WorldWideScience

Sample records for extratropical lowermost stratosphere

  1. Diagnosing the transition layer in the extra-tropical lowermost stratosphere using MLS O3 and MOPITT CO analyses

    Directory of Open Access Journals (Sweden)

    V.-H. Peuch

    2012-08-01

    Full Text Available The behavior of the Extra-tropical Transition Layer (ExTL in the lowermost stratosphere is investigated using a Chemistry Transport Model (CTM and analyses derived from assimilation of MLS (Microwave Limb Sounder O3 and MOPITT (Measurements Of Pollution In The Troposphere CO data. We use O3-CO correlations to quantify the effect of the assimilation on the height and depth of the ExTL. We firstly focus on a Stratosphere-Troposphere Exchange (STE case study which occurred on 15 August 2007 over the British Isles (50° N, 10° W. We also extend the study at the global scale for the month of August 2007. For the STE case study, MOPITT CO analyses have the capability to sharpen the ExTL distribution whereas MLS O3 analyses provide a tropospheric expansion of the ExTL distribution with its maximum close to the thermal tropopause. When MLS O3 and MOPITT CO analyses are used together, the ExTL shows more realistic results and matches the thermal tropopause. At global scale, MOPITT CO analyses still show a sharper chemical transition between stratosphere and troposphere than the free model run. MLS O3 analyses move the ExTL toward the troposphere and broaden it. When MLS O3 analyses and MOPITT CO analyses are used together the ExTL matches the thermal tropopause poleward of 50°. This study shows that data assimilation can help overcome the shortcomings associated with a relatively coarse model resolution. The ExTL spread is larger in the Northern Hemisphere than the Southern Hemisphere suggesting that mixing processes are more active in the UTLS in the Northern Hemisphere than in the Southern Hemisphere. This work opens perspectives for studying the seasonal variations of the ExTL at extra-tropical latitudes.

  2. Quantifying transport into the Arctic lowermost stratosphere

    Directory of Open Access Journals (Sweden)

    A. Werner

    2009-01-01

    Full Text Available In-situ measurements of the long-lived trace gases N2O, CFC-11 (CCl3F, H-1211 (CBrClF2, CH4, O3 and H2O performed in the Arctic winter 2003 on board the high-altitude aircraft M55 Geophysica are presented and used to study transport into the lowermost stratosphere (LMS. Fractions of air in the LMS originating in i the troposphere, ii the extra-vortex stratosphere above 400 K and iii the Arctic vortex above 400 K are determined using a simple mass balance calculation. The analysis exhibits a strong tropospheric influence of 50% or more in the lowest 20 K of the high-latitude LMS. Above this region the LMS is dominated by air masses having descended from above 400 K. Below the Arctic vortex region at potential temperatures above 360 K, air in the LMS is a mixture of extra-vortex stratospheric and vortex air masses. The vortex fraction increases from about 40% at 360 K to 100% at 400 K for equivalent latitudes >70° N. This influence of air masses descending through the bottom of the polar vortex increases over the course of the winter. By the end of winter a significant fraction of 30% vortex air in the LMS is found even at an equivalent latitude of 40° N. Since the chemical and dynamical history of vortex air is distinct from that of mid-latitude stratospheric air masses, this study implies that the composition of the mid- to high-latitude LMS during late winter and spring is significantly influenced by the Arctic vortex.

  3. Particulate sulfur in the upper troposphere and lowermost stratosphere - sources and climate forcing

    Science.gov (United States)

    Martinsson, Bengt G.; Friberg, Johan; Sandvik, Oscar S.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2017-09-01

    This study is based on fine-mode aerosol samples collected in the upper troposphere (UT) and the lowermost stratosphere (LMS) of the Northern Hemisphere extratropics during monthly intercontinental flights at 8.8-12 km altitude of the IAGOS-CARIBIC platform in the time period 1999-2014. The samples were analyzed for a large number of chemical elements using the accelerator-based methods PIXE (particle-induced X-ray emission) and PESA (particle elastic scattering analysis). Here the particulate sulfur concentrations, obtained by PIXE analysis, are investigated. In addition, the satellite-borne lidar aboard CALIPSO is used to study the stratospheric aerosol load. A steep gradient in particulate sulfur concentration extends several kilometers into the LMS, as a result of increasing dilution towards the tropopause of stratospheric, particulate sulfur-rich air. The stratospheric air is diluted with tropospheric air, forming the extratropical transition layer (ExTL). Observed concentrations are related to the distance to the dynamical tropopause. A linear regression methodology handled seasonal variation and impact from volcanism. This was used to convert each data point into stand-alone estimates of a concentration profile and column concentration of particulate sulfur in a 3 km altitude band above the tropopause. We find distinct responses to volcanic eruptions, and that this layer in the LMS has a significant contribution to the stratospheric aerosol optical depth and thus to its radiative forcing. Further, the origin of UT particulate sulfur shows strong seasonal variation. We find that tropospheric sources dominate during the fall as a result of downward transport of the Asian tropopause aerosol layer (ATAL) formed in the Asian monsoon, whereas transport down from the Junge layer is the main source of UT particulate sulfur in the first half of the year. In this latter part of the year, the stratosphere is the clearly dominating source of particulate sulfur in the UT

  4. Satellite observations of cirrus clouds in the Northern Hemisphere lowermost stratosphere

    Directory of Open Access Journals (Sweden)

    R. Spang

    2014-05-01

    Full Text Available Here we present observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA of cirrus cloud and water vapour in August 1997 in the upper troposphere and lower stratosphere (UTLS region. The observations indicate a considerable flux of moisture from the upper tropical troposphere into the extra-tropical lowermost stratosphere (LMS, resulting in the occurrence of high altitude optically thin cirrus clouds in the LMS. The locations of the LMS cloud events observed by CRISTA are consistent with the tropopause height determined from coinciding radiosonde data. For a hemispheric analysis in tropopause relative coordinates an improved tropopause determination has been applied to the ECMWF temperature profiles. We found that a significant fraction of the cloud occurrences in the tropopause region are located in the LMS, even if a conservative overestimate of the cloud top height (CTH determination by CRISTA of 500 m is assumed. The results show rather high occurrence frequencies (∼5% up to high northern latitudes (70° N and altitudes well above the tropopause (>500 m at ∼350 K and above in large areas at mid and high latitudes. Comparisons with model runs of the Chemical Lagragian Model of the Stratosphere (CLaMS over the CRISTA period show a reasonable consistency for the retrieved cloud pattern. For this purpose a limb ray tracing approach was applied through the 3-D model fields to obtain integrated measurement information through the atmosphere along the limb path of the instrument. The simplified cirrus scheme implemented in CLaMS seems to cause a systematic underestimation in the CTH occurrence frequencies in the LMS with respect to the observations. The observations together with the model results demonstrate the importance of isentropic, quasi-horizontal transport of water vapour from the sub-tropics and the potential for the occurrence of cirrus clouds in the lowermost stratosphere and tropopause region.

  5. Particulate sulfur in the upper troposphere and lowermost stratosphere – sources and climate forcing

    Directory of Open Access Journals (Sweden)

    B. G. Martinsson

    2017-09-01

    Full Text Available This study is based on fine-mode aerosol samples collected in the upper troposphere (UT and the lowermost stratosphere (LMS of the Northern Hemisphere extratropics during monthly intercontinental flights at 8.8–12 km altitude of the IAGOS-CARIBIC platform in the time period 1999–2014. The samples were analyzed for a large number of chemical elements using the accelerator-based methods PIXE (particle-induced X-ray emission and PESA (particle elastic scattering analysis. Here the particulate sulfur concentrations, obtained by PIXE analysis, are investigated. In addition, the satellite-borne lidar aboard CALIPSO is used to study the stratospheric aerosol load. A steep gradient in particulate sulfur concentration extends several kilometers into the LMS, as a result of increasing dilution towards the tropopause of stratospheric, particulate sulfur-rich air. The stratospheric air is diluted with tropospheric air, forming the extratropical transition layer (ExTL. Observed concentrations are related to the distance to the dynamical tropopause. A linear regression methodology handled seasonal variation and impact from volcanism. This was used to convert each data point into stand-alone estimates of a concentration profile and column concentration of particulate sulfur in a 3 km altitude band above the tropopause. We find distinct responses to volcanic eruptions, and that this layer in the LMS has a significant contribution to the stratospheric aerosol optical depth and thus to its radiative forcing. Further, the origin of UT particulate sulfur shows strong seasonal variation. We find that tropospheric sources dominate during the fall as a result of downward transport of the Asian tropopause aerosol layer (ATAL formed in the Asian monsoon, whereas transport down from the Junge layer is the main source of UT particulate sulfur in the first half of the year. In this latter part of the year, the stratosphere is the clearly dominating source of

  6. Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2002-11-01

    Full Text Available On 22 August 2001 a measurement flight was performed with the German research aircraft FALCON from Sardinia to Crete as part of the Mediterranean Oxidant Study (MINOS. Cruising at 8.2 km, the aircraft was forced to climb to 11.2 km over the southern tip of Italy to stay clear of the anvil of a large cumulonimbus tower. During ascent into the lowermost stratosphere in-situ measurements onboard the FALCON indicated several sharp increases in the concentrations of tropospheric trace gases, e.g. CO, acetone, methanol, benzene and acetonitrile, above the anvil. During one particular event deep in the stratosphere, at O3 concentrations exceeding 200 ppv, CO increased from about 60 to 90 ppv, while the concentration of acetone and methanol increased by more than a factor of 2 (0.7 to 1.8 ppv for acetone; 0.4 to 1.4 ppv for methanol. Enhancements for the short lived species benzene are even higher, increasing from 20 pptv in the stratosphere to approx. 130 pptv. The concentrations during the event were higher than background concentrations in the upper troposphere, indicating that polluted boundary layer air was directly mixed deep into the lowermost stratosphere.

  7. Steady-state aerosol distributions in the extra-tropical, lower stratosphere and the processes that maintain them

    Directory of Open Access Journals (Sweden)

    J. C. Wilson

    2008-02-01

    Full Text Available Measurements of aerosol, N2O and OCS made in the Northern Hemisphere below 21 km altitude following the eruption of Pinatubo are presented and analyzed. After September 1999, the oxidation of OCS and the sedimentation of particles in the extra-tropical overworld maintain the aerosol in a steady state. This analysis empirically links precursor gas to aerosol abundance throughout this region. These processes are tracked with age-of-air which offers advantages over tracking as a function of latitude and altitude. In the extra-tropical, lowermost stratosphere, normalized volume distributions appear constant in time after the fall of 1999. Exchange with the troposphere is important in understanding aerosol evolution there. Size distributions of volcanically perturbed aerosol are included to distinguish between volcanic and non-volcanic conditions. This analysis suggests that model failures to correctly predict OCS and aerosol properties below 20 km in the Northern Hemisphere extra tropics result from inadequate descriptions of atmospheric circulation.

  8. Steady-state aerosol distributions in the extra-tropical, lower stratosphere and the processes that maintain them

    Directory of Open Access Journals (Sweden)

    J. C. Wilson

    2008-11-01

    Full Text Available Measurements of aerosol, N2O and OCS made in the Northern Hemisphere below 21 km altitude following the eruption of Pinatubo are presented and analyzed. After September 1999, the oxidation of OCS and sedimentation of particles in the extra-tropical overworld north of 45 N are found to maintain the aerosol in a steady state. This analysis empirically links precursor gas to aerosol abundance throughout this region. These processes are tracked with age-of-air which offers advantages over tracking as a function of latitude and altitude. In the extra-tropical, lowermost stratosphere, normalized volume distributions appear constant in time after the fall of 1999. Exchange with the troposphere is important in understanding aerosol evolution there. Size distributions of volcanically perturbed aerosol are included to distinguish between volcanic and non-volcanic conditions. This analysis suggests that model failures to correctly predict OCS and aerosol properties below 20 km in the Northern Hemisphere extra tropics result from inadequate descriptions of atmospheric circulation.

  9. Fluorescence from atmospheric aerosol detected by a lidar indicates biogenic particles in the lowermost stratosphere

    Directory of Open Access Journals (Sweden)

    F. Immler

    2005-01-01

    Full Text Available With a lidar system that was installed in Lindenberg/Germany, we observed in June 2003 an extended aerosol layer at 13km altitude in the lowermost stratosphere. This layer created an inelastic backscatter signal that we detected with a water vapour Raman channel, but that was not produced by Raman scattering. Also, we find evidence for inelastic scattering from a smoke plume from a forest fire that we observed in the troposphere. We interpret the unexpected properties of these aerosols as fluorescence induced by the laser beam at organic components of the aerosol particles. Fluorescence from ambient aerosol had not yet been considered detectable by lidar systems. However, organic compounds such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores or pollen fluoresce when excited with UV-radiation in a way that is detectable by our lidar system. Therefore, we conclude that fluorescence from organic material released by biomass burning creates, inelastic backscatter signals that we measured with our instrument and thus demonstrate a new and powerful way to characterize aerosols by a remote sensing technique. The stratospheric aerosol layer that we have observed in Lindenberg for three consecutive days is likely to be a remnant from Siberian forest fire plumes lifted across the tropopause and transported around the globe.

  10. Stratosphere-troposphere exchange in a summertime extratropical low: analysis

    OpenAIRE

    2006-01-01

    Ozone and carbone monoxide measurements sampled during two commercial flights in airstreams of a summertime midlatitude cyclone are analysed with a lagrangian-based study (backward trajectories and a Reverse Domain Filling technique) to gain a comprehensive understanding of transport effects on trace gas distributions. The study demonstrates that summertime cyclones can be associated with deep stratosphere-troposphere transport. A tropopause fold is sampled twice in its life cycle, once in th...

  11. Stratosphere-troposphere exchange in a summertime extratropical low: analysis

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2006-01-01

    Full Text Available Ozone and carbon monoxide measurements sampled during two commercial flights in airstreams of a summertime midlatitude cyclone are analysed with a Lagrangian-based study (backward trajectories and a Reverse Domain Filling technique to gain a comprehensive understanding of transport effects on trace gas distributions. The study demonstrates that summertime cyclones can be associated with deep stratosphere-troposphere transport. A tropopause fold is sampled twice in its life cycle, once in the lower troposphere (O3≃100 ppbv; CO≃90 ppbv in the dry airstream of the cyclone, and again in the upper troposphere (O3≃200 ppbv; CO≃90 ppbv on the northern side of the large scale potential vorticity feature associated with baroclinic development. In agreement with the maritime development of the cyclone, the chemical composition of the anticyclonic portion of the warm conveyor belt outflow (O3≃40 ppbv; CO≃85 ppbv corresponds to the lowest mixing ratios of both ozone and carbon monoxide in the upper tropospheric airborne observations. The uncertain degree of confidence of the Lagrangian-based technique applied to a 100 km segment of upper level airborne observations with high ozone (200 ppbv and relatively low CO (80 ppbv observed northwest of the cyclone prevents identification of the ozone enrichment process of air parcels embedded in the cyclonic part of the upper level outflow of the warm conveyor belt. Different hypotheses of stratosphere-troposphere exchange are discussed.

  12. Stratosphere-troposphere exchange in a summertime extratropical low: analysis

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2005-11-01

    Full Text Available Ozone and carbone monoxide measurements sampled during two commercial flights in airstreams of a summertime midlatitude cyclone are analysed with a lagrangian-based study (backward trajectories and a Reverse Domain Filling technique to gain a comprehensive understanding of transport effects on trace gas distributions. The study demonstrates that summertime cyclones can be associated with deep stratosphere-troposphere transport. A tropopause fold is sampled twice in its life cycle, once in the lower troposphere (O3≃100 ppbv; CO≃90 ppbv in the dry airstream of the cyclone, and again in the upper troposphere (O3≃200 ppbv; CO≃90 ppbv on the northern side of the large scale potential vorticity feature associated with baroclinic development. In agreement to the maritime development of the cyclone, the chemical composition of the anticyclonic part outflow of the warm conveyor belt (O3≃40 ppbv; CO≃85 ppbv corresponds to the lowest mixing ratios of both ozone and carbone monoxide in upper tropospheric airborne observations. The uncertain degree of confidence of the Lagrangian-based technique applied to a 100 km segment of upper level airborne observations with high ozone (200 ppbv and relatively low CO (80 ppbv observed northwest of the cyclone prevents to identify the ozone enrichment process of air parcels embedded in the cyclonic part of the upper level outflow of the warm conveyor belt. Different hypotheses of stratosphere-troposphere exchange are discussed.

  13. Measurements of NO, NOy, N2O, and O3 during SPURT: implications for transport and chemistry in the lowermost stratosphere

    Directory of Open Access Journals (Sweden)

    M. I. Hegglin

    2006-01-01

    Full Text Available We present measurements of NO, NOy, O3, and N2O within the lowermost stratosphere (LMS over Europe obtained during the SPURT project. The measurements cover all seasons between November 2001 and July 2003. They span a broad band of latitudes from 30° N to 75° N and a potential temperature range from 290 to 380 K. The measurements represent a comprehensive data set of these tracers and reveal atmospheric transport processes that influence tracer distributions in the LMS. Median mixing ratios of stratospheric tracers in equivalent latitude-potential temperature coordinates show a clear seasonal cycle related to the Brewer-Dobson circulation, with highest values in spring and lowest values in autumn. Vertical tracer profiles show strong gradients at the extratropical tropopause, suggesting that vertical (cross-isentropic mixing is reduced above the tropopause. Pronounced meridional gradients in the tracer mixing ratios are found on potential temperature surfaces in the LMS. This suggests strongly reduced mixing along isentropes. Concurrent large gradients in static stability in the vertical direction, and of PV in the meridional direction, suggest the presence of a mixing barrier. Seasonal cycles were found in the correlation slopes ΔO3/ΔN2O and ΔNOy/ΔN2O well above the tropopause. Absolute slope values are smallest in spring indicating chemically aged stratospheric air originating from high altitudes and latitudes. Larger values were measured in summer and autumn suggesting that a substantial fraction of air takes a 'short-cut' from the tropical tropopause region into the extratropical LMS. The seasonal change in the composition of the LMS has direct implications for the ozone chemistry in this region. Comparisons of measured NO with the critical NO value at which net ozone production changes from negative to positive, imply ozone production up to 20 K above the local tropopause in spring, up to 30 K in summer, and up to 40 K in autumn

  14. Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine

    Science.gov (United States)

    Werner, Bodo; Stutz, Jochen; Spolaor, Max; Scalone, Lisa; Raecke, Rasmus; Festa, James; Fedele Colosimo, Santo; Cheung, Ross; Tsai, Catalina; Hossaini, Ryan; Chipperfield, Martyn P.; Taverna, Giorgio S.; Feng, Wuhu; Elkins, James W.; Fahey, David W.; Gao, Ru-Shan; Hintsa, Erik J.; Thornberry, Troy D.; Moore, Free Lee; Navarro, Maria A.; Atlas, Elliot; Daube, Bruce C.; Pittman, Jasna; Wofsy, Steve; Pfeilsticker, Klaus

    2017-01-01

    We report measurements of CH4 (measured in situ by the Harvard University Picarro Cavity Ringdown Spectrometer (HUPCRS) and NOAA Unmanned Aircraft System Chromatograph for Atmospheric Trace Species (UCATS) instruments), O3 (measured in situ by the NOAA dual-beam ultraviolet (UV) photometer), NO2, BrO (remotely detected by spectroscopic UV-visible (UV-vis) limb observations; see the companion paper of Stutz et al., 2016), and of some key brominated source gases in whole-air samples of the Global Hawk Whole Air Sampler (GWAS) instrument within the subtropical lowermost stratosphere (LS) and the tropical upper troposphere (UT) and tropopause layer (TTL). The measurements were performed within the framework of the NASA-ATTREX (National Aeronautics and Space Administration - Airborne Tropical Tropopause Experiment) project from aboard the Global Hawk (GH) during six deployments over the eastern Pacific in early 2013. These measurements are compared with TOMCAT/SLIMCAT (Toulouse Off-line Model of Chemistry And Transport/Single Layer Isentropic Model of Chemistry And Transport) 3-D model simulations, aiming at improvements of our understanding of the bromine budget and photochemistry in the LS, UT, and TTL.Changes in local O3 (and NO2 and BrO) due to transport processes are separated from photochemical processes in intercomparisons of measured and modeled CH4 and O3. After excellent agreement is achieved among measured and simulated CH4 and O3, measured and modeled [NO2] are found to closely agree with ≤ 15 ppt in the TTL (which is the detection limit) and within a typical range of 70 to 170 ppt in the subtropical LS during the daytime. Measured [BrO] ranges between 3 and 9 ppt in the subtropical LS. In the TTL, [BrO] reaches 0.5 ± 0.5 ppt at the bottom (150 hPa/355 K/14 km) and up to about 5 ppt at the top (70 hPa/425 K/18.5 km; see Fueglistaler et al., 2009 for the definition of the TTL used), in overall good agreement with the model simulations. Depending on the

  15. Stratosphere-troposphere exchange in an extratropical cyclone, calculated with a Lagrangian method

    Directory of Open Access Journals (Sweden)

    M. Sigmond

    Full Text Available A Lagrangian technique is developed and applied to calculate stratosphere-troposphere exchange in an extratropical cyclone. This exchange is computed from the potential vorticity or PV along trajectories, calculated from ECMWF circulation data. Special emphasis is put on the statistical significance of the results. The computed field of the cross-tropopause flux is dominated by elongated patterns of statistically significant large downward and small upward fluxes. The downward fluxes mainly occur in the lower part of the considered tropopause folds. The upward fluxes are found near the entrance of the folds, in the tropopause ridges. The ratio between the area averaged downward and upward cross-tropopause fluxes increases with increasing strength of the cyclone. Since the largest fluxes are shown to occur in the regions with the largest wind shear, where PV-mixing is thought to cause large cross-tropopause fluxes, the results are expected to be reliable, at least in a qualitative sense. The position of a tropopause fold along the northwest coast of Africa is confirmed by total ozone observations. The results indicate that the applied Lagrangian technique is an appropriate tool for diagnosing stratosphere-troposphere exchange.

    Key words: Meteorology and atmospheric dynamics (general circulation; mesoscale meteorology; middle atmosphere dynamics

  16. Near-global aerosol mapping in the upper troposphere and lowermost stratosphere with data from the CARIBIC project

    Energy Technology Data Exchange (ETDEWEB)

    Heintzenberg, Jost; Hermann, Markus; Weigelt, Andreas (Leibniz Inst. for Tropospheric Research, Leipzig (Germany)), e-mail: jost@tropos.de; Clarke, Antony; Kapustin, Vladimir (Univ. of Hawaii, Dept. of Oceanography, Honolulu (United States)); Anderson, Bruce; Thornhill, Kenneth (NASA Langley Research Center, Hampton (United States)); Velthoven, Peter van (Royal Netherlands Meteorological Inst. (KNMI) (Netherlands)); Zahn, Andreas (Inst. for Meteorology and Climate Research, Karlsruhe Inst. of Technology (KIT), Karlsruhe (Germany)); Brenninkmeijer, Carl (Max Planck Inst. for Chemistry, Atmospheric Chemistry Div., Mainz (Germany))

    2011-11-15

    This study extrapolates aerosol data of the CARIBIC project from 1997 until June 2008 in along trajectories to compose large-scale maps and vertical profiles of submicrometre particle concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). The extrapolation was validated by comparing extrapolated values with CARIBIC data measured near the respective trajectory position and by comparing extrapolated CARIBIC data to measurements by other experiments near the respective trajectory positions. Best agreement between extrapolated and measured data is achieved with particle lifetimes longer than the maximum length of used trajectories. The derived maps reveal regions of strong and frequent new particle formation, namely the Tropical Central and Western Africa with the adjacent Atlantic, South America, the Caribbean and Southeast Asia. These regions of particle formation coincide with those of frequent deep convective clouds. Vertical particle concentration profiles for the troposphere and the stratosphere confirm statistically previous results indicating frequent new particle formation in the tropopause region. There was no statistically significant increase in Aitken mode particle concentration between the first period of CARIBIC operation, 1997-2002, and the second period, 2004-2009. However, a significant increase in concentration occurred within the latter period when considering it in isolation

  17. The impact of the Asian summer monsoon on the composition of the extratropical lower stratosphere

    Science.gov (United States)

    Hoor, Peter; Müller, Stefan; Bozem, Heiko; Krause, Jens; Zahn, Andreas; Boenisch, Harald; Engel, Andreas; Vogel, Bärbel; Rolf, Christian; Ploeger, Felix; Krämer, Martina; Riese, Martin; Schlager, Hans

    2017-04-01

    We present tracer measurements from the German research aircraft HALO, which were obtained during the TACTS/ESMVal-project (Transport and Composition in the UT/LS and Earth System Model Validation) in September 2012 in the northern mid latitude lower stratosphere. We will focus on the distribution of CO, N2O and ozone in the extratropics between potential temperatures of 360 K and 410 K and their changes over the course of the campaign. Based on the distribution of N2O and CO, which constitute two tropospheric tracers of different lifetime one can quantify time scales of transport and chemical ageing of air masses. To account for mixing we analyze the distribution of CO relative to N2O. In geometrical coordinates we observed an increase of N2O and CO over a course of four weeks due to the increased impact of the monsoon system. When analyzing CO relative N2O to account for mixing we observe a decrease of the tropospheric fraction relative to N2O. These results are consistent with the fact that air in Asian monsoon anticyclone is trapped which allows for photochemical CO degradation. Based on the correlation of CO and N2O we estimate an upper limit for the degradation of CO relative to N2O of 30 days.

  18. Mixing in the Extratropical Stratosphere: Model-measurements Comparisons using MLM Diagnostics

    Science.gov (United States)

    Ma, Jun; Waugh, Darryn W.; Douglass, Anne R.; Kawa, Stephan R.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    We evaluate transport processes in the extratropical lower stratosphere for both models and measurements with the help of equivalent length diagnostic from the modified Lagrangian-mean (MLM) analysis. This diagnostic is used to compare measurements of long-lived tracers made by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the Upper Atmosphere Research Satellite (UARS) with simulated tracers. Simulations are produced in Chemical and Transport Models (CTMs), in which meteorological fields are taken from the Goddard Earth Observing System Data Assimilation System (GEOS DAS), the Middle Atmosphere Community Climate Model (MACCM2), and the Geophysical Fluid Dynamics Laboratory (GFDL) "SKYHI" model, respectively. Time series of isentropic equivalent length show that these models are able to capture major mixing and transport properties observed by CLAES, such as the formation and destruction of polar barriers, the presence of surf zones in both hemispheres. Differences between each model simulation and the observation are examined in light of model performance. Among these differences, only the simulation driven by GEOS DAS shows one case of the "top-down" destruction of the Antarctic polar vortex, as observed in the CLAES data. Additional experiments of isentropic advection of artificial tracer by GEOS DAS winds suggest that diabatic movement might have considerable contribution to the equivalent length field in the 3D CTM diagnostics.

  19. Origin of aerosol particles in the mid latitude and subtropical upper troposphere and lowermost stratosphere from cluster analysis of CARIBIC data

    Directory of Open Access Journals (Sweden)

    M. Köppe

    2009-06-01

    Full Text Available The origin of aerosol particles in the upper troposphere and lowermost stratosphere over the Eurasian continent was investigated by applying cluster analysis methods to in situ measured data. Number concentrations of submicrometer aerosol particles and trace gas mixing ratios derived by the CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container measurement system on flights between Germany and South-East Asia were used for this analysis. Four cluster analysis methods were applied to a test data set and their capability of separating the data points into scientifically reasonable clusters was assessed. The best method was applied to seasonal data subsets for summer and winter resulting in five cluster or air mass types: stratosphere, tropopause, free troposphere, high clouds, and boundary layer influenced. Other source clusters, like aircraft emissions could not be resolved in the present data set with the used methods. While the cluster separation works satisfactory well for the summer data, in winter interpretation is more difficult, which is attributed to either different vertical transport pathways or different chemical lifetimes in the two seasons. The geographical distribution of the clusters together with histograms for nucleation and Aitken mode particles within each cluster are presented. Aitken mode particle number concentrations show a clear vertical gradient with the lowest values in the lowermost stratosphere (750–2820 particles/cm3 STP, minimum of the two 25%- and maximum of the two 75%-percentiles of both seasons and the highest values for the boundary-layer-influenced air (4290–22 760 particles/cm3 STP. Nucleation mode particles are also highest in the boundary-layer-influenced air (1260–29 500 particles/cm3 STP, but are lowest in the free troposphere (0–450 particles/cm3 STP. The given submicrometer particle number concentrations represent the

  20. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2017-06-01

    Full Text Available Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i into the tropical stratosphere (tropical pipe, and (ii into the Northern Hemisphere (NH extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN and carbon monoxide (CO observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.

  1. Which reanalysis data is good for momentum diagnostics of extratropical stratosphere?

    Science.gov (United States)

    Son, S. W.; Martineau, P.; Taguchi, M.

