary to perform elaborate, dynamic tasks in the biologically harsh conditions of space from International Space...

  1. The BRITNeY Suite: A Platfor for Experiments

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper describes a platform, the BRITNeY Suite, for experimenting with Coloured Petri nets. The BRITNeY Suite provides access to data-structures and a simulator for Coloured Petri nets via a powerful scripting language and plug-in-mechanism, thereby making it easy to perform customized...

  2. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    Science.gov (United States)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  3. Efficient SDM-MIMO Stokes-space equalization

    DEFF Research Database (Denmark)

    Caballero, F. J.Vaquero; Zanaty, A.; Pittala, F.

    2016-01-01

    We propose a novel frequency-domain 6x6 MIMO Stokes-space equalizer and compare its performance to a 6x6 MIMO LMS architecture. This method is suited to overcome DSP complexity and laser linewidth issues in SDM transmission systems....

  4. Active Solid State Dosimetry for Lunar EVA

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  5. NetSuite OneWorld Implementation 2011 R2

    CERN Document Server

    Foydel, Thomas

    2011-01-01

    This book is a focused, step-by step tutorial that shows you how to successfully implement NetSuite OneWorld into your organization. It is written in an easy-to-read style, with a strong emphasis on real-world, practical examples with step-by-step explanations. The book focuses on NetSuite OneWorld 2011 R1. If you are an application administrator, business analyst, project team member or business process owner who wants to implement NetSuite OneWorld into your organization, then this book is for you. This book might also be useful if you are a business manager considering a new system for your

  6. EMU Lessons Learned Database

    Science.gov (United States)

    Matthews, Kevin M., Jr.; Crocker, Lori; Cupples, J. Scott

    2011-01-01

    As manned space exploration takes on the task of traveling beyond low Earth orbit, many problems arise that must be solved in order to make the journey possible. One major task is protecting humans from the harsh space environment. The current method of protecting astronauts during Extravehicular Activity (EVA) is through use of the specially designed Extravehicular Mobility Unit (EMU). As more rigorous EVA conditions need to be endured at new destinations, the suit will need to be tailored and improved in order to accommodate the astronaut. The Objective behind the EMU Lessons Learned Database(LLD) is to be able to create a tool which will assist in the development of next-generation EMUs, along with maintenance and improvement of the current EMU, by compiling data from Failure Investigation and Analysis Reports (FIARs) which have information on past suit failures. FIARs use a system of codes that give more information on the aspects of the failure, but if one is unfamiliar with the EMU they will be unable to decipher the information. A goal of the EMU LLD is to not only compile the information, but to present it in a user-friendly, organized, searchable database accessible to all familiarity levels with the EMU; both newcomers and veterans alike. The EMU LLD originally started as an Excel database, which allowed easy navigation and analysis of the data through pivot charts. Creating an entry requires access to the Problem Reporting And Corrective Action database (PRACA), which contains the original FIAR data for all hardware. FIAR data are then transferred to, defined, and formatted in the LLD. Work is being done to create a web-based version of the LLD in order to increase accessibility to all of Johnson Space Center (JSC), which includes converting entries from Excel to the HTML format. FIARs related to the EMU have been completed in the Excel version, and now focus has shifted to expanding FIAR data in the LLD to include EVA tools and support hardware such as

  7. Prokofieff: Krieg und Frieden (Sinfonische Suite), Die Verlobung im Kloster (Sommernacht-Suite), Russische Overtüre. Philharmonia Orchestra, Neeme Järvi / G. W.

    Index Scriptorium Estoniae

    G. W.

    1993-01-01

    Uuest heliplaadist "Prokofieff: Krieg und Frieden (Sinfonische Suite), Die Verlobung im Kloster (Sommernacht-Suite), Russische Overtüre. Philharmonia Orchestra, Neeme Järvi. (AD: 1991). Chandos/Koch CD 9096

  8. 2014 Decompression Sickness/Extravehicular Activity Risks Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan; Mahon, Richard; Klaus, David; Neuman, Tom; Pilmanis, Andrew; Regis, David

    2014-01-01

    The 2014 Decompression Sickness (DCS)/Extravehicular Activity (EVA) Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on November 4 - 5, 2014. The SRP reviewed the Research Plans for The Risk of Decompression Sickness and the Risk of Injury and Compromised Performance due to EVA Operations, as well as the Evidence Reports for both of these Risks. The SRP found that the NASA DCS/EVA team did an excellent job of presenting their research plans. The SRP considers it critical that NASA proceeds with the high priority tasks identified in this report (DCS1, DCS3, DCS5). The highest priority is to determine the acceptable DCS and hypoxia risk associated with the planned human exploration beyond low Earth orbit. The risk of DCS is highly dependent upon the pressure within the exploration vehicle. If slightly more hypoxia is permitted then (even with the same percentage of oxygen) the pressure within the exploration vehicle can be lowered thus further mitigating the risk of DCS. The second highest priority is to test and validate the recommended 8.2psi/34% O2 atmosphere. Development of procedures and equipment for human exploration missions are very limited until the results of this testing are completed. The SRP also suggests that DCS7 be separated into two Gaps. Gap DCS7 should deal with DCS treatment while a new Gap should be created to deal with the long-term effects of DCS. The SRP also encourages NASA to increase collaboration with other organizations and pool resources where possible. The current NASA DCS/EVA team has the extensive expertise and a wealth of knowledge in this area. The SRP suggests that increased manpower for this team would be highly productive.

  9. STS-93 Mission Specialist Hawley suits up for launch

    Science.gov (United States)

    1999-01-01

    For the third time, during final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Steven A. Hawley (Ph.D.) waves after donning his launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Hawley, Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  10. NASA 3D Models: Extravehicular Mobility Unit

    Data.gov (United States)

    National Aeronautics and Space Administration — The current spacesuit is a complex garment. Not only does it protect from the extreme conditions of space, it is in itself a mobile life support system with an...

  11. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    Science.gov (United States)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute

  12. Space Suit Glove Pressure Garment Metacarpal Joint and Robotic Hand Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacesuit glove pressure garments have been a design challenge for NASA since the inception of spacesuits. The human hand demands a complex range of motions, a close...

  13. An experimental evaluation of self-managing availability in shared data spaces

    NARCIS (Netherlands)

    Russello, G.; Chaudron, M.R.V.; Steen, van M.; Bokharouss, I.

    2007-01-01

    With its decoupling of processes in space and time, the shared data space model has proven to be a well-suited solution for developing distributed component-based systems. However, as in many distributed applications, functional and extra-functional aspects are still interwoven in components. In

  14. STS-93 Mission Specialist Cady Coleman suits up for launch

    Science.gov (United States)

    1999-01-01

    For the third time, during final launch preparations in the Operations and Checkout Building, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) dons her launch and entry suit. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Coleman, and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  15. Joining Silicon Carbide Components for Space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I program will identify the joining materials and demonstrate the processes that are suited for construction of advanced ceramic matrix composite...

  16. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    Science.gov (United States)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  17. STS-93 Commander Collins suits up before launch

    Science.gov (United States)

    1999-01-01

    In the Operations and Checkout Building, STS-93 Commander Eileen M. Collins gets help donning her launch and entry suit. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X- ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  18. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Angelica Lo Duca

    2012-11-01

    Full Text Available In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead.

  19. Inherent work suit buoyancy distribution: effects on lifejacket self-righting performance.

    Science.gov (United States)

    Barwood, Martin J; Long, Geoffrey M; Lunt, Heather; Tipton, Michael J

    2014-09-01

    Accidental immersion in cold water is an occupational risk. Work suits and life jackets (LJ) should work effectively in combination to keep the airway clear of the water (freeboard) and enable self-righting. We hypothesized that inherent buoyancy, in the suit or LJ, would be beneficial for enabling freeboard, but its distribution may influence LJ self-righting. Six participants consented to complete nine immersions. Suits and LJ tested were: flotation suit (FLOAT; 85 N inherent buoyancy); oilskins 1 (OS-1) and 2 (OS-2), both with no inherent buoyancy; LJs (inherent buoyancy/buoyancy after inflation/total buoyancy), LJ-1 50/150/200 N, LJ-2 0/290/290 N, LJ-3 80/190/270 N. Once dressed, the subject entered an immersion pool where uninflated freeboard, self-righting performance, and inflated freeboard were measured. Data were compared using Friedman's test to the 0.05 alpha level. All suits and LJs enabled uninflated and inflated freeboard, but differences were seen between the suits and LJs. Self-righting was achieved on 43 of 54 occasions, irrespective of suit or LJ. On all occasions that self-righting was not achieved, this occurred in an LJ that included inherent buoyancy (11/54 occasions). Of these 11 failures, 8 occurred (73% of occasions) when the FLOAT suit was being worn. LJs that included inherent buoyancy, that are certified as effective on their own, worked less effectively from the perspective of self-righting in combination with a work suit that also included inherent buoyancy. Equipment that is approved for use in the workplace should be tested in combination to ensure adequate performance in an emergency scenario.

  20. Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.

    Science.gov (United States)

    Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J

    2018-01-01

    Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.

  1. Oracle E-Business Suite Financials R12 A Functionality Guide

    CERN Document Server

    Iyer, Mohan

    2012-01-01

    This is a step-by-step functional guide to get you started easily with Oracle EBS Financials. If you are an Oracle E-Business Suite Financial consultant or an administrator looking to get a quick review on the capabilities of Oracle E-Business Suite and improve the use of the systems functionality, then this is the best guide for you. This book assumes that you have a fundamental knowledge of EBS Suite.

  2. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    Science.gov (United States)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  3. Spacesuit and Space Vehicle Comparative Ergonomic Evaluation

    Science.gov (United States)

    England, Scott; Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2011-01-01

    With the advent of the latest manned spaceflight objectives, a series of prototype launch and reentry spacesuit architectures were evaluated for eventual down selection by NASA based on the performance of a set of designated tasks. A consolidated approach was taken to testing, concurrently collecting suit mobility data, seat-suit-vehicle interface clearances and movement strategies within the volume of a Multi-Purpose Crew Vehicle mockup. To achieve the objectives of the test, a requirement was set forth to maintain high mockup fidelity while using advanced motion capture technologies. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The mockup was constructed such that it could be dimensionally validated rapidly with the motion capture system. This paper will describe the method used to create a motion capture compatible space vehicle mockup, the consolidated approach for evaluating spacesuits in action, as well as the various methods for generating hardware requirements for an entire population from the resulting complex data set using a limited number of test subjects. Kinematics, hardware clearance, suited anthropometry, and subjective feedback data were recorded on fifteen unsuited and five suited subjects. Unsuited subjects were selected chiefly by anthropometry, in an attempt to find subjects who fell within predefined criteria for medium male, large male and small female subjects. The suited subjects were selected as a subset of the unsuited subjects and tested in both unpressurized and pressurized conditions. Since the prototype spacesuits were fabricated in a single size to accommodate an approximately average sized male, the findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first performing population analysis through a comparison of suited

  4. The BTeV Software Tutorial Suite

    International Nuclear Information System (INIS)

    Kutschke, Robert K.

    2004-01-01

    The BTeV Collaboration is starting to develop its C++ based offline software suite, an integral part of which is a series of tutorials. These tutorials are targeted at a diverse audience, including new graduate students, experienced physicists with little or no C++ experience, those with just enough C++ to be dangerous, and experts who need only an overview of the available tools. The tutorials must both teach C++ in general and the BTeV specific tools in particular. Finally, they must teach physicists how to find and use the detailed documentation. This report will review the status of the BTeV experiment, give an overview of the plans for and the state of the software and will then describe the plans for the tutorial suite

  5. Comparative Ergonomic Evaluation of Spacesuit and Space Vehicle Design

    Science.gov (United States)

    England, Scott; Cowley, Matthew; Benson, Elizabeth; Harvill, Lauren; Blackledge, Christopher; Perez, Esau; Rajulu, Sudhakar

    2012-01-01

    With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes

  6. The Texas space flight liability act and efficient regulation for the private commercial space flight era

    Science.gov (United States)

    Johnson, Christopher D.

    2013-12-01

    In the spring of 2011, the American state of Texas passed into law an act limiting the liability of commercial space flight entities. Under it, those companies would not be liable for space flight participant injuries, except in cases of intentional injury or injury proximately caused by the company's gross negligence. An analysis within the framework of international and national space law, but especially informed by the academic discipline of law and economics, discusses the incentives of all relevant parties and attempts to understand whether the law is economically "efficient" (allocating resources so as to yield maximum utility), and suited to further the development of the fledgling commercial suborbital tourism industry. Insights into the Texas law are applicable to other states hoping to foster commercial space tourism and considering space tourism related legislation.

  7. The antigravity suit in neurosurgery. Cardiovascular responses in seated neurosurgical patients.

    Science.gov (United States)

    Brodrick, P M; Ingram, G S

    1988-09-01

    The haemodynamic responses associated with inflation of the antigravity suit (G suit, aviation type) to 8.0 kPa were studied in a series of 40 patients who underwent neurosurgical operations in the sitting position. The study showed statistically significant increases in systolic arterial pressure (p less than 0.005) and mean central venous pressure (p less than 0.001) with inflation of the suit. The systolic arterial and mean central venous pressures remained significantly elevated immediately before deflation of the suit at the end of the operation (p less than 0.001 and p less than 0.005 respectively). The addition of 0.8-1.0 kPa positive end expiratory pressure during suit inflation was also investigated. A further increase in central venous pressure occurred but this did not achieve statistical significance.

