WorldWideScience

Sample records for extravehicular activity systems

  1. Decision Support System Development for Human Extravehicular Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The extension of human presence into deep space will depend on how successfully human planetary extravehicular activities (EVAs) are conducted without real-time...

  2. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    Science.gov (United States)

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  3. Robot hands and extravehicular activity

    Science.gov (United States)

    Marcus, Beth

    1987-01-01

    Extravehicular activity (EVA) is crucial to the success of both current and future space operations. As space operations have evolved in complexity so has the demand placed on the EVA crewman. In addition, some NASA requirements for human capabilities at remote or hazardous sites were identified. One of the keys to performing useful EVA tasks is the ability to manipulate objects accurately, quickly and without early or excessive fatigue. The current suit employs a glove which enables the crewman to perform grasping tasks, use tools, turn switches, and perform other tasks for short periods of time. However, the glove's bulk and resistance to motion ultimately causes fatigue. Due to this limitation it may not be possible to meet the productivity requirements that will be placed on the EVA crewman of the future with the current or developmental Extravehicular Mobility Unit (EMU) hardware. In addition, this hardware will not meet the requirements for remote or hazardous operations. In an effort to develop ways for improving crew productivity, a contract was awarded to develop a prototype anthromorphic robotic hand (ARH) for use with an extravehicular space suit. The first step in this program was to perform a a design study which investigated the basic technology required for the development of an ARH to enhance crew performance and productivity. The design study phase of the contract and some additional development work is summarized.

  4. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    Science.gov (United States)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  5. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives

    Science.gov (United States)

    Paul, Heather L.

    2011-01-01

    The exploration activities associated with NASA?s goals to return to the Moon, travel to Mars, or explore Near Earth Objects (NEOs) will involve the need for human-supported space and surface extravehicular activities (EVAs). The technology development and human element associated with these exploration missions provide fantastic content to promote science, technology, engineering, and math (STEM). As NASA Administrator Charles F. Bolden remarked on December 9, 2009, "We....need to provide the educational and experiential stepping-stones to inspire the next generation of scientists, engineers, and leaders in STEM fields." The EVA Systems Project actively supports this initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for these missions. This paper summarizes these education and public efforts.

  6. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  7. Views of the extravehicular activity of Astronaut Stewart during STS 41-B

    Science.gov (United States)

    1984-01-01

    Close up frontal view of Astronaut Robert L. Stewart, mission specialist, as he participates in a extravehicular activity (EVA), a few meters away from the cabin of the shuttle Challenger. The open payload bay is reflected in his helmet visor as he faces the camera. Stewart is wearing the extravehicular mobility unit (EMU) and one of the manned maneuvering units (MMU) developed for this mission.

  8. Innovative hand exoskeleton design for extravehicular activities in space

    CERN Document Server

    Freni, Pierluigi; Randazzo, Luca; Ariano, Paolo

    2014-01-01

    Environmental conditions and pressurized spacesuits expose astronauts to problems of fatigue during lengthy extravehicular activities, with adverse impacts especially on the dexterity, force and endurance of the hands and arms. A state-of-the-art exploration in the field of hand exoskeletons revealed that available products are unsuitable for space applications because of their bulkiness and mass. This book proposes a novel approach to the development of hand exoskeletons, based on an innovative soft robotics concept that relies on the exploitation of electroactive polymers operating as sensors and actuators, on a combination of electromyography and mechanomyography for detection of the user’s will and on neural networks for control. The result is a design that should enhance astronauts’ performance during extravehicular activities. In summary, the advantages of the described approach are a low-weight, high-flexibility exoskeleton that allows for dexterity and compliance with the user’s will.

  9. Optical Breath Gas Sensor for Extravehicular Activity Application

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  10. Extravehicular Activity Systems Education and Public Outreach in Support of NASA's STEM Initiatives in Fiscal Year 2011

    Science.gov (United States)

    Paul, Heather; Jennings, Mallory A.; Lamberth, Erika Guillory

    2012-01-01

    NASA's goals to send humans beyond low Earth orbit will involve the need for a strong engineering workforce. Research indicates that student interest in science, technology, engineering, and math (STEM) areas is on the decline. According to the Department of Education, the United States President has mandated that 100,000 educators be trained in STEM over the next decade to reduce this trend. NASA has aligned its Education and Public Outreach (EPO) initiatives to include emphasis in promoting STEM. The Extravehicular Activity (EVA) Systems Project Office at the NASA Johnson Space Center actively supports this NASA initiative by providing subject matter experts and hands-on, interactive presentations to educate students, educators, and the general public about the design challenges encountered as NASA develops EVA hardware for exploration missions. This paper summarizes the EVA Systems EPO efforts and metrics from fiscal year 2011.

  11. STS-61B Astronaut Ross During ACCESS Extravehicular Activity

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, VA and the Marshall Space Flight Center (MSFC), ACCESS and EASE were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  12. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    Science.gov (United States)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  13. Extravehicular Activity and Planetary Protection

    Science.gov (United States)

    Buffington, J. A.; Mary, N. A.

    2015-01-01

    The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.

  14. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  15. Some psychological and engineering aspects of the extravehicular activity of astronauts.

    Science.gov (United States)

    Khrunov, E V

    1973-01-01

    One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some

  16. Extravehicular Activity (EVA) Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  17. An Integrated Extravehicular Activity Research Plan

    Science.gov (United States)

    Abercromby, Andrew F. J.; Ross, Amy J.; Cupples, J. Scott

    2016-01-01

    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human

  18. Advanced Extravehicular Helmet Assembly, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The current NASA spacesuit community is focusing on utilizing a 13" hemispherical helmet for the next generation of extravehicular activity spacesuits. This helmet...

  19. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    Science.gov (United States)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  20. The exercise and environmental physiology of extravehicular activity

    Science.gov (United States)

    Cowell, Stephenie A.; Stocks, Jodie M.; Evans, David G.; Simonson, Shawn R.; Greenleaf, John E.

    2002-01-01

    Extravehicular activity (EVA), i.e., exercise performed under unique environmental conditions, is indispensable for supporting daily living in weightlessness and for further space exploration. From 1965-1996 an average of 20 h x yr(-1) were spent performing EVA. International Space Station (ISS) assembly will require 135 h x yr(-1) of EVA, and 138 h x yr(-1) is planned for post-construction maintenance. The extravehicular mobility unit (EMU), used to protect astronauts during EVA, has a decreased pressure of 4.3 psi that could increase astronauts' risk of decompression sickness (DCS). Exercise in and repeated exposure to this hypobaria may increase the incidence of DCS, although weightlessness may attenuate this risk. Exercise thermoregulation within the EMU is poorly understood; the liquid cooling garment (LCG), worn next to the skin and designed to handle thermal stress, is manually controlled. Astronauts may become dehydrated (by up to 2.6% of body weight) during a 5-h EVA, further exacerbating the thermoregulatory challenge. The EVA is performed mainly with upper body muscles; but astronauts usually exercise at only 26-32% of their upper body maximal oxygen uptake (VO2max). For a given ground-based work task in air (as opposed to water), the submaximal VO2 is greater while VO2max and metabolic efficiency are lower during ground-based arm exercise as compared with leg exercise, and cardiovascular responses to exercise and training are also different for arms and legs. Preflight testing and training, whether conducted in air or water, must account for these differences if ground-based data are extrapolated for flight requirements. Astronauts experience deconditioning during microgravity resulting in a 10-20% loss in arm strength, a 20-30% loss in thigh strength, and decreased lower-body aerobic exercise capacity. Data from ground-based simulations of weightlessness such as bed rest induce a 6-8% decrease in upper-body strength, a 10-16% loss in thigh extensor

  1. Extra Dose Due to Extravehicular Activity During the NASA4 Mission, Measured by an On-Board TLD System

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Hejja, I.; Lang, E.; Feher, I. [Budapest (Hungary)

    1999-07-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO{sub 4}:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO{sub 4}:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 {mu}Gy.h{sup -1} at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET. (author)

  2. Advanced extravehicular protective systems for shuttle, space station, lunar base and Mars missions.

    Science.gov (United States)

    Heimlich, P. F.; Sutton, J. G.; Tepper, E. H.

    1972-01-01

    Advances in extravehicular life support system technology will directly influence future space mission reliability and maintainability considerations. To identify required new technology areas, an appraisal of advanced portable life support system and subsystem concepts was conducted. Emphasis was placed on thermal control and combined CO2 control/O2 supply subsystems for both primary and emergency systems. A description of study methodology, concept evaluation techniques, specification requirements, and selected subsystems and systems are presented. New technology recommendations encompassing thermal control, CO2 control and O2 supply subsystems are also contained herein.

  3. Doses due to extra-vehicular activity on space stations

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Feher, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Akatov, Y.; Arkhanguelski, V. [Institute of Biomedical Problems, State Scientific Center, Moscow (Russian Federation); Reitz, G. [DLR Institute of Aerospace Medicine, Cologne, Linder Hohe (Germany)

    2006-07-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 {mu}Gy to 10 Gy range, consisting of a set of CaSO{sub 4}:Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment

  4. Doses due to extra-vehicular activity on space stations

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Feher, I.; Akatov, Y.; Arkhanguelski, V.; Reitz, G.

    2006-01-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 μGy to 10 Gy range, consisting of a set of CaSO 4 :Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment were

  5. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    Science.gov (United States)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  6. Metabolic assessments during extra-vehicular activity

    Science.gov (United States)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  7. Antenna Design Considerations for the Advanced Extravehicular Mobility Unit

    Science.gov (United States)

    Bakula, Casey J.; Theofylaktos, Onoufrios

    2015-01-01

    NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.

  8. H-II Transfer Vehicle (HTV) and the Operations Concept for Extravehicular Activity (EVA) Hardware

    Science.gov (United States)

    Chullen, Cinda; Blome, Elizabeth; Tetsuya, Sakashita

    2011-01-01

    With the retirement of the Space Shuttle fleet imminent in 2011, a new operations concept will become reality to meet the transportation challenges of the International Space Station (ISS). The planning associated with the retirement of the Space Shuttle has been underway since the announcement in 2004. Since then, several companies and government entities have had to look for innovative low-cost commercial orbital transportation systems to continue to achieve the objectives of ISS delivery requirements. Several options have been assessed and appear ready to meet the large and demanding delivery requirements of the ISS. Options that have been identified that can facilitate the challenge include the Russian Federal Space Agency's Soyuz and Progress spacecraft, European Space Agency's Automated Transfer Vehicle (ATV), and the Japan Aerospace Exploration Agency's (JAXA s) H-II Transfer Vehicle (HTV). The newest of these options is the JAXA's HTV. This paper focuses on the HTV, mission architecture and operations concept for Extra-Vehicular Activities (EVA) hardware, the associated launch system, and details of the launch operations approach.

  9. Extravehicular Activity Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an

  10. Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

    Science.gov (United States)

    Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.

    2016-01-01

    The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publication, in 2006 development was started to baseline Extra-Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the Contingency

  11. Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario

    Science.gov (United States)

    1995-01-01

    STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  12. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  13. Allowable exposure limits for carbon dioxide during extravehicular activity

    Science.gov (United States)

    Seter, Andrew J.

    1993-01-01

    The intent was to review the research pertaining to human exposure to carbon dioxide (CO2) and to recommend allowable exposure limits for extravehicular activity (EVA). Respiratory, renal, and gastrointestinal systems may be adversely affected by chronic low dose CO2 exposure. Ventilation was increased 15 percent with 1 percent CO2 and 50 percent with 2 percent CO2. Chronic exposure to less than 2 percent CO2 led to 20 day cycles of uncompensated and compensated respiratory acidosis. Acid-base changes were small. Histopathologic changes in guinea pig lungs have been noted with long term exposure to 1 percent CO2. No changes were seen with exposure to 0.5 percent CO2. Cycling of bone calcium stores with associated changes in blood and urinary calcium levels occurs with long term CO2 exposure. Histologic changes in bone have been noted in guinea pigs exposed to 1 percent CO2. Renal calcification has been noted in guinea pigs with exposure to as low as 0.5 percent CO2. An increase in gastric acidity was noted in subjects with long term exposure to 1 percent CO2. Cardiovascular and neurologic function were largely unaffected. A decrease in the incidence of respiratory, renal, and gastrointestinal disease was noted in submariners coincident with a decrease in ambient CO2 from 1.2 percent to 0.8-0.9 percent. Oxygen (O2) and CO2 stimulate respiration independently and cumulatively. The addition of CO2 to high dose O2 led to the faster onset of seizure activity in mice. Experiments evaluating the physiologic responses to intermittent, repetitive exposures to low dose CO2 and 100 percent O2 mixtures should be performed. A reduction in the current NASA standard for CO2 exposure during EVA of 1 percent (7.6 mmHg) for nominal and 2 percent (15.2 mmHg) for heavy exertion to 0.5 percent (3.8 mmHg) for nominal and 1 percent (7.6 mmHg) for heavy exertion may be prudent. At a minimum, the current NASA standard should not be liberalized.

  14. Extravehicular mobility unit training and astronaut injuries

    Science.gov (United States)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  15. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    Science.gov (United States)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  16. PLRP-3: Operational Perspectives of Conducting Science-Driven Extravehicular Activity with Communications Latency

    Science.gov (United States)

    Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.

    2016-01-01

    The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.

  17. 2014 Decompression Sickness/Extravehicular Activity Risks Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan; Mahon, Richard; Klaus, David; Neuman, Tom; Pilmanis, Andrew; Regis, David

    2014-01-01

    The 2014 Decompression Sickness (DCS)/Extravehicular Activity (EVA) Risks Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on November 4 - 5, 2014. The SRP reviewed the Research Plans for The Risk of Decompression Sickness and the Risk of Injury and Compromised Performance due to EVA Operations, as well as the Evidence Reports for both of these Risks. The SRP found that the NASA DCS/EVA team did an excellent job of presenting their research plans. The SRP considers it critical that NASA proceeds with the high priority tasks identified in this report (DCS1, DCS3, DCS5). The highest priority is to determine the acceptable DCS and hypoxia risk associated with the planned human exploration beyond low Earth orbit. The risk of DCS is highly dependent upon the pressure within the exploration vehicle. If slightly more hypoxia is permitted then (even with the same percentage of oxygen) the pressure within the exploration vehicle can be lowered thus further mitigating the risk of DCS. The second highest priority is to test and validate the recommended 8.2psi/34% O2 atmosphere. Development of procedures and equipment for human exploration missions are very limited until the results of this testing are completed. The SRP also suggests that DCS7 be separated into two Gaps. Gap DCS7 should deal with DCS treatment while a new Gap should be created to deal with the long-term effects of DCS. The SRP also encourages NASA to increase collaboration with other organizations and pool resources where possible. The current NASA DCS/EVA team has the extensive expertise and a wealth of knowledge in this area. The SRP suggests that increased manpower for this team would be highly productive.

  18. Benchmarking Evaluation Results for Prototype Extravehicular Activity Gloves

    Science.gov (United States)

    Aitchison, Lindsay; McFarland, Shane

    2012-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of four prototype gloves developed by Flagsuit LLC, Final Frontier Designs, LLC Dover, and David Clark Company as compared to the Phase VI. All of the companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test

  19. An Approach for Performance Assessments of Extravehicular Activity Gloves

    Science.gov (United States)

    Aitchison, Lindsay; Benosn, Elizabeth

    2014-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for unique mission scenarios outside the Space Shuttle and International Space Station (ISS) Program realm of experience. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Game-Changing Technology group provided start-up funding for the High Performance EVA Glove (HPEG) Project in the spring of 2012. The overarching goal of the HPEG Project is to develop a robust glove design that increases human performance during EVA and creates pathway for future implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability by 100%, and decreasing the potential of gloves to cause injury during use. The HPEG Project focused initial efforts on identifying potential new technologies and benchmarking the performance of current state of the art gloves to identify trends in design and fit leading to establish standards and metrics against which emerging technologies can be assessed at both the component and assembly levels. The first of the benchmarking tests evaluated the quantitative mobility performance and subjective fit of two sets of prototype EVA gloves developed ILC Dover and David Clark Company as compared to the Phase VI. Both companies were asked to design and fabricate gloves to the same set of NASA provided hand measurements (which corresponded to a single size of Phase Vi glove) and focus their efforts on improving mobility in the metacarpal phalangeal and carpometacarpal joints. Four test subjects representing the design-to hand

  20. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    Science.gov (United States)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  1. Continued Advancement of Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    Science.gov (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda

    2015-01-01

    The Development of a new, robust, portable life support system (PLSS) is currently a high NASA priority in order to support longer and safer extravehicular activity (EVA) missions that will be necessary as space travel extends to near-Earth asteroids and eventually Mars. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. The Metal Oxide (MetOx) canister has a finite CO2 adsorption capacity and therefore in order to extend mission times, the unit would have to be larger and heavier, which is undesirable; therefore new CO2 control technologies must be developed. While recent work has centered on the use of alternating sorbent beds that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that vents CO2 to space but retains oxygen(O2). A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Conventional gas separation membranes do not have adequate selectivity for use in the PLSS, but the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous film filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a recently completed Phase II Small Business Innovative Research project, Reaction Systems developed a new reactive liquid that has effectively zero vapor pressure, making it an ideal candidate for use in an SLM. Results obtained with the SLM in a flat sheet configuration with representative pressures of CO2, O2, and water (H2O) have shown that the CO2 permeation rate and CO2/O2 selectivity requirements have been met. In addition, the SLM vents moisture to space very effectively. The SLM has also been prepared and tested in a hollow fiber form, which will be

  2. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    Science.gov (United States)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  3. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  4. STS-49 ASEM activities illustrated with PLAID computer graphics

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activities are illustrated with PLAID computer graphics. Two extravehicular mobility unit (EMU) suited crewmembers work on multipurpose experiment support structure (MPESS) (with legs attached) grappled by remote manipulator system (RMS) end effector and positioned in the over-the-nose location (above OV-105's crew compartment). This position has been designated as the assembly area for Space Station Freedom (SSF). This procedure will evaluate the ability to use the RMS to position MPESS carrier and EVA crewmembers forward and above the PLB.

  5. Maintaining Adequate Carbon Dioxide Washout for an Advanced Extravehicular Mobility Unit

    Science.gov (United States)

    Chullen, Cinda; Navarro, Moses; Conger, Bruce; Korona, Adam; McMillin, Summer; Norcross, Jason; Swickrath, Mike

    2013-01-01

    Over the past several years, NASA has realized tremendous progress in technology development that is aimed at the production of an Advanced Extravehicular Mobility Unit (AEMU). Of the many functions provided by the spacesuit and portable life support subsystem within the AEMU, delivering breathing gas to the astronaut along with removing the carbon dioxide (CO2) remains one of the most important environmental functions that the AEMU can control. Carbon dioxide washout is the capability of the ventilation flow in the spacesuit helmet to provide low concentrations of CO2 to the crew member to meet breathing requirements. CO2 washout performance is a critical parameter needed to ensure proper and sufficient designs in a spacesuit and in vehicle applications such as sleep stations and hygiene compartments. Human testing to fully evaluate and validate CO2 washout performance is necessary but also expensive due to the levied safety requirements. Moreover, correlation of math models becomes challenging because of human variability and movement. To supplement human CO2 washout testing, a breathing capability will be integrated into a suited manikin test apparatus to provide a safe, lower cost, stable, easily modeled alternative to human testing. Additionally, this configuration provides NASA Johnson Space Center (JSC) the capability to evaluate CO2 washout under off-nominal conditions that would otherwise be unsafe for human testing or difficult due to fatigue of a test subject. Testing has been under way in-house at JSC and analysis has been initiated to evaluate whether the technology provides sufficient performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an extravehicular activity. This paper will review recent CO2 washout testing and analysis activities, testing planned in-house with a spacesuit simulator, and the associated analytical work

  6. 21st Century Extravehicular Activities: Synergizing Past and Present Training Methods for Future Spacewalking Success

    Science.gov (United States)

    Moore, Sandra K.; Gast, Matthew A.

    2009-01-01

    Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind." were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the the spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first space walk in June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill-set and subsequently the training methods, changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the Skylab, Space Shuttle; and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.

  7. 21st Century extravehicular activities: Synergizing past and present training methods for future spacewalking success

    Science.gov (United States)

    Moore, Sandra K.; Gast, Matthew A.

    2010-10-01

    Neil Armstrong's understated words, "That's one small step for man, one giant leap for mankind" were spoken from Tranquility Base forty years ago. Even today, those words resonate in the ears of millions, including many who had yet to be born when man first landed on the surface of the moon. By their very nature, and in the true spirit of exploration, extravehicular activities (EVAs) have generated much excitement throughout the history of manned spaceflight. From Ed White's first spacewalk in the June of 1965, to the first steps on the moon in 1969, to the expected completion of the International Space Station (ISS), the ability to exist, live and work in the vacuum of space has stood as a beacon of what is possible. It was NASA's first spacewalk that taught engineers on the ground the valuable lesson that successful spacewalking requires a unique set of learned skills. That lesson sparked extensive efforts to develop and define the training requirements necessary to ensure success. As focus shifted from orbital activities to lunar surface activities, the required skill set and subsequently the training methods changed. The requirements duly changed again when NASA left the moon for the last time in 1972 and have continued to evolve through the SkyLab, Space Shuttle, and ISS eras. Yet because the visits to the moon were so long ago, NASA's expertise in the realm of extra-terrestrial EVAs has diminished. As manned spaceflight again shifts its focus beyond low earth orbit, EVA's success will depend on the ability to synergize the knowledge gained over 40+ years of spacewalking to create a training method that allows a single crewmember to perform equally well, whether performing an EVA on the surface of the Moon, while in the vacuum of space, or heading for a rendezvous with Mars. This paper reviews NASA's past and present EVA training methods and extrapolates techniques from both to construct the basis for future EVA astronaut training.

  8. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  9. STS-49 ASEM activity illustrated with PLAID computer graphics

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activity is illustrated with PLAID computer graphics. An extravehicular mobility unit (EMU) suited crewmember, positioned on the remote manipulator system (RMS) manipulator foot restraint (MFR), grabs and maneuvers the multipurpose experiment support structure (MPESS) with truss assembly attached above OV-105's payload bay (PLB) using the steer wheel assembly. The MPESS/ASEM truss structure has been lifted out the sill-mounted payload retention latch assemblies (PRLAs) and will be repositioned in the PRLAs upon completion of handling procedures. Also seen in this illustration are the empty INTELSAT perigee stage cradle structure (aft PLB) and the capture bar grapple fixture stowed on the port side sill longeron.

  10. Spaceborne construction and operations planning - Decision rules for selecting EVA, telerobot, and combined work-systems

    Science.gov (United States)

    Smith, Jeffrey H.

    1992-01-01

    An approach is presented for selecting an appropriate work-system for performing construction and operations tasks by humans and telerobots. The decision to use extravehicular activity (EVA) performed by astronauts, extravehicular robotics (EVR), or a combination of EVA and EVR is determined by the ratio of the marginal costs of EVA, EVR, and IVA. The approach proposed here is useful for examining cost trade-offs between tasks and performing trade studies of task improvement techniques (human or telerobotic).

  11. Exploiting orbital effects for short-range extravehicular transfers

    Science.gov (United States)

    Williams, Trevor; Baughman, David

    The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.

  12. The Influence of Robotic Assistance on Reducing Neuromuscular Effort and Fatigue during Extravehicular Activity Glove Use

    Science.gov (United States)

    Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a

  13. Investigation of humidity control via membrane separation for advanced Extravehicular Mobility Unit (EMU) application

    Science.gov (United States)

    Newbold, D. D.; Ray, R. J.; Pledger, W. A.; Mccray, S. B.; Brown, M. F.

    1989-01-01

    This paper describes the development of a membrane-based process for dehumidifying the Extravehicular Mobility Unit (EMU). The membrane process promises to be smaller, lighter, and more energy efficient than the other technologies for dehumidification. The dehydration membranes were tested for 90 days at conditions expected to be present in the EMU. The results of these tests indicate that membrane-based technology can effectively control humidity in the EMU.

  14. Spacesuit Trauma Countermeasure System for Intravehicular and Extravehicular Activities

    Data.gov (United States)

    National Aeronautics and Space Administration — We have completed our grant reporting period. The major contributions of our research effort are outlined below: Specific Aim 1: Statistical Shoulder Injury...

  15. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  16. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  17. STS-61B Astronauts Ross and Spring Work on Experimental Assembly of Structures in Extravehicular

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). This STS-61B onboard photo depicts astronauts Ross and Spring working on EASE. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  18. Questions and Answers for Ken Thomas' "Intra-Extra Vehicular Activity Russian and Gemini Spacesuits" Presentation

    Science.gov (United States)

    Thomas, Kenneth S.

    2016-01-01

    Kenneth Thomas will discuss the Intra-Extra Vehicular Activity Russian & Gemini spacesuits. While the United States and Russia adapted to existing launch- and reentry-type suits to allow the first human ventures into the vacuum of space, there were differences in execution and capabilities. Mr. Thomas will discuss the advantages and disadvantages of this approach compared to exclusively intravehicular or extra-vehicular suit systems.

  19. Studies Relating to EVA

    Science.gov (United States)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  20. Development of an automated checkout, service and maintenance system for a Space Station EVAS

    Science.gov (United States)

    Abeles, Fred J.; Tri, Terry; Blaser, Robert

    1988-01-01

    The development of a new operational system for the Space Station will minimize the time normally spent on performing on-orbit checkout, servicing, and maintenance of an extravehicular activity system of the Space Station. This system, the Checkout, Servicing, and Maintenance System (COSM), is composed of interactive control software interfacing with software simulations of hardware components. The major elements covered in detail include the controller, the EMU simulator and the regenerative life support system. The operational requirements and interactions of the individual elements as well as the protocols are also discussed.

  1. An Ergonomic Evaluation of the Extravehicular Mobility Unit (EMU) Space Suit Hard Upper Torso (HUT) Size Effect on Metabolic, Mobility, and Strength Performance

    Science.gov (United States)

    Reid, Christopher; Harvill, Lauren; England, Scott; Young, Karen; Norcross, Jason; Rajulu, Sudhakar

    2014-01-01

    The objective of this project was to assess the performance differences between a nominally sized Extravehicular Mobility Unit (EMU) space suit and a nominal +1 (plus) sized EMU. Method: This study evaluated suit size conditions by using metabolic cost, arm mobility, and arm strength as performance metrics. Results: Differences between the suit sizes were found only in shoulder extension strength being 15.8% greater for the plus size. Discussion: While this study was able to identify motions and activities that were considered to be practically or statistically different, it does not signify that use of a plus sized suit should be prohibited. Further testing would be required that either pertained to a particular mission critical task or better simulates a microgravity environment that the EMU suit was designed to work in.

  2. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    Science.gov (United States)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  3. Automation and Robotics for Space-Based Systems, 1991

    Science.gov (United States)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  4. Development and Test of Robotically Assisted Extravehicular Activity Gloves

    Science.gov (United States)

    Rogers, Jonathan M.; Peters, Benjamin J.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    Over the past two years, the High Performance EVA Glove (HPEG) project under NASA's Space Technology Mission Directorate (STMD) funded an effort to develop an electromechanically-assisted space suit glove. The project was a collaboration between the Johnson Space Center's Software, Robotics, and Simulation Division and the Crew and Thermal Systems division. The project sought to combine finger actuator technology developed for Robonaut 2 with the softgoods from the ILC Phase VI EVA glove. The Space Suit RoboGlove (SSRG) uses a system of three linear actuators to pull synthetic tendons attached to the glove's fingers to augment flexion of the user's fingers. To detect the user's inputs, the system utilizes a combination of string potentiometers along the back of the fingers and force sensitive resistors integrated into the fingertips of the glove cover layer. This paper discusses the development process from initial concepts through two major phases of prototypes, and the results of initial human testing. Initial work on the project focused on creating a functioning proof of concept, designing the softgoods integration, and demonstrating augmented grip strength with the actuators. The second year of the project focused on upgrading the actuators, sensors, and software with the overall goal of creating a system that moves with the user's fingers in order to reduce fatigue associated with the operation of a pressurized glove system. This paper also discusses considerations for a flight system based on this prototype development and address where further work is required to mature the technology.

  5. A monograph of the National Space Transportation System Office (NSTSO) integration activities conducted at the NASA Lyndon B. Johnson Space Center for the EASE/ACCESS payload flown on STS 61-B

    Science.gov (United States)

    Chassay, Charles

    1987-01-01

    The integration process of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) for the Experimental Assembly of Structures in Extravehicular activity (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) payload is provided as a subset to the standard payload integration process used by the NASA Space Transportation System (STS) to fly payloads on the Space Shuttle. The EASE/ACCESS payload integration activities are chronologically reviewed beginning with the initiation of the flight manifesting and integration process. The development and documentation of the EASE/ACCESS integration requirements are also discussed along with the implementation of the mission integration activities and the engineering assessments supporting the flight integration process. In addition, the STS management support organizations, the payload safety process leading to the STS 61-B flight certification, and the overall EASE/ACCESS integration schedule are presented.

  6. Advanced Extravehicular Activity Pressure Garment Requirements Development

    Science.gov (United States)

    Ross, Amy

    2014-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the by what method the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun, in other cases no effort has been initiated to close the gap. Status of ongoing efforts and potential approaches to open gaps are discussed.

  7. EVA Physiology, Systems and Performance [EPSP] Project

    Science.gov (United States)

    Gernhardt, Michael L.

    2010-01-01

    This viewgraph presentation gives a general overview of the biomedical and technological challenges of Extravehicular Activity (EVA). The topics covered include: 1) Prebreathe Protocols; 2) Lunar Suit Testing and Development; and 3) Lunar Electric Rover and Exploration Operations Concepts.

  8. A 3-D Miniature LIDAR System for Mobile Robot Navigation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future lunar site operations will benefit from mobile robots, both autonomous and tele-operated, that complement or replace human extravehicular activity....

  9. Satellite services system overview

    Science.gov (United States)

    Rysavy, G.

    1982-01-01

    The benefits of a satellite services system and the basic needs of the Space Transportation System to have improved satellite service capability are identified. Specific required servicing equipment are discussed in terms of their technology development status and their operative functions. Concepts include maneuverable television systems, extravehicular maneuvering unit, orbiter exterior lighting, satellite holding and positioning aid, fluid transfer equipment, end effectors for the remote manipulator system, teleoperator maneuvering system, and hand and power tools.

  10. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    Science.gov (United States)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  11. Human Activity Behavior and Gesture Generation in Virtual Worlds for Long- Duration Space Missions. Chapter 8

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; Damer, Bruce; Brodsky, Boris; vanHoff, Ron

    2007-01-01

    A virtual worlds presentation technique with embodied, intelligent agents is being developed as an instructional medium suitable to present in situ training on long term space flight. The system combines a behavioral element based on finite state automata, a behavior based reactive architecture also described as subsumption architecture, and a belief-desire-intention agent structure. These three features are being integrated to describe a Brahms virtual environment model of extravehicular crew activity which could become a basis for procedure training during extended space flight.

  12. STS-110 Extravehicular Activity (EVA)

    Science.gov (United States)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  13. Spacesuit Soft Upper Torso Sizing Systems

    Science.gov (United States)

    Graziosi, David; Splawn, Keith

    2011-01-01

    The passive sizing system consists of a series of low-profile pulleys attached to the front and back of the shoulder bearings on a spacesuit soft upper torso (SUT), textile cord or stainless steel cable, and a modified commercial ratchet mechanism. The cord/cable is routed through the pulleys and attached to the ratchet mechanism mounted on the front of the spacesuit within reach of the suited subject. Upon actuating the ratchet mechanism, the shoulder bearing breadth is changed, providing variable upper torso sizing. The active system consists of a series of pressurizable nastic cells embedded into the fabric layers of a spacesuit SUT. These cells are integrated to the front and back of the SUT and are connected to an air source with a variable regulator. When inflated, the nastic cells provide a change in the overall shoulder bearing breadth of the spacesuit and thus, torso sizing. The research focused on the development of a high-performance sizing and actuation system. This technology has application as a suit-sizing mechanism to allow easier suit entry and more accurate suit fit with fewer torso sizes than the existing EMU (Extravehicular Mobility Unit) suit system. This advanced SUT will support NASA s Advanced EMU Evolutionary Concept of a two-sizes-fit-all upper torso for replacement of the current EMU hard upper torso (HUT). Both the passive and nastic sizing system approaches provide astronauts with real-time upper torso sizing, which translates into a more comfortable suit, providing enhanced fit resulting in improved crewmember performance during extravehicular activity. These systems will also benefit NASA by reducing flight logistics as well as overall suit system cost. The nastic sizing system approach provides additional structural redundancy over existing SUT designs by embedding additional coated fabric and uncoated fabric layers. Two sizing systems were selected to build into a prototype SUT: one active and one passive. From manned testing, it

  14. Chinese Spacesuit Analysis

    Science.gov (United States)

    Croog, Lewis

    2010-01-01

    In 2008, China became only the 3rd nation to perform an Extravehicular Activity (EVA) from a spacecraft. An overview of the Chinese spacesuit and life support system were assessed from video downlinks during their EVA; from those assessments, spacesuit characteristics were identified. The spacesuits were compared against the Russian Orlan Spacesuit and the U.S. Extravehicular Mobility Unit (EMU). China's plans for future missions also were presented.

  15. Superior Speech Acquisition and Robust Automatic Speech Recognition for Integrated Spacesuit Audio Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts suffer from poor dexterity of their hands due to the clumsy spacesuit gloves during Extravehicular Activity (EVA) operations and NASA has had a widely...

  16. Superior Speech Acquisition and Robust Automatic Speech Recognition for Integrated Spacesuit Audio Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts suffer from poor dexterity of their hands due to the clumsy spacesuit gloves during Extravehicular Activity (EVA) operations and NASA has had a widely...

  17. Advanced Extra-Vehicular Activity Pressure Garment Requirements Development

    Science.gov (United States)

    Ross, Amy; Aitchison, Lindsay; Rhodes, Richard

    2015-01-01

    The NASA Johnson Space Center advanced pressure garment technology development team is addressing requirements development for exploration missions. Lessons learned from the Z-2 high fidelity prototype development have reiterated that clear low-level requirements and verification methods reduce risk to the government, improve efficiency in pressure garment design efforts, and enable the government to be a smart buyer. The expectation is to provide requirements at the specification level that are validated so that their impact on pressure garment design is understood. Additionally, the team will provide defined verification protocols for the requirements. However, in reviewing exploration space suit high level requirements there are several gaps in the team's ability to define and verify related lower level requirements. This paper addresses the efforts in requirement areas such as mobility/fit/comfort and environmental protection (dust, radiation, plasma, secondary impacts) to determine the method by which the requirements can be defined and use of those methods for verification. Gaps exist at various stages. In some cases component level work is underway, but no system level effort has begun; in other cases no effort has been initiated to close the gap. Status of on-going efforts and potential approaches to open gaps are discussed.

  18. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  19. A system-level approach to automation research

    Science.gov (United States)

    Harrison, F. W.; Orlando, N. E.

    1984-01-01

    Automation is the application of self-regulating mechanical and electronic devices to processes that can be accomplished with the human organs of perception, decision, and actuation. The successful application of automation to a system process should reduce man/system interaction and the perceived complexity of the system, or should increase affordability, productivity, quality control, and safety. The expense, time constraints, and risk factors associated with extravehicular activities have led the Automation Technology Branch (ATB), as part of the NASA Automation Research and Technology Program, to investigate the use of robots and teleoperators as automation aids in the context of space operations. The ATB program addresses three major areas: (1) basic research in autonomous operations, (2) human factors research on man-machine interfaces with remote systems, and (3) the integration and analysis of automated systems. This paper reviews the current ATB research in the area of robotics and teleoperators.

  20. Astronaut Joseph Tanner is assisted into his EMU during training

    Science.gov (United States)

    1994-01-01

    Astronaut Joseph R. Tanner, STS-66 mission specialist, is assisted by Boeing suit expert Steve Voyles in donning the gloves for his extravehicular mobility unit (EMU) as he prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Though no extravehicular activity (EVA) is planned for the mission, at least two astronauts are trained to perform tasks that would require a space walk in the event of failure of remote systems.

  1. Lightweight, Wearable Metal Rubber-Textile Sensor for In Situ Lunar Autonomous Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop a low-weight, non-invasive in situ autonomous health-monitoring system for crewmembers' lunar extravehicular activity (EVA). This novel...

  2. CO2 Removal from Mars EMU, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A practical CO2 control system for ExtraVehicular Activity (EVA) on Mars have not yet been developed. TDA Research, Inc. proposes to develop a durable,...

  3. Proximity operations concept design study, task 6

    Science.gov (United States)

    Williams, A. N.