    2014-12-01

    Dynamic consistency of eight reanalysis datasets is evaluated in terms of momentum budget of polar stratospheric vortex. Their consistency is quantified by computing the residue of 6-hourly zonal-mean wind tendency that is not explained by zonal-mean momentum equation. Both Eulerian-mean and transformed Eulerian-mean equations are considered. In all datasets, absolute residues rapidly increase with heights partly due to unresolved wave forcings (e.g., gravity waves) in momentum equations. However, in comparison to early generation datasets, modern reanalysis datasets generally show an improved dynamic consistency at all levels. The improvement from NCEP-NCAR to NCEP-DOE and to NCEP-CFSR reanalysis data is very discernible. Similar improvement is also found from ERA-40 to ERA-Interim, and from JRA-25 to JRA-55 data. The residues and individual forcing terms of momentum equations are further evaluated in the course of the vacillation cycle of the stratospheric polar vortex, i.e., quasi-periodic intensification and weakening of the wintertime stratospheric winds, to identify the source of the residues and their inter-data differences. The residues vary in function of the vacillation cycle with relatively small residues in weak and strong vortex states but large residues in intermediate state, indicating that dynamic consistency of reanalysis data may depend on the mean state. Throughout the vacillation cycle, the largest discrepancy among datasets is found in the Coriolis torques acting on the Eulerian-mean circulation, explaining a large portion of inter-data spread of the residues. Transformed Eulerian-mean diagnostics of wave-mean flow interaction, such as the EP-flux divergence, are generally consistent across reanalysis dataset. This indicates that a good representation of mean meridional circulation is crucial for dynamic consistency of stratospheric wind variability in the reanalysis data.

  2. Properties of inertia-gravity waves in the lowermost stratosphere as observed by the PANSY radar over Syowa Station in the Antarctic

    Science.gov (United States)

    Mihalikova, Maria; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru

    2016-05-01

    Inertia-gravity waves (IGWs) are an important component for the dynamics of the middle atmosphere. However, observational studies needed to constrain their forcing are still insufficient especially in the remote areas of the Antarctic region. One year of observational data (January to December 2013) by the PANSY radar of the wind components (vertical resolution of 150 m and temporal resolution of 30 min) are used to derive statistical analysis of the properties of IGWs with short vertical wavelengths ( ≤ 4 km) and ground-based periods longer than 4 h in the lowermost stratosphere (height range 10 to 12 km) with the help of the hodograph method. The annual change of the IGWs parameters are inspected but no pronounced year cycle is found. The year is divided into two seasons (summer and winter) based on the most prominent difference in the ratio of Coriolis parameter (f) to intrinsic frequency (ω^) distribution. Average of f/ω^ for the winter season is 0.40 and for the summer season 0.45 and the average horizontal wavelengths are 140 and 160 km respectively. Vertical wavelengths have an average of 1.85 km through the year. For both seasons the properties of IGWs with upward and downward propagation of the energy are also derived and compared. The percentage of downward propagating waves is 10.7 and 18.4 % in the summer and winter season respectively. This seasonal change is more than the one previously reported in the studies from mid-latitudes and model-based studies. It is in agreement with the findings of past radiosonde data-based studies from the Antarctic region. In addition, using the so-called dual-beam technique, vertical momentum flux and the variance of the horizontal perturbation velocities of IGWs are examined. Tropospheric disturbances of synoptic-scale are suggested as a source of episodes of IGWs with large variance of horizontal perturbation velocities, and this is shown in a number of cases.

  3. In situ trace gas and particle measurements in the summer lower stratosphere during STREAM II. Implications for O{sub 3} production

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, A.; Lelieveld, J.; Scheeren, H.A. [Institute for Marine and Atmospheric Sciences, Utrecht (Netherlands); Arnold, F.; Buerger, V.; Schneider, J. [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Fischer, H.; Waibel, A. [Max-Planck-Inst. fuer Chemie, Mainz (Germany); Siegmund, P.C.; Wauben, W.M.F. [Koninklijk Nederlands Meteorologisch Inst., De Bilt (Netherlands); Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    In situ aircraft measurements of O{sub 3}, CO, HNO{sub 3}, and aerosol particles are presented, performed over the North Sea region in the summer lower stratosphere during the STREAM-II campaign (Stratosphere Troposphere Experiments by Aircraft Measurements). Elevated CO mixing ratios are attributed to mixing of polluted tropospheric air into the lowermost extra-tropical stratosphere. Model calculations illustrate that the O{sub 3} production efficiency of NO{sub x} is smaller than previously assumed, under conditions with relatively high HNO{sub 3} mixing ratios, as observed during STREAM-II. The model simulations further suggest a relatively high O{sub 3} production efficiency from CO oxidation, as a result of the relatively high ambient HNO{sub 3} and NO{sub x} concentrations, implying that upward transport of CO rich air enhances O{sub 3} production in the lowermost stratosphere. (author) 13 refs.

  4. Transport timescales and tracer properties in the extratropical UTLS

    Directory of Open Access Journals (Sweden)

    P. Hoor

    2010-05-01

    Full Text Available A comprehensive evaluation of seasonal backward trajectories initialized in the Northern Hemisphere lowermost stratosphere (LMS has been performed to investigate the origin of air parcels and the main mechanisms determining characteristic structures in H2O and CO within the LMS. In particular we explain the fundamental role of the transit time since last tropopause crossing (tTST for the chemical structure of the LMS as well as the feature of the extra-tropical tropopause transition layer (ExTL as identified from CO profiles. The distribution of H2O in the background LMS above Θ=320 K and 340 K in northern winter and summer, respectively, is found to be governed mainly by the saturation mixing ratio, which in turn is determined by the Lagrangian Cold Point (LCP encountered by each trajectory. Most of the backward trajectories from this region in the LMS experienced their LCP in the tropics and sub-tropics. The transit time since crossing the tropopause from the troposphere to the stratosphere (tTST is independent of the H2O value of the air parcel. TST often occurs 20 days after trajectories have encountered their LCP. CO, on the other hand, depends strongly on tTST due to its finite lifetime. The ExTL as identified from CO measurements is then explained as a layer of air just above the tropopause, which on average encountered TST fairly recently.

  5. Seasonal and inter-annual variations in Troposphere-to-Stratosphere Transport from the Tropical Tropopause Layer

    Directory of Open Access Journals (Sweden)

    J. G. Levine

    2008-01-01

    Full Text Available In an earlier study of troposphere-to-stratosphere transport (TST via the tropical tropopause layer (TTL, we found that the vast majority of air parcels undergoing TST from the base of the TTL enter the extratropical lowermost stratosphere quasi-horizontally and show little or no regional preference with regards to origin in the TTL or entry into the stratosphere. We have since repeated the trajectory calculations - originally limited to a single northern hemisphere winter period - in a variety of months and years to assess how robust our earlier findings are to change of timing. To first order, we find that the main conclusions hold, irrespective of the season, year and phase of the El Niño Southern Oscillation (ENSO. We also explore: the distribution of TST between the northern and southern hemispheres; the sensitivity of modelled TST to the definition of the tropopause; and the routes by which air parcels undergo transport exclusively to the stratospheric overworld. Subject to a dynamical definition of the tropopause, we identify a strong bias towards TST in the southern hemisphere, particularly during the northern hemisphere summer. The main difference on switching to the World Meteorological Organization's thermal tropopause definition is that much less TST is modelled in the subtropics and, relative to the dynamical definition, we calculate significantly less transport into the extratropical lowermost stratosphere (ELS – an important region with regards to ozone chemistry. In contrast to the rather homogeneous nature of TST into the ELS, we find that transport to the overworld takes place from relatively well-defined regions of the TTL, predominantly above the West Pacific and Indonesia, except for an El Niño period in which most transport takes place from regions above the East Pacific and South America.

  6. Seasonal and inter-annual variability of lower stratospheric age of air spectra

    Science.gov (United States)

    Ploeger, Felix; Birner, Thomas

    2016-08-01

    Trace gas transport in the lower stratosphere is investigated by analysing seasonal and inter-annual variations of the age of air spectrum - the probability distribution of stratospheric transit times. Age spectra are obtained using the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by ERA-Interim winds and total diabatic heating rates, and using a time-evolving boundary-impulse-response (BIER) method based on multiple tracer pulses. Seasonal age spectra show large deviations from an idealized stationary uni-modal shape. Multiple modes emerge in the spectrum throughout the stratosphere, strongest at high latitudes, caused by the interplay of seasonally varying tropical upward mass flux, stratospheric transport barriers and recirculation. Inter-annual variations in transport (e.g. quasi-biennial oscillation) cause significant modulations of the age spectrum shape. In fact, one particular QBO phase may determine the spectrum's mode during the following 2-3 years. Interpretation of the age spectrum in terms of transport contributions due to the residual circulation and mixing is generally not straightforward. It turns out that advection by the residual circulation represents the dominant pathway in the deep tropics and in the winter hemisphere extratropics above 500 K, controlling the modal age in these regions. In contrast, in the summer hemisphere, particularly in the lowermost stratosphere, mixing represents the most probable pathway controlling the modal age.

  7. A Model of the Effect of Ozone Depletion on Lower-Stratospheric Structure

    Science.gov (United States)

    Olsen, Mark A.; Stolarski, Richard S.; Gupta, Mohan L.; Nielsen, J. Eric; Pawson, Steven

    2005-01-01

    We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.

  8. Gaseous mercury distribution in the upper troposphere and lower stratosphere observed onboard the CARIBIC passenger aircraft

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2009-03-01

    Full Text Available Total gaseous mercury (TGM was measured onboard a passenger aircraft during monthly CARIBIC flights (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container made between May 2005 and March 2007 on the routes Frankfurt–São Paulo–Santiago de Chile and back and Frankfurt–Guangzhou–Manila and back. The data provide for the first time an insight into the seasonal distributions of TGM in the upper troposphere and lower stratosphere (UT/LS of both hemispheres and demonstrate the importance of mercury emissions from biomass burning in the Southern Hemisphere. Numerous plumes were observed in the upper troposphere, the larger of which could be characterized in terms of Hg/CO emission ratios and their probable origins. During the flights to China TGM correlated with CO in the upper troposphere with a seasonally dependent slope reflecting the longer lifetime of elemental mercury when compared to that of CO. A pronounced depletion of TGM was always observed in the extratropical lowermost stratosphere. TGM concentrations there were found to decrease with the increasing concentrations of particles. Combined with the large concentrations of particle bond mercury in the stratosphere observed by others, this finding suggests either a direct conversion of TGM to particle bound mercury or an indirect conversion via a semivolatile bivalent mercury compound. Based on concurrent measurements of SF6 during two flights, the rate of this conversion is estimated to 0.4 ng m−3 yr−1. A zero TGM concentration was not observed during some 200 flight hours in the lowermost stratosphere suggesting an equilibrium between the gaseous and particulate mercury.

  9. Gaseous mercury distribution in the upper troposphere and lower stratosphere observed onboard the CARIBIC passenger aircraft

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2008-10-01

    Full Text Available Total gaseous mercury (TGM was measured onboard a passenger aircraft during monthly CARIBIC flights (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container made between May 2005 and March 2007 on the routes Frankfurt-São Paulo-Santiago de Chile and back (seven times four flights and Frankfurt-Guangzhou-Manila and back (twelve times four flights. The data provide for the first time an insight into the seasonal distributions of TGM in the upper troposphere and lower stratosphere (UT/LS of both hemispheres and demonstrate the importance of mercury emissions from biomass burning in the Southern Hemisphere. Numerous plumes were observed in the upper troposphere, the larger of which could be characterized in terms of Hg/CO emission ratios and their probable origins. During the flights to China TGM correlated with CO in the upper troposphere with a seasonally dependent slope reflecting the longer lifetime of elemental mercury when compared to that of CO. A pronounced depletion of TGM was always observed in the extratropical lowermost stratosphere. TGM concentrations there were found to decrease with the increasing concentrations of particles. Combined with the large concentrations of particle bond mercury in the stratosphere observed by others, this finding suggests either a direct conversion of TGM to particle bound mercury or an indirect conversion via a semivolatile bivalent mercury compound. Based on concurrent measurements of SF6 during two flights, the rate of this conversion is estimated to 0.4 ng m−3 yr−1. A zero TGM concentration was not observed during some 200 flight hours in the lowermost stratosphere suggesting an equilibrium between the gaseous and particulate mercury.

  10. Climate impact of volcanic aerosol in the stratosphere and upper troposphere - CALIPSO observations from 2006-2015

    Science.gov (United States)

    Friberg, Johan; Martinsson, Bengt G.; Andersson, Sandra M.; Sandvik, Oscar S.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2017-04-01

    We have investigated the climate impact of volcanic eruptions in the period 2006-2015, and found that the volcanic perturbations of the stratospheric aerosol is stronger and lasts longer than previously thought. Recent studies (Ridley et al., 2014, Andersson et al., 2015) show that a large portion of volcanic climate impact stems from aerosol in the LMS (lowermost stratosphere). Although the LMS holds >40% of the stratospheric mass (Appenzeller et al., 1996) it is generally neglected in estimations of the stratospheric AOD (aerosol optical depth). In the past decade the stratospheric aerosol load was perturbed by a number of volcanic eruptions. We cover that period by using the CALIPSO level 1b night-time data to study the volcanic influence on the global and regional climate. CALIPSO data were averaged to a resolution of 180 m vertically and 1×1° horizontally, cleaned from ice clouds by means of the depolarization ratio (Vernier et al., 2009), and a method was developed to remove polar stratospheric clouds (PSC). This approach enables identification of aerosol also at low altitudes (currently using 4 km minimum altitude) and in the Antarctic region (60 to 90°S) where PSCs are frequent during winter. In the current study, we estimate the total stratospheric AOD and radiative forcing and find that significant fractions of volcanic aerosol were located below the static tropopause after volcanic eruptions. Volcanic aerosol was generally observed down to the dynamic tropopause, and detected down to potential vorticities of 1.5-2 PVU (almost 1 km below the static tropopause). Hence, the dynamic tropopause was found to better enclose the volcanic aerosol. Furthermore, large concentrations of aerosol from the Kasatochi eruption (Aug 2008) is found to linger in the extratropical UT (upper troposphere) for several months after the eruption. Sulphate-rich volcanic aerosol transported from the LMS may influence cirrus clouds in the extratropical UT, inducing an indirect

  11. Simultaneous lidar observations of the water vapor and ozone signatures of a stratospheric intrusion during the MOHAVE-2009 campaign

    Science.gov (United States)

    Leblanc, T.; McDermid, I. S.; Pérot, K.

    2010-12-01

    Ozone and water vapor signatures of a stratospheric intrusion were simultaneously observed by the Jet Propulsion Laboratory lidars located at Table Mountain Facility, California (TMF, 34.4N, 117.7W) during the Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE-2009) campaign in October 2009. These observations are placed in the context of the meridional displacement and folding of the tropopause, and resulting contrast in the properties of the air masses sampled by lidar. The lidar observations are supported by model data, specifically potential vorticity fields advected by the high-resolution transport model MIMOSA, and by 10-day backward isentropic trajectories. The ozone and water vapor anomalies measured by lidar were largely anti-correlated, and consistent with the assumption of a wet and ozone-poor subtropical upper troposphere, and a dry and ozone-rich extra-tropical lowermost stratosphere. However, it is shown that this anti-correlation relation collapsed just after the stratospheric intrusion event of October 20, suggesting mixed air embedded along the subtropical jet stream and sampled by lidar during its displacement south of TMF (tropopause fold). The ozone-PV expected positive correlation relation held strongly throughout the measurement period, including when a lower polar stratospheric filament passed over TMF just after the stratospheric intrusion. The numerous highly-correlated signatures observed during this event demonstrate the strong capability of the water vapor and ozone lidars at TMF, and provide new confidence in the future detection by lidar of long-term variability of water vapor and ozone in the Upper Troposphere-Lower Stratosphere (UTLS).

  12. Baroclinic mixing of potential vorticity as the principal sharpening mechanism for the extratropical Tropopause Inversion Layer

    Science.gov (United States)

    Wang, Shu Meir; Geller, Marvin A.

    2016-09-01

    Previous works have shown that a dry, idealized general circulation model could produce many features of the extratropical Tropopause Inversion Layer (TIL). In particular, the following have been shown, but no explanations were given for these results. (1) A sharper extratropical TIL resulted more from increased horizontal resolution than from increased vertical resolution. (2) If the Equator-to-Pole temperature gradient was varied, the annual variation of the extratropical TIL found in observations could be reproduced. (3) The extratropical TIL altitude showed excellent correlation with the upper tropospheric relative vorticity, as had been previously proposed. (4) Increased horizontal model resolutions led to extratropical TILs that were at lower altitudes. We show that these conclusions follow from baroclinic mixing of high stratospheric potential vorticity into the troposphere being the principal sharpening mechanism for the extratropical TIL and the increased baroclinic activity occurring in higher horizontal resolution models. We furthermore suggest that the distance from the jet exerts a greater influence on the height and sharpness of the extratropical TIL than does the upper tropospheric relative vorticity, and this accounts for the annual behavior of the extratropical TIL found in observations and reproduced with a dry, mechanistic, global model.

  13. How stratospheric are deep stratospheric intrusions?

    Science.gov (United States)

    Trickl, T.; Vogelmann, H.; Giehl, H.; Scheel, H.-E.; Sprenger, M.; Stohl, A.

    2014-09-01

    these descending layers between 1990 and 2004 exhibits a slightly positive trend indicating some Asian influence on the lowermost stratosphere in the high-latitude source region of most intrusions reaching the station.

  14. How stratospheric are deep stratospheric intrusions?

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2014-06-01

    thermal tropopause. The CO mixing ratio in these descending layers between 1990 and 2004 exhibits a slightly positive trend indicating some Asian influence on the lowermost stratosphere in the high-latitude source region of most intrusions reaching the station.

  15. How stratospheric are deep stratospheric intrusions?

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2014-09-01

    CO mixing ratio in these descending layers between 1990 and 2004 exhibits a slightly positive trend indicating some Asian influence on the lowermost stratosphere in the high-latitude source region of most intrusions reaching the station.

  16. Observational Diagnoses of Extratropical Ozone STE During the Aura Era

    Science.gov (United States)

    Olsen, Mark A.; Douglass, Anne R.; Witte, Jacquie C.; Kaplan, Trevor B.

    2011-01-01

    The transport of ozone from the stratosphere to the extratropical troposphere is an important boundary condition to tropospheric chemistry. However, previous direct estimates from models and indirect estimates from observations have poorly constrained the magnitude of ozone stratosphere-troposphere exchange (STE). In this study we provide a direct diagnosis of the extratropical ozone STE using data from the Microwave Limb Sounder on Aura and output of the MERRA reanalysis over the time period from 2005 to the present. We find that the mean annual STE is about 275 Tg/yr and 205 Tg/yr in the NH and SH, respectively. The interannual variability of the magnitude is about twice as great in the NH than the SH. We find that this variability is dominated by the seasonal variability during the late winter and spring. A comparison of the ozone flux to the mass flux reveals that there is not a simple relationship between the two quantities. This presentation will also examine the magnitude and distribution of ozone in the lower stratosphere relative to the years of maximum and minimum ozone STE. Finally, we will examine any possible signature of increased ozone STE in the troposphere using sonde and tropospheric ozone residual (TOR) data, and output from the Global Modeling Initiative Chemistry Transport Model (GMI CTM).

  17. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Science.gov (United States)

    Trickl, Thomas; Vogelmann, Hannes; Fix, Andreas; Schäfler, Andreas; Wirth, Martin; Calpini, Bertrand; Levrat, Gilbert; Romanens, Gonzague; Apituley, Arnoud; Wilson, Keith M.; Begbie, Robert; Reichardt, Jens; Vömel, Holger; Sprenger, Michael

    2016-07-01

    A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison). The measurements were carried out at four observational sites: Payerne (Switzerland), Bilthoven (the Netherlands), Lindenberg (north-eastern Germany), and the Zugspitze mountain (Garmisch-Partenkichen, German Alps), and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg). The dryness hardens the findings of a preceding study ("Part 1", Trickl et al., 2014) that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in "Part 1" from the Zugspitze CO observations. The trajectories qualitatively explain

  18. Troposphere-stratosphere exchange - constraints from water vapour

    Science.gov (United States)

    Liu, Y.; Du, J.; Fueglistaler, S.; Haynes, P. H.

    2008-12-01

    Transport into the stratospheric 'overworld' is thought to occur predominantly across the tropical tropopause, whereas transport into the lowermost stratosphere may also occur through quasi-horizontal transport on isentropic levels between 300 and 380K potential temperature. The distribution of stratospheric water vapour is sensitively dependent upon the detailed temperature history of air parcel trajectories, and combined with a Lagrangian study can be used as a tracer for quantifying the relative importance of cross-isentropic mass flux and quasi-isentropic mass flux into the stratosphere. Here we combine measurements from the Microwave Limb Sounder on board of AURA satellite, with trajectory calculations to diagnose the pathways of troposphere-stratosphere exchange. Trajectories are calculated using winds and diabatic heating rates from the new interim reanalysis currently carried out at the European Centre for Medium-range Weather Forecast.

  19. Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations - Method, validation, and data characteristics

    Science.gov (United States)

    Rind, D.; Chiou, E.-W.; Chu, W.; Oltmans, S.; Lerner, J.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1993-01-01

    Results are presented of water vapor observations in the troposphere and stratosphere performed by the Stratospheric Aerosol and Gas Experiment II solar occultation instrument, and the analysis procedure, the instrument errors, and data characteristics are discussed. The results are compared with correlative in situ measurements and other satellite data. The features of the data set collected between 1985 and 1989 include an increase in middle- and upper-tropospheric water vapor during northern hemisphere summer and autumn; minimum water vapor values of 2.5-3 ppmv in the tropical lower stratosphere; slowly increasing water vapor values with altitude in the stratosphere, reaching 5-6 ppmv or greater near the stratopause; extratropical values with minimum profile amounts occurring above the conventionally defined tropopause; and higher extratropical than tropical water vapor values throughout the stratosphere except in locations of possible polar stratospheric clouds.

  20. Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system

    Directory of Open Access Journals (Sweden)

    M. I. Hegglin

    2004-01-01

    Full Text Available Within the project SPURT (trace gas measurements in the tropopause region a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52° N to Faro, Portugal (37° N through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the intrusion features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365 K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories

  1. The annual cycle in lower stratospheric temperatures revisited

    Directory of Open Access Journals (Sweden)

    S. Fueglistaler

    2011-04-01

    Full Text Available Observed lower stratospheric temperatures show a prominent annual cycle. The cycles in the tropics and Northern Hemisphere are in phase and the cycle in the Southern Hemisphere has the opposite phase. In an elegant and influential paper, Yulaeva, Holton and Wallace (1994 explained the observed pattern as a direct consequence of hemispheric asymmetries in the dynamical forcing of the stratospheric circulation. They showed that in Microwave Sounding Unit channel 4 (weighting centered in the lower stratosphere data the combined extratropical and the tropical temperature cycle nearly compensate and interpreted the out-of-phase temperature variations between tropics and extratropics as the temperature response to an annual cycle in the wave driven residual circulation. We show that the near-compensation of temperature variations observed by Yulaeva et al. (1994 is artefact of the weighting function of the MSU-4 channel and does not hold on individual pressure levels. We discuss in detail the conditions required that temperature variations compensate, and what insights can be obtained from analysis of tropical, extratropical and global mean temperature variations. Dynamically induced seasonal variations of lower stratospheric ozone lead to an amplification of the seasonal temperature cycle particularly in the tropics. The latitudinal structure of static stability also induces a significant deviation from compensation of tropical and combined extratropical temperature variations. In line with Yulaeva et al. (1994 we affirm that the see-saw pattern in the annual cycles of tropical and combined extratropical temperatures provides an important pointer to mechanistic models for interannual variability and trends, but additionally conclude that the feedback of dynamically induced ozone variations on temperatures and the latitudinal structure of static stability should be included as leading order processes in such models.

  2. The annual cycle in lower stratospheric temperatures revisited

    Directory of Open Access Journals (Sweden)

    S. Fueglistaler

    2010-11-01

    Full Text Available Observed lower stratospheric temperatures show a prominent annual cycle. The cycles in the tropics and Northern Hemisphere are in phase and the cycle in the Southern Hemisphere has the opposite phase. In an elegant and influential paper, Yulaeva, Holton and Wallace (1994 explained the observed pattern as a direct consequence of hemispheric asymmetries in the dynamical forcing of the stratospheric circulation. They showed that in Microwave Sounding Unit channel 4 (weighting centered in the lower stratosphere data the combined extratropical and the tropical temperature cycle nearly compensate and interpreted the out-of-phase temperature variations between tropics and extratropics as the temperature response to an annual cycle in the wave driven residual circulation. We show that the near-compensation of temperature variations emphasised by Yulaeva et al. (1994 is artefact of the weighting function of the MSU-4 channel and does not hold on individual pressure levels. We discuss in detail the conditions required that temperature variations compensate, and what insights can be obtained from analysis of tropical, extratropical and global mean temperature variations. Dynamically induced seasonal variations of lower stratospheric ozone lead to an amplification of the seasonal temperature cycle particularly in the tropics. The latitudinal structure of thermal stratification also induces a significant deviation from compensation of tropical and combined extratropical temperature variations. In line with Yulaeva et al. (1994 we affirm that the see-saw pattern in the annual cycles of tropical and combined extratropical temperatures provides an important pointer to mechanistic models for interannual variability and trends, but additionally conclude that the latitudinal structure of stratification and the feedback of dynamically-induced ozone variations on temperatures should be included as leading order processes in such models.

  3. Transport pathways from the Asian monsoon anticyclone to the stratosphere

    Science.gov (United States)

    Garny, Hella; Randel, William

    2016-04-01

    The upper tropospheric Asian monsoon anticyclone emerges in response to persistent deep convection over India and southeast Asia in northern summer. The monsoon circulation is associated with rapid transport from the surface to the upper troposphere within convective updrafts, leading to tracer anomalies within the anticyclone. Possibly air is transported further into the stratosphere, but the exact pathways of air from the upper tropospheric anticyclone to the stratosphere are currently under debate. While air is thought to be confined to the anticyclone by its surrounding wind jets, large variability in the anticyclone results in shedding of air from the anticyclone to its surrounding, and possibly air might reach the extratropical lower stratosphere by isentropic mixing. On the other hand, positive vertical velocities in the anticyclone region suggests upward transport of air into the tropical lower stratosphere. In this study, we investigate transport pathways of air originating in the upper tropospheric Asian monsoon anticyclone based on isentropic and three-dimensional trajectories. Trajectories are driven by ERA-Interim reanalysis data, and three-dimensional results are based both on kinematic and diabatic transport calculations. Isentropic calculations show that air parcels are typically confined within the anticyclone for 10-20 days, and spread over the tropical belt within a month of their initialization. However, only few parcels (3 % at 360 K, 8 % at 380 K) reach the extratropical stratosphere by isentropic transport. When considering vertical transport we find that 31 % (48 %) of the trajectories reach the stratosphere within 60 days when using vertical velocities or diabatic heating rates to calculate vertical transport, respectively. In both cases, most parcels that reach the stratosphere are transported upward within the anticyclone and enter the stratosphere in the tropics, typically 10-20 days after their initialization at 360 K. This suggests

  4. Stratospheric dryness

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2006-11-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of models which are able to reproduce the observations. Here we examine results from a new atmospheric chemistry general circulation model (ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent recurrent features such as the semi-annual oscillation (SAO and the quasi-biennual oscillation (QBO, indicating that dynamical and radiation processes are simulated accurately. The model reproduces the very low water vapor mixing ratios (1–2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured, albeit that the model underestimates convective overshooting and consequent moistening events. Our results show that the entry of tropospheric air into the stratosphere at low latitudes is forced by large-scale wave dynamics; however, radiative cooling can regionally limit the upwelling or even cause downwelling. In the cold air above cumulonimbus anvils thin cirrus desiccates the air through the sedimentation of ice particles, similar to polar stratospheric clouds. Transport deeper into the stratosphere occurs in regions where radiative heating becomes dominant, to a large extent in the subtropics. During summer the stratosphere is moistened by the monsoon, most strongly over Southeast Asia.

  5. Global standard names for the Lowermost Cambrian Series and Stage

    Institute of Scientific and Technical Information of China (English)

    Ed Landing; Shanchi Peng; Loren E.Babcock; Gerd Geyer; Malgorzata Moczydlowska-Vidal

    2007-01-01

    @@ The GSSP marking the base of the Cambrian System was ratified by the IUGS in 1992.Ratification of the GSSP point at the base of the Trichophycus pedum Ichnozone in the Fortune Head section,eastern Newfoundland,Canada,automatically defined the conterminant base of the lowermost series and stage of the Cambrian although names for those subdivisions were not proposed at the time of the decision.

  6. Objectively classifying Southern Hemisphere extratropical cyclones

    Science.gov (United States)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  7. Stratospheric ozone

    Directory of Open Access Journals (Sweden)

    M. Gil

    2006-01-01

    Full Text Available Stratospheric ozone acquired a huge importance two decades ago because of the discovery of strong anomalies above the Antarctica due to gases of anthropogenic origin. From that date, stratosphere has become one of the research lines receiving more funding. A result, an important progress in the development of observational techniques, the understanding of the dynamics of the polar regions and, above all, in understanding of the chemical interactions among the species that influence the chemical-radiative balance of ozone. In this article a general revision is made of the distribution of the ozone in the stratosphere, the mechanisms that determine its equilibrium, the gases that contribute to its destruction, the present situation and the forecast of the health state of the layer.