  8. Creating a Lunar EVA Work Envelope

    Science.gov (United States)

    Griffin, Brand N.; Howard, Robert; Rajulu, Sudhakar; Smitherman, David

    2009-01-01

    A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks. For weightless operations, this process is well developed, but planetary EVA is different and no work envelope has been defined. The primary difference between weightless and planetary work envelopes is gravity. It influences anthropometry, horizontal and vertical mobility, and reaction load paths and introduces effort into doing "overhead" work. Additionally, the use of spacesuits other than the EMU, and their impacts on range of motion, must be taken into account. This paper presents the analysis leading to a concept for a planetary EVA work envelope with emphasis on lunar operations. There is some urgency in creating this concept because NASA has begun building and testing development hardware for the lunar surface, including rovers, habitats and cargo off-loading equipment. Just as with microgravity operations, a lunar EVA work envelope is needed to guide designers in the formative stages of the program with the objective of avoiding difficult and costly rework.

  9. Christer Fuglesang, a former CERN physicist-turned-astronaut

    CERN Multimedia

    NASA

    2006-01-01

    European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, participates in the mission's second extravehicular activity (EVA) as construction resumes on the International Space Station. Image: NASA.

  10. Advanced Nanocomposite Membrane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increasing demands placed on extravehicular activities (EVA) for International Space Station (ISS) maintenance, there is a critical need for oxygen delivery...

  11. Extending the GI Brokering Suite to Support New Interoperability Specifications

    Science.gov (United States)

    Boldrini, E.; Papeschi, F.; Santoro, M.; Nativi, S.

    2014-12-01

    The GI brokering suite provides the discovery, access, and semantic Brokers (i.e. GI-cat, GI-axe, GI-sem) that empower a Brokering framework for multi-disciplinary and multi-organizational interoperability. GI suite has been successfully deployed in the framework of several programmes and initiatives, such as European Union funded projects, NSF BCube, and the intergovernmental coordinated effort Global Earth Observation System of Systems (GEOSS). Each GI suite Broker facilitates interoperability for a particular functionality (i.e. discovery, access, semantic extension) among a set of brokered resources published by autonomous providers (e.g. data repositories, web services, semantic assets) and a set of heterogeneous consumers (e.g. client applications, portals, apps). A wide set of data models, encoding formats, and service protocols are already supported by the GI suite, such as the ones defined by international standardizing organizations like OGC and ISO (e.g. WxS, CSW, SWE, GML, netCDF) and by Community specifications (e.g. THREDDS, OpenSearch, OPeNDAP, ESRI APIs). Using GI suite, resources published by a particular Community or organization through their specific technology (e.g. OPeNDAP/netCDF) can be transparently discovered, accessed, and used by different Communities utilizing their preferred tools (e.g. a GIS visualizing WMS layers). Since Information Technology is a moving target, new standards and technologies continuously emerge and are adopted in the Earth Science context too. Therefore, GI Brokering suite was conceived to be flexible and accommodate new interoperability protocols and data models. For example, GI suite has recently added support to well-used specifications, introduced to implement Linked data, Semantic Web and precise community needs. Amongst the others, they included: DCAT: a RDF vocabulary designed to facilitate interoperability between Web data catalogs. CKAN: a data management system for data distribution, particularly used by

  12. A deterministic electron, photon, proton and heavy ion transport suite for the study of the Jovian moon Europa

    International Nuclear Information System (INIS)

    Badavi, Francis F.; Blattnig, Steve R.; Atwell, William; Nealy, John E.; Norman, Ryan B.

    2011-01-01

    A Langley research center (LaRC) developed deterministic suite of radiation transport codes describing the propagation of electron, photon, proton and heavy ion in condensed media is used to simulate the exposure from the spectral distribution of the aforementioned particles in the Jovian radiation environment. Based on the measurements by the Galileo probe (1995-2003) heavy ion counter (HIC), the choice of trapped heavy ions is limited to carbon, oxygen and sulfur (COS). The deterministic particle transport suite consists of a coupled electron photon algorithm (CEPTRN) and a coupled light heavy ion algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means to the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, photon, proton and heavy ion exposure assessment in a complex space structure. In this paper, the reference radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron and proton spectra of the Jovian environment as generated by the jet propulsion laboratory (JPL) Galileo interim radiation electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter system mission (EJSM), the JPL provided Europa mission fluence spectrum, is used to produce the corresponding depth dose curve in silicon behind a default aluminum shield of 100 mils (∼0.7 g/cm 2 ). The transport suite can also accept a geometry describing ray traced thickness file from a computer aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point within the interior of the vehicle. In that regard, using a low fidelity CAD model of the Galileo probe generated by the authors, the transport suite was verified versus Monte Carlo (MC) simulation for orbits JOI-J35 of the Galileo probe

  13. Space Suit Survivability Enhancement NASA Research Announcement 96-OLMSA-01B: Advanced Life Support and Environmental Technologies for Human Exploration and Development of Space

    Science.gov (United States)

    1998-01-01

    Conducted two meetings to review the project scope and develop concepts for self-sealing material compositions, Focus has been on developing concepts that would seal a penetration enough to allow the astronauts to re-enter the spacecraft within the window provided by the emergency air supply. Concepts discussed include: quilted fabrics containing a viscous flow material in the quilted cells which would seal the bladder breach when forced to flow by the internal suit pressure; a sealant impregnated felt liner which acts similar to above; and a "blousy" fibrous layer which would mechanically plug a rupture under pressure. Illustrations of the above concepts are included in the attached viewgraphs, which were used in a presentation. The most promising of these concepts will be made into prototypes for testing. ILC has developed a test fixture to test the scaling characteristics of various material layups by measuring real-time changes in pressure and make-up flow in a pressurized cylinder. Candidate viscous sealing compounds such as silicones and urethanes have been identified. These compounds will be coated on existing bladder cloth for initial tests. The most promising compounds will be integrated into the above material structures for final testing. Design and analysis of fabric weaves to improve cut and puncture resistance of the suit TMG layers is underway. Philadelphia Textile is developing a mathematical model to correlate yarn type and weave structure to cut and tear resistance. The computer mathematical modeling of the fabric failure mechanisms by Cornell University, as originally proposed, will be replaced with the above model and empirical testing methods, due to the loss of key Cornell personnel.

  14. ANALYSIS OF DESIGN ELEMENTS IN SKI SUITS

    Directory of Open Access Journals (Sweden)

    Birsen Çileroğlu

    2014-06-01

    Full Text Available Popularity of Ski Sport in 19th century necessitated a new perspective on protective skiing clothing ag ainst the mountain climates and excessive cold. Winter clothing were the basis of ski attire during this period. By the beginning of 20th century lining cloth were used to minimize the wind effect. The difference between the men and women’s ski attire of the time consisted of a knee - length skirts worn over the golf trousers. Subsequent to the First World War, skiing suit models were influenced by the period uniforms and the producers reflected the fashion trends to the ski clothing. In conformance with th e prevailing trends, ski trousers were designed and produced for the women thus leading to reduction in gender differences. Increases in the ski tourism and holding of the first winter olympics in 1924 resulted in variations in ski attires, development of design characteristics, growth in user numbers, and enlargement of production capacities. Designers emphasized in their collections combined presence of elegance and practicality in the skiing attire. In 1930s, the ski suits influenced by pilots’ uniforms included characteristics permitting freedom of motion, and the design elements exhibited changes in terms of style, material and aerodynamics. In time, the ski attires showed varying design features distinguishing professionals from the amateurs. While protective functionality was primary consideration for the amateurs, for professionals the aerodynamic design was also a leading factor. Eventually, the increased differences in design characteristics were exhibited in ski suit collections, World reknown brands were formed, production and sales volumes showed significant rise. During 20th century the ski suits influenced by fashion trends to acquire unique styles reached a position of dominance to impact current fashion trends, and apart from sports attir es they became a style determinant in the clothing of cold climates. Ski suits

  15. STS-93 M.S. Michel Tognini suits up before launch

    Science.gov (United States)

    1999-01-01

    For the third time, in the Operations and Checkout Building, STS- 93 Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), waves after donning his launch and entry suit during final launch preparations. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Tognini. Collins is the first woman to serve as commander of a shuttle mission.

  16. STS-49 ASEM activity illustrated with PLAID computer graphics

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activity is illustrated with PLAID computer graphics. An extravehicular mobility unit (EMU) suited crewmember, positioned on the remote manipulator system (RMS) manipulator foot restraint (MFR), grabs and maneuvers the multipurpose experiment support structure (MPESS) with truss assembly attached above OV-105's payload bay (PLB) using the steer wheel assembly. The MPESS/ASEM truss structure has been lifted out the sill-mounted payload retention latch assemblies (PRLAs) and will be repositioned in the PRLAs upon completion of handling procedures. Also seen in this illustration are the empty INTELSAT perigee stage cradle structure (aft PLB) and the capture bar grapple fixture stowed on the port side sill longeron.

  17. Strauss: Der Rosenkavalier - Suite / Michael Kennedy

    Index Scriptorium Estoniae

    Kennedy, Michael

    1990-01-01

    Uuest heliplaadist "Strauss: Der Rosenkavalier - Suite, Salome-Dance of the seven veils, Capriccio-Prelude, Intermezzo, Morgen Mittag um elf! Felicity Lott, Scottish National Orchestra, Neeme Järvi" Chandos ABRD 1397. ABTD 1397. CHAN 8758

  18. The Los Alamos suite of relativistic atomic physics codes

    International Nuclear Information System (INIS)

    Fontes, C J; Zhang, H L; Jr, J Abdallah; Clark, R E H; Kilcrease, D P; Colgan, J; Cunningham, R T; Hakel, P; Magee, N H; Sherrill, M E

    2015-01-01

    The Los Alamos suite of relativistic atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions. (paper)

  19. Geological setting, emplacement mechanism and igneous evolution of the Atchiza mafic-ultramafic layered suite in north-west Mozambique

    Science.gov (United States)

    Ibraimo, Daniel Luis; Larsen, Rune B.

    2015-11-01

    The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing

  20. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    Science.gov (United States)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  1. Novelty Search for Soft Robotic Space Exploration

    NARCIS (Netherlands)

    Methenitis, G.; Hennes, D.; Izzo, D.; Visser, A.

    2015-01-01

    The use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular application and

  2. Novelty search for soft robotic space exploration

    NARCIS (Netherlands)

    G. Methenitis (Georgios); D. Hennes; D. Izzo; A. Visser

    2015-01-01

    textabstractThe use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular

  3. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  4. An improved air-supplied plastic suit for protection against tritium

    International Nuclear Information System (INIS)

    Wiernicki, C.

    1987-01-01

    A newly developed Saran/CPE plastic suit material is described which offers significantly better protection against HTO penetration and permeation than the 12-mil PVC currently used at SRP and most other DOE and commercial sites where tritium and HTO are exposure hazards. Tritium breakthrough time is an important parameter when evaluating the applicability of protective clothing; previously published tritium permeation tests did not measure this parameter. Future studies should quantify steady-state permeation rate and breakthrough time to more fully evaluate potential tritium protective clothing. Saran/CPE has successfully been fabricated into a plastic suit because, in addition to its superior tritium resistance, it has all the characteristics required to construct a rugged, dependable, and comfortable suit. The use of the Saran/CPE suit at SRP reactor and tritium production facilities should be a major contribution to the site As Low As Reasonably Achievable program. Both Saran/CPE have demonstrated excellent resistance to a wide range of chemical contaminants; therefore, this suit material may have applications in the general chemical industry and hazardous waste site cleanup operations. 4 refs., 3 figs., 1 tab

  5. EVA Training and Development Facilities

    Science.gov (United States)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  6. Activity-Based Collaboration for Interactive Spaces

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Esbensen, Morten; Tabard, Aurélien

    2017-01-01

    , folder, documents, etc., users are able to interact with ‘activities’ which encapsulate files and other low-level resources. In ABC an ‘activity’ can be shared between collaborating users and can be accessed on different devices. As such, ABC is a framework that suits the requirements of designing...... interactive spaces. This chapter provides an overview of ABC with a special focus on its support for collaboration (‘Activity Sharing’) and multiple devices (‘Activity Roaming’). These ABC concepts are illustrated as implemented in two different interactive spaces technologies; ReticularSpaces [1] and the e......LabBench [2, 3]. The chapter discusses the benefits of activity-based collaboration support for these interactive spaces, while also discussing limitations and challenges to be addressed in further research....

  7. The Role of KREEP in the Production of Mg-Suite Magmas and Its Influence on the Extent of Mg-Suite Magmatism in the Lunar Crust

    Science.gov (United States)

    Elardo, S. M.; Shearer, C. K.; McCubbin, F. M.

    2017-01-01

    The lunar magnesian-suite, or Mg-suite, is a series of ancient plutonic rocks from the lunar crust. They have received a considerable amount of attention from lunar scientists since their discovery for three primary reasons: 1) their ages and geochemistry indicate they represent pristine magmatic samples that crystallized very soon after the formation of the Moon; 2) their ages often overlap with ages of the ferroan anorthosite (FAN) crust; and 3) planetary-scale processes are needed in formation models to account for their unique geochemical features. Taken as a whole, the Mg-suite samples, as magmatic cumulate rocks, approximate a fractional crystallization sequence in the low-pressure forsterite-anorthite-silica system, and thus these samples are generally thought to be derived from layered mafic intrusions which crystallized very slowly from magmas that intruded the anorthositic crust. However, no direct linkages have been established between different Mg-suite samples based either on field relationships or geochemistry.The model for the origin of the Mg-suite, which best fits the limited available data, is one where Mg-suite magmas form from melting of a hybrid cumulate package consisting of deep mantle dunite, crustal anorthosite, and KREEP (potassium-rare earth elements-phosphorus) at the base of the crust under the Procellarum KREEP Terrane (PKT). In this model, these three LMO (Lunar Magma Ocean) cumulate components are brought into close proximity by the cumulate overturn process. Deep mantle dunitic cumulates with an Mg number of approximately 90 rise to the base of the anorthositic crust due to their buoyancy relative to colder, more dense Fe- and Ti-rich cumulates. This hybridized source rock melts to form Mg-suite magmas, saturated in Mg-rich olivine and anorthitic plagioclase, that have a substantial KREEP component.