    1990-01-01

    The feasibility of using optical technology to perform the mission of the proximity operations communications subsystem on Space Station Freedom was determined. Proximity operations mission requirements are determined and the relationship to the overall operational environment of the space station is defined. From this information, the design requirements of the communication subsystem are derived. Based on these requirements, a preliminary design is developed and the feasibility of implementation determined. To support the Orbital Maneuvering Vehicle and National Space Transportation System, the optical system development is straightforward. The requirements on extra-vehicular activity are such as to allow large fields of uncertainty, thus exacerbating the acquisition problem; however, an approach is given that could mitigate this problem. In general, it is found that such a system could indeed perform the proximity operations mission requirement, with some development required to support extra-vehicular activity.

  4. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  5. EVA Physiology and Medical Considerations Working in the Suit

    Science.gov (United States)

    Parazynski, Scott

    2012-01-01

    This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.

  6. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  7. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    Science.gov (United States)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  8. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    Science.gov (United States)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  9. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  10. Extravehicular Activity Fact Sheet: An EVA Chronology

    Data.gov (United States)

    National Aeronautics and Space Administration — Walking to Olympus: An EVA Chronology chronicles the 154 EVAs conducted from March 1965 to April 1997. It is intended to make clear the crucial role played by EVA in...

  11. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  12. Lunar EVA Dosimetry: Small Active Dosimetry System for Lunar Extravehicular Activity Missions: Spacesuit and Tool-Box Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — During year 4 (final year for this grant) we developed and fabricated final components, assembled, and tested. The tissue-equivalent sensor was redesigned to improve...

  13. Efforts to Reduce International Space Station Crew Maintenance Time in the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Etter,David; Rector, Tony; Boyle, robert; Zande, Chris Vande

    2012-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.

  14. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    Science.gov (United States)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near

  15. Planetary Conjunction: Economics, Politics, and Partnering In Space

    Science.gov (United States)

    2013-06-01

    Andrade Gutierrez Quimica Ltda, Centro Tecnico Aerospacial, Empresa Brasileira de Telecomunicacões, Instituto de Aeronautica e Espaco, and Instituto...Activity (EVA) During Space Transportation System (STS) -82, a Servicing Mission for the Hubble Space Telescope (HST).........................33 13...responsible for the solar array that would power Hubble while in orbit.63 Figure 12: An Extravehicular Activity (EVA) During Space Transportation

  16. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    Science.gov (United States)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  17. Activity System Theory Approach to Healthcare Information System

    OpenAIRE

    Bai, Guohua

    2004-01-01

    Healthcare information system is a very complex system and has to be approached from systematic perspectives. This paper presents an Activity System Theory (ATS) approach by integrating system thinking and social psychology. First part of the paper, the activity system theory is presented, especially a recursive model of human activity system is introduced. A project ‘Integrated Mobile Information System for Diabetic Healthcare (IMIS)’ is then used to demonstrate a practical application of th...

  18. Using Optimization to Improve NASA Extravehicular Activity Planning

    Science.gov (United States)

    2012-09-01

    conditions" ( Pressman , 2010, p. 484). White-box testing provides exactly what we need to verify a model like the EPM and thus forms an important part...will likely be traced to 20% of the program components), and (4) exhaustive testing is not possible (as cited in Pressman , 2010). EPM testing is...that each logical path within the subroutine will be exercised at least once with the minimum number of test cases ( Pressman , 2010). While it is

  19. Manually controlled neutron-activation system

    International Nuclear Information System (INIS)

    Johns, R.A.; Carothers, G.A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates

  20. 'Weightless' acrylic painting by Jack Kroehnke

    Science.gov (United States)

    1987-01-01

    'Weightless' acrylic painting by Jack Kroehnke depicts STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers participating in extravehicular activity (EVA) simulation in JSC Weightless Environment Training Facility (WETF) Bldg 29. In the payload bay (PLB) mockup, Hilmers, wearing extravehicular mobility unit (EMU), holds onto the mission-peculiar equipment support structure in foreground while SCUBA-equipped diver monitors activity overhead and camera operator records EVA procedures. Copyrighted art work for use by NASA.

  1. Development of the electrochemically regenerable carbon dioxide absorber for portable life support system application

    Science.gov (United States)

    Woods, R. R.; Heppner, D. B.; Marshall, R. D.; Quattrone, P. D.

    1979-01-01

    As the length of manned space missions increase, more ambitious extravehicular activities (EVAs) are required. For the projected longer mission the use of expendables in the portable life support system (PLSS) will become prohibited due to high launch weight and volume requirements. Therefore, the development of a regenerable CO2 absorber for the PLSS application is highly desirable. The paper discusses the concept, regeneration mechanism, performance, system design, and absorption/regeneration cycle testing of a most promising concept known as ERCA (Electrochemically Regenerable CO2 Absorber). This concept is based on absorbing CO2 into an alkaline absorbent similar to LiOH. The absorbent is an aqueous solution supported in a porous matrix which can be electrochemically regenerated on board the primary space vehicle. With the metabolic CO2 recovery the ERCA concept results in a totally regenerable CO2 scrubber. The ERCA test hardware has passed 200 absorption/regeneration cycles without performance degradation.

  2. Sensors and Systems for Spacesuits

    Science.gov (United States)

    Chullen, Cinda

    2017-01-01

    An AdvancedExtravehicular Mobility Unit (EMU) is being developed and tested in house at JSC. Multiple programs over the last decade have contributed to the success thus far including the SBIR/STTR program.

  3. View of the starboard OMS pod of the STS-6 Challenger

    Science.gov (United States)

    1983-01-01

    This view centers on the starboard orbital maneuvering system (OMS) pod of the shuttle Challenger during its STS-6 mission. Two pieces of thermal protection system tile appear to have loosened. The view also shows one of the cargo bay television cameras, part of the extravehicular activity (EVA) slide wire system, three handrails and other features on the aft bulkhead. Part of the airborne support equipment (ASE) is in the lower right foreground.

  4. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  5. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  6. Tactile Data Entry System

    Science.gov (United States)

    Adams, Richard J.

    2015-01-01

    The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.

  7. Automatic Speech Acquisition and Recognition for Spacesuit Audio Systems

    Science.gov (United States)

    Ye, Sherry

    2015-01-01

    NASA has a widely recognized but unmet need for novel human-machine interface technologies that can facilitate communication during astronaut extravehicular activities (EVAs), when loud noises and strong reverberations inside spacesuits make communication challenging. WeVoice, Inc., has developed a multichannel signal-processing method for speech acquisition in noisy and reverberant environments that enables automatic speech recognition (ASR) technology inside spacesuits. The technology reduces noise by exploiting differences between the statistical nature of signals (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, ASR accuracy can be improved to the level at which crewmembers will find the speech interface useful. System components and features include beam forming/multichannel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, and ASR decoding. Arithmetic complexity models were developed and will help designers of real-time ASR systems select proper tasks when confronted with constraints in computational resources. In Phase I of the project, WeVoice validated the technology. The company further refined the technology in Phase II and developed a prototype for testing and use by suited astronauts.

  8. A Guide to the Application of Probability Risk Assessment Methodology and Hazard Risk Frequency Criteria as a Hazard Control for the Use of the Mobile Servicing System on the International Space Station

    Science.gov (United States)

    D'silva, Oneil; Kerrison, Roger

    2013-09-01

    A key feature for the increased utilization of space robotics is to automate Extra-Vehicular manned space activities and thus significantly reduce the potential for catastrophic hazards while simultaneously minimizing the overall costs associated with manned space. The principal scope of the paper is to evaluate the use of industry standard accepted Probability risk/safety assessment (PRA/PSA) methodologies and Hazard Risk frequency Criteria as a hazard control. This paper illustrates the applicability of combining the selected Probability risk assessment methodology and hazard risk frequency criteria, in order to apply the necessary safety controls that allow for the increased use of the Mobile Servicing system (MSS) robotic system on the International Space Station. This document will consider factors such as component failure rate reliability, software reliability, and periods of operation and dormancy, fault tree analyses and their effects on the probability risk assessments. The paper concludes with suggestions for the incorporation of existing industry Risk/Safety plans to create an applicable safety process for future activities/programs

  9. Cosmonaut Sergei Krikalev receives assistance from suit technician

    Science.gov (United States)

    1994-01-01

    Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).

  10. Narrative Inquiry With Activity Systems

    Directory of Open Access Journals (Sweden)

    Lisa C. Yamagata-Lynch

    2017-04-01

    Full Text Available The goal of this article is to introduce activity systems as a methodological tool in narrative inquiry to gain a holistic understanding of socially shared experiences from an examination of documents. The research question was how can qualitative researchers use activity systems as a tool for engaging in narrative inquiry of socially shared experiences to uncover new meanings by constructing a story? In this article, we share a sample analysis of our experience relying on documents and media as a form of narrative to begin to understand the socially shared human activity associated with net neutrality and its potential impact on U.S. residents. We end this article with reflections of lessons learned from our activity systems guided story construction process.

  11. Phase 1 engineering and technical data report for the thermal control extravehicular life support system

    Science.gov (United States)

    1975-01-01

    A shuttle EVLSS Thermal Control System (TCS) is defined. Thirteen heat rejection subsystems, thirteen water management subsystems, nine humidity control subsystems, three pressure control schemes and five temperature control schemes are evaluated. Sixteen integrated TCS systems are studied, and an optimum system is selected based on quantitative weighting of weight, volume, cost, complexity and other factors. The selected sybsystem contains a sublimator for heat rejection, a bubble expansion tank for water management, and a slurper and rotary separator for humidity control. Design of the selected subsystem prototype hardware is presented.

  12. Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)

    Science.gov (United States)

    Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda

    2012-01-01

    NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1

  13. Battery and Fuel Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  14. Battery and Fuel Cell Development for NASA's Exploration Missions

    Science.gov (United States)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  15. Systems Studies Department FY 78 activity report. Volume 2. Systems analysis

    International Nuclear Information System (INIS)

    Gold, T.S.

    1979-02-01

    The Systems Studies Department at Sandia Laboratories Livermore (SLL) has two primary responsibilities: to provide computational and mathematical services and to perform systems analysis studies. This document (Volume 2) describes the FY Systems Analysis highlights. The description is an unclassified overview of activities and is not complete or exhaustive. The objective of the systems analysis activities is to evaluate the relative value of alternative concepts and systems. SLL systems analysis activities reflect Sandia Laboratory programs and in 1978 consisted of study efforts in three areas: national security: evaluations of strategic, theater, and navy nuclear weapons issues; energy technology: particularly in support of Sandia's solar thermal programs; and nuclear fuel cycle physical security: a special project conducted for the Nuclear Regulatory Commission. Highlights of these activities are described in the following sections. 7 figures

  16. Modeling and Control Methods for Supporting Scapulohumeral Rhythm with a Robotic Exoskeleton

    Data.gov (United States)

    National Aeronautics and Space Administration — Extravehicular activities (EVA), which are activities that require a crew member to leave the spacecraft, are a key component of many missions and require a...

  17. Innovative Robot Archetypes for In-Space Construction and Maintenance

    Science.gov (United States)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  18. Physical protection system using activated barriers

    International Nuclear Information System (INIS)

    Timm, R.E.; Zinneman, T.E.; Haumann, J.R.; Flaugher, H.A.; Reigle, D.L.

    1984-03-01

    The Argonne National Laboratory has recently installed an activated barrier, the Access Denial System, to upgrade its security. The technology of this system was developed in the late 70's by Sandia National Laboratory-Albuquerque. The Argonne National Laboratory is the first Department of Energy facility to use this device. Recent advancements in electronic components provide the total system support that makes the use of an activated barrier viable and desirable. The premise of an activated barrier is that it is deployed after a positive detection of an adversary is made and before the adversary can penetrate vital area. To accomplish this detection, sophisticated alarms, assessment, and communications must be integrated into a system that permits a security inspector to make a positive evaluation and to activate the barrier. The alarm sensor locations are selected to provide protection in depth. Closed circuit television is used with components that permit multiple video frames to be stored for automated, priority-based playback to the security inspector. Further, algorithms permit look-ahead surveillance of vital areas so that the security inspector can activate the access denial system in a timely manner and not be restricted to following the adversaries' penetration path(s)

  19. Location of Microbial Ecology Evaluation Device in Apollo Command Module

    Science.gov (United States)

    1971-01-01

    The location of the Microbial Ecology Evaluation Device (MEED) installed on the open hatch of the Apollo Command Module is illustrated in this photograph. The MEED, equipment of the Microbial Response in Space Environment experiment, will house a selection of microbial systems. The MEED will be deployed during the extravehicular activity on the transearth coast phase of the Aopllo 16 lunar landing mission. The purpose of the experiment will be to measure the effects of certain space environmental parameters on the microbial test systems.

  20. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Hensley, W.K.; Denton, M.M.; Garcia, S.R.

    1981-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. The system and its mode of operation for a large reconnaissance survey are described

  1. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  2. Development Requirements for the Exploration PLSS (xPLSS) Carbon Dioxide and Humidity Control Unit (CDHCU)

    Science.gov (United States)

    Chullen, Cinda

    2017-01-01

    Functional Requirements for the Carbon Dioxide and Humidity Control Unit (CDHCU): The CDHCU is a component of the Exploration Portable Life Support System (xPLSS) to provide carbon dioxide (CO2) and humidity control within the spacesuit for a crewmember to perform extravehicular activities (EVA) in vacuum (micro-g), lunar, and Mars environments for up to 8 hours continuous, and during EVA preparation in airlocks or support vehicles for an additional 2 hours (TBR) continuous.

  3. Telecast of Astronaut Neil Armstrong descending ladder to surface of the moon

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, descends the ladder of the Apollo 11 Lunar Module prior to making the first step by man on the moon. This view is a black and white reproduction taken from a telecast by the Apollo 11 lunar surface camera during extravehicular activity. The black bar running through the center of the picture is an anamoly in the television ground data system at the Goldstone Tracking Station.

  4. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Hirai, Shigeoki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro

    1999-01-01

    In order to realize autonomous type nuclear plant, three-dimensional geometrical modelling method, and a basic technology on information collection and processing system preparation in some nuclear basic technology developments such as 'study on system evaluation of nuclear facility furnished with artificial intelligence for nuclear power' and 'study on adaptability evaluation of information collection and processing system into autonomous type plant' had already been developed. In this study, a study on sensing system required for constructing robot groups capable of conducting autonomously traveling inspection and maintenance in large scale, complicated and diverse plant has been processed by aiming at establishment of dispersed cooperative intelligent system technology. In 1997 fiscal year, integration of cooperative visual sensing technique was attempted. And, at the same time, upgrading of individual element technology and transportation method essential to the integrated system were investigated. As a result, an operative active sensing prototype system due to transportation robot groups furnished with real time processing capacity on diverse informations by integration of cooperative active sensing technique and real time active sensing technique developed independently plural transportation robot. (G.K.)

  5. Radiation dosimetry for the space shuttle program

    International Nuclear Information System (INIS)

    Jones, K.L.; Richmond, R.G.; Cash, B.L.

    1985-01-01

    Radiation measurements aboard the Space Shuttle are made to record crew doses for medical records, to verify analytical shielding calculations used in dose predictions and to provide dosimetry support for radiation sensitive payloads and experiments. Low cost systems utilizing thermoluminescent dosimeters, nuclear track detectors and activation foils have been developed to fulfill these requirements. Emphasis has been placed on mission planning and dose prediction. As a result, crew doses both inside the orbiter and during extra-vehicular activities have been reasonable low. Brief descriptions of the space radiation environment, dose prediction models, and radiation measurement systems are provided, along with a summary of the results for the first fourteen Shuttle flights

  6. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  7. Study on cooperative active sensing system

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Kita, Nobuyuki; Kuniyoshi, Yasuo; Hara, Isao; Matsui, Toshihiro; Matsushita, Toshio; Nagata, Kazuyuki; Nagakubo, Akihiko

    1998-01-01

    This study aims to develop a dispersed cooperative intellectualized system technique and a sensing system required for construction of a robot group inspectable in patrol and maintainable in selfish in a plant with large scale and complex variety. In particular, in order to establish a system with flexibility response to environment and soundness durable to abnormal accident, a cooperative active sensing technique and real-time active vision sensing technique were started. On the base of last two years results, in 1996 fiscal year, important and expansion of each element technique was conducted to start a study on movement of focussing point which was an important function of the active vision sensing. (G.K.)

  8. Magnetic resonance imaging as a tool for extravehicular activity analysis

    Science.gov (United States)

    Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.

    1992-01-01

    The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.

  9. An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls

    Science.gov (United States)

    Lantz, Renee; Vykukal, H.; Webbon, Bruce

    1987-01-01

    An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.

  10. Information system development activities and inquiring systems

    DEFF Research Database (Denmark)

    Carugati, Andrea

    2008-01-01

    This article presents a framework that maps information system development (ISD) activities on systems for the creation of knowledge. This work addresses the relevant and persisting problem of improving the chances of ISD success. The article builds upon previous research on knowledge aspects...... based on ISD literature and on Churchman's (1971) inquiring systems. The second part presents the use of the framework in an ISD project. The case is used to show the applicability of the framework and to highlight the advantages of this approach. The main theoretical implication is that the framework...

  11. Implementation of Business Game Activity Support System

    Institute of Scientific and Technical Information of China (English)

    TANABU Motonari

    2004-01-01

    Business game can be used not only as an educational tool for the development of decision making ability, but also can be used for supporting the knowledge creation activity in organizations. In this paper, some conceptual considerations to meanings of the business game in the knowledge creation activity by using the knowledge creation theory and other related theories are given,and business game activity concept which refers to game play and development is proposed. Then focusing on the business game activity as an instantiation of the knowledge creation activity, and a Web based gaming activity support system based on the former system called YBG that enables us to play and develop many business games through the standard web browser is proposed. This system also provides us a lot of opportunities to play and develop the business games over business game communities.

  12. Activity-Tracking Service for Building Operating Systems

    DEFF Research Database (Denmark)

    Hviid, Jakob; Kjærgaard, Mikkel Baun

    2018-01-01

    of Things sensors and devices promise to deliver rich data about human activities and control of loads. However, existing proposals for building operating systems that should combine such data and control opportunities does not provide concepts and support for activity data. In this paper we propose...... an activity-tracking service for building operating systems. The service is designed to consider the security, privacy, integration, extendability and scalability challenges in the building setting. We provide initial findings for testing the system in a proof of concept evaluation using a set of common......Several high consuming electricity loads in retail stores are currently highly intertwined in human activities. Without knowledge of such activities it is difficult to improve the energy efficiency of the loads operation for sustainability and cost reasons. The increasing availability of Internet...

  13. Planning and Optimization Methods for Active Distribution Systems

    DEFF Research Database (Denmark)

    Abbey, Chad; Baitch, Alex; Bak-Jensen, Birgitte

    distribution planning. Active distribution networks (ADNs) have systems in place to control a combination of distributed energy resources (DERs), defined as generators, loads and storage. With these systems in place, the AND becomes an Active Distribution System (ADS). Distribution system operators (DSOs) have...

  14. Device-Free Indoor Activity Recognition System

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulaziz Aide Al-qaness

    2016-11-01

    Full Text Available In this paper, we explore the properties of the Channel State Information (CSI of WiFi signals and present a device-free indoor activity recognition system. Our proposed system uses only one ubiquitous router access point and a laptop as a detection point, while the user is free and neither needs to wear sensors nor carry devices. The proposed system recognizes six daily activities, such as walk, crawl, fall, stand, sit, and lie. We have built the prototype with an effective feature extraction method and a fast classification algorithm. The proposed system has been evaluated in a real and complex environment in both line-of-sight (LOS and none-line-of-sight (NLOS scenarios, and the results validate the performance of the proposed system.

  15. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  16. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    Science.gov (United States)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active

  17. Nanocomposite for Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Advanced Extravehicular Activity (EVA) program requires the need for materials that can protect astronauts and spacecrafts from ionizing radiations such as...

  18. Innovative EVA Glove Exoskeleton, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Dexterous performance degradation resulting from donning an extra-vehicular activity (EVA) glove limits the capability of astronauts to perform certain tasks in...

  19. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.; Denton, M.M.

    1982-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day

  20. Reversible Ammonia Sorption for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Jennings, Mallory A.

    2012-01-01

    Results are presented on the development of regenerable trace-contaminant (TC) sorbent for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). Since ammonia is the most important TC to be captured, data presented in this paper are limited to ammonia sorption, with results relevant to other TCs to be reported at a later time. The currently available TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal. The sorbent is non-regenerable, and its use is associated with appreciable pressure drop, i.e. power consumption. The objective of this work is to demonstrate the feasibility of using vacuum-regenerable sorbents for PLSS application. In this study, several carbon sorbent monoliths were fabricated and tested. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, as well as carbon surface conditioning that enhances ammonia sorption without impairing sorbent regeneration. Depending on sorbent monolith geometry, the reduction in pressure drop with respect to granular sorbent was found to be between 50% and two orders of magnitude. Resistive heating of the carbon sorbent monolith was demonstrated by applying voltage to the opposite ends of the monolith.

  1. Design of an Active Automotive Safety System

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2013-07-01

    Full Text Available With the development of the national economy, the people's standard of living got corresponding improvement, cars has been one of the indispensable traffic tools in many families. An active safety system is proposed, which can real-time detect the vehicle's running status and judge the security status of the vehicle. The system, which takes single-chip microcomputer as the controlling core and combines with millimeter-wave and ultrasonic distance measurement technology, can detect the distance from vehicle to vehicle and judge the security status of the vehicle. The hardware composition of the system and the data acquiring circuit are proposed, the mathematic model for different situation is established, and the controlling algorithm is completed. This system can accurately measure speed and distance between vehicles; the active safety control system can meet the relevant data measurement and transmission requirement; and can meet the functional requirement of the active safety control system

  2. Christer Fuglesang, a former CERN physicist-turned-astronaut

    CERN Multimedia

    NASA

    2006-01-01

    European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, participates in the mission's second extravehicular activity (EVA) as construction resumes on the International Space Station. Image: NASA.

  3. Advanced Nanocomposite Membrane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increasing demands placed on extravehicular activities (EVA) for International Space Station (ISS) maintenance, there is a critical need for oxygen delivery...

  4. Activity theory as a challenge to systems design

    DEFF Research Database (Denmark)

    Bødker, Susanne

    1991-01-01

    This paper suggests an improvement of the theoretical foundation of information systems research of the 1990s. This foundation is found in human activity theory. The paper deals with how human activity theory can help systems design change, theoretically and practically. Applying activity theory...

  5. Nonlinear Predictive Sliding Mode Control for Active Suspension System

    Directory of Open Access Journals (Sweden)

    Dazhuang Wang

    2018-01-01

    Full Text Available An active suspension system is important in meeting the requirements of the ride comfort and handling stability for vehicles. In this work, a nonlinear model of active suspension system and a corresponding nonlinear robust predictive sliding mode control are established for the control problem of active suspension. Firstly, a seven-degree-of-freedom active suspension model is established considering the nonlinear effects of springs and dampers; and secondly, the dynamic model is expanded in the time domain, and the corresponding predictive sliding mode control is established. The uncertainties in the controller are approximated by the fuzzy logic system, and the adaptive controller reduces the approximation error to increase the robustness of the control system. Finally, the simulation results show that the ride comfort and handling stability performance of the active suspension system is better than that of the passive suspension system and the Skyhook active suspension. Thus, the system can obviously improve the shock absorption performance of vehicles.

  6. HMM Adaptation for Improving a Human Activity Recognition System

    Directory of Open Access Journals (Sweden)

    Rubén San-Segundo

    2016-09-01

    Full Text Available When developing a fully automatic system for evaluating motor activities performed by a person, it is necessary to segment and recognize the different activities in order to focus the analysis. This process must be carried out by a Human Activity Recognition (HAR system. This paper proposes a user adaptation technique for improving a HAR system based on Hidden Markov Models (HMMs. This system segments and recognizes six different physical activities (walking, walking upstairs, walking downstairs, sitting, standing and lying down using inertial signals from a smartphone. The system is composed of a feature extractor for obtaining the most relevant characteristics from the inertial signals, a module for training the six HMMs (one per activity, and the last module for segmenting new activity sequences using these models. The user adaptation technique consists of a Maximum A Posteriori (MAP approach that adapts the activity HMMs to the user, using some activity examples from this specific user. The main results on a public dataset have reported a significant relative error rate reduction of more than 30%. In conclusion, adapting a HAR system to the user who is performing the physical activities provides significant improvement in the system’s performance.

  7. ACTIVE PACKAGING SYSTEM FOR MEAT AND MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2012-10-01

    Full Text Available In the recent past, food packaging was used to enable marketing of products and to provide passive protection against environmental contaminations or influences that affect the shelf life of the products. However, unlike traditional packaging, which must be totally inert, active packaging is designed to interact with the contents and/or the surrounding environment. Interest in the use of active packaging systems for meat and meat products has increased in recent years. Active packaging systems are developed with the goal of extending shelf life for foods and increasing the period of time that the food is high quality. Developments in active packaging have led to advances in many areas, including delayed oxidation and controlled respiration rate, microbial growth, and moisture migration. Active packaging technologies include some physical, chemical, or biological action which changes interactions between a package, product, and/or headspace of the package in order to get a desired outcome. Active packaging systems discussed include oxygen scavengers, carbon dioxide scavengers and emitters, moisture control agents, flavour/odour absorbers and releasers  and antimicrobial packaging technologies. Active packaging is typically found in two types of systems; sachets and pads which are placed inside of packages, and active ingredients that are incorporated directly into packaging materials.  Recognition of the benefits of active packaging technologies by the food industry, development of economically viable packaging systems and increased consumer acceptance is necessary for commercial realisation of these packaging technologies.doi:10.5219/205

  8. CO2 Removal from Mars EMU, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 control for during ExtraVehicular Activity (EVA) on mars is challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable...

  9. A combined system for measuring animal motion activities.

    Science.gov (United States)

    Young, M S; Young, C W; Li, Y C

    2000-01-31

    In this study, we have developed a combined animal motion activity measurement system that combines an infrared light matrix subsystem with an ultrasonic phase shift subsystem for animal activity measurement. Accordingly, in conjunction with an IBM PC/AT compatible personal computer, the combined system has the advantages of both infrared and ultrasonic subsystems. That is, it can at once measure and directly analyze detailed changes in animal activity ranging from locomotion to tremor. The main advantages of this combined system are that it features real time data acquisition with the option of animated real time or recorded display/playback of the animal's motion. Additionally, under the multi-task operating condition of IBM PC, it can acquire and process behavior using both IR and ultrasound systems simultaneously. Traditional systems have had to make separate runs for gross and fine movement recording. This combined system can be profitably employed for normative behavioral activity studies and for neurological and pharmacological research.

  10. NASA 3D Models: Extravehicular Mobility Unit

    Data.gov (United States)

    National Aeronautics and Space Administration — The current spacesuit is a complex garment. Not only does it protect from the extreme conditions of space, it is in itself a mobile life support system with an...

  11. Decision rules for spaceborne operations planning

    Science.gov (United States)

    Smith, Jeffrey H.

    1992-01-01

    Recent study of Space Station Freedom requirements for extravehicular activity (EVA) to perform external maintenance tasks emphasize an oversubscription of resources for performing on-orbit tasks. Extravehicular robotics (EVR) and cooperative EVA combined with EVR (using crew and robots synergistically to perform tasks) have been suggested as a part of the solution to reduce EVA. The question remains however, 'Under what conditions is it cost-effective to use the EVA and/or EVR resource.' The answer to such a question also has implications for the Space Station Freedom and its external maintenance as well as the Space Exploration Initiative (SEI) where the issue of work-system allocation is magnified by the long distances and scope of EVA work. This paper describes a simple technique of interest to operational planners and robot technology planners for determining in an economic context whether to use EVA alone, EVR alone, or Cooperative EVA. It is also shown that given: (1) the task times for these alternatives; and (2) the marginal costs of EVA, EVR, and IVA, the appropriate work system for performing the task can be identified. The paper illustrates how the work system choice is based on the ratio of costs. An example using Space Station Freedom data is presented to illustrate the trade-offs among alternative work-systems.

  12. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  13. Hybrid energy storage systems utilizing redox active organic compounds

    Science.gov (United States)

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  14. Lunar All-Terrain Utility Vehicle for EVA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("Lunar ATV") to assist extra-vehicular activities...

  15. Lunar All-Terrain Utility Vehicle for EVA, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("LATUV") to assist extra-vehicular activities in...

  16. Feasibility study of a neutron activation system for EU test blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kuo, E-mail: kuo.tian@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Calderoni, Pattrick [Fusion for Energy(F4E), Barcelona (Spain); Ghidersa, Bradut-Eugen; Klix, Axel [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2016-11-01

    Highlights: • This paper summarizes the technical baseline and preliminary design of EU TBM Neutron Activation System, briefly describes the key components, and outlines the major integration challenges. - Abstract: The Neutron Activation System (NAS) for the EU Helium Cooled Lithium Lead (HCLL) and Helium Cooled Pebble Bed (HCPB) Test Blanket Systems (TBSs) is an instrument that is proposed to determine the absolute neutron fluence and absolute neutron flux with information on the neutron spectrum in selected positions of the corresponding Test Blanket Modules (TBMs). In the NAS activation probes are exposed to the ITER neutron flux for periods ranging from several tens of seconds up to a full plasma pulse length, and the induced gamma activities are subsequently measured. The NAS is composed of a pneumatic transfer system and a counting station. The pneumatic transfer system includes irradiation ends in TBMs, transfer pipes, return gas pipes, a transfer station with a distributor (carousel), and a pressurized gas driving system, while the counting station consists of gamma ray detectors, signal processing electronic devices, and data analyzing software for neutron source strength evaluation. In this paper, a brief description on the proposed TBM NAS as well as the key components is presented, and the integration challenges of TBM NAS are outlined.

  17. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  18. Improving Working Conditions for Astronauts: An Electronic Personal Restraint System for Use in Microgravity Environments

    Directory of Open Access Journals (Sweden)

    Kevin Tait

    2012-01-01

    Full Text Available While in microgravity, astronauts are preoccupied with physical restraint, which takes attention away from the maintenance task or scientific experiment at hand. This may directly lead to safety concerns and increased time for extravehicular activity, as well as potentially inhibit or corrupt data collection. A primary concern is the time it takes to manipulate the current restraint system. The portable foot restraint currently in use by NASA employs a series of pins in order to engage the system or release in an emergency. This requires considerable time for the user to detach, and there is an increased risk of entanglement. If restraint operating time could be reduced by 50%, the astronaut’s assigned experiment time could be increased an average of 100 minutes per mission. Another problem identified by NASA included the inability of the current system to release the user upon failure. Research and design was conducted following the Six-Sigma DMEDI project architecture, and a new form of restraint to replace the existing system was proposed. The research team first studied the customer requirements and relevant standards set by NASA, and with this information they began drafting designs for a solution. This project utilized electromagnetism to restrain a user in microgravity. The proposed system was capable of being manipulated quickly, failing in a manner that released the user, and being electronically controlled. This active electronic control was a new concept in restraint systems, as it enabled an astronaut to effectively “walk” along a surface while remaining restrained to it. With the design prototype and a limited budget, a rudimentary test assembly was built by the team, and most of NASA’s specifications were met. With recommendations from NASA, the research team concluded by developing potential material and design solutions that can be explored in the future by Purdue University or other parties.

  19. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  20. Active containment systems incorporating modified pillared clays

    International Nuclear Information System (INIS)

    Lundie, P.; McLeod, N.

    1997-01-01

    The application of treatment technologies in active containment systems provides a more advanced and effective method for the remediation of contaminated sites. These treatment technologies can be applied in permeable reactive walls and/or funnel and gate systems. The application of modified pillared clays in active containment systems provides a mechanism for producing permeable reactive walls with versatile properties. These pillared clays are suitably modified to incorporate reactive intercalatants capable of reacting with both a broad range of organic pollutants of varying molecular size, polarity and reactivity. Heavy metals can be removed from contaminated water by conventional ion-exchange and other reactive processes within the clay structure. Complex contamination problems can be addressed by the application of more than one modified clay on a site specific basis. This paper briefly describes the active containment system and the structure/chemistry of the modified pillared clay technology, illustrating potential applications of the in-situ treatment process for contaminated site remediation

  1. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

    2014-01-01

    This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

  2. Model of strategic planning in active systems | Nasim | Journal of ...

    African Journals Online (AJOL)

    Annotation The work is dedicated to the mathematical formulation of the needing for strategic planning in active systems. At the same time, the possibility of the TAC (theory of active systems) for an assessment of conditions of effective strategic planning and development of an active system are shown. Keywords Active ...

  3. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  4. IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING

    Data.gov (United States)

    National Aeronautics and Space Administration — IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING ISAAC PERSING AND VINCENT NG Abstract. Active learning has been successfully applied to many natural language...

  5. Activity Management System user reference manual. Revision 1

    International Nuclear Information System (INIS)

    Gates, T.A.; Burdick, M.B.

    1994-01-01

    The Activity Management System (AMS) was developed in response to the need for a simple-to-use, low-cost, user interface system for collecting and logging Hanford Waste Vitrification Plant Project (HWVP) activities. This system needed to run on user workstations and provide common user access to a database stored on a local network file server. Most important, users wanted a system that provided a management tool that supported their individual process for completing activities. Existing system treated the performer as a tool of the system. All AMS data is maintained in encrypted format. Users can feel confident that any activities they have entered into the database are private and that, as the originator, they retain sole control over who can see them. Once entered into the AMS database, the activities cannot be accessed by anyone other than the originator, the designated agent, or by authorized viewers who have been explicitly granted the right to look at specific activities by the originator. This user guide is intended to assist new AMS users in learning how to use the application and, after the initial learning process, will serve as an ongoing reference for experienced users in performing infrequently used functions. Online help screens provide reference to some of the key information in this manual. Additional help screens, encompassing all the applicable material in this manual, will be incorporated into future AMS revisions. A third, and most important, source of help is the AMS administrator(s). This guide describes the initial production version of AMS, which has been designated Revision 1.0

  6. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  7. Decompression Sickness, Extravehicular Activities, and Nitrogen Induced Osmosis: Brian Hills Revisited

    Science.gov (United States)

    2001-06-01

    hypobares ou hyperbares ] To order the complete compilation report, use: ADA395680 The component part is provided here to allow users access to individually...report: TITLE: Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions...Hypo- and Hyperbaric Conditions ", held in Toronto, Canada, 16-19 October 2000, and published in RTO MP-062. 45-2 upon the local pressure differential

  8. Astronauts Allen and Gemar during extravehicular activity (EVA) training in CCT

    Science.gov (United States)

    1994-01-01

    Astronauts Charles D. (Sam) Gemar, and Andrew M. Allen participate in a training exercise at JSC's Crew Compartment Trainer (CCT), located in the Space Vehicle Mockup Facility. Gemar sits inside the airlock as Allen reviews procedures for EVA.

  9. Solar active region display system

    Science.gov (United States)

    Golightly, M.; Raben, V.; Weyland, M.

    2003-04-01

    The Solar Active Region Display System (SARDS) is a client-server application that automatically collects a wide range of solar data and displays it in a format easy for users to assimilate and interpret. Users can rapidly identify active regions of interest or concern from color-coded indicators that visually summarize each region's size, magnetic configuration, recent growth history, and recent flare and CME production. The active region information can be overlaid onto solar maps, multiple solar images, and solar difference images in orthographic, Mercator or cylindrical equidistant projections. Near real-time graphs display the GOES soft and hard x-ray flux, flare events, and daily F10.7 value as a function of time; color-coded indicators show current trends in soft x-ray flux, flare temperature, daily F10.7 flux, and x-ray flare occurrence. Through a separate window up to 4 real-time or static graphs can simultaneously display values of KP, AP, daily F10.7 flux, GOES soft and hard x-ray flux, GOES >10 and >100 MeV proton flux, and Thule neutron monitor count rate. Climatologic displays use color-valued cells to show F10.7 and AP values as a function of Carrington/Bartel's rotation sequences - this format allows users to detect recurrent patterns in solar and geomagnetic activity as well as variations in activity levels over multiple solar cycles. Users can customize many of the display and graph features; all displays can be printed or copied to the system's clipboard for "pasting" into other applications. The system obtains and stores space weather data and images from sources such as the NOAA Space Environment Center, NOAA National Geophysical Data Center, the joint ESA/NASA SOHO spacecraft, and the Kitt Peak National Solar Observatory, and can be extended to include other data series and image sources. Data and images retrieved from the system's database are converted to XML and transported from a central server using HTTP and SOAP protocols, allowing

  10. Expert system. Based advisory system for the operator's mental activities support

    International Nuclear Information System (INIS)

    Gieci, A.; Macko, J.; Mosny, J.