  8. Seasonal Ozone Variations in the Isentropic Layer between 330 and 380 K as Observed by SAGE 2: Implications of Extratropical Cross-Tropopause Transport

    Science.gov (United States)

    Wang, Pi-Huan; Cunnold, Derek M.; Zawodny, Joseph M.; Pierce, R. Bradley; Olson, Jennifer R.; Kent, Geoffrey S.; Skeens, Kristi, M.

    1998-01-01

    To provide observational evidence on the extratropical cross-tropopause transport between the stratosphere and the troposphere via quasi-isentropic processes in the middleworld (the part of the atmosphere in which the isentropic surfaces intersect the tropopause), this report presents an analysis of the seasonal variations of the ozone latitudinal distribution in the isentropic layer between 330 K and 380 K based on the measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II. The results from SAGE II data analysis are consistent with (1) the buildup of ozone-rich air in the extratropical middleworld through the large-scale descending mass circulation during winter, (2) the spread of ozone-rich air in the isentropic layer from midlatitudes to subtropics via quasi-isentropic transport during spring, (3) significant photochemical ozone removal and the absence of an ozone-rich supply of air to the layer during summer, and (4) air mass exchange between the subtropics and the extratropics during the summer monsoon period. Thus the SAGE II observed ozone seasonal variations in the middleworld are consistent with the existing model calculated annual cycle of the diabatic circulation as well as the conceptual role of the eddy quasi-adiabatic transport in the stratosphere-troposphere exchange reported in the literature.

  9. Effects of stratospheric variability on El Niño teleconnections

    Science.gov (United States)

    Richter, J. H.; Deser, C.; Sun, L.

    2015-12-01

    The effects of the tropical Pacific El Niño Southern Oscillation (ENSO) phenomenon are communicated to the rest of the globe via atmospheric teleconnections. Traditionally, ENSO teleconnections have been viewed as tropospheric phenomena, propagating to higher latitudes as Rossby waves. Recent studies, however, suggest an influence of the stratosphere on extra-tropical ENSO teleconnections. The stratosphere is highly variable: in the tropics, the primary mode of variability is the quasi-biennial oscillation (QBO), and in the extra-tropics sudden stratospheric warmings (SSWs) regularly perturb the mean state. Here, we conduct a 10-member ensemble of simulations with a stratosphere-resolving atmospheric general circulation model forced with the observed evolution of sea surface temperatures during 1952-2001 to examine the effects of the QBO and SSWs on the zonal-mean circulation and temperature response to El Niño, with a focus on the northern extra-tropics during winter. We find that SSWs have a larger impact than the QBO on the composite El Niño responses. During El Niño winters with SSWs, the polar stratosphere shows positive temperature anomalies that propagate downward to the surface where they are associated with increased sea-level pressure over the Arctic. During El Niño winters without SSWs, the stratosphere and upper troposphere show negative temperature anomalies but these do not reach the surface. The QBO modulates the El Niño teleconnection primarily in winters without SSWs: the negative temperature anomalies in the polar stratosphere and upper troposphere are twice as large during QBO West compared to QBO East years. In addition, El Niño winters that coincide with the QBO West phase show stronger positive sea-level pressure anomalies over the eastern Atlantic and Northern Europe than those in the QBO East phase. The results imply that the stratosphere imparts considerable variability to ENSO teleconnections.

  10. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  11. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    Science.gov (United States)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  12. The Tropical UTLS JAPE Bubble and its Role Driving Extratropical Weather

    Science.gov (United States)

    Tripoli, G. J.; Nytes, L.

    2015-12-01

    Latent heating by tropical weather systems produces vertical mass fluxes of high potential temperature that fill upper isentropic layers with mass. This produces an expanded isentropic layer in the tropical Upper troposphere - Lower Stratosphere (UTLS) of elevated potential energy. Because this elevated potential energy is converted to kinetic energy if it flows poleward, we call it JAPE (Jet Available Potential Energy). This conversion effectively prevents wholesale movement into the extratropics, an effect of inertial stability due to the Earth's rotation. As a result, the JAPE takes the form of a potential energy bubble spanning heights between 10 km and 18 km and meridionally between 30N and 30S on average with occasional poleward plumes reaching up to 50 degrees latitude. The JAPE bubble is bounded on its poleward edge by the subtropical jet (STJ) and its upper surface by the elevated tropical tropopause. As potential energy is continually fed into the bubble by tropical convective and tropical cyclone activity, the JAPE bubble builds mass and an increasing potential to surge that mass into the extratropics, leading to "JAPE surge" events. These events occur at weaknesses in the inertial wall of the bubble, usually related to interactions with a polar jet. These surges become energy conduits, infusing the JAPE (and reducing the bubble mass) into the extratropical Rossby wave stream via a STJ-PJ interaction. The poleward JAPE surge events are periodic and occur in 3-5 locations simultaneously around the globe, usually in the winter hemisphere. At the oral presentation, a 36 year analysis of the behavior of the JAPE bubble will be presented, and its role in energizing the Rossby wave train will be discussed.

  13. Data denial experiments for extratropical transition

    Directory of Open Access Journals (Sweden)

    Doris Anwender

    2012-11-01

    Full Text Available Data denial experiments using the European Centre for Medium-Range Weather Forecasts (ECMWF model are designed to investigate the value of targeted observations for historical extratropical transition (ET cases over the Atlantic. The impact of removing data from specified locations linked to the ET development is therefore examined. It is shown that the impact of denying data in the near tropical cyclone (TC environment is, on average, as important as denying data in mid-latitude sensitive regions determined using extratropical singular vectors (SV. The impact of data denial over TC regions propagates downstream from the Atlantic towards Europe, with a maximum degradation at day 4. This degradation is mainly attributed to the data denial at the TC stage, i.e. before ET is completed. When data are denied on mid-latitude sensitive regions, the largest degradation is found around day 2 and also after the day 4 forecast. In general, the loss of information content is larger when data are denied in mid-latitude sensitive areas because these identify dynamically active regions. In both denial experiments, aircraft and satellite radiance data are the most influential observations. For the selected case of Hurricane Irene, the largest degradations are found for forecasts initialised while Irene reached its peak intensity. If observations are denied in the near storm environment, the TC mostly disappears from the analysis and the subsequent forecast. This allows the impact of Irene on the formation of the downstream cut-off low to be investigated.

  14. Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle.

    Science.gov (United States)

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B; Davies, D Rhodri; Mattesini, Maurizio

    2015-12-17

    The core mantle boundary (CMB) separates Earth's liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle's thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth's geodynamo.

  15. Studying temperature and dynamical variations in the extratropical boreal atmosphere in the 2012-2013 winter

    Science.gov (United States)

    Vargin, Pavel; Medvedeva, Irina

    A major Sudden Stratospheric Warming (SSW) event in early January 2013 led to a large increase in the polar stratospheric temperature (up to 60 K at 44 km height), zonal circulation reversal, split of the stratospheric polar vortex (wavenumber 2 type of SSW), and effected temperature and dynamics of the mesosphere - lower thermosphere. We analyzed the SSW-related variations in thermo-dynamical parameters of the atmosphere within a height range from the troposphere to the lower thermosphere, using reanalysis data and data of ground-based spectrometric and satellite observations. Wave activity in the extratropical troposphere and stratosphere was studied using calculated three-day means of the three-dimensional Plumb fluxes. We revealed amplification in activity of planetary waves propagating from the troposphere to the stratosphere over Eastern Siberia - China two weeks prior to that SSW. The eastward propagating Rossby wave-trains observed in the upper troposphere one week before the SSW might have contributed to enhancement of the tropospheric anticyclone over the north-eastern Atlantic that, in turn, led to the splitting of the stratospheric polar vortex during the SSW. To investigate the SSW manifestations in the middle and upper atmosphere over Eastern Siberia, the data of ground-based spectrographic measurements of the OH (834.0 nm, band (6-2)) and O2 (864.5 nm, band (0-1)) emissions obtained at the Geophysical Observatory of the Institute of Solar-Terrestrial Physics (52N, 103E, near Irkutsk) and MLS Aura satellite data were used. An increase in the activity of planetary waves in the 2nd half of November and December 2012 was revealed. During the SSW evolution, an increase in temperature of the stratosphere ( 70 K at 10 hPa) was accompanied by mesospheric cooling which was observed in a narrow layer ( 50 K at 0.01 hPa). In late December - early January, there was significant increase of intensities of OH and O2 emissions originating at the mesosphere and low

  16. Export of Ozone-Poor Air from the Lower Tropical Stratosphere to Mid-latitudes

    Science.gov (United States)

    Spackman, J. R.; Weinstock, E. M.; Anderson, J. G.

    2002-05-01

    Analysis of ozonesonde profiles shows a decline in ozone of 7 to 9%/decade during the past 20 to 30 years in the northern mid-latitude lower stratosphere [Logan et al., 1999], exposing the large population at these latitudes to increased health risks. Heterogeneous processing leading to halogen-catalyzed ozone loss is not expected to occur in the mid-latitude lower stratosphere because in situ measurements indicate the air is consistently undersaturated and low in ClO in this region [Smith et al., 2001]. Furthermore, in situ measurements acquired aboard the NASA ER-2 aircraft during SOLVE (SAGE III Ozone Loss and Validation Experiment) suggest that equatorward mixing of ozone-depleted air from the Arctic vortex does not contribute significantly to declines in mid-latitude lower stratospheric ozone. Instead, tracer-tracer correlations from SOLVE indicate that rapid isentropic transport from the lower tropical stratosphere coupled with diabatic descent in mid-latitudes delivers very young, ozone-poor air to the lowermost stratosphere (θ Journal of Geophysical Research, 104, 26373-26399, 1999. Smith, J.B., et al., Mechanisms for midlatitude ozone loss: Heterogeneous chemistry in the lowermost stratosphere?, Journal of Geophysical Research, 106, 1297-1309, 2001.

  17. On the Development of Above-Anvil Cirrus Plumes in Extratropical Convection

    Science.gov (United States)

    Homeyer, C. R.; McAuliffe, J. D.; Bedka, K. M.

    2016-12-01

    Expansive cirrus clouds present above the anvils of extratropical convection have been observed in satellite and aircraft-based imagery for several decades. Despite knowledge of their occurrence, the precise mechanisms and atmospheric conditions leading to their formation and maintenance are not entirely known. Here, we examine the formation of these cirrus "plumes" using a combination of satellite imagery, three-dimensional ground-based radar observations, assimilated atmospheric states from a state-of-the-art reanalysis, and idealized numerical simulations with explicitly resolved convection. Using data from ten recent cases (2013-Present), we find that all storms with above-anvil cirrus plumes reach altitudes 1 to 6 km above the tropopause. Thus, it is likely that these clouds represent the injection of cloud material into the lower stratosphere. Comparison of above-anvil cirrus plume cases with ten additional cases of observed tropopause-penetrating convection without plumes reveals that these clouds are associated with large vector differences between the motion of a storm and the environmental wind in the upper troposphere and lower stratosphere (UTLS), suggesting that gravity wave breaking and/or stretching of the tropopause-penetrating cloud are/is more prevalent in plume-producing storms. No relationship is found between above-anvil cirrus plume occurrence and the stability of the lower stratosphere (or tropopause structure) or the duration of stratospheric penetration. Idealized model simulations of tropopause-penetrating convection with small and large magnitudes of storm-relative wind in the UTLS are found to reproduce the established observational relationship and show that frequent gravity wave breaking is the primary mechanism responsible for above-anvil cirrus plume formation.

  18. A mysterious giant ichthyosaur from the lowermost Jurassic of Wales

    Directory of Open Access Journals (Sweden)

    Jeremy E. Martin

    2015-12-01

    Full Text Available Ichthyosaurs rapidly diversified and colonised a wide range of ecological niches during the Early and Middle Triassic period, but experienced a major decline in diversity near the end of the Triassic. Timing and causes of this demise and the subsequent rapid radiation of the diverse, but less disparate, parvipelvian ichthyosaurs are still unknown, notably because of inadequate sampling in strata of latest Triassic age. Here, we describe an exceptionally large radius from Lower Jurassic deposits at Penarth near Cardiff, south Wales (UK the morphology of which places it within the giant Triassic shastasaurids. A tentative total body size estimate, based on a regression analysis of various complete ichthyosaur skeletons, yields a value of 12–15 m. The specimen is substantially younger than any previously reported last known occurrences of shastasaurids and implies a Lazarus range in the lowermost Jurassic for this ichthyosaur morphotype.

  19. Tropical response to extratropical eastward propagating waves

    Directory of Open Access Journals (Sweden)

    S. Sridharan

    2015-06-01

    Full Text Available Space–time spectral analysis of ERA-interim winds and temperature at 200 hPa for December 2012–February 2013 shows the presence of eastward propagating waves with period near 18 days in mid-latitude meridional winds at 200 hPa. The 18 day waves of k = 1–2 are dominantly present at latitudes greater than 80°, whereas the waves of k = 3–4 are dominant at 60° of both Northern and Southern Hemispheres. Though the 18 day wave of smaller zonal wavenumbers (k = 1–2 are confined to high latitudes, there is an equatorward propagation of the 18 day wave of k = 4 and 5. The wave amplitude of k = 5 is dominant than that of k = 4 at tropical latitudes. In the Northern Hemisphere (NH, there is a poleward tilt in the phase of the wave of k = 5 at mid-latitudes, as height increases indicating the baroclinic nature of the wave, whereas in the Southern Hemisphere (SH, the wave has barotropic structure as there is no significant phase variation with height. At the NH subtropics, the wave activity is confined to 500–70 hPa with moderate amplitudes. It is reported for the first time that the wave of similar periodicity (18 day and zonal structure (k = 5 as that of extratropical wave disturbance has been observed in tropical OLR, a proxy for tropical convection. We suggest that the selective response of the tropical wave forcing may be due to the lateral forcing of the eastward propagating extratropical wave of similar periodicity and zonal structure.

  20. Global large-scale stratosphere-troposphere exchange in modern reanalyses

    Science.gov (United States)

    Boothe, Alexander C.; Homeyer, Cameron R.

    2017-05-01

    Stratosphere-troposphere exchange (STE) has important impacts on the chemical and radiative properties of the upper troposphere and lower stratosphere. This study presents a 15-year climatology of global large-scale STE from four modern reanalyses: ERA-Interim, JRA-55, MERRA-2, and MERRA. STE is separated into three regions (tropics, subtropics, and extratropics) and two transport directions (stratosphere-to-troposphere transport or STT and troposphere-to-stratosphere transport or TST) in an attempt to identify the significance of known transport mechanisms. The extratropics and tropics are separated by the tropopause break. Any STE occurring between the tropics and the extratropics through the tropopause break is considered subtropical exchange (i.e., in the vicinity of the subtropical jet). In addition, this study employs a method to identify STE as that which crosses the lapse-rate tropopause (LRT), while most previous studies have used a potential vorticity (PV) isosurface as the troposphere-stratosphere boundary. PV-based and LRT-based STE climatologies are compared using the ERA-Interim reanalysis output. The comparison reveals quantitative and qualitative differences, particularly for TST in the polar regions. Based upon spatiotemporal integrations, we find STE to be STT dominant in ERA-Interim and JRA-55 and TST dominant in MERRA and MERRA-2. The sources of the differences are mainly attributed to inconsistencies in the representation of STE in the subtropics and extratropics. Time series during the 15-year analysis period show long-term changes that are argued to correspond with changes in the Brewer-Dobson circulation.

  1. Stratospheric aircraft: Impact on the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  2. Stratospheric aircraft: Impact on the stratosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.

    1992-02-01

    The steady-state distribution of natural stratospheric ozone is primarily maintained through production by ultraviolet photolysis of molecular oxygen, destruction by a catalytic cycle involving nitrogen oxides (NO{sub x}), and relocation by air motions within the stratosphere. Nitrogen oxides from the exhausts of a commercially viable fleet of supersonic transports would exceed the natural source of stratospheric nitrogen oxides if the t should be equipped with 1990 technology jet engines. This model-free comparison between a vital natural global ingredient and a proposed new industrial product shows that building a large fleet of passenger stratospheric aircraft poses a significant global problem. NASA and aircraft industries have recognized this problem and are studying the redesign of jet aircraft engines in order to reduce the nitrogen oxides emissions. In 1989 atmospheric models identified two other paths by which the ozone destroying effects of stratospheric aircraft might be reduced or eliminated: (1) Use relatively low supersonic Mach numbers and flight altitudes. For a given rate of nitrogen oxides injection into the stratosphere, the calculated reduction of total ozone is a strong function of altitude, and flight altitudes well below 20 kilometers give relatively low calculated ozone reductions. (2) Include heterogeneous chemistry in the two-dimensional model calculations. Necessary conditions for answering the question on the title above are to improve the quality of our understanding of the lower stratosphere and to broaden our knowledge of hetergeneous stratospheric chemistry. This article reviews recently proposed new mechanisms for heterogeneous reactions on the global stratospheric sulfate aerosols.

  3. Global Stratosphere-Troposphere Exchange in Modern Reanalyses

    Science.gov (United States)

    Boothe, A.; Homeyer, C. R.

    2015-12-01

    Stratosphere-troposphere exchange (STE) has important and significant impacts on the chemical and radiative properties of the upper troposphere and lower stratosphere. This study presents a 15-year climatology of global large-scale STE from four modern reanalyses: ERA-Interim, JRA-55, MERRA, and NCEP-CFSR. We use a 3-D trajectory model to initialize a dense grid of particles throughout the troposphere and stratosphere each day, advect them forward in time, and identify those crossing the tropopause to compute STE. Exchanged particles are separated into four categories for analysis to identify the significance of known transport mechanisms in each reanalysis: 1) vertical stratosphere-to-troposphere transport (STT), 2) vertical troposphere-to-stratosphere transport (TST), 3) lateral STT (that occurring between tropics and extratropics and across the tropopause "break"), and 4) lateral TST. We will present and discuss similarities and differences amongst the four reanalysis systems, focusing on the seasonal and annual cycle and geographic distribution of the four transport categories.

  4. Decadal Variability of the Tropical Stratosphere: Secondary Influence of the El Nino-Southern Oscillation

    Science.gov (United States)

    2010-02-04

    solar cycle variation of ozone in the strato - sphere inferred from Nimbus 7 and NOAA 11 satellites, J. Geophys. Res., 99, 20,665- 20,671. Chipperfield...tropical lower stratosphere: The role of extratropical wave forcing, J. Atmos. Sci., 60, 2389-2403. Hoppel, K. W., N. L. Baker, L. Coy, S. D. Eckermann...solar cycle: Winter strato - pause and lower stratosphere, J. Geophys. Res., 101, 4749, doi:10.1029/2002JD002224. Labitzke, K. (2004), On the signal of

  5. Do split and displacement sudden stratospheric warmings have different annular mode signatures?

    Science.gov (United States)

    Maycock, Amanda; Hitchcock, Peter

    2016-04-01

    Sudden stratospheric warmings (SSWs) contribute to intraseasonal tropospheric forecasting skill due to their surface impacts. Recent studies suggest these impacts depend upon whether the polar vortex splits or is displaced during the SSW. We analyse the annular mode signatures of SSWs in a 1000 year IPSL-CM5A-LR simulation. Although small differences in the mean surface Northern Annular Mode (NAM) index following splits and displacements are found, the sign is not consistent for two independent SSW algorithms, and over 50 events are required to distinguish the responses. We use the winter-time correlation between extratropical lower stratospheric wind anomalies and the surface NAM index as a metric for two-way stratosphere-troposphere coupling, and find that the differences between splits and displacements, and between classification methodologies, can be simply understood in terms of their mean stratospheric wind anomalies. Predictability studies should therefore focus on understanding the factors that determine the persistence of these anomalies following SSWs.

  6. Variations in Extratropical Cyclone Activity in Northern East Asia

    Institute of Scientific and Technical Information of China (English)

    WANG Xinmin; ZHAI Panmao; WANG Cuicui

    2009-01-01

    Based on an improved objective cyclone detection and tracking algorithm, decadal variations in extratropical cyclones in northern East Asia are studied by using the ECMWF 40 Year Reanalysis (ERA-40) sea-level pressure data during 1958-2001. The results reveal that extratropical cyclone activity has displayed clear seasonal, interannual, and decadal variability in northern East Asia. Spring is the season when cyclones occur most frequently. The spatial distribution of extratropical cyclones shows that cyclones occur mainly within the 40°-50°N latitudinal band in northern East Asia, and the most frequent region of occurrence is in Mongolia. Furthermore, this study also reveals the fact that the frequency of extratropical cyclones has significantly decreased in the lower latitude region of northern East Asia during 1958-2001, but dccadal variability has dominated in higher latitude bands, with frequent cyclone genesis. The intensity of extratropical cyclones has decreased on an annual and seasonal basis. Variation of the annual number of cyclones in northern East Asia is associated with the mean intensity of the baroclinic frontal zone, which is influenced by climate warming in the higher latitudes. Moreover, the dipole structure of extratopical cyclone change, with increases in the north and decreases in the southern part of northern East Asia, is related to the northward movement of the baroclinic frontal zone on either side of 110°E.

  7. Water vapour variability and trends in the Arctic stratosphere

    Science.gov (United States)

    Thölix, Laura; Kivi, Rigel; Backman, Leif; Karpechko, Alexey

    2014-05-01

    Water vapour in the upper troposphere-lower stratosphere (UTLS) is a radiatively and chemically important trace gas. Stratospheric water vapour also affects ozone chemistry through odd-hydrogen chemistry and formation of polar stratospheric clouds (PSC). Both transport and chemistry contribute to the extratropical lower stratospheric water vapour distribution and trends. The main sources of stratospheric water vapour are intrusion through the tropical tropopause and production from oxidation of methane. Accurate observations of UTLS water vapour are difficult to obtain due to the strong gradient in the water vapour profile over the tropopause. However, modelling the stratospheric water vapour distribution is challenging and accurate measurements are needed for model validation. Trends in Arctic water vapour will be analysed and explained in terms of contribution from different processes (transport and chemistry), using observations and chemistry transport model (CTM) simulations. Accurate water vapour soundings from Sodankylä will be used to study water vapour within the Arctic polar vortex, including process studies on formation of PSCs and dehydration. Water vapour profiles measured during the LAPBIAT atmospheric sounding campaign in Sodankylä in January 2010 indicated formation of ice clouds and dehydration. Effects on ozone chemistry will also be studied. Global middle atmospheric simulations have been performed with the FinROSE-ctm using ERA-Interim winds and temperatures. The FinROSE-ctm is a global middle atmosphere model that produces the distribution of 30 long-lived species and tracers and 14 short-lived species. The chemistry describes around 110 gas phase reactions, 37 photodissociation processes and the main heterogeneous reactions related to aerosols and polar stratospheric clouds.

  8. Impact of the Asian Summer Monsoon on the Lower Stratosphere: Results from TACTS/ESMVal 2012

    Science.gov (United States)

    Hoor, Peter; Müller, Stefan; Vogel, Bärbel; Bozem, Heiko; Fischer, Horst; Bönisch, Harald; Engel, Andreas; Keber, Timo; Krämer, Martina; Riese, Martin; Gute, Ellen; Schlager, Hans; Ziereis, Helmut; Zahn, Andreas

    2016-04-01

    We present results from the German research aircraft HALO during the TACTS/ESMVal project (Transport and Composition in the UTLS and Earth System Model Validation). We focus on the distribution of CO, N2O and ozone as well as water vapour. The measurements took place in the extratropical UTLS (upper troposphere/lower stratosphere) region over Europe from August to September 2012. Here, we focus on the northern hemispheric trace gas composition above potential temperatures of 370 K. In this region we could for the first time identify mixing lines, which indicate mixing between stratospheric air masses of different origin. Introducing a new pair of correlation species (N2O-CO) we could identify air masses, which do not involve mixing directly at the tropopause. Based on a case study we show, that the atmospheric region between the extratropical tropopause and potential temperatures up to Θ = 405 K is affected by mixing of 'young' stratospheric air from the monsoon region with aged stratospheric air. Based on the distribution of CO and N2O we show that the lower stratosphere over Europe becomes more tropospheric from August to September with enhanced CO, N2O and water vapour as well as decreasing ozone. Using comprehensive trajectory calculations our results particularly indicate that the Asian summer monoon is the main contributor to this composition change and that mixing from the tropical tropopause layer becomes weaker over time. Therefore we conclude that the monsoon significantly contributes to the flushing of the extratropical UTLS during summer and autumn.

  9. Phase transition in aluminous silica in the lowermost mantle

    Science.gov (United States)

    Tronnes, R. G.; Andrault, D.; Konopkova, Z.; Morgenroth, W.; Liermann, H.

    2012-12-01

    CaCl2-phase and via extra interstitial Al in seifertite. That would result in a ~1.5% density increase at the transition pressure for silica containing 5 wt% Al2O3. This value is similar to the estimated difference in density between peridotitic mantle and basaltic lithologies in the lowermost mantle. References: [1] Hirose et al. 2005, EPSL; [2] Murakami et al. 2003, GRL

  10. Relationships among Brewer-Dobson circulation, double tropopauses, ozone and lower-stratospheric water vapor

    Science.gov (United States)

    Castanheira, J. M.; Peevey, T. R.; Marques, C. A. F.; Olsen, M. A.

    2012-04-01

    This communication will discuss the statistical relationships between the variability of the area covered by double tropopause events and the variabilities of total column ozone and of lower-stratospheric water vapor. The QBO signal in double tropopause events statistics and the relationship between tropical upwelling and the near global (50oS - 50oN) lower stratospheric water vapour will be also presented. The analysis is based on both reanalysis data (ERA-Interim) and satellite data. Significant correlations were found between the area covered by double tropopause events in the latitudinal band 20 - 65oN and the gradient of total column ozone in the subtropical Northern Hemisphere. Significant correlations were also found between de global area of double tropopause events and the near global (50oS - 50oN) water vapour in the lower stratosphere. The relationship between double tropopause events and lower stratospheric ozone is detailed by a correlation analysis between the frequencies of ozone laminae and double tropopause events as found in the HIRDLS data. The correlations of DT variables with total column ozone and ozone laminae are both consistent with intrusion events of tropospheric tropical air into the lower extratropical stratosphere, with the tropical tropopause overlaying the extratropical one. The poleward excursions of the tropical tropopause are also consistent with the found negative correlation between the area extension of DTs and the near global lower stratospheric water vapour. Finally, we will show the existence of a significant negative correlation between the tropical upwelling, determined using the "downward control principle", and the near global lower stratospheric water vapor.

  11. Extratropical cyclone classification and its use in climate studies

    Science.gov (United States)

    Catto, J. L.

    2016-06-01

    Extratropical cyclones have long been known to be important for midlatitude weather. It is therefore important that our current state-of-the-art climate models are able to realistically represent these features, in order that we can have confidence in how they are projected to change in a warming climate. Despite the observation that these cyclones are extremely variable in their structure and features, there have, over the years, been numerous attempts to classify or group them. Such classifications can provide insight into the different cloud structures, airflows, and dynamical forcing mechanisms within the different cyclone types. This review collects and details as many classification techniques as possible, and may therefore act as a reference guide to classifications. These classifications offer the opportunity to improve the way extratropical cyclone evaluation in climate models is currently done by giving more insight into the dynamical and physical processes that occur in climate models (rather than just evaluating the mean state over a broad region as is often done). Examples of where these ideas have been used, or could be used, are reviewed. Finally, the potential impacts of future climate changes on extratropical cyclones are detailed. The ways in which the classification techniques could improve our understanding of future changes in extratropical cyclones and their impacts are given.

  12. A Study of the Extratropical Transformation of Typhoon Winnie (1997)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The complicated evolutive process of how a tropical cyclone transforms into an extratropical cyclone is still an unresolved issue to date, especially one which arises in a weakly baroclinic environment. Typhoon Winnie (1997) is studied during its extratropical transformation stage of extratropical transition (ET)with observational data and numerical simulations. Results show that Winnie experienced its extratropical transformation to the south of the subtropical high without intrusion of the mid-latitude baroclinic zone.This is significantly different from previous studies. Analyses reveal that the cold air, which appeared in the north edge of Winnie circulation, resulted from the precipitation drag and cooling effect of latent heat absorption associated with the intense precipitation there. The cooling only happened below 3 km and the greatest cooling was below 1 km. With the cold air and its advection by the circulation of Winnie, a front was formed in the lower troposphere. The front above is related not only to the cooling in the lower level but also to the warming effect of latent heat release in the middle-upper levels. The different temperature variation in the vertical caused the temperature gradient over Winnie and resulted in the baroclinicity.