  8. Corrections of the NIST Statistical Test Suite for Randomness

    OpenAIRE

    Kim, Song-Ju; Umeno, Ken; Hasegawa, Akio

    2004-01-01

    It is well known that the NIST statistical test suite was used for the evaluation of AES candidate algorithms. We have found that the test setting of Discrete Fourier Transform test and Lempel-Ziv test of this test suite are wrong. We give four corrections of mistakes in the test settings. This suggests that re-evaluation of the test results should be needed.

  9. Reliability performance testing of totally encapsulating chemical protective suits

    International Nuclear Information System (INIS)

    Johnson, J.S.; Swearengen, P.M.

    1991-01-01

    The need to assure a high degree of reliability for totally encapsulating chemical protective (TECP) suits has been recognized by Lawrence Livermore National Laboratory's (LLNL) Hazards Control Department for some time. The following four tests were proposed as necessary to provide complete evaluation of TECP suit performance: 1. Quantitative leak test (ASTM draft), 2. Worst-case chemical exposure test (conceptual), 3. Pressure leak-rate test (complete, ASTM F1057-87), and 4. Chemical leak-rate test (ASTM draft). This paper reports on these tests which should be applied to measuring TECP suit performance in two stages: design qualification tests and field use tests. Test 1, 2, and 3 are used as design qualification tests, and tests 3 and 4 are used as field use tests

  10. Virtual reality simulation training in a high-fidelity procedure suite

    DEFF Research Database (Denmark)

    Lönn, Lars; Edmond, John J; Marco, Jean

    2012-01-01

    To assess the face and content validity of a novel, full physics, full procedural, virtual reality simulation housed in a hybrid procedure suite.......To assess the face and content validity of a novel, full physics, full procedural, virtual reality simulation housed in a hybrid procedure suite....

  11. Corporation suit in administrative proceedings - BVerwG, NJW 1981, 362

    International Nuclear Information System (INIS)

    Skouris, W.

    1982-01-01

    The above mentioned decisions show that the repeated demand for an admission of the corporation suit has not had much impact on jurisdiction. Still the courts are examining whether the rights of corporations taking action against the executive measures are being infringed by them or not. They do not seem to be willing to admit the enforcement of members' rights or of public interests by means of a corporation suit except in those cases that are already embodied in the law. The latest statement of the administrative courts prove that the administrative procedural law (still) in force does not accept any general law on the conduct of a case on behalf of associations for the protection of their members' rights (egoistic corporation suit), nor does it acknowledge the legitimacy of corporations to see against objective illegalities in official decisions with the intention of reducing deficiencies in the execution (altruistic corporation suit). (orig.) [de

  12. FRHAM-TEX trademark cool suit - OST reference No. 1854. Deactivation and decommissioning focus area

    International Nuclear Information System (INIS)

    1998-02-01

    This paper describes a demonstration project for the FRHAM-TEX Cool Suit trademark manufactured by FRHAM Safety Products. It is a one-piece, disposable, breathable, waterproof coverall designed to permit moisture generated by the wearer to be transmitted outside the suit. The performance of this suit was compared to a Tyvek reg-sign suit as a baseline. The suit is proposed as safety ware for workers at decontamination and decommissioning projects

  13. Phase-space formalism: Operational calculus and solution of evolution equations in phase-space

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1995-05-01

    Phase-space formulation of physical problems offers conceptual and practical advantages. A class of evolution type equations, describing the time behaviour of a physical system, using an operational formalism useful to handle time ordering problems has been described. The methods proposed generalize the algebraic ordering techniques developed to deal with the ordinary Schroedinger equation, and how they are taylored suited to treat evolution problems both in classical and quantum dynamics has been studied

  14. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  15. Theory and experiments in model-based space system anomaly management

    Science.gov (United States)

    Kitts, Christopher Adam

    This research program consists of an experimental study of model-based reasoning methods for detecting, diagnosing and resolving anomalies that occur when operating a comprehensive space system. Using a first principles approach, several extensions were made to the existing field of model-based fault detection and diagnosis in order to develop a general theory of model-based anomaly management. Based on this theory, a suite of algorithms were developed and computationally implemented in order to detect, diagnose and identify resolutions for anomalous conditions occurring within an engineering system. The theory and software suite were experimentally verified and validated in the context of a simple but comprehensive, student-developed, end-to-end space system, which was developed specifically to support such demonstrations. This space system consisted of the Sapphire microsatellite which was launched in 2001, several geographically distributed and Internet-enabled communication ground stations, and a centralized mission control complex located in the Space Technology Center in the NASA Ames Research Park. Results of both ground-based and on-board experiments demonstrate the speed, accuracy, and value of the algorithms compared to human operators, and they highlight future improvements required to mature this technology.

  16. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  17. Heat and mass transfer in air-fed pressurised suits

    International Nuclear Information System (INIS)

    Tesch, K.; Collins, M.W.; Karayiannis, T.G.; Atherton, M.A.; Edwards, P.

    2009-01-01

    Air-fed pressurised suits are used to protect workers against contamination and hazardous environments. The specific application here is the necessity for regular clean-up maintenance within the torus chamber of fusion reactors. The current design of suiting has been developed empirically. It is, therefore, very desirable to formulate a thermo-fluids model, which will be able to define optimum designs and operating parameters. Two factors indicate that the modelling should be as comprehensive as possible. Firstly, the overall thermo-fluids problem is three-dimensional and includes mass as well as heat transfer. The fluid field is complex, bounded on one side by the human body and on the other by what may be distensible, porous and multi-layer clothing. In this paper, we report firstly the modelling necessary for the additional mass and heat transport processes. This involves the use of Fick's and Fourier's laws and conjugate heat transfer. The results of an initial validation study are presented. Temperatures at the outlet of the suits were obtained experimentally and compared with those predicted by the overall CFD model. Realistic three-dimensional geometries were used for the suit and human body. Calculations were for turbulent flow with single- and two-component (species) models

  18. Accommodating life sciences on the Space Station

    Science.gov (United States)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  19. Learning DHTMLX suite UI

    CERN Document Server

    Geske, Eli

    2013-01-01

    A fast-paced, example-based guide to learning DHTMLX.""Learning DHTMLX Suite UI"" is for web designers who have a basic knowledge of JavaScript and who are looking for powerful tools that will give them an extra edge in their own application development. This book is also useful for experienced developers who wish to get started with DHTMLX without going through the trouble of learning its quirks through trial and error. Readers are expected to have some knowledge of JavaScript, HTML, Document Object Model, and the ability to install a local web server.

  20. Allowable exposure limits for carbon dioxide during extravehicular activity

    Science.gov (United States)

    Seter, Andrew J.

    1993-01-01

    The intent was to review the research pertaining to human exposure to carbon dioxide (CO2) and to recommend allowable exposure limits for extravehicular activity (EVA). Respiratory, renal, and gastrointestinal systems may be adversely affected by chronic low dose CO2 exposure. Ventilation was increased 15 percent with 1 percent CO2 and 50 percent with 2 percent CO2. Chronic exposure to less than 2 percent CO2 led to 20 day cycles of uncompensated and compensated respiratory acidosis. Acid-base changes were small. Histopathologic changes in guinea pig lungs have been noted with long term exposure to 1 percent CO2. No changes were seen with exposure to 0.5 percent CO2. Cycling of bone calcium stores with associated changes in blood and urinary calcium levels occurs with long term CO2 exposure. Histologic changes in bone have been noted in guinea pigs exposed to 1 percent CO2. Renal calcification has been noted in guinea pigs with exposure to as low as 0.5 percent CO2. An increase in gastric acidity was noted in subjects with long term exposure to 1 percent CO2. Cardiovascular and neurologic function were largely unaffected. A decrease in the incidence of respiratory, renal, and gastrointestinal disease was noted in submariners coincident with a decrease in ambient CO2 from 1.2 percent to 0.8-0.9 percent. Oxygen (O2) and CO2 stimulate respiration independently and cumulatively. The addition of CO2 to high dose O2 led to the faster onset of seizure activity in mice. Experiments evaluating the physiologic responses to intermittent, repetitive exposures to low dose CO2 and 100 percent O2 mixtures should be performed. A reduction in the current NASA standard for CO2 exposure during EVA of 1 percent (7.6 mmHg) for nominal and 2 percent (15.2 mmHg) for heavy exertion to 0.5 percent (3.8 mmHg) for nominal and 1 percent (7.6 mmHg) for heavy exertion may be prudent. At a minimum, the current NASA standard should not be liberalized.

  1. Effect of swimming suit design on the energy demands of swimming.

    Science.gov (United States)

    Starling, R D; Costill, D L; Trappe, T A; Jozsi, A C; Trappe, S W; Goodpaster, B H

    1995-07-01

    Eight competitive male swimmers completed a standardized 365.8 m (400 yd) freestyle swimming trial at a fixed pace (approximately 90% of maximal effort) while wearing a torso swim suit (TOR) or a standard racing suit (STD). Oxygen uptake (VO2), blood lactate, heart rate (HR), and distance per stroke (DPS) measurements were obtained. In addition, a video-computer system was used to collect velocity data during a prone underwater glide following a maximal leg push-off from the side of the pool while wearing the TOR and STD suits. These data were used to calculate the total distance covered during the glides. VO2 (3.76 +/- 0.16 vs 3.92 +/- 0.18 l.min-1) and lactate (8.08 +/- 0.53 vs, 9.66 +/- 0.66 mM) were significantly (P 0.05) between the TOR (170.1 +/- 5.1 b.min-1) and STD (173.5 +/- 5.7 b.min-1) trials. DPS was significantly greater during the TOR (2.70 +/- 0.066 m.stroke-1) versus STD (2.58 +/- 0.054 m.stroke-1) trial. A significantly greater total distance was covered during the prone glide while wearing the TOR (2.05 +/- 0.067 m) compared to the STD (2.00 +/- 0.080 m) suit. These findings demonstrate that a specially designed torso suit reduces the energy demand of swimming compared to a standard racing suit which may be due to a reduction in body drag.

  2. Robots for hazardous duties: Military, space, and nuclear facility applications. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the design and application of robots used in place of humans where the environment could be hazardous. Military applications include autonomous land vehicles, robotic howitzers, and battlefield support operations. Space operations include docking, maintenance, mission support, and intra-vehicular and extra-vehicular activities. Nuclear applications include operations within the containment vessel, radioactive waste operations, fueling operations, and plant security. Many of the articles reference control techniques and the use of expert systems in robotic operations. Applications involving industrial manufacturing, walking robots, and robot welding are cited in other published searches in this series. (Contains a minimum of 183 citations and includes a subject term index and title list.)

  3. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    Science.gov (United States)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  4. 28 CFR 36.501 - Private suits.

    Science.gov (United States)

    2010-07-01

    ... ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Enforcement § 36.501 Private suits. (a) General. Any person who is... order. Upon timely application, the court may, in its discretion, permit the Attorney General to... general public importance. Upon application by the complainant and in such circumstances as the court may...

  5. A Test Suite for Safety-Critical Java using JML

    DEFF Research Database (Denmark)

    Ravn, Anders Peter; Søndergaard, Hans

    2013-01-01

    Development techniques are presented for a test suite for the draft specification of the Java profile for Safety-Critical Systems. Distinguishing features are: specification of conformance constraints in the Java Modeling Language, encoding of infrastructure concepts without implementation bias......, and corresponding specifications of implicitly stated behavioral and real-time properties. The test programs are auto-generated from the specification, while concrete values for test parameters are selected manually. The suite is open source and publicly accessible....

  6. Salvus: A scalable software suite for full-waveform modelling & inversion

    Science.gov (United States)

    Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; Fichtner, A.

    2017-12-01

    Full-waveform inversion (FWI), whether at the lab, exploration, or planetary scale, requires the cooperation of five principal components. (1) The geometry of the domain needs to be properly discretized and an initial guess of the model parameters must be projected onto it; (2) Large volumes of recorded waveform data must be collected, organized, and processed; (3) Synthetic waveform data must be efficiently and accurately computed through complex domains; (4) Suitable misfit functions and optimization techniques must be used to relate discrepancies in data space to perturbations in the model; and (5) Some form of workflow management must be employed to schedule and run (1) - (4) in the correct order. Each one of these components can represent a formidable technical challenge which redirects energy from the true task at hand: using FWI to extract new information about some underlying continuum.In this presentation we give an overview of the current status of the Salvus software suite, which was introduced to address the challenges listed above. Specifically, we touch on (1) salvus_mesher, which eases the discretization of complex Earth models into hexahedral meshes; (2) salvus_seismo, which integrates with LASIF and ObsPy to streamline the processing and preparation of seismic data; (3) salvus_wave, a high-performance and scalable spectral-element solver capable of simulating waveforms through general unstructured 2- and 3-D domains, and (4) salvus_opt, an optimization toolbox specifically designed for full-waveform inverse problems. Tying everything together, we also discuss (5) salvus_flow: a workflow package designed to orchestrate and manage the rest of the suite. It is our hope that these developments represent a step towards the automation of large-scale seismic waveform inversion, while also lowering the barrier of entry for new applications. We include several examples of Salvus' use in (extra-) planetary seismology, non-destructive testing, and medical

  7. DEMON/ANGEL - A SUITE OF PROGRAMS TO CARRY OUT DENSITY MODIFICATION

    NARCIS (Netherlands)

    VELLIEUX, FMDAP; HUNT, JF; ROY, S; READ, RJ

    1995-01-01

    The DEMON/ANGEL suite of computer programs has been developed to carry out density modification by non-crystallographic symmetry-averaging, solvent-flattening and histogram-mapping techniques. This suite consists of programs that allow molecular envelopes to be defined and modified,

  8. CubeSat Ambipolar Thruster for LEO and Deep Space Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aether Industries proposes the development of a novel, primary plasma propulsion system that is well suited for small spacecraft. This technology, called the CubeSat...