    2000-01-01

    The operator's mental activity is the most important part of his work. A processing of a large amount of the information by the operator is possible only if he/she possesses appropriate cognitive skills. To facilitate the novice's acquisition of the experienced operator's cognitive skills of the decision-making process a special type of the expert system was developed. The cognitive engineering's models and problem-solving methodology constitutes the basis of this expert system. The article gives an account of the prototype of the mentioned expert system developed to aid the whole mental activity of the nuclear power plant operator during his decision-making process. (author)

  11. Active sound reduction system and method

    NARCIS (Netherlands)

    2016-01-01

    The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound

  12. The astronaut and the banana peel: An EVA retriever scenario

    Science.gov (United States)

    Shapiro, Daniel G.

    1989-01-01

    To prepare for the problem of accidents in Space Station activities, the Extravehicular Activity Retriever (EVAR) robot is being constructed, whose purpose is to retrieve astronauts and tools that float free of the Space Station. Advanced Decision Systems is at the beginning of a project to develop research software capable of guiding EVAR through the retrieval process. This involves addressing problems in machine vision, dexterous manipulation, real time construction of programs via speech input, and reactive execution of plans despite the mishaps and unexpected conditions that arise in uncontrolled domains. The problem analysis phase of this work is presented. An EVAR scenario is used to elucidate major domain and technical problems. An overview of the technical approach to prototyping an EVAR system is also presented.

  13. MNC Headquarters as Activity Systems

    DEFF Research Database (Denmark)

    Nell, Phillip C.; Larsen, Marcus M.

    2012-01-01

    Recent literature has questioned why multinational corporations (MNC) relocate their headquarters activities overseas. In this paper, we investigate the consequences of this phenomenon. To do this, we conceptualize the MNC headquarters activities as an interdependent system, and develop a set...... of propositions that links headquarters unbundling and relocation to complexity and rising coordination costs. Moreover, we argue that the coordination costs are often neglected in the headquarters reconfiguration process. In sum, we provide a novel perspective on modern MNC headquarters configurations, derive...

  14. Performance of Active Wave Absorption Systems

    DEFF Research Database (Denmark)

    Hald, Tue; Frigaard, Peter

    on a horisontal and vertical velocity are treated. All three systems are based on digital FIR-filters. For numerical comparison a performance function combining the frequency response of the set of filters for each system is derived enabling discussion on optimal filter design and system setup. Irregular wave......A comparison of wave gauge based on velocity meter based active absorption systems is presented discussing advantages and disadvantages of the systems. In detail one system based on two surface elevations, one system based on a surface elevation and a horisontal velocity and one system based...... tests with a highly reflective structure with the purely wave gauge based system and the wave gauge velocity meter based system are performed. The wave test depict the differences between the systems....

  15. Artist concept illustrating key events on day by day basis during Apollo 9

    Science.gov (United States)

    1969-01-01

    Artist concept illustrating key events on day by day basis during Apollo 9 mission. First photograph illustrates activities on the first day of the mission, including flight crew preparation, orbital insertion, 103 north mile orbit, separations, docking and docked Service Propulsion System Burn (19792); Second day events include landmark tracking, pitch maneuver, yaw-roll maneuver, and high apogee orbits (19793); Third day events include crew transfer and Lunar Module system evaluation (19794); Fourth day events include use of camera, day-night extravehicular activity, use of golden slippers, and television over Texas and Louisiana (19795); Fifth day events include vehicles undocked, Lunar Module burns for rendezvous, maximum separation, ascent propulsion system burn, formation flying and docking, and Lunar Module jettison ascent burn (19796); Sixth thru ninth day events include service propulsion system burns and landmark sightings, photograph special tests (19797); Tenth day events i

  16. A review of modeling approaches in activated sludge systems

    African Journals Online (AJOL)

    use

    Key words: Mathematical modeling, water, wastewater, wastewater treatment plants, activated sludge systems. INTRODUCTION ... sedimentation processes which take place in the aeration ...... activated sludge waste water treatment systems.

  17. Content Analysis in Systems Engineering Acquisition Activities

    Science.gov (United States)

    2016-04-30

    Acquisition Activities Karen Holness, Assistant Professor, NPS Update on the Department of the Navy Systems Engineering Career Competency Model Clifford...systems engineering toolkit . Having a common analysis tool that is easy to use would support the feedback of observed system performance trends from the

  18. System approach to machine building enterprise innovative activity management

    Directory of Open Access Journals (Sweden)

    І.V. Levytska

    2016-12-01

    Full Text Available The company, which operates in a challenging competitive environment should focus on new products and provide innovative services that enhance their innovation to maintain the company’s market position. The article deals with the peculiarities of such an activity in the company. The authors analyze the various approaches used in the management, and supply the advantages and disadvantages of each. It is determine that the most optimal approach among them is a system approach. The definition of the consepts "a system" and "a systematic approach to innovative activity management" are suggested. The article works out the system of machine building enterprise innovative activity management, the organization of machine building enterprise innovative activity; the planning of machine building enterprise innovative activity; the control in the system of machine building enterprise innovative activity management; the elements of the control subsystem. The properties, typical for the system of innovative management, are supplied. The managers, engaged in enterprise innovative activity management, must perform a number of the suggested tasks, which affect the efficiency of the enterprise as a whole. These exact tasks are performed using the systematic approach, providing the enterprise competitive operation and quick adaptation to changes in the external environment.

  19. Conceptual Drivers for an Exploration Medical System

    Science.gov (United States)

    Antonsen, Erik; Hanson, Andrea; Shah, Ronak; Reed, Rebekah; Canga, Michael

    2016-01-01

    Interplanetary spaceflight, such as NASA's proposed three-year mission to Mars, provides unique and novel challenges when compared with human spaceflight to date. Extended distance and multi-year missions introduce new elements of operational complexity and additional risk. These elements include: inability to resupply medications and consumables, inability to evacuate injured or ill crew, uncharted psychosocial conditions, and communication delays that create a requirement for some level of autonomous medical capability. Because of these unique challenges, the approaches used in prior programs have limited application to a Mars mission. On a Mars mission, resource limitations will significantly constrain available medical capabilities, and require a paradigm shift in the approach to medical system design and risk mitigation for crew health. To respond to this need for a new paradigm, the Exploration Medical Capability (ExMC) Element is assessing each Mars mission phase-transit, surface stay, rendezvous, extravehicular activity, and return-to identify and prioritize medical needs for the journey beyond low Earth orbit (LEO). ExMC is addressing both planned medical operations, and unplanned contingency medical operations that meld clinical needs and research needs into a single system. This assessment is being used to derive a gap analysis and studies to support meaningful medical capabilities trades. These trades, in turn, allow the exploration medical system design to proceed from both a mission centric and ethics-based approach, and to manage the risks associated with the medical limitations inherent in an exploration class mission. This paper outlines the conceptual drivers used to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this paradigm. Keywords: (Max 6 keywords: exploration, medicine, spaceflight, Mars, research, NASA)

  20. Dynamic Measurement of Disease Activity in Acute Pancreatitis: The Pancreatitis Activity Scoring System.

    Science.gov (United States)

    Wu, Bechien U; Batech, Michael; Quezada, Michael; Lew, Daniel; Fujikawa, Kelly; Kung, Jonathan; Jamil, Laith H; Chen, Wansu; Afghani, Elham; Reicher, Sonya; Buxbaum, James; Pandol, Stephen J

    2017-07-01

    Acute pancreatitis has a highly variable course. Currently there is no widely accepted method to measure disease activity in patients hospitalized for acute pancreatitis. We aimed to develop a clinical activity index that incorporates routine clinical parameters to assist in the measurement, study, and management of acute pancreatitis. We used the UCLA/RAND appropriateness method to identify items for inclusion in the disease activity instrument. We conducted a systematic literature review followed by two sets of iterative modified Delphi meetings including a panel of international experts between November 2014 and November 2015. The final instrument was then applied to patient data obtained from five separate study cohorts across Southern California to assess profiles of disease activity. From a list of 35 items comprising 6 domains, we identified 5 parameters for inclusion in the final weighted clinical activity scoring system: organ failure, systemic inflammatory response syndrome, abdominal pain, requirement for opiates and ability to tolerate oral intake. We applied the weighted scoring system across the 5 study cohorts comprising 3,123 patients. We identified several distinct patterns of disease activity: (i) overall there was an elevated score at baseline relative to discharge across all study cohorts, (ii) there were distinct patterns of disease activity related to duration of illness as well as (iii) early and persistent elevation of disease activity among patients with severe acute pancreatitis defined as persistent organ failure. We present the development and initial validation of a clinical activity score for real-time assessment of disease activity in patients with acute pancreatitis.

  1. Active Solid State Dosimetry for Lunar EVA

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.

    2006-01-01

    The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2

  2. Expert system aided operator's mental activities training

    International Nuclear Information System (INIS)

    Gieci, A.; Macko, J.; Mosny, J.; Gese, A.

    1994-01-01

    The operator's mental activity is the most important part of his work. A processing of a large amount of the information by the operator is possible only if he/she possesses appropriate cognitive skills. To facilitate the novice's acquisition of the experienced operator's cognitive skills of the decision-making process a special type of the expert system was developed. The cognitive engineering's models and problem-solving methodology constitutes the basis of this expert system. The article gives an account of the prototype of the mentioned expert system developed to aid the whole mental activity of the nuclear power plant operator during his decision-making process. (author). 6 refs, 6 figs

  3. Space-based multifunctional end effector systems functional requirements and proposed designs

    Science.gov (United States)

    Mishkin, A. H.; Jau, B. M.

    1988-01-01

    The end effector is an essential element of teleoperator and telerobot systems to be employed in space in the next decade. The report defines functional requirements for end effector systems to perform operations that are currently only feasible through Extra-Vehicular Activity (EVA). Specific tasks and functions that the end effectors must be capable of performing are delineated. Required capabilities for forces and torques, clearances, compliance, and sensing are described, using current EVA requirements as guidelines where feasible. The implications of these functional requirements on the elements of potential end effector systems are discussed. The systems issues that must be considered in the design of space-based manipulator systems are identified; including impacts on subsystems tightly coupled to the end effector, i.e., control station, information processing, manipulator arm, tool and equipment stowage. Possible end effector designs are divided into three categories: single degree-of-freedom end effectors, multiple degree of freedom end effectors, and anthropomorphic hands. Specific design alternatives are suggested and analyzed within the individual categories. Two evaluations are performed: the first considers how well the individual end effectors could substitute for EVA; the second compares how manipulator systems composed of the top performers from the first evaluation would improve the space shuttle Remote Manipulator System (RMS) capabilities. The analysis concludes that the anthropomorphic hand is best-suited for EVA tasks. A left- and right-handed anthropomorphic manipulator arm configuration is suggested as appropriate to be affixed to the RMS, but could also be used as part of the Smart Front End for the Orbital Maneuvering Vehicle (OMV). The technical feasibility of the anthropomorphic hand and its control are demonstrated. An evolutionary development approach is proposed and approximate scheduling provided for implementing the suggested

  4. Soil Microbial Activity in Conventional and Organic Agricultural Systems

    Directory of Open Access Journals (Sweden)

    Romero F.V. Carneiro

    2009-06-01

    Full Text Available The aim of this study was to evaluate microbial activity in soils under conventional and organic agricultural system management regimes. Soil samples were collected from plots under conventional management (CNV, organic management (ORG and native vegetation (AVN. Soil microbial activity and biomass was significantly greater in ORG compared with CNV. Soil bulk density decreased three years after adoption of organic system. Soil organic carbon (SOC was higher in the ORG than in the CNV. The soil under organic agricultural system presents higher microbial activity and biomass and lower bulk density than the conventional agricultural system.

  5. Superfluid helium on on-orbit transfer (SHOOT) flight experiment

    International Nuclear Information System (INIS)

    DiPirro, M.J.; Kittel, P.

    1988-01-01

    The SHOOT flight demonstration is being undertaken to verify component and system level technology necessary to resupply large superfluid helium dewars in space. The baseline configuration uses two identical 210 liter dewars connected by a transfer line which contains a quick disconnect coupling. The helium is transferred back and forth between the dewars under various conditions of flow rate, parasitic heat load, and temperature. An astronaut Extra-Vehicular Activity is also planned to manually mate and demate the coupling. The components necessary for the flight and currently being developed are described

  6. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  7. Design to nullify activity movement in heat transport systems

    International Nuclear Information System (INIS)

    Hemmings, R.L.; Barber, D.

    1975-01-01

    This article describes the methods by which designers can reduce the adverse effects of system corrosion and the resultant activation of the corrosion products in heat transport systems. The presentation will cover: a) choice of materials; b) assessment of the need of components; c) control of system chemistry; d) factors considered in sizing HTS purification systems; i) control of activation and fission products; ii) decontamination. (author)

  8. Communication Systems and Study Method for Active Distribution Power systems

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    Due to the involvement and evolvement of communication technologies in contemporary power systems, the applications of modern communication technologies in distribution power system are becoming increasingly important. In this paper, the International Organization for Standardization (ISO......) reference seven-layer model of communication systems, and the main communication technologies and protocols on each corresponding layer are introduced. Some newly developed communication techniques, like Ethernet, are discussed with reference to the possible applications in distributed power system....... The suitability of the communication technology to the distribution power system with active renewable energy based generation units is discussed. Subsequently the typical possible communication systems are studied by simulation. In this paper, a novel method of integrating communication system impact into power...

  9. Systemic complement activation in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Hendrik P N Scholl

    Full Text Available Dysregulation of the alternative pathway (AP of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD, the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112 and controls (n = 67. Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH, factor B-C2 (BF-C2 and complement C3 (C3 genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001, were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  10. Contact system activation and high thrombin generation in hyperthyroidism.

    Science.gov (United States)

    Kim, Namhee; Gu, Ja-Yoon; Yoo, Hyun Ju; Han, Se Eun; Kim, Young Il; Nam-Goong, Il Sung; Kim, Eun Sook; Kim, Hyun Kyung

    2017-05-01

    Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extracellular traps (NET) has emerged as an important trigger of thrombosis, we hypothesized that the contact system is activated along with active NET formation in hyperthyroidism and that their markers correlate with disease severity. In 61 patients with hyperthyroidism and 40 normal controls, the levels of coagulation factors (fibrinogen, and factor VII, VIII, IX, XI and XII), D-dimer, thrombin generation assay (TGA) markers, NET formation markers (histone-DNA complex, double-stranded DNA and neutrophil elastase) and contact system markers (activated factor XII (XIIa), high-molecular-weight kininogen (HMWK), prekallikrein and bradykinin) were measured. Patients with hyperthyroidism showed higher levels of fibrinogen (median (interquartile range), 315 (280-344) vs 262 (223-300), P  = 0.001), D-dimer (103.8 (64.8-151.5) vs 50.7 (37.4-76.0), P  hyperthyroidism's contribution to coagulation and contact system activation. Free T4 was significantly correlated with factors VIII and IX, D-dimer, double-stranded DNA and bradykinin. This study demonstrated that contact system activation and abundant NET formation occurred in the high thrombin generation state in hyperthyroidism and were correlated with free T4 level. © 2017 European Society of Endocrinology.

  11. Habitability and Human Factors Contributions to Human Space Flight

    Science.gov (United States)

    Sumaya, Jennifer Boyer

    2011-01-01

    This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.

  12. System for actively reducing sound

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2005-01-01

    A system for actively reducing sound from a primary noise source, such as traffic noise, comprising: a loudspeaker connector for connecting to at least one loudspeaker for generating anti-sound for reducing said noisy sound; a microphone connector for connecting to at least a first microphone placed

  13. Hybrid Active-Passive Radiation Shielding System

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation shielding system is proposed that integrates active magnetic fields with passive shielding materials. The objective is to increase the shielding...

  14. Study of an active wall solar heating system

    International Nuclear Information System (INIS)

    Kassem, Talal

    2006-01-01

    An active wall solar heating system was built and tested. In the same time a compatible computer program has been according to set the recommended dimensions for the solar collectors where (F-Chart) method used to set the ratio of monthly solar sharing average for the examined heating system. Some parameters, such as collectors' areas, its tilt angle and near earth reflecting were experimentally investigated, affecting the executed active solar heating system performance. The study explain the ability of using this system which is simple, Low coast and high performance in heating residential and public buildings and heating water with ratio of yearly solar sharing achieves the needed saving of using this system.(Author)

  15. Active State Model for Autonomous Systems

    Science.gov (United States)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  16. Flight Activity and Crew Tracking System -

    Data.gov (United States)

    Department of Transportation — The Flight Activity and Crew Tracking System (FACTS) is a Web-based application that provides an overall management and tracking tool of FAA Airmen performing Flight...

  17. A59 Drum Activity database (DRUMAC): system documentation

    International Nuclear Information System (INIS)

    Keel, Alan.

    1993-01-01

    This paper sets out the requirements, database design, software module designs and test plans for DRUMAC (the Active handling Building Drum Activity Database) - a computer-based system to record the radiological inventory for LLW/ILW drums dispatched from the Active Handling Building. (author)

  18. From orbital debris capture systems through internal combustion engines on Mars

    Science.gov (United States)

    1991-01-01

    The investigation and conceptualization of an orbital debris collector was the primary area of design. In addition, an alternate structural design for Space Station Freedom and systems supporting resource utilization at Mars and the moon were studied. Hardware for production of oxygen from simulate Mars atmosphere was modified to permit more reliable operation at low pressures (down to 10 mb). An internal combustion engine was altered to study how Mars atmosphere could be used as a diluent to control combustion temperatures and avoid excess Mars propellant production requirements that would result from either methane-rich or oxygen-rich, methane-oxygen combustion. An elastic loop traction system that could be used for lunar construction vehicles was refined to permit testing. A parabolic heat rejection radiator system was designed and built to determine whether it was capable of increasing heat rejection rates during lunar daytime operation. In addition, an alternate space station truss design, utilizing a pre-integrated concept, was studied and found to reduce estimate extravehicular activity (EVA) time and increase the structural integrity when compared to the original Warren truss concept. An orbital-debris-capturing spacecraft design which could be mated with the Orbital Maneuvering Vehicle was studied. The design identified Soviet C-1B boosters as the best targets of opportunity in Earth orbits between an altitude of 900 km and 1100 km and at an inclination of 82.9 deg. A dual robot pallet, which could be spun to match the tumbling rate of the C-1B booster, was developed as the conceptual design.

  19. Active and intelligent packaging systems for a modern society.

    Science.gov (United States)

    Realini, Carolina E; Marcos, Begonya

    2014-11-01

    Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time-temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...... and Kucera) parameterization. Conditions are given for exact detection and isolation of parametric faults in closed-loop uncertain systems....

  1. Modelling Cr(VI) removal by a combined carbon-activated sludge system

    International Nuclear Information System (INIS)

    Orozco, A. Micaela Ferro; Contreras, Edgardo M.; Zaritzky, Noemi E.

    2008-01-01

    The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2

  2. Circumpolar Active-Layer Permafrost System (CAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Circumpolar Active-Layer Permafrost System (CAPS) contains over 100 data sets pertaining to permafrost and frozen ground topics. It also contains detailed...

  3. Adaptive intelligent power systems: Active distribution networks

    International Nuclear Information System (INIS)

    McDonald, Jim

    2008-01-01

    Electricity networks are extensive and well established. They form a key part of the infrastructure that supports industrialised society. These networks are moving from a period of stability to a time of potentially major transition, driven by a need for old equipment to be replaced, by government policy commitments to cleaner and renewable sources of electricity generation, and by change in the power industry. This paper looks at moves towards active distribution networks. The novel transmission and distribution systems of the future will challenge today's system designs. They will cope with variable voltages and frequencies, and will offer more flexible, sustainable options. Intelligent power networks will need innovation in several key areas of information technology. Active control of flexible, large-scale electrical power systems is required. Protection and control systems will have to react to faults and unusual transient behaviour and ensure recovery after such events. Real-time network simulation and performance analysis will be needed to provide decision support for system operators, and the inputs to energy and distribution management systems. Advanced sensors and measurement will be used to achieve higher degrees of network automation and better system control, while pervasive communications will allow networks to be reconfigured by intelligent systems

  4. A Common Definition of the System Operators' Core Activities

    International Nuclear Information System (INIS)

    2006-02-01

    In this report a common definition of the system operator's core activities in the Nordic countries is identified and also a list of non-core activities is introduced. As a starting point the common tasks for system responsibility as identified by Nordel has been used for the work. The term TSO (Transmission System Operator) is employed as a common denominator in the report. It is found out that the TSOs carry out common core activities in the roles as a transmission operator, a system operator and a balance settlement responsible. The core activities for the TSO as a transmission network operator are: Maintain the adequate transmission system in the long run and network development plan on the national as well as on the Nordic level using sophisticated analysis and planning methods and tools. Plan the transmission network on the national as well as on the Nordic level utilising new investments, renewal and maintenance of existing network components so that the network is secure to operate and adequate transmission capacity is guaranteed. Aim at timely network expansions using enhanced information exchange between the Nordic TSOs, and on the national level between the TSO and distribution and regional network operators, large consumers and large producers. Secure the technical compatibility with networks across the border and within a country by establishing connection requirements on the national level and ensuring that the national requirements are compatible across the Nordic power system. The core activities for the TSO as a system operator are: Define common technical requirements for the secure system operation using common planning, operation, connection and data exchange procedures. Secure the system operation with the operational planning for the following year by using information exchange between TSOs enabling the TSOs to make the best possible forecast of the global grid situation in order to assess the flows in their network and the available

  5. Activity-dependent self-regulation of viscous length scales in biological systems

    Science.gov (United States)

    Nandi, Saroj Kumar

    2018-05-01

    The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.

  6. ADASY (Active Daylighting System)

    Science.gov (United States)

    Vázquez-Moliní, Daniel; González-Montes, Mario; Fernández-Balbuena, Antonio Á.; Bernabéu, Eusebio; García-Botella, Ángel; García-Rodríguez, Lucas; Pohl, Wilfried

    2009-08-01

    The main objective of ADASY (Active Daylighting System) work is to design a façade static daylighting system oriented to office applications, mainly. The goal of the project is to save energy by guiding daylight into a building for lighting purpose. With this approach we can reduce the electrical load for artificial lighting, completing it with sustainable energy. The collector of the system is integrated on a vertical façade and its distribution guide is always horizontal inside of the false ceiling. ADASY is designed with a specific patent pending caption system, a modular light-guide and light extractor luminaire system. Special care has been put on the final cost of the system and its building integration purpose. The current ADASY configuration is able to illuminate 40 m2 area with a 300lx-400lx level in the mid time work hours; furthermore it has a good enough spatial uniformity distribution and a controlled glare. The data presented in this study are the result of simulation models and have been confirmed by a physical scaled prototype. ADASY's main advantages over regular illumination systems are: -Low maintenance; it has not mobile pieces and therefore it lasts for a long time and require little attention once installed. - No energy consumption; solar light continue working even if there has been a power outage. - High quality of light: the colour rendering of light is very high - Psychological benefits: People working with daylight get less stress and more comfort, increasing productivity. - Health benefits

  7. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  8. Active gated imaging in driver assistance system

    Science.gov (United States)

    Grauer, Yoav

    2014-04-01

    In this paper, we shall present the active gated imaging system (AGIS) in relation to the automotive field. AGIS is based on a fast-gated camera and pulsed illuminator, synchronized in the time domain to record images of a certain range of interest. A dedicated gated CMOS imager sensor and near infra-red (NIR) pulsed laser illuminator, is presented in this paper to provide active gated technology. In recent years, we have developed these key components and learned the system parameters, which are most beneficial to nighttime (in all weather conditions) driving in terms of field of view, illumination profile, resolution, and processing power. We shall present our approach of a camera-based advanced driver assistance systems (ADAS) named BrightEye™, which makes use of the AGIS technology in the automotive field.

  9. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  10. Application of active packaging systems in probiotic foods

    Directory of Open Access Journals (Sweden)

    Renata Dobrucka

    2013-09-01

    Full Text Available Background: The packaging of the product has an important role in the protection of the stability of the final product. The use of active packaging system is due to play an increasingly important role by offering numerous and innovative solutions for extending the shelf-life or improve food quality and safety. Methods: On the basis of broad review of the current state of the art in world literature, application of packaging systems in probiotics foods was discussed. Results: In this study presented research and development in packaging systems for probiotics foods, using suitable materials with combine passive with active packaging solutions. Conclusion: Active packages with incorporated oxygen barrier materials or films with selective permeability properties also have potential applications in the packaging of probiotic food products. This is a broad field of research for scientists and industry.

  11. Ageing behaviour of [(n-1)/n] active redundancy systems

    International Nuclear Information System (INIS)

    Eid, M.Y.

    1995-01-01

    Ageing of systems becomes a real concern if intelligent maintenance is required. Determining the ageing behaviour of a system necessitate having a powerful calculating tool and knowing the ageing behaviour of the basic components of the systems. Consequently, time dependent failure rates are required for basic components and need to be determined for systems. As, this is the general problem in reliability analysis, only (n-1)/n active redundancy system will be examined in the paper. Systems with (n-1)/n active redundancy are commonly used in a wide range of engineering fields. This should permit a priori improving the system reliability. Still, a deeper analysis of the ageing behaviour of such systems may reveal some particular aspects. (authors). 2 refs., 5 figs

  12. A microcomputer-based daily living activity recording system.

    Science.gov (United States)

    Matsuoka, Shingo; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Hahn, Allen W; Thayer, Julian F; Caldwell, W Morton

    2003-01-01

    A new daily living activity recording system has been developed for monitoring health conditions and living patterns, such as respiration, posture, activity/rest ratios and general activity level. The system employs a piezoelectric sensor, a dual axis accelerometer, two low-power active filters, a low-power 8-bit single chip microcomputer and a 128 MB compact flash memory. The piezoelectric sensor, whose electrical polarization voltage is produced by mechanical strain, detects body movements. Its high-frequency output components reflect body movements produced by walking and running activities, while the low frequency components are mainly respiratory. The dual axis accelerometer detects, from body X and Y tilt angles, whether the patient is standing, sitting or lying down (prone, supine, left side or right side). The detected respiratory, behavior and posture signals are stored by the compact flash memory. After recording, these data are downloaded to a desktop computer and analyzed.

  13. Active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2005-01-01

    Active fault diagnosis (AFD) of parametric faults is considered in connection with closed loop feedback systems. AFD involves auxiliary signals applied on the closed loop system. A fault signature matrix is introduced in connection with AFD and it is shown that if a limited number of faults can...

  14. The Control of Transmitted Power in an Active Isolation System

    DEFF Research Database (Denmark)

    Elliott, S.J.; Gardonio, P.; Pinnington, R.J.

    1997-01-01

    The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure and distr......The isolation of vibration through a system with multiple active mounts is discussed, in which each of the mounts can transmit vibration in several degrees of freedom. Theoretical models of the various parts of this system have been developed which include a flexible receiving structure...... and distributed active mounts, and these models can be connected together to produce an overall theoretical description of a realistic active isolation system. Total transmitted power has been found to be an excellent criterion to quantify the effect of various control strategies in this model in which...... the contributions to the transmitted power in the various degrees of freedom can be clearly understood. It has also been found, however, that an active control system which minimises a practical estimate of transmitted power, calculated from the product of the axial forces and velocities under the mounts, can give...

  15. Safe Active Scanning for Energy Delivery Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salazar, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scheibel, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Engels, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reiger, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into the details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.

  16. A Simulation Base Investigation of High Latency Space Systems Operations

    Science.gov (United States)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    mission provides ideal conditions for this study with crew in the loop, an active control center, and real-time flow of high latency communications and data. NEEMO crew and ground support will work through procedures including activation of the transit vehicle power system, opening the hatch between the transit vehicle and a Mars ascent vehicle, transferring simulated crewmembers between vehicles, overcoming subsystem malfunctions, sending simulated crewmember on extra-vehicular activities, and other housekeeping activities. This study is enhancing the understanding of high latency operations and the advantages and disadvantages of different communication methods. It is also providing results that will help improve the design of simulation interfaces and inform the design of Mars transit vehicles.

  17. 14 CFR 1214.804 - Services, pricing basis, and other considerations.

    Science.gov (United States)

    2010-01-01

    ... by linear interpolation using the points provided. Time when postponement or termination occurs... environmental control. (10) On-board data acquisition and processing services. (11) Transmission of data to a... CDMS utilized during KSC ground processing. (13) Extravehicular Activity (EVA) services. (14) Payload...

  18. STS-31 crew training: firefighting, food tasting, EVA prep and post

    Science.gov (United States)

    1990-03-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  19. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  20. Support system for Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Sasajima, Fumio; Ohtomo, Akitoshi; Sakurai, Fumio; Onizawa, Koji

    1999-01-01

    In the research reactor of JAERI, the Neutron Activation Analysis (NAA) has been utilized as a major part of an irradiation usage. To utilize NAA, research participants are always required to learn necessary technique. Therefore, we started to examine a support system that will enable to carry out INAA easily even by beginners. The system is composed of irradiation device, gamma-ray spectrometer and data analyzing instruments. The element concentration is calculated by using KAYZERO/SOLCOI software with the K 0 standardization method. In this paper, we review on a construction of this INAA support system in JRR-3M of JAERI. (author)

  1. Active surface system for the new Sardinia Radiotelescope

    Science.gov (United States)

    Orfei, Alessandro; Morsiani, Marco; Zacchiroli, Giampaolo; Maccaferri, Giuseppe; Roda, Juri; Fiocchi, Franco

    2004-09-01

    In this paper we'll describe the active surface system that will be provided on the new Italian radiotelescope being in the phase of erection in the Sardinia Island. SRT (Sardinia Radiotelescope) will be a 64m shaped dish working up to 100GHz by exploiting the active surface facility designed by the authors. This facility will overcome the effects of gravity deformations on the antenna gain and will also be used to re-shape in a parabolic form the primary mirror, in order to avoid large phase error contribution on the antenna gain for the highest frequencies placed on the primary focus. Together with the description of the SRT system, a wide overview will be given regarding our previous installation of an active surface system, that can be seen like a prototype for SRT, mounted on the 32m dish of the Noto antenna.

  2. Muscle Activation during Push-Ups with Different Suspension Training Systems.

    Science.gov (United States)

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martín, Fernando F; Rogers, Michael E; Behm, David G; Andersen, Lars L

    2014-09-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key PointsCompared with standard push-ups on the floor, suspended push-ups increase core muscle activation.A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity.More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation.A suspended push-up is an effective method to achieve high muscle activity levels in the ABS.

  3. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    Science.gov (United States)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  4. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  5. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility

    Science.gov (United States)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  6. A Common Definition of the System Operators' Core Activities[Electric Power Transmission System Operator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    In this report a common definition of the system operator's core activities in the Nordic countries is identified and also a list of non-core activities is introduced. As a starting point the common tasks for system responsibility as identified by Nordel has been used for the work. The term TSO (Transmission System Operator) is employed as a common denominator in the report. It is found out that the TSOs carry out common core activities in the roles as a transmission operator, a system operator and a balance settlement responsible. The core activities for the TSO as a transmission network operator are: Maintain the adequate transmission system in the long run and network development plan on the national as well as on the Nordic level using sophisticated analysis and planning methods and tools. Plan the transmission network on the national as well as on the Nordic level utilising new investments, renewal and maintenance of existing network components so that the network is secure to operate and adequate transmission capacity is guaranteed. Aim at timely network expansions using enhanced information exchange between the Nordic TSOs, and on the national level between the TSO and distribution and regional network operators, large consumers and large producers. Secure the technical compatibility with networks across the border and within a country by establishing connection requirements on the national level and ensuring that the national requirements are compatible across the Nordic power system. The core activities for the TSO as a system operator are: Define common technical requirements for the secure system operation using common planning, operation, connection and data exchange procedures. Secure the system operation with the operational planning for the following year by using information exchange between TSOs enabling the TSOs to make the best possible forecast of the global grid situation in order to assess the flows in their network and the available

  7. RESPIROMETRIC ACTIVITY OF ACTIVATED SLUDGE AND BIOFILM IN IFAS-MBBR SYSTEM

    Directory of Open Access Journals (Sweden)

    Paula Piechna

    2017-07-01

    Full Text Available The aim of the presented study was: a assessment of activity of microorganisms developed in form of activated sludge and biofilm, b indirect assessment of the role of analyzed biocoenoses in removal of organic compounds in hybrid reactor with moving bed. Oxygen uptake rate tests (OUR have been used, and obtained results were presented as volumetric activity (expressed in mg O2/L · h and mass activity (expressed as mg O2/g VTS · h. Tests were conducted for three different variants, in which, as the biomass: 1 biofilm was used, 2 activated sludge was used, 3 biofilm and activated sludge were used. The biomass was collected from aerobic reactor from a wastewater treatment plant working in IFAS-MBBR system. The highest volumetric activity was observed for variant with biofilm and activated sludge, and the lowest for variant with biofilm only. Nonetheless, the highest value of oxygen uptake rate related to total volatile solids was observed for variant with biofilm and the lowest for activated sludge. Obtained results suggest, that during this research, at the wastewater treatment plant, the main role in removal of organic pollutants played the biomass developed in form of activated sludge.

  8. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  9. System for optimizing activation measurements

    International Nuclear Information System (INIS)

    Antonov, V.A.

    1993-01-01

    Optimization procedures make it possible to perform committed activation investigations, reduce the number of experiments, make them less laborious, and increase their productivity. Separate mathematical functions were investigated for given optimization conditions, and these enable numerical optimal parameter values to be established only in the particular cases of specific techniques and mathematical computer programs. In the known mathematical models insufficient account is taken of the variety and complexity of real nuclide mixtures, the influence of background radiation, and the wide diversity of activation measurement conditions, while numerical methods for solving the optimization problem fail to reveal the laws governing the variations of the activation parameters and their functional interdependences. An optimization method was proposed in which was mainly used to estimate the time intervals for activation measurements of a mononuclide, binary or ternary nuclide mixture. However, by forming a mathematical model of activation processes it becomes possible to extend the number of nuclides in the mixture and to take account of the influence of background radiation and the diversity of the measurement alternatives. The analytical expressions and nomograms obtained can be used to determine the number of measurements, their minimum errors, their sensitivities when estimating the quantity of the tracer nuclide, the permissible quantity of interfering nuclides, the permissible background radiation intensity, and the flux of activating radiation. In the worker described herein these investigations are generalized to include spectrally resolved detection of the activation effect in the presence of the tracer and the interfering nuclides. The analytical expressions are combined into a system from which the optimal activation parameters can be found under different given conditions

  10. Advanced Prototype Fan Operating Experience, Post Test Evaluation, and Refurbishment for PLSS 2.0 Test Use

    Science.gov (United States)

    Hodgson, Edward; Oehler, William; Dionne, Steve; Converse, David; Jennings, Mallory A.

    2012-01-01

    NASA s plans for Extravehicular Activity (EVA) portable life support systems for future exploration missions result in different design requirements than those which led to the combined fan / pump / separator in the current ISS Extravehicular Mobility Unit (EMU). To meet these new requirements, NASA contracted with Hamilton Sundstrand to provide two new prototype fans designed to meet anticipated future system requirements. Based on design trade studies, a high speed fan with mechanical bearing support of the rotating elements and a novel non-metallic barrier canned motor design was developed and implemented in the deliverable prototypes. The prototypes, which used two different bearing lubricants, have been extensively tested in both stand-alone and integrated system tests in NASA laboratories and proven to meet the anticipated performance requirements. Subsequently, they have been subjected to post test inspection and analysis in Hamilton Sundstrand laboratories to assess the effects of integrated operation and resultant exposure to vent loop contaminants. Results have confirmed expectations that one of the lubricants would be superior in this application and the prototype fans have been reassembled with new bearings with the superior lubricant. They have now been returned to the Johnson Space Center for further testing and maturation as part of NASA s PLSS 2.0 integrated test effort. This paper will discuss the test history of these units, resulting test data, the results of post test evaluation, and plans for further testing in the near future.

  11. Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

    Science.gov (United States)

    Papale, William; Paul, Heather; Thomas, Gretchen

    2006-01-01

    Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system. Advancements in solid amine technology employed in a pressure swing adsorption system have led to the possibility of combining both the CO2 and humidity control requirements into a single, lightweight device. Because the pressure swing adsorption system is regenerated to space vacuum or by an inert purge stream, the duration of an EVA mission may be extended significantly over currently employed technologies, while markedly reducing the overall subsystem weight compared to the combined weight of the condensing heat exchanger and current regenerative CO2 removal technology. This paper will provide and overview of ongoing development efforts evaluating the subsystem size required to manage anticipated metabolic CO2 and water vapor generation rates in a spacesuit environment.