  13. Stratosphere-resolving CMIP5 models simulate different changes in the Southern Hemisphere

    Science.gov (United States)

    Rea, Gloria; Riccio, Angelo; Fierli, Federico; Cairo, Francesco; Cagnazzo, Chiara

    2017-06-01

    This work documents long-term changes in the Southern Hemisphere circulation in the austral spring-summer season in the Coupled Intercomparison Project Phase 5 models, showing that those changes are larger in magnitude and closer to ERA-Interim and other reanalyses if models include a dynamical representation of the stratosphere. Specifically, models with a high-top and included dynamical and—in some cases—chemical feedbacks within the stratosphere better simulate the lower stratospheric cooling observed over 1979-2001 and strongly driven by ozone depletion, when compared to the other models. This occurs because high-top models can fully capture the stratospheric large scale circulation response to the ozone-induced cooling. Interestingly, this difference is also found at the surface for the Southern Annular Mode (SAM) changes, even though all model categories tend to underestimate SAM trends over those decades. In this analysis, models including a proper dynamical stratosphere are more sensitive to lower stratospheric cooling in their tropospheric circulation response. After a brief discussion of two RCP scenarios, our study confirms that at least for large changes in the extratropical regions, stratospheric changes induced by external forcing have to be properly simulated, as they are important drivers of tropospheric climate variations.

  14. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  15. The influence of solar wind on extratropical cyclones – Part 1: Wilcox effect revisited

    Directory of Open Access Journals (Sweden)

    M. Rybanský

    2009-01-01

    mean VAI response to SBP associated with the north-to-south reversal of BZ is leading by up to 2 days the mean VAI response to SBP associated with the south-to-north reversal of BZ. For the latter, less geoeffective events, the VAI minimum deepens (with the above exception of the Northern Hemisphere low-aerosol 500-mb VAI and the VAI maximum is delayed. The phase shift between the mean VAI responses obtained for these two subsets of SBP events may explain the reduced amplitude of the overall Wilcox effect. In a companion paper, Prikryl et al. (2009 propose a new mechanism to explain the Wilcox effect, namely that solar-wind-generated auroral atmospheric gravity waves (AGWs influence the growth of extratropical cyclones. It is also observed that severe extratropical storms, explosive cyclogenesis and significant sea level pressure deepenings of extratropical storms tend to occur within a few days of the arrival of high-speed solar wind. These observations are discussed in the context of the proposed AGW mechanism as well as the previously suggested atmospheric electrical current (AEC model (Tinsley et al., 1994, which requires the presence of stratospheric aerosols for a significant (Wilcox effect.

  16. A connection from Arctic stratospheric ozone to El Niño-Southern oscillation

    Science.gov (United States)

    Xie, Fei; Li, Jianping; Tian, Wenshou; Fu, Qiang; Jin, Fei-Fei; Hu, Yongyun; Zhang, Jiankai; Wang, Wuke; Sun, Cheng; Feng, Juan; Yang, Yun; Ding, Ruiqiang

    2016-12-01

    Antarctic stratospheric ozone depletion is thought to influence the Southern Hemisphere tropospheric climate. Recently, Arctic stratospheric ozone (ASO) variations have been found to affect the middle-high latitude tropospheric climate in the Northern Hemisphere. This paper demonstrates that the impact of ASO can extend to the tropics, with the ASO variations leading El Niño-Southern Oscillation (ENSO) events by about 20 months. Using observations, analysis, and simulations, the connection between ASO and ENSO is established by combining the high-latitude stratosphere to troposphere pathway with the extratropical to tropical climate teleconnection. This shows that the ASO radiative anomalies influence the North Pacific Oscillation (NPO), and the anomalous NPO and induced Victoria Mode anomalies link to the North Pacific circulation that then influences ENSO. Our results imply that incorporating realistic and time-varying ASO into climate system models may help to improve ENSO predictions.

  17. Dehydration of the stratosphere

    Directory of Open Access Journals (Sweden)

    M. Schoeberl

    2011-03-01

    Full Text Available Domain filling, forward trajectory calculations are used to examine the global dehydration processes that control stratospheric water vapor. As with most Lagrangian models of this type, water vapor is instantaneously removed from the parcel to keep the relative humidity with respect to ice from exceeding saturation or a specified super-saturation value. We also test a simple parameterization of stratospheric convective moistening through ice lofting and the effect of gravity waves as a mechanism that can augment dehydration. Comparing diabatic and kinematic trajectories, we find, in agreement with previous authors, that the additional transport due to the vertical velocity "noise" in the kinematic calculation creates too dry a stratosphere and a too diffuse a water-vapor tape recorder signal compared observations. The diabatic simulations, on the other hand, produce stratospheric water vapor mixing ratios very close to that observed by Aura's Microwave Limb Sounder. Convective moistening, which will increases stratospheric HDO, also increases stratospheric water vapor while gravity waves do the opposite. We find that while the Tropical West Pacific is the dominant dehydration location, dehydration over Tropical South America is also important. Antarctica also makes a contribution to the overall stratospheric water vapor budget by releasing very dry air into the Southern Hemisphere stratosphere following the break up of the winter vortex.

  18. The oldest accurate record of Scenopinidae in the Lowermost Eocene amber of France (Diptera: Brachycera).

    Science.gov (United States)

    Garrouste, Romain; Azar, Dany; Nel, Andre

    2016-03-22

    Eocenotrichia magnifica gen. et sp. nov. (Diptera: Scenopinidae: Metatrichini) is described and illustrated from the Lowermost Eocene amber of Oise (France) and represents the oldest definitive window fly fossil. The present discovery in the Earliest Eocene supports the Late Cretaceous-Paleocene age currently proposed for the emergence of Metatrichini.

  19. Southern annular mode: tropical-extratropical interactions and impacts

    CSIR Research Space (South Africa)

    Fauchereau, N

    2009-09-01

    Full Text Available ?Dept.,?University?of?Cape?Town,?South?Africa 1.?Introduction The?Southern?Annular?Mode?(SAM,?also?called?Antarctic? Oscillation)?is?the?dominant?mode?of?extratropical?(south? of ? 20S) ? low?frequency ? atmospheric ? variability ? ? in ? the? Southern?Hemisphere.?It ?basically...?with?a?seasonally?adjusted?principal?component? index,?17th?Climate?diagnostics?workshop,?Norman,?OK,? 52?57. ...

  20. Simulation of the isotopic composition of stratospheric water vapour - Part 2: Investigation of HDO / H2O variations

    Science.gov (United States)

    Eichinger, R.; Jöckel, P.; Lossow, S.

    2015-06-01

    Studying the isotopic composition of water vapour in the lower stratosphere can reveal the driving mechanisms of changes in the stratospheric water vapour budget and therefore help to explain the trends and variations of stratospheric water vapour during recent decades. We equipped a global chemistry climate model with a description of the water isotopologue HDO, comprising its physical and chemical fractionation effects throughout the hydrological cycle. We use this model to improve our understanding of the processes which determine the patterns in the stratospheric water isotope composition and in the water vapour budget itself. The link between the water vapour budget and its isotopic composition in the tropical stratosphere is presented through their correlation in a simulated 21-year time series. The two quantities depend on the same processes; however, they are influenced with different strengths. A sensitivity experiment shows that fractionation effects during the oxidation of methane have a damping effect on the stratospheric tape recorder signal in the water isotope ratio. Moreover, the chemically produced high water isotope ratios overshadow the tape recorder in the upper stratosphere. Investigating the origin of the boreal-summer signal of isotopically enriched water vapour reveals that in-mixing of old stratospheric air from the extratropics and the intrusion of tropospheric water vapour into the stratosphere complement each other in order to create the stratospheric isotope ratio tape recorder signal. For this, the effect of ice lofting in monsoon systems is shown to play a crucial role. Furthermore, we describe a possible pathway of isotopically enriched water vapour through the tropopause into the tropical stratosphere.

  1. Stratospheric Deployment Parafoil Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Stratospheric Deployment Parafoil is a proposed technology that will be designed and tested to provide a greatly superior parachute precision delivery system...

  2. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  3. A meridional structure of static stability and ozone vertical gradient around the tropopause in the Southern Hemisphere extratropics

    Directory of Open Access Journals (Sweden)

    Y. Tomikawa

    2010-08-01

    Full Text Available An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH extratropics. The tropopause inversion layer (TIL with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.

  4. Multiple subtropical stratospheric intrusions over Reunion Island: Observational, Lagrangian, and Eulerian numerical modeling approaches

    Science.gov (United States)

    Vérèmes, H.; Cammas, J.-P.; Baray, J.-L.; Keckhut, P.; Barthe, C.; Posny, F.; Tulet, P.; Dionisi, D.; Bielli, S.

    2016-12-01

    Signatures of multiple stratospheric intrusions were observed on simultaneous and collocated ozone and water vapor profiles retrieved by lidars and radiosondes at the Maïdo Observatory, Reunion Island (21°S, 55°E, 2160 m above sea level), during MAïdo LIdar Calibration CAmpaign in April 2013. A singular structure of the ozone vertical profile with three peaks (in excess of 90 ppbv, at 8, 10, and 13 km altitude) embedded in a thick dry layer of air suggested stratospheric intrusions with multiple origins. The hypothesis is corroborated by a synoptic analysis based on re-analyses. European Centre for Medium-Range Weather Forecasts ERA-Interim temporal series associated with 5 days Lagrangian back trajectories initialized on each ozone peak allows to capture their stratospheric origin. The ozone peak at the lowest altitude is associated with an irreversible tropopause folding process along the polar jet stream during an extratropical cutoff low formation. Simultaneous lidar water vapor profiles of this peak show that the anticorrelation with ozone has been removed, due to mixing processes. Back trajectories indicate that the two other ozone peaks observed at higher altitudes are associated with the dynamics of the subtropical jet stream and the lower stratosphere. The observations confirm the recent stratospheric origins. The highest ozone peak is explained by the horizontal distribution of the intrusion. Use of a Lagrangian Reverse Domain Filling model and of the Meso-NH Eulerian mesoscale model with a passive stratospheric tracer allow to further document the stratosphere-troposphere transport processes and to describe the detailed potential vorticity and ozone structures in which are embedded in the observed multiple stratospheric intrusions.

  5. Radiative conductivity and abundance of post-perovskite in the lowermost mantle

    CERN Document Server

    Lobanov, Sergey S; Lin, Jung-Fu; Goncharov, Alexander F

    2016-01-01

    Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure-temperature conditions of Earth's core-mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core-mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (< 1.2 W/m/K) is ~ 40% smaller than bridgmanite at the base of the mantle. By combining this result with the present-day core-mantle heat flow and available estimations on the lattice thermal conductivity we conclude that post-perovskite is as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.

  6. Extratropical North Atlantic SST influence on Sahel rainfall

    Science.gov (United States)

    Liu, Y.; Chiang, J. C.

    2013-12-01

    We present evidence suggesting that the late 1960's Sahel drought was linked to an abrupt cooling in the extratropical North Atlantic, whose influence was then propagated to the Sahel by atmospheric teleconnection. Such linkages have been observed in paleoclimate during abrupt climate changes of the last glacial period. They have also occurred in coupled model simulations of Atlantic meridional overturning circulation (AMOC) slowdown, the latter being the leading cause of said paleoclimate abrupt changes. The AMOC-slowdown simulations show a characteristic global pattern of climate changes, including a northern hemispheric-wide cooling and increased surface pressure, and weakening of the West African and Asian monsoons. We show that an observed northern-hemispheric pattern of changes, resembling the AMOC slowdown, occurred during the late 1960's, co-incident with the Sahel drought. A combined principal component analysis of 20th century surface temperature, sea level pressure and precipitation extracts a leading mode whose spatial pattern closely resemble the impacts of AMOC slowdown. A similar analysis of AMIP-type simulations forced by 20th century observed forcings shows a similar result, suggesting that the origins of the climate change reside in SST changes, in particular over extratropical North Atlantic. Taken together, the results suggests the influence of extratropical North Atlantic cooling on the 20th century Sahel drought, and a teleconnection pathway through surface/tropospheric cooling. Motivated by our observational result, we investigated atmospheric teleconnection mechanisms of extratropical North Atlantic cooling in an atmospheric general circulation model (GCM) coupled with slab ocean. Our results indicate the central role of tropospheric cooling in communicating the influence on the Sahel. We explicitly show this using regional climate model simulation of the Sahel, with air temperature and associated humidity anomalies from the GCM simulation

  7. Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions

    OpenAIRE

    2007-01-01

    International audience; We present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence t...

  8. Effects of Zonal Wind on Stratospheric Ozone Variations over Nigeria

    Science.gov (United States)

    Chidinma Okoro, Eucharia,

    2016-07-01

    The effects of zonal wind on stratospheric ozone variation over Nigeria have been studied. The areas covered in this study include; Maiduguri, Ikeja, Port-Harcourt, Calabar, Makurdi, Ilorin, Akure, Yola, Minna, Jos, Kano and Enugu in Nigeria, from 1986 to 2008. Zonal wind was computed from the iso-velocity map employing MATLAB software. The mean monthly variations of AAM and LOD at pressure levels of 20, 30 and 50 mb in the atmosphere depict a trend of maximum amplitude between April and September, and minimum amplitude between December and March. The trend observed in seasonal variation of O3 column data in the low latitude had maximum amount from May through August and minimum values from December through February. The mean monthly maximum O3 concentrations was found to be 284.70 Du (Kano) occurring in May 1989 while, an average monthly minimum O3 concentration was found to be 235.60 Du (Port-Harcourt and Calabar) occurring in January 1998. It has been established in this study that, the variation in atmospheric angular momentum (AAM) caused by variation of the universal time or length of day (LOD) transfer ozone (O3) by means of zonal wind from the upper troposphere to the lower stratosphere in the stations understudy. The strong effect of the pressure levels of the atmosphere on O3 variation could be attributed to its effect on the AAM and LOD. Variation in the LOD is significant in the tropics, suggesting that, the effects of the extra-tropical suction pump (ETSP) action is not the only driver responsible for O3 transportation from the tropics to extra-tropical zones. Consequently, these findings lead to a deduction that weather pattern alteration observed due to these changes could lead to climate change. Keywords: ozone variations; dynamical processes; harmattan wind; ETSP; and climatic variability

  9. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  10. Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-04-01

    Full Text Available An extensive observational data set, consisting of more than 106 SF6 vertical profiles from MIPAS measurements distributed over the whole globe has been condensed into monthly zonal means of mean age of air for the period September 2002 to January 2010, binned at 10° latitude and 1–2 km altitude. The data were analysed with respect to their temporal variation by fitting a regression model consisting of a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal absolute age of air and its linear increase was assessed and found to be small.

    The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009 for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the lowermost and the upper stratospheric tropics, for parts of Southern mid-latitudes, and for the Northern polar regions. Analysis of the amplitudes and phases of the seasonal variation shed light on the coupling of stratospheric regions to each other. In particular, the Northern mid-latitude stratosphere is well coupled to the tropics, while the Northern lowermost mid-latitudinal stratosphere is decoupled, confirming the separation of the shallow branch of the Brewer-Dobson circulation from the deep branch. We suggest an overall increased tropical upwelling, together with weakening of mixing barriers, especially in the Northern Hemisphere, as a hypothetical model to explain the observed pattern of linear multi-year increase/decrease, and amplitudes

  11. Weak simulated extratropical responses to complete tropical deforestation

    Science.gov (United States)

    Findell, K.L.; Knutson, T.R.; Milly, P.C.D.

    2006-01-01

    The Geophysical Fluid Dynamics Laboratory atmosphere-land model version 2 (AM2/LM2) coupled to a 50-m-thick slab ocean model has been used to investigate remote responses to tropical deforestation. Magnitudes and significance of differences between a control run and a deforested run are assessed through comparisons of 50-yr time series, accounting for autocorrelation and field significance. Complete conversion of the broadleaf evergreen forests of South America, central Africa, and the islands of Oceania to grasslands leads to highly significant local responses. In addition, a broad but mild warming is seen throughout the tropical troposphere (deforested run and the control run are similar in magnitude and area to the differences between nonoverlapping segments of the control run. These simulations suggest that extratropical responses to complete tropical deforestation are unlikely to be distinguishable from natural climate variability.

  12. The first Aleyrodidae from the Lowermost Eocene Oise amber (Hemiptera: Sternorrhyncha).

    Science.gov (United States)

    Drohojowska, Jowita; Szwedo, Jacek

    2013-01-01

    The first records are provided of the family Aleyrodidae in the Lowermost Eocene amber of Oise, France. The following new taxa in the subfamily Aleurodicinae are described, figured and discussed, together with an identification key: Oisedicus maginus gen. et sp. n., Clodionusfizoli gen. et sp. n., Lukotekia menae gen. et sp. n. and Isaraselis cladiva gen. et sp. n. Unplaced species of Lukotekia are briefly described, and the diversity of the whiteflies from Oise amber is discussed. The importance of fossils for palaeoecological and palaeoclimatological reconstruction is briefly considered.

  13. Sediment Trapping by Emerged Channel Bars in the Lowermost Mississippi River during a Major Flood

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-11-01

    Full Text Available The formation of channel bars has been recognized as the most significant sediment response to the highly trained Mississippi River (MR. However, no quantitative study exists on the dynamics of emerged channel bars and associated sediment accumulation in the last 500-kilometer reach of the MR from the Gulf of Mexico outlet, also known as the lowermost Mississippi River. Such knowledge is especially critical for riverine sediment management to impede coastal land loss in the Mississippi River Delta. In this study, we utilized a series of satellite images taken from August 2010 to January 2012 to assess the changes in surface area and volume of three large emerged channel bars in the lowermost MR following an unprecedented spring flood in 2011. River stage data were collected to develop a rating curve of surface areas detected by satellite images with flow conditions for each of the three bars. A uniform geometry associated with the areal change was assumed to estimate the bar volume changes. Our study reveals that the 2011 spring flood increased the surface area of the bars by 3.5% to 11.1%, resulting in a total surface increase of 7.3%, or 424,000 m2. Based on the surface area change, we estimated a total bar volume increase of 4.4%, or 1,219,900 m3. This volume increase would be equivalent to a sediment trapping of approximately 1.0 million metric tons, assuming a sediment bulk density of 1.2 metric tons per cubic meter. This large quantity of sediment is likely an underestimation because of the neglect of subaqueous bar area change and the assumption of a uniform geometry in volume estimation. Nonetheless, the results imply that channel bars in the lowermost MR are capable of capturing a substantial amount of sediment during floods, and that a thorough assessment of their long-term change can provide important insights into sediment trapping in the lowermost MR as well as the feasibility of proposed river sediment diversions.

  14. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    Science.gov (United States)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  15. A Multivariate Analysis of Extratropical Cyclone Environmental Sensitivity

    Science.gov (United States)

    Tierney, G.; Posselt, D. J.; Booth, J. F.

    2015-12-01

    The implications of a changing climate system include more than a simple temperature increase. A changing climate also modifies atmospheric conditions responsible for shaping the genesis and evolution of atmospheric circulations. In the mid-latitudes, the effects of climate change on extratropical cyclones (ETCs) can be expressed through changes in bulk temperature, horizontal and vertical temperature gradients (leading to changes in mean state winds) as well as atmospheric moisture content. Understanding how these changes impact ETC evolution and dynamics will help to inform climate mitigation and adaptation strategies, and allow for better informed weather emergency planning. However, our understanding is complicated by the complex interplay between a variety of environmental influences, and their potentially opposing effects on extratropical cyclone strength. Attempting to untangle competing influences from a theoretical or observational standpoint is complicated by nonlinear responses to environmental perturbations and a lack of data. As such, numerical models can serve as a useful tool for examining this complex issue. We present results from an analysis framework that combines the computational power of idealized modeling with the statistical robustness of multivariate sensitivity analysis. We first establish control variables, such as baroclinicity, bulk temperature, and moisture content, and specify a range of values that simulate possible changes in a future climate. The Weather Research and Forecasting (WRF) model serves as the link between changes in climate state and ETC relevant outcomes. A diverse set of output metrics (e.g., sea level pressure, average precipitation rates, eddy kinetic energy, and latent heat release) facilitates examination of storm dynamics, thermodynamic properties, and hydrologic cycles. Exploration of the multivariate sensitivity of ETCs to changes in control parameters space is performed via an ensemble of WRF runs coupled with

  16. Some aspects of temporal structure of leading winter extratropical modes

    Science.gov (United States)

    Pastor, M. A.; Doblas-Reyes, F. J.; Casado, M. J.

    2003-04-01

    SOME ASPECTS OF TEMPORAL STRUCTURE OF LEADING WINTER EXTRATROPICAL MODES M.A.Pastor (1), F. J. Doblas-Reyes (2), M. J. Casado (1) (1) I Instituto Nacional de Meteorología, c/Leonardo Prieto Castro,8,28071 ,Madrid,Spain, a.pastor@inm.es (2) ECMWF, Shinfield Park,RG2 9AX, Reading, UK, f.doblas-reyes@ecmwf.int As a first step in the evaluation of the capability of seasonal ensemble predictions to reproduce the leading modes which dominate the extratropical northern circulation and to explore the ensemble predictability, we examine the power spectra and timescale properties of the dominant atmospheric teleconnection patterns like the North Atlantic Oscillation (NAO), the Pacific-North America (PNA) patterns, etc. using the National Centres for Environmental Prediction (NCEP) re-analyses spanning the winters of 1948-2000 over the Northern Hemisphere poleward of 20ºN. The teleconnection patterns are identified by applying a rotated principal component analysis (RPCA) to the daily unfiltered 500-hPa geopotential height field. The election of the RPCA methodology is motivated by the fact that identifies simple and unique patterns of spatial dataset variability. The temporal evolution of the selected patterns can be understood as a stochastic processes with an e-folding timescale less than 10 days. The shortness of this timescale indicates that the excitation of these teleconnection patterns is limited to a period of time limited to a few days. Then, this study shows that the selected patterns evolve on timescales less than 2 weeks in agreement with very recent published works. It is emphasized the use of daily data in order to improve our understanding of the growth and decay mechanisms of teleconnection patterns, since using monthly or seasonal data, can produce a misleading picture of the underlying dynamics of the anomalies with time scales much shorter than 2 months.

  17. The impact of extratropical warming on the tropical precipitation

    Science.gov (United States)

    Yoshimori, Masakazu; Abe-Ouchi, Ayako; Tatebe, Hiroaki; Nozawa, Toru

    2017-04-01

    From paleoclimate evidence to future climate projections, it has been reported that the asymmetric warming (or cooling) between the northern and southern hemisphere extratropics induces the meridional shift in the tropical precipitation. Such a shift is often understood by the energy-flux framework in that the extra energy is transported from more warming to less warming hemispheres through the change in the Hadley circulation. As the Hadley circulation transports energy in opposite direction to the moisture, the tropical precipitation tends to be intensified in the hemisphere of a larger warming. This framework is shown to be particularly useful for modelling results without ocean dynamical feedback. In the current study, a fully coupled atmosphere-ocean model is used to investigate the impact of extratropical warming on the tropical precipitation under the realistic RCP4.5 scenario. It is shown that the mid-high latitude warming alone in the poleward of 40° (56% global warming) can significantly affect the tropical precipitation change in the equatorward of 20° (38% hemispheric contrast) from late autumn to early winter. High-latitude warming alone affects much less. This meridional change in the tropical precipitation is largely explained by the circulation change, rather than the humidity change. The reduced northward eddy momentum and heat fluxes in the northern hemisphere induces anomalous Hadley circulation in the northern tropics. This change seems to weaken the equatorial upwelling in the Pacific, which leads to the equatorial SST rise. The equatorial sea surface warming induces the meridionally symmetric pattern of the anomalous Hadley circulation (though, asymmetric in strength), resulting in the northward migration of the tropical precipitation. The larger change in the ocean heat transport near the equator, relative to the atmosphere, requires a more refined theory than the conventional energy-flux framework.

  18. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  19. PARVULARUGOGLOBIGERINA EUGUBINA TYPE-SAMPLE AT CCESELLI (ITALY: PLANKTIC FORAMINIFERAL ASSEMBLAGE AND LOWERMOST DANIAN BIOSTRATIGRAPHIC IMPLICATIONS

    Directory of Open Access Journals (Sweden)

    IGNACIO ARENILLAS

    2000-11-01

    Full Text Available The Parvularugoglobigerina eugubina Biozone (lowermost Danian was defined at Gubbio (Italy to precisely define the Cretaceous/Paleogene (K/P boundary. It was defined by the total range of Pv. eugubina, but this small morphospecies presents some taxonomic problems. The Pv. eugubina holotype and the planktic foraminiferal assemblage of the Pv. eugubina type-sample at Ceselli (Ceselli 3 were revised to precise the biostratigraphic position of this biozone. Of the 21 morphospecies identified in Ceselli 3, 14 are early Paleocene species and 7 are possible Cretaceous survivors of the K/P boundary extinction event. To clarify the lowermost Danian bizonation, it was necessary to taxonomically revise Pv. eugubina and Pv. longiapertura, which have both been identified in this sample. Following the definition of Pv. eugubina and the original definition of the nominal biozone, the base of Pv. eugubina Biozone should be placed at the first appearance datum of the eponymous species and not at the first appearance datum of Pv. longiapertura. 

  20. Strong, Multi-Scale Heterogeneity in Earth’s Lowermost Mantle

    Science.gov (United States)

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B.; Davies, D. Rhodri; Mattesini, Maurizio

    2015-01-01

    The core mantle boundary (CMB) separates Earth’s liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle’s thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth’s geodynamo. PMID:26674394

  1. Conodont Biostratigraphy of the Middle Cambrian through Lowermost Ordovician in Hunan, South China

    Institute of Scientific and Technical Information of China (English)

    DONG Xiping; John E. REPETSKI; Stig M. BERGSTR(O)M

    2004-01-01

    Since 1985, samples with a total weight of more than 14,000 kg, mainly from three key sections in western and northwestern Hunan, South China, have been processed for conodonts. In strata older than the late Late Cambrian paraconodonts have proved useful for stratigraphic subdivision and correlation. Thirteen conodont zones are proposed in the Middle Cambrian through lowermost Ordovician. The correlation between these zones and those of North China, western U.S.A., western Newfoundland, Canada, and Iran is discussed. In ascending order, these 13 zones are as follows: The Gapparodus bisulcatus-Westergaardodina brevidens Zone, Shandongodus priscus-Hunanognathus tricuspidatus Zone,Westergaardodina quadrata Zone, Westergaardodina matsushitai-W. grandidens Zone, Westergaardodina lui-W. ani Zone,Westergaardodina cf. calix-Prooneotodus rotundatus Zone, Proconodontus tenuiserratus Zone, Proconodontus Zone,Eoconodontus Zone, Cordylodus proavus Zone, Cordylodus intermedius Zone, Cordylodus lindstromi Zone, and Cordylodus angulatus Zone (lower part). The Westergaardodina lui-W. ani and Westergaardodina cf. calix-Prooneotodus rotundatus Zones replace the Westergaardodina proligula and Westergaardodina cf. behrae-Prooneotodus rotundatus Zones, respectively, in the lowermost Upper Cambrian. Two new species (Westergaardodina lui and Westergaardodina ani)and one conditionally identified species (Westergaardodina cf. calix) are described.

  2. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements

    Science.gov (United States)

    Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela

    2017-08-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (˜10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP

  3. Maintenance of polar stratospheric clouds in a moist stratosphere

    Directory of Open Access Journals (Sweden)

    D. B. Kirk-Davidoff

    2007-07-01

    Full Text Available Previous work has shown that polar stratospheric clouds (PSCs could have acted to substantially warm high latitude regions during past warm climates such as the Eocene (55 Ma. Using a simple model of stratospheric water vapor transport and polar stratospheric cloud (PSC formation, we investigate the dependence of PSC optical depth on tropopause temperature, cloud microphysical parameters, stratospheric overturning, and tropospheric methane. We show that PSC radiative effects can help slow removal of water from the stratosphere via self-heating. However, we also show that the ability of PSCs to have a substantial impact on climate depends strongly on the PSC particle number density and the strength of the overturning circulation. Thus even a large source of stratospheric water vapor (e.g. from methane oxidation will not result in substantial PSC radiative effects unless PSC ice crystal number density is high, and stratospheric overturning (which modulates polar stratospheric temperatures is low. These results are supported by analysis of a series of runs of the NCAR WACCM model with methane concentrations varying up to one thousand times present levels.

  4. Maintenance of polar stratospheric clouds in a moist stratosphere

    Directory of Open Access Journals (Sweden)

    D. B. Kirk-Davidoff

    2008-03-01

    Full Text Available Previous work has shown that polar stratospheric clouds (PSCs could have acted to substantially warm high latitude regions during past warm climates such as the Eocene (55 Ma. Using a simple model of stratospheric water vapor transport and polar stratospheric cloud (PSC formation, we investigate the dependence of PSC optical depth on tropopause temperature, cloud microphysical parameters, stratospheric overturning, and tropospheric methane. We show that PSC radiative effects can help slow removal of water from the stratosphere via self-heating. However, we also show that the ability of PSCs to have a substantial impact on climate depends strongly on the PSC particle number density and the strength of the overturning circulation. Thus even a large source of stratospheric water vapor (e.g. from methane oxidation will not result in substantial PSC radiative effects unless PSC ice crystal number density is high compared to most current observations, and stratospheric overturning (which modulates polar stratospheric temperatures is low. These results are supported by analysis of a series of runs of the NCAR WACCM model with methane concentrations varying up to one thousand times present levels.