  9. DYNA3D/ParaDyn Regression Test Suite Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

  10. Extending and Enhancing SAS (Static Analysis Suite)

    CERN Document Server

    Ho, David

    2016-01-01

    The Static Analysis Suite (SAS) is an open-source software package used to perform static analysis on C and C++ code, helping to ensure safety, readability and maintainability. In this Summer Student project, SAS was enhanced to improve ease of use and user customisation. A straightforward method of integrating static analysis into a project at compilation time was provided using the automated build tool CMake. The process of adding checkers to the suite was streamlined and simplied by developing an automatic code generator. To make SAS more suitable for continuous integration, a reporting mechanism summarising results was added. This suitability has been demonstrated by inclusion of SAS in the Future Circular Collider Software nightly build system. Scalability of the improved package was demonstrated by using the tool to analyse the ROOT code base.

  11. Molecular property diagnostic suite (MPDS): Development of disease-specific open source web portals for drug discovery.

    Science.gov (United States)

    Nagamani, S; Gaur, A S; Tanneeru, K; Muneeswaran, G; Madugula, S S; Consortium, Mpds; Druzhilovskiy, D; Poroikov, V V; Sastry, G N

    2017-11-01

    Molecular property diagnostic suite (MPDS) is a Galaxy-based open source drug discovery and development platform. MPDS web portals are designed for several diseases, such as tuberculosis, diabetes mellitus, and other metabolic disorders, specifically aimed to evaluate and estimate the drug-likeness of a given molecule. MPDS consists of three modules, namely data libraries, data processing, and data analysis tools which are configured and interconnected to assist drug discovery for specific diseases. The data library module encompasses vast information on chemical space, wherein the MPDS compound library comprises 110.31 million unique molecules generated from public domain databases. Every molecule is assigned with a unique ID and card, which provides complete information for the molecule. Some of the modules in the MPDS are specific to the diseases, while others are non-specific. Importantly, a suitably altered protocol can be effectively generated for another disease-specific MPDS web portal by modifying some of the modules. Thus, the MPDS suite of web portals shows great promise to emerge as disease-specific portals of great value, integrating chemoinformatics, bioinformatics, molecular modelling, and structure- and analogue-based drug discovery approaches.

  12. What's New with MS Office Suites

    Science.gov (United States)

    Goldsborough, Reid

    2012-01-01

    If one buys a new PC, laptop, or netbook computer today, it probably comes preloaded with Microsoft Office 2010 Starter Edition. This is a significantly limited, advertising-laden version of Microsoft's suite of productivity programs, Microsoft Office. This continues the trend of PC makers providing ever more crippled versions of Microsoft's…

  13. Antigravity Suits For Studies Of Weightlessness

    Science.gov (United States)

    Kravik, Stein E.; Greenleaf, John

    1992-01-01

    Report presents results of research on use of "antigravity" suit, one applying positive pressure to lower body to simulate some effects of microgravity. Research suggests lower-body positive pressure is alternative to bed rest or immersion in water in terrestrial studies of cardioregulatory, renal, electrolyte, and hormonal changes induced in humans by microgravity.

  14. The CMSSW benchmarking suite: Using HEP code to measure CPU performance

    International Nuclear Information System (INIS)

    Benelli, G

    2010-01-01

    The demanding computing needs of the CMS experiment require thoughtful planning and management of its computing infrastructure. A key factor in this process is the use of realistic benchmarks when assessing the computing power of the different architectures available. In recent years a discrepancy has been observed between the CPU performance estimates given by the reference benchmark for HEP computing (SPECint) and actual performances of HEP code. Making use of the CPU performance tools from the CMSSW performance suite, comparative CPU performance studies have been carried out on several architectures. A benchmarking suite has been developed and integrated in the CMSSW framework, to allow computing centers and interested third parties to benchmark architectures directly with CMSSW. The CMSSW benchmarking suite can be used out of the box, to test and compare several machines in terms of CPU performance and report with the wanted level of detail the different benchmarking scores (e.g. by processing step) and results. In this talk we describe briefly the CMSSW software performance suite, and in detail the CMSSW benchmarking suite client/server design, the performance data analysis and the available CMSSW benchmark scores. The experience in the use of HEP code for benchmarking will be discussed and CMSSW benchmark results presented.

  15. The role of the restructured Mobile Remote Service Base System (MBS) in support of Space Station maintenance and servicing

    Science.gov (United States)

    Darlington, T.; Krukewich, K.

    1992-08-01

    The critical parameters resulting from the restructuring of Space Station Freedom which necessitated the redesign of the Mobile Remote Service Base System (MBS) are described. These include optimization of robotic attachment locations for access to the Space Station truss-mounted orbital replacement units, transport of logistics carriers to the maintenance sites, minimization of EVA overhead associated with maintenance, self-maintenance of other mobile servicing system (MSS) elements on the MBS, and balancing of station EVA and extravehicular robotics in a complementary fashion to minimize maintenance overhead in general. Consideration is given to the configuration of the resulting MBS, which provides the program with maximum flexibility to utilize the assets of the MSS and optimizes end-to-end maintenance with regard to the use of station resources such as crew time and power. Maintenance and servicing scenarios which are instrumental to the reconfigured MBS as well as the results of improved maintenance capability are presented.

  16. 33 CFR 144.20-5 - Exposure suits.

    Science.gov (United States)

    2010-07-01

    ... light that is approved under 46 CFR 161.012. Each light must be securely attached to the front shoulder... lanyard coiled and stopped off. (f) No stowage container for exposure suits may be capable of being locked...

  17. Evaluation of Triathlon Suit Characteristics Relevant to Thermophysiology of an Athlete

    Directory of Open Access Journals (Sweden)

    Chris Watson

    2018-02-01

    Full Text Available The thermophysiological function of clothing influences athletic wellbeing and performance, particularly in outdoor endurance activities such as triathlon. However, there is very little existing research on the performance of triathlon suits relative to thermophysiological function of the wearer. This pilot study provides a benchmark for triathlon suit performance and insights into improving the suit design and material engineering. The study assessed the thermal and breathability attributes of 6 triathlon suits and concluded that while both of the attributes were similar overall, they varied in different body zones due to different design, construction and materials. Local thermal and evaporative performance were affected by fabric construction; double fabric layering in the stomach panel; the number, size, shape and material structure of rear pockets; cycle crotch pad size, shape and thickness; and panel design. The results of this study show the importance of garment design, construction and materials for the best thermal and evaporative resistance attributes of sportswear.

  18. Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

    Science.gov (United States)

    Papale, William; Paul, Heather; Thomas, Gretchen

    2006-01-01

    Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system. Advancements in solid amine technology employed in a pressure swing adsorption system have led to the possibility of combining both the CO2 and humidity control requirements into a single, lightweight device. Because the pressure swing adsorption system is regenerated to space vacuum or by an inert purge stream, the duration of an EVA mission may be extended significantly over currently employed technologies, while markedly reducing the overall subsystem weight compared to the combined weight of the condensing heat exchanger and current regenerative CO2 removal technology. This paper will provide and overview of ongoing development efforts evaluating the subsystem size required to manage anticipated metabolic CO2 and water vapor generation rates in a spacesuit environment.

  19. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  20. Dual-Compartment Inflatable Suitlock

    Science.gov (United States)

    Kennedy, Kriss J.; Guirgis, Peggy L.; Boyle, Robert M.

    2013-01-01

    There is a need for an improvement over current NASA Extravehicular Activity (EVA) technology. The technology must allow the capacity for quicker, more efficient egress/ingress, allow for shirtsleeve suit maintenance, be compact in transport, and be applicable to environments ranging from planetary surface (partial-g) to orbital or deep space zero-g environments. The technology must also be resistant to dust and other foreign contaminants that may be present on or around a planetary surface. The technology should be portable, and be capable of docking with a variety of habitats, ports, stations, vehicles, and other pressurized modules. The Dual-Compartment Inflatable Suitlock (DCIS) consists of three hard inline bulkheads, separating two cylindrical membrane-walled compartments. The Inner Bulkhead can be fitted with a variety of hatch types, docking flanges, and mating hardware, such as the Common Berthing Mechanism (CBM), for the purpose of mating with vehicles, habitats, and other pressurized modules. The Inner Bulkhead and Center Bulkhead function as the end walls of the Inner Compartment, which during operations, would stay pressurized, either matching the pressure of the habitat or acting as a lower-pressure transitional volume. The Inner Compartment contains donning/doffing fixtures and inner suit-port hatches. The Center Bulkhead has two integrated suit-ports along with a maintenance hatch. The Center Bulkhead and Outer Bulkhead function as the end walls of the Outer Compartment, which stays at vacuum during normal operations. This allows the crewmember to quickly don a suit, and egress the suitlock without waiting for the Outer Compartment to depressurize. The Outer Compartment can be pressurized infrequently for both nominal and off-nominal suit maintenance tasks, allowing shirtsleeve inspections and maintenance/repair of the environmental suits. The Outer Bulkhead has a pressure-assisted hatch door that stays open and stowed during EVA operations, but can

  1. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Science.gov (United States)

    2010-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  2. FusionCharts Beginner's Guide The Official Guide for FusionCharts Suite

    CERN Document Server

    Nadhani, Sanket; Bhattacharya, Shamasis

    2012-01-01

    The book is written as a practical, step-by-step guide to using FusionCharts Suite. The book not only teaches you the fundamentals and implementation of FusionCharts Suite, but also makes you the data visualization guru among your friends and colleagues by teaching how to select the right chart type and usability tips. Filled with examples, code samples and practical tips in a no-nonsense way, the book is a breeze to read.This book is both for beginners and advanced web developers who need to create interactive charts for their web applications. No previous knowledge of FusionCharts Suite is a

  3. Prokofiev. "Romeo and Juliet" - Suites / Iran March

    Index Scriptorium Estoniae

    March, Iran

    1991-01-01

    Uuest heliplaadist "Prokofiev. "Romeo and Juliet" - Suites: N 1 Op. 64 bis a; N 2 Op. 64 ter b; N 3 Op. 101 c. Royal Scottish National Orchestra /Neeme Järvi" Chandos cassette ABTD 1536; CD CHAN 8940 (78 minutes) etc

  4. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  5. An overview of Space Shuttle anthropometry and biomechanics research with emphasis on STS/Mir recumbent seat system design

    Science.gov (United States)

    Klute, Glenn K.; Stoycos, Lara E.

    1994-01-01

    The Anthropometry and Biomechanics Laboratory (ABL) at JSC conducts multi-disciplinary research focusing on maximizing astronaut intravehicular (IVA) and extravehicular (EVA) capabilities to provide the most effective work conditions for manned space flight and exploration missions. Biomechanics involves the measurement and modeling of the strength characteristics of the human body. Current research for the Space Shuttle Program includes the measurement of torque wrench capability during weightlessness, optimization of foot restraint, and hand hold placement, measurements of the strength and dexterity of the pressure gloved hand to improve glove design, quantification of the ability to move and manipulate heavy masses (6672 N or 1500 lb) in weightlessness, and verification of the capability of EVA crewmembers to perform Hubble Space Telescope repair tasks. Anthropometry is the measurement and modeling of the dimensions of the human body. Current research for the Space Shuttle Program includes the measurement of 14 anthropometric parameters of every astronaut candidate, identification of EVA finger entrapment hazards by measuring the dimensions of the gloved hand, definition of flight deck reach envelopes during launch and landing accelerations, and measurement of anthropometric design parameters for the recumbent seat system required for the Shuttle/Mir mission (STS-71, Spacelab M) scheduled for Jun. 1995.

  6. The Aging Urban Brain: Analyzing Outdoor Physical Activity Using the Emotiv Affectiv Suite in Older People.

    Science.gov (United States)

    Neale, Chris; Aspinall, Peter; Roe, Jenny; Tilley, Sara; Mavros, Panagiotis; Cinderby, Steve; Coyne, Richard; Thin, Neil; Bennett, Gary; Thompson, Catharine Ward

    2017-12-01

    This research directly assesses older people's neural activation in response to a changing urban environment while walking, as measured by electroencephalography (EEG). The study builds on previous research that shows changes in cortical activity while moving through different urban settings. The current study extends this methodology to explore previously unstudied outcomes in older people aged 65 years or more (n = 95). Participants were recruited to walk one of six scenarios pairing urban busy (a commercial street with traffic), urban quiet (a residential street) and urban green (a public park) spaces in a counterbalanced design, wearing a mobile Emotiv EEG headset to record real-time neural responses to place. Each walk lasted around 15 min and was undertaken at the pace of the participant. We report on the outputs for these responses derived from the Emotiv Affectiv Suite software, which creates emotional parameters ('excitement', 'frustration', 'engagement' and 'meditation') with a real-time value assigned to them. The six walking scenarios were compared using a form of high dimensional correlated component regression (CCR) on difference data, capturing the change between one setting and another. The results showed that levels of 'engagement' were higher in the urban green space compared to those of the urban busy and urban quiet spaces, whereas levels of 'excitement' were higher in the urban busy environment compared with those of the urban green space and quiet urban space. In both cases, this effect is shown regardless of the order of exposure to these different environments. These results suggest that there are neural signatures associated with the experience of different urban spaces which may reflect the older age of the sample as well as the condition of the spaces themselves. The urban green space appears to have a restorative effect on this group of older adults.

  7. Autonomous Phase-Space Mapping and Navigation for Spacecraft Operations in Extreme Orbital Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed research is to generate a suite of algorithms for the autonomous navigation of highly nonlinear orbital regimes. These algorithms must...