  12. Development of HANARO Activation Analysis System and Utilization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Cho, H. J. (and others)

    2007-06-15

    1. Establishment of evaluation system using a data for a neutron activation analysis : Improvement of NAA measurement system and its identification, Development of combined data evaluation code of NAA/PGAA, International technical cooperation project 2. Development of technique for a industrial application of high precision gamma nuclide spectroscopic analysis : Analytical quality control, Development of industrial application techniques and its identification 3. Industrial application research for a prompt gamma-ray activation analysis : Improvement of Compton suppression counting system (PGAA), Development of applied technology using a PGAA system 4. Establishment of NAA user supporting system and KOLAS management : Development and validation of KOLAS/ISO accreditation testing and identification method, Cooperation researches for a industrial application, Establishment of integrated user analytical supporting system, Accomplishment of sample irradiation facility.

  13. Active Learning of Markov Decision Processes for System Verification

    DEFF Research Database (Denmark)

    Chen, Yingke; Nielsen, Thomas Dyhre

    2012-01-01

    deterministic Markov decision processes from data by actively guiding the selection of input actions. The algorithm is empirically analyzed by learning system models of slot machines, and it is demonstrated that the proposed active learning procedure can significantly reduce the amount of data required...... demanding process, and this shortcoming has motivated the development of algorithms for automatically learning system models from observed system behaviors. Recently, algorithms have been proposed for learning Markov decision process representations of reactive systems based on alternating sequences...... of input/output observations. While alleviating the problem of manually constructing a system model, the collection/generation of observed system behaviors can also prove demanding. Consequently we seek to minimize the amount of data required. In this paper we propose an algorithm for learning...

  14. Development of HANARO Activation Analysis System and Utilization Technology

    International Nuclear Information System (INIS)

    Chung, Y. S.; Moon, J. H.; Cho, H. J.

    2007-06-01

    1. Establishment of evaluation system using a data for a neutron activation analysis : Improvement of NAA measurement system and its identification, Development of combined data evaluation code of NAA/PGAA, International technical cooperation project 2. Development of technique for a industrial application of high precision gamma nuclide spectroscopic analysis : Analytical quality control, Development of industrial application techniques and its identification 3. Industrial application research for a prompt gamma-ray activation analysis : Improvement of Compton suppression counting system (PGAA), Development of applied technology using a PGAA system 4. Establishment of NAA user supporting system and KOLAS management : Development and validation of KOLAS/ISO accreditation testing and identification method, Cooperation researches for a industrial application, Establishment of integrated user analytical supporting system, Accomplishment of sample irradiation facility

  15. Processing abstract language modulates motor system activity.

    Science.gov (United States)

    Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni

    2008-06-01

    Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.

  16. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  17. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  18. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  19. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  20. A method for calculating active feedback system to provide vertical

    Indian Academy of Sciences (India)

    The active feedback system is applied to control slow motions of plasma. The objective of the ... The other problem is connected with the control of plasma vertical position with active feedback system. Calculation of ... Current Issue Volume 90 ...

  1. Activity monitoring systems in health care

    NARCIS (Netherlands)

    Kröse, B.; van Oosterhout, T.; van Kasteren, T.; Salah, A.A.; Gevers, T.

    2011-01-01

    This chapter focuses on activity monitoring in a home setting for health care purposes. First the most current sensing systems are described, which consist of wearable and ambient sensors. Then several approaches for the monitoring of simple actions are discussed, like falls or therapies. After

  2. Comparison of activity coefficient models for electrolyte systems

    DEFF Research Database (Denmark)

    Lin, Yi; ten Kate, Antoon; Mooijer, Miranda

    2010-01-01

    Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems Inc., and the Extended UNIQUAC model from the Technical Univer...

  3. Active seismic response control systems for nuclear power plant equipment facilities

    International Nuclear Information System (INIS)

    Kobori, Takuji; Kanayama, Hiroo; Kamagata, Shuichi

    1989-01-01

    To sustain severe earthquake ground motion, a new type of anti-seismic structure is proposed, called a Dynamic Intelligent Building (DIB) system, which is positioned as an active seismic response controlled the structure. The structural concept starts from a new recognition of earthquake ground motion, and the structural natural frequency is actively adjusted to avoid resonant vibration, and similarly the external counter-force cancels the resonant force which comes from the dynamic structural motion energy. These concepts are verified using an analytical simulator program. The advanced application of the DIB system, is the Active Supporting system and the Active Stabilizer system for nuclear power plant equipment facilities. (orig.)

  4. Active coatings technologies for tailorable military coating systems

    Science.gov (United States)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  5. Carbon-Based Regenerable Sorbents for the Combined Carbon Dioxide and Ammonia Removal for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda

    2014-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.

  6. Human-Robot Control Strategies for the NASA/DARPA Robonaut

    Science.gov (United States)

    Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.

    2003-01-01

    The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.

  7. Activation of ion transport systems during cell volume regulation

    International Nuclear Information System (INIS)

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na + -H + and Cl - -HCO 3 - exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K + and Cl - conductances, a K-Cl cotransport system, or parallel K + -H + and Cl - -HCO 3 - exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca 2+ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na + -H + and Cl - -HCO 3 - exchange systems

  8. Hospital's activity-based financing system and manager-physician [corrected] interaction.

    Science.gov (United States)

    Crainich, David; Leleu, Hervé; Mauleon, Ana

    2011-10-01

    This paper examines the consequences of the introduction of an activity-based reimbursement system on the behavior of physicians and hospital's managers. We consider a private for-profit sector where both hospitals and physicians are initially paid on a fee-for-service basis. We show that the benefit of the introduction of an activity-based system depends on the type of interaction between managers and physicians (simultaneous or sequential decision-making games). It is shown that, under the activity-based system, a sequential interaction with physician leader could be beneficial for both agents in the private sector. We further model an endogenous timing game à la Hamilton and Slutsky (Games Econ Behav 2: 29-46, 1990) in which the type of interaction is determined endogenously. We show that, under the activity-based system, the sequential interaction with physician leader is the unique subgame perfect equilibrium.

  9. Game-Based Virtual Worlds as Decentralized Virtual Activity Systems

    Science.gov (United States)

    Scacchi, Walt

    There is widespread interest in the development and use of decentralized systems and virtual world environments as possible new places for engaging in collaborative work activities. Similarly, there is widespread interest in stimulating new technological innovations that enable people to come together through social networking, file/media sharing, and networked multi-player computer game play. A decentralized virtual activity system (DVAS) is a networked computer supported work/play system whose elements and social activities can be both virtual and decentralized (Scacchi et al. 2008b). Massively multi-player online games (MMOGs) such as World of Warcraft and online virtual worlds such as Second Life are each popular examples of a DVAS. Furthermore, these systems are beginning to be used for research, deve-lopment, and education activities in different science, technology, and engineering domains (Bainbridge 2007, Bohannon et al. 2009; Rieber 2005; Scacchi and Adams 2007; Shaffer 2006), which are also of interest here. This chapter explores two case studies of DVASs developed at the University of California at Irvine that employ game-based virtual worlds to support collaborative work/play activities in different settings. The settings include those that model and simulate practical or imaginative physical worlds in different domains of science, technology, or engineering through alternative virtual worlds where players/workers engage in different kinds of quests or quest-like workflows (Jakobsson 2006).

  10. Active synchronization between two different chaotic dynamical system

    International Nuclear Information System (INIS)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-01-01

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes

  11. Active synchronization between two different chaotic dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Maheri, M. [Institute for Mathematical Research, 43400 UPM, Serdang, Selengor (Malaysia); Arifin, N. Md; Ismail, F. [Department of Mathematics, 43400 UPM, Serdang, Selengor (Malaysia)

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  12. Active Detection for Exposing Intelligent Attacks in Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weerakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Griffioen, Paul [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-07-01

    In this paper, we consider approaches for detecting integrity attacks carried out by intelligent and resourceful adversaries in control systems. Passive detection techniques are often incorporated to identify malicious behavior. Here, the defender utilizes finely-tuned algorithms to process information and make a binary decision, whether the system is healthy or under attack. We demonstrate that passive detection can be ineffective against adversaries with model knowledge and access to a set of input/output channels. We then propose active detection as a tool to detect attacks. In active detection, the defender leverages degrees of freedom he has in the system to detect the adversary. Specifically, the defender will introduce a physical secret kept hidden from the adversary, which can be utilized to authenticate the dynamics. In this regard, we carefully review two approaches for active detection: physical watermarking at the control input, and a moving target approach for generating system dynamics. We examine practical considerations for implementing these technologies and discuss future research directions.

  13. A novel magnetic lead screw active suspension system for vehicles

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2014-01-01

    This paper encompasses a detailed study of the redesign of a novel Magnetic Lead Screw (MLS) active suspension system for possible regeneration of the energy dispatched in the suspension system and active control of vehicle body movement. The MLS converts a low speed high force linear motion...... of a translator into a high speed low torque rotational motion of a rotor through helically shaped magnets. The paper describes the drawback of the first MLS prototype v1.0 developed for active suspension system, which lead to a new design of the MLS prototype named v1.5. Furthermore the paper introduces detailed...

  14. Aging assessment for active fire protection systems

    International Nuclear Information System (INIS)

    Ross, S.B.; Nowlen, S.P.; Tanaka, T.

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further

  15. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  16. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    of modes. The designed control scheme is applied to a coupled rotor-blade system and dynamic responses are numerically evaluated. Such responses show that the vibrations are efficiently reduced. Frequency response diagrams demonstrate that both basis and parametric vibration modes are significantly...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  17. Anti-synchronization of two new different chaotic systems via active ...

    African Journals Online (AJOL)

    This paper investigates the anti-synchronization of chaos between two new different chaotic systems by using active control. Numerical simulations are used to show the robustness of the active control scheme in anti-synchronizing the two different coupled systems. JONAMP Vol. 11 2007: pp. 15-20 ...

  18. Applying an Activity System to Online Collaborative Group Work Analysis

    Science.gov (United States)

    Choi, Hyungshin; Kang, Myunghee

    2010-01-01

    This study determines whether an activity system provides a systematic framework to analyse collaborative group work. Using an activity system as a unit of analysis, the research examined learner behaviours, conflicting factors and facilitating factors while students engaged in collaborative work via asynchronous computer-mediated communication.…

  19. Identical and Nonidentical Synchronization of Hyperchaotic Systems by Active Backstepping Method

    Directory of Open Access Journals (Sweden)

    A. Abooee

    2012-09-01

    Full Text Available This paper focuses on the tracking and synchronization problems of hyperchaotic systems based on active backstepping method. The method consists of a recursive approach that interlaces the choice of a Lyapunov function with the design of feedback control. First, a nonlinear recursive active backstepping control vector is designed to track any desired trajectory in hyperchaotic Wang system. Furthermore, this method is applied to achieve hyperchaos synchronization of two identical hyperchaotic Wang systems. Also, it is used to implement global asymptotic synchronization between hyperchaotic Wang system and hyperchaotic Rössler system. Numerical simulations have been employed to verify the effectiveness of the three designed active backstepping control vectors.

  20. METHOD FOR DETERMINING THE SPATIAL COORDINATES IN THE ACTIVE STEREOSCOPIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Valery V. Korotaev

    2014-11-01

    Full Text Available The paper deals with the structural scheme of active stereoscopic system and algorithm of its operation, providing the fast calculation of the spatial coordinates. The system includes two identical cameras, forming a stereo pair, and a laser scanner, which provides vertical scanning of the space before the system by the laser beam. A separate synchronizer provides synchronous operation of the two cameras. The developed algorithm of the system operation is implemented in MATLAB. In the proposed algorithm, the influence of background light is eliminated by interframe processing. The algorithm is based on precomputation of coordinates for epipolar lines and corresponding points in stereoscopic image. These data are used to quick calculation of the three-dimensional coordinates of points that form the three-dimensional images of objects. Experiment description on a physical model is given. Experimental results confirm the efficiency of the proposed active stereoscopic system and its operation algorithm. The proposed scheme of active stereoscopic system and calculating method for the spatial coordinates can be recommended for creation of stereoscopic systems, operating in real time and at high processing speed: devices for face recognition, systems for the position control of railway track, automobile active safety systems.

  1. Aboard the Space Shuttle.

    Science.gov (United States)

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  2. Awareness of Entities, Activities and Contexts in Ambient Systems

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun

    2013-01-01

    Ambient systems are modeled by entities, activities and contexts, where entities exist in contexts and engage in activities. A context supports a dynamic collection of entities by services and offers awareness information about the entities. Activities also exist in contexts and model ongoing...... collaborations between entities. Activities and local contexts also obtain awareness information from the context about the dynamic collection of entities. Similarly activities, local contexts and entities are offered awareness information about activities and local contexts....

  3. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  4. STS-114: Discovery TCDT Flight Crew Test Media Event at Pad 39-B

    Science.gov (United States)

    2005-01-01

    The STS-114 Space Shuttle Discovery Terminal Countdown Demonstration Test (TCDT) flight crew is shown at Pad 39-B. Eileen Collins, Commander introduces the astronauts. Andrew Thomas, mission specialist talks about his primary responsibility of performing boom inspections, Wendy Lawrence, Mission Specialist 4 (MS4) describes her role as the robotic arm operator supporting Extravehicular Activities (EVA), Stephen Robinson, Mission Specialist 3 (MS3) talks about his role as flight engineer, Charlie Camarda, Mission Specialist 5 (MS5) says that his duties are to perform boom operations, transfer operations from the space shuttle to the International Space Station and spacecraft rendezvous. Soichi Noguchi, Mission Specialist 1 (MS1) from JAXA, introduces himself as Extravehicular Activity 1 (EVA1), and Jim Kelley, Pilot will operate the robotic arm and perform pilot duties. Questions from the news media about the safety of the external tank, going to the International Space Station and returning, EVA training, and thoughts about the Space Shuttle Columbia crew are answered.

  5. Activation of zero-error classical capacity in low-dimensional quantum systems

    Science.gov (United States)

    Park, Jeonghoon; Heo, Jun

    2018-06-01

    Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.

  6. Space Shuttle Thermal Protection System Repair Flight Experiment Induced Contamination Impacts

    Science.gov (United States)

    Smith, Kendall A.; Soares, Carlos E.; Mikatarian, Ron; Schmidl, Danny; Campbell, Colin; Koontz, Steven; Engle, Michael; McCroskey, Doug; Garrett, Jeff

    2006-01-01

    NASA s activities to prepare for Flight LF1 (STS-114) included development of a method to repair the Thermal Protection System (TPS) of the Orbiter s leading edge should it be damaged during ascent by impacts from foam, ice, etc . Reinforced Carbon-Carbon (RCC) is used for the leading edge TPS. The repair material that was developed is named Non- Oxide Adhesive eXperimental (NOAX). NOAX is an uncured adhesive material that acts as an ablative repair material. NOAX completes curing during the Orbiter s descent. The Thermal Protection System (TPS) Detailed Test Objective 848 (DTO 848) performed on Flight LF1 (STS-114) characterized the working life, porosity void size in a micro-gravity environment, and the on-orbit performance of the repairs to pre-damaged samples. DTO 848 is also scheduled for Flight ULF1.1 (STS-121) for further characterization of NOAX on-orbit performance. Due to the high material outgassing rates of the NOAX material and concerns with contamination impacts to optically sensitive surfaces, ASTM E 1559 outgassing tests were performed to determine NOAX condensable outgassing rates as a function of time and temperature. Sensitive surfaces of concern include the Extravehicular Mobility Unit (EMU) visor, cameras, and other sensors in proximity to the experiment during the initial time after application. This paper discusses NOAX outgassing characteristics, how the amount of deposition on optically sensitive surfaces while the NOAX is being manipulated on the pre-damaged RCC samples was determined by analysis, and how flight rules were developed to protect those optically sensitive surfaces from excessive contamination where necessary.

  7. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  8. Activity-Based Costing Systems for Higher Education.

    Science.gov (United States)

    Day, Dennis H.

    1993-01-01

    Examines traditional costing models utilized in higher education and pinpoints shortcomings related to proper identification of costs. Describes activity-based costing systems as a superior alternative for cost identification, measurement, and allocation. (MLF)

  9. Grid-Connected Photovoltaic System with Active Power Filtering Functionality

    Directory of Open Access Journals (Sweden)

    Joaquín Vaquero

    2018-01-01

    Full Text Available Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.

  10. Active Storage with Analytics Capabilities and I/O Runtime System for Petascale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Alok [Northwestern Univ., Evanston, IL (United States)

    2015-03-18

    Computational scientists must understand results from experimental, observational and computational simulation generated data to gain insights and perform knowledge discovery. As systems approach the petascale range, problems that were unimaginable a few years ago are within reach. With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis, statistical analysis and knowledge discovery. The goal of this work is to enable more effective analysis of scientific datasets through the integration of enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-level I/O library layers. We propose to provide software components to accelerate data analytics, mining, I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries, such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2) Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime system design; 3) Develop parallel data mining programs as part of runtime library for server-side file system in PVFS file system; and 4) Prototype an active storage cluster, which will utilize multicore CPUs, GPUs, and FPGAs to carry out the data mining workload.

  11. Physical activity influences the immune system of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2017-01-01

    Full Text Available It has been suggested that physical activity in breast cancer patients can not only improve quality of life. Influences on physical and psychological levels have been evaluated, but effects on the immune system of breast cancer patients are hardly known. A PubMed search identified relevant trials and meta-analyses from 1970 to 2013. This review summarizes the results of international studies and the current discussion of effects of physical activity on the immune system of breast cancer patients. Highlighted are effects of physical activity on the immune system. Seven original articles and 14 reviews included in this review. Two original and the review articles includes other tumor entities besides breast cancer.Evaluated methods such as dose-response relationships for exercise in oncology, hardly exist. Increased immunological anti-cancer activity due to physical activity is probably mediated via an increase in number and cytotoxicity of monocytes and natural killer cells and cytokines.

  12. Management information systems for environmental compliance activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-23

    The Department of Energy (DOE) is subject to Federal and state laws designed to protect against threats to public health and the environment. The purpose of this audit was to determine whether the Department had developed adequate information systems for tracking and reporting on the status of its compliance with these laws. Systems used for prioritizing and budgeting for environmental activities are being addressed in a separate review.

  13. Mining and representing recommendations in actively evolving recommender systems

    DEFF Research Database (Denmark)

    Assent, Ira

    2010-01-01

    Recommender systems provide an automatic means of filtering out interesting items, usually based on past similarity of user ratings. In previous work, we have suggested a model that allows users to actively build a recommender network. Users express trust, obtain transparency, and grow (anonymous......) recommender connections. In this work, we propose mining such active systems to generate easily understandable representations of the recommender network. Users may review these representations to provide active feedback. This approach further enhances the quality of recommendations, especially as topics...... of interest change over time. Most notably, it extends the amount of control users have over the model that the recommender network builds of their interests....

  14. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  15. Hyperoxia Inhibits T Cell Activation in Mice

    Science.gov (United States)

    Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.

    2013-02-01

    Background: The immune response is blunted in mice and humans in spaceflight. The effects of hyperoxia in mice alter expression of some of the same immune response genes. If these two conditions are additive, there could be an increased risk of infection in long duration missions. Immunosuppression is seen in healthy astronauts who have flown in space; however little is known about the mechanisms that cause the reduced immunity in spaceflight. Here we examine the role of oxidative stress on mice exposed to periods of high O2 levels mimicking pre-breathing protocols and extravehicular activity (EVA). To prevent decompression sickness, astronauts are exposed to elevated oxygen (hyperoxia) before and during EVA activities. Spaceflight missions may entail up to 24 hours of EVA per crewmember per week to perform construction and maintenance tasks. The effectiveness and success of these missions depends on designing EVA systems and protocols that maximize human performance and efficiency while minimizing health and safety risks for crewmembers. To our knowledge, no studies have been conducted on the immune system under 100% oxygen exposures to determine the potential for immune compromise due to prolonged and repeated EVAs. Methods: Animals were exposed to hyperoxic or control conditions for 8 hours per day over a period of 3 days, initiated 4 hours into the dark cycle (12h dark/12h light), using animal environmental control cabinets and oxygen controller (Biospherix, Lacona, NY). Experimental mice were exposed to 98-100% oxygen as a model for pre-breathing and EVA conditions, while control mice were maintained in chambers supplied with compressed air. These are ground control studies where we use real-time RTPCR (qRTPCR) to measure gene expression of the early immune gene expression during bead activation of splenocytes of normoxic and hyperoxic mice. All procedures were reviewed and approved by the IACUC at Ames Research Center. After the last 8h of hyperoxic exposure

  16. Spontaneous Electrical Activity in the Nervous System and its ...

    African Journals Online (AJOL)

    The present study was carried out to examine the effects of biogenic amines on the spontaneous electrical activity of the nervous system in the silkworm Bombyx mori. The activity recorded from different segments of the ventral nerve cord differed in the frequency and number of spike categories firing. The activity was highest ...

  17. PWR system reliability improvement activities

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1985-01-01

    In Japan lacking in energy resources, it is our basic energy policy to accelerate the development program of nuclear power, thereby reducing our dependence. As referred to in the foregoing, every effort has been exerted on our part to improve the PWR system reliability by dint of the so-called 'HOMEMADE' TQC activities, which is our brain-child as a result of applying to the energy industry the quality control philosophy developed in the field of manufacturing industry

  18. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure

    International Nuclear Information System (INIS)

    Le, Thanh Danh; Ahn, Kyoung Kwan

    2012-01-01

    A novel active vibration isolation system using negative stiffness structure (active system with NSS) for low excitation frequency ranges (< 5 Hz) is developed successfully. Here, the negative stiffness structure (NSS) is used to minimize the attraction of vibration. Then, the fuzzy sliding mode controller (FSMC) is designed to improve the vibration isolation performance of the active system with NSS. Based on Lyapunov stability theorem, the fuzzy control rules are constructed. Next, the experimental apparatus is built for evaluating the isolation efficiency of the proposed system controlled by the FSMC corresponding to various excitation conditions. In addition, the isolation performance of the active system with NSS, the active system without NSS and the passive the system with NSS is compared. The experimental results confirmed that the active system with NSS gives better isolation efficiency than the active system without NSS and the passive system with NSS in low excitation frequency areas

  19. System analysis of vehicle active safety problem

    Science.gov (United States)

    Buznikov, S. E.

    2018-02-01

    The problem of the road transport safety affects the vital interests of the most of the population and is characterized by a global level of significance. The system analysis of problem of creation of competitive active vehicle safety systems is presented as an interrelated complex of tasks of multi-criterion optimization and dynamic stabilization of the state variables of a controlled object. Solving them requires generation of all possible variants of technical solutions within the software and hardware domains and synthesis of the control, which is close to optimum. For implementing the task of the system analysis the Zwicky “morphological box” method is used. Creation of comprehensive active safety systems involves solution of the problem of preventing typical collisions. For solving it, a structured set of collisions is introduced with its elements being generated also using the Zwicky “morphological box” method. The obstacle speed, the longitudinal acceleration of the controlled object and the unpredictable changes in its movement direction due to certain faults, the road surface condition and the control errors are taken as structure variables that characterize the conditions of collisions. The conditions for preventing typical collisions are presented as inequalities for physical variables that define the state vector of the object and its dynamic limits.

  20. Activity and activation of the complement system in patients being operated on for cancer of the colon

    DEFF Research Database (Denmark)

    Baatrup, G; Qvist, N; Junker, A

    1994-01-01

    OBJECTIVE: To find out if there was any local activation of complement in the vicinity of a colonic cancer, and any fluctuation in the function of the complement system during operation. DESIGN: Prospective study. SETTING: One university and two district hospitals in Denmark. SUBJECTS: 29 selected...... patients undergoing emergency and elective operations for colonic cancer. INTERVENTIONS: Measurements of systemic and local complement fixation capacity and complement activation in samples of serum or plasma taken before, during, and after operation. MAIN OUTCOME MEASURES: Changes in complement fixation...... capacity and complement activation during operation. RESULTS: Haemodilution during operation caused a significant reduction in the complement fixation capacity of serum and in the activation of the complement system as measured by generation of C3c. We were unable to confirm the presence of complement...

  1. A Low Power, Parallel Wearable Multi-Sensor System for Human Activity Evaluation.

    Science.gov (United States)

    Li, Yuecheng; Jia, Wenyan; Yu, Tianjian; Luan, Bo; Mao, Zhi-Hong; Zhang, Hong; Sun, Mingui

    2015-04-01

    In this paper, the design of a low power heterogeneous wearable multi-sensor system, built with Zynq System-on-Chip (SoC), for human activity evaluation is presented. The powerful data processing capability and flexibility of this SoC represent significant improvements over our previous ARM based system designs. The new system captures and compresses multiple color images and sensor data simultaneously. Several strategies are adopted to minimize power consumption. Our wearable system provides a new tool for the evaluation of human activity, including diet, physical activity and lifestyle.

  2. The verification of neutron activation analysis support system (cooperative research)

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Fumio; Ichimura, Shigeju; Ohtomo, Akitoshi; Takayanagi, Masaji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sawahata, Hiroyuki; Ito, Yasuo [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology; Onizawa, Kouji [Radiation Application Development Association, Tokai, Ibaraki (Japan)

    2000-12-01

    Neutron activation analysis support system is the system in which even the user who has not much experience in the neutron activation analysis can conveniently and accurately carry out the multi-element analysis of the sample. In this verification test, subjects such functions, usability, precision and accuracy of the analysis and etc. of the neutron activation analysis support system were confirmed. As a method of the verification test, it was carried out using irradiation device, measuring device, automatic sample changer and analyzer equipped in the JRR-3M PN-3 facility, and analysis software KAYZERO/SOLCOI based on the k{sub 0} method. With these equipments, calibration of the germanium detector, measurement of the parameter of the irradiation field and analysis of three kinds of environmental standard sample were carried out. The k{sub 0} method adopted in this system is primarily utilized in Europe recently, and it is the analysis method, which can conveniently and accurately carried out the multi-element analysis of the sample without requiring individual comparison standard sample. By this system, total 28 elements were determined quantitatively, and 16 elements with the value guaranteed as analytical data of the NIST (National Institute of Standards and Technology) environment standard sample were analyzed in the accuracy within 15%. This report describes content and verification result of neutron activation support system. (author)

  3. CETA truck and EVA restraint system

    Science.gov (United States)

    Beals, David C.; Merson, Wayne R.

    1991-01-01

    The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.

  4. Active Fault Diagnosis in Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampleddata systems. Applying the same AFD architecture as for continuous-time systems does not directly result in the same set of closed-loop matrix transfer functions. For continuous-time systems, the LFT (linear fractional...... transformation) structure in the connection between the parametric faults and the matrix transfer function (also known as the fault signature matrix) applied for AFD is not directly preserved for sampled-data system. As a consequence of this, the AFD methods cannot directly be applied for sampled-data systems....... Two methods are considered in this paper to handle the fault signature matrix for sampled-data systems such that standard AFD methods can be applied. The first method is based on a discretization of the system such that the LFT structure is preserved resulting in the same LFT structure in the fault...

  5. System-functional approach in enterprise''s innovation activity management

    OpenAIRE

    Olikh, L.; Maslyukivska, А.

    2012-01-01

    The article is devoted to the problems of forming management system of enterprise innovation activity. The authors pick out the enterprise's innovation subsystem main parts and generalize management functions' realization in the context of its innovation activity management.

  6. Application of the Management System for Facilities and Activities. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication provides guidance for following the requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States to establish and implement effective management systems that coherently integrate all aspects of managing nuclear facilities and activities. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement; Appendix I: Transition to an integrated management system; Appendix II: Activities in the document control process; Appendix III: Activities in the procurement process; Appendix IV: Performance of independent assessments; Annex I: Electronic document management system; Annex II: Media for record storage; Annex III: Record retention and storage; Glossary.

  7. Correlation between the Modified Systemic Lupus Erythematosus Disease Activity Index 2000 and the European Consensus Lupus Activity Measurement in juvenile systemic lupus erythematosus.

    Science.gov (United States)

    Sato, J O; Corrente, J E; Saad-Magalhães, C

    2016-11-01

    Objective The objective of this study was to assess Modified Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and European Consensus Lupus Activity Measurement (ECLAM) disease activity correlation in addition to their respective correlation to Pediatric Systemic Lupus International Collaborative Clinics/American College of Rheumatology (SLICC/ACR) Damage Index (Ped-SDI), in juvenile systemic lupus erythematosus (JSLE). Methods The activity indices were scored retrospectively and summarized by adjusted means during follow-up. The Ped-SDI was scored during the last visit for those with more than six months follow-up. Pearson correlation between the Modified SLEDAI-2K and ECLAM, as well as Spearman correlations between the Modified SLEDAI-2K, ECLAM, and Ped-SDI were calculated. The receiver operating characteristic (ROC) curve was calculated for both activity indices discriminating damage measured by Ped-SDI. Results Thirty-seven patients with mean age at diagnosis 11 ± 2.9 years and mean follow-up time 3.2 ± 2.4 years were studied. The Modified SLEDAI-2K and ECLAM adjusted means were highly correlated ( r = 0.78, p  0.7, p < 0.001), but Modified SLEDAI-2K and ECLAM correlation with Ped-SDI was only moderate. ROC analysis discriminant performance for both activity indices resulted in area under curve (AUC) of 0.74 and 0.73 for Modified SLEDAI-2K and ECLAM, respectively. Conclusion The high correlation found between the Modified SLEDAI-2K and ECLAM adjusted means indicated that both tools can be equally useful for longitudinal estimates of JSLE activity.

  8. Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control

    Science.gov (United States)

    Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan

    2014-03-01

    This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

  9. Activity of Nanobins Targeted to the Urokinase Plasminogen Activator System

    Science.gov (United States)

    Hankins, Patrick Leon

    While innovations in nanotechnology have resulted in numerous medical advancements for the treatment of cancer, there remains an urgent unmet need for safe and efficient molecular platforms that facilitate the delivery of potent therapeutics to solid tumors. Nanoscale formulations help to overcome the poor bioavailability and systemic organ toxicity associated with many small molecule drugs. Of these nanoparticle drug delivery systems, the greatest clinical successes to date have employed simple nanoscale lipid bilayer assemblies which encase large payloads of chemotherapeutic. While the nanobin platform we have developed has seen initial success through the passive accumulation into tumors, actively targeting nanobins to tumor specific antigens has the potential to increase the therapeutic index of these nanoparticle drugs. We have identified the urokinase plasminogen activator (uPA) and its cell surface bound receptor (uPAR) as ideal targets for drug delivery due to their selective overexpression in metastatic cancers and their important role in tumor progression. From a panel of monoclonal antibodies targeted to uPA and uPAR, we have selected ATN291 and ATN658 as lead candidates for nanobin targeting based on their tumor cell binding and ability to be internalized by cells. A novel method of conjugating antibodies to liposomes was developed for our nanobin platform that preserves the high binding affinity and specificity of these antibodies. We evaluated these uPA- and uPAR-targeted nanobins in several xenograft tumor models and found that they were well-tolerated over a wide range of doses and demonstrated significantly increased antitumor efficacy over untargeted nanobins in multiple tumor types. Preliminary studies suggest that uPA-targeted nanobins are readily internalized by tumor cells, and we believe this is the mechanism for their increased antitumor effect. A method for radiolabeling nanobins with gallium-67 was developed, and preliminary SPECT

  10. IMPROVEMENT OF QUALITY ASSURANCE SYSTEM ACTIVITIES OF HIGHER EDUCATION INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Z. M. Sultalieva

    2016-01-01

    Full Text Available Abstract. The aim of the article is the improvement of quality assessment system of higher education institutions in the aspect of management. The problems of quality improvement are revealed and classified. The analysis of criteria assessment sets used to define the efficiency of higher education institutions activity is carried out. The components of quality of higher education institutions activity are specified. The structural model of quality assessment system of higher education institutions activity is offered. The analysis of macro environment of a university based on the method of strategic management is carried out, i.e. PEST analysis. As a result of the research a new model of macro criteria model of quality assessment system of higher education institutions, characterizing quality management as an approach to university efficiency is offered, moreover, this system can define the level of its competitiveness in the aspect of quality management. 

  11. Multi-agent system based active distribution networks

    OpenAIRE

    Nguyen, H.P.

    2010-01-01

    This thesis gives a particular vision of the future power delivery system with its main requirements. An investigation of suitable concepts and technologies which creates a road map forward the smart grid has been carried out. They should meet the requirements on sustainability, efficiency, flexibility and intelligence. The so called Active Distribution Network (ADN) is introduced as an important element of the future power delivery system. With an open architecture, the ADN is designed to in...

  12. Possible applications of alkali-activated systems in construction

    OpenAIRE

    Boháčová, J.; Staněk, S.; Vavro, M. (Martin)

    2013-01-01

    This paper deals with the possibilities of using alkali-activated systems in construction. This article summarizes the advantages and disadvantages of geopolymer in comparison to Portland cement, summarizes research and practical applications of alkali-activated materials in our country and abroad, and provides an overview of directions where these alternative inorganic binders can be in the future very well applied.

  13. Optimisation of active suspension control inputs for improved performance of active safety systems

    Science.gov (United States)

    Čorić, Mirko; Deur, Joško; Xu, Li; Tseng, H. Eric; Hrovat, Davor

    2018-01-01

    A collocation-type control variable optimisation method is used to investigate the extent to which the fully active suspension (FAS) can be applied to improve the vehicle electronic stability control (ESC) performance and reduce the braking distance. First, the optimisation approach is applied to the scenario of vehicle stabilisation during the sine-with-dwell manoeuvre. The results are used to provide insights into different FAS control mechanisms for vehicle performance improvements related to responsiveness and yaw rate error reduction indices. The FAS control performance is compared to performances of the standard ESC system, optimal active brake system and combined FAS and ESC configuration. Second, the optimisation approach is employed to the task of FAS-based braking distance reduction for straight-line vehicle motion. Here, the scenarios of uniform and longitudinally or laterally non-uniform tyre-road friction coefficient are considered. The influences of limited anti-lock braking system (ABS) actuator bandwidth and limit-cycle ABS behaviour are also analysed. The optimisation results indicate that the FAS can provide competitive stabilisation performance and improved agility when compared to the ESC system, and that it can reduce the braking distance by up to 5% for distinctively non-uniform friction conditions.

  14. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  15. Design aspects of an active electromagnetic suspension system for automotive applications

    NARCIS (Netherlands)

    Gysen, B.L.J.; Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.A.

    2008-01-01

    This paper is concerned with the design aspects of an active electromagnet suspension system for automotive applications which combines a brushless tubular permanent magnet actuator (TPMA) with a passive spring. This system provides for additional stability and safety by performing active roll and

  16. Design aspects of an active electromagnetic suspension system for automotive applications

    NARCIS (Netherlands)

    Gysen, B.L.J.; Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.

    2009-01-01

    This paper is concerned with the design aspects of an active electromagnet suspension system for automotive applications which combines a brushless tubular permanent-magnet actuator with a passive spring. This system provides for additional stability and safety by performing active roll and pitch

  17. Artist's concept of eastward view of Apollo 16 Descartes landing site

    Science.gov (United States)

    1972-01-01

    An artist's concept illustrating an eastward view of the Apollo 16 Descartes landing site. The white overlay indicates the scheduled tranverses by the Apollo 16 astronauts in the Lunar Roving Vehicle. The Roman numerals are the extravehicular activities (EVA's); and the Arabic numbers are the station stops along the traverse.

  18. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...... such that it is possible to detect these faults....

  19. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  20. Muscle Activation during Push-Ups with Different Suspension Training Systems

    Directory of Open Access Journals (Sweden)

    Joaquin Calatayud, Sebastien Borreani, Juan C. Colado, Fernando F Martín, Michael E. Rogers

    2014-09-01

    Full Text Available The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29 performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC. Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001. Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation.

  1. Development of a prototype regeneration carbon dioxide absorber. [for use in EVA conditions

    Science.gov (United States)

    Patel, P. S.; Baker, B. S.

    1977-01-01

    A prototype regenerable carbon dioxide absorber was developed to maintain the environmental quality of the portable life support system. The absorber works on the alkali metal carbonate-bicarbonate solid-gas reaction to remove carbon dioxide from the atmosphere. The prototype sorber module was designed, fabricated, and tested at simulated extravehicular activity conditions to arrive at optimum design. The unit maintains sorber outlet concentration below 5 mm Hg. An optimization study was made with respect to heat transfer, temperature control, sorbent utilization, sorber life and regenerability, and final size of the module. Important parameters influencing the capacity of the final absorber unit were identified and recommendations for improvement were made.