  5. A diagnosis of the explosive development of two extratropical cyclones

    Science.gov (United States)

    Lupo, Anthony R.; Smith, Phillip J.; Zwack, Peter

    1992-01-01

    This paper examines the 24-h explosive development periods of two extratropical cyclones, the first occurring over the Gulf Stream off the coast of New England from 18 to 19 January 1979 and the second occurring over the southeastern United States from 20 to 21 January 1979. The data used in this study are the First GARP (Global Atmospheric Research Program) Global Experiment (FGGE) level IIIb (SOP I) global analyses on a 4 deg latitude x 5 deg longitude grid. The parameter used to diagnose development is the geostrophic relative vorticity tendency calculated using an extended form of the Zwack-Okossi development equation. This development equation is similar to the Petterssen-Sutcliffe development equation, but is shown to be more complete by explicitly coupling surface development with forcing at all levels above the surface. Cyclonic-vorticity advection, warm-air advection, and latent heat release act to develop the two cyclones, while adiabatic cooling in the ascending air opposes development. Further, vertical profiles of the development quantities for these two cases reveal that vorticity and temperature advection maximize in the 200-300-mb layer, while the latent heat release maximum is typically below 500 mb.

  6. Human-induced greening of the northern extratropical land surface

    Science.gov (United States)

    Mao, Jiafu; Ribes, Aurélien; Yan, Binyan; Shi, Xiaoying; Thornton, Peter E.; Séférian, Roland; Ciais, Philippe; Myneni, Ranga B.; Douville, Hervé; Piao, Shilong; Zhu, Zaichun; Dickinson, Robert E.; Dai, Yongjiu; Ricciuto, Daniel M.; Jin, Mingzhou; Hoffman, Forrest M.; Wang, Bin; Huang, Mengtian; Lian, Xu

    2016-10-01

    Significant land greening in the northern extratropical latitudes (NEL) has been documented through satellite observations during the past three decades. This enhanced vegetation growth has broad implications for surface energy, water and carbon budgets, and ecosystem services across multiple scales. Discernible human impacts on the Earth's climate system have been revealed by using statistical frameworks of detection-attribution. These impacts, however, were not previously identified on the NEL greening signal, owing to the lack of long-term observational records, possible bias of satellite data, different algorithms used to calculate vegetation greenness, and the lack of suitable simulations from coupled Earth system models (ESMs). Here we have overcome these challenges to attribute recent changes in NEL vegetation activity. We used two 30-year-long remote-sensing-based leaf area index (LAI) data sets, simulations from 19 coupled ESMs with interactive vegetation, and a formal detection and attribution algorithm. Our findings reveal that the observed greening record is consistent with an assumption of anthropogenic forcings, where greenhouse gases play a dominant role, but is not consistent with simulations that include only natural forcings and internal climate variability. These results provide the first clear evidence of a discernible human fingerprint on physiological vegetation changes other than phenology and range shifts.

  7. Synoptic and climatological aspects of extra-tropical cyclones

    Science.gov (United States)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  8. Origin of granulite terranes and the formation of the lowermost continental crust.

    Science.gov (United States)

    Bohlen, S R; Mezger, K

    1989-04-21

    Differences in composition and pressures of equilibration between exposed, regional granulite terranes and suites of granulite xenoliths of crustal origin indicate that granulite terranes do not represent exhumed lowermost crust, as had been thought, but rather middle and lower-middle crustal levels. Application of well-calibrated barometers indicate that exposed granulites record equilibration pressures of 0.6 to 0.8 gigapascal (20 to 30 kilometers depth of burial), whereas granulite xenoliths, which also tend to be more mafic, record pressures of at least 1.0 to 1.5 gigapascals (35 to 50 kilometers depth of burial). Thickening of the crust by the crystallization of mafic magmas at the crust-mantle boundary may account for both the formation of regional granulite terranes at shallower depths and the formation of deep-seated mafic crust represented by many xenolith suites.

  9. Beyond Waveform Forward Modeling: The Lowermost Mantle Beneath the East of Australia

    Science.gov (United States)

    Pachhai, S.; Tkalcic, H.

    2012-12-01

    Seismic imaging of the lowermost mantle provides key information about its structure and dynamics, shaping constraints on mantle convection and heat transfer between the core and mantle. Ultra low velocity zones (ULVZs) sitting on top of the core-mantle boundary (CMB) are identified as small-scale structures with a sharp decrease in P- and S-wave velocity and an increase in density. Apart from small-scale features, it is also crucial to accurately image the large-scale features in the mantle because the dynamics of a boundary layer is closely coupled to the upwelling and downwelling motions of a convective system. Due to a high computational cost that more sophisticated inversion technique would impose, waveform forward modeling of the core-reflected and core-refracted waves is a widely used method for the investigation of ULVZs and other features of the lowermost mantle. In forward modeling, the density, velocity and thickness of layers are varied in a trial and error or simple grid-search fashion until they produce synthetic seismograms that match the main features observed in the seismic waveforms. It is often possible to convincingly model the observed waveforms by an ULVZ with different properties and geometry making forward solutions highly non-unique. It is also possible to generate a structural model that fits the waveform data, but is not necessarily required by the data. In order to address this problem we utilize transdimensional inversion, which is a Bayesian method that utilizes an ensemble of models representing the posterior probability distribution. The method treats the number of free parameters (e.g. the number of layers at the base of the mantle, their thicknesses, densities and velocities) as unknowns in the problem. Furthermore, the noise in the data is used to constrain the complexity of the model. This method thus carries the potential to advance our understanding about lowermost mantle structure and dynamics. Southwest Pacific subduction

  10. A satellite observation system simulation experiment for carbon monoxide in the lowermost troposphere

    Science.gov (United States)

    Edwards, David P.; Arellano, Avelino F.; Deeter, Merritt N.

    2009-07-01

    We demonstrate the feasibility of using observing system simulation experiment (OSSE) studies to help define quantitative trace gas measurement requirements for satellite missions and to evaluate the expected performance of proposed observing strategies. The 2007 U.S. National Research Council Decadal Survey calls for a geostationary (GEO) satellite mission for atmospheric composition and air quality applications (Geostationary Coastal and Air Pollution Events Mission (GEO-CAPE)). The requirement includes a multispectral (near-infrared and thermal infrared) measurement of carbon monoxide (CO) at high spatiotemporal resolution with information on lowermost troposphere concentration. We present an OSSE to assess the improvement in surface CO characterization that would result from the addition of a GEO-CAPE CO measurement to current low Earth orbit (LEO) thermal infrared-only measurements. We construct instrument simulators for these two measurement scenarios and study the case of July 2004 when wildfires in Alaska and Canada led to significant CO pollution over the contiguous United States. Compared to a control experiment, an ensemble-based data assimilation of simulated satellite observations in a global model leads to improvements in both the surface CO distributions and the time evolution of CO profiles at locations affected by wildfire plumes and by urban emissions. In all cases, an experiment with the GEO-CAPE CO measurement scenario (overall model skill of 0.84) performed considerably better than the experiment with the current LEO/thermal infrared measurement (skill of 0.58) and the control (skill of 0.07). This demonstrates the advantages of increased sampling from GEO and enhanced measurement sensitivity to the lowermost troposphere with a multispectral retrieval.

  11. Saturn's Stratospheric Oxygen Compounds

    Science.gov (United States)

    Romani, Paul N.; Delgado Díaz, Héctor E.; Bjoraker, Gordon; Hesman, Brigette; Achterberg, Richard

    2016-10-01

    There are three known oxygenated species present in Saturn's upper atmosphere: H2O, CO and CO2. The ultimate source of the water must be external to Saturn as Saturn's cold tropopause effectively prevents any internal water from reaching the upper atmosphere. The carbon monoxide and dioxide source(s) could be internal, external, produced by the photochemical interaction of water with Saturn's stratospheric hydrocarbons or some combination of all of these. At this point it is not clear what the external source(s) are.Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O and CO2 (Hesman et al., DPS 2015, 311.16 & Abbas et al. 2013, Ap. J. doi:10.1088/0004-637X/776/2/73) on Saturn. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using CIRS retrieved temperatures, the mole fraction of H2O at the 0.5-5 mbar level can be retrieved and the CO2 mole fraction at ~1-10 mbar. Coupled with ground based observations of CO (Cavalié et al., 2010, A&A, DOI: 10.1051/0004-6361/200912909) these observations provide a complete oxygen compound data set to test photochemical models.Preliminary results will be presented with an emphasis on upper limit analysis to determine the percentage of stratospheric CO and CO2 that can be produced photochemically from CIRS observational constraints on the H2O profile.

  12. A new genus and species of ibis fly in the Lowermost Eocene amber of Oise (France) (Diptera: Athericidae).

    Science.gov (United States)

    Myskowiak, Justine; Nel, André

    2014-10-02

    A new athericid genus and species, Eoatrichops jeanbernardi, gen. n., sp. n., is described, based on four specimens from the Lowermost Eocene of Oise (France). Its external morphology is analyzed and compared with of all genera of Athericidae. Eoatrichops is very similar to the modern genus Atrichops Verrall, differences concern the wing venation and tibial spur formula. 

  13. Extra-tropical origin of equatorial Pacific cold bias in climate models

    Science.gov (United States)

    Burls, N.; Muir, L.; Vincent, E. M.; Fedorov, A. V.

    2015-12-01

    General circulation models frequently suffer from a substantial cold bias in equatorial Pacific sea surface temperatures (SSTs). For instance, the majority of the climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) have this particular problem (17 out of the 26 models evaluated in this project). Our study investigates the extent to which these equatorial cold biases are related to mean climate biases generated in the extra-tropics and then communicated to the equator via the oceanic subtropical cells (STCs). With an evident relationship across the CMIP5 models between equatorial SSTs and upper ocean temperatures in the extra-tropical subduction regions, our analysis confirms that cold SST biases within the extra-tropical Pacific translate into a cold equatorial SST bias via the STCs. An assessment of the relationship between these extra-tropical SST biases and surface heat flux components indicates a link to biases in the simulated shortwave fluxes. Further sensitivity studies with a climate model (CESM) in which extra-tropical cloud albedo is systematically varied illustrate the influence of cloud albedo perturbations, not only directly above the oceanic subduction regions but across the extended extra-tropical Pacific, on the equatorial bias. The CESM experiments reveal a quadratic relationship between extra-tropical albedo and the root-mean-square-error in equatorial SSTs - a relationship with which the CMIP5 models generally agree. Thus, our study suggests that one way to improve the equatorial cold bias is to improve the representation of cloud albedo in mid-latitudes.

  14. Kelvin-Helmholtz waves in extratropical cyclones passing over mountain ranges: KH Waves in Extratropical Cyclones over Mountain Ranges

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Socorro [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Houze, Robert A. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-19

    Kelvin–Helmholtz billows with horizontal scales of 3–4 km have been observed in midlatitude cyclones moving over the Italian Alps and the Oregon Cascades when the atmosphere was mostly statically stable with high amounts of shear and Ri < 0.25. In one case, data from a mobile radar located within a windward facing valley documented a layer in which the shear between down-valley flow below 1.2 km and strong upslope cross-barrier flow above was large. Several episodes of Kelvin–Helmholtz waves were observed within the shear layer. The occurrence of the waves appears to be related to the strength of the shear: when the shear attained large values, an episode of billows occurred, followed by a sharp decrease in the shear. The occurrence of large values of shear and Kelvin–Helmholtz billows over two different mountain ranges suggests that they may be important features occurring when extratropical cyclones with statically stable flow pass over mountain ranges.

  15. ORISON, a stratospheric project

    Science.gov (United States)

    Ortiz Moreno, Jose Luis; Mueller, Thomas; Duffard, Rene; Juan Lopez-Moreno, Jose; Wolf, Jürgen; Schindler, Karsten; Graf, Friederike

    2016-07-01

    Astronomical research based on satellites is extremely expensive, complex, requires years of development, and the overall difficulties are immense. The ORISON project addresses the feasibility study and the design of a global solution based on platforms on-board stratospheric balloons, which allows overcoming the limitations of the Earth's atmosphere, but at a much lower cost and with fewer complications than on satellite platforms. The overall idea is the use of small low-cost stratospheric balloons, either individually or as a fleet, equipped with light-weight medium-sized telescopes and other instruments to perform specific tasks on short-duration missions. They could carry different payloads for specific "experiments" too, and should be configurable to some degree to accommodate variable instrumentation. These balloon-based telescopes should be designed to be launched from many sites on Earth, not necessarily from remote sites such as Antarctica or near the North Pole, and at low cost. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 690013.

  16. Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method

    Science.gov (United States)

    Yang, Yang; Ren, R.-C.; Cai, Ming

    2016-12-01

    The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.

  17. Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of Long-Lived Species

    Directory of Open Access Journals (Sweden)

    Giovanni Pitari

    2016-11-01

    Full Text Available The radiative perturbation associated to stratospheric aerosols from major explosive volcanic eruptions may induce significant changes in stratospheric dynamics. The aerosol heating rates warm up the lower stratosphere and cause a westerly wind anomaly, with additional tropical upwelling. Large scale transport of stratospheric trace species may be perturbed as a consequence of this intensified Brewer–Dobson circulation. The radiatively forced changes of the stratospheric circulation during the first two years after the eruption of Mt. Pinatubo (June 1991 may help explain the observed trend decline of long-lived greenhouse gases at surface stations (approximately −8 and −0.4 ppbv/year for CH4 and N2O, respectively. This decline is partly driven by the increased mid- to high-latitude downward flux at the tropopause and also by an increased isolation of the tropical pipe in the vertical layer near the tropopause, with reduced horizontal eddy mixing. Results from a climate-chemistry coupled model are shown for both long-lived trace species and the stratospheric age-of-air. The latter results to be younger by approximately 0.5 year at 30 hPa for 3–4 years after the June 1991 Pinatubo eruption, as a result of the volcanic aerosols radiative perturbation and is consistent with independent estimates based on long time series of in situ profile measurements of SF6 and CO2. Younger age of air is also calculated after Agung, El Chichón and Ruiz eruptions, as well as negative anomalies of the N2O growth rate at the extratropical tropopause layer. This type of analysis is made comparing the results of two ensembles of model simulations (1960–2005, one including stratospheric volcanic aerosols and their radiative interactions and a reference case where the volcanic aerosols do not interact with solar and planetary radiation.

  18. On the Relationship between Tropical Moisture Exports and Extratropical Cyclones

    Science.gov (United States)

    Knippertz, Peter; Wernli, Heini; Gläser, Gregor; Boleti, Eirini; Joos, Hanna; Binder, Hanin

    2016-04-01

    Tropical moisture export (TME) events are an important element of the global circulation and contribute significantly to regional precipitation. They are defined here on the basis of trajectories starting in the tropical troposphere and reaching a water vapor flux of at least 100 g kg-1 m s-1 poleward of 35° latitude. TME frequency shows four marked occurrence maxima in both hemispheres with varying seasonal cycles. In some cases TMEs can be linked to similar phenomena of atmospheric flow such as Warm Conveyor Belts (WCBs) or Atmospheric Rivers (ARs). For example, 90% of all ARs affecting the US West Coast during December-May are connected to TME events, but the tropical moisture source is less important during the more active AR season June-November. In addition to these climatological TME characteristics we discuss two aspects of their relationship to extratropical cyclones: Case studies indicate that (i) cyclones traveling along the southern fringes of the midlatitude storm track can instigate the export of tropical moisture ahead of their cold fronts, and (ii) the tropical moisture can fuel latent heat release in the cyclone and therefore contribute to its intensification. A long-term statistical analysis of passages of TME trajectories through areas with closed isobars surrounding active cyclones in the northern hemisphere reveals a surprisingly small number of encounters, particularly in winter. The majority of hits occur south of 40°N and there is no statistically significant relationship with cyclone intensification. The results suggest that TMEs often pass relatively far from cyclone centers where vertical motions tend to be moderate. This prevents an early rainout of the tropical moisture and allows the export into higher latitudes. For the same reasons we expect TMEs to "avoid" WCBs with roots at low latitudes. This interpretation is consistent with the fact that most TME maxima are located along the western flanks of subtropical high-pressure systems.

  19. Stratosphere-troposphere exchange from the Lagrangian perspective: a case study and method sensitivities

    Directory of Open Access Journals (Sweden)

    M. S. Bourqui

    2004-06-01

    Full Text Available An important part of extra-tropical stratosphere-to-troposphere transport occurs in association with baroclinic wave breaking and cut-off decay at the tropopause. In the last decade many studies have attempted to estimate stratosphere-troposphere exchange (STE in such synoptic events with various methods, and more recently efforts have been put on inter-comparing these methods. However, large uncertainties remain on the sensitivities to methods intrinsic parameters, and on the best measure for STE with regard to end effects on chemistry.

    The goal of the present study is to address these two fundamental issues in the context of the application of a trajectory-based Lagrangian method, which has been applied in the past to climatological studies and has also been involved in inter-comparison studies, to a typical baroclinic wave breaking event.

    The analysis sheds light on (i the fine mesoscale temporal and spatial structures that are associated with episodic, rapid inflows of stratospheric air into the troposphere; (ii the spatial resolution of 1°×1° required to reasonably capture STE fluxes in such a wave breaking event; (iii the effective removal of spurious exchange events using a threshold residence time; (iv the relevance of residence time distributions for capturing the effective chemical forcing of STE; (v the large differences in the temporal evolution and geographical distribution of STE fluxes across the 2 and the 4 potential vorticity unit iso-surface definitions of the tropopause.

  20. Tropospheric temperature response to stratospheric ozone recovery in the 21st century

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2011-08-01

    Full Text Available Recent simulations predicted that the stratospheric ozone layer will likely return to pre-1980 levels in the middle of the 21st century, as a result of the decline of ozone depleting substances under the Montreal Protocol. Since the ozone layer is an important component in determining stratospheric and tropospheric-surface energy balance, the recovery of stratospheric ozone may have significant impact on tropospheric-surface climate. Here, using multi-model results from both the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC-AR4 models and coupled chemistry-climate models, we show that as ozone recovery is considered, the troposphere is warmed more than that without considering ozone recovery, suggesting an enhancement of tropospheric warming due to ozone recovery. It is found that the enhanced tropospheric warming is mostly significant in the upper troposphere, with a global and annual mean magnitude of ~0.41 K for 2001–2050. We also find that relatively large enhanced warming occurs in the extratropics and polar regions in summer and autumn in both hemispheres, while the enhanced warming is stronger in the Northern Hemisphere than in the Southern Hemisphere. Enhanced warming is also found at the surface. The global and annual mean enhancement of surface warming is about 0.16 K for 2001–2050, with maximum enhancement in the winter Arctic.

  1. Stratospheric aerosol geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Robock, Alan [Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 (United States)

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  2. Stratospheric aerosol geoengineering

    Science.gov (United States)

    Robock, Alan

    2015-03-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  3. High-Resolution Imaging of Structure and Dynamics of the Lowermost Mantle

    Science.gov (United States)

    Zhao, Chunpeng

    This research investigates Earth structure in the core-mantle boundary (CMB) region, where the solid rocky mantle meets the molten iron alloy core. At long wavelengths, the lower mantle is characterized by two nearly antipodal large low shear velocity provinces (LLSVPs), one beneath the Pacific Ocean the other beneath Africa and the southern Atlantic Ocean. However, fine-scale LLSVP structure as well as its relationship with plate tectonics, mantle convection, hotspot volcanism, and Earth's outer core remains poorly understood. The recent dramatic increase in seismic data coverage due to the EarthScope experiment presents an unprecedented opportunity to utilize large concentrated datasets of seismic data to improve resolution of lowermost mantle structures. I developed an algorithm that identifies anomalously broadened seismic waveforms to locate sharp contrasts in shear velocity properties across the margins of the LLSVP beneath the Pacific. The result suggests that a nearly vertical mantle plume underlies Hawaii that originates from a peak of a chemically distinct reservoir at the base of the mantle, some 600-900 km above the CMB. Additionally, acute horizontal Vs variations across and within the northern margin of the LLSVP beneath the central Pacific Ocean are inferred from forward modeling of differential travel times between S (and Sdiff) and SKS, and also between ScS and S. I developed a new approach to expand the geographic detection of ultra-low velocity zones (ULVZs) with a new ScS stacking approach that simultaneously utilizes the pre- and post-cursor wavefield. Strong lateral variations in ULVZ thicknesses and properties are found across the LLSVP margins, where ULVZs are thicker and stronger within the LLSVP than outside of it, consistent with convection model predictions. Differential travel times, amplitude ratios, and waveshapes of core waves SKKS and SKS are used to investigate CMB topography and outermost core velocity structure. 1D and 2D

  4. Extratropical transitioning in the RMS Japan typhoon wind field model

    Science.gov (United States)

    Loridan, Thomas; Scherer, Emilie; Khare, Shree

    2013-04-01

    Given its meridional extent and location within the Pacific basin, Japan is regularly impacted by strong winds from cyclones at different stages of their lifecycle. To quantify the associated risk of damage to properties, catastrophe models such as the ones developed by RMS aim to simulate wind fields from thousands of stochastic storms that extrapolate historical events. In a recent study using 25 years of reanalysis data, Kitabatake (2011) estimated that 40 % of all Pacific tropical cyclones completed their transition as an extra tropical system. From a cat modelling point of view it is the increase in wind field asymmetry observed during these transitioning episodes that is critical, with examples like typhoon Tokage in 2004 showing the potential for damaging gusts on both sides of the storm track. In this context a compromise has to be found between the need for complex numerical models able to simulate wind field variability around the cyclone during its entire evolution, and obvious running time constrains. The RMS wind field model is based on an optimized version of the Willoughby parametric profile (Willoughby et al., 2006) which requires calibration against targets representative of cyclone wind fields throughout their lifecycle. We here present the different sources of data involved in the development of this model. This includes (1) satellite products to characterize wind fields from fully tropical storms, (2) high resolution simulations of key transitioning events using the WRF mesoscale model to complement the database at other stages (i.e. for transitioning and fully extra tropical wind fields), and (3) reanalysis data which can be used with Hart (2003)'s cyclone phase space methodology to provide an estimate of the mean duration of transitioning episodes in the Pacific. Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the Western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309

  5. Thermal modeling of stratospheric airships

    Science.gov (United States)

    Wu, Jiangtao; Fang, Xiande; Wang, Zhenguo; Hou, Zhongxi; Ma, Zhenyu; Zhang, Helei; Dai, Qiumin; Xu, Yu

    2015-05-01

    The interest in stratospheric airships has increased and great progress has been achieved since the late 1990s due to the advancement of modern techniques and the wide range of application demands in military, commercial, and scientific fields. Thermal issues are challenging for stratospheric airships, while there is no systematic review on this aspect found yet. This paper presents a comprehensive literature review on thermal issues of stratospheric airships. The main challenges of thermal issues on stratospheric airships are analyzed. The research activities and results on the main thermal issues are surveyed, including solar radiation models, environmental longwave radiation models, external convective heat transfer, and internal convective heat transfer. Based on the systematic review, guides for thermal model selections are provided, and topics worthy of attention for future research are suggested.

  6. The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate

    Directory of Open Access Journals (Sweden)

    C. Brühl

    2012-02-01

    Full Text Available Globally, carbonyl sulphide (COS is the most abundant sulphur gas in the atmosphere. Our chemistry-climate model (CCM of the lower and middle atmosphere with aerosol module realistically simulates the background stratospheric sulphur cycle, as observed by satellites in volcanically quiescent periods. The model results indicate that upward transport of COS from the troposphere largely controls the sulphur budget and the aerosol loading of the background stratosphere. This differs from most previous studies which indicated that short-lived sulphur gases are also important. The model realistically simulates the modulation of the particulate and gaseous sulphur abundance in the stratosphere by the quasi-biennial oscillation (QBO. In the lowermost stratosphere organic carbon aerosol contributes significantly to extinction. Further, using a chemical radiative convective model and recent spectra, we compute that the direct radiative forcing efficiency by 1 kg of COS is 724 times that of 1 kg CO2. Considering an anthropogenic fraction of 30% (derived from ice core data, this translates into an overall direct radiative forcing by COS of 0.003 W m−2. The direct global warming potentials of COS over time horizons of 20 and 100 yr are GWP(20 yr = 97 and GWP(100 yr = 27, respectively (by mass. Furthermore, stratospheric aerosol particles produced by the photolysis of COS (chemical feedback contribute to a negative direct solar radiative forcing, which in the CCM amounts to −0.007 W m−2 at the top of the atmosphere for the anthropogenic fraction, more than two times the direct warming forcing of COS. Considering that the lifetime of COS is twice that of stratospheric aerosols the warming and cooling tendencies approximately cancel.

  7. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle

    Science.gov (United States)

    Hutko, Alexander R.; Lay, T.; Revenaugh, Justin; Garnero, E.J.

    2008-01-01

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 ?? 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 ?? 0.5% increase in S wave velocity (Vs) near a depth of 2570 km. Bulk-sound velocity [Vb = (V p2 - 4/3Vs2)1/2] decreases by -1.0 ?? 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg1-x-y FexAly)(Si,Al) O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by ???6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  8. The bivalve Anopaea (Inoceramidae) from the Upper Jurassic-lowermost Cretaceous of Mexico

    Science.gov (United States)

    Zell, Patrick; Crame, J. Alistair; Stinnesbeck, Wolfgang; Beckmann, Seija

    2015-07-01

    In Mexico, the Upper Jurassic to lowermost Cretaceous La Casita and coeval La Caja and La Pimienta formations are well-known for their abundant and well-preserved marine vertebrates and invertebrates. The latter include conspicuous inoceramid bivalves of the genus Anopaea not formally described previously from Mexico. Anopaea bassei (Lecolle de Cantú, 1967), Anopaea cf. stoliczkai (Holdhaus, 1913), Anopaea cf. callistoensis Crame and Kelly, 1995 and Anopaea sp. are rare constituents in distinctive Tithonian-lower Berriasian levels of the La Caja Formation and one Tithonian horizon of the La Pimienta Formation. Anopaea bassei was previously documented from the Tithonian of central Mexico and Cuba, while most other members of Anopaea described here are only known from southern high latitudes. The Mexican assemblage also includes taxa which closely resemble Anopaea stoliczkai from the Tithonian of India, Indonesia and the Antarctic Peninsula, and Anopaea callistoensis from the late Tithonian to ?early Berriasian of the Antarctic Peninsula. Our new data expand the palaeogeographical distribution of the high latitude Anopaea to the Gulf of Mexico region and substantiate faunal exchange, in the Late Jurassic-earliest Cretaceous, between Mexico and the Antarctic Realm.

  9. Universal stratospheric balloon gradiometer

    Science.gov (United States)

    Tsvetkov, Yury; Filippov, Sergey; Brekhov, Oleg; Nikolaev, Nikolay

    The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth’s crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). For investigation of Earth's magnetic field one of the examples of such sounding system have been designed, developed and maintained at IZMIRAN and MAI during already about 25 years. This system consists of three instrumental containers uniformly placed along a vertical 6 km line. Up today this set has been used only for geomagnetic purposes. So we describe this system on example of the measuring of the geomagnetic field gradient. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one’s name is - stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Process of SBMG deployment, feature of the exit of rope from the magazine at the moment of balloon launching has been studied. Used magazine is cellular type. The hodograph of the measuring base of SBMG and the technique of correction of the deviations of the measuring base from the vertical line (introduction of the amendments for the deviation) during the flight have been investigated. It is shown that estimation of the normal level of values of the vertical gradient of the geomagnetic field is determined by the accuracy of determining the length of the measuring base SBMG

  10. Jet characterization in the upper troposphere/lower stratosphere (UTLS: applications to climatology and transport studies

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2011-01-01

    Full Text Available A method of classifying the upper tropospheric/lower stratospheric (UTLS jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS satellite and the Winter Storms aircraft datasets in jet coordinates highlights important advantages in comparison to an EqL-coordinate view: strong PV, tropopause height and trace gas gradients across the subtropical jet are washed out in the latter and clearly highlighted in the former. The jet coordinate view emphasizes the presence of stratospheric ozone well below the tropopause, especially poleward of and below the jet core, and highlights other transport features associated with the upper tropospheric jets. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas gradients across the jet, and evidence of intrusions of stratospheric air below the tropopause below and poleward of the subtropical jet; these features are consistent between instruments and among multiple trace gases. Our characterization of the jets is facilitating studies that will improve our understanding of upper tropospheric trace gas evolution.

  11. Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations

    Science.gov (United States)

    Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.

    2014-07-01

    This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and High Resolution Dynamics Limb Sounder (HIRDLS)) and solar UV/VIS backscatter sensors (Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other data sets, e.g., (1) WACCM overestimates NO2 densities in the extratropical lower stratosphere, particularly in the springtime and over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonally and latitudinally dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.5 × 1015 molecules cm-2 (-20%) and +0.6 × 1015 molecules cm-2 (+20%) relative to limb observations, respectively. It is argued that additive biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, related either to algorithmic or instrumental effects. In order to obtain accurate and long-term time series of stratospheric NO2, an effort towards the harmonization of currently used differential optical absorption spectroscopy (DOAS) approaches to nadir

  12. Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean-atmosphere coupling

    Science.gov (United States)

    Peings, Yannick; Magnusdottir, Gudrun

    2016-08-01

    The impact of the Atlantic multidecadal variability (AMV) on the wintertime atmosphere circulation is investigated using three different configurations of the Community Atmospheric Model version 5 (CAM5). Realistic SST and sea ice anomalies associated with the AMV in observations are prescribed in CAM5 (low-top model) and WACCM5 (high-top model) to assess the dependence of the results on the representation of the stratosphere. In a third experiment, the role of ocean-atmosphere feedback is investigated by coupling CAM5 to a slab-ocean model in which the AMV forcing is prescribed through oceanic heat flux anomalies. The three experiments give consistent results concerning the response of the NAO in winter, with a negative NAO signal in response to a warming of the North Atlantic ocean. This response is found in early winter when the high-top model is used, and in late winter with the low-top model. With the slab-ocean, the negative NAO response is more persistent in winter and shifted eastward over the continent due to the damping of the atmospheric response over the North Atlantic ocean. Additional experiments suggest that both tropical and extratropical SST anomalies are needed to obtain a significant modulation of the NAO, with small influence of sea ice anomalies. Warm tropical SST anomalies induce a northward shift of the ITCZ and a Rossby-wave response that is reinforced in the mid-latitudes by the extratropical SST anomalies through eddy-mean flow interactions. This modeling study supports that the positive phase of the AMV promotes the negative NAO in winter, while illustrating the impacts of the stratosphere and of the ocean-atmosphere feedbacks in the spatial pattern and timing of this response.