  8. Spacesuit Soft Upper Torso Sizing Systems

    Science.gov (United States)

    Graziosi, David; Splawn, Keith

    2011-01-01

    The passive sizing system consists of a series of low-profile pulleys attached to the front and back of the shoulder bearings on a spacesuit soft upper torso (SUT), textile cord or stainless steel cable, and a modified commercial ratchet mechanism. The cord/cable is routed through the pulleys and attached to the ratchet mechanism mounted on the front of the spacesuit within reach of the suited subject. Upon actuating the ratchet mechanism, the shoulder bearing breadth is changed, providing variable upper torso sizing. The active system consists of a series of pressurizable nastic cells embedded into the fabric layers of a spacesuit SUT. These cells are integrated to the front and back of the SUT and are connected to an air source with a variable regulator. When inflated, the nastic cells provide a change in the overall shoulder bearing breadth of the spacesuit and thus, torso sizing. The research focused on the development of a high-performance sizing and actuation system. This technology has application as a suit-sizing mechanism to allow easier suit entry and more accurate suit fit with fewer torso sizes than the existing EMU (Extravehicular Mobility Unit) suit system. This advanced SUT will support NASA s Advanced EMU Evolutionary Concept of a two-sizes-fit-all upper torso for replacement of the current EMU hard upper torso (HUT). Both the passive and nastic sizing system approaches provide astronauts with real-time upper torso sizing, which translates into a more comfortable suit, providing enhanced fit resulting in improved crewmember performance during extravehicular activity. These systems will also benefit NASA by reducing flight logistics as well as overall suit system cost. The nastic sizing system approach provides additional structural redundancy over existing SUT designs by embedding additional coated fabric and uncoated fabric layers. Two sizing systems were selected to build into a prototype SUT: one active and one passive. From manned testing, it

  9. pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis

    Science.gov (United States)

    White, J.; Brakefield, L. K.

    2015-12-01

    The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.

  10. A Guide to the Application of Probability Risk Assessment Methodology and Hazard Risk Frequency Criteria as a Hazard Control for the Use of the Mobile Servicing System on the International Space Station

    Science.gov (United States)

    D'silva, Oneil; Kerrison, Roger

    2013-09-01

    A key feature for the increased utilization of space robotics is to automate Extra-Vehicular manned space activities and thus significantly reduce the potential for catastrophic hazards while simultaneously minimizing the overall costs associated with manned space. The principal scope of the paper is to evaluate the use of industry standard accepted Probability risk/safety assessment (PRA/PSA) methodologies and Hazard Risk frequency Criteria as a hazard control. This paper illustrates the applicability of combining the selected Probability risk assessment methodology and hazard risk frequency criteria, in order to apply the necessary safety controls that allow for the increased use of the Mobile Servicing system (MSS) robotic system on the International Space Station. This document will consider factors such as component failure rate reliability, software reliability, and periods of operation and dormancy, fault tree analyses and their effects on the probability risk assessments. The paper concludes with suggestions for the incorporation of existing industry Risk/Safety plans to create an applicable safety process for future activities/programs

  11. The Sample Analysis at Mars Investigation and Instrument Suite

    Science.gov (United States)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  12. Extravehicular Activity Fact Sheet: An EVA Chronology

    Data.gov (United States)

    National Aeronautics and Space Administration — Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in...

  13. STS-114: Discovery TCDT Flight Crew Test Media Event at Pad 39-B

    Science.gov (United States)

    2005-01-01

    The STS-114 Space Shuttle Discovery Terminal Countdown Demonstration Test (TCDT) flight crew is shown at Pad 39-B. Eileen Collins, Commander introduces the astronauts. Andrew Thomas, mission specialist talks about his primary responsibility of performing boom inspections, Wendy Lawrence, Mission Specialist 4 (MS4) describes her role as the robotic arm operator supporting Extravehicular Activities (EVA), Stephen Robinson, Mission Specialist 3 (MS3) talks about his role as flight engineer, Charlie Camarda, Mission Specialist 5 (MS5) says that his duties are to perform boom operations, transfer operations from the space shuttle to the International Space Station and spacecraft rendezvous. Soichi Noguchi, Mission Specialist 1 (MS1) from JAXA, introduces himself as Extravehicular Activity 1 (EVA1), and Jim Kelley, Pilot will operate the robotic arm and perform pilot duties. Questions from the news media about the safety of the external tank, going to the International Space Station and returning, EVA training, and thoughts about the Space Shuttle Columbia crew are answered.

  14. Performance Characterization and Simulation of Amine-Based Vacuum Swing Sorption Units for Spacesuit Carbon Dioxide and Humidity Control

    Science.gov (United States)

    Swickrath, Michael J.; Watts, Carly; Anderson, Molly; McMillin, Summer; Broerman, Craig; Colunga, Aaron; Vogel, Matthew

    2012-01-01

    Controlling carbon dioxide (CO2) and water (H2O) vapor concentrations in a space suit is critical to ensuring an astronauts safety, comfort, and capability to perform extra-vehicular activity (EVA) tasks. Historically, this has been accomplished using lithium hydroxide (LiOH) and metal oxide (MetOx) canisters. Lithium hydroxide is a consumable material that requires priming with water before it becomes effective at removing carbon dioxide. MetOx is regenerable through a power-intensive thermal cycle but is significantly heavier on a volume basis than LiOH. As an alternative, amine-based vacuum swing beds are under aggressive development for EVA applications. The vacuum swing units control atmospheric concentrations of both CO2 and H2O through fully-regenerative process. The current concept, referred to as the rapid cycle amine (RCA), has resulted in numerous laboratory prototypes. Performance of these prototypes have been assessed experimentally and documented in previous reports. To support developmental e orts, a first principles model has also been established for the vacuum swing sorption technology. For the first time in several decades, a major re-design of Portable Life Support System (PLSS) for the extra-vehicular mobility unit (EMU) is underway. NASA at Johnson Space Center built and tested an integrated PLSS test bed of all subsystems under a variety of simulated EVA conditions of which the RCA prototype played a significant role. The efforts documented herein summarize RCA test performance and simulation results for single and variable metabolic rate experiments in an integrated context. In addition, a variety of off-nominal tests were performed to assess the capability of the RCA to function under challenging circumstances. Tests included high water production experiments, degraded vacuum regeneration, and deliberate valve/power failure and recovery.

  15. The use of antigravity suits in the treatment of idiopathic orthostatic hypotension

    Science.gov (United States)

    Landmark, K.; Kravik, S.

    1980-01-01

    Idiopathic orthostatic hypotension is an uncommon disease characterized by a drop in blood pressure when going from a recumbent to a standing position. Treatment by medication generally produces poor results. Three patients at the Royal Hospital in Oslo were treated with antigravity suits and all were able to maintain adequate blood pressures in the standing position. One patient improved dramatically and was able to take short walks while wearing the suit. The two other patients, however, felt that wearing the suits eventually became uncomfortable. This treatment represents a useful treatment alternative for intractable cases.

  16. Controlatron Neutron Tube Test Suite Software Manual - Operation Manual (V2.2)

    CERN Document Server

    Noel, W P; Hertrich, R J; Martinez, M L; Wallace, D L

    2002-01-01

    The Controlatron Software Suite is a custom built application to perform automated testing of Controlatron neutron tubes. The software package was designed to allowing users to design tests and to run a series of test suites on a tube. The data is output to ASCII files of a pre-defined format for data analysis and viewing with the Controlatron Data Viewer Application. This manual discusses the operation of the Controlatron Test Suite Software and a brief discussion of state machine theory, as state machine is the functional basis of the software.

  17. Equation-of-State Test Suite for the DYNA3D Code

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Russell D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-05

    This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.

  18. Solar water heater for NASA's Space Station

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  19. A transitional alkalic dolerite dike suite of Mesozoic age in Southeastern New England

    Science.gov (United States)

    Hermes, O. Don; Rao, J. M.; Dickenson, M. P.; Pierce, T. A.

    1984-12-01

    Dike rocks from the New England platform of Rhode Island and adjacent Massachusetts consist of premetamorphic and post-metamorphic suites. The older group includes metamorphosed dolerite, minette, and schistose dioritic rocks. Post-metamorphic dikes consist of dolerite and sparse monchiquite. The post-metamorphic dolerites are of comparable age to the Eastern North American dolerite suite associated with the Mesozoic basins along the eastern seaboard of North America. However, the southeastern New England dolerites exhibit mineralogy and chemistry more typical of a transitional alkalic suite compared to the more subalkalic tholeiitic dolerites of the Eastern North American suite. Both suites are compatible with a rift tectonic setting, but the more alkalic dolerites may represent a deeper source of small volume melts compared to the Eastern North American dolerites. These more alkaline melts may have concentrated at local centers, or they may be typical of flank dolerites as opposed to the less alkalic varieties that occur within the central axial rift.

  20. A Suite of Tools for Technology Assessment

    Science.gov (United States)

    2007-09-01

    Saden, Povinelli & Rosen, 1989). • This was a significant change in emphasis on the part of NASA, where technology had previously viewed as merely...Cost Analysis Symposium, April 13, 2005. A Suite of Tools for Technology Assessment 24 Bibliography - continued: • Sadin, Stanley T.; Povinelli

  1. What was uniform about the fin-de-siècle sailor suit?

    Science.gov (United States)

    Rose, Clare

    2011-01-01

    The sailor suits widely worn by children in late-nineteenth-century Britain have been interpreted at the time, and since, as expressions of an Imperial ethos. Yet, a closer examination of the ways that these garments were produced by mass manufacturers, mediated by advertisers and fashion advisors and consumed by families makes us question this characterization. Manufacturers interpreted sailor suits not as unchanging uniforms but as fashion items responding to seasonal changes. Consumers used them to assert social identities and social distinctions, selecting from the multiple variants available. Cultural commentators described sailor suits as emulating Royal practice—but also as ‘common’ and to be avoided. A close analysis of large samples of images and texts from the period 1870–1900 reveals how these different meanings overlapped, making the fin-de-siècle sailor suit a garment that undermines many of our assumptions.

  2. Continuing Development for Free-Piston Stirling Space Power Systems

    Science.gov (United States)

    Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.

    2004-02-01

    Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.

  3. SPACE MAINTENANCE OF NUCLEAR ROCKET PROPULSION VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Marjon, P. L.

    1963-08-15

    Maintenance and repair of spacecraft are discussed from the hardware viewpoint. Interior operations are rather straight forward, but study results show that space suits are not sufficient for exterior repair work. Evaluation of worker requirements leads to a maintenance capsule concept. Capsule application is depicted in contrasting situations: repair of meteoroid damage and nuclear engine replacement. Radiation shielding is also considered. (D.C.W.)

  4. Overview of space nuclear technologies and the American Nuclear Society

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.

    2000-01-01

    The American Nuclear Society (ANS) has seen an aspect of the universe where nuclear technology is the best energy source available for power, transportation, etc. The National Aeronautics and Space Administration (NASA) has been exploiting this aspect of the universe by sending machines and humans into it and exploring, colonizing, industrializing, developing, inhabiting, etc. Space is the final frontier, and nuclear technology is the best suited for today's or the next century's space exploration and development. Many aspects of nuclear technology and its uses in space will be needed. ANS encompasses these and many more aspects of nuclear technology, and all have some role to play in the exploration and development of space. It should be ANS's intent to be an advisory body to NASA on the nuclear aspects of space exploration

  5. EVA Health and Human Performance Benchmarking Study

    Science.gov (United States)

    Abercromby, A. F.; Norcross, J.; Jarvis, S. L.

    2016-01-01

    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems.

  6. Real-space formulation of the electrostatic potential and total energy of solids

    International Nuclear Information System (INIS)

    Pask, J E; Sterne, P A

    2004-01-01

    We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations, no Fourier transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale, parallel computations. The need for reciprocal space expressions is eliminated by replacing long-range potentials by equivalent localized charge distributions and incorporating long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of the conventional reciprocal space formalism is obtained. The equivalence of the real- and reciprocal space formalisms is demonstrated by direct comparison in self-consistent density-functional calculations

  7. A 3-D Miniature LIDAR System for Mobile Robot Navigation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future lunar site operations will benefit from mobile robots, both autonomous and tele-operated, that complement or replace human extravehicular activity....

  8. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  9. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    Science.gov (United States)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  10. Use of Virtual Reality for Space Flight

    Science.gov (United States)

    Harm, Deborah; Taylor, L. C.; Reschke, M. F.

    2011-01-01

    Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational

  11. Open Problem: Kernel methods on manifolds and metric spaces

    DEFF Research Database (Denmark)

    Feragen, Aasa; Hauberg, Søren

    2016-01-01

    Radial kernels are well-suited for machine learning over general geodesic metric spaces, where pairwise distances are often the only computable quantity available. We have recently shown that geodesic exponential kernels are only positive definite for all bandwidths when the input space has strong...... linear properties. This negative result hints that radial kernel are perhaps not suitable over geodesic metric spaces after all. Here, however, we present evidence that large intervals of bandwidths exist where geodesic exponential kernels have high probability of being positive definite over finite...... datasets, while still having significant predictive power. From this we formulate conjectures on the probability of a positive definite kernel matrix for a finite random sample, depending on the geometry of the data space and the spread of the sample....

  12. Specifications and test procedures for airline-type supplied-air suits

    International Nuclear Information System (INIS)

    Revoir, W.H.; Pritchard, J.A.; Davis, T.O.; Richards, C.P.; Wheat, L.D.

    1975-05-01

    Procedures and requirements have been established to permit airline-type supplied-air suits needed by contractors of the Energy Research and Development Administration to be tested for performance by the Respirator Research and Development Section, Industrial Hygiene Group, of the Los Alamos Scientific Laboratory, and to have the adequacy of the performance of these devices evaluated by the Los Alamos Scientific Laboratory Respirator Advisory Committee. Test equipment, test methods, and performance criteria for airline-type supplied-air suits are prescribed. (U.S.)

  13. Fluid replacement advice during work in fully encapsulated impermeable chemical protective suits

    NARCIS (Netherlands)

    Rubenstein, C.D.; Hartog, E.A. den; Deaton, A.S.; Bogerd, C.P.; Kant, S. de

    2017-01-01

    A major concern for responders to hazardous materials (HazMat) incidents is the heat strain that is caused by fully encapsulated impermeable chemical protective suits. In a research project, funded by the US Department of Defense, the thermal strain experienced when wearing these suits was studied.