  2. The Solar System Ballet: A Kinesthetic Spatial Astronomy Activity

    Science.gov (United States)

    Heyer, Inge; Slater, T. F.; Slater, S. J.; Astronomy, Center; Education ResearchCAPER, Physics

    2011-05-01

    The Solar System Ballet was developed in order for students of all ages to learn about the planets, their motions, their distances, and their individual characteristics. To teach people about the structure of our Solar System can be revealing and rewarding, for students and teachers. Little ones (and some bigger ones, too) often cannot yet grasp theoretical and spatial ideas purely with their minds. Showing a video is better, but being able to learn with their bodies, essentially being what they learn about, will help them understand and remember difficult concepts much more easily. There are three segments to this activity, which can be done together or separately, depending on time limits and age of the students. Part one involves a short introductory discussion about what students know about the planets. Then students will act out the orbital motions of the planets (and also moons for the older ones) while holding a physical model. During the second phase we look at the structure of the Solar System as well as the relative distances of the planets from the Sun, first by sketching it on paper, then by recreating a scaled version in the class room. Again the students act out the parts of the Solar System bodies with their models. The third segment concentrates on recreating historical measurements of Earth-Moon-Sun system. The Solar System Ballet activity is suitable for grades K-12+ as well as general public informal learning activities.

  3. Space station automation and robotics study. Operator-systems interface

    Science.gov (United States)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  4. Comparing Pedophile Activity in Different P2P Systems

    Directory of Open Access Journals (Sweden)

    Raphaël Fournier

    2014-07-01

    Full Text Available Peer-to-peer (P2P systems are widely used to exchange content over the Internet. Knowledge of pedophile activity in such networks remains limited, despite having important social consequences. Moreover, though there are different P2P systems in use, previous academic works on this topic focused on one system at a time and their results are not directly comparable. We design a methodology for comparing KAD and eDonkey, two P2P systems among the most prominent ones and with different anonymity levels. We monitor two eDonkey servers and the KAD network during several days and record hundreds of thousands of keyword-based queries. We detect pedophile-related queries with a previously validated tool and we propose, for the first time, a large-scale comparison of pedophile activity in two different P2P systems. We conclude that there are significantly fewer pedophile queries in KAD than in eDonkey (approximately 0.09% vs. 0.25%.

  5. Control System Design for Active Lubrication with Theoretical and Experimental Examples

    DEFF Research Database (Denmark)

    Santos, Ilmar; Scalabrin, A.

    2003-01-01

    This work focuses on the theoretical and experimental behavior of rigid rotors controlled by tilting-pad journal bearings with active oil injection. Initially the mathematical model of the active bearing is presented: The equations that describe the dynamics of hydraulic actuators are introduced...... system of the active bearing based on root locus curves. The active system stability is analyzed by calculating its eigenvalues and frequency response curves. The theoretical and experimental results show that this kind of bearing can significantly reduce the vibration level of rotating machinery....

  6. Active Multimodal Sensor System for Target Recognition and Tracking.

    Science.gov (United States)

    Qu, Yufu; Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-06-28

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system.

  7. Control Systems Cyber Security Standards Support Activities

    Energy Technology Data Exchange (ETDEWEB)

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  8. EXPERIENCE OF INTRODUCTION IN EDUCATIONAL PROCESS OF COMPUTER SYSTEMS FOR FORMATION OF ACTIVE MATHEMATICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Shishko

    2012-03-01

    Full Text Available Annotation In this article is described the information an experience of introduction in educational process of pedagogical program systems of support of practical activities for example pedagogical software "Algebra, 8 class" and also aspect of formation of mathematical activity during algebra studying.

  9. Application of the management system for facilities and activities. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide supports the Safety Requirements publication on The Management System for Facilities and Activities. It provides generic guidance to aid in establishing, implementing, assessing and continually improving a management system that complies with the requirements established. In addition to this Safety Guide, there are a number of Safety Guides for specific technical areas. Together these provide all the guidance necessary for implementing these requirements. This publication supersedes Safety Series No. 50-SG-Q1-Q7 (1996). The guidance provided here may be used by organizations in the following ways: - To assist in the development of the management systems of organizations directly responsible for operating facilities and activities and providing services for: Nuclear facilities; Activities using sources of ionizing radiation; Radioactive waste management; The transport of radioactive material; Radiation protection activities; Any other practices or circumstances in which people may be exposed to radiation from naturally occurring or artificial sources; The regulation of such facilities and activities; - To assist in the development of the management systems of the relevant regulatory bodies; - By the operator, to specify to a supplier, via contractual documentation, any guidance of this Safety Guide that should be included in the supplier's management system for the supply and delivery of products

  10. Behavioral inhibition system (BIS), Behavioral activation system (BAS) and schizophrenia : Relationship with psychopathology and physiology

    NARCIS (Netherlands)

    Scholten, Marion R. M.; van Honk, Jack; Aleman, Andre; Kahn, Rene S.

    2006-01-01

    Objective: The Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been conceptualized as two neural motivational systems that regulate sensitivity to punishment (BIS) and reward (BAS). Imbalance in BIS and BAS levels has been reported to be related to various forms of

  11. Patterns for election of active computing nodes in high availability distributed data acquisition systems

    International Nuclear Information System (INIS)

    Nair, Preetha; Padmini, S.; Diwakar, M.P.; Gohel, Nilesh

    2013-01-01

    Computer based systems for power plant and research reactors are expected to have high availability. Redundancy is a common approach to improve the availability of a system. In redundant configuration the challenge is to select one node as active, and in case of failure of current active node provide automatic fast switchover by electing another node to function as active and restore normal operation. Additional constraints include: exactly one node should be elected as active in an n-way redundant architecture. This paper discusses various high availability configurations developed by Electronics Division and deployed in power and research reactors and patterns followed to elect active nodes of distributed data acquisition systems. The systems are categorized into two: Active/Passive where changeover takes effect only on the failure of Active node, and Active/Active, where changeover is effective in alternate cycles. A novel concept of priority driven state based Active (Master) node election pattern is described for Active/Passive systems which allows multiple redundancy and dynamic election of single master. The paper also discusses the Active/Active pattern, which uncovers failure early by activating all the nodes alternatively in a redundant system. This pattern can be extended to multiple redundant nodes. (author)

  12. Active in-database processing to support ambient assisted living systems.

    Science.gov (United States)

    de Morais, Wagner O; Lundström, Jens; Wickström, Nicholas

    2014-08-12

    As an alternative to the existing software architectures that underpin the development of smart homes and ambient assisted living (AAL) systems, this work presents a database-centric architecture that takes advantage of active databases and in-database processing. Current platforms supporting AAL systems use database management systems (DBMSs) exclusively for data storage. Active databases employ database triggers to detect and react to events taking place inside or outside of the database. DBMSs can be extended with stored procedures and functions that enable in-database processing. This means that the data processing is integrated and performed within the DBMS. The feasibility and flexibility of the proposed approach were demonstrated with the implementation of three distinct AAL services. The active database was used to detect bed-exits and to discover common room transitions and deviations during the night. In-database machine learning methods were used to model early night behaviors. Consequently, active in-database processing avoids transferring sensitive data outside the database, and this improves performance, security and privacy. Furthermore, centralizing the computation into the DBMS facilitates code reuse, adaptation and maintenance. These are important system properties that take into account the evolving heterogeneity of users, their needs and the devices that are characteristic of smart homes and AAL systems. Therefore, DBMSs can provide capabilities to address requirements for scalability, security, privacy, dependability and personalization in applications of smart environments in healthcare.

  13. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility Unit

    Science.gov (United States)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. The current spacesuit team has looked at this technology from the standpoint of using the ISS EMU to demonstrate the SWME technology while EVA, and from the standpoint of augmenting EMU cooling in the case of a fouled EMU cooling system. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  14. System Design as a Creative Mathematical Activity

    NARCIS (Netherlands)

    Wupper, Hanno; Mader, Angelika H.

    1999-01-01

    This paper contributes to the understanding of rational systems design and verification. We give evidence that the rôle of mathematics in development and verification is not limited to useful calculations: Ideally, designing is a creative mathematical activity, which comprises finding a theorem, if

  15. Reward System Activation in Response to Alcohol Advertisements Predicts College Drinking.

    Science.gov (United States)

    Courtney, Andrea L; Rapuano, Kristina M; Sargent, James D; Heatherton, Todd F; Kelley, William M

    2018-01-01

    In this study, we assess whether activation of the brain's reward system in response to alcohol advertisements is associated with college drinking. Previous research has established a relationship between exposure to alcohol marketing and underage drinking. Within other appetitive domains, the relationship between cue exposure and behavioral enactment is known to rely on activation of the brain's reward system. However, the relationship between neural activation to alcohol advertisements and alcohol consumption has not been studied in a nondisordered population. In this cross-sectional study, 53 college students (32 women) completed a functional magnetic resonance imaging scan while viewing alcohol, food, and control (car and technology) advertisements. Afterward, they completed a survey about their alcohol consumption (including frequency of drinking, typical number of drinks consumed, and frequency of binge drinking) over the previous month. In 43 participants (24 women) meeting inclusion criteria, viewing alcohol advertisements elicited activation in the left orbitofrontal cortex and bilateral ventral striatum-regions of the reward system that typically activate to other appetitive rewards and relate to consumption behaviors. Moreover, the level of self-reported drinking correlated with the magnitude of activation in the left orbitofrontal cortex. Results suggest that alcohol cues are processed within the reward system in a way that may motivate drinking behavior.

  16. TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0

    Science.gov (United States)

    Drews, M. L.

    1994-01-01

    The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be

  17. Detector design for active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2018-01-01

    Fault diagnosis of closed-loop systems is extremely relevant for high-precision equipment and safety critical systems. Fault diagnosis is usually divided into 2 schemes: active and passive fault diagnosis. Recent studies have highlighted some advantages of active fault diagnosis based on dual Youla......-Jabr-Bongiorno-Kucera parameters. In this paper, a method for closed-loop active fault diagnosis based on statistical detectors is given using dual Youla-Jabr-Bongiorno-Kucera parameters. The goal of this paper is 2-fold. First, the authors introduce a method for measuring a residual signal subject to white noise. Second...

  18. Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems

    Science.gov (United States)

    Huang, Yiteng; Chen, Jingdong; Chen, Shaoyan

    2010-01-01

    A voice-command human-machine interface system has been developed for spacesuit extravehicular activity (EVA) missions. A multichannel acoustic signal processing method has been created for distant speech acquisition in noisy and reverberant environments. This technology reduces noise by exploiting differences in the statistical nature of signal (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, the automatic speech recognition (ASR) accuracy can be improved to the level at which crewmembers would find the speech interface useful. The developed speech human/machine interface will enable both crewmember usability and operational efficiency. It can enjoy a fast rate of data/text entry, small overall size, and can be lightweight. In addition, this design will free the hands and eyes of a suited crewmember. The system components and steps include beam forming/multi-channel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, model adaption, ASR HMM (Hidden Markov Model) training, and ASR decoding. A state-of-the-art phoneme recognizer can obtain an accuracy rate of 65 percent when the training and testing data are free of noise. When it is used in spacesuits, the rate drops to about 33 percent. With the developed microphone array speech-processing technologies, the performance is improved and the phoneme recognition accuracy rate rises to 44 percent. The recognizer can be further improved by combining the microphone array and HMM model adaptation techniques and using speech samples collected from inside spacesuits. In addition, arithmetic complexity models for the major HMMbased ASR components were developed. They can help real-time ASR system designers select proper tasks when in the face of constraints in computational resources.

  19. Space Life Sciences Directorate's Position on the Physiological Effects of Exposing the Crewmemeber to Low-Voltage Electrical Hazards During Extravehicular Activity

    Science.gov (United States)

    Hamilton, Douglas; Kramer, Leonard; Mikatarian, Ron; Polk, James; Duncan, Michael; Koontz, Steven

    2010-01-01

    The models predict that, for low voltage exposures in the space suit, physiologically active current could be conducted across the crew member causing catastrophic hazards. Future work with Naval Health Research Center Detachment Directed Energy Bio-effects Laboratory is being proposed to analyze additional current paths across the human torso and upper limbs. These models may need to be verified with human studies.

  20. Comprehensive target populations for current active safety systems using national crash databases.

    Science.gov (United States)

    Kusano, Kristofer D; Gabler, Hampton C

    2014-01-01

    The objective of active safety systems is to prevent or mitigate collisions. A critical component in the design of active safety systems is the identification of the target population for a proposed system. The target population for an active safety system is that set of crashes that a proposed system could prevent or mitigate. Target crashes have scenarios in which the sensors and algorithms would likely activate. For example, the rear-end crash scenario, where the front of one vehicle contacts another vehicle traveling in the same direction and in the same lane as the striking vehicle, is one scenario for which forward collision warning (FCW) would be most effective in mitigating or preventing. This article presents a novel set of precrash scenarios based on coded variables from NHTSA's nationally representative crash databases in the United States. Using 4 databases (National Automotive Sampling System-General Estimates System [NASS-GES], NASS Crashworthiness Data System [NASS-CDS], Fatality Analysis Reporting System [FARS], and National Motor Vehicle Crash Causation Survey [NMVCCS]) the scenarios developed in this study can be used to quantify the number of police-reported crashes, seriously injured occupants, and fatalities that are applicable to proposed active safety systems. In this article, we use the precrash scenarios to identify the target populations for FCW, pedestrian crash avoidance systems (PCAS), lane departure warning (LDW), and vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) systems. Crash scenarios were derived using precrash variables (critical event, accident type, precrash movement) present in all 4 data sources. This study found that these active safety systems could potentially mitigate approximately 1 in 5 of all severity and serious injury crashes in the United States and 26 percent of fatal crashes. Annually, this corresponds to 1.2 million all severity, 14,353 serious injury (MAIS 3+), and 7412 fatal crashes. In addition

  1. Actively shielded low level gamma - spectrometric system

    International Nuclear Information System (INIS)

    Mrdja, D.; Bikit, I.; Forkapic, S.; Slivka, J.; Veskovic, M.

    2005-01-01

    The results of the adjusting and testing of the actively shielded low level gamma-spectrometry system are presented. The veto action of the shield reduces the background in the energy region of 50 keV to the 2800 keV for about 3 times. (author) [sr

  2. Use of the international systemic scleroderma activity index

    Directory of Open Access Journals (Sweden)

    Maya Nikolayevna Starovoitova

    2013-01-01

    Full Text Available Up to now, it is difficult to determine systemic scleroderma (SSD activity because of the lack of validated tools to estimate changes in the pathological process. Attempts have been made to develop unified activity assessing methods for many years. The indices proposed by the European SSD Group are most popular today. This paper gives the results of using this index in a cohort of Russian patients.

  3. Active Learning for Directed Exploration of Complex Systems

    Science.gov (United States)

    Burl, Michael C.; Wang, Esther

    2009-01-01

    Physics-based simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. Such codes provide the highest-fidelity representation of system behavior, but are often so slow to run that insight into the system is limited. For example, conducting an exhaustive sweep over a d-dimensional input parameter space with k-steps along each dimension requires k(sup d) simulation trials (translating into k(sup d) CPU-days for one of our current simulations). An alternative is directed exploration in which the next simulation trials are cleverly chosen at each step. Given the results of previous trials, supervised learning techniques (SVM, KDE, GP) are applied to build up simplified predictive models of system behavior. These models are then used within an active learning framework to identify the most valuable trials to run next. Several active learning strategies are examined including a recently-proposed information-theoretic approach. Performance is evaluated on a set of thirteen synthetic oracles, which serve as surrogates for the more expensive simulations and enable the experiments to be replicated by other researchers.

  4. Familial occurrence of systemic mast cell activation disease.

    Directory of Open Access Journals (Sweden)

    Gerhard J Molderings

    Full Text Available Systemic mast cell activation disease (MCAD comprises disorders characterized by an enhanced release of mast cell mediators accompanied by accumulation of dysfunctional mast cells. Demonstration of familial clustering would be an important step towards defining the genetic contribution to the risk of systemic MCAD. The present study aimed to quantify familial aggregation for MCAD and to investigate the variability of clinical and molecular findings (e.g. somatic mutations in KIT among affected family members in three selected pedigrees. Our data suggest that systemic MCAD pedigrees include more systemic MCAD cases than would be expected by chance, i.e., compared with the prevalence of MCAD in the general population. The prevalence of MCAD suspected by symptom self-report in first-degree relatives of patients with MCAD amounted to approximately 46%, compared to prevalence in the general German population of about 17% (p<0.0001. In three families with a high familial loading of MCAD, the subtype of MCAD and the severity of mediator-related symptoms varied between family members. In addition, genetic alterations detected in KIT were variable, and included mutations at position 816 of the amino acid sequence. In conclusion, our data provide evidence for common familial occurrence of MCAD. Our findings observed in the three pedigrees together with recent reports in the literature suggest that, in familial cases (i.e., in the majority of MCAD, mutated disease-related operator and/or regulator genes could be responsible for the development of somatic mutations in KIT and other proteins important for the regulation of mast cell activity. Accordingly, the immunohistochemically different subtypes of MCAD (i.e. mast cell activation syndrome and systemic mastocytosis should be more accurately regarded as varying presentations of a common generic root process of mast cell dysfunction, than as distinct diseases.

  5. Chaos synchronizations of chaotic systems via active nonlinear control

    International Nuclear Information System (INIS)

    Huang, J; Xiao, T J

    2008-01-01

    This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective

  6. Simultaneous Activation of Iron- and Thiol-Based Sensor-Regulator Systems by Redox-Active Compounds.

    Science.gov (United States)

    Lee, Kang-Lok; Yoo, Ji-Sun; Oh, Gyeong-Seok; Singh, Atul K; Roe, Jung-Hye

    2017-01-01

    Bacteria in natural habitats are exposed to myriad redox-active compounds (RACs), which include producers of reactive oxygen species (ROS) and reactive electrophile species (RES) that alkylate or oxidize thiols. RACs can induce oxidative stress in cells and activate response pathways by modulating the activity of sensitive regulators. However, the effect of a certain compound on the cell has been investigated primarily with respect to a specific regulatory pathway. Since a single compound can exert multiple chemical effects in the cell, its effect can be better understood by time-course monitoring of multiple sensitive regulatory pathways that the compound induces. We investigated the effect of representative RACs by monitoring the activity of three sensor-regulators in the model actinobacterium Streptomyces coelicolor ; SoxR that senses reactive compounds directly through oxidation of its [2Fe-2S] cluster, CatR/PerR that senses peroxides through bound iron, and an anti-sigma factor RsrA that senses RES via disulfide formation. The time course and magnitude of induction of their target transcripts were monitored to predict the chemical activities of each compound in S. coelicolor . Phenazine methosulfate (PMS) was found to be an effective RAC that directly activated SoxR and an effective ROS-producer that induced CatR/PerR with little thiol-perturbing activity. p -Benzoquinone was an effective RAC that directly activated SoxR, with slower ROS-producing activity, and an effective RES that induced the RsrA-SigR system. Plumbagin was an effective RAC that activated SoxR, an effective ROS-producer, and a less agile but effective RES. Diamide was an RES that effectively formed disulfides and a weak RAC that activated SoxR. Monobromobimane was a moderately effective RES and a slow producer of ROS. Interestingly, benzoquinone induced the SigR system by forming adducts on cysteine thiols in RsrA, revealing a new pathway to modulate RsrA activity. Overall, this study showed

  7. The activation system Easy 2007

    International Nuclear Information System (INIS)

    Forrest, R.A.; Kopecky, J.

    2007-01-01

    Full text of publication follows: Safety and waste management of materials for ITER, IFMIF and future power plants require detailed knowledge of the activation caused by irradiation with neutrons, or in the case of IFMIF, deuterons. The European Activation System (EASY) has been developed for such calculations and a new version (EASY-2007) was released earlier this year. This contains a large amount of nuclear data in the European Activation File (EAF-2007) covering neutron-, deuteron- and proton-induced cross sections (about 200,000 reactions have data extending up to 60 MeV), decay data (2,231 nuclides) and subsidiary data on e.g. biological hazards. These data are input to the FISPACT inventory code used to calculate the activation. Recent work has concentrated on the validation of EASY-2007 using integral and differential measurements; these studies are summarised showing examples of reactions agreeing with the experimental results and cases where the library data require further improvement. Integral data above 20 MeV are especially important in improving the library for IFMIF calculations. Using a previous version of EASY a study of the activation of all the elements enabled the identification of the reactions important in producing activation below 20 MeV. The list of 1,340 neutron-reactions producing the dominant radio-nuclides enables further studies to be focused on the important data. This study made extensive use of importance diagrams. This work has been extended to cover the energy region up to 60 MeV, and the new important radionuclides and reactions in this energy range are reported. Although the data above 20 MeV are important for IFMIF and are of interest because of their novelty, the traditional energy region below 20 MeV remains of great importance for most fusion applications. The testing of such large data libraries for reactions with no experimental data is necessary and results from the use of the recently developed method of Statistical

  8. Nano-microdelivery systems for oral delivery of an active ingredient

    DEFF Research Database (Denmark)

    2014-01-01

    A composition for oral delivery of one or more active ingredients in the form of a lipid nano-micro-delivery system comprising a lipid nano-micro-structure comprising at least one lipid and at least one active ingredient, said at least one active ingredient being immobilized in said lipid nano...

  9. Minimum Detectable Activity for Tomographic Gamma Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, Ram [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Smith, Susan [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Kirkpatrick, J. M. [Canberra Industries (AREVA BDNM), Meriden, CT (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    For any radiation measurement system, it is useful to explore and establish the detection limits and a minimum detectable activity (MDA) for the radionuclides of interest, even if the system is to be used at far higher values. The MDA serves as an important figure of merit, and often a system is optimized and configured so that it can meet the MDA requirements of a measurement campaign. The non-destructive assay (NDA) systems based on gamma ray analysis are no exception and well established conventions, such the Currie method, exist for estimating the detection limits and the MDA. However, the Tomographic Gamma Scanning (TGS) technique poses some challenges for the estimation of detection limits and MDAs. The TGS combines high resolution gamma ray spectrometry (HRGS) with low spatial resolution image reconstruction techniques. In non-imaging gamma ray based NDA techniques measured counts in a full energy peak can be used to estimate the activity of a radionuclide, independently of other counting trials. However, in the case of the TGS each “view” is a full spectral grab (each a counting trial), and each scan consists of 150 spectral grabs in the transmission and emission scans per vertical layer of the item. The set of views in a complete scan are then used to solve for the radionuclide activities on a voxel by voxel basis, over 16 layers of a 10x10 voxel grid. Thus, the raw count data are not independent trials any more, but rather constitute input to a matrix solution for the emission image values at the various locations inside the item volume used in the reconstruction. So, the validity of the methods used to estimate MDA for an imaging technique such as TGS warrant a close scrutiny, because the pair-counting concept of Currie is not directly applicable. One can also raise questions as to whether the TGS, along with other image reconstruction techniques which heavily intertwine data, is a suitable method if one expects to measure samples whose activities

  10. Active In-Database Processing to Support Ambient Assisted Living Systems

    Directory of Open Access Journals (Sweden)

    Wagner O. de Morais

    2014-08-01

    Full Text Available As an alternative to the existing software architectures that underpin the development of smart homes and ambient assisted living (AAL systems, this work presents a database-centric architecture that takes advantage of active databases and in-database processing. Current platforms supporting AAL systems use database management systems (DBMSs exclusively for data storage. Active databases employ database triggers to detect and react to events taking place inside or outside of the database. DBMSs can be extended with stored procedures and functions that enable in-database processing. This means that the data processing is integrated and performed within the DBMS. The feasibility and flexibility of the proposed approach were demonstrated with the implementation of three distinct AAL services. The active database was used to detect bed-exits and to discover common room transitions and deviations during the night. In-database machine learning methods were used to model early night behaviors. Consequently, active in-database processing avoids transferring sensitive data outside the database, and this improves performance, security and privacy. Furthermore, centralizing the computation into the DBMS facilitates code reuse, adaptation and maintenance. These are important system properties that take into account the evolving heterogeneity of users, their needs and the devices that are characteristic of smart homes and AAL systems. Therefore, DBMSs can provide capabilities to address requirements for scalability, security, privacy, dependability and personalization in applications of smart environments in healthcare.

  11. Acceleration Feedback-Based Active and Semi-Active Seismic Response Control of Rail-Counterweight Systems of Elevators

    Directory of Open Access Journals (Sweden)

    Rildova

    2005-01-01

    Full Text Available Based on the observations in the past earthquake events, the traction elevators in buildings are known to be vulnerable to earthquake induced ground motions. Among several components of an elevator, the counterweight being heaviest is also known to be more susceptible than others. The inertial effects of the counterweight can overstress the guide rails on which it moves. Here we investigate to use the well-known acceleration feedback-based active and semi-active control methods to reduce stresses in the rails. The only way a control action can be applied to a moving counterweight-rail system is through a mass damper placed in the plane of the counterweight. For this, a part of the counterweight mass can be configured as a mass damper attached to a small actuator for an active scheme or to a magneto-rheological damper for a semi-active scheme. A comprehensive numerical study is conducted to evaluate the effectiveness of the proposed configuration of control system. It is observed that the two control schemes are effective in reducing the stress response by about 20 to 25% and improve the system fragility over a good range of seismic intensities.

  12. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  13. Embedded Active Vision System Based on an FPGA Architecture

    Directory of Open Access Journals (Sweden)

    Chalimbaud Pierre

    2007-01-01

    Full Text Available In computer vision and more particularly in vision processing, the impressive evolution of algorithms and the emergence of new techniques dramatically increase algorithm complexity. In this paper, a novel FPGA-based architecture dedicated to active vision (and more precisely early vision is proposed. Active vision appears as an alternative approach to deal with artificial vision problems. The central idea is to take into account the perceptual aspects of visual tasks, inspired by biological vision systems. For this reason, we propose an original approach based on a system on programmable chip implemented in an FPGA connected to a CMOS imager and an inertial set. With such a structure based on reprogrammable devices, this system admits a high degree of versatility and allows the implementation of parallel image processing algorithms.

  14. Embedded Active Vision System Based on an FPGA Architecture

    Directory of Open Access Journals (Sweden)

    Pierre Chalimbaud

    2006-12-01

    Full Text Available In computer vision and more particularly in vision processing, the impressive evolution of algorithms and the emergence of new techniques dramatically increase algorithm complexity. In this paper, a novel FPGA-based architecture dedicated to active vision (and more precisely early vision is proposed. Active vision appears as an alternative approach to deal with artificial vision problems. The central idea is to take into account the perceptual aspects of visual tasks, inspired by biological vision systems. For this reason, we propose an original approach based on a system on programmable chip implemented in an FPGA connected to a CMOS imager and an inertial set. With such a structure based on reprogrammable devices, this system admits a high degree of versatility and allows the implementation of parallel image processing algorithms.

  15. Perceiving active listening activates the reward system and improves the impression of relevant experiences.

    Science.gov (United States)

    Kawamichi, Hiroaki; Yoshihara, Kazufumi; Sasaki, Akihiro T; Sugawara, Sho K; Tanabe, Hiroki C; Shinohara, Ryoji; Sugisawa, Yuka; Tokutake, Kentaro; Mochizuki, Yukiko; Anme, Tokie; Sadato, Norihiro

    2015-01-01

    Although active listening is an influential behavior, which can affect the social responses of others, the neural correlates underlying its perception have remained unclear. Sensing active listening in social interactions is accompanied by an improvement in the recollected impressions of relevant experiences and is thought to arouse positive feelings. We therefore hypothesized that the recognition of active listening activates the reward system, and that the emotional appraisal of experiences that had been subject to active listening would be improved. To test these hypotheses, we conducted functional magnetic resonance imaging (fMRI) on participants viewing assessments of their own personal experiences made by evaluators with or without active listening attitude. Subjects rated evaluators who showed active listening more positively. Furthermore, they rated episodes more positively when they were evaluated by individuals showing active listening. Neural activation in the ventral striatum was enhanced by perceiving active listening, suggesting that this was processed as rewarding. It also activated the right anterior insula, representing positive emotional reappraisal processes. Furthermore, the mentalizing network was activated when participants were being evaluated, irrespective of active listening behavior. Therefore, perceiving active listening appeared to result in positive emotional appraisal and to invoke mental state attribution to the active listener.

  16. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  17. Activation energies for iodine-exchange systems containing organic iodine compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, N. (Takyo Univ. of Education (Japan). Faculty of Science) Takahashi, Yasuko

    1976-01-01

    In studies on the nonequilibrium isotopic exchange method for determining iodine in organic iodine compounds, activation energies have been measured to find systems having appropriate rate of exchange reactions. Activation energies are discussed by considering the effect of the structure of organic iodine compounds, the concentrations of reactants and solvent, etc. In homogeneous systems, activation energy is found to become larger in the order of CH/sub 3/Iactivation energy is less in 100% acetone than in 90% acetone solution. In heterogeneous systems, e.g. org. I(aq.)--I/sub 2/(CCL/sub 4/ or C/sub 2/H/sub 4/Cl/sub 2/), activation energy increases in the order of 3,5-diiodotyrosine<3-iodotyrosine<5-iodouracil. The catalytic effect of I/sub 2/ is large, and the iodine ratio between I/sub 2/ and organic iodine is a predominant factor in determining the rate of the exchange reaction.

  18. Passive and active vibration isolation systems using inerter

    Science.gov (United States)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  19. Active and reactive power neurocontroller for grid-connected photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    I. Abadlia

    2016-03-01

    Full Text Available Many researchers have contributed to the development of a firm foundation for analysis and design of control applications in grid-connected renewable energy sources. This paper presents an intelligent control algorithm fond on artificial neural networks for active and reactive power controller in grid-connected photovoltaic generation system. The system is devices into two parts in which each part contains an inverter with control algorithm. A DC/DC converter in output voltage established by control magnitude besides maximum power point tracker algorithm always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can synchronize a sinusoidal current output with the grid voltage and accurate an independent active and reactive power control. Simulation results confirm the validation of the purpose. Neurocontroller based active and reactive power presents an efficiency control that guarantees good response to the steps changing in active and reactive power with an acceptable current/voltage synchronism. In this paper the power circuit and the control system of the presented grid-connected photovoltaic generation system is simulated and tested by MatLab/Simulink.

  20. Artificial activation of toxin-antitoxin systems as an antibacterial strategy.

    Science.gov (United States)

    Williams, Julia J; Hergenrother, Paul J

    2012-06-01

    Toxin-antitoxin (TA) systems are unique modules that effect plasmid stabilization via post-segregational killing of the bacterial host. The genes encoding TA systems also exist on bacterial chromosomes, and it has been speculated that these are involved in a variety of cellular processes. Interest in TA systems has increased dramatically over the past 5 years as the ubiquitous nature of TA genes on bacterial genomes has been revealed. The exploitation of TA systems as an antibacterial strategy via artificial activation of the toxin has been proposed and has considerable potential; however, efforts in this area remain in the early stages and several major questions remain. This review investigates the tractability of targeting TA systems to kill bacteria, including fundamental requirements for success, recent advances, and challenges associated with artificial toxin activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Extracellular enzyme activity in a willow sewage treatment system.

    Science.gov (United States)

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  2. Doubly Fed Induction Generator System Resonance Active Damping through Stator Virtual Impedance

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    (positive capacitor or negative inductor) into the stator branch through stator current feedforward control. The effectiveness of the DFIG system active damping control is verified by a 7.5 kW experimental down-scaled DFIG system, and simulation results of a commercial 2 MW DFIG system is provided as well....... converters/loads. This paper analyzes and explains first the HFR phenomenon between the DFIG system and a parallel compensated weak network (series RL + shunt C). Then on the basis of the DFIG system impedance modeling, an active damping control strategy is introduced by inserting a virtual impedance...... Frequency Resonance (HFR) due to the impedance interaction between the DFIG system and the weak grid network whose impedance is comparative large. Thus, it is important to implement an active damping for the HFR in order to ensure a safe and reliable operation of both the DFIG system and the grid connected...

  3. Road identification for its-integrated systems of automotive active safety

    Directory of Open Access Journals (Sweden)

    V. Ivanov

    2005-04-01

    Full Text Available The paper discusses several aspects of active safety control for automotive application. Particular emphasis is placed on the fuzzy logic determination of friction properties of a tyre-road contact. An example of vehicle control systems equipped with off-board sensors of road roughness, temperature, moisture and rain intensity demonstrates the implementation of this approach. The paper proposes conceptual solutions for preventive active safety control applied to vehicles which are integrated in an intelligent transportation system.

  4. Phase Coexistence in Two-Dimensional Passive and Active Dumbbell Systems

    Science.gov (United States)

    Cugliandolo, Leticia F.; Digregorio, Pasquale; Gonnella, Giuseppe; Suma, Antonio

    2017-12-01

    We demonstrate that there is a macroscopic coexistence between regions with hexatic order and regions in the liquid or gas phase over a finite interval of packing fractions in active dumbbell systems with repulsive power-law interactions in two dimensions. In the passive limit, this interval remains finite, similar to what has been found in two-dimensional systems of hard and soft disks. We did not find discontinuous behavior upon increasing activity from the passive limit.

  5. Merlin : microsimulation system for predicting leisure activity-travel patterns

    NARCIS (Netherlands)

    Middelkoop, van M.; Borgers, A.W.J.; Timmermans, H.J.P.

    2004-01-01

    Development of a model of annual activity-travel patterns of leisure and vacation travel is reported. The simulation system, called Merlin, is a hybrid model system consisting of discrete choice models and rule-based models. It predicts the annual number of day trips and vacations, and the profile

  6. Automation and robotics human performance

    Science.gov (United States)

    Mah, Robert W.

    1990-01-01

    The scope of this report is limited to the following: (1) assessing the feasibility of the assumptions for crew productivity during the intra-vehicular activities and extra-vehicular activities; (2) estimating the appropriate level of automation and robotics to accomplish balanced man-machine, cost-effective operations in space; (3) identifying areas where conceptually different approaches to the use of people and machines can leverage the benefits of the scenarios; and (4) recommending modifications to scenarios or developing new scenarios that will improve the expected benefits. The FY89 special assessments are grouped into the five categories shown in the report. The high level system analyses for Automation & Robotics (A&R) and Human Performance (HP) were performed under the Case Studies Technology Assessment category, whereas the detailed analyses for the critical systems and high leverage development areas were performed under the appropriate operations categories (In-Space Vehicle Operations or Planetary Surface Operations). The analysis activities planned for the Science Operations technology areas were deferred to FY90 studies. The remaining activities such as analytic tool development, graphics/video demonstrations and intelligent communicating systems software architecture were performed under the Simulation & Validations category.

  7. Development of the ISS EMU Dashboard Software

    Science.gov (United States)

    Bernard, Craig; Hill, Terry R.

    2011-01-01

    The EMU (Extra-Vehicular Mobility Unit) Dashboard was developed at NASA s Johnson Space Center to aid in real-time mission support for the ISS (International Space Station) and Shuttle EMU space suit by time synchronizing down-linked video, space suit data and audio from the mission control audio loops. Once the input streams are synchronized and recorded, the data can be replayed almost instantly and has proven invaluable in understanding in-flight hardware anomalies and playing back information conveyed by the crew to missions control and the back room support. This paper will walk through the development from an engineer s idea brought to life by an intern to real time mission support and how this tool is evolving today and its challenges to support EVAs (Extra-Vehicular Activities) and human exploration in the 21st century.

  8. Removing radio-active wastes from nuclear power stations by the STEAG system

    International Nuclear Information System (INIS)

    Baatz, H.

    1978-01-01

    The mobile STEAG System for conditioning radio-active wastes from nuclear power stations represents a particularly safe and economic method of removing them in present day conditions. Cementation by the FAFNIR System is used for the greater part of the waste, the liquid concentrate (evaporator concentrate and filter slurry). For the special case of the medium active resin balls from the primary circuits, embedding in plastic by the FAMA process has proved to be the only available successful process so far. The highly active solid waste from the reactor core is decomposed by the MOSAIK System, is packed in transportable and storable containers and is removed from the fuel element storage pond. The systems are so safe that faults or interruptions of power station operation due to faults in removing radio-active wastes can be excluded. (orig.) [de

  9. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong seon; Kim, Wi soo [NESS, Daejeon (Korea, Republic of); Han, Byoung sub. [Enesys Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH.

  10. Decontamination System Development of Radioative Activated Carbon using Micro-bubbles

    International Nuclear Information System (INIS)

    Jeon, Jong seon; Kim, Wi soo; Han, Byoung sub.