  13. Interactions between clouds and atmospheric circulation in the extratropics

    Science.gov (United States)

    Ceppi, Paulo

    In climate models, the simulation of clouds is known to be particularly problematic, leading to important biases in the climatological energy balance on regional scales, as well as to large uncertainties in the future amount of warming in response to greenhouse gas increase. This thesis explores the connections between clouds and atmospheric circulation in extratropical regions. In particular, we investigate the impacts of clouds and their uncertainties on atmospheric circulation and its response to global warming. We find that clouds have very substantial effects both on the mean circulation and on its future response to warming in climate models. In the mean state, the position of the midlatitude jet correlates well with the midlatitude shortwave cloud-radiative effect (SW CRE), which suffers from very large biases in models. Models in which midlatitude SW CRE is too negative have anomalously cold midlatitudes, leading to an anomalously equatorward jet position. This result is supported by idealized model experiments and appears consistent with the effect of midlatitude baroclinicity changes on eddy activity. This means that an accurate representation of clouds and their radiative effects is essential to correctly portray the mean circulation. In the context of greenhouse gas--forced change, we demonstrate that cloud-radiative changes have a surprisingly large impact on the atmospheric circulation response. This results mainly from the SW cloud feedback, whose specific spatial structure induces low-latitude warming and high-latitude cooling, enhancing midlatitude baroclinicity and favoring a strengthening and poleward shift of the midlatitude jet. This opposes the effects of other major feedbacks (e.g., the water vapor feedback and the longwave cloud feedback), which produce polar-amplified warming and weakened midlatitude baroclinicity. For this reason, cloud-radiative changes explain the majority of the poleward expansion of atmospheric circulation in our model

  14. Superpressure stratospheric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Chocol, C.; Robinson, W.; Epley, L.

    1990-09-15

    Our need for wide-band global communications, earth imaging and sensing, atmospheric measurements and military reconnaissance is extensive, but growing dependence on space-based systems raises concerns about vulnerability. Military commanders require space assets that are more accessible and under local control. As a result, a robust and low cost access to space-like capability has become a national priority. Free floating buoyant vehicles in the middle stratosphere can provide the kind of cost effective access to space-like capability needed for a variety of missions. These vehicles are inexpensive, invisible, and easily launched. Developments in payload electronics, atmospheric modeling, and materials combined with improving communications and navigation infrastructure are making balloon-borne concepts more attractive. The important milestone accomplished by this project was the planned test flight over the continental United States. This document is specifically intended to review the technology development and preparations leading up to the test flight. Although the test flight experienced a payload failure just before entering its assent altitude, significant data were gathered. The results of the test flight are presented here. Important factors included in this report include quality assurance testing of the balloon, payload definition and characteristics, systems integration, preflight testing procedures, range operations, data collection, and post-flight analysis. 41 figs., 5 tabs.

  15. CO2 and albedo climate impacts of extratropical carbon and biomass plantations

    NARCIS (Netherlands)

    Schaeffer, M.; Eickhout, B.; Hoogwijk, M.; Strengers, B.; Vuuren, van D.J.; Leemans, R.; Opsteegh, T.

    2006-01-01

    We explored the climate impacts for two land-use change scenarios, aimed at mitigating the buildup of greenhouse gases in the atmosphere. Using the integrated assessment model IMAGE 2.2, we found that the large-scale implementation in the extratropics of either carbon-sequestration or modern-biomass

  16. A link between high-speed solar wind streams and explosive extratropical cyclones

    Science.gov (United States)

    Prikryl, Paul; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Bruntz, Robert

    2016-11-01

    A link between solar wind magnetic sector boundary (heliospheric current sheet) crossings by the Earth and the upper-level tropospheric vorticity was discovered in the 1970s. These results have been later confirmed but the proposed mechanisms remain controversial. Extratropical-cyclone tracks obtained from two meteorological reanalysis datasets are used in superposed epoch analysis of time series of solar wind plasma parameters and green coronal emission line intensity. The time series are keyed to times of maximum growth of explosively developing extratropical cyclones in the winter season. The new statistical evidence corroborates the previously published results (Prikryl et al., 2009). This evidence shows that explosive extratropical cyclones tend to occur after arrivals of solar wind disturbances such as high-speed solar wind streams from coronal holes when large amplitude magneto-hydrodynamic waves couple to the magnetosphere-ionosphere system. These MHD waves modulate Joule heating and/or Lorentz forcing of the high-latitude thermosphere generating medium-scale atmospheric gravity waves that propagate energy upward and downward from auroral zone through the atmosphere. At the tropospheric level, in spite of significantly reduced amplitudes, these gravity waves can provide a lift of unstable air to release the moist symmetric instability thus initiating slantwise convection and forming cloud/precipitation bands. The release of latent heat is known to provide energy for rapid development and intensification of extratropical cyclones.

  17. 76 FR 74776 - Forum-Trends in Extreme Winds, Waves, and Extratropical Storms Along the Coasts

    Science.gov (United States)

    2011-12-01

    ... National Oceanic and Atmospheric Administration Forum--Trends in Extreme Winds, Waves, and Extratropical... open public forum. SUMMARY: This notice sets forth the schedule and topics of an upcoming forum hosted... the forum and are required to RSVP to Brooke.Stewart@noaa.gov by 5 p.m. EST, Wednesday, December 28...

  18. Impact of freeze-drying, mixing and horizontal transport on water vapor in the upper troposphere and lower stratosphere (UTLS)

    Science.gov (United States)

    Poshyvailo, Liubov; Ploeger, Felix; Müller, Rolf; Tao, Mengchu; Konopka, Paul; Abdoulaye Diallo, Mohamadou; Grooß, Jens-Uwe; Günther, Gebhard; Riese, Martin

    2017-04-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) is a key player in the global radiation budget. Therefore, a realistic representation of the water vapor distribution in this region and the involved control processes is critical for climate models, but largely uncertain hitherto. It is known that the extremely low temperatures around the tropical tropopause cause the dominant factor controlling water vapor in the lower stratosphere. Here, we focus on additional processes, such as horizontal transport between tropics and extratropics, small-scale mixing, and freeze-drying. We assess the sensitivities of simulated water vapor in the UTLS from simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). CLaMS is a Lagrangian transport model, with a parameterization of small-scale mixing (model diffusion) which is coupled to deformations in the large-scale flow. First, to assess the robustness of water vapor with respect to the meteorological datasets we examine CLaMS driven by ECMWF ERA-Interim and the Japanese 55-year reanalysis. Second, to investigate the effects of small-scale mixing we vary the parameterized mixing strength in the CLaMS model between the reference case with the mixing strength optimized to reproduce atmospheric trace gas observations and a purely advective simulation with parameterized mixing turned off. Also calculation of Lagrangian cold points gives further insight of the processes involved. Third, to assess the effects of horizontal transport between the tropics and extratropics we carry out sensitivity simulations with horizontal transport barriers along latitude circles at the equator, 15°N/S and 35°N/S. Finally, the impact of Antarctic dehydration is estimated from additional sensitivity simulations with switched off freeze-drying in the model at high latitudes of 50°N/S. Our results show that the uncertainty in the tropical tropopause temperatures between current reanalysis datasets causes significant

  19. On the importance of lowermost mantle melt in the long term evolution of the Earth

    Science.gov (United States)

    Labrosse, S.; Hernlund, J. W.; Coltice, N.

    2011-12-01

    The thermal evolution of the Earth is usually modeled using its global energy balance and a scaling law for the heat transfer by mantle convection where the heat flow q depends on the mantle potential temperature T and its viscosity η as q=AT1+βη-β, with typical fluid dynamics models giving β≈1/3. The present small ratio of heat production to heat loss (Urey ratio) implies a large secular cooling rate and, because of the feedback from temperature dependent viscosity, backward calculations from the present time lead to a completely molten Earth about 1 Gyr ago. Starting with Christensen (1985), values of β smaller than 1/3 have been proposed to solve this problem by reducing the strength of the feedback loop between core temperature and surface heat flow. However, a self-consistent theory of mantle convection is still lacking to justify unconventional β values. We propose an entirely different approach recognizing that the lowermost mantle, which presently shows evidence of partial melting (ULVZs), was likely largely molten in its hotter past. Coupling a parameterized model of mantle convection using standard scalings for the solid upper part to a crystallizing basal magma ocean (BMO) enriched in radioactive elements and the core cuts the feedback loop very efficiently by introducing two independent potential temperatures. Backward integration of the model makes the core and the BMO hotter in the past while keeping the solid mantle temperature reasonable. A thermal catastrophe may in fact have happened, but only deep in the Earth!

  20. CONODONTS OF THE LOWERMOST TRIASSIC OF SPITI, AND NEW ZONATION BASED ON NEOGONDOLELLA SUCCESSIONS

    Directory of Open Access Journals (Sweden)

    MICHAEL J. ORCHARD

    1998-11-01

    Full Text Available Conodonts from the lowermost Triassic Otoceras woodwardi beds and adjacent strata of Spiti are described and compared with Permian-Triassic (P-T boundary bed faunas from elsewhere. A new pelagic zonation based on Neogondolella is introduced: the interval characterized by N. carinata-N. taylorae is subdivided into three parts based on successive first appearances of N. meishanensis, N. krystyni Orchard n. sp. and N. discreta Orchard and Krystyn n. sp., the nominal species of three successive zones. The development of these Griesbachian species involves a progressive morphological change in the configuration of the axial part (blade-carina-cusp of the pectiniform elements. The pelagic conodont zonation is intercalibrated with the parallel zonation based on species of Hindeodus and Isarcicella, and with ammonoid faunas from Spiti, other Himalayan localities, and the Arctic. The meishanensis Zone embraces the parvus Zone and part of the overlying staeschei Zone. Strata containing O. woodwardi in Spiti carry the indices to the staeschei and krystyni zones. The Neogondolella conodont fauna associated with Otoceras differs from that of the latest Permian Changshing Limestone of China, but resembles that from the P-T boundary transition beds at Meishan, where a meishanensis Zone of restricted scope occurs beneath the parvus datum. The faunal change which introduces the characteristic Neogondolella species of the N. carinata-N. taylorae fauna occurs at the base of the P-T boundary transition beds at Meishan, the proposed boundary stratotype. Slightly above this level, the disappearance of most Neogondolella species and the introduction of new Hindeodus species coincides with a change in conodont biofacies rather than an extinction event. In the Spiti sections, the N. carinata-N. taylorae fauna, associated at first with H. parvus (as in Selong, Tibet, persists through the entire Griesbachian. Indices of the three Neogondolella zones are also recognized in

  1. Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere

    Science.gov (United States)

    Hu, Dingzhu; Tian, Wenshou; Xie, Fei; Wang, Chunxiao; Zhang, Jiankai

    2015-08-01

    This paper uses a state-of-the-art general circulation model to study the impacts of the stratospheric ozone depletion from 1980 to 2000 and the expected partial ozone recovery from 2000 to 2020 on the propagation of planetary waves in December, January, and February. In the Southern Hemisphere (SH), the stratospheric ozone depletion leads to a cooler and stronger Antarctic stratosphere, while the stratospheric ozone recovery has the opposite effects. In the Northern Hemisphere (NH), the impacts of the stratospheric ozone depletion on polar stratospheric temperature are not opposite to that of the stratospheric ozone recovery; i.e., the stratospheric ozone depletion causes a weak cooling and the stratospheric ozone recovery causes a statistically significant cooling. The stratospheric ozone depletion leads to a weakening of the Arctic polar vortex, while the stratospheric ozone recovery leads to a strengthening of the Arctic polar vortex. The cooling of the Arctic polar vortex is found to be dynamically induced via modulating the planetary wave activity by stratospheric ozone increases. Particularly interesting is that stratospheric ozone changes have opposite effects on the stationary and transient wave fluxes in the NH stratosphere. The analysis of the wave refractive index and Eliassen-Palm flux in the NH indicates (1) that the wave refraction in the stratosphere cannot fully explain wave flux changes in the Arctic stratosphere and (2) that stratospheric ozone changes can cause changes in wave propagation in the northern midlatitude troposphere which in turn affect wave fluxes in the NH stratosphere. In the SH, the radiative cooling (warming) caused by stratospheric ozone depletion (recovery) produces a larger (smaller) meridional temperature gradient in the midlatitude upper troposphere, accompanied by larger (smaller) zonal wind vertical shear and larger (smaller) vertical gradients of buoyancy frequency. Hence, there are more (fewer) transient waves

  2. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  3. Condensed Acids In Antartic Stratospheric Clouds

    Science.gov (United States)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; Fong, W.

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  4. The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere

    Directory of Open Access Journals (Sweden)

    Q. Liang

    2008-11-01

    Full Text Available We used the seasonality of a combination of atmospheric trace gases and idealized tracers to examine stratosphere-to-troposphere transport and its influence on tropospheric composition in the Arctic. Maximum stratosphere-to-troposphere transport of CFCs and O3 occurs in April as driven by the Brewer-Dobson circulation. Stratosphere-troposphere exchange (STE occurs predominantly between 40° N to 80° N with stratospheric influx in the mid-latitudes (30–70° N accounting for 67–81% of the air of stratospheric origin in the Northern Hemisphere extratropical troposphere. Transport from the lower stratosphere to the lower troposphere (LT takes three months on average, one month to cross the tropopause, the second month to travel from the upper troposphere (UT to the middle troposphere (MT, and the third month to reach the LT. During downward transport, the seasonality of a trace gas can be greatly impacted by wet removal and chemistry. A comparison of idealized tracers with varying lifetimes suggests that when initialized with the same concentrations and seasonal cycles at the tropopause, trace gases that have shorter lifetimes display lower concentrations, smaller amplitudes, and earlier seasonal maxima during transport to the LT. STE contributes to O3 in the Arctic troposphere directly from the transport of O3 and indirectly from the transport of NOy. Direct transport of O3 from the stratosphere accounts for 78% of O3 in the Arctic UT with maximum contributions occurring from March to May. The stratospheric contribution decreases significantly in the MT/LT (20–25% of total O3 and shows a very weak March–April maximum. Our NOx budget analysis in the Arctic UT shows that during spring and summer, the stratospheric injection of NOy-rich air increases NOx concentrations above the 20 pptv threshold level, thereby shifting the Arctic UT

  5. The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere

    Directory of Open Access Journals (Sweden)

    Q. Liang

    2009-05-01

    Full Text Available We used the seasonality of a combination of atmospheric trace gases and idealized tracers to examine stratosphere-to-troposphere transport and its influence on tropospheric composition in the Arctic. Maximum stratosphere-to-troposphere transport of CFCs and O3 occurs in April as driven by the Brewer-Dobson circulation. Stratosphere-troposphere exchange (STE occurs predominantly between 40° N to 80° N with stratospheric influx in the mid-latitudes (30–70° N accounting for 67–81% of the air of stratospheric origin in the Northern Hemisphere extratropical troposphere. Transport from the lower stratosphere to the lower troposphere (LT takes three months on average, one month to cross the tropopause, the second month to travel from the upper troposphere (UT to the middle troposphere (MT, and the third month to reach the LT. During downward transport, the seasonality of a trace gas can be greatly impacted by wet removal and chemistry. A comparison of idealized tracers with varying lifetimes suggests that when initialized with the same concentrations and seasonal cycles at the tropopause, trace gases that have shorter lifetimes display lower concentrations, smaller amplitudes, and earlier seasonal maxima during transport to the LT. STE contributes to O3 in the Arctic troposphere directly from the transport of O3 and indirectly from the transport of NOy. Direct transport of O3 from the stratosphere accounts for 78% of O3 in the Arctic UT with maximum contributions occurring from March to May. The stratospheric contribution decreases significantly in the MT/LT (20–25% of total O3 and shows a very weak March–April maximum. Our NOx budget analysis in the Arctic UT shows that during spring and summer, the stratospheric injection of NOy-rich air increases NOx concentrations above the 20 pptv threshold level, thereby shifting the Arctic UT

  6. The transition from the tropical to the extra-tropical ozone-QBO signature in EMAC-ESCiMo, ERA interim and ozone CCI data

    Science.gov (United States)

    Kerzenmacher, Tobias; Joeckel, Patrick; Braesicke, Peter

    2016-04-01

    The quasi-biennial oscillation (QBO) in the tropical zonal mean stratospheric winds is a major driver of interannual ozone variability in the tropics. The associated ozone variability is clearly seen in the tropics. In addition, it affects the interannual ozone variability in sub-tropical and mid-latitude regions. The QBO influence on ozone in all latitudes can be diagnosed in climate model data (free running or nudged EMAC simulations from the ESCiMo project), reanalysis data (ERA-Interim) and satellite data (ozone CCI). We extract the ozone-QBO signature from the data by using a Fourier filtering technique so that the modelled and observed structures can be compared. Starting from the signal in total column ozone, we construct composite latitude height cross-sections of ozone to reveal the vertical structure of QBO related changes for different phases of the ozone-QBO. We discuss the differences between the modelled (EMAC) and observed (CCI) signatures and compare them to ERA-Interim (a data assimilation system). With this diagnostic we improve our understanding of the physical mechanisms that contribute to ozone variability and how an `ozone change signal' can migrate from the tropics to the extra-tropics. Understanding the main mechanisms involved in this signal transfer lays the foundation for an improved trend detection on decadal time scales.

  7. Filamentous Biological Entities Obtained from the Stratosphere

    Science.gov (United States)

    Wainwright, Milton; Rose, Christopher E.; Baker, Alexander J.; Wickramasinghe, N. Chandra

    2013-03-01

    We previously reported the presence of large, non-filamentous, biological entities including a diatom fragment in the stratosphere at heights of between 22-27km. Here we report clear evidence for the presence of filamentous entities associated with a relatively large particle mass collected from the stratosphere. Although viable fungi have previously been isolated from the stratosphere, this is the first report of a filamentous microorganism being observed in situ on a stratospheric particle mass.

  8. Fluorescence from atmospheric aerosol detected by a lidar indicates biogenic particles in the stratosphere

    Directory of Open Access Journals (Sweden)

    F. Immler

    2004-09-01

    Full Text Available With a lidar system that was installed in Lindenberg/Germany, we observed in June 2003, an extended aerosol layer at 13 km altitude in the lowermost stratosphere. This layer created an inelastic backscatter signal which we interpret as laser induced fluorescence from aerosol particles. Also, we find evidence for inelastic scattering in a smoke plume from a forest fire that we observed in the troposphere. Fluorescence from ambient aerosol had not yet been considered detectable by lidar. However, organic compounds such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores or pollen fluoresce when excited with UV-radiation in a way that is detectable by our lidar system. Therefore, we conclude that fluorescence from organic material released by biomass burning creates the inelastic backscatter signal that we measured with our instrument and thus demonstrate a new and powerful way to characterize aerosols by a remote sensing technique. The stratospheric aerosol layer that we have observed in Lindenberg for three consecutive days is likely to be a remnant from Siberian forest fire plumes lifted across the tropopause and transported around the globe.

  9. Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2013-07-01

    Full Text Available Following recent studies evidencing the influence of deep convection on the chemical composition and thermal structure of the tropical lower stratosphere, we explore its impact on the temperature diurnal variation in the upper troposphere and lower stratosphere using the high-resolution COSMIC GPS radio-occultation temperature measurements spanning from 2006 through 2011. The temperature in the lowermost stratosphere over land during summer displays a marked diurnal cycle characterized by an afternoon cooling. This diurnal cycle is shown collocated with most intense land convective areas observed by the Tropical Rainfall Measurement Mission (TRMM precipitation radar and in phase with the maximum overshooting occurrence frequency in late afternoon. Two processes potentially responsible for that are identified: (i non-migrating tides, whose physical nature is internal gravity waves, and (ii local cross-tropopause mass transport of adiabatically cooled air by overshooting turrets. Although both processes can contribute, only the lofting of adiabatically cooled air is well captured by models, making it difficult to characterize the contribution of non-migrating tides. The impact of deep convection on the temperature diurnal cycle is found larger in the southern tropics, suggesting more vigorous convection over clean rain forest continents than desert areas and polluted continents in the northern tropics.

  10. Estudo de caso de ciclone extratropical sobre a América do Sul: sensibilidade das análises Case study of extratropical cyclone over the South America: sensibility of analysis

    Directory of Open Access Journals (Sweden)

    David Mendes

    2009-12-01

    Full Text Available A trajetória e a energética de um ciclone extratropical são analisadas usando as reanálises do NCEP/NCAR, em comparação com as saídas do modelo CPTEC/COLA (T126L28 com análises do GPSAS. A analise da energética e da trajetória de um ciclone, formado no leste da Argentina em 23 de Agosto de 2005, mostrou diferenças significativas entre as reanálises e o modelo, principalmente na sua trajetória e magnitude. A comparação da evolução do ciclone extratropical entre as reanálises e o modelo, mostrou alguns resultados consideráveis, tais como: maior diferença na intensidade da pressão central do ciclone extratropical; maiores diferenças na Energia Cinética após a máxima intensidade do ciclone, e diferenças marcantes no posicionamento do ciclone extratropical.The trajectory and the energetic of extratropical cyclones are analyzed using the NCEP/NCAR reanalysis in comparison with the model outputs CPTEC/COLA (T126L28 with GPSAS analysis. The analysis of the energetic and path of the cyclone formed over East Argentina on 23 August 2005 showed significant differences between the reanalysis and the model, especially in its track and magnitude. The comparison of the extratropical cyclone evolution, between reanalysis and the model, showed some considerable results such as: greater difference in the central pressure intensity of the extratropical cyclones; larger differences in kinetic energy after maximum cyclone intensity and a striking difference in the extratropical cyclone position.

  11. Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays

    Science.gov (United States)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe

  12. The Lowermost Mantle Beneath Central America Imaged by Kirchhoff Migration of Scatterers and Reflectors

    Science.gov (United States)

    Hutko, A.; Lay, T.; Revenaugh, J.

    2007-05-01

    We use tens of thousands of seismograms from South and Central American earthquakes recorded by western North American seismic networks to image the lowermost mantle beneath Central America using a 3D Kirchhoff migration method. P wave studies of the deep mantle often rely on some form of stacking of many records in order to enhance the signal-to-noise ratio of weak phases generated by deep structure, such as reflections off of the D" discontinuity. These methods, however, often assume one-dimensional structure, which is at odds with the evidence for significant heterogeneity. Kirchhoff migration is a three-dimensional stacking method that allows interactions with structure outside of the source-receiver plane, thus illuminating a much larger volume. The D" discontinuity beneath Central America has been readily observed in S wave studies and may be the result of the shear wave velocity increase associated with the recently discovered perovskite to post-perovskite phase transition. This phase transition is expected to have weaker effects on P wave velocities than on S wave velocities and the sharpness of this transition is unknown. Using data at post-critical distances, we observe structures consistent with a P velocity discontinuity about 200 km above the core-mantle boundary (CMB). Observing this using short period data suggests that the boundary must be less than a few 10s of km thick, while observation with lower frequency broadband data exclude the possibility of it being a thin layer. Whether this discontinuity is co-located for both P and S waves is difficult to resolve. Both the broadband and the short period P wave data sets also reveal a sharp out-of-plane scatterer, which may be located close to the CMB. The short period data also indicate reflectivity about 400 km above the CMB, well above the D" discontinuity, and similar reflectivity is observed under the Central Pacific. This feature appears to be more consistent with a discontinuity than a scatterer

  13. Anisotropy in the lowermost mantle beneath the circum-Pacific: observations and modelling

    Science.gov (United States)

    Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.

    2014-12-01

    The lowermost 300 km of mantle (D'') acts as the lower boundary layer to mantle convection. Numerous observations find that this layer is anisotropic, unlike the bulk of the lower mantle above, which is isotropic. The causal mechanism for this anisotropy remains elusive, though its organisation is likely to be imposed by deformation associated with mantle convection. The subduction of the Tethys ocean (since 180 Ma) is predicted to have deposited slab material in D'' in circum-Pacific regions, making these regions cold, encouraging the phase transformation in the MgSiO3 polymorph bridgmanite to a post-perovskite (ppv) structure. These regions are probably rich in ppv. Here we present new observations of anisotropy from shear wave splitting of ScS phases recorded in the epicentral distance range 50-85 degrees. These observations are corrected for anisotropy in the upper mantle beneath source and receiver. Due to the layout of events and receivers we primarily sample D'' beneath the landward side of the circum-Pacific. A detailed pattern of anisotropy is revealed. Anisotropy predominantly leads to SH fast wave propagation with an inferred average strength of 0.9%. This is consistent with many previous observations. However, we do not limit our observations to the SH/SV system. Many observations show non SH/SV fast polarisation. We interpret these data for tilted transverse isotropy (TTI) style anisotropy. We resolve non-radial anisotropy at unprecedented global scale, in turn placing new constraints on the D'' flow field. We test the ability of the flow model TX2008 (Simmons et al., 2009) to fit our observations. This is achieved by modelling the development of a lattice preferred orientation texture of a ppv layer subject to this flow field using a visco-plastic self consistent theory (Walker et al., 2011). Due to uncertainty in the slip system of ppv three candidate glide planes are trialled: (100)/{110}, (010), and (001). The seismic anisotropy of these models is

  14. Stratospheric sudden warming and lunar tide

    Science.gov (United States)

    Yamazaki, Yosuke; Kosch, Michael

    2016-07-01

    A stratospheric sudden warming is a large-scale disturbance in the middle atmosphere. Recent studies have shown that the effect of stratospheric sudden warnings extends well into the upper atmosphere. A stratospheric sudden warming is often accompanied by an amplification of lunar tides in the ionosphere/theremosphere. However, there are occasionally winters when a stratospheric sudden warming occurs without an enhancement of the lunar tide in the upper atmosphere, and other winters when large lunar tides are observed without a strong stratospheric sudden warming. We examine the winters when the correlation breaks down and discuss possible causes.

  15. Dynamical diagnosis of the breakup of the stratospheric polar vortex in the Northern Hemisphere

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The research on climate change in polar regions, especially on the role of polar in the global climate system, has gain unprecedented level of interest. It has been the key scientific issue of the International Polar Year program (IPY, 2007―2008). In this paper, we dealt with the debate upon the breakup time of the stratospheric polar vortex in boreal spring. An observational study of the relation between stratospheric polar vortex breakup and the extra-tropical circulation was performed. The mean breakup date―when the winter westerly at the core of polar jet turns to summer easterly―is about April 10. The breakup time has large interannual variation with a time span of about 2 months. It also has a long-term trend with the 1990s and 2000s witnessing more and more late breakups of polar vortex. Composite of wind speed at the core of polar jet for the extremely early and late breakup years shows that late years have two periods of westerly weakening while early breakup years have only one. The first weakening in the late years happens in middle January with wind speed dropping sharply from more than 40 m s-1 to about 15 m s-1. This is accompanied with anomalous activities of planetary waves in both stratosphere and troposphere; while the second weakening in the late breaking years is mainly the results of diabatic heating with very weak wave activities. In early breakup years, the transition from westerly to easterly is rapid with wind speed dropping from more than 30 m s-1 to less than -10 m s-1 within a month. This evolution is associated with a strong bidirectional dynamical coupling of the stratosphere and troposphere. The circulation anomalies at low troposphere are also analyzed in the extremely early and late breakup years. It shows that there are significant differences between the two kinds of extreme years in the geopotential height and temperature composite analysis, indicating the dynamical coupling of stratosphere and troposphere with the

  16. Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic

    Science.gov (United States)

    2015-08-01

    ER D C/ CH L TR -1 5- 11 Development of an Extratropical Storm Wind , Wave, and Water Level Climatology for the Offshore Mid-Atlantic...Development of an Extratropical Storm Wind , Wave, and Water Level Climatology for the Offshore Mid-Atlantic Michael F. Forte Field Research Facility...of the extreme offshore wind , wave, and water level climate in the mid-Atlantic region has been conducted for the U.S. Bureau of Safety and

  17. Saturn's Stratospheric Water Vapor Distribution

    Science.gov (United States)

    Hesman, B. E.