  14. Optimizing the physical ergonomics indices for the use of partial pressure suits.

    Science.gov (United States)

    Ding, Li; Li, Xianxue; Hedge, Alan; Hu, Huimin; Feathers, David; Qin, Zhifeng; Xiao, Huajun; Xue, Lihao; Zhou, Qianxiang

    2015-03-01

    This study developed an ergonomic evaluation system for the design of high-altitude partial pressure suits (PPSs). A total of twenty-one Chinese males participated in the experiment which tested three types of ergonomics indices (manipulative mission, operational reach and operational strength) were studied using a three-dimensional video-based motion capture system, a target-pointing board, a hand dynamometer, and a step-tread apparatus. In total, 36 ergonomics indices were evaluated and optimized using regression and fitting analysis. Some indices that were found to be linearly related and redundant were removed from the study. An optimal ergonomics index system was established that can be used to conveniently and quickly evaluate the performance of different pressurized/non-pressurized suit designs. The resulting ergonomics index system will provide a theoretical basis and practical guidance for mission planners, suit designers and engineers to design equipment for human use, and to aid in assessing partial pressure suits. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Effect of fastskin suits on performance, drag, and energy cost of swimming.

    Science.gov (United States)

    Chatard, Jean-Claude; Wilson, Barry

    2008-06-01

    To investigate the effect of fastskin suits on 25- to 800-m performances, drag, and energy cost of swimming. The performances, stroke rate and distance per stroke, were measured for 14 competitive swimmers in a 25-m pool, when wearing a normal suit (N) and when wearing a full-body suit (FB) or a waist-to-ankle suit (L). Passive drag, oxygen uptake, blood lactate, and the perceived exertion were measured in a flume. There was a 3.2% +/- 2.4% performance benefit for all subjects over the six distances covered at maximal speed wearing FB and L when compared with N. When wearing L, the gain was significantly lower (1.8% +/- 2.5%, P energy cost of swimming was significantly reduced when wearing FB and L by 4.5% +/- 5.4% and 5.5% +/- 3.1%, respectively (P energy cost of submaximal swimming and an increased distance per stroke, at the same stroke rates, and reduced freestyle performance time.

  16. U.S. Climate Normals Product Suite (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Climate Normals are a large suite of data products that provide users with many tools to understand typical climate conditions for thousands of locations...

  17. Nanocomposite for Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Advanced Extravehicular Activity (EVA) program requires the need for materials that can protect astronauts and spacecrafts from ionizing radiations such as...

  18. Innovative EVA Glove Exoskeleton, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Dexterous performance degradation resulting from donning an extra-vehicular activity (EVA) glove limits the capability of astronauts to perform certain tasks in...

  19. Robot Tracking of Human Subjects in Field Environments

    Science.gov (United States)

    Graham, Jeffrey; Shillcutt, Kimberly

    2003-01-01

    Future planetary exploration will involve both humans and robots. Understanding and improving their interaction is a main focus of research in the Intelligent Systems Branch at NASA's Johnson Space Center. By teaming intelligent robots with astronauts on surface extra-vehicular activities (EVAs), safety and productivity can be improved. The EVA Robotic Assistant (ERA) project was established to study the issues of human-robot teams, to develop a testbed robot to assist space-suited humans in exploration tasks, and to experimentally determine the effectiveness of an EVA assistant robot. A companion paper discusses the ERA project in general, its history starting with ASRO (Astronaut-Rover project), and the results of recent field tests in Arizona. This paper focuses on one aspect of the research, robot tracking, in greater detail: the software architecture and algorithms. The ERA robot is capable of moving towards and/or continuously following mobile or stationary targets or sequences of targets. The contributions made by this research include how the low-level pose data is assembled, normalized and communicated, how the tracking algorithm was generalized and implemented, and qualitative performance reports from recent field tests.

  20. STS-93 Commander Collins waves after suiting up before launch

    Science.gov (United States)

    1999-01-01

    During final launch preparations in the Operations and Checkout Building, STS-93 Commander Eileen M. Collins waves after donning her launch and entry suit. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. The target landing date is July 26, 1999, at 11:24 p.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission.

  1. Development of an online men’s suits customizing system using heuristic procedure for wheelchair users

    NARCIS (Netherlands)

    Jeong, Minseok; Yang, Chuneun; You, Heecheon; Park, Kwangae; Lee, W.

    2016-01-01

    An online suit-customizing system for the special accessibility needs of wheelchair users should be developed because the demand for business suits by wheelchair users involved in economic activities has increased. This study
    develops a user interface an online customizing system for men's suits

  2. Proximity operations concept design study, task 6

    Science.gov (United States)

    Williams, A. N.

    1990-01-01

    The feasibility of using optical technology to perform the mission of the proximity operations communications subsystem on Space Station Freedom was determined. Proximity operations mission requirements are determined and the relationship to the overall operational environment of the space station is defined. From this information, the design requirements of the communication subsystem are derived. Based on these requirements, a preliminary design is developed and the feasibility of implementation determined. To support the Orbital Maneuvering Vehicle and National Space Transportation System, the optical system development is straightforward. The requirements on extra-vehicular activity are such as to allow large fields of uncertainty, thus exacerbating the acquisition problem; however, an approach is given that could mitigate this problem. In general, it is found that such a system could indeed perform the proximity operations mission requirement, with some development required to support extra-vehicular activity.

  3. Space Weather Models at the CCMC And Their Capabilities

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.

  4. High Performance Electrical Modeling and Simulation Verification Test Suite - Tier I; TOPICAL

    International Nuclear Information System (INIS)

    SCHELLS, REGINA L.; BOGDAN, CAROLYN W.; WIX, STEVEN D.

    2001-01-01

    This document describes the High Performance Electrical Modeling and Simulation (HPEMS) Global Verification Test Suite (VERTS). The VERTS is a regression test suite used for verification of the electrical circuit simulation codes currently being developed by the HPEMS code development team. This document contains descriptions of the Tier I test cases

  5. Telemetry Standards, IRIG Standard 106-17, Chapter 22, Network Based Protocol Suite

    Science.gov (United States)

    2017-07-01

    requirements. 22.2 Network Access Layer 22.2.1 Physical Layer Connectors and cable media should meet the electrical or optical properties required by the...Telemetry Standards, IRIG Standard 106-17 Chapter 22, July 2017 i CHAPTER 22 Network -Based Protocol Suite Acronyms...iii Chapter 22. Network -Based Protocol Suite

  6. A New Method of Space Travel Optimized for Space Tourism and Colonization

    Science.gov (United States)

    Turek, Philip A.

    2006-01-01

    High costs associated with expendable rockets are stifling the development of permanent space colonies. A new method of space travel is presented that enjoys significantly increased performance and reduced cost relative to competing concepts. Based on recycling the kinetic energy of an arriving spacecraft, up to 200 MW of average electrical power is generated and sustained for 2 minutes, and is immediately applied in launching a departing partner spacecraft. The resulting required delta vee for a round trip between low Earth orbit (LEO) and geosynchronous orbit (GEO) drops from 7.6 km/s to 0.54 km/s when 3 recycling stations with an 80 % energy coupling efficiency are used to exchange kinetic energy between 8 partner spacecraft transiting the same route. This method is well suited for round trip high volume space travel such as space tourism traffic to LEO, lunar orbit, and beyond. As the kinetic energy of an arriving spacecraft is the power source for launching departing spacecraft, nascent lunar colonies can electrically launch 26,000 kg payloads long before sustained 100 MW level power supplies become locally available. A pair of recycling stations at an orbiting space colony construction site provides a resource of net impulse, net torque, and electrical power to the colony irrespective of the contents of the arriving payloads. Kinetic energy recycling technology, configuration, operations, and near Earth applications are described.

  7. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station

    Directory of Open Access Journals (Sweden)

    Elke Rabbow

    2017-08-01

    Full Text Available On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS, carrying EXPOSE-R2, the third ESA (European Space Agency EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form, lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center in Cologne by MUSC (Microgravity User Support Center, according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data. In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.

  8. An integrative variant analysis suite for whole exome next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Challis Danny

    2012-01-01

    Full Text Available Abstract Background Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions of the genome. Although the exome capture sequencing methods have become routine and well established, there is currently a lack of tools specialized for variant calling in this type of data. Results Using statistical models trained on validated whole-exome capture sequencing data, the Atlas2 Suite is an integrative variant analysis pipeline optimized for variant discovery on all three of the widely used next generation sequencing platforms (SOLiD, Illumina, and Roche 454. The suite employs logistic regression models in conjunction with user-adjustable cutoffs to accurately separate true SNPs and INDELs from sequencing and mapping errors with high sensitivity (96.7%. Conclusion We have implemented the Atlas2 Suite and applied it to 92 whole exome samples from the 1000 Genomes Project. The Atlas2 Suite is available for download at http://sourceforge.net/projects/atlas2/. In addition to a command line version, the suite has been integrated into the Genboree Workbench, allowing biomedical scientists with minimal informatics expertise to remotely call, view, and further analyze variants through a simple web interface. The existing genomic databases displayed via the Genboree browser also streamline the process from variant discovery to functional genomics analysis, resulting in an off-the-shelf toolkit for the broader community.

  9. Grounding word learning in space.

    Directory of Open Access Journals (Sweden)

    Larissa K Samuelson

    Full Text Available Humans and objects, and thus social interactions about objects, exist within space. Words direct listeners' attention to specific regions of space. Thus, a strong correspondence exists between where one looks, one's bodily orientation, and what one sees. This leads to further correspondence with what one remembers. Here, we present data suggesting that children use associations between space and objects and space and words to link words and objects--space binds labels to their referents. We tested this claim in four experiments, showing that the spatial consistency of where objects are presented affects children's word learning. Next, we demonstrate that a process model that grounds word learning in the known neural dynamics of spatial attention, spatial memory, and associative learning can capture the suite of results reported here. This model also predicts that space is special, a prediction supported in a fifth experiment that shows children do not use color as a cue to bind words and objects. In a final experiment, we ask whether spatial consistency affects word learning in naturalistic word learning contexts. Children of parents who spontaneously keep objects in a consistent spatial location during naming interactions learn words more effectively. Together, the model and data show that space is a powerful tool that can effectively ground word learning in social contexts.

  10. Potatoes in Space

    Science.gov (United States)

    2004-01-01

    Astroculture is a suite of technologies used to produce and maintain a closed controlled environment for plant growth. The two most recent missions supported growth of potato, dwarf wheat, and mustard plants and provided scientists with the first opportunity to conduct true plant research in space. Light emitting diodes have particular usefulness for plant growth lighting because they emit a much smaller amount of radiant heat than do conventional lighting sources and because they have potential of directing a higher percentage of the emitted light onto plants surfaces. Furthermore, the high output LED's have emissions in the 600-700 nm waveband, which is of highest efficiency for photosynthesis by plants.

  11. Development of a Suite of Analytical Tools for Energy and Water Infrastructure Knowledge Discovery

    Science.gov (United States)

    Morton, A.; Piburn, J.; Stewart, R.; Chandola, V.

    2017-12-01

    Energy and water generation and delivery systems are inherently interconnected. With demand for energy growing, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic, and demographic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This also requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. To address this need, we've developed a suite of analytical tools to support an integrated data driven modeling, analysis, and visualization capability for understanding, designing, and developing efficient local and regional practices related to the energy-water nexus. This work reviews the analytical capabilities available along with a series of case studies designed to demonstrate the potential of these tools for illuminating energy-water nexus solutions and supporting strategic (federal) policy decisions.

  12. Adobe Creative Suite 6 Design and Web Premium all-in-one for dummies

    CERN Document Server

    Smith, Jennifer; Gerantabee, Fred

    2012-01-01

    The must-have book on the leading suite of software for graphic and web designers Fully revised and updated this hands-on resource offers a one-stop learning opportunity through eight mini-book dedicated to each product inside Adobe's Design & Web Premium Suite. The mini-books include Adobe Creative Suite Basics, InDesign, Illustrator, Photoshop, Acrobat, Dreamweaver, Flash, Fireworks. The book may contain new image enhancements to After Effects, 64-bit versions of Illustrator and Flash Professional, and a new tool, dubbed Helium, that will enable designers to create content using HTML5 and

  13. Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit.

    Science.gov (United States)

    Jin, Shanhai; Iwamoto, Noriyasu; Hashimoto, Kazunobu; Yamamoto, Motoji

    2016-10-12

    This paper presents a new soft wearable robotic suit for energy-efficient walking in daily activities for elderly persons. The presented robotic suit provides a small yet effective assistive force for hip flexion through winding belts that include elastic elements. In addition, it does not restrict the range of movement in the lower limbs. Moreover, its structure is simple and lightweight, and thus wearers can easily take the device on and off by themselves. Experimental results on nine elderly subjects (age = 74.23.7 years) show that the robotic suit worn and powered on (PON) significantly reduced energy expenditure by an average of 5.9 % compared with the condition of worn but powered off (POFF). Furthermore, compared with the POFF condition, there was a significant improvement in gait characteristics in the PON condition for all subjects.

  14. CO2 Removal from Mars EMU, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 control for during ExtraVehicular Activity (EVA) on mars is challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable...

  15. Lightweight, Wearable Metal Rubber-Textile Sensor for In Situ Lunar Autonomous Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop a low-weight, non-invasive in situ autonomous health-monitoring system for crewmembers' lunar extravehicular activity (EVA). This novel...

  16. Safety Tips: Avoiding Negligence Suits in Chemistry Teaching.

    Science.gov (United States)

    Gerlovich, Jack A.