    2016-01-01

    This study was aimed to develop a decontamination system by applying such technical characteristics that minimizes a generation of secondary wastes while decontaminating radiation wastes. The radioactive activated carbon is removed from the end-of-life air cleaning filter in replacement or decommission of nuclear power plant or nuclear facility. By removing radioactive activated carbon, the filter would be classified as a low radioactive contaminant. And thus the amount of radioactive wastes and the treatment cost would be decreased. We are in development of the activated carbon cleaning technique by utilizing micro-bubbles, which improve efficiency and minimize damage of activated carbon. The purpose of using micro-bubbles is to decontamination carbon micropore, which is difficult to access, by principle of cavitation phenomenon generated in collapse of micro-bubbles. In this study, we introduced the micro-bubble decontamination system developed to decontaminate activated carbon. For further researches, we will determine carbon weight change and the decontamination rate under the experimental conditions such as temperature and pH

  11. Astronaut Dale Gardner rehearses during EVA practice

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  12. Astronauts Ross and Helms at CAPCOM station during STS-61 simulations

    Science.gov (United States)

    1993-01-01

    Astronauts Jerry L. Ross and Susan J. Helms are pictured at the Spacecraft Communicators console during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  13. Vertical view Apollo 16 Descartes landing sites as photographed by Apollo 14

    Science.gov (United States)

    1972-01-01

    An almost vertical view of the Apollo 16 Descartes landing sites as photographed from the Apollo 14 spacecraft. Overlays are provided to point out extravehicular activity (EVA), Lunar Roving Vehicle (LRV) travers routes and the nicknames of features. The Roman numerals indicate the EVA numbers and the Arabic numbers point out stations or traverse stops.

  14. Dopamine modulates reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Rombouts, Serge Arb; Soeter, Roelof P; van Gerven, Joop M; Both, Stephanie

    2012-06-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive-compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the 'reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. Young healthy males (n=53) were randomly assigned to two experimental groups or a control group, and were administered a dopamine antagonist (haloperidol), a dopamine agonist (levodopa), or placebo. Brain activation was assessed during a backward-masking task with subliminally presented sexual stimuli. Results showed that levodopa significantly enhanced the activation in the nucleus accumbens and dorsal anterior cingulate when subliminal sexual stimuli were shown, whereas haloperidol decreased activations in those areas. Dopamine thus enhances activations in regions thought to regulate 'wanting' in response to potentially rewarding sexual stimuli that are not consciously perceived. This running start of the reward system might explain the pull of rewards in individuals with compulsive reward-seeking behaviors such as hypersexuality and patients who receive dopaminergic medication.

  15. Chaotic incommensurate fractional order Rössler system: active control and synchronization

    Directory of Open Access Journals (Sweden)

    Baleanu Dumitru

    2011-01-01

    Full Text Available Abstract In this article, we present an active control methodology for controlling the chaotic behavior of a fractional order version of Rössler system. The main feature of the designed controller is its simplicity for practical implementation. Although in controlling such complex system several inputs are used in general to actuate the states, in the proposed design, all states of the system are controlled via one input. Active synchronization of two chaotic fractional order Rössler systems is also investigated via a feedback linearization method. In both control and synchronization, numerical simulations show the efficiency of the proposed methods.

  16. Implementation of a Quality Management System in regulatory inspection activities

    International Nuclear Information System (INIS)

    Pires do Rio, Monica; Ferreira, Paulo Roberto; Cunha, Paulo G. da; Acar, Maria Elizabeth

    2005-01-01

    The Institute for Radioprotection and Dosimetry - IRD -, of the Brazilian National Nuclear Energy Commission, CNEN, started in 2001, the implementation of a quality management system (SGQ), in the inspection, testing and calibration activities. The SGQ was an institutional guideline and is inserted in a larger system of management of the IRD started in 1999, with the adoption of the National Quality Award criteria - PNQ, within the Project for Excellence in Technological Research of Associacao Brasileira das Instituicoes de Pesquisas Tecnologicas - ABIPTI (Brazilian Association of Technological Research institutions). The proposed quality management system and adopted at the IRD was developed and implemented in accordance with the requirements of NBR ISO/IEC 17025 - General requirements for the competence of testing and calibration laboratories, and ISO/IEC 17020 - General criteria for operation of various types of bodies performing inspections. For regulatory inspection activities, the quality system was implemented on three program inspection services of radiological protection led, respectively, by clinics and hospitals that operate radiotherapy services; industries that use nuclear gauges in their control or productive processes and power reactor operators (CNAAA) - just the environmental part. It was formed a pioneering team of inspectors for standardizing the processes, procedures and starting the implementation of the system in the areas. This work describes the implementation process steps, including difficulties, learning and advantages of the adoption of a quality management system in inspection activities

  17. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  18. Perceptions of the use of intelligent information access systems in university level active learning activities among teachers of biomedical subjects.

    Science.gov (United States)

    Aparicio, Fernando; Morales-Botello, María Luz; Rubio, Margarita; Hernando, Asunción; Muñoz, Rafael; López-Fernández, Hugo; Glez-Peña, Daniel; Fdez-Riverola, Florentino; de la Villa, Manuel; Maña, Manuel; Gachet, Diego; Buenaga, Manuel de

    2018-04-01

    Student participation and the use of active methodologies in classroom learning are being increasingly emphasized. The use of intelligent systems can be of great help when designing and developing these types of activities. Recently, emerging disciplines such as 'educational data mining' and 'learning analytics and knowledge' have provided clear examples of the importance of the use of artificial intelligence techniques in education. The main objective of this study was to gather expert opinions regarding the benefits of using complementary methods that are supported by intelligent systems, specifically, by intelligent information access systems, when processing texts written in natural language and the benefits of using these methods as companion tools to the learning activities that are employed by biomedical and health sciences teachers. Eleven teachers of degree courses who belonged to the Faculties of Biomedical Sciences (BS) and Health Sciences (HS) of a Spanish university in Madrid were individually interviewed. These interviews were conducted using a mixed methods questionnaire that included 66 predefined close-ended and open-ended questions. In our study, three intelligent information access systems (i.e., BioAnnote, CLEiM and MedCMap) were successfully used to evaluate the teacher's perceptions regarding the utility of these systems and their different methods in learning activities. All teachers reported using active learning methods in the classroom, most of which were computer programs that were used for initially designing and later executing learning activities. All teachers used case-based learning methods in the classroom, with a specific emphasis on case reports written in Spanish and/or English. In general, few or none of the teachers were familiar with the technical terms related to the technologies used for these activities such as "intelligent systems" or "concept/mental maps". However, they clearly realized the potential applicability of such

  19. Antioxidant Activity of Flaxseed Extracts in Lipid Systems

    Directory of Open Access Journals (Sweden)

    Adriana Slavova-Kazakova

    2015-12-01

    Full Text Available The aim of this work was to compare the antioxidant activity of the extract of flaxseed and its alkaline hydrolysate in two model systems: lipid autoxidation of triacylglycerols of sunflower oil (TGSO—in a homogeneous lipid media and during β-carotene-linoleate emulsion system. In addition, pure lignans were tested. The material was defatted with hexane and then phenolic compounds were extracted using dioxane-ethanol (50:50, v/v mixture. Carbohydrates were removed from the crude extract using an Amberlite XAD-16 column chromatography. The content of total phenolic compounds in the crude extract and after alkaline hydrolysis was determined using a Folin-Ciocalteu’s phenol reagent. Individual phenolic compounds were determined by nordihydroguaiaretic acid (RP-HPLC method in gradient system. The alkaline hydrolysis increased the content of total phenolics in the extract approximately by 10%. In the extracts of flaxseed, phenolic compounds were present in the form of macromolecular complex. In the alkaline hydrolysate, secoisolariciresinol diglucoside (SDG was found as the main phenolic compound. Small amounts of p-coumaric and ferulic acids were also determined. SDG and both extracts were not able to inhibit effectively lipid autoxidation. The kinetics of TGSO autoxidation at 80 °C in absence and in presence of the extract before hydrolysis (EBH and after hydrolysis (EAH was monitored and compared with known standard antioxidants. Ferulic acid (FA and butylated hydroxyl toluene (BHT showed much higher antioxidant efficiency and reactivity than that of both extracts. Secoisolariciresinol (SECO showed a higher activity in both model systems than SDG. However, the activity of SECO was much lower than that of nordihydroquaiaretic acid (NDGA.

  20. Effects of activation of endocannabinoid system on myocardial metabolism

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2016-05-01

    Full Text Available Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  1. Experimental system model of a primary active fluid

    International Nuclear Information System (INIS)

    Deseigne, Julien

    2010-01-01

    Collective motion, such as flocks of birds or shoals of fish, is ubiquitous in nature. Such fundamentally out-of-equilibrium phenomena may be described with the new conceptual background of polar active matter, a system of polar particles which enables to use provided energy in order to move in their own directions. A 2D experimental system of vibrated polar disks that interact only by contact has been set up. These disks behave as random walkers, whose trajectories are characterized by a persistence length greater than their size and controlled by the angular fluctuations of their polarity. The interplay between the hard-core repulsion and the persistence of the motion leads to complex alignment modes. For instance, only 10 pc of the binary collisions correspond to an effective ferromagnetic alignment. Yet, spontaneous collective motion inside the system characterized by giant fluctuations of density have been observed. These results reveal the robustness of the polar order observed in theoretical and numerical models of 2D polar active matter on substrate

  2. Vascular uptake of rehydration fluids in hypohydrated men at rest and exercise

    Science.gov (United States)

    Greenleaf, J. E.; Geelen, G.; Jackson, C. G. R.; Saumet, J.-L.; Juhos, L. T.; Keil, L. C.; Fegan-Meyer, D.; Dearborn, A.; Hinghofer-Szalkay, H.; Whittam, J. H.

    1992-01-01

    The purpose of this study was to formulate and to evaluate rehydration drinks, which would restore total body water and plasma volume (PV), for astronauts to consume before and during extravehicular activity, a few hours before reentry, and immediately after landing. In the first experiment (rest, sitting), five healthy men (23-41 yr), previously dehydrated for 24 hr., drank six (1a, 2, 4, 5, 6, 7) fluid formulations (one each at weekly intervals) and then sat for 70 min. Pre-test PV were measured with Evans blue dye and changes in PV were calculated with the hematocrit-hemoglobin transformation equation. This rest experiment simulated hypohydrated astronauts preparing for reentry. The second experiment (exercise, supine) followed the same protocol except four healthy men (30-46 yr) worked for 70 min. in the supine position on a cycle ergometer at a mean load of 71+/-1 percent of their peak aerobic work capacity. This exercise experiment simulated conditions for astronauts with reduced total body water engaging in extravehicular activity.

  3. ζ1 + ζ2 Reticuli binary system: a puzzling chromospheric activity pattern

    Science.gov (United States)

    Flores, M.; Saffe, C.; Buccino, A.; Jaque Arancibia, M.; González, J. F.; Nuñez, N. E.; Jofré, E.

    2018-05-01

    We perform, for the first time, a detailed long-term activity study of the binary system ζ Ret. We use all available HARPS spectra obtained between the years 2003 and 2016. We build a time series of the Mount Wilson S index for both stars, then we analyse these series by using Lomb-Scargle periodograms. The components ζ1 Ret and ζ2 Ret that belong to this binary system are physically very similar to each other and also similar to our Sun, which makes it a remarkable system. We detect in the solar-analogue star ζ2 Ret a long-term activity cycle with a period of ˜10 yr, similar to the solar one (˜11 yr). It is worthwhile to mention that this object satisfies previous criteria for a flat star and for a cycling star simultaneously. Another interesting feature of this binary system is a high ˜0.220 dex difference between the average log (R^' }_HK) activity levels of both stars. Our study clearly shows that ζ1 Ret is significantly more active than ζ2 Ret. In addition, ζ1 Ret shows an erratic variability in its stellar activity. In this work, we explore different scenarios trying to explain this rare behaviour in a pair of coeval stars, which could help to explain the difference in this and other binary systems. From these results, we also warn that for the development of activity-age calibrations (which commonly use binary systems and/or stellar clusters as calibrators) the whole history of activity available for the stars involved should be taken into account.

  4. Some Central Nervous System Activities of Nerium Oleander Linn ...

    African Journals Online (AJOL)

    Purpose: The purpose of the study was to evaluate the activity of 50 % hydroalcohol flower extract of Nerium oleander Linn. on the central nervous system (CNS) of mice. Methods: The effect of the 50 % hydroalcohol extract of N. oleander flowers at dosage levels of 100 and 200 mg/kg p.o. on the locomotor activity of mice ...

  5. Disk Operating System--DOS. Teacher Packet. Learning Activity Packets.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    The Learning Activity Packets (LAPs) contained in this manual are designed to assist the beginning user in understanding DOS (Disk Operating System). LAPs will not work with any version below DOS Version 3.0 and do not address the enhanced features of versions 4.0 or higher. These elementary activities cover only the DOS commands necessary to…

  6. Experimental Study on Active Control of Surge in a Centrifugal Compression System

    Directory of Open Access Journals (Sweden)

    Nie Chaoqun

    2000-01-01

    Full Text Available An experimental study has been carried out on the active control of surge in a centrifugal compression system. With a computerized on-line control scheme, the surge phenomenon is suppressed and the stable operating range of the system is extended. In order to design the active control scheme and choose the desired parameters of the control system inputs, special emphases have been placed on the development of surge inception and the nonlinear interaction between the system and the actuator. By use of the method designed in the present work, the results of active control onsurge have been demonstrated for the different B parameters, different prescribed criteria and different control frequencies.

  7. Balancing passive and active systems for evolutionary water cooled reactors

    International Nuclear Information System (INIS)

    Fil, N.S.; Allen, P.J.; Kirmse, R.E.; Kurihara, M.; Oh, S.J.; Sinha, R.K.

    1999-01-01

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  8. Simulation of disturbance rejection control of half-car active suspension system using active disturbance rejection control with decoupling transformation

    Science.gov (United States)

    Hasbullah, Faried; Faris, Waleed F.

    2017-12-01

    In recent years, Active Disturbance Rejection Control (ADRC) has become a popular control alternative due to its easy applicability and robustness to varying processes. In this article, ADRC with input decoupling transformation (ADRC-IDT) is proposed to improve ride comfort of a vehicle with an active suspension system using half-car model. The ride performance of the ADRC-IDT is evaluated and compared with decentralized ADRC control as well as the passive system. Simulation results show that both ADRC and ADRC-IDT manage to appreciably reduce body accelerations and able to cope well with varying conditions typically encountered in an active suspension system. Also, it is sufficient to control only the body motions with both active controllers to improve ride comfort while maintaining good road holding and small suspension working space.

  9. Comparing Pedophile Activity in Different P2P Systems

    OpenAIRE

    Raphaël Fournier; Thibault Cholez; Matthieu Latapy; Isabelle Chrisment; Clémence Magnien; Olivier Festor; Ivan Daniloff

    2014-01-01

    International audience; Peer-to-peer (P2P) systems are widely used to exchange content over the Internet. Knowledge of pedophile activity in such networks remains limited, despite having important social consequences. Moreover, though there are different P2P systems in use, previous academic works on this topic focused on one system at a time and their results are not directly comparable. We design a methodology for comparing KAD and eDonkey, two P2P systems among the most prominent ones and ...

  10. Active or passive systems? The EPR approach

    International Nuclear Information System (INIS)

    Bonhomme, N.; Py, J.P.

    1996-01-01

    In attempting to review how EPR is contemplated to meet requirements applicable to future nuclear power plants, the authors indicate where they see the markets and the corresponding unit sizes for the EPR which is a generic key factor for competitiveness. There are no reason in industrialized countries, other than USA (where the investment and amortizing practices under control by Public Utility Commission are quite particular), not to build future plants in the 1000 to 1500 MWe range. Standardization, which has been actively applied all along the French program and for the Konvoi plants, does not prevent evolution and allows to concentrate large engineering effort in smooth realization of plants and achieve actual construction and commissioning without significant delays. In order to contribute to public trust renewal, a next generation of power reactors should be fundamentally less likely to incur serious accidents. To reach this goal the best of passive and active systems must be considered without forgetting that the most important source of knowledge is construction and operating experience. Criteria to assess passive systems investigated for possible implementation in the EPR, such as simplicity of design, impact on plant operation, safety and cost, are discussed. Examples of the principal passive systems investigated are described and reasons why they have been dropped after screening through the criteria are given. (author). 11 figs

  11. Active or passive systems? The EPR approach

    Energy Technology Data Exchange (ETDEWEB)

    Bonhomme, N [Nuclear Power International, Cedex (France); Py, J P [FRAMATOME, Cedex (France)

    1996-12-01

    In attempting to review how EPR is contemplated to meet requirements applicable to future nuclear power plants, the authors indicate where they see the markets and the corresponding unit sizes for the EPR which is a generic key factor for competitiveness. There are no reason in industrialized countries, other than USA (where the investment and amortizing practices under control by Public Utility Commission are quite particular), not to build future plants in the 1000 to 1500 MWe range. Standardization, which has been actively applied all along the French program and for the Konvoi plants, does not prevent evolution and allows to concentrate large engineering effort in smooth realization of plants and achieve actual construction and commissioning without significant delays. In order to contribute to public trust renewal, a next generation of power reactors should be fundamentally less likely to incur serious accidents. To reach this goal the best of passive and active systems must be considered without forgetting that the most important source of knowledge is construction and operating experience. Criteria to assess passive systems investigated for possible implementation in the EPR, such as simplicity of design, impact on plant operation, safety and cost, are discussed. Examples of the principal passive systems investigated are described and reasons why they have been dropped after screening through the criteria are given. (author). 11 figs.

  12. Women Working in Engineering and Science

    Science.gov (United States)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  13. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  14. Overview of coupled bunch active damper systems at FNAL

    International Nuclear Information System (INIS)

    Steimel, J.; Crisp, J.; Ma, Hengjie; Marriner, J.; McGinnis, D.

    1996-05-01

    Beam intensities in all of the accelerators at Fermilab will increase significantly when the Main Injector becomes operational and will cause unstable oscillations in transverse position and energy. Places where the coupled bunch oscillations could dilute emittances include the Booster, Main Injector, and Tevatron. This paper provides an overview of the active feedback system upgrades which will be used to counteract the problem. It will explain the similarities between all the systems and will also explain design differences between longitudinal and transverse systems, fast sweeping systems, and systems for partially filled machines. Results from operational systems will also be shown. 7 refs., 4 figs., 1 tab

  15. Predictive capabilities of the specific activity hypothesis for Cs and Zn in freshwater systems

    International Nuclear Information System (INIS)

    Seelye, J.G.

    1975-01-01

    Predictions of radioisotope concentrations in components of aquatic systems have been attempted using the specific activity concept, an approach that seems theoretically sound. A comprehensive examination of the specific activities of 134 Cs and 65 Zn in the components of a freshwater system, over a 10 month period, was conducted to evaluate the specific activity hypothesis under applied conditions. This study was designed to provide comparisons of predicted and observed specific activities and to test the equivalence of specific activities between all components of the system. One dose of radioisotopes was added to the system in this study and even after 10 months these radioisotopes were not distributed similarly to the stable isotopes. This suggests that the time necessary to reach a specific activity equilibrium might be a matter of years rather than months. More importantly, in natural systems, where the radioisotope addition is continuous a specific activity equilibrium may never be achieved. These things plus the non-conservative nature of the 134 Cs and 65 Zn predicted concentrations indicates that the use of the specific activity concept for predicting radioisotope concentrations of Cs and Zn in freshwater systems is questionable. A more rigorous approach must be used, considering isotope transfer rates between components and the complexity of the system. Problems with statistical comparisons of derived variables, such as specific activities, are discussed and were considered in interpreting the results of this study

  16. Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion.

    Science.gov (United States)

    Ohmatsu, Satoko; Nakano, Hideki; Tominaga, Takanori; Terakawa, Yuzo; Murata, Takaho; Morioka, Shu

    2014-08-15

    Pedaling exercise (PE) of moderate intensity has been shown to ease anxiety and discomfort; however, little is known of the changes that occur in brain activities and in the serotonergic (5-HT) system after PE. Therefore, this study was conducted for the following reasons: (1) to localize the changes in the brain activities induced by PE using a distributed source localization algorithm, (2) to examine the changes in frontal asymmetry, as used in the Davidson model, with electroencephalography (EEG) activity, and (3) to examine the effect of PE on the 5-HT system. A 32-channel EEG was used to record before and after PE. Profile of Mood States tests indicated that there was a significant decrease in tension-anxiety and a significant increase in vigor after PE. A standardized low-resolution brain electromagnetic tomography analysis showed a significant decrease in brain activities after PE in the alpha-2 band (10-12.5 Hz) in the anterior cingulate cortex (ACC). Moreover, a significant increase in frontal EEG asymmetry was observed after PE in the alpha-1 band (7.5-10 Hz). Urine 5-HT levels significantly increased after PE. Urine 5-HT levels positively correlated with the degree of frontal EEG asymmetry in the alpha-1 band and negatively correlated with brain activity in ACC. Our results suggested that PE activates the 5-HT system and consequently induces increases in frontal EEG asymmetry in the alpha-1 band and reductions of brain activity in the alpha-2 band in the ACC region. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Performance testing of real-time AI systems using the activation framework

    International Nuclear Information System (INIS)

    Becker, L.; Duckworth, J.; Laznovsky, A.; Green, P.

    1992-01-01

    This paper describes methods for automated performance testing of real-time artificial intelligence systems using the Activation Framework software development tool. The Activation Framework is suitable for applications such as the diagnosis of power system failures, which require the interpretation of large volumes of data in real-time. The Activation Framework consists of tools for compiling groups of Expert Systems rules into executable code modules, for automatically generating code modules from high level system configuration descriptions, and for automatically generating command files for program compilation and linking. It includes an operating system environment which provides the code which is common from one real-time AI applications to the next. It also includes mechanisms, described here, for automatic performance testing. The principal emphasis of this paper is on a rule based language which is used to capture performance specifications. This specification is compiled into code modules which are used to automatically test the system. This testing can validate that the system meets performance requirements during development and after maintenance. A large number of tests can be randomly generated and executed and the correctness of the outputs automatically validated. The paper also describes graph directed testing methods to minimize the number of test runs required

  18. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  19. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  20. Sustainable Transportation Systems Research Group: Ongoing and Past Activities

    OpenAIRE

    Gkritza, Konstantina "Nadia"; Hurtado, Davis Chacon; Gkartzonikas, Christos; Ke, Yue; Losada, Lisa L

    2017-01-01

    This presentation describes the ongoing and past activities of the Sustainable Transportation Systems Research (STSR) group at Purdue University (https://engineering.purdue.edu/STSRG). The STSR group aims to achieve green, safe, efficient, and equitable transportation systems by studying and modeling transportation externalities, using state of the art statistical, econometric, and economic analysis tools.

  1. Perspective on Secure Development Activities and Features of Safety I and C Systems

    International Nuclear Information System (INIS)

    Kang, Youngdoo; Yu, Yeong Jin; Kim, Hyungtae; Kwon, Yong il; Park, Yeunsoo; Choo, Jaeyul; Son, Jun Young; Jeong, Choong Heui

    2015-01-01

    The Enforcement Decree of the Act on Physical Protection and Radiological Emergency (ED-APPRE) was revised December 2013 to include security requirements on computer systems at nuclear facilities to protect those systems against malicious cyber-attacks. It means Cyber-Security-related measures, controls and activities of safety I and C systems against cyber-attacks shall meet the requirements of ED-APPRE. Still regulation upon inadvertent access or non-malicious modifications to the safety I and C systems is covered under the Nuclear Safety Act. The objective of this paper is to propose KINS' regulatory perspective on secure development and features against non-malicious access or modification of safety I and C systems. Secure development activities and features aim to prevent inadvertent and non-malicious access, and to prevent unwanted action from personnel or connected systems for ensuring reliable operation of safety I and C systems. Secure development activities of safety I and C systems are life cycle activities to ensure unwanted, unneeded and undocumented code is not incorporated into the systems. Secure features shall be developed, verified and qualified throughout the development life cycle

  2. Perspective on Secure Development Activities and Features of Safety I and C Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Youngdoo; Yu, Yeong Jin; Kim, Hyungtae; Kwon, Yong il; Park, Yeunsoo; Choo, Jaeyul; Son, Jun Young; Jeong, Choong Heui [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    The Enforcement Decree of the Act on Physical Protection and Radiological Emergency (ED-APPRE) was revised December 2013 to include security requirements on computer systems at nuclear facilities to protect those systems against malicious cyber-attacks. It means Cyber-Security-related measures, controls and activities of safety I and C systems against cyber-attacks shall meet the requirements of ED-APPRE. Still regulation upon inadvertent access or non-malicious modifications to the safety I and C systems is covered under the Nuclear Safety Act. The objective of this paper is to propose KINS' regulatory perspective on secure development and features against non-malicious access or modification of safety I and C systems. Secure development activities and features aim to prevent inadvertent and non-malicious access, and to prevent unwanted action from personnel or connected systems for ensuring reliable operation of safety I and C systems. Secure development activities of safety I and C systems are life cycle activities to ensure unwanted, unneeded and undocumented code is not incorporated into the systems. Secure features shall be developed, verified and qualified throughout the development life cycle.

  3. Preliminary engineering assessment of the HCLL and HCPB Neutron Activation System

    Energy Technology Data Exchange (ETDEWEB)

    Calderoni, Pattrick; Leichtle, Dieter [Fusion for Energy, Barcelona, (Spain); Angelone, Maurizio [ENEA, Unita Tecnica Fusione, Frascati, (Italy); Klix, Axel [KIT, Eggenstein-Leopoldshafen, (Germany)

    2015-07-01

    The Neutron Activation System (NAS) is one of the four types of neutronics sensors considered for the testing of the HCLL and HCPB Test Blanket Module (TBM) in ITER. It measures the absolute neutron flux intensity with information on the neutron spectrum in selected positions of the TBM. The working principle of the NAS is as follows: the system moves small activation probes (capsules) into selected positions in the TBM (irradiation ends) by means of pneumatic transport with pressurized helium gas; the capsules are irradiated for a selected period, depending on their materials composition (several tens of seconds up to the full plasma pulse length); immediately after the irradiation they are extracted and transported to a gamma spectrometer by means of the same pneumatic transport system; the gamma spectrometer determines the induced gamma activity; the neutron flux and neutron fluence is calculated from the measured gamma activity and the known activation cross section of the materials in the activation probe; after the measurement the capsule is sent either to a disposal or storage (for later measurement). This paper summarizes the results of the feasibility assessment of the TBM NAS in the conceptual design phase, including design justification, identification of requirements based on the expected operating conditions in ITER and preliminary engineering assessment of the activation materials, irradiation ends integration in the modules design and the counting station. (authors)

  4. Influence of Atmospheric Propagation on Performance of Laser Active Imaging System

    International Nuclear Information System (INIS)

    Li Yingchun; Sun Huayan; Guo Huichao; Zhao Yun

    2011-01-01

    Atmospheric propagation has serious influence on the performance of a good designed laser active imaging system. Atmospheric attenuation and turbulence are two main effects on laser atmospheric propagation. Imaging SNR (Signal-Noise-Ratio) and resolution are two key indexes to describe the performance of a laser active imaging system. Establishing the relation between system performance index and atmospheric propagation effect is significant. The paper analyzed the relation between imaging performance and atmospheric attenuation and turbulence through simulation. And also the experiments were done under different weather to validate the conclusion of simulation.

  5. Reliability Assessment of Active Distribution System Using Monte Carlo Simulation Method

    Directory of Open Access Journals (Sweden)

    Shaoyun Ge

    2014-01-01

    Full Text Available In this paper we have treated the reliability assessment problem of low and high DG penetration level of active distribution system using the Monte Carlo simulation method. The problem is formulated as a two-case program, the program of low penetration simulation and the program of high penetration simulation. The load shedding strategy and the simulation process were introduced in detail during each FMEA process. Results indicate that the integration of DG can improve the reliability of the system if the system was operated actively.

  6. A Studi on High Plant Systems Course with Active Learning in Higher Education Through Outdoor Learning to Increase Student Learning Activities

    OpenAIRE

    Nur Rokhimah Hanik, Anwari Adi Nugroho

    2015-01-01

    Biology learning especially high plant system courses needs to be applied to active learning centered on the student (Active Learning In Higher Education) to enhance the students' learning activities so that the quality of learning for the better. Outdoor Learning is one of the active learning invites students to learn outside of the classroom by exploring the surrounding environment. This research aims to improve the students' learning activities in the course of high plant systems through t...

  7. Endothelial dysfunction is associated with activation of the type i interferon system and platelets in patients with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Tydén, Helena; Lood, Christian; Gullstrand, Birgitta

    2017-01-01

    Objectives Endothelial dysfunction may be connected to cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Type I interferons (IFNs) are central in SLE pathogenesis and are suggested to induce both endothelial dysfunction and platelet activation. In this study, we investigated...... with activation of platelets and the type I IFN system. We suggest that an interplay between the type I IFN system, injured endothelium and activated platelets may contribute to development of CVD in SLE....

  8. NASA Research Announcement Phase 1 Report and Phase 2 Proposal for the Development of a Power Assisted Space Suit Glove Assembly

    Science.gov (United States)

    Cadogan, Dave; Lingo, Bob

    1996-01-01

    In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.

  9. STS-114: Discovery Crew Arrival

    Science.gov (United States)

    2005-01-01

    George Diller of NASA Public Affairs narrates the STS-114 Crew arrival at Kennedy Space Center aboard a Gulf Stream aircraft. They were greeted by Center Director Jim Kennedy. Commander Eileen Collins introduced each of her crew members and gave a brief description of their roles in the mission. Mission Specialist 3, Andrew Thomas will be the lead crew member on the inspection on flight day 2; he is the intravehicular (IV) crew member that will help and guide Mission Specialists Souichi Noguchi and Stephen Robinson during their spacewalks. Pilot James Kelly will be operating the shuttle systems in flying the Shuttle; he will be flying the space station robotic arm during the second extravehicular activity and he will be assisting Mission Specialist Wendy Lawrence during the other two extravehicular activities; he will be assisting on the rendezvous on flight day three, and landing of the shuttle. Commander Collins also mentioned Pilot Kelly's recent promotion to Colonel by the United States Air Force. Mission Specialist 1, Souichi Noguchi from JAXA (The Japanese Space Agency) will be flying on the flight deck for ascent; he will be doing three spacewalks on day 5, 7, and 9; He will be the photo/TV lead for the different types of cameras on board to document the flight and to send back the information to the ground for both technical and public affairs reasons. Mission Specialist 5, Charles Camada will be doing the inspection on flight day 2 with Mission Specialist Thomas and Pilot Kelly; he will be transferring the logistics off the shuttle and onto the space station and from the space station back to the shuttle; He will help set up eleven lap tops on board. Mission Specialist 4, Wendy Lawrence will lead the transfer of logistics to the space station; she is the space station arm operator during extravehicular activities 1 and 3; she will be carrying the 6,000 pounds of external storage platform from the shuttle payload bay over to the space station; she is also

  10. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles.

    Science.gov (United States)

    Nandi, Saroj Kumar; Gov, Nir S

    2017-10-25

    The physics of active systems of self-propelled particles, in the regime of a dense liquid state, is an open puzzle of great current interest, both for statistical physics and because such systems appear in many biological contexts. We develop a nonequilibrium mode-coupling theory (MCT) for such systems, where activity is included as a colored noise with the particles having a self-propulsion force f 0 and a persistence time τ p . Using the extended MCT and a generalized fluctuation-dissipation theorem, we calculate the effective temperature T eff of the active fluid. The nonequilibrium nature of the systems is manifested through a time-dependent T eff that approaches a constant in the long-time limit, which depends on the activity parameters f 0 and τ p . We find, phenomenologically, that this long-time limit is captured by the potential energy of a single, trapped active particle (STAP). Through a scaling analysis close to the MCT glass transition point, we show that τ α , the α-relaxation time, behaves as τ α ∼ f 0 -2γ , where γ = 1.74 is the MCT exponent for the passive system. τ α may increase or decrease as a function of τ p depending on the type of active force correlations, but the behavior is always governed by the same value of the exponent γ. Comparison with the numerical solution of the nonequilibrium MCT and simulation results give excellent agreement with scaling analysis.

  11. Accessing simply-substituted 4-hydroxytetrahydroisoquinolines via Pomeranz–Fritsch–Bobbitt reaction with non-activated and moderately-activated systems

    Directory of Open Access Journals (Sweden)

    Marco Mottinelli

    2017-09-01

    Full Text Available Background: 1,2,3,4-Tetrahydroisoquinolines (THIQs are common motifs in alkaloids and in medicinal chemistry. Synthetic access to THIQs via the Pomeranz–Fritsch–Bobbit (PFB methodology using mineral acids for deactivated, electron-poor aromatic systems, is scarcely represented in the literature. Here, the factors controlling the regiochemical outcome of cyclization are evaluated.Results: A double reductive alkylation was telescoped into a one-pot reaction delivering good to excellent yields of desired aminoacetals for cyclization. Cyclization of activated systems proceeded smoothly under standard PFB conditions, but for non-activated systems the use of HClO4 alone was effective. When cyclization was possible in both para- and ortho-positions to the substituent, 7-substituted derivatives were formed with significant amounts of 5-substituted byproduct. The formation of the 4-hydroxy-THIQs vs the 4-methoxy-THIQ products could be controlled through modification of the reaction concentration. In addition, while a highly-activated system exclusively cyclized to the indole, this seems generally highly disfavored. When competition between 6- and 7-ring formation was investigated in non-activated systems, 5,7,8,13-tetrahydro-6,13-methanodibenzo[c,f]azonine was exclusively obtained. Furthermore, selective ring closure in the para-position could be achieved under standard PFB conditions, while a double ring closure could be obtained utilizing HClO4.Conclusion: Reactivity differences in aminoacetal precursors can be employed to control cyclization using the PFB methodology. It is now possible to select confidently the right conditions for the synthesis of N-aryl-4-hydroxy-1,2,3,4-tetrahydroisoquinolines.

  12. Accessing simply-substituted 4-hydroxytetrahydroisoquinolines via Pomeranz–Fritsch–Bobbitt reaction with non-activated and moderately-activated systems

    Science.gov (United States)

    Mottinelli, Marco; Leese, Mathew P

    2017-01-01

    Background: 1,2,3,4-Tetrahydroisoquinolines (THIQs) are common motifs in alkaloids and in medicinal chemistry. Synthetic access to THIQs via the Pomeranz–Fritsch–Bobbit (PFB) methodology using mineral acids for deactivated, electron-poor aromatic systems, is scarcely represented in the literature. Here, the factors controlling the regiochemical outcome of cyclization are evaluated. Results: A double reductive alkylation was telescoped into a one-pot reaction delivering good to excellent yields of desired aminoacetals for cyclization. Cyclization of activated systems proceeded smoothly under standard PFB conditions, but for non-activated systems the use of HClO4 alone was effective. When cyclization was possible in both para- and ortho-positions to the substituent, 7-substituted derivatives were formed with significant amounts of 5-substituted byproduct. The formation of the 4-hydroxy-THIQs vs the 4-methoxy-THIQ products could be controlled through modification of the reaction concentration. In addition, while a highly-activated system exclusively cyclized to the indole, this seems generally highly disfavored. When competition between 6- and 7-ring formation was investigated in non-activated systems, 5,7,8,13-tetrahydro-6,13-methanodibenzo[c,f]azonine was exclusively obtained. Furthermore, selective ring closure in the para-position could be achieved under standard PFB conditions, while a double ring closure could be obtained utilizing HClO4. Conclusion: Reactivity differences in aminoacetal precursors can be employed to control cyclization using the PFB methodology. It is now possible to select confidently the right conditions for the synthesis of N-aryl-4-hydroxy-1,2,3,4-tetrahydroisoquinolines. PMID:29062406

  13. Accessing simply-substituted 4-hydroxytetrahydroisoquinolines via Pomeranz-Fritsch-Bobbitt reaction with non-activated and moderately-activated systems.