    2015-12-01

    Water is a sought after commodity in the solar system. It is used as an indication of life, planetary formation timescales, and signatures of past cometary impacts. In Saturn's atmosphere there are two sources of water: an internal primordial reservoir that is confined to the troposphere, and an external source of unknown origin that delivers water to the stratosphere. Potential sources of stratospheric water include: Saturn's main rings (via neutral infall and/or ions transported along magnetic field lines - "Ring Rain"), interplanetary dust particles, and the E-ring that is supplied with water from the plumes of Enceladus. Measuring the latitudinal and seasonal variation of H2O on Saturn will constrain the source of Saturn's stratospheric water. Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O on Saturn at wavelengths of 40 and 50 microns. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using our retrieved temperatures, we derive the mole fraction of H2O at the 0.5-5 mbar level for comparison with water-source models. The latitudinal variation of stratospheric water vapor between 2004-2009 will be presented as a first step in understanding the external source of water on Saturn. The observed local maximum near Saturn's equator supports either a neutral infall from the rings or a source in the E-ring. We will look for secondary maxima at mid-latitudes to determine whether "Ring Rain" also contributes to the inventory of water in Saturn's upper atmosphere.

  18. Multiscale asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical-Extratropical Interactions

    CERN Document Server

    Chen, Shengqian; Stechmann, Samuel N

    2015-01-01

    A new model is derived and analyzed for tropical-extratropical interactions involving the Madden-Julian oscillation (MJO). The model combines (i) the tropical dynamics of the MJO and equatorial baroclinic waves and (ii) the dynamics of barotropic Rossby waves with significant extratropical structure, and the combined system has a conserved energy. The method of multiscale asymptotics is applied to systematically derive a system of ordinary differential equations (ODEs) for three-wave resonant interactions. Two novel features are (i) a degenerate auxiliary problem with overdetermined equations due to a compatibility condition (meridional geostrophic balance) and (ii) cubic self-interaction terms that are not typically found in three-wave resonance ODEs. Several examples illustrate applications to MJO initiation and termination, including cases of (i) the MJO, equatorial baroclinic Rossby waves, and barotropic Rossby waves interacting, and (ii) the MJO, baroclinic Kelvin waves, and barotropic Rossby waves inter...

  19. Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models

    OpenAIRE

    Zappa, Giuseppe; Hawcroft, Matthew K; Shaffrey, Len; Black, Emily; Brayshaw, David J.

    2015-01-01

    The Mediterranean region has been identified as a climate change "hot-spot" due to a projected reduction in precipitation and fresh water availability which has potentially large socio-economic impacts. To increase confidence in these projections, it is important to physically understand how this precipitation reduction occurs. This study quantifies the impact on winter Mediterranean precipitation due to changes in extratropical cyclones in 17 CMIP5 climate models. In each model, the extratro...

  20. Economic costs of extratropical storms under climate change: An application of FUND

    Science.gov (United States)

    Narita, D.; Tol, R.; Anthoff, D.

    2009-12-01

    Extratropical cyclones have attracted some attention in climate policy circles as a possible significant damage factor of climate change. This study conducts an assessment of economic impacts of increased storm activities under climate change with the integrated assessment model FUND 3.5. FUND is a model that calculates damages of climate change for 16 regions by making use of exogenous scenarios of socioeconomic variables (for details of our estimation approach, see our working paper whose URL is indicated below). Our estimation shows that in the base case, the direct economic damage of enhanced storms due to climate change amounts to $2.8 billion globally (approximately 38% of the total economic loss of storms at present) at the year 2100, while the ratio to the world GDP is 0.0009%. The regional results (Figure 1) indicate that the economic effect of extratropical storms with climate change would have relatively minor importance for the US (USA): The enhanced extratropical storm damage (less than 0.001% of GDP for the base case) is one order of magnitude lower than the tropical cyclone damage (roughly 0.01% GDP) calculated by the same version of FUND. In the regions without strong tropical cyclone influence, such as Western Europe (WEU) and Australia and New Zealand (ANZ), the extratropical storms might have some more significance as a possible damage factor of climate change. Especially for the latter, the direct economic damage could amount to more than 0.006% of GDP. Still, the impact is small relative to the income growth expected in these regions. Figure 1. Increased direct economic loss at the year 2100 for selected regions (results are shown for the three different baselines: the years 1986-2005, 1976-2005, and 1996-2005). US - USA; Canada - CAN; Western Europe - WEU; Australia and New Zealand - ANZ.

  1. On the structure of the extra-tropical transition layer from in-situ observations

    OpenAIRE

    Pisso, I.; Law, K. S.; Fierli, F.; P. H. Haynes; P. Hoor; Palazzi, E; F. Ravegnani; S. Viciani

    2012-01-01

    In-situ observations of atmospheric tracers from multiple measurement campaigns over the period 1994–2007 were combined to investigate the Extra-tropical Transition Layer (ExTL) region and the properties of large scale meridional transport. We used potential temperature, equivalent latitude and distance relative to the local dynamical tropopause as vertical coordinates to highlight the behaviour of trace gases in the tropopause region. Vertical coordinates based on constant PV surfaces...

  2. The kinetic and available potential energy budget of a winter extratropical cyclone system

    OpenAIRE

    SMITH, PHILLIP J.; DARE, PATRICIA M.

    2011-01-01

    The energy budget of an extratropical cyclone system which traversed North America and intensified through the period 9–11 January 1975 is presented. The objectives of the study are (1) to document the complete energy budget of a significant winter cyclone event, and (2) to comment on the significance of latent heat release (LHR) in the cyclone's evolution. Results reveal an overall increase in both kinetic (K) and available potential energy (A). K increases are accounted for by boundary flux...

  3. Seasonal Variability of Extratropical North Pacific Wind Stress, Ekman Pumping and Sverdrup Transport

    Science.gov (United States)

    2001-12-01

    The annual cycle of the North Pacific wind stress , Ekman pumping and Sverdrup transport is investigated by means of empirical orthogonal function... stress components. These wind stress components are averaged to 624 monthly mean fields from which monthly mean Ekman pumping and Sverdrup transport...Research (NCAR) Reanalysis daily averaged surface wind components covering the extratropical North Pacific are used to calculate daily averaged wind

  4. CYGNSS Observations of Surface Wind Speeds in Oceanic Tropical and Extratropical Cyclones

    Science.gov (United States)

    Posselt, D. J.; Crespo, J.; Naud, C. M.

    2016-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) mission is the first of the new generation of NASA Earth Venture missions, and consists of a constellation of eight small satellites scheduled for launch in November 2016. The mission utilizes GPS signals reflected from the Earth's surface to infer near-surface wind speeds over the global tropical oceans. The eight-satellite constellation will observe ocean-surface wind speeds in all weather conditions (including in heavy precipitation) with a median revisit time of approximately 3 hours. While CYGNSS is designed to measure wind speeds in the inner core of tropical cyclones, it will observe near-surface winds over all oceanic regions within the span of its orbit. The orbit inclination is 35 degrees, which means that the satellite will observe primarily the tropics and sub-tropics; however, because the antennae are angled 28 degrees off-nadir, the effective range of latitudes spans -40 to 40 degrees. As such, CYGNSS will observe regions known to be characterized by rapid extratropical cyclone development (e.g., the southern portion of the Gulf Stream off the U.S. East Coast). In this presentation, we discuss CYGNSS sampling characteristics, with an eye toward its potential to observe winds not only in tropical cyclones, but in extratropical cyclones as well. We simulate orbits over a historical extratropical storm, and also utilize a multi-year database of cyclone centers to determine CYGNSS sampling characteristics integrated over many storms.

  5. Copernicus stratospheric ozone service, 2009–2012: validation, system intercomparison and roles of input data sets

    Directory of Open Access Journals (Sweden)

    K. Lefever

    2015-03-01

    Full Text Available This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART; the Belgian Assimilation System for Chemical ObsErvations (BASCOE; the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA; and the Data Assimilation Model based on Transport Model version 3 (TM3DAM. The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.

  6. Shock Compression and Phase Transitions of Magnesiowüstite (Mg,Fe)O up to Earth's Lowermost Mantle Conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; GONG Zi-Zheng

    2006-01-01

    @@ We report new shock-compression data for polycrystalline (Mg, Fe)O up to 130 Gpa shock pressures corresponding to Earth's lowermost mantle conditions. Our data together with the existing shock-wave data of (Mg,Fe)O and its end-members MgO and FeO reveal that the Hugoniot curves of (Mg, Fe)O does not change with varying FeO content for their B1 phase (NaCl-structure) in the pressure-relative-volume plane. The evidence of the volume change within 3% at around 120 Gpa along the Hugoniot of (Mg0.6, Fe0.4)O is consistent with a structural transition from B1 phase (NaCl cubic) to B8 phase (NiAs-type hexagonal). Such a structural transition of (Mg, Fe)O, if indeed occurs, may in part contribute to the scattering of seismic waves and change in velocity gradient found in the lowermost mantle.

  7. Tropospheric temperature response to stratospheric ozone recovery in the 21st century

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2010-09-01

    Full Text Available Observations show a stabilization or a weak increase of the stratospheric ozone layer since the late 1990s. Recent coupled chemistry-climate model simulations predicted that the stratospheric ozone layer will likely return to pre-1980 levels in the middle of the 21st century, as a results of the decline of ozone depleting substances under the 1987 Montreal Protocol. Since the ozone layer is an important component in determining stratospheric and tropospheric-surface energy balance, the recovery of the ozone layer may have significant impact on tropospheric-surface climate. Here, using multi-model ensemble results from both the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC-AR4 models and coupled chemistry-climate models, we show that as ozone recovery is considered, the troposphere is warmed more than that without considering ozone recovery, suggesting an enhancement of tropospheric warming due to ozone recovery. It is found that the enhanced tropospheric warming is mostly significant in the upper troposphere, with a global mean magnitude of ~0.41 K for 2001–2050. We also find that relatively large enhanced warming occurs in the extratropics and polar regions in summer and autumn in both hemispheres while the enhanced warming is stronger in the Northern Hemisphere than in the Southern Hemisphere. Enhanced warming is also found at the surface. The strongest enhancement of surface warming is located in the Arctic in boreal winter. The global annual mean enhancement of surface warming is about 0.16 K for 2001–2050.

  8. High-Altitude Aircraft and Balloon-Borne Observations of OH, HO2, ClO, BrO, NO2, ClONO2, ClOOCl, H2O, and O3 in Earth's Stratosphere

    Science.gov (United States)

    Anderson, James G.

    1999-01-01

    Using observations from balloon-borne instruments and aircraft-borne instruments the investigation arrived at the following developments.: (1) Determination of the dominant catalytic cycles that destroy ozone in the lower stratosphere; (2) The partial derivatives of the rate limiting steps are observables in the lower stratosphere; (3) Recognition that the "Low NOx" condition is the regime that holds the greatest potential for misjudgement of Ozone loss rates; (4) Mapping of the Bromine radical contribution to the ozone destruction rate in the lower stratosphere; (5) Observation of OH, HO2 and ClO in the plume of the Concorde SST in the stratosphere; (6) Determination of the diurnal behavior of OH in the lower stratosphere; (7) Observed OH and H02 in the Troposphere and the interrelationship between Ozone and OH, HO2, CO and NO; (8) Analysis of the Catalytic Production of Ozone and Reactions that Couple OH and H02 in the Troposphere; (9) The continuing development of the understanding of the Tropopause temperatures, water vapor mixing ratios, and vertical advection and the mixing in of mid-latitude air; (10) Performed Multiple Tracer Analyses as a diagnostic of water vapor intrusion into the "Middle World" (i.e., the lowermost stratsophere); (11) Flight testing of a new instrument for the In Situ detection of ClON02 from the ER-2; (12) Laser induced fluorescence detection of NO2. There is included an in depth discussion of each of these developments and observations.

  9. Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo

    Science.gov (United States)

    Burls, Natalie J.; Muir, Leslie; Vincent, Emmanuel M.; Fedorov, Alexey

    2017-09-01

    General circulation models frequently suffer from a substantial cold bias in equatorial Pacific sea surface temperatures (SSTs). For instance, the majority of the climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) have this particular problem (17 out of the 26 models evaluated in the present study). Here, we investigate the extent to which these equatorial cold biases are related to mean climate biases generated in the extra-tropics and then communicated to the equator via the oceanic subtropical cells (STCs). With an evident relationship across the CMIP5 models between equatorial SSTs and upper ocean temperatures in the extra-tropical subduction regions, our analysis suggests that cold SST biases within the extra-tropical Pacific indeed translate into a cold equatorial bias via the STCs. An assessment of the relationship between these extra-tropical SST biases and local surface heat flux components indicates a link to biases in the simulated shortwave fluxes. Further sensitivity studies with a climate model (CESM) in which extra-tropical cloud albedo is systematically varied illustrate the influence of cloud albedo perturbations, not only directly above the oceanic subduction regions but across the extra-tropics, on the equatorial bias. The CESM experiments reveal a quadratic relationship between extra-tropical Pacific albedo and the root-mean-square-error in equatorial SSTs—a relationship with which the CMIP5 models generally agree. Thus, our study suggests that one way to improve the equatorial cold bias in the models is to improve the representation of subtropical and mid-latitude cloud albedo.

  10. Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo

    Science.gov (United States)

    Burls, Natalie J.; Muir, Leslie; Vincent, Emmanuel M.; Fedorov, Alexey

    2016-11-01

    General circulation models frequently suffer from a substantial cold bias in equatorial Pacific sea surface temperatures (SSTs). For instance, the majority of the climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) have this particular problem (17 out of the 26 models evaluated in the present study). Here, we investigate the extent to which these equatorial cold biases are related to mean climate biases generated in the extra-tropics and then communicated to the equator via the oceanic subtropical cells (STCs). With an evident relationship across the CMIP5 models between equatorial SSTs and upper ocean temperatures in the extra-tropical subduction regions, our analysis suggests that cold SST biases within the extra-tropical Pacific indeed translate into a cold equatorial bias via the STCs. An assessment of the relationship between these extra-tropical SST biases and local surface heat flux components indicates a link to biases in the simulated shortwave fluxes. Further sensitivity studies with a climate model (CESM) in which extra-tropical cloud albedo is systematically varied illustrate the influence of cloud albedo perturbations, not only directly above the oceanic subduction regions but across the extra-tropics, on the equatorial bias. The CESM experiments reveal a quadratic relationship between extra-tropical Pacific albedo and the root-mean-square-error in equatorial SSTs—a relationship with which the CMIP5 models generally agree. Thus, our study suggests that one way to improve the equatorial cold bias in the models is to improve the representation of subtropical and mid-latitude cloud albedo.

  11. A sudden stratospheric warming compendium

    Science.gov (United States)

    Butler, Amy H.; Sjoberg, Jeremiah P.; Seidel, Dian J.; Rosenlof, Karen H.

    2017-02-01

    Major, sudden midwinter stratospheric warmings (SSWs) are large and rapid temperature increases in the winter polar stratosphere are associated with a complete reversal of the climatological westerly winds (i.e., the polar vortex). These extreme events can have substantial impacts on winter surface climate, including increased frequency of cold air outbreaks over North America and Eurasia and anomalous warming over Greenland and eastern Canada. Here we present a SSW Compendium (SSWC), a new database that documents the evolution of the stratosphere, troposphere, and surface conditions 60 days prior to and after SSWs for the period 1958-2014. The SSWC comprises data from six different reanalysis products: MERRA2 (1980-2014), JRA-55 (1958-2014), ERA-interim (1979-2014), ERA-40 (1958-2002), NOAA20CRv2c (1958-2011), and NCEP-NCAR I (1958-2014). Global gridded daily anomaly fields, full fields, and derived products are provided for each SSW event. The compendium will allow users to examine the structure and evolution of individual SSWs, and the variability among events and among reanalysis products. The SSWC is archived and maintained by NOAA's National Centers for Environmental Information (NCEI, http://dx.doi.org/10.7289/V5NS0RWP" target="_blank">doi:10.7289/V5NS0RWP).

  12. 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia)

    Science.gov (United States)

    Zuev, Vladimir V.; Burlakov, Vladimir D.; Nevzorov, Aleksei V.; Pravdin, Vladimir L.; Savelieva, Ekaterina S.; Gerasimov, Vladislav V.

    2017-02-01

    There are only four lidar stations in the world which have almost continuously performed observations of the stratospheric aerosol layer (SAL) state over the last 30 years. The longest time series of the SAL lidar measurements have been accumulated at the Mauna Loa Observatory (Hawaii) since 1973, the NASA Langley Research Center (Hampton, Virginia) since 1974, and Garmisch-Partenkirchen (Germany) since 1976. The fourth lidar station we present started to perform routine observations of the SAL parameters in Tomsk (56.48° N, 85.05° E, Western Siberia, Russia) in 1986. In this paper, we mainly focus on and discuss the stratospheric background period from 2000 to 2005 and the causes of the SAL perturbations over Tomsk in the 2006-2015 period. During the last decade, volcanic aerosol plumes from tropical Mt. Manam, Soufrière Hills, Rabaul, Merapi, Nabro, and Kelut and extratropical (northern) Mt. Okmok, Kasatochi, Redoubt, Sarychev Peak, Eyjafjallajökull, and Grímsvötn were detected in the stratosphere over Tomsk. When it was possible, we used the NOAA HYSPLIT trajectory model to assign aerosol layers observed over Tomsk to the corresponding volcanic eruptions. The trajectory analysis highlighted some surprising results. For example, in the cases of the Okmok, Kasatochi, and Eyjafjallajökull eruptions, the HYSPLIT air mass backward trajectories, started from altitudes of aerosol layers detected over Tomsk with a lidar, passed over these volcanoes on their eruption days at altitudes higher than the maximum plume altitudes given by the Smithsonian Institution Global Volcanism Program. An explanation of these facts is suggested. The role of both tropical and northern volcanic eruptions in volcanogenic aerosol loading of the midlatitude stratosphere is also discussed. In addition to volcanoes, we considered other possible causes of the SAL perturbations over Tomsk, i.e., the polar stratospheric cloud (PSC) events and smoke plumes from strong forest fires. At least

  13. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor

    Directory of Open Access Journals (Sweden)

    S. Dhomse

    2008-02-01

    Full Text Available Using water vapor data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres and tropical lower stratospheric (TLS water vapor has been obtained. This appears to be a manifestation of the inter-annual variability of the Brewer-Dobson (BD circulation strength (the driving of which is generally measured in terms of the mid-latitude eddy heat flux, and hence amount of water vapor entering the stratosphere. Some years such as 1991 and 1997 show, however, a clear departure from the anti-correlation which suggests that the water vapor changes in TLS can not be attributed solely to changes in extratropical planetary wave activity (and its effect on the BD circulation. After 2000 a sudden decrease in lower stratospheric water vapor has been reported in earlier studies based upon satellite data from HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres as shown here and with the increase in tropical upwelling and decrease in cold point temperatures found by Randel et al. (2006. The low water vapor and enhanced planetary wave activity (in turn strength of the BD circulation has persisted until the end of the satellite data records. From a multi-variate regression analysis applied to 27 years of NCEP and HadAT2 (radiosonde temperatures (up to 2005 with contributions from solar cycle, stratospheric aerosols and QBO removed, the enhancement wave driving after 2000 is estimated to contribute up to 0.7 K cooling to the overall TLS temperature change during the period 2001–2005 when compared to the period 1996–2000. NCEP cold point temperature show an average decrease of nearly 0.4 K from changes in the wave driving, which is consistent with observed mean TLS water vapor

  14. Lidar development with applications to the stratosphere- troposphere exchange and tropical aerosol detection

    Science.gov (United States)

    Castleberg, Paul Andrew

    1997-06-01

    Lidar remote sensing of the atmosphere is explored through the use and development of the Rayleigh and resonance lidar systems at the Arecibo Observatory (18.3oN, 66.8oW). Resonance lidar capabilities have been demonstrated at the Arecibo Observatory for both sodium and potassium. The initiation, development, and details of the lidar system, based on an alexandrite solid state ring laser, are discussed. We present initial resonance observations, as well as the exciting potential for dual- wavelength upper troposphere and lower stratosphere aerosol observations. The Arecibo five year Rayleigh lidar data base and latitudinal snap shot from the Space Shuttle LITE experiment are used to study the temporal and spatial distributions of volcanic aerosols entrained in the stratosphere. The results support recent global models which suggest an extra tropical suction pump is responsible for mass being up drawn across the tropical tropopause, moved poleward, then pushed downward in the extratropics (Holton et al., 1995). The aerosol scattering wavelength dependence is introduced through the Angstrom coefficient to estimate aerosol size distributions. The analysis is extended to upper tropospheric cirrus clouds. Initial observations of two types of cirrus are presented. We speculate that one type are the remnants of convective activity, while the second grow in the cold tropical tropopause. We present a single example of the wavelength dependence as an example of the utility of multi-wavelength lidar analysis. Local stratospheric/tropospheric exchanges are investigated through a detailed discussion of lidar, radar, and balloon observations of temperatures and wind field fluctuations. On a single remarkable night, September 14-15, 1994, we captured two unique examples of convective activity at the tropopause and in the lower stratosphere. The first is a large scale molecular density depletion (temperature enhancement) just below the tropopause, which we believe is the result of

  15. Impact of lower stratospheric ozone on seasonal prediction systems

    CSIR Research Space (South Africa)

    Mathole, K

    2014-01-01

    Full Text Available stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric...

  16. Global Assimilation of EOS-Aura Data as a Means of Mapping Ozone Distribution in the Lower Stratosphere and Troposphere

    Science.gov (United States)

    Wargan, Krzysztof; Olsen, M.; Douglass, A.; Witte, J.; Strahan, S.; Livesey, N.

    2012-01-01

    Ozone in the lower stratosphere and the troposphere plays an important role in forcing the climate. However, the global ozone distribution in this region is not well known because of the sparse distribution of in-situ data and the poor sensitivity of satellite based observations to the lowermost of the atmosphere. The Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) instruments on EOS-Aura provide information on the total ozone column and the stratospheric ozone profile. This data has been assimilated into NASA s Global Earth Observing System, Version 5 (GEOS-5) data assimilation system (DAS). We will discuss the results of assimilating three years of OMI and MLS data into GEOS-5. This data was assimilated alongside meteorological observations from both conventional sources and satellite instruments. Previous studies have shown that combining observations from these instruments through the Trajectory Tropospheric Ozone Residual methodology (TTOR) or using data assimilation can yield useful, yet low biased, estimates of the tropospheric ozone budget. We show that the assimilated ozone fields in this updated version of GEOS-5 exhibit an excellent agreement with ozone sonde and High Resolution Dynamics Limb Sounder (HIRDLS) data in the lower stratosphere in terms of spatial and temporal variability as well as integrated ozone abundances. Good representation of small-scale vertical features follows from combining the MLS data with the assimilated meteorological fields. We then demonstrate how this information can be used to calculate the Stratosphere - Troposphere Exchange of ozone and its contribution to the tropospheric ozone column in GEOS-5. Evaluations of tropospheric ozone distributions from the assimilation will be made by comparisons with sonde and other in-situ observations.

  17. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe

    Science.gov (United States)

    Cuesta, J.; Eremenko, M.; Liu, X.; Dufour, G.; Cai, Z.; Hoepfner, M.; von Clarmann, T.; Sellitto, P.; Foret, G.; Gaubert, B.; Beekmann, M.; Orphal, J. J.; Chance, K.; Spurr, R. J.; Flaud, J.

    2013-12-01

    Lowermost tropospheric ozone is a major factor determining air quality, which directly affects human health in megacities and causes damages to ecosystems. Monitoring tropospheric ozone is a key societal issue which can be addressed at the regional scale by spaceborne observation. However, current satellite retrievals of tropospheric ozone using uncoupled either ultraviolet (UV) or thermal infrared (TIR) observations show limited sensitivity to ozone at the lowermost troposphere (LMT, up to 3 km asl of altitude above sea level), which is the major concern for air quality. In this framework, we have developed a new multispectral approach for observing lowermost tropospheric ozone from space by synergism of atmospheric TIR radiances observed by IASI and earth UV reflectances measured by GOME-2. Both instruments are onboard the series of MetOp satellites (in orbit since 2006 and expected until 2022) and their scanning capabilities offer global coverage every day, with a relatively fine ground pixel resolution (12-km-diameter pixels spaced by 25 km for IASI at nadir). Our technique uses altitude-dependent Tikhonov-Phillips-type constraints, which optimize sensitivity to lower tropospheric ozone. It integrates the VLIDORT and KOPRA radiative transfer codes for simulating UV reflectance and TIR radiance, respectively. We have used our method to analyze real observations over Europe during an ozone pollution episode in the summer of 2009. The results show that the multispectral synergism of IASI (TIR) and GOME-2 (UV) enables the observation of the spatial distribution of ozone plumes in the LMT, in good agreement with the CHIMERE regional chemistry-transport model. In this case study, when high ozone concentrations extend vertically above 3 km asl, they are similarly observed over land by both the multispectral and IASI retrievals. On the other hand, ozone plumes located below 3 km asl are only clearly depicted by the multispectral retrieval (both over land and over ocean

  18. Anisotropy in the lowermost mantle beneath the Indian Ocean Geoid Low from ScS splitting measurements

    Science.gov (United States)

    Padma Rao, B.; Ravi Kumar, M.; Singh, Arun

    2017-02-01

    The Indian Ocean Geoid Low (IOGL) to the south of Indian subcontinent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high-quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (˜1.01%) in the D'' layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL.

  19. Atmospheric responses to stratospheric aerosol geoengineering

    Science.gov (United States)

    Ferraro, Angus; Highwood, Eleanor; Charlton-Perez, Andrew

    2013-04-01

    Stratospheric aerosol geoengineering, also called solar radiation management (SRM), involves the injection of aerosol into the stratosphere to increase the planetary albedo. It has been conceieved as a policy option in response to human-induced global warming. It is well-established from modelling studies and observations following volcanic eruptions that stratospheric sulphate aerosols cause global cooling. Some aspects of the climate response, especially those involving large-scale dynamical changes, are more uncertain. This work attempts to identify the physical mechanisms operating in the climate response to stratospheric aerosol geoengineering using idealised model experiments. The radiative forcing produced by the aerosol depends on its type (species) and size. Aerosols absorb terrestrial and solar radiation, which drives stratospheric temperature change. The stratospheric temperature change also depends on aerosol type and size. We calculate the stratospheric temperature change due to geoengineering with sulphate, titania, limestone and soot in a fixed-dynamical-heating radiative model. Sulphate produces tropical heating of up to ~6 K. Titania produces much less heating, whereas soot produces much more. Most aerosols increase the meridional temperature gradient in the lower stratosphere which, by thermal wind balance, would be expected to intensify the zonal winds in the polar vortex. An intermediate-complexity general circulation model is used to investigate the dynamical response to geoengineering aerosols. Atmospheric carbon dioxide concentrations are quadrupled. The carbon dioxide forcing is then balanced using stratospheric sulphate aerosol. We assess dynamical changes in the stratosphere, for example, the frequency of stratospheric sudden warmings and the strength of the Brewer-Dobson overturning circulation. We also assess changes in the strength and position of the tropospheric jets. We compare results for sulphate with those for titania.

  20. Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies

    Science.gov (United States)

    Kudo, Yuki; Hirose, Kei; Murakami, Motohiko; Asahara, Yuki; Ozawa, Haruka; Ohishi, Yasuo; Hirao, Naohisa

    2012-10-01

    We report the measurements of aggregate shear velocity (VS) of CaSiO3 perovskite (CaPv) at high pressure (P) between 32 and 133 GPa and room temperature (T) on the basis of Brillouin spectroscopy. The sample had a tetragonal perovskite structure throughout the experiments. The measured P-VS data show the shear modulus and its pressure derivative at ambient condition to be G0=115.8 GPa and G'=1.20, respectively. The zero-pressure shear velocity is determined to be VS0=5.23 km/s, in good agreement with the previous estimate inferred from the ultrasonic measurements on Ca(Si,Ti)O3 perovskite at 1 bar. Our experimental results are broadly consistent with the earlier calculations on tetragonal CaPv but exhibit lower velocity at equivalent pressure. Such tetragonal CaPv is present in cold subducting slabs and possibly in wide areas of the lowermost mantle. While primitive mantle includes certain amount of CaPv, a depleted peridotite (former harzburgite) layer in subducted oceanic lithosphere is deficient in CaPv and enriched in ferropericlase in the lower mantle. Such harzburgite exhibits 0.9% faster VS and 0.7% slower bulk sound velocity (VΦ) at the lowermost mantle P-T conditions if CaPv is present in the tetragonal form in the surrounding mantle. The observed fast VS and slow VΦ anomalies in the D" layer underneath the circum-Pacific region might be attributed in large part in the presence of subducted harzburgitic materials.