    1983-01-01

    Discusses various aspects related to negligence on the part of chemistry teachers. Areas addressed include negligence in tort law, avoiding negligence suits, proper instructions, proper supervision, equipment maintenance, and other considerations such as sovereign immunity, and contributory versus comparative negligence. (JN)

  17. Position of cytogenetic examination of cosmonauts for the space radiation exposure estimate

    Science.gov (United States)

    Snigiryova, Galina; Novitskaya, Natalia; Fedorenko, Boris

    The cytogenetic monitoring was carried out to evaluate of radiation induced stable and un-stable chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). In the period of 1992 -2008 chromosome aberrations in 202 blood samples from 48 cosmonauts were analyzed using the conventional method. In addition 23 blood samples from 12 cosmonauts were analyzed using FISH (fluorescence in situ hybridization) technique. Whole chromosome painting probes for chromosomes 1, 4 and 12 were used simultaneously with a pancentromeric probe. Samples taken before and after the flights were analyzed. Long-term space flights led to an increase of stable (FISH method) and unstable (conventional method) chromosome aber-ration frequencies. The frequencies of dicentrics and centric rings depend on the space flight duration and accumulated dose value. Extravehicular activity also adds to chromosome aber-ration frequency in blood lymphocytes of cosmonauts. Several years after the space flight the increased level of unstable chromosome aberrations is still apparent. The radiation load was decreased for cosmonauts after taking ISS over from MIR station. The cytogenetic results were in agreement with data of physical dosimetry. The dose interval after the first flight, estimated by the frequency of dicentrics, was 113-227 mSv for long-term flights (73 -199 days) and 53-107 mSv for short-term flights (1 -21 days). According to the frequency of FISH translocations, the average dose after the first long-term flight was 186 mSv, which is comparable with estimates made from the dicentric assay. Cytogenetic examination of cosmonauts, including analysis of dicentrics (conventional method) and translocations (FISH method) should find wider applica-tion to assessment of radiation effects associated with long-term space flights such as flights to Mars.

  18. Superior Speech Acquisition and Robust Automatic Speech Recognition for Integrated Spacesuit Audio Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts suffer from poor dexterity of their hands due to the clumsy spacesuit gloves during Extravehicular Activity (EVA) operations and NASA has had a widely...

  19. Superior Speech Acquisition and Robust Automatic Speech Recognition for Integrated Spacesuit Audio Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts suffer from poor dexterity of their hands due to the clumsy spacesuit gloves during Extravehicular Activity (EVA) operations and NASA has had a widely...

  20. Modeling and Control Methods for Supporting Scapulohumeral Rhythm with a Robotic Exoskeleton

    Data.gov (United States)

    National Aeronautics and Space Administration — Extravehicular activities (EVA), which are activities that require a crew member to leave the spacecraft, are a key component of many missions and require a...

  1. The IMBA suite: integrated modules for bioassay analysis

    Energy Technology Data Exchange (ETDEWEB)

    Birchall, A.; Jarvis, N.S.; Peace, M.S.; Riddell, A.E.; Battersby, W.P

    1998-07-01

    The increasing complexity of models representing the biokinetic behaviour of radionuclides in the body following intake poses problems for people who are required to implement these models. The problem is exacerbated by the current paucity of suitable software. In order to remedy this situation, a collaboration between British Nuclear Fuels, Westlakes Research Institute and the National Radiological Protection Board has started with the aim of producing a suite of modules for estimating intakes and doses from bioassay measurements using the new ICRP models. Each module will have a single purpose (e.g. to calculate respiratory tract deposition) and will interface with other software using data files. The elements to be implemented initially are plutonium, uranium, caesium, iodine and tritium. It is intended to make the software available to other parties under terms yet to be decided. This paper describes the proposed suite of integrated modules for bioassay analysis, IMBA. (author)

  2. Isotopic variation in the Tuolumne Intrusive Suite, central Sierra Nevada, California

    Science.gov (United States)

    Kistler, R.W.; Chappell, B.W.; Peck, D.L.; Bateman, P.C.

    1986-01-01

    Granitoid rocks of the compositionally zoned Late Cretaceous Toulumne Intrusive Suite in the central Sierra Nevada, California, have initial87Sr/86Sr values (Sri) and143Nd/144Nd values (Ndi) that vary from 0.7057 to 0.7067 and from 0.51239 to 0.51211 respectively. The observed variation of both Sri and Ndi and of chemical composition in rocks of the suite cannot be due to crystal fractionation of magma solely under closed system conditons. The largest variation in chemistry, Ndi, and Sri is present in the outer-most equigranular units of the Tuolumne Intrusive Suite. Sri varies positively with SiO2, Na2O, K2O, and Rb concentrations, and negatively with Ndi, Al2O3, Fe2O3, MgO, FeO, CaO, MnO, P2O5, TiO2, and Sr concentrations. This covariation of Sri, Ndi and chemistry can be modeled by a process of simple mixing of basaltic and granitic magmas having weight percent SiO2 of 48.0 and 73.3 respectively. Isotopic characteristic of the mafic magma are Sri=0.7047, Ndi=0.51269 and ??18O=6.0, and of the felsic magma are Sri=0.7068, Ndi=0.51212 and ??18O=8.9. The rocks sampled contain from 50 to 80% of the felsic component. An aplite in the outer equigranular unit of the Tuolumne Intrusive Suite apparently was derived by fractional crystallization of plagioclase and hornblende from magma with granudiorite composition that was a product of mixing of the magmas described above. Siliceous magmas derived from the lower crust, having a maximum of 15 percent mantle-derived mafic component, are represented by the inner prophyritic units of the Tuolumne Intrusive Suite. ?? 1986 Springer-Verlag.

  3. Segane saksa-eesti kirjakeel ja eesti lauluraamat / Gustav Suits

    Index Scriptorium Estoniae

    Suits, Gustav, 1883-1956

    1999-01-01

    Varem ilmunud: Suits, Gustav. Eesti kirjanduslugu I. Lund : Eesti Kirjanike Kooperatiiv, 1953. Heinrich Stahli käsiraamatu Hand-, Hausz- und Kirchenbuch (1654-1656) osana ilmunud lauluraamatust Neu Ehstnisches Gesangbuch (1656)

  4. Assuring Condition and Inventory Accountability of Chemical Protective Suits

    National Research Council Canada - National Science Library

    2000-01-01

    .... As part of the Defense Logistics Agency's efforts to consolidate depot operations and improve inventory accuracy, chemical protective suits were transferred to the Defense Depot, Albany, Georgia, during FY 1991.

  5. Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition

    Science.gov (United States)

    2017-01-01

    NAVAL SURFACE WARFARE CENTER PANAMA CITY DIVISION PANAMA CITY, FL 32407-7001 TECHNICAL REPORT NSWC PCD TR-2017-004 MODULAR ...31-01-2017 Technical Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition DR...flexible platform to facilitate the development and testing of ATR algorithms. To that end, NSWC PCD has created the Modular Algorithm Testbed Suite

  6. The audio and visual communication systems for suited engineering activities on JET

    International Nuclear Information System (INIS)

    Pearce, R.J.H.; Bruce, J.; Callaghan, C.; Hart, M.; Martin, P.; Middleton, R.; Tait, J.

    2001-01-01

    The beryllium and/or tritium contamination of the JET tokamak and auxiliary systems necessitates that many activities are carried out in air line fed pressurised suits. To enable often complex engineering activities to be performed, a number of novel audio and visual and communications systems have been designed. The paper describes these systems which give freedom of visual and audio communication between suited personnel, supervisors, operators and engineers. The system enhances the safety of the working environment as well as helping to minimise the radiation dose to personnel. It is concluded, from a number of years experience of using the audio and visual communications systems for suited operations, that safety and the progress of complex engineering tasks have been significantly enhanced

  7. The audio and visual communication systems for suited engineering activities on JET

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, R.J.H. E-mail: robert.pearce@jet.uk; Bruce, J.; Callaghan, C.; Hart, M.; Martin, P.; Middleton, R.; Tait, J

    2001-11-01

    The beryllium and/or tritium contamination of the JET tokamak and auxiliary systems necessitates that many activities are carried out in air line fed pressurised suits. To enable often complex engineering activities to be performed, a number of novel audio and visual and communications systems have been designed. The paper describes these systems which give freedom of visual and audio communication between suited personnel, supervisors, operators and engineers. The system enhances the safety of the working environment as well as helping to minimise the radiation dose to personnel. It is concluded, from a number of years experience of using the audio and visual communications systems for suited operations, that safety and the progress of complex engineering tasks have been significantly enhanced.

  8. Forecasting Proximal Femur and Wrist Fracture Caused by a Fall to the Side during Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Sulkowski, C.; Ruehl, K.; Licata, A.

    2008-01-01

    The possibility of bone fracture in space is a concern due to the negative impact it could have on a mission. The Bone Fracture Risk Module (BFxRM) developed at the NASA Glenn Research Center is a statistical simulation that quantifies the probability of bone fracture at specific skeletal locations for particular activities or events during space exploration missions. This paper reports fracture probability predictions for the proximal femur and wrist resulting from a fall to the side during an extravehicular activity (EVA) on specific days of lunar and Martian exploration missions. The risk of fracture at the proximal femur on any given day of the mission is small and fairly constant, although it is slightly greater towards the end of the mission, due to a reduction in proximal femur bone mineral density (BMD). The risk of wrist fracture is greater than the risk of hip fracture and there is an increased risk on Mars since it has a higher gravitational environment than the moon. The BFxRM can be used to help manage the risk of bone fracture in space as an engineering tool that is used during mission operation and resource planning.

  9. Advanced automation for in-space vehicle processing

    Science.gov (United States)

    Sklar, Michael; Wegerif, D.

    1990-01-01

    The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.

  10. [Doctor, may I travel in space? Aeromedical considerations regarding commercial suborbital space flights].

    Science.gov (United States)

    Haerkens, Marck H T M; Simons, Ries; Kuipers, André

    2011-01-01

    Within a few years, the first commercial operators will start flying passengers on suborbital flights to the verge of space. Medical data on the effects of space journeys on humans have mainly been provided by professional astronauts. There is very little research into the aeromedical consequences of suborbital flights for the health of untrained passengers. Low air pressure and oxygen tension can be compensated for by pressurising the spacecraft or pressure suit. Rapid changes in gravitational (G-)force pose ultimate challenges to cardiovascular adaptation mechanisms. Zero-gravity and G-force may cause motion sickness. Vibrations and noise during the flight may disturb communication between passengers and crew. In addition, the psychological impact of a suborbital flight should not be underestimated. There are currently no legal requirements available for medical examinations for commercial suborbital flights, but it seems justifiable to establish conditions for potential passengers' states of health.

  11. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    Science.gov (United States)

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical

  12. Improved airline-type supplied-air plastic suit. [For personnel protection against inhalation of airborne plutonium and tritium

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, L. Jr.; Zippler, D.B.; Cofer, C.H.; Harper, J.A.

    1978-06-01

    Two piece supplied-air plastic suits are used extensively at the Savannah River Plant for personnel protection against inhalation of airborne plutonium and tritium. Worker comfort and noise level problems gave impetus to development of an improved suit and aid distribution system. The resulting plastic suit and development work are discussed. The plastic suit unit cost is less than $20, the hearing zone noise level is less than 75 dBA, protection factors exceed 10,000, and user comfort is approved. This suit is expected to meet performance requirements for unrestricted use.

  13. CO2 Removal from Mars EMU, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A practical CO2 control system for ExtraVehicular Activity (EVA) on Mars have not yet been developed. TDA Research, Inc. proposes to develop a durable,...

  14. Lunar All-Terrain Utility Vehicle for EVA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("Lunar ATV") to assist extra-vehicular activities...

  15. Lunar All-Terrain Utility Vehicle for EVA, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("LATUV") to assist extra-vehicular activities in...

  16. Collaborating with Space-related Research Institutes, Government Agencies and an Artistic team to create a series of Space-themed public events in Ireland in 2014

    Science.gov (United States)

    Shaw, N.; McSweeney, C.; Smyth, N.; O'Neill, S.; Foley, C.; Phelan, R.; Crawley, J.; Henderson, C.; Cullinan, M.; Baxter, S.; Colley, D.; Macaulay, C. J.; Conroy, L.

    2015-10-01

    A suite of informal interactive public engagement initiatives was created, to promote the importance of Space exploration, to ignite curiosity and discover new and engaging platforms for science in the Arts & in STEM Education, and to increase awareness of careers in Ireland's Space science industries. These included: (1)'To Space'- A live multimedia theatre performance aimed at the general public & young adult, (2) an adaptation of 'To Space' for 13- 17 year old students entitled 'ToSpace for School leavers' and (3) 'My Place in Space', created for families. Blending humour, warmth and humanity and positioning science within story is a highly effective public engagement tool in igniting curiosity across many audience types. The nurturing and investment of artists working within these new cross-disciplinary relationships should be encouraged and supported to further broaden and develop new methodology in public engagement of the planetary sciences.

  17. Environmental monitors in the Midcourse Space Experiments (MSX)

    Science.gov (United States)

    Uy, O. M.

    1993-01-01

    The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .

  18. Space Station Human Factors: Designing a Human-Robot Interface

    Science.gov (United States)

    Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.

  19. Packing the PLSS

    Science.gov (United States)

    Jennings, Mallory

    2011-01-01

    NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a

  20. The Astronaut-Athlete: Optimizing Human Performance in Space.

    Science.gov (United States)

    Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L

    2015-12-01

    It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).