    Science.gov (United States)

    Mottinelli, Marco; Leese, Mathew P; Potter, Barry V L

    2017-01-01

    Background: 1,2,3,4-Tetrahydroisoquinolines (THIQs) are common motifs in alkaloids and in medicinal chemistry. Synthetic access to THIQs via the Pomeranz-Fritsch-Bobbit (PFB) methodology using mineral acids for deactivated, electron-poor aromatic systems, is scarcely represented in the literature. Here, the factors controlling the regiochemical outcome of cyclization are evaluated. Results: A double reductive alkylation was telescoped into a one-pot reaction delivering good to excellent yields of desired aminoacetals for cyclization. Cyclization of activated systems proceeded smoothly under standard PFB conditions, but for non-activated systems the use of HClO 4 alone was effective. When cyclization was possible in both para - and ortho -positions to the substituent, 7-substituted derivatives were formed with significant amounts of 5-substituted byproduct. The formation of the 4-hydroxy-THIQs vs the 4-methoxy-THIQ products could be controlled through modification of the reaction concentration. In addition, while a highly-activated system exclusively cyclized to the indole, this seems generally highly disfavored. When competition between 6- and 7-ring formation was investigated in non-activated systems, 5,7,8,13-tetrahydro-6,13-methanodibenzo[ c , f ]azonine was exclusively obtained. Furthermore, selective ring closure in the para- position could be achieved under standard PFB conditions, while a double ring closure could be obtained utilizing HClO 4 . Conclusion: Reactivity differences in aminoacetal precursors can be employed to control cyclization using the PFB methodology. It is now possible to select confidently the right conditions for the synthesis of N- aryl-4-hydroxy-1,2,3,4-tetrahydroisoquinolines.

  14. Measurements on an electromagnetic active suspension system for automotive applications

    NARCIS (Netherlands)

    Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A.; Encica, L.; Gysen, B.L.J.; Jansen, J.W.; Krop, D.C.J.

    2008-01-01

    Abstract—This paper describes the specifications for active suspension systems and provides an electromagnetic solution. Electromagnetic actuation and preliminary control strategies are investigated in order to achieve a suspension system with the ability to absorb road irregularities and perform

  15. Development of Active Noise Control System for Quieting Transformer Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1997-12-31

    The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.

  16. Case-study of thermo active building systems in Japanese climate

    DEFF Research Database (Denmark)

    Li, Rongling; Yoshidomi, Togo; Ooka, Ryozo

    2015-01-01

    Thermo active building systems (TABS) have been applied in office buildings as a promising energy efficient solution in many European countries. The utilization of building thermal mass helps to provide high quality thermal environments with less energy consumption. However, the concept of TABS...... is entirely new in Japan. This paper introduces and evaluates TABS under Tokyo weather conditions to clarify the potential of use TABS in Japan. Cooling capacity of thermo active building systems used in an office building was evaluated by means of dynamic simulations. Two central rooms of the office were...

  17. A Modern Costing System: Activity Based Costing and An Application On A Textile Company

    OpenAIRE

    Titiz, İsmet; Altunay, Mehmet Akif

    2012-01-01

    The aim of this study is understanding Activity Based Costing which is one of the systems of modern cost approaches. Main concepts about activity based costing is defined and development of the system is identified. In the last part, an application about the activity based costing system in a textile company is explained and the results are analyzed.

  18. Automated chromatographic laccase-mediator-system activity assay.

    Science.gov (United States)

    Anders, Nico; Schelden, Maximilian; Roth, Simon; Spiess, Antje C

    2017-08-01

    To study the interaction of laccases, mediators, and substrates in laccase-mediator systems (LMS), an on-line measurement was developed using high performance anion exchange chromatography equipped with a CarboPac™ PA 100 column coupled to pulsed amperometric detection (HPAEC-PAD). The developed method was optimized for overall chromatographic run time (45 to 120 min) and automated sample drawing. As an example, the Trametes versicolor laccase induced oxidation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane (adlerol) using 1-hydroxybenzotriazole (HBT) as mediator was measured and analyzed on-line. Since the Au electrode of the PAD detects only hydroxyl group containing substances with a limit of detection being in the milligram/liter range, not all products are measureable. Therefore, this method was applied for the quantification of adlerol, and-based on adlerol conversion-for the quantification of the LMS activity at a specific T. versicolor laccase/HBT ratio. The automated chromatographic activity assay allowed for a defined reaction start of all laccase-mediator-system reactions mixtures, and the LMS reaction progress was automatically monitored for 48 h. The automatization enabled an integrated monitoring overnight and over-weekend and minimized all manual errors such as pipetting of solutions accordingly. The activity of the LMS based on adlerol consumption was determined to 0.47 U/mg protein for a laccase/mediator ratio of 1.75 U laccase/g HBT. In the future, the automated method will allow for a fast screening of combinations of laccases, mediators, and substrates which are efficient for lignin modification. In particular, it allows for a fast and easy quantification of the oxidizing activity of an LMS on a lignin-related substrate which is not covered by typical colorimetric laccase assays. ᅟ.

  19. Robots for hazardous duties: Military, space, and nuclear facility applications. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the design and application of robots used in place of humans where the environment could be hazardous. Military applications include autonomous land vehicles, robotic howitzers, and battlefield support operations. Space operations include docking, maintenance, mission support, and intra-vehicular and extra-vehicular activities. Nuclear applications include operations within the containment vessel, radioactive waste operations, fueling operations, and plant security. Many of the articles reference control techniques and the use of expert systems in robotic operations. Applications involving industrial manufacturing, walking robots, and robot welding are cited in other published searches in this series. (Contains a minimum of 183 citations and includes a subject term index and title list.)

  20. The role of the restructured Mobile Remote Service Base System (MBS) in support of Space Station maintenance and servicing

    Science.gov (United States)

    Darlington, T.; Krukewich, K.

    1992-08-01

    The critical parameters resulting from the restructuring of Space Station Freedom which necessitated the redesign of the Mobile Remote Service Base System (MBS) are described. These include optimization of robotic attachment locations for access to the Space Station truss-mounted orbital replacement units, transport of logistics carriers to the maintenance sites, minimization of EVA overhead associated with maintenance, self-maintenance of other mobile servicing system (MSS) elements on the MBS, and balancing of station EVA and extravehicular robotics in a complementary fashion to minimize maintenance overhead in general. Consideration is given to the configuration of the resulting MBS, which provides the program with maximum flexibility to utilize the assets of the MSS and optimizes end-to-end maintenance with regard to the use of station resources such as crew time and power. Maintenance and servicing scenarios which are instrumental to the reconfigured MBS as well as the results of improved maintenance capability are presented.

  1. Active-passive vibration absorber of beam-cart-seesaw system with piezoelectric transducers

    Science.gov (United States)

    Lin, J.; Huang, C. J.; Chang, Julian; Wang, S.-W.

    2010-09-01

    In contrast with fully controllable systems, a super articulated mechanical system (SAMS) is a controlled underactuated mechanical system in which the dimensions of the configuration space exceed the dimensions of the control input space. The objectives of the research are to develop a novel SAMS model which is called beam-cart-seesaw system, and renovate a novel approach for achieving a high performance active-passive piezoelectric vibration absorber for such system. The system consists of two mobile carts, which are coupled via rack and pinion mechanics to two parallel tracks mounted on pneumatic rodless cylinders. One cart carries an elastic beam, and the other cart acts as a counterbalance. One adjustable counterweight mass is also installed underneath the seesaw to serve as a passive damping mechanism to absorb impact and shock energy. The motion and control of a Bernoulli-Euler beam subjected to the modified cart/seesaw system are analyzed first. Moreover, gray relational grade is utilized to investigate the sensitivity of tuning the active proportional-integral-derivative (PID) controller to achieve desired vibration suppression performance. Consequently, it is shown that the active-passive vibration absorber can not only provide passive damping, but can also enhance the active action authority. The proposed software/hardware platform can also be profitable for the standardization of laboratory equipment, as well as for the development of entertainment tools.

  2. Performance of a grid connected PV system used as active filter

    International Nuclear Information System (INIS)

    Calleja, Hugo; Jimenez, Humberto

    2004-01-01

    In this paper, the performance of a grid connected photovoltaic (PV) system used as an active filter is presented. Its main feature is the capability to compensate the reactive and harmonic currents drawn by nonlinear loads while simultaneously injecting into the grid the maximum power available from the cells. The system can also operate as a stand alone active filter. The system was connected to a 1 kW PV array and tested with the loads typically found in households: small motors, personal computers and electronic ballasts. The results show that the system can correct the power factor to values close to unity for all the cases tested, thereby improving the efficiency of the electric energy supply

  3. Development of an automatic prompt gamma-ray activation analysis system

    International Nuclear Information System (INIS)

    Osawa, Takahito

    2013-01-01

    An automatic prompt gamma-ray activation analysis system was developed and installed at the Japan Research Reactor No. 3 Modified (JRR-3M). The main control software, referred to as AutoPGA, was developed using LabVIEW 2011 and the hand-made program can control all functions of the analytical system. The core of the new system is an automatic sample exchanger and measurement system with several additional automatic control functions integrated into the system. Up to fourteen samples can be automatically measured by the system. (author)

  4. The European Activation System. EASY-2001 overview

    International Nuclear Information System (INIS)

    Forrest, R.A.

    2001-03-01

    This document gives an overview of the European Activation System (EASY) as released in 2001. EASY-2001 consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. It is designed to investigate fusion devices that will act as intense sources of high energy (14 MeV) neutrons and cause significant activation of the surrounding materials. However, the very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 20 MeV

  5. Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control

    Science.gov (United States)

    Varan, Metin; Akgul, Akif

    2018-04-01

    In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.

  6. Assessment of physical activity of the human body considering the thermodynamic system.

    Science.gov (United States)

    Hochstein, Stefan; Rauschenberger, Philipp; Weigand, Bernhard; Siebert, Tobias; Schmitt, Syn; Schlicht, Wolfgang; Převorovská, Světlana; Maršík, František

    2016-01-01

    Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier-Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive. Direct measurements are expensive and often not applicable outside laboratories. This paper offers a new approach to assess physical activity using thermodynamical systems and its leading quantity of entropy production which is a compromise between computation time and precise prediction of pressure, volume, and flow variables in blood vessels. Based on a simplified (one-dimensional) model of the cardiovascular system of the human body, we develop and evaluate a setup calculating entropy production of the heart to determine the intensity of human physical activity in a more precise way than previous parameters, e.g. frequently used energy considerations. The knowledge resulting from the precise real-time physical activity provides the basis for an intelligent human-technology interaction allowing to steadily adjust the degree of physical activity according to the actual individual performance level and thus to improve training and activity recommendations.

  7. Combining users' activity survey and simulators to evaluate human activity recognition systems.

    Science.gov (United States)

    Azkune, Gorka; Almeida, Aitor; López-de-Ipiña, Diego; Chen, Liming

    2015-04-08

    Evaluating human activity recognition systems usually implies following expensive and time-consuming methodologies, where experiments with humans are run with the consequent ethical and legal issues. We propose a novel evaluation methodology to overcome the enumerated problems, which is based on surveys for users and a synthetic dataset generator tool. Surveys allow capturing how different users perform activities of daily living, while the synthetic dataset generator is used to create properly labelled activity datasets modelled with the information extracted from surveys. Important aspects, such as sensor noise, varying time lapses and user erratic behaviour, can also be simulated using the tool. The proposed methodology is shown to have very important advantages that allow researchers to carry out their work more efficiently. To evaluate the approach, a synthetic dataset generated following the proposed methodology is compared to a real dataset computing the similarity between sensor occurrence frequencies. It is concluded that the similarity between both datasets is more than significant.

  8. Combining Users’ Activity Survey and Simulators to Evaluate Human Activity Recognition Systems

    Directory of Open Access Journals (Sweden)

    Gorka Azkune

    2015-04-01

    Full Text Available Evaluating human activity recognition systems usually implies following expensive and time-consuming methodologies, where experiments with humans are run with the consequent ethical and legal issues. We propose a novel evaluation methodology to overcome the enumerated problems, which is based on surveys for users and a synthetic dataset generator tool. Surveys allow capturing how different users perform activities of daily living, while the synthetic dataset generator is used to create properly labelled activity datasets modelled with the information extracted from surveys. Important aspects, such as sensor noise, varying time lapses and user erratic behaviour, can also be simulated using the tool. The proposed methodology is shown to have very important advantages that allow researchers to carry out their work more efficiently. To evaluate the approach, a synthetic dataset generated following the proposed methodology is compared to a real dataset computing the similarity between sensor occurrence frequencies. It is concluded that the similarity between both datasets is more than significant.

  9. Combining Users' Activity Survey and Simulators to Evaluate Human Activity Recognition Systems

    Science.gov (United States)

    Azkune, Gorka; Almeida, Aitor; López-de-Ipiña, Diego; Chen, Liming

    2015-01-01

    Evaluating human activity recognition systems usually implies following expensive and time-consuming methodologies, where experiments with humans are run with the consequent ethical and legal issues. We propose a novel evaluation methodology to overcome the enumerated problems, which is based on surveys for users and a synthetic dataset generator tool. Surveys allow capturing how different users perform activities of daily living, while the synthetic dataset generator is used to create properly labelled activity datasets modelled with the information extracted from surveys. Important aspects, such as sensor noise, varying time lapses and user erratic behaviour, can also be simulated using the tool. The proposed methodology is shown to have very important advantages that allow researchers to carry out their work more efficiently. To evaluate the approach, a synthetic dataset generated following the proposed methodology is compared to a real dataset computing the similarity between sensor occurrence frequencies. It is concluded that the similarity between both datasets is more than significant. PMID:25856329

  10. Spectroscopic Determination of Trace Contaminants in High Purity Oxygen

    Science.gov (United States)

    Hornung, Steven D.

    2011-01-01

    Oxygen used for extravehicular activities (EVA) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. Measurement of oxygen purity above 99.5% is problematic, and currently only complex instruments such as gas chromatographs or mass spectrometers are used for these determinations. Because liquid oxygen boil-off from the space shuttle will no longer be available to supply oxygen for EVA use, other concepts are being developed to produce and validate high purity oxygen from cabin air aboard the International Space Station. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen was developed at White Sands Test Facility. This instrument uses a glow discharge in reduced pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants and may lend itself to a device capable of on-orbit verification of oxygen purity. System design and optimized measurement parameters are presented.

  11. The safeguards active response inventory system (SARIS)

    International Nuclear Information System (INIS)

    Carlson, R.L.; Hairston, L.A.; O'Callaghan, P.B.; Grambihler, A.J.; Ruemmler, W.P.

    1987-01-01

    The Safeguards Active Response Inventory System (SARIS) is a computerized accountability system developed for nuclear materials control that incorporates elements of process monitoring, criticality safety, physical inventory and safeguards. It takes data from the process operations, stores it in an on-line database and translates the information into the formats needed by the various users. It traces the material through the process from feed to product; including recycle, waste and scraps streams. It models the process as the material changes form to ensure that artificial losses are not created. It automatically generates input to Nuclear Materials Management and Safeguards System (NMMSS), performs checks to prevent the possibility of a criticality accident, prepares an audit trail for Safeguards, prints labels for nuclear material containers, and produces DOE/NRC 741 forms. SARIS has been installed at three laboratories across the country

  12. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  13. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  14. Active polarization imaging system based on optical heterodyne balanced receiver

    Science.gov (United States)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  15. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    Science.gov (United States)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  16. Systemic Immune Activation and HIV Shedding in the Female Genital Tract.

    Science.gov (United States)

    Spencer, LaShonda Y; Christiansen, Shawna; Wang, Chia-Hao H; Mack, Wendy J; Young, Mary; Strickler, Howard D; Anastos, Kathryn; Minkoff, Howard; Cohen, Mardge; Geenblatt, Ruth M; Karim, Roksana; Operskalski, Eva; Frederick, Toni; Homans, James D; Landay, Alan; Kovacs, Andrea

    2016-02-01

    Plasma HIV RNA is the most significant determinant of cervical HIV shedding. However, shedding is also associated with sexually transmitted infections (STIs) and cervical inflammation. The mechanism by which this occurs is poorly understood. There is evidence that systemic immune activation promotes viral entry, replication, and HIV disease progression. We hypothesized that systemic immune activation would be associated with an increase in HIV genital shedding. Clinical assessments, HIV RNA in plasma and genital secretions, and markers of immune activation (CD38(+)DR(+) and CD38(-)DR(-)) on CD4(+) and CD8(+) T cells in blood were evaluated in 226 HIV+ women enrolled in the Women's Interagency HIV Study. There were 569 genital evaluations of which 159 (28%) exhibited HIV RNA shedding, defined as HIV viral load >80 copies per milliliter. We tested associations between immune activation and shedding using generalized estimating equations with logit link function. In the univariate model, higher levels of CD4(+) and CD8(+) T-cell activation in blood were significantly associated with genital tract shedding. However, in the multivariate model adjusting for plasma HIV RNA, STIs, and genital tract infections, only higher levels of resting CD8(+) T cells (CD38(-)DR(-)) were significantly inversely associated with HIV shedding in the genital tract (odds ratios = 0.44, 95% confidence interval: 0.21 to 0.9, P = 0.02). The association of systemic immune activation with genital HIV shedding is multifactorial. Systemic T-cell activation is associated with genital tract shedding in univariate analysis but not when adjusting for plasma HIV RNA, STIs, and genital tract infections. In addition, women with high percentage of resting T cells are less likely to have HIV shedding compared with those with lower percentages. These findings suggest that a higher percentage of resting cells, as a result of maximal viral suppression with treatment, may decrease local genital activation, HIV

  17. Analysis of economic characteristics of a tariff system for thermal energy activities

    Energy Technology Data Exchange (ETDEWEB)

    Banovac, Eraldo [Croatian Energy Regulatory Agency, Zagreb (Croatia); Gelo, Tomislav; Simurina, Jurica [University of Zagreb (Croatia). Faculty of Economics and Business

    2007-11-15

    Generally speaking, the creation of tariff systems for energy activities carried out as regulated or public service obligation is becoming professionally challenging. The Croatian Energy Regulatory Agency (CERA) created the methodology of the tariff system for thermal energy activities and passed this tariff system (without tariff element amounts) in May 2006. The background of the tariff system for thermal energy activities (heat generation, heat distribution and heat supply) including a legislative framework relevant for passing the tariff system, terminology, matrix of the tariff models, tariff elements and amounts of tariff entries are analyzed in this paper. Special attention is paid to the economic characteristics of the tariff system, such as the capital asset pricing model (CAPM), which is chosen among several models of the weighted average of cost of capital (WACC). Using the WACC, the regulatory authorities ensure returns to be equal to the opportunity cost of capital. Furthermore, main formulae and procedures for submitting the proposal for changing the amounts of tariff elements are analyzed as well. (author)

  18. Analysis of economic characteristics of a tariff system for thermal energy activities

    International Nuclear Information System (INIS)

    Banovac, Eraldo; Gelo, Tomislav; Simurina, Jurica

    2007-01-01

    Generally speaking, the creation of tariff systems for energy activities carried out as regulated or public service obligation is becoming professionally challenging. The Croatian Energy Regulatory Agency (CERA) created the methodology of the tariff system for thermal energy activities and passed this tariff system (without tariff element amounts) in May 2006. The background of the tariff system for thermal energy activities (heat generation, heat distribution and heat supply) including a legislative framework relevant for passing the tariff system, terminology, matrix of the tariff models, tariff elements and amounts of tariff entries are analyzed in this paper. Special attention is paid to the economic characteristics of the tariff system, such as the capital asset pricing model (CAPM), which is chosen among several models of the weighted average of cost of capital (WACC). Using the WACC, the regulatory authorities ensure returns to be equal to the opportunity cost of capital. Furthermore, main formulae and procedures for submitting the proposal for changing the amounts of tariff elements are analyzed as well

  19. Power system damping - Structural aspects of controlling active power

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, O.

    1997-04-01

    Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs

  20. Site selection of active damper for stabilizing power electronics based power distribution system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    electronics based power device, which provides an adjustable damping capability to the power system where the voltage harmonic instability is measured. It can stabilize by adjusting the equivalent node impedance with its plug and play feature. This feature gives many degrees of freedom of its installation......Stability in the nowadays distribution power system is endangered by interaction problems that may arise from newly added power-electronics based power devices. Recently, a new concept to deal with this higher frequency instability, the active damper, has been proposed. The active damper is a power...... point when the system has many nodes. Therefore, this paper addresses the proper placement of an active damper in an unstable small-scale power distribution system. A time-domain model of the Cigre benchmark low-vltage network is used as a test field. The result shows the active damper location...

  1. International Space Station (ISS) External Thermal Control System (ETCS) Loop A Pump Module (PM) Jettison Options Assessment

    Science.gov (United States)

    Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.

    2014-01-01

    On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.

  2. System to detect nuclear materials by active neutron method

    International Nuclear Information System (INIS)

    Koroev, M.; Korolev, Yu.; Lopatin, Yu.; Filonov, V.

    1999-01-01

    The report presents the results of the development of the system to detect nuclear materials by active neutron method measuring delayed neutrons. As the neutron source the neutron generator was used. The neutron generator was controlled by the system. The detectors were developed on the base of the helium-3 counters. Each detector consist of 6 counters. Using a number of such detectors it is possible to verify materials stored in different geometry. There is an spectrometric scintillator detector in the system which gives an additional functional ability to the system. The system could be used to estimate the nuclear materials in waste, to detect the unauthorized transfer of the nuclear materials, to estimate the material in tubes [ru

  3. Effect of purified, soluble urokinase receptor on the plasminogen-prourokinase activation system

    DEFF Research Database (Denmark)

    Behrendt, N; Danø, K

    1996-01-01

    The extracellular proteolytic pathway mediated by the urokinase plasminogen activator (uPA) is a cascade system, initiated by activation of the zymogen, pro-uPA. Pro-uPA as well as uPA binds to the cellular uPA receptor (uPAR) which has a central function in cell-dependent acceleration of the cas......The extracellular proteolytic pathway mediated by the urokinase plasminogen activator (uPA) is a cascade system, initiated by activation of the zymogen, pro-uPA. Pro-uPA as well as uPA binds to the cellular uPA receptor (uPAR) which has a central function in cell-dependent acceleration...

  4. Defining the Relationship Between Biomarkers of Oxidation and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.

  5. From Model Rockets to Spacewalks: an Astronaut Physician’s Journey and the Science of the United States’ Space Program*

    OpenAIRE

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can ...

  6. Association of Physical Activity by Type and Intensity With Digestive System Cancer Risk.

    Science.gov (United States)

    Keum, NaNa; Bao, Ying; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Giovannucci, Edward L

    2016-09-01

    Accumulating evidence indicates that common carcinogenic pathways may underlie digestive system cancers. Physical activity may influence these pathways. Yet, to our knowledge, no previous study has evaluated the role of physical activity in overall digestive system cancer risk. To examine the association between physical activity and digestive system cancer risk, accounting for amount, type (aerobic vs resistance), and intensity of physical activity. A prospective cohort study followed 43 479 men from the Health Professionals Follow-up Study from 1986 to 2012. At enrollment, the eligible participants were 40 years or older, were free of cancer, and reported physical activity. Follow-up rates exceeded 90% in each 2-year cycle. The amount of total physical activity expressed in metabolic equivalent of task (MET)-hours/week. Incident cancer of the digestive system encompassing the digestive tract (mouth, throat, esophagus, stomach, small intestine, and colorectum) and digestive accessory organs (pancreas, gallbladder, and liver). Over 686 924 person-years, we documented 1370 incident digestive system cancers. Higher levels of physical activity were associated with lower digestive system cancer risk (hazard ratio [HR], 0.74 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.59-0.93; P value for trend = .003). The inverse association was more evident with digestive tract cancers (HR, 0.66 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.51-0.87) than with digestive accessary organ cancers. Aerobic exercise was particularly beneficial against digestive system cancers, with the optimal benefit observed at approximately 30 MET-hours/week (HR, 0.68; 95% CI, 0.56-0.83; P value for nonlinearity = .02). Moreover, as long as the same level of MET-hour score was achieved from aerobic exercise, the magnitude of risk reduction was similar regardless of intensity of aerobic exercise. Physical activity, as indicated by MET-hours/week, was inversely associated with the risk of

  7. Possibilities and Limitations of Thermally Activated Building Systems

    DEFF Research Database (Denmark)

    Behrendt, Benjamin

    The strong political market drive towards energy savings in the building sector calls for efficient solutions. Using so called low temperature heating and high temperature cooling systems such as for instance thermally activated building systems (TABS) has a significant impact on the required...... will be mostly needed to operate the building within acceptable boundaries. It will also allow the user to see if dehumidification will be needed for undisturbed operation of TABS. With the combination of both tools it is possible to provide a holistic evaluation of a building proposal at a very early design...

  8. Development of a Liquid Scintillator-Based Active Interrogation System for LEU Fuel Assemblies

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Plenteda, Romano; Mascahrenas, Nicholas; Cronholm, L. Marie; Aspinall, Michael; Joyce, Malcolm; Tomanin, Alice; Peerani, Paolo

    2013-06-01

    The IAEA, in collaboration with the Joint Research Center (Ispra, IT) and Hybrid Instruments (Lancaster, UK), has developed a full scale, liquid scintillator-based active interrogation system to determine uranium (U) mass in fresh fuel assemblies. The system implements an array of moderate volume (∼1000 ml) liquid scintillator detectors, a multichannel pulse shape discrimination (PSD) system, and a high-speed data acquisition and signal processing system to assess the U content of fresh fuel assemblies. Extensive MCNPX-PoliMi modelling has been carried out to refine the system design and optimize the detector performance. These measurements, traditionally performed with 3 He-based assay systems (e.g., Uranium Neutron Coincidence Collar [UNCL], Active Well Coincidence Collar [AWCC]), can now be performed with higher precision in a fraction of the acquisition time. The system uses a high-flash point, non-hazardous scintillating fluid (EJ309) enabling their use in commercial nuclear facilities and achieves significantly enhanced performance and capabilities through the combination of extremely short gate times, adjustable energy detection threshold, real-time PSD electronics, and high-speed, FPGA-based data acquisition. Given the possible applications, this technology is also an excellent candidate for the replacement of select 3 He-based systems. Comparisons to existing 3 He-based active interrogation systems are presented where possible to provide a baseline performance reference. This paper will describe the laboratory experiments and associated modelling activities undertaken to develop and initially test the prototype detection system. (authors)

  9. EVA Training and Development Facilities

    Science.gov (United States)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  10. Astronaut Dale Gardner holds up for sale sign after EVA

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  11. Research and development at the Marshall Space Flight Center Neutral Buoyancy Simulator

    Science.gov (United States)

    Kulpa, Vygantas P.

    1987-01-01

    The Neutral Buoyancy Simulator (NBS), a facility designed to imitate zero-gravity conditions, was used to test the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS). Neutral Buoyancy Simulator applications and operations; early space structure research; development of the EASE/ACCESS experiments; and improvement of NBS simulation are summarized.

  12. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    Science.gov (United States)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  13. Apollo 16 Lunar Module 'Orion' at the Descartes landing site

    Science.gov (United States)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is part of the lunar scene at the Descartes landing site, as seen in the reproduction taken from a color television transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Note the U.S. flag deployed on the left. This picture was made during the second Apollo 16 extravehicular activity (EVA-2).

  14. The Management System for Facilities and Activities. Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  15. Possible applications of alkali-activated systems in construction

    Czech Academy of Sciences Publication Activity Database

    Boháčová, J.; Staněk, S.; Vavro, Martin

    2013-01-01

    Roč. 12, č. 2 (2013), s. 8-17 ISSN 1804-4824 Institutional support: RVO:68145535 Keywords : alkali-activated system * geopolymer * binder Subject RIV: JN - Civil Engineering http://www.degruyter.com/view/j/tvsb.2012.12.issue-2/v10160-012-0012-8/v10160-012-0012-8.xml?format=INT

  16. A new costing model in hospital management: time-driven activity-based costing system.

    Science.gov (United States)

    Öker, Figen; Özyapıcı, Hasan

    2013-01-01

    Traditional cost systems cause cost distortions because they cannot meet the requirements of today's businesses. Therefore, a new and more effective cost system is needed. Consequently, time-driven activity-based costing system has emerged. The unit cost of supplying capacity and the time needed to perform an activity are the only 2 factors considered by the system. Furthermore, this system determines unused capacity by considering practical capacity. The purpose of this article is to emphasize the efficiency of the time-driven activity-based costing system and to display how it can be applied in a health care institution. A case study was conducted in a private hospital in Cyprus. Interviews and direct observations were used to collect the data. The case study revealed that the cost of unused capacity is allocated to both open and laparoscopic (closed) surgeries. Thus, by using the time-driven activity-based costing system, managers should eliminate the cost of unused capacity so as to obtain better results. Based on the results of the study, hospital management is better able to understand the costs of different surgeries. In addition, managers can easily notice the cost of unused capacity and decide how many employees to be dismissed or directed to other productive areas.

  17. Influences of lifestyle factors on cardiac autonomic nervous system activity over time

    NARCIS (Netherlands)

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in

  18. Handbook of driver assistance systems basic information, components and systems for active safety and comfort

    CERN Document Server

    Hakuli, Stephan; Lotz, Felix; Singer, Christina

    2016-01-01

    This fundamental work explains in detail systems for active safety and driver assistance, considering both their structure and their function. These include the well-known standard systems such as Anti-lock braking system (ABS), Electronic Stability Control (ESC) or Adaptive Cruise Control (ACC). But it includes also new systems for protecting collisions protection, for changing the lane, or for convenient parking. The book aims at giving a complete picture focusing on the entire system. First, it describes the components which are necessary for assistance systems, such as sensors, actuators, mechatronic subsystems, and control elements. Then, it explains key features for the user-friendly design of human-machine interfaces between driver and assistance system. Finally, important characteristic features of driver assistance systems for particular vehicles are presented: Systems for commercial vehicles and motorcycles.

  19. Efficiency optimization of wireless power transmission systems for active capsule endoscopes.

    Science.gov (United States)

    Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu

    2011-10-01

    Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils.

  20. Efficiency optimization of wireless power transmission systems for active capsule endoscopes

    International Nuclear Information System (INIS)

    Zhiwei, Jia; Guozheng, Yan; Jiangpingping; Zhiwu, Wang; Hua, Liu

    2011-01-01

    Multipurpose active capsule endoscopes have drawn considerable attention in recent years, but these devices continue to suffer from energy limitations. A wireless power supply system is regarded as a practical way to overcome the power shortage problem in such devices. This paper focuses on the efficiency optimization of a wireless energy supply system with size and safety constraints. A mathematical programming model in which these constraints are considered is proposed for transmission efficiency, optimal frequency and current, and overall system effectiveness. To verify the feasibility of the proposed method, we use a wireless active capsule endoscope as an illustrative example. The achieved efficiency can be regarded as an index for evaluating the system, and the proposed approach can be used to direct the design of transmitting and receiving coils

  1. Thoughts on the development of active regional public health systems.

    Science.gov (United States)

    Reis, Ademar Arthur Chioro Dos; Sóter, Ana Paula Menezes; Furtado, Lumena Almeida Castro; Pereira, Silvana Souza da Silva

    2017-04-01

    Decentralization and regionalization are strategic themes for reforms in the health system. This paper analyzes the complex process of health regionalization being developed in Brazil. This paper identifies that the normative framework from the Brazilian National Health System, SUS has made advances with respect to its institutionalization and overcoming the initial centrality involved in municipalization. This has strengthened the development of regionalization and the intergovernmental agreement on health but the evidence points to the need to promote a revision. Based on document analysis, literature review and the views given by the authors involved in management in SUS as well as generating radically different views, the challenges for the construction of a regionalization that is active, is debated. We also discuss: its relations with planning and the dimensioning of service networks, the production of active care networks and shared management spaces, the inter-federative agreements and regional regulations, the capacity to coordinate regional systems and financing and the impact of the political dimension and electoral cycles. Regionalization (and SUS itself) is an open book, therefore ways and possibilities on how to maintain an active form of regionalization can be recommended.

  2. Building Better Buildings: Sustainable Building Activities in California Higher Education Systems.

    Science.gov (United States)

    Sowell, Arnold; Eichel, Amanda; Alevantis, Leon; Lovegreen, Maureen

    2003-01-01

    This article outlines the activities and recommendations of California's sustainable building task force, discusses sustainable building activities in California's higher education systems, and highlights key issues that California is grappling with in its implementation of sustainable building practices. (EV)

  3. The development and testing of a modular containment system under plutonium active conditions

    International Nuclear Information System (INIS)

    Sanders, M.J.; Pengelly, M.G.A.

    1984-05-01

    A Modular Containment System has been designed, constructed and tested under plutonium active conditions at AEE Winfrith. The unit consists of a portable self-contained pressurised suit area, complete with shower entry tunnel and ventilation plant which can be assembled to enclose active plant to enable active operations to be carried out safely by operators dressed in standard pressurised suits. A fundamental feature of the system is the use of strippable coatings which are used to treat the interior surfaces prior to active operations to prevent permanent contamination of the structure. Details of construction are given together with results of trials. Whilst this report describes work with plutonium, the system has clear applications wherever temporary containment of radioactive or toxic materials is needed. (U.K.)

  4. [Activity of the sympatho-adrenal system in patients with hysterical psychopathy and psychasthenia].

    Science.gov (United States)

    Trunova, M M

    1978-01-01

    The paper is concerned with studies of the sympathoadrenal system activity by the indices of urine excretion of catecholamine and dofa in patients with hysterical and psychasthenic psychopathy. The disorders inherent in each of the groups are demonstrated. The patients with hysterical psychopathy show an exhaustion of all links in the catecholamine metabolism, while the patients with psychasthenical psychopathy an exhaustion of the noradrenaline link. In attempting to explain the mechanisms of disturbed activity in the sympathoadrenal system in both groups the role of the functional state of nonspecific activizing brain systems was taken into consideration.

  5. Controlling and tracking hyperchaotic Roessler system via active backstepping design

    International Nuclear Information System (INIS)

    Zhang Hao; Ma Xikui; Li Ming; Zou Jianlong

    2005-01-01

    This paper presents a novel active backstepping control approach for controlling hyperchaotic Roessler system to a steady state as well as tracking of any desire trajectory to be achieved in a systematic way. The proposed method is a systematic design approach and consists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of active control. Numerical results show that the controller is singularity free and the closed-loop system is stable globally. Especially, the main feature of this technique is that it gives the flexibility to construct a control law. Finally, numerical experiments verify the feasibility and effectiveness of the proposed control technique

  6. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    Science.gov (United States)

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  7. Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model

    Directory of Open Access Journals (Sweden)

    Aref M.A. Soliman

    2012-04-01

    Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.

  8. Development of A New Automotive Active Suspension System

    Science.gov (United States)

    Yousef Abdulhammed, Eng.; Eng. Hisham Elsherif, Dr, Prof.

    2017-12-01

    The main objective was to develop a smart new vehicle suspension system that minimizes the road irregularities impact on the driver, also to increase performance and stability of the vehicle at high speeds. The central idea is based on modifying the normal passive suspension system into a computer controller hydraulic actuated active suspension system simply by adding a new component such as a hydraulic cylinder on a normal passive system. The new suspension system is economical to be wildly used in consumer’s cars with low prices. The new added components was analytically tested and modeled according to different parameters. A new test rig was implemented to simulate a real quarter suspension system. The new suspension model was controlled by feedback controller according to the road conditions; the controller output controls the cylinder actuator to compensate the road oscillations and increases the vehicle stability for the passenger. Finally, to maximize the aerodynamics coefficients of the vehicle during high speeds by controlling the vehicle clearance level from the ground to achieve full stability, steering and fuel economy.

  9. Engineering intracellular active transport systems as in vivo biomolecular tools.

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo

  10. Exploring Techniques for Vision Based Human Activity Recognition: Methods, Systems, and Evaluation

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2013-01-01

    Full Text Available With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activity, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation towards the performance of human activity recognition.

  11. A method for calculating active feedback system to provide vertical ...

    Indian Academy of Sciences (India)

    Slow instabilities, development time of which is proportional to the .... where (w, I) denotes the scalar (inner or dot) product of vectors w and I. Solutions ... which the system of passive conductors must satisfy. ..... In this research, the active feedback system consisting of two coils with coordi- .... a new mode becomes dominant.

  12. The audio and visual communication systems for suited engineering activities on JET

    International Nuclear Information System (INIS)

    Pearce, R.J.H.; Bruce, J.; Callaghan, C.; Hart, M.; Martin, P.; Middleton, R.; Tait, J.

    2001-01-01

    The beryllium and/or tritium contamination of the JET tokamak and auxiliary systems necessitates that many activities are carried out in air line fed pressurised suits. To enable often complex engineering activities to be performed, a number of novel audio and visual and communications systems have been designed. The paper describes these systems which give freedom of visual and audio communication between suited personnel, supervisors, operators and engineers. The system enhances the safety of the working environment as well as helping to minimise the radiation dose to personnel. It is concluded, from a number of years experience of using the audio and visual communications systems for suited operations, that safety and the progress of complex engineering tasks have been significantly enhanced

  13. The audio and visual communication systems for suited engineering activities on JET

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, R.J.H. E-mail: robert.pearce@jet.uk; Bruce, J.; Callaghan, C.; Hart, M.; Martin, P.; Middleton, R.; Tait, J

    2001-11-01

    The beryllium and/or tritium contamination of the JET tokamak and auxiliary systems necessitates that many activities are carried out in air line fed pressurised suits. To enable often complex engineering activities to be performed, a number of novel audio and visual and communications systems have been designed. The paper describes these systems which give freedom of visual and audio communication between suited personnel, supervisors, operators and engineers. The system enhances the safety of the working environment as well as helping to minimise the radiation dose to personnel. It is concluded, from a number of years experience of using the audio and visual communications systems for suited operations, that safety and the progress of complex engineering tasks have been significantly enhanced.