  1. Simulated sensitivity of the tropical climate to extratropical thermal forcing: tropical SSTs and African land surface

    Science.gov (United States)

    Talento, Stefanie; Barreiro, Marcelo

    2016-08-01

    This study investigates the Intertropical Convergence Zone (ITCZ) response to extratropical thermal forcing applied to an atmospheric general circulation model coupled to slab ocean and land models. We focus on the relative roles of the atmosphere, tropical sea surface temperatures (SSTs) and continental surface temperatures in the ITCZ response to the imposed forcing. The forcing consists of cooling in one hemisphere and warming in the other poleward of 40°, with zero global average. Three sets of experiments are performed: in the first the slab ocean and land models are applied globally; in the second the tropical SSTs are kept fixed while the slab land model is applied globally; in the third, in addition, surface temperatures over Africa are kept fixed. Realistic boundary surface conditions are used. We find that the ITCZ shifts towards the warmer hemisphere and that the stronger the forcing, the larger the shift. When the constraint of fixed tropical SST is imposed we find that the ITCZ response is strongly weakened, but it is still not negligible in particular over the Atlantic Ocean and Africa where the precipitation anomalies are of the order of 20 and 60 %, respectively, of the magnitude obtained without the SST restriction. Finally, when the constraint of the African surface temperature is incorporated we find that the ITCZ response completely vanishes, indicating that the ITCZ response to the extratropical forcing is not possible just trough purely atmospheric processes, but needs the involvement of either the tropical SST or the continental surface temperatures. The clear-sky longwave radiation feedback is highlighted as the main physical mechanism operating behind the land-based extratropical to tropical communication.

  2. Tropical-Extratropical Interactions and Intrasasonal Oscillations in the Indian Monsoon System in a Warmer Planet

    Science.gov (United States)

    Carvalho, L. V.; Jones, C.; Cannon, F.; Norris, J.

    2015-12-01

    The India summer monsoon (ISM) experiences long periods of wet and dry conditions frequently associated with floods and long dry spells. These events are largely governed by northward propagating boreal summer monsoon intraseasonal oscillations (MISO). Here we investigate intraseasonal variability of the ISM in the climate of the 20th century using the Climate Forecast System Reanalysis (1979-2013) and examine future scenarios of climate change using models of the Coupled Model Intercomparison Project Phase-5 project. ISM is characterized with a large-scale index obtained by performing combined EOF analysis of precipitation, low level circulation, specific humidity and temperature. This index realistically defines the monsoon's onset and withdrawal, is well correlated with seasonal precipitation in India and exhibits variance on intraseasonal timescales that are related to MISO and extreme wet and dry conditions in India. With similar approach we investigate the skill of the CMIP5 models in realistically simulating MISO in the 'historic' run (1951-2005) and examine projected changes in the amplitude and persistence these events in the high-emission representative concentration pathway 8.5 (RCP8.5) (2006-2100). MISO is well characterized in CMIP5 models that indicate significant increase in the intensity and frequency of extremely dry and wet conditions affecting India by 2050. We show that the main mechanism driving MISO in CMIP5 models are linked to the propagation of extratropical wave trains and interactions with the tropics. In a warmer planet, the increase in polar temperatures weakens the tropical-extratropical temperature gradient and decreases the intensity of the upper tropospheric jet. These changes in the jet and in the baroclinic structure of the atmosphere result in enhanced extratropical wave activity and more extreme events. We use a wave tracking algorithm to demonstrate these differences and explore physical and dynamical mechanisms underlying

  3. Rossby wave breaking, the upper level jet, and serial clustering of extratropical cyclones in western Europe

    OpenAIRE

    Priestley, Matthew D. K.; Joaquim G. Pinto; Dacre, Helen F.; Shaffrey, Len C.

    2017-01-01

    Winter 2013/14 was the stormiest on record for the UK and was characterized by recurrent clustering of extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic jet and was also associated with Rossby wave breaking (RWB) on both flanks, pinning the jet in place. The occurrence of RWB and cyclone clustering is further studied in 36 years of the ERA-Interim Reanalysis. Clustering at 55°N is associated with an extended and anomalously strong edd...

  4. A comparison of observed and model energy balance for an extratropical cyclone system

    Science.gov (United States)

    Dare, P. M.; Smith, P. J.

    1984-01-01

    Eddy kinetic energy budgets are presented for both moist and dry 48 h forecasts and corresponding observations of a developing winter extratropical cyclone. A diagnosis of observational data energetics is presented and compared with model results for an intense, occluding winter cyclone associated with a strong, well-developed jet stream. The nature of the eddy kinetic energy sources and sinks associated with the strong baroclinic development occurring in this cyclonic system is examined, and the extent to which to observed energy sources and sinks are present in the numerical predictions is addressed. The possibility of explaining differences between the observed and predicted cyclone systems by analyzing these kinetic energy properties is considered.

  5. Total Ozone Prediction: Stratospheric Dynamics

    Science.gov (United States)

    Jackman, Charles H.; Kawa, S. Ramdy; Douglass, Anne R.

    2003-01-01

    The correct prediction of total ozone as a function of latitude and season is extremely important for global models. This exercise tests the ability of a particular model to simulate ozone. The ozone production (P) and loss (L) will be specified from a well- established global model and will be used in all GCMs for subsequent prediction of ozone. This is the "B-3 Constrained Run" from M&MII. The exercise mostly tests a model stratospheric dynamics in the prediction of total ozone. The GCM predictions will be compared and contrasted with TOMS measurements.

  6. Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Hamidouche, M; Marcum, P; Krabbe, A

    2010-01-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  7. Jet characterization in the upper troposphere/lower stratosphere (UTLS: applications to climatology and transport studies

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2011-06-01

    Full Text Available A method of classifying the upper tropospheric/lower stratospheric (UTLS jets has been developed that allows satellite and aircraft trace gas data and meteorological fields to be efficiently mapped in a jet coordinate view. A detailed characterization of multiple tropopauses accompanies the jet characterization. Jet climatologies show the well-known high altitude subtropical and lower altitude polar jets in the upper troposphere, as well as a pattern of concentric polar and subtropical jets in the Southern Hemisphere, and shifts of the primary jet to high latitudes associated with blocking ridges in Northern Hemisphere winter. The jet-coordinate view segregates air masses differently than the commonly-used equivalent latitude (EqL coordinate throughout the lowermost stratosphere and in the upper troposphere. Mapping O3 data from the Aura Microwave Limb Sounder (MLS satellite and the Winter Storms aircraft datasets in jet coordinates thus emphasizes different aspects of the circulation compared to an EqL-coordinate framework: the jet coordinate reorders the data geometrically, thus highlighting the strong PV, tropopause height and trace gas gradients across the subtropical jet, whereas EqL is a dynamical coordinate that may blur these spatial relationships but provides information on irreversible transport. The jet coordinate view identifies the concentration of stratospheric ozone well below the tropopause in the region poleward of and below the jet core, as well as other transport features associated with the upper tropospheric jets. Using the jet information in EqL coordinates allows us to study trace gas distributions in regions of weak versus strong jets, and demonstrates weaker transport barriers in regions with less jet influence. MLS and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer trace gas fields for spring 2008 in jet coordinates show very strong, closely correlated, PV, tropopause height and trace gas

  8. Utilization of satellite cloud information to diagnose the energy state and transformations in extratropical cyclones

    Science.gov (United States)

    Smith, P. J.

    1985-01-01

    An important component of the research was a continuing investigation of the impact of latent release on extratropical cyclone development. Previous efforts to accomplish this task have focused on the energy balance and the vertical motion field of an intense winter extratropical cyclone over the United States. During this fiscal year researchers turned their attention to a more fundamental diagnostic variable, the height tendency. Central to this effort is the use of a modified form of the quasi-geostrophic height tendency equation, in which geostrophic wind components have been replaced by observed winds and a latent heat release term has been added. This methodology was adopted to produce a simple diagnostic model which retains the essential mechanisms of quasi-geostrophic theory but more faithfully describes observed wave development when the Rossby Number approaches and exceeds 0.5. Results to date indicate that the new model yields height tendencies that are superior to those obtained from the quasi-geostrophic formulation and are sufficiently close to the observed tendencies to be a useful tool for diagnosing the principle large-scale forcing mechanisms in th e700-300 mb layer. Of the three forcing terms included in the new model, vortity advection is in general dominant. The most persistent challenge to this dominance is made by the thermal advection. On the whole, latent heat release plays a secondary role. Finally, during the rapid intensification observed for this cyclone, all three processes complement each other in forcing height falls.

  9. Prevention of destructive tropical and extratropical storms, hurricanes, tornadoes, dangerous thunderstorms, and catastrophic floods

    Directory of Open Access Journals (Sweden)

    E. Yu. Krasilnikov

    2002-01-01

    Full Text Available Tropical cyclones and storms, hurricanes, powerful thunderclouds, which generate tornadoes, destructive extratropical cyclones, which result in catastrophic floods, are the powerful cloud systems that contain huge amount of water. According to the hypothesis argued in this paper, an electric field coupled with powerful clouds and electric forces play a cardinal role in supporting this huge mass of water at a high altitude in the troposphere and in the instability of powerful clouds sometimes during rather a long time duration. Based on this hypothesis, a highly effective method of volume electric charge neutralization of powerful clouds is proposed. It results in the decrease in an electric field, a sudden increase in precipitation, and subsequent degradation of powerful clouds. This method, based on the natural phenomenon, ensures the prevention of the intensification of tropical and extratropical cyclones and their transition to the storm and hurricane (typhoon stages, which makes it possible to avoid catastrophic floods. It also ensures the suppression of severe thunderclouds, which, in turn, eliminates the development of dangerous thunderstorms and the possibility of the emergence and intensification of tornadoes.

  10. Understanding the varied response of the extratropical storm tracks to climate change.

    Science.gov (United States)

    O'Gorman, Paul A

    2010-11-09

    Transient eddies in the extratropical storm tracks are a primary mechanism for the transport of momentum, energy, and water in the atmosphere, and as such are a major component of the climate system. Changes in the extratropical storm tracks under global warming would impact these transports, the ocean circulation and carbon cycle, and society through changing weather patterns. I show that the southern storm track intensifies in the multimodel mean of simulations of 21st century climate change, and that the seasonal cycle of storm-track intensity increases in amplitude in both hemispheres. I use observations of the present-day seasonal cycle to confirm the relationship between storm-track intensity and the mean available potential energy of the atmosphere, and show how this quantitative relationship can be used to account for much of the varied response in storm-track intensity to global warming, including substantially different responses in simulations with different climate models. The results suggest that storm-track intensity is not related in a simple way to global-mean surface temperature, so that, for example, a stronger southern storm track in response to present-day global warming does not imply it was also stronger in hothouse climates of the past.

  11. Utilization of satellite cloud information to diagnose the energy state and transformations in extratropical cyclones

    Science.gov (United States)

    Smith, P. J.

    1985-01-01

    An important component of the research was a continuing investigation of the impact of latent release on extratropical cyclone development. Previous efforts to accomplish this task have focused on the energy balance and the vertical motion field of an intense winter extratropical cyclone over the United States. During this fiscal year researchers turned their attention to a more fundamental diagnostic variable, the height tendency. Central to this effort is the use of a modified form of the quasi-geostrophic height tendency equation, in which geostrophic wind components have been replaced by observed winds and a latent heat release term has been added. This methodology was adopted to produce a simple diagnostic model which retains the essential mechanisms of quasi-geostrophic theory but more faithfully describes observed wave development when the Rossby Number approaches and exceeds 0.5. Results to date indicate that the new model yields height tendencies that are superior to those obtained from the quasi-geostrophic formulation and are sufficiently close to the observed tendencies to be a useful tool for diagnosing the principle large-scale forcing mechanisms in th e700-300 mb layer. Of the three forcing terms included in the new model, vortity advection is in general dominant. The most persistent challenge to this dominance is made by the thermal advection. On the whole, latent heat release plays a secondary role. Finally, during the rapid intensification observed for this cyclone, all three processes complement each other in forcing height falls.

  12. Atmospheric pressure variations at extratropical latitudes associated with Forbush decreases of galactic cosmic rays

    Science.gov (United States)

    Artamonova, I.; Veretenenko, S.

    2014-12-01

    Changes of troposphere pressure associated with short-time variations of galactic cosmic rays (GCRs) taking place in the Northern hemisphere's cold months (October-March) were analyzed for the period 1980-2006, NCEP/NCAR reanalysis data being used. Noticeable pressure variations during Forbush decreases of GCRs were revealed at extratropical latitudes of both hemispheres. The maxima of pressure increase were observed on the 3rd-4th days after the event onsets over Northern Europe and the European part of Russia in the Northern hemisphere, as well as on the 4th-5th days over the eastern part of the South Atlantic opposite Queen Maud Land and over the d'Urville Sea in the Southern Ocean. According to the weather chart analysis, the observed pressure growth, as a rule, results from the weakening of cyclones and intensification of anticyclone development in these areas. The presented results suggest that cosmic ray variations may influence the evolution of extratropical baric systems and play an important role in solar-terrestrial relationships.

  13. Extratropical Cyclogenesis and Frontal Waves on Mars: Influences on Dust, Weather and the Planet's climate

    Science.gov (United States)

    Hollingsworth, J. L.; Kahre, Melinda A.

    2012-01-01

    Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  14. Impact of the observed extratropics on climatological simulations of the MJO in a tropical channel model

    Science.gov (United States)

    Hall, Nicholas M. J.; Thibaut, Séverin; Marchesiello, Patrick

    2016-06-01

    A regional model is used to quantify the influence of the extratropics on simulated tropical intraseasonal variability. The Weather Research and Forecasting (WRF) model is run in tropical channel mode with the boundaries at 30° N and S constrained to 6-hourly reanalysis data. Experiments with modified boundary conditions are carried out in which intraseasonal (20-100 days) timescales are removed, or in which only the annual and diurnal cycles are retained. Twin runs are used to give an objective measure of the boundary-independant component of the variance in each case. The model captures MJO-like propagating structures and shows greater zonal-wind variance in runs with full boundary conditions. Comparison between experiments indicates that about half the intraseasonal variance can be attributed to boundary influence, and specifically to the presence of an intraseasonal extratropical signal. This signal is associated with stronger correlations between low-level zonal wind precursors in the Pacific sector and Indian Ocean convective events. Temporal coherence between MJO events in the model and the observations is analysed by defining four phases based on convectively coupled signals in the low-level zonal wind. The model can only match observed events above the level of chance when intraseasonal boundary information is provided. Results are analysed in terms of `primary' and `successive' events. Although the model hindcast skill is generally poor, it is better for successive events.

  15. Characteristic Paths of Extratropical Cyclones that Cause High Wind Events in the Northeast United States

    Science.gov (United States)

    Booth, J. F.; Rieder, H. E.; Lee, D.; Kushnir, Y.

    2014-12-01

    This study analyzes the association between wintertime high wind events (HWEs) in the northeast United States US and extratropical cyclones. Sustained wind maxima in the Daily Summary Data from the National Climatic Data Center's Integrated Surface Database are analyzed for 1979-2012. For each station, a Generalized Pareto Distribution (GPD) is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at intervals of 1, 3 and 5-years are derived from the GPD fit. At each interval, wind events meeting the return level criteria are termed HWEs. The HWEs occurring on the same day are grouped into multi-station events allowing the association with extratropical cyclones, which are tracked in the European Center for Medium-Range Weather Forecast ERA-Interim reanalysis. Using hierarchical clustering analysis, this study finds that the HWEs are most often associated with cyclones travelling from southwest to northeast, usually originating west of the Appalachian Mountains. The results show that a storm approaching from the southwest is four times more likely to cause strong surface winds than a Nor'easter. A series of sensitivity analyses confirms the robustness of this result. Next, the relationship between the strength of the wind events and the corresponding storm minimum sea level pressure is analyzed. No robust relationship between these quantities is found for strong wind events. Nevertheless, subsequent analysis shows that a relationship between deeper storms and stronger winds emerges if the analysis is extended to the entire set of wintertime storms.

  16. Is there a stratospheric fountain?

    Directory of Open Access Journals (Sweden)

    J.-P. Pommereau

    2007-06-01

    Full Text Available The impact of convection on the thermal structure of the Tropical Tropopause Layer (TTL was investigated from a series of four daily radiosonde ascents and weather S-band radar observations carried out during the HIBISCUS campaign in the South Atlantic Convergence Zone in Southeast Brazil in February 2004. The temperature profiles display a large impact of convective activity on the thermal structure of the TTL. Compared to non-active periods, convection is observed to result in a cooling of 4.5°C to 7.5°C at the Lapse Rate Tropopause at 16 km, propagating up to 19 km or 440 K potential temperature levels in the stratosphere in most intense convective cases. Consistent with the diurnal cycle of echo top heights seen by a S-band weather radar, a systematic temperature diurnal cycle is observed in the layer, displaying a rapid cooling of 3.5°C on average (–9°, –2°C extremes during the development phase of convection in the early afternoon during the most active period. Since the cooling occurs during daytime within a timescale of 6-h, its maximum amplitude is at the altitude of the Cold Point Tropopause at 390 K and temperature fluctuations associated to gravity waves do not display significant diurnal change, the afternoon cooling of the TTL cannot be attributed to radiation, advection, gravity waves or adiabatic lofting. It implies a fast insertion of adiabatically cooled air parcels by overshooting turrets followed by mixing with the warmer environment. During most intense convective days, the overshoot is shown to penetrate the stratosphere up to 450 K potential temperature level. Such fast updraft offers an explanation for the presence of ice crystals, and enhanced water vapour layers observed up to 18–19 km (410–430 K in the same area by the HIBISCUS balloons and the TROCCINOX Geophysica aircraft, as well as high tropospheric chemical species concentrations in the TTL over land observed from space. Overall, injection of cold air

  17. The possible mechanism of the "stratospheric bridge" modulation by the Pacific Decadal Oscillation in early winter and the QBO, 11-year solar cycle in late winter

    Science.gov (United States)

    Jadin, Evgeny; Wei, Ke; Chen, Wen; Wang, Lin

    Questions of the interannual variations of the extra-tropical stratospheric dynamics, its rela-tionship with the sea surface temperature (SST) anomalies in the North Pacific (Pacific Decadal Oscillation -PDO) in early winter (November-December), Quasi-Biennial Oscillation (QBO) (Holton-Tan relations), a decadal modulation by the 11-year Solar Cycle (SC) (Labitzke, van Loon -LvL correlations) in late winter (January-February) are discussed. In early winter, the interannual changes of the planetary wave activity define partly the variations of the strato-spheric circulation in subsequent January [Zyulyaeva and Jadin, 2009]. The interannual and decadal variations of the stratospheric wave activity appear to be associated with those of the PDO [Jadin et al. 2009]. A decadal period from the mid-1970s to mid-1990s of the violation of the Holton-Tan (HT) relationship corresponds well to that of the positive PDO phase (anoma-lously cold SSTs in the central North Pacific). Using the NCEP and ERA-40 monthly mean reanalysis datasets, the three-dimensional Eliassen-Palm fluxes are calculated. The results of the analysis of relations between the upward/downward propagation of planetary waves in the lower stratosphere ("stratospheric bridge"), their interaction with the zonal wind and the HT and LvL correlations for January-February are presented. In contrast with early winter, the large role in the wave-zonal flow interaction plays the downward propagation of planetary waves from the stratosphere to the troposphere over Canada and North Atlantic ("stratospheric wave hole") responsible for the sink of the eddy energy from the stratosphere. One can suggest that there are two dominant regimes in the stratosphere-troposphere coupling in late winter: 1) the "ventilation regime" with the strong penetration of planetary waves from the troposphere over north Eurasia and their strong downward propagation over Canada and North Atlantic, and 2) the "blocking regime" with the weak those

  18. Drivers of hemispheric differences in return dates of mid-latitude stratospheric ozone to historical levels

    Directory of Open Access Journals (Sweden)

    H. Garny

    2012-12-01

    Full Text Available Chemistry-climate models (CCMs project an earlier return of northern mid-latitude total column ozone to 1980 values compared to the southern mid-latitudes. The chemical and dynamical drivers of this hemispheric difference are investigated in this study. The hemispheric asymmetry in return dates is a robust result across different CCMs and is qualitatively independent of the method used to estimate return dates. However, the differences in dates of return to 1980 levels between the southern and northern mid-latitudes can vary between 0 and 30 yr across the range of CCM projections analyzed. An attribution analysis performed with two CCMs shows that chemically-induced changes in ozone are the major driver of the earlier return of ozone to 1980 levels in northern mid-latitudes; transport changes are of minor importance. This conclusion is supported by the fact that the spread in the simulated hemispheric difference in return dates across an ensemble of twelve models is only weakly related to the spread in the simulated hemispheric asymmetry of trends in the strength of the Brewer–Dobson circulation. The causes for chemically-induced asymmetric ozone trends relevant for the total column ozone return date differences are found to be (i stronger increases in ozone production due to enhanced NOx concentrations in the Northern Hemisphere lowermost stratosphere and troposphere, (ii stronger decreases in the destruction rates of ozone by the NOx cycle in the Northern Hemisphere lower stratosphere linked to effects of dynamics and temperature on NOx concentrations and (iii an increasing efficiency of heterogeneous ozone destruction by Cly in the Southern Hemisphere mid-latitudes as a result of decreasing temperatures.

  19. Geodynamic models of plumes from the margins of large thermo-chemical piles in the Earth's lowermost mantle

    Science.gov (United States)

    Steinberger, B. M.; Gassmoeller, R.; Mulyukova, E.

    2012-12-01

    We present geodynamic models featuring mantle plumes that are almost exclusively created at the margins of large thermo-chemical piles in the lowermost mantle. The models are based on global plate reconstructions since 300 Ma. Sinking subducted slabs not only push a heavy chemical layer ahead, such that dome-shaped structures form, but also push the thermal boundary layer (TBL) toward the chemical domes. At the steep edges it is forced upwards and begins to rise — in the lower part of the mantle as sheets, which then split into individual plumes higher in the mantle. The models explain why Large Igneous Provinces - commonly assumed to be caused by plumes forming in the TBL above the core-mantle boundary (CMB) - and kimberlites during the last few hundred Myr erupted mostly above the margins of the African and Pacific Large Low Shear Velocity Provinces (LLSVPs) of the lowermost mantle, which are probably chemically distinct from and heavier than the overlying mantle. Computations are done with two different codes, one based on spherical harmonic expansion, and CITCOM-S. The latter is combined with a self-consistent thermodynamic material model for basalt, harzburgite, and peridotite, which is used to derive a temperature- and presssure dependent database for parameters like density, thermal expansivity and specific heat. In terms of number and distribution of plumes, results are similar in both cases, but in the latter model, plume conduits are narrower, due to consideration of realistic lateral - in addition to radial - viscosity variations. For the latter case, we quantitatively compare the computed plume locations with actual hotspots and find that the good agreement is very unlikely (probability geometry, we also show results obtained with a 2-D finite element code. These results allow us to assess how much the computed long-term stability of the piles is affected by numerical diffusion. We have also conducted a systematic investigation, which configurations

  20. A-Train Based Observational Metrics for Model Evaluation in Extratropical Cyclones

    Science.gov (United States)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.; van den Heever, Susan C.; Posselt, Derek J.

    2015-01-01

    Extratropical cyclones contribute most of the precipitation in the midlatitudes, i.e. up to 70 during winter in the northern hemisphere, and can generate flooding, extreme winds, blizzards and have large socio-economic impacts. As such, it is important that general circulation models (GCMs) accurately represent these systems so their evolution in a warming climate can be understood. However, there are still uncertainties on whether warming will increase their frequency of occurrence, their intensity and how much rain or snow they bring. Part of the issue is that models have trouble representing their strength, but models also have biases in the amount of clouds and precipitation they produce. This is caused by potential issues in various aspects of the models: convection, boundary layer, and cloud scheme to only mention a few. In order to pinpoint which aspects of the models need improvement for a better representation of extratropical cyclone precipitation and cloudiness, we will present A-train based observational metrics: cyclone-centered, warm and cold frontal composites of cloud amount and type, precipitation rate and frequency of occurrence. Using the same method to extract similar fields from the model, we will present an evaluation of the GISS-ModelE2 and the IPSL-LMDZ-5B models, based on their AR5 and more recent versions. The AR5 version of the GISS model underestimates cloud cover in extratropical cyclones while the IPSL AR5 version overestimates it. In addition, we will show how the observed CloudSat-CALIPSO cloud vertical distribution across cold fronts changes with moisture amount and cyclone strength, and test if the two models successfully represent these changes. We will also show how CloudSat-CALIPSO derived cloud type (i.e. convective vs. stratiform) evolves across warm fronts as cyclones age, and again how this is represented in the models. Our third process-based analysis concerns cumulus clouds in the post-cold frontal region and how their

  1. The Impact of ENSO on Extratropical Low Frequency Noise in Seasonal Forecasts

    Science.gov (United States)

    Schubert, Siegfried D.; Suarez, Max J.; Chang, Yehui; Branstator, Grant

    2000-01-01

    This study examines the uncertainty in forecasts of the January-February-March (JFM) mean extratropical circulation, and how that uncertainty is modulated by the El Nino/Southern Oscillation (ENSO). The analysis is based on ensembles of hindcasts made with an Atmospheric General Circulation Model (AGCM) forced with sea surface temperatures observed during; the 1983 El Nino and 1989 La Nina events. The AGCM produces pronounced interannual differences in the magnitude of the extratropical seasonal mean noise (intra-ensemble variability). The North Pacific, in particular, shows extensive regions where the 1989 seasonal mean noise kinetic energy (SKE), which is dominated by a "PNA-like" spatial structure, is more than twice that of the 1983 forecasts. The larger SKE in 1989 is associated with a larger than normal barotropic conversion of kinetic energy from the mean Pacific jet to the seasonal mean noise. The generation of SKE due to sub-monthly transients also shows substantial interannual differences, though these are much smaller than the differences in the mean flow conversions. An analysis of the Generation of monthly mean noise kinetic energy (NIKE) and its variability suggests that the seasonal mean noise is predominantly a statistical residue of variability resulting from dynamical processes operating on monthly and shorter times scales. A stochastically-forced barotropic model (linearized about the AGCM's 1983 and 1989 base states) is used to further assess the role of the basic state, submonthly transients, and tropical forcing, in modulating the uncertainties in the seasonal AGCM forecasts. When forced globally with spatially-white noise, the linear model generates much larger variance for the 1989 base state, consistent with the AGCM results. The extratropical variability for the 1989 base state is dominanted by a single eigenmode, and is strongly coupled with forcing over tropical western Pacific and the Indian Ocean, again consistent with the AGCM results

  2. HCl Quasi-Biennial Oscillation in the Stratosphere and a Comparison with Ozone QBO

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    HALOE data from 1992 to 2003 are used to analyze the interannual variation of the HCl volume mixing ratio and its quasi-biennial oscillation (QBO) in the stratosphere, and the results are compared with the ozone QBO. Then, the NCAR two-dimensional interactive chemical, dynamical and radiative model is used to study the effects of the wind QBO on the distribution and variation of HCl in the stratosphere.The results show that the QBO signals in the HCl mixing ratio are mainly at altitudes from 50 hPa to 5 hPa; the larger amplitudes are located between 30 hPa and 10 hPa; a higher HCl mixing ratio usually corresponds to the westerly phase of the wind QBO and a lower HCl mixing ratio usually corresponds to the easterly phase of the wind QBO in a level near 20 hPa and below. In the layer near 10 hPa-5 hPa, the phase of the HCl QBO reverses earlier than the phase of the wind QBO; the QBO signals for HCl in the extratropics are also clear, but with reversed phase compared with those over the Tropics. The HCl QBO signals at 30°N are clearer than those at 30°S; the QBOs for HCl and ozone have a similar phase at the 50hPa-20 hPa level while they are out of phase near 10 hPa; the simulated structures of the HCl QBO agree well with observations. The mechanism for the formation of the HCl QBO and the reason for differences in the vertical structure of the HCl and ozone QBO are attributed to the transport of HCl and ozone by the wind QBO-induced meridional circulation.

  3. Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2007-01-01

    Full Text Available We present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence times of about 2 and 5.75 days, respectively. The event took place over Frankfurt (Germany in February 2002 and was observed by a commercial airliner from the MOZAIC programme with measurements of ozone, carbon monoxide and water vapour. Origins and residence times in the troposphere of these layers are documented with a trajectory and particle dispersion model. The combination of forward and backward simulations of the Lagrangian model allows the period of time during which the residence time can be assessed to be longer, as shown by the capture of the stratospheric-origin signature of the lowest tropopause fold just about to be completely mixed above the planetary boundary layer. This case study is of interest for atmospheric chemistry because it emphasizes the importance of coherent airstreams that produce laminae in the free troposphere and that contribute to the average tropospheric ozone. The interleaving of these 4 layers also provides the conditions for a valuable case study for the validation of global chemistry transport models used to perform tropospheric ozone budgets.

  4. Impact of horizontal spatial resolution on the derivation of the source receptor relationship—an extra-tropical cyclone case

    Science.gov (United States)

    Lee, Jae-Bum; Lee, Tae-Young

    2004-11-01

    A numerical study has been made to evaluate the impact of horizontal resolution on the estimation of the source receptor (S R) relationship. Numerical experiments with four different horizontal grid sizes have been performed for an extra-tropical cyclonic episode in East Asia. CSU RAMS and YU-SADM (Yonsei University's sulfuric acid deposition model) have been used to simulate meteorological and pollutant fields, respectively.In this study, enhanced spatial resolution has improved the simulation of an extra-tropical cyclone, cold front and associated precipitation systems. As spatial resolution increases, the circulation associated with the cyclone and cold front becomes stronger, and the amount of frontal rainfall increases. This study has shown that enhancement of spatial resolution tends to increase self-contributions but decrease foreign contributions to the wet deposition associated with an extra-tropical cyclone. It has been found that increased precipitation for enhanced spatial resolution reduces