  1. Space Biology and Aerospace Medicine, Number 5, 1977.

    Science.gov (United States)

    1977-11-10

    unchanged level in blood of 2,3- diphosphoglyceric acid, which is of substantial importance in implementation of hemoglobin function. For the first time in...Criteria of Artificial Gravity (I. Yu. Sarkisov, A. A. Shipov).................» 18 Change in Gravitation Level as a Stress Factor (L. V. Serova...for space suits, consideration is given not only to the need to maintain microclimate and temperature parameters at the proper level , but design

  2. Bigelow aerospace colonizing space one module at a time

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    Here for the first time you can read: how a space technology start-up is pioneering work on expandable space station modules how Robert Bigelow licensed the TransHab idea from NASA, and how his company developed the technology for more than a decade how, very soon, a Bigelow expandable module will be docked with the International Space Station. At the core of Bigelow's plan is the inflatable module technology. Tougher and more durable than their rigid counterparts, these inflatable modules are perfectly suited for use in the space, where Bigelow plans to link them together to form commercial space stations. This book describes how this new breed of space stations will be built and how the link between Bigelow Aerospace, NASA and private companies can lead to a new economy—a space economy. Finally, the book touches on Bigelow's aspirations beyond low Earth orbit, plans that include the landing of a base on the lunar surface and the prospect of missions to Mars.

  3. Prokofiev: Romeo and Juliet - Suite N1 / Ivan March

    Index Scriptorium Estoniae

    March, Ivan

    1990-01-01

    Uuest heliplaadist "Prokofiev: Romeo and Juliet - Suite N1, Op.64b, N2, Op.64c. Philharmonia Orchestra, Barry Wordsworth" Collins Classics cassette 1116-4. CD. Võrreldud Neeme Järvi plaadistustega 1116-2

  4. Robonaut: a robot designed to work with humans in space

    Science.gov (United States)

    Bluethmann, William; Ambrose, Robert; Diftler, Myron; Askew, Scott; Huber, Eric; Goza, Michael; Rehnmark, Fredrik; Lovchik, Chris; Magruder, Darby

    2003-01-01

    The Robotics Technology Branch at the NASA Johnson Space Center is developing robotic systems to assist astronauts in space. One such system, Robonaut, is a humanoid robot with the dexterity approaching that of a suited astronaut. Robonaut currently has two dexterous arms and hands, a three degree-of-freedom articulating waist, and a two degree-of-freedom neck used as a camera and sensor platform. In contrast to other space manipulator systems, Robonaut is designed to work within existing corridors and use the same tools as space walking astronauts. Robonaut is envisioned as working with astronauts, both autonomously and by teleoperation, performing a variety of tasks including, routine maintenance, setting up and breaking down worksites, assisting crew members while outside of spacecraft, and serving in a rapid response capacity.

  5. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS).

    Science.gov (United States)

    Rabbow, E; Rettberg, P; Baumstark-Khan, C; Horneck, G

    2003-01-01

    In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system

  6. Failure to exercise due diligence costs plaintiff her suit.

    Science.gov (United States)

    1997-11-28

    The Mississippi State Supreme Court affirmed a lower court ruling dismissing a last-minute suit filed by a plaintiff against United Blood Services of Mississippi and the American Association of Blood Banks. A woman known as D. Doe was a recipient of a tainted transfusion. She contracted HIV in 1983 and died of AIDS-related causes in 1991. Her daughter, the plaintiff, filed a contaminated blood transfusion lawsuit just five days before the statute of limitations ran out but failed to ascertain the correct identity of the blood bank. She named two blood banks in her suit because she was unable to determine the source of the blood. The Supreme Court ruled that waiting until five days before the statute elapsed indicated that the plaintiff did not exercise reasonable diligence within a specific time frame.

  7. Time Management in the Operating Room: An Analysis of the Dedicated Minimally Invasive Surgery Suite

    Science.gov (United States)

    Hsiao, Kenneth C.; Machaidze, Zurab

    2004-01-01

    Background: Dedicated minimally invasive surgery suites are available that contain specialized equipment to facilitate endoscopic surgery. Laparoscopy performed in a general operating room is hampered by the multitude of additional equipment that must be transported into the room. The objective of this study was to compare the preparation times between procedures performed in traditional operating rooms versus dedicated minimally invasive surgery suites to see whether operating room efficiency is improved in the specialized room. Methods: The records of 50 patients who underwent laparoscopic procedures between September 2000 and April 2002 were retrospectively reviewed. Twenty-three patients underwent surgery in a general operating room and 18 patients in an minimally invasive surgery suite. Nine patients were excluded because of cystoscopic procedures undergone prior to laparoscopy. Various time points were recorded from which various time intervals were derived, such as preanesthesia time, anesthesia induction time, and total preparation time. A 2-tailed, unpaired Student t test was used for statistical analysis. Results: The mean preanesthesia time was significantly faster in the minimally invasive surgery suite (12.2 minutes) compared with that in the traditional operating room (17.8 minutes) (P=0.013). Mean anesthesia induction time in the minimally invasive surgery suite (47.5 minutes) was similar to time in the traditional operating room (45.7 minutes) (P=0.734). The average total preparation time for the minimally invasive surgery suite (59.6 minutes) was not significantly faster than that in the general operating room (63.5 minutes) (P=0.481). Conclusion: The amount of time that elapses between the patient entering the room and anesthesia induction is statically shorter in a dedicated minimally invasive surgery suite. Laparoscopic surgery is performed more efficiently in a dedicated minimally invasive surgery suite versus a traditional operating room. PMID

  8. Vibrotactile perception assessment for a haptic interface on an antigravity suit.

    Science.gov (United States)

    Ko, Sang Min; Lee, Kwangil; Kim, Daeho; Ji, Yong Gu

    2017-01-01

    Haptic technology is used in various fields to transmit information to the user with or without visual and auditory cues. This study aimed to provide preliminary data for use in developing a haptic interface for an antigravity (anti-G) suit. With the structural characteristics of the anti-G suit in mind, we determined five areas on the body (lower back, outer thighs, inner thighs, outer calves, and inner calves) on which to install ten bar-type eccentric rotating mass (ERM) motors as vibration actuators. To determine the design factors of the haptic anti-G suit, we conducted three experiments to find the absolute threshold, moderate intensity, and subjective assessments of vibrotactile stimuli. Twenty-six fighter pilots participated in the experiments, which were conducted in a fixed-based flight simulator. From the results of our study, we recommend 1) absolute thresholds of ∼11.98-15.84 Hz and 102.01-104.06 dB, 2) moderate intensities of 74.36 Hz and 126.98 dB for the lower back and 58.65 Hz and 122.37 dB for either side of the thighs and calves, and 3) subjective assessments of vibrotactile stimuli (displeasure, easy to perceive, and level of comfort). The results of this study will be useful for the design of a haptic anti-G suit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The role of defensible space for residential structure protection during wildfires

    Science.gov (United States)

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2014-01-01

    With the potential for worsening fire conditions, discussion is escalating over how to best reduce effects on urban communities. A widely supported strategy is the creation of defensible space immediately surrounding homes and other structures. Although state and local governments publish specific guidelines and requirements, there is little empirical evidence to suggest how much vegetation modification is needed to provide significant benefits. We analysed the role of defensible space by mapping and measuring a suite of variables on modern pre-fire aerial photography for 1000 destroyed and 1000 surviving structures for all fires where homes burned from 2001 to 2010 in San Diego County, CA, USA. Structures were more likely to survive a fire with defensible space immediately adjacent to them. The most effective treatment distance varied between 5 and 20 m (16–58 ft) from the structure, but distances larger than 30 m (100 ft) did not provide additional protection, even for structures located on steep slopes. The most effective actions were reducing woody cover up to 40% immediately adjacent to structures and ensuring that vegetation does not overhang or touch the structure. Multiple-regression models showed landscape-scale factors, including low housing density and distances to major roads, were more important in explaining structure destruction. The best long-term solution will involve a suite of prevention measures that include defensible space as well as building design approach, community education and proactive land use planning that limits exposure to fire.

  10. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  11. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    Science.gov (United States)

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.

  12. Space Flight Orthostatic Intolerance Protection

    Science.gov (United States)

    Luty, Wei

    2009-01-01

    This paper summarizes investigations conducted on different orthostatic intolerance protection garments. This paper emphasizes on the engineering and operational aspects of the project. The current Shuttle pneumatic Anti-G Suit or AGS at 25 mmHg (0.5 psi) and customized medical mechanical compressive garments (20-30 mmHg) were tested on human subjects. The test process is presented. The preliminary results conclude that mechanical compressive garments can ameliorate orthostatic hypotension in hypovolemic subjects. A mechanical compressive garment is light, small and works without external pressure gas source; however the current garment design does not provide an adjustment to compensate for the loss of mass and size in the lower torso during long term space missions. It is also difficult to don. Compression garments that do not include an abdominal component are less effective countermeasures than garments which do. An early investigation conducted by the Human Adaptation and Countermeasures Division at Johnson Space Center (JSC) has shown there is no significant difference between the protection function of the AGS (at 77 mmHg or 1.5 psi) and the Russian anti-g suit, Kentavr (at 25 mmHg or 0.5 psi). Although both garments successfully countered hypovolemia-induced orthostatic intolerance, the Kentavr provided protection by using lower levels of compression pressure. This more recent study with a lower AGS pressure shows that pressures at 20-30 mmHg is acceptable but protection function is not as effective as higher pressure. In addition, a questionnaire survey with flight crewmembers who used both AGS and Kentavr during different missions was also performed.

  13. Metabolic Diet App Suite for inborn errors of amino acid metabolism.

    Science.gov (United States)

    Ho, Gloria; Ueda, Keiko; Houben, Roderick F A; Joa, Jeff; Giezen, Alette; Cheng, Barbara; van Karnebeek, Clara D M

    2016-03-01

    An increasing number of rare inborn errors of metabolism (IEMs) are amenable to targeted metabolic nutrition therapy. Daily adherence is important to attain metabolic control and prevent organ damage. This is challenging however, given the lack of information of disorder specific nutrient content of foods, the limited availability and cost of specialty products as well as difficulties in reliable calculation and tracking of dietary intake and targets. To develop apps for all inborn errors of amino acid metabolism for which the mainstay of treatment is a medical diet, and obtain patient and family feedback throughout the process to incorporate this into subsequent versions. The Metabolic Diet App Suite was created with input from health care professionals as a free, user-friendly, online tool for both mobile devices and desktop computers (http://www.metabolicdietapp.org) for 15 different IEMs. General information is provided for each IEM with links to useful online resources. Nutrient information is based on the MetabolicPro™, a North American food database compiled by the Genetic Metabolic Dietitians International (GMDI) Technology committee. After user registration, a personalized dashboard and management plan including specific nutrient goals are created. Each Diet App has a user-friendly interface and the functions include: nutrient intake counts, adding your own foods and homemade recipes and, managing a daily food diary. Patient and family feedback was overall positive and specific suggestions were used to further improve the App Suite. The Metabolic Diet App Suite aids individuals affected by IEMs to track and plan their meals. Future research should evaluate its impact on patient adherence, metabolic control, quality of life and health-related outcomes. The Suite will be updated and expanded to Apps for other categories of IEMs. Finally, this Suite is a support tool only, and does not replace medical/metabolic nutrition professional advice. Copyright

  14. Geophysical characterization from Itu intrusive suite

    International Nuclear Information System (INIS)

    Pascholati, M.E.

    1989-01-01

    The integrated use of geophysical, geological, geochemical, petrographical and remote sensing data resulted in a substantial increase in the knowledge of the Itu Intrusive Suite. The main geophysical method was gamma-ray spectrometry together with fluorimetry and autoradiography. Three methods were used for calculation of laboratory gamma-ray spectrometry data. For U, the regression method was the best one. For K and Th, equations system and absolute calibration presented the best results. Surface gamma-ray spectrometry allowed comparison with laboratory data and permitted important contribution to the study of environmental radiation. (author)

  15. Statutes of limitations: the special problem of DES suits

    International Nuclear Information System (INIS)

    Feigin, C.A.

    1981-01-01

    In 1971, medical studies determined that DES causes a rare type of vaginal cancer in a small number of daughters of mothers who took DES during pregnancy. Subsequently, medical studies determined that exposure to DES can cause other vaginal abnormalities in the daughters, some of which may be precancerous. As a result of these discoveries, many lawsuits have been filed by these daughters against DES manufacturers. Many DES suits may be barred by statutes of limitations, both because the number of years between the daughters' exposure to DES in utero and the discovery that DES can cause injuries exceeds the statutory period, and because the cancer or other injuries caused by DES may not develop for many additional years. This Note discusses two methods that DES plaintiffs may be able to use to overcome the potential statutes of limitations bar: the discovery rule, and state provisions which toll the statute of limitations for minors. The Note contends that courts should apply an expanded discovery rule to DES suits to avoid the unfair result of barring a claim before the plaintiff could have known that she had a cause of action. In addition, the Note argues that the injury which causes the statute of limitations to begin to run in DES suits should not be rigidly defined. Finally, the Note urges that courts allow eligible DES plaintiffs to take advantage of applicable state provisions that toll the statute of limitations for minors

  16. CAMEO (Computer-Aided Management of Emergency Operations) Software Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CAMEO is the umbrella name for a system of software applications used widely to plan for and respond to chemical emergencies. All of the programs in the suite work...

  17. Arensky. Silhouettes (Suite N 2), Op. 23 / Jonathan Swain

    Index Scriptorium Estoniae

    Swain, Jonathan

    1991-01-01

    Uuest heliplaadist "Arensky. Silhouettes (Suite N 2), Op. 23. Scrjabin. Symphony N 3 in C minor, Op. 43 "Le divin poeme". Danish National Radio Symphony Orchestra. Neeme Järvi. Chandos cassette ABTD 1509; CD CHAN 8898 (66 minutes)

  18. Rimsky-Korsakov: Symphony N2 (Symphonic Suite) / Warrack, John

    Index Scriptorium Estoniae

    Warrack, John

    1990-01-01

    Uuest heliplaadist "Rimsky-Korsakov: Symphony N2 (Symphonic Suite), Op. 9, "Antar" Russian Easter Festival Overture, Op.36. Philharmonia Orchestra, Evgeni Svetlanov. Hyperion KA 66399. CDA 66399. Teise sümfoonia esitust võrreldud Neeme Järvi plaadistusega

  19. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  20. Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)

    2007-07-15

    Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.