  14. Alpha-Amylase Activity in Blood Increases after Pharmacological, But Not Psychological, Activation of the Adrenergic System.

    Directory of Open Access Journals (Sweden)

    Urs M Nater

    Full Text Available Alpha-amylase in both blood and saliva has been used as a diagnostic parameter. While studies examining alpha-amylase activity in saliva have shown that it is sensitive to physiological and psychological challenge of the adrenergic system, no challenge studies have attempted to elucidate the role of the adrenergic system in alpha-amylase activity in blood. We set out to examine the impact of psychological and pharmacological challenge on alpha-amylase in blood in two separate studies.In study 1, healthy subjects were examined in a placebo-controlled, double-blind paradigm using yohimbine, an alpha2-adrenergic antagonist. In study 2, subjects were examined in a standardized rest-controlled psychosocial stress protocol. Alpha-amylase activity in blood was repeatedly measured in both studies.Results of study 1 showed that alpha-amylase in blood is subject to stronger increases after injection of yohimbine compared to placebo. In study 2, results showed that there was no significant effect of psychological stress compared to rest.Alpha-amylase in blood increases after pharmacological activation of the adrenergic pathways suggesting that sympathetic receptors are responsible for these changes. Psychological stress, however, does not seem to have an impact on alpha-amylase in blood. Our findings provide insight into the mechanisms underlying activity changes in alpha-amylase in blood in healthy individuals.

  15. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    Science.gov (United States)

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.

  16. Lunar EVA Dosimetry: Design of a Radiation Dosimeter for Astronauts During Lunar Extravehicular Activities

    Data.gov (United States)

    National Aeronautics and Space Administration — Task 1: Design, Fabrication, and Testing Tissue Equivalent Proportional Counters (TEPC) Detectors The purpose of this task was to design, build, and assemble a...

  17. Validation of Web-Based Physical Activity Measurement Systems Using Doubly Labeled Water

    Science.gov (United States)

    Yamaguchi, Yukio; Yamada, Yosuke; Tokushima, Satoru; Hatamoto, Yoichi; Sagayama, Hiroyuki; Kimura, Misaka; Higaki, Yasuki; Tanaka, Hiroaki

    2012-01-01

    Background Online or Web-based measurement systems have been proposed as convenient methods for collecting physical activity data. We developed two Web-based physical activity systems—the 24-hour Physical Activity Record Web (24hPAR WEB) and 7 days Recall Web (7daysRecall WEB). Objective To examine the validity of two Web-based physical activity measurement systems using the doubly labeled water (DLW) method. Methods We assessed the validity of the 24hPAR WEB and 7daysRecall WEB in 20 individuals, aged 25 to 61 years. The order of email distribution and subsequent completion of the two Web-based measurements systems was randomized. Each measurement tool was used for a week. The participants’ activity energy expenditure (AEE) and total energy expenditure (TEE) were assessed over each week using the DLW method and compared with the respective energy expenditures estimated using the Web-based systems. Results The mean AEE was 3.90 (SD 1.43) MJ estimated using the 24hPAR WEB and 3.67 (SD 1.48) MJ measured by the DLW method. The Pearson correlation for AEE between the two methods was r = .679 (P WEB and 3.80 (SD 1.36) MJ by the DLW method. The Pearson correlation for AEE between the two methods was r = .144 (P = .54). The Bland-Altman 95% limits of agreement ranged from –3.83 to 4.81 MJ between the two methods. The Pearson correlation for TEE between the two methods was r = .590 (P = .006). The average input times using terminal devices were 8 minutes and 10 seconds for the 24hPAR WEB and 6 minutes and 38 seconds for the 7daysRecall WEB. Conclusions Both Web-based systems were found to be effective methods for collecting physical activity data and are appropriate for use in epidemiological studies. Because the measurement accuracy of the 24hPAR WEB was moderate to high, it could be suitable for evaluating the effect of interventions on individuals as well as for examining physical activity behavior. PMID:23010345

  18. IDMT an integrated system to manage decommissioning activities

    International Nuclear Information System (INIS)

    Marsiletti, M.; Mini, G.; Orlandi, S.

    2003-01-01

    In the frame of decommissioning activities Ansaldo has developed a set of Integrated Decommissioning Management Tools (IDMT) addressed to dismantling work as well as to management of the wastes. The tools MIRAD and DECOM arise from the project of dismantling Italian NPPs (e.g. Caorso) as described in this paper. MIRAD is an integration between a 3 D CAD Model of the NPP in as build configuration and a computerized database (presently an MS Access application) which stores the information related to the radiological measurements detected through in field monitoring associated to any item present in the plant. DECOM is an integration system between a 3 D CAD Model of the NPP (as minimum for the controlled zone) in as-built configuration and a computerized database (presently an MS Access application) which stores the information associated to primary and secondary wastes produced during operation, dismantling or treatment activities.The IDMT system is currently used in the following NPPs in Italy: Caorso NPP (Mark II GE Containment BWR), Garigliano NPP (Dual Cycle GE BWR) and Trino NPP (Westinghouse PWR Plant). (authors)

  19. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    Science.gov (United States)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  20. Shippingport Station Decommissioning Project (SSDP): configuration control system and project activity controls

    International Nuclear Information System (INIS)

    Mullee, G.R.

    1986-01-01

    The SSDP has been using a Configuration Control system as a significant element in the management plan for the safe and effective performance of the project. The objective of the Configuration Control system is to control the physical plant configuration, system status, work schedules, status tracking, and day-to-day problem resolution. Prior to the Decommissioning Operations Contractor (DOC) assuming operational responsibility for the Shippingport Plant, an assessment was made of the status of the configuration of the systems and related documentation. Action was taken as required to match the operating procedures and system documentation with the actual physical condition of the plant. During the first stage of the project, planning was put in place for subsequent decommissioning activities. This planning included defining organizational responsibilities, completing the necessary project instructions and procedures, and doing the planning and scheduling for the subsequent decommissioning phase activities. Detailed instructions for the performance of the various decommissioning tasks were prepared. Prior to the start of any work on a given Activity Package, a Work Authorization is required. The Work Authorization form provides a complete checklist to ensure that all necessary prerequisites are completed. A computerized Communications Configuration Control Information system monitors status including information on system status, tag-outs, radiological work permits, etc. An ongoing effort is being directed toward maintaining operating instructions and system schematics, etc. current as the Plant configuration changes. The experience with the Configuration Control System to date has been favorable

  1. A Semi-active Control System for Wind Turbines

    DEFF Research Database (Denmark)

    Caterino, N.; Georgakis, Christos T.; Trinchillo, F.

    2014-01-01

    A semi-active (SA) control system based on the use of smart magnetorheological (MR) dampers to control the structural response of a wind turbine is proposed herein. The innovative approach is based on the implementation and use of a variable-properties base restraint. This is able to modify in real......, and a control algorithm that instantaneously commands the latter during the motion, making them to modulate the reactive force as needed to achieve the performance goals. The design and operation of such a system are shown with reference to a case study consisting of an almost 100 m tall wind turbine, realized...

  2. Oxidative enzymes activity in sugarcane juice as a function of the planting system

    Directory of Open Access Journals (Sweden)

    Tadeu Alcides Marques

    2013-03-01

    Full Text Available In Brazil, the largest producer of sugarcane in the world, the industrial process transforms this crop into ethanol and/or granulated sugar. Some cultivars exhibit enzymatic browning in the extracted sugarcane juice at levels harmful to the manufacturing process of white granulated sugar. The objective of this study was to assess the effect of sugarcane straw used as soil coverage, the use of different planting systems, and treatments with hydrogel polymer on enzymatic activity. The cultivar RB 86 7515 was sampled for 8 months; the first sample was obtained by cutting the upper portion of the stalk at the internode, which was taken to the laboratory for determination of the enzymatic activity of polyphenoloxidase (PPO and peroxidase (POD. The soil coverage with different forms of straw as well as the planting systems did not change the enzymatic activity of polyphenoloxidase (PPO and peroxidase (POD. The polyphenoloxidase (PPO activity increased with the use of a polymer due to increased polyphenoloxidase (PPO activity in the groove system. The enzymes studied showed changes in activity during the experimental period. The production of sugar at the end of the season (August to November avoids the periods of highest enzymatic activity.

  3. Antibacterial Activity of Commercial Dentine Bonding Systems against E. faecalis–Flow Cytometry Study

    Directory of Open Access Journals (Sweden)

    Monika Lukomska-Szymanska

    2017-04-01

    Full Text Available Literature presents inconsistent results on the antibacterial activity of dentine bonding systems (DBS. Antibacterial activity of adhesive systems depends on several factors, including composition and acidity. Flow cytometry is a novel detection method to measure multiple characteristics of a single cell: total cell number, structural (size, shape, and functional parameters (viability, cell cycle. The LIVE/DEAD® BacLightTM bacterial viability assay was used to evaluate an antibacterial activity of DBS by assessing physical membrane disruption of bacteria mediated by DBS. Ten commercial DBSs: four total-etching (TE, four self-etching (SE and two selective enamel etching (SEE were tested. Both total-etching DBS ExciTE F and OptiBond Solo Plus showed comparatively low antibacterial activity against E. faecalis. The lowest activity of all tested TE systems showed Te-Econom Bond. Among SE DBS, G-ænial Bond (92.24% dead cells followed by Clearfil S3 Bond Plus (88.02% and Panavia F 2.0 ED Primer II (86.67% showed the highest antibacterial activity against E. faecalis, which was comparable to isopropranol (positive control. In the present study, self-etching DBS exhibited higher antimicrobial activity than tested total-etching adhesives against E. faecalis.

  4. Affordances in activity theory and cognitive systems engineering

    DEFF Research Database (Denmark)

    Albrechtsen, H.; Andersen, H.H.K.; Bødker, S.

    2001-01-01

    on design for low level interaction modalities. To incorporate the concept of affordances in the design of human computer interaction it is necessary to systematically unravel affordances that supporthuman action possibilities. Furthermore, it is a necessity that Gibson's theory of affordances...... is supplemented by careful analyses of other human modalities and activities than visual perception. Within HMI two well established perspectives on HMI,Activity Theory (AT) and Cognitive Systems Engineering (CSE), have discussed such analyses and design of action possibilities focusing on providing computer...... to cover deeper semantic and pragmatic aspects of the ecology of work, as compared with the previous applications of Gibson's theory in HMI....

  5. Power, Avionics and Software Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  6. Consideration of Optimal Input on Semi-Active Shock Control System

    Science.gov (United States)

    Kawashima, Takeshi

    In press working, unidirectional transmission of mechanical energy is expected in order to maximize the life of the dies. To realize this transmission, the author has developed a shock control system based on the sliding mode control technique. The controller makes a collision-receiving object effectively deform plastically by adjusting the force of the actuator inserted between the colliding objects, while the deformation of the colliding object is held at the necessity minimum. However, the actuator has to generate a large force corresponding to the impulsive force. Therefore, development of such an actuator is a formidable challenge. The author has proposed a semi-active shock control system in which the impulsive force is adjusted by a brake mechanism, although the system exhibits inferior performance. Thus, the author has also designed an actuator using a friction device for semi-active shock control, and proposed an active seatbelt system as an application. The effectiveness has been confirmed by a numerical simulation and model experiment. In this study, the optimal deformation change of the colliding object is theoretically examined in the case that the collision-receiving object has perfect plasticity and the colliding object has perfect elasticity. As a result, the optimal input condition is obtained so that the ratio of the maximum deformation of the collision-receiving object to the maximum deformation of the colliding object becomes the maximum. Additionally, the energy balance is examined.

  7. Reduced ADAMTS13 activity is associated with thrombotic risk in systemic lupus erythematosus.

    Science.gov (United States)

    Martin-Rodriguez, S; Reverter, J C; Tàssies, D; Espinosa, G; Heras, M; Pino, M; Escolar, G; Diaz-Ricart, M

    2015-10-01

    Severe deficiency of ADAMTS13 activity leads to von Willebrand factor (VWF) ultralarge multimers with high affinity for platelets, causing thrombotic thrombocytopenic purpura. Other pathological conditions with moderate ADAMTS13 activity exhibit a thrombotic risk. We examined the ADAMTS13 activity in systemic lupus erythematosus (SLE) and its value as a thrombotic biomarker. ADAMTS13 activity, VWF antigen and multimeric structure, and vascular cell adhesion molecule 1 (VCAM-1) were measured in plasma samples from 50 SLE patients and 50 healthy donors. Disease activity (systemic lupus erythematosus disease activity index; SLEDAI) and organ damage (systemic lupus international collaborating clinics) scores, thrombotic events, antiphospholipid syndrome (APS) and antiphospholipid antibodies (aPLs) were registered. SLE patients showed decreased ADAMTS13 activity and high VWF levels compared with controls (66 ± 27% vs. 101 ± 8%, P 60%, 60-40% and <40%), comparative analysis showed significant association between ADAMTS13 activity and SLEDAI (P < 0.05), presence of aPLs (P < 0.001), APS (P < 0.01) and thrombotic events (P < 0.01). Reduced ADAMTS13 activity together with increased VWF levels were especially notable in patients with active disease and with aPLs. ADAMTS13 activity, in combination with other laboratory parameters, could constitute a potential prognostic biomarker of thrombotic risk in SLE. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.

    Science.gov (United States)

    Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk

    2008-11-01

    The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.

  9. Empirical analysis of individual popularity and activity on an online music service system

    Science.gov (United States)

    Hu, Hai-Bo; Han, Ding-Yi

    2008-10-01

    Quantitative understanding of human behaviors supplies basic comprehension of the dynamics of many socio-economic systems. Based on the log data of an online music service system, we investigate the statistical characteristics of individual activity and popularity, and find that the distributions of both of them follow a stretched exponential form which interpolates between exponential and power law distribution. We also study the human dynamics on the online system and find that the distribution of interevent time between two consecutive listenings of music shows the fat tail feature. Besides, with the reduction of user activity the fat tail becomes more and more irregular, indicating different behavior patterns for users with diverse activities. The research results may shed some light on the in-depth understanding of collective behaviors in socio-economic systems.

  10. Data reduction for a high-throughput neutron activation analysis system

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1979-01-01

    To analyze samples collected as part of a geochemical survey for the National Uranium Resource Evaluation program, Savannah River Laboratory has installed a high-throughput neutron activation analysis system. As part of that system, computer programs have been developed to reduce raw data to elemental concentrations in two steps. Program RAGS reduces gamma-ray spectra to lists of photopeak energies, peak areas, and statistical errors. Program RICHES determines the elemental concentrations from photopeak and delayed-neutron data, detector efficiencies, analysis parameters (neutron flux and activation, decay, and counting times), and spectrometric and cross-section data from libraries. Both programs have been streamlined for on-line operation with a minicomputer, each requiring approx. 64 kbytes of core. 3 tables

  11. The establishment of a portable high sensitivity exhaled thoron activity measurement system

    International Nuclear Information System (INIS)

    Chen, Xing-an; Cheng, Yong-e

    2008-01-01

    A portable system, using electrostatic collection, for the measurement of exhaled thoron activity in humans is described, together with the basic theory, equipment, calibration procedures, measurement and the preliminary use. The portable system built on experience at the Argonne National Laboratory to achieve a reduction in measurement time from 30 hours to 200 minutes, and to increase the total efficiency of the system from 50%(ANL) to 55% with a minimum detection limit decreased to 0.007 Bq (zero activity± σ). The total standard error of this system is 47% for a thorium lung burden of 0.22 Bq. The average background of this scintillation detector was 0.003 counts/min. (author)

  12. Hands-on Activities for Exploring the Solar System in K-14 Formal and Informal Education Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.

    2004-12-01

    Introduction: Activities developed by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. Educators may choose activities that fit a particular concept or theme within their curriculum from activities that highlight missions and research pertaining to exploring the solar system. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. The web sites for the activities contain current information so students experience recent mission information such as data from Mars rovers or the status of Stardust sample return. The Johnson Space Center Astromaterials Research and Exploration Science education team has compiled a variety of NASA solar system activities to produce an annotated thematic syllabus useful to classroom educators and informal educators as they teach space science. An important aspect of the syllabus is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting, educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. In both the informal and the primary education levels the activities are appropriately designed to excite interest, arouse curiosity and easily take the participants from pre-awareness to the awareness stage. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered may easily be adapted for the upper

  13. Reduced butyrylcholinesterase activity is an early indicator of trauma-induced acute systemic inflammatory response

    Directory of Open Access Journals (Sweden)

    Zivkovic AR

    2016-11-01

    Full Text Available Aleksandar R Zivkovic, Jochen Bender, Thorsten Brenner, Stefan Hofer,* Karsten Schmidt* Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany *These authors contributed equally to this work Purpose: Early diagnosis of systemic inflammatory response syndrome is fundamentally important for an effective and a goal-directed therapy. Various inflammation biomarkers have been used in clinical and experimental practice. However, a definitive diagnostic tool for an early detection of systemic inflammation remains to be identified. Acetylcholine (Ach has been shown to play an important role in the inflammatory response. Serum cholinesterase (butyrylcholinesterase [BChE] is the major Ach hydrolyzing enzyme in blood. The role of this enzyme during inflammation has not yet been fully understood. This study tests whether a reduction in the BChE activity could indicate the onset of the systemic inflammatory response upon traumatic injury. Patients and methods: This observational study measured BChE activity in patients with traumatic injury admitted to the emergency room by using point-of-care-test system (POCT. In addition, the levels of routine inflammation biomarkers during the initial treatment period were measured. Injury Severity Score was used to assess the trauma severity. Results: Altered BChE activity was correlated with trauma severity, resulting in systemic inflammation. Reduction in the BChE activity was detected significantly earlier compared to those of routinely measured inflammatory biomarkers. Conclusion: This study suggests that the BChE activity reduction might serve as an early indicator of acute systemic inflammation. Furthermore, BChE activity, measured using a POCT system, might play an important role in the early diagnosis of the trauma-induced systemic inflammation. Keywords: trauma, injury, early diagnostics, cholinergic, pseudocholinesterase, SIRS

  14. Smart Homes with Voice Activated Systems for Disabled People

    OpenAIRE

    Bekir Busatlic; Nejdet Dogru; Isaac Lera; Enes Sukic

    2017-01-01

    Smart home refers to the application of various technologies to semi-unsupervised home control It refers to systems that control temperature, lighting, door locks, windows and many other appliances. The aim of this study was to design a system that will use existing technology to showcase how it can benefit people with disabilities. This work uses only off-the-shelf products (smart home devices and controllers), speech recognition technology, open-source code libraries. The Voice Activated Sm...

  15. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Directory of Open Access Journals (Sweden)

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  16. A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data

    Directory of Open Access Journals (Sweden)

    Alessandro Manzi

    2017-05-01

    Full Text Available Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM, trained with Sequential Minimal Optimization (SMO. The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60 and the Telecommunication Systems Team (TST Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context.

  17. A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data.

    Science.gov (United States)

    Manzi, Alessandro; Dario, Paolo; Cavallo, Filippo

    2017-05-11

    Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM), trained with Sequential Minimal Optimization (SMO). The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60) and the Telecommunication Systems Team (TST) Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames) and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context.

  18. Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, S. M. C.; Martin, D. S.; Smith, S. M.; Zwart, S. R.; Laurie, S. S; Ribeiro, L. C.; Stenger, M. B.

    2017-01-01

    Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.

  19. Management system of in vivo reports of activity measurements

    International Nuclear Information System (INIS)

    Castro, R.C.; Dantas, A.L.A.; Lourenco, M.C.; Dantas, B.M.

    2005-01-01

    The SGRIMA (management system of in vivo reports of activity measurements) is a software for Windows developed specifically for the Laboratory of In Vivo Measurements of the IRD - Brazilian Institute for Radioprotection and Dosimetry -, in order to manage the individual monitoring process that includes personal data archiving, data relating to the parameters of each measure and calculation results of activity. The software was developed in MS Visual Basic 6, using a MS Access database and can be run on personal computers with MS Windows 98 or higher

  20. Hungarian national report on activities related to operator support systems for nuclear power plants

    International Nuclear Information System (INIS)

    Adorjan, F.; Lux, I.; Vegh, J.; Vegh, E.

    1996-01-01

    Computerized operator support systems and related activities in Hungary are summarized. Systems developed in the past, presently developed and used as well as being in a planning phase are briefly described. Activity of the Hungarian participants in the framework of the co-ordinated project on operator support systems for nuclear power plant is summarized. (author). 55 refs

  1. Low-cost automatic activity data recording system

    Directory of Open Access Journals (Sweden)

    Moraes M.F.D.

    1997-01-01

    Full Text Available We describe a low-cost, high quality device capable of monitoring indirect activity by detecting touch-release events on a conducting surface, i.e., the animal's cage cover. In addition to the detecting sensor itself, the system includes an IBM PC interface for prompt data storage. The hardware/software design, while serving for other purposes, is used to record the circadian activity rhythm pattern of rats with time in an automated computerized fashion using minimal cost computer equipment (IBM PC XT. Once the sensor detects a touch-release action of the rat in the upper portion of the cage, the interface sends a command to the PC which records the time (hours-minutes-seconds when the activity occurred. As a result, the computer builds up several files (one per detector/sensor containing a time list of all recorded events. Data can be visualized in terms of actograms, indicating the number of detections per hour, and analyzed by mathematical tools such as Fast Fourier Transform (FFT or cosinor. In order to demonstrate method validation, an experiment was conducted on 8 Wistar rats under 12/12-h light/dark cycle conditions (lights on at 7:00 a.m.. Results show a biological validation of the method since it detected the presence of circadian activity rhythm patterns in the behavior of the rats

  2. Active Sensor Configuration Validation for Refrigeration Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Blanke, Mogens; Niemann, Hans Henrik

    2010-01-01

    -diagnosis methods falling short on this problem, this paper suggests an active diagnosis procedure to isolate sensor faults at the commissioning stage, before normal operation has started. Using statistical methods, residuals are evaluated versus multiple hypothesis models in a minimization process to uniquely......Major faults in the commissioning phase of refrigeration systems are caused by defects related to sensors. With a number of similar sensors available that do not differ by type but only by spatial location in the plant, interchange of sensors is a common defect. With sensors being used quite...... differently by the control system, fault-finding is difficult in practice and defects are regularly causing commissioning delays at considerable expense. Validation and handling of faults in the sensor configuration are therefore essential to cut costs during commissioning. With passive fault...

  3. Design considerations for a semi-active electromagnetic suspension system

    NARCIS (Netherlands)

    Paulides, J.J.H.; Encica, L.; Lomonova, E.A.; Vandenput, A.J.A.

    2006-01-01

    Vehicle manufacturers always strive to improve the vehicle handling and passenger safety and comfort. One of the focus points for the automotive industry is the (semi-)active suspension system for which various commercial technologies are existing, varying from pneumatic to hydraulic. This paper

  4. Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats.

    Science.gov (United States)

    Balfour, Margaret E; Yu, Lei; Coolen, Lique M

    2004-04-01

    The mesolimbic system plays an important role in the regulation of both pathological behaviors such as drug addiction and normal motivated behaviors such as sexual behavior. The present study investigated the mechanism by which this system is endogenously activated during sexual behavior. Specifically, the effects of sexual experience and sex-related environmental cues on the activation of several components of the mesolimbic system were studied. The mesolimbic system consists of a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc). Previous studies suggest that these neurons are under tonic inhibition by local GABA interneurons, which are in turn modulated by mu opioid receptor (MOR) ligands. To test the hypothesis that opioids are acting in the VTA during sexual behavior, visualization of MOR internalization in VTA was used as a marker for ligand-induced activation of the receptor. Significant increases in MOR internalization were observed following copulation or exposure to sex-related environmental cues. The next goal was to determine if sexual behavior activates dopamine neurons in the VTA, using tyrosine hydroxylase as a marker for dopaminergic neurons and Fos-immunoreactivity as a marker for neuronal activation. Significant increases in the percentage of activated dopaminergic neurons were observed following copulation or exposure to sex-related environmental cues. In addition, mating and sex-related cues activated a large population of nondopaminergic neurons in VTA as well as neurons in both the NAc Core and Shell. Taken together, our results provide functional neuroanatomical evidence that the mesolimbic system is activated by both sexual behavior and exposure to sex-related environmental cues.

  5. How to prevent mind-wandering during an EVA ? Presentation of a mind-wandering detection method using ECG technology in a Mars-analog environment

    Science.gov (United States)

    Gontier, Camille

    2017-11-01

    The purpose of this study is to detect mind-wandering in an Extra-Vehicular Activity (EVA) context during a long supervision task. Detection is realized using an electro-cardiogram and measures of heart rate variability. Experienced by everyone, mind-wandering depicts the state of mind where thoughts are not related to the current action. Its deleterious aspect regarding performance suggests a need to take mind-wandering seriously as an impediment to manned space missions' safety. Previous research confirmed the hypothesis according to which several physiological responses can be used to track down mind-wandering. ECG recordings are both easy to obtain and analyze, statistically related to mind-wandering, and easy to record during extra-vehicular activities. Data analyzed in this paper have been recorded during a Mars-analog mission (MDRS 164), from February 20 to March 6, 2016 at the Mars Desert Research Station (Utah). During various cognitive tasks, the subject had his ECG and awareness levels monitored at the same time to see if a correlation between these two measures can be used in a Mars-mission environment. At different time intervals, the subject was interrupted using the thought probe method to inquire about his thoughts. Heart Rate Variability (HRV, which power in high frequencies is related to the parasympathetic system and is expected to vary with mind-wandering) was then computed from recorded data, and its statistical changes during on-task and off-task thoughts were assessed. Although data revealed no significant differences nor coherent trends in HRV-related metrics between the two conditions, results are paving the way towards a better understanding of ECG-recordings and their use during space-analog missions.

  6. PENERAPAN ACTIVITY BASED COSTING SYSTEM DALAM PERHITUNGAN PROFITABILITAS PRODUK PADA UD. NIAGA BAKTI

    Directory of Open Access Journals (Sweden)

    Fena Ulfa Aulia

    2015-06-01

    Full Text Available The Charge imposition of factory overhead based on traditional systems often cause distorted costs. One of efforts to overcome these distortions fees is with charging the costs  factory overhead  by the activity based costing. The use of activity based costing can also help companies that produce many products  in determining the level of profitability. Profitability indicates whether an enterprise has good prospects in the future for the company's survival. This research is a quantitative descriptive research conducted at UD NIAGA BAKTI engaged in the processing of tuna fish PETIS in Pamekasan located in the village of Konang, Subdistrict of Galis, Regency of Pamekasan. The type of data  used in this research is quantitative data obtained by direct observation and Interview. This techniques of research analysis calculates and compares the products profitability of PETIS by using traditional cost systems and costing system based activity. The results of this research indicates that there are differences in the principal cost of production and profitability UD NIAGA BAKTI by using activity based costing compared  Traditional Cost Systems.

  7. Design and Test of Semi-Active Vibration-Reducing System for Lathe

    Directory of Open Access Journals (Sweden)

    Hongsheng Hu

    2014-09-01

    Full Text Available In this paper, its theory design, analysis and test system of semi-active vibration controlling system used for precision machine have been done. Firstly, lathe bed and spindle entity were modeled by using UG software; Then modes of the machine bed and the key components of spindle were obtained by using ANSYS software; Finally, harmonic response analysis of lathe spindle under complex load was acquired, which provided a basis of MR damper’s structure optimization design for a certain type of precision machine. In order to prove its effectives, a prototype semi-active vibration controlling lathe with MR damper was developed. Tests have been done, and comparison results between passive vibration isolation equipment and semi-active vibration controlling equipment proved its good performances of MR damper.

  8. A Robust and Device-Free System for the Recognition and Classification of Elderly Activities.

    Science.gov (United States)

    Li, Fangmin; Al-Qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao

    2016-12-01

    Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise.

  9. Telecast of Astronauts Armstrong and Aldrin by the Lunar Module ladder

    Science.gov (United States)

    1969-01-01

    Astronauts Neil A. Armstrong (on left), commander; and Edwin E. Aldrin Jr., lunar module pilot, are seen standing by the Lunar Module ladder in this black and white reproduction taken from a telecast by the Apollo 11 lunar surface television camera during the Apollo 11 extravehicular activity. This picture was made from a televised image received at the Deep Space Network tracking station at Goldstone, California.

  10. Inhibition of the central melanocortin system decreases brown adipose tissue activity

    NARCIS (Netherlands)

    Kooijman, S.; Boon, M.R.; Parlevliet, E.T.; Geerling, J.J.; Pol, V. van de; Romijn, J.A.; Havekes, L.M.; Meurs, I.; Rensen, P.C.N.

    2014-01-01

    The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose

  11. Quantification of the force systems delivered by transpalatal arches activated in the six Burstone geometries

    DEFF Research Database (Denmark)

    Sakima, Maurício Tatsuei; Dalstra, Michel; Loiola, Angelo Vicentini

    2017-01-01

    Objective: To evaluate the force systems produced by transpalatal arches (TPAs) activated according to the six classes of geometries described by Burstone and Koenig. Materials and Methods: Sixty appliances were tested for first-order activations using a mechanical force testing system. The TPAs...... were first checked for passivity in sagittal, transverse, and vertical planes at the measuring machine. Then 10 appliances per group were activated using a millimeter template to obtain the six classes of geometries, and the activated appliances were inserted into lingual tubes of the Force System...

  12. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    Science.gov (United States)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  13. Activity Systems and Conflict Resolution in an Online Professional Communication Course

    Science.gov (United States)

    Walker, Kristin

    2004-01-01

    Conflicts often arise in online professional communication class discussions as students discuss sensitive ethical issues relating to the workplace. When conflicts arise in an online class, the activity system of the class has to be kept in balance for the course to continue functioning effectively. Activity theory and distributed learning theory…

  14. Experiment of exploration using the active-faults exploration system; Katsudanso tansa system wo mochiita chika tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Mikada, H; Sato, H; Iwasaki, T; Hirata, N [The University of Tokyo, Tokyo (Japan). Earthquake Research Institute; Ikeda, Y [The University of Tokyo, Tokyo (Japan). Faculty of Science; Ikawa, T; Kawabe, Y; Aoki, Y [JAPEX Geoscience Institute, Tokyo (Japan)

    1996-10-01

    A system for exploration of active-faults by seismic reflection profiling method was introduced at Earthquake Research Institute, University of Tokyo. A test-run was conducted to check the performance of this system at Ranzan, Saitama Prefecture. This paper describes the confirmed performance of mini-VIB as a wide band frequency seismic source, the quality of data obtained using a digital data acquisition system, and problems for data processing of fault exploration in the future. For the test-run at Ranzan, two-dimensional exploration was conducted by the quasi-three-dimensional data acquisition method using three geophones of 8 Hz, 28 Hz, and 40 Hz, simply arranged in parallel on the measurement line. Using an active seismic vibrator, mini-VIB, data acquisition of faults in the wide band frequency was achieved, which would result in the highly accurate imaging. Operation of data acquisition and processing systems is easy, and the system can be also used as a kind of black box. The existing methods are to be used sufficiently as a tool for imaging of faults. Further research for accumulating experience may become necessary toward the extension of the system expected in the future. 5 refs., 6 figs.

  15. An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis.

    Directory of Open Access Journals (Sweden)

    Yi Qiu

    Full Text Available CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5'-AAG-3' was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis.

  16. Does an activity based remuneration system attract young doctors to general practice?

    Directory of Open Access Journals (Sweden)

    Abelsen Birgit

    2012-03-01

    Full Text Available Abstract Background The use of increasingly complex payment schemes in primary care may represent a barrier to recruiting general practitioners (GP. The existing Norwegian remuneration system is fully activity based - 2/3 fee-for-service and 1/3 capitation. Given that the system has been designed and revised in close collaborations with the medical association, it is likely to correspond - at least to some degree - with the preferences of current GPs (men in majority. The objective of this paper was to study which preferences that young doctors (women in majority, who are the potential entrants to general practice have for activity based vs. salary based payment systems. Methods In November-December 2010 all last year medical students and all interns in Norway (n = 1.562 were invited to participate in an online survey. The respondents were asked their opinion on systems of remuneration for GPs; inclination to work as a GP; risk attitude; income preferences; work pace tolerance. The data was analysed using one-way ANOVA and multinomial logistic regression analysis. Results A total of 831 (53% responded. Nearly half the sample (47% did not consider the remuneration system to be important for their inclination to work as GP; 36% considered the current system to make general practice more attractive, while 17% considered it to make general practice less attractive. Those who are attracted by the existing system were men and those who think high income is important, while those who are deterred by the system are risk averse and less happy with a high work pace. On the question of preferred remuneration system, half the sample preferred a mix of salary and activity based remuneration (the median respondent would prefer a 50/50 mix. Only 20% preferred a fully activity based system like the existing one. A salary system was preferred by women, and those less concerned with high income, while a fully activity based system was preferred by men, and those

  17. Does an activity based remuneration system attract young doctors to general practice?

    Science.gov (United States)

    2012-01-01

    Background The use of increasingly complex payment schemes in primary care may represent a barrier to recruiting general practitioners (GP). The existing Norwegian remuneration system is fully activity based - 2/3 fee-for-service and 1/3 capitation. Given that the system has been designed and revised in close collaborations with the medical association, it is likely to correspond - at least to some degree - with the preferences of current GPs (men in majority). The objective of this paper was to study which preferences that young doctors (women in majority), who are the potential entrants to general practice have for activity based vs. salary based payment systems. Methods In November-December 2010 all last year medical students and all interns in Norway (n = 1.562) were invited to participate in an online survey. The respondents were asked their opinion on systems of remuneration for GPs; inclination to work as a GP; risk attitude; income preferences; work pace tolerance. The data was analysed using one-way ANOVA and multinomial logistic regression analysis. Results A total of 831 (53%) responded. Nearly half the sample (47%) did not consider the remuneration system to be important for their inclination to work as GP; 36% considered the current system to make general practice more attractive, while 17% considered it to make general practice less attractive. Those who are attracted by the existing system were men and those who think high income is important, while those who are deterred by the system are risk averse and less happy with a high work pace. On the question of preferred remuneration system, half the sample preferred a mix of salary and activity based remuneration (the median respondent would prefer a 50/50 mix). Only 20% preferred a fully activity based system like the existing one. A salary system was preferred by women, and those less concerned with high income, while a fully activity based system was preferred by men, and those happy with a high work

  18. Does an activity based remuneration system attract young doctors to general practice?

    Science.gov (United States)

    Abelsen, Birgit; Olsen, Jan Abel

    2012-03-20

    The use of increasingly complex payment schemes in primary care may represent a barrier to recruiting general practitioners (GP). The existing Norwegian remuneration system is fully activity based - 2/3 fee-for-service and 1/3 capitation. Given that the system has been designed and revised in close collaborations with the medical association, it is likely to correspond - at least to some degree - with the preferences of current GPs (men in majority). The objective of this paper was to study which preferences that young doctors (women in majority), who are the potential entrants to general practice have for activity based vs. salary based payment systems. In November-December 2010 all last year medical students and all interns in Norway (n = 1.562) were invited to participate in an online survey. The respondents were asked their opinion on systems of remuneration for GPs; inclination to work as a GP; risk attitude; income preferences; work pace tolerance. The data was analysed using one-way ANOVA and multinomial logistic regression analysis. A total of 831 (53%) responded. Nearly half the sample (47%) did not consider the remuneration system to be important for their inclination to work as GP; 36% considered the current system to make general practice more attractive, while 17% considered it to make general practice less attractive. Those who are attracted by the existing system were men and those who think high income is important, while those who are deterred by the system are risk averse and less happy with a high work pace. On the question of preferred remuneration system, half the sample preferred a mix of salary and activity based remuneration (the median respondent would prefer a 50/50 mix). Only 20% preferred a fully activity based system like the existing one. A salary system was preferred by women, and those less concerned with high income, while a fully activity based system was preferred by men, and those happy with a high work pace. Given a concern

  19. Active ultrasound pattern injection system (AUSPIS for interventional tool guidance.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Guo

    Full Text Available Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  20. A Wearable System for Real-Time Continuous Monitoring of Physical Activity

    Directory of Open Access Journals (Sweden)

    Fabrizio Taffoni

    2018-01-01

    Full Text Available Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR, heart rate (HR, and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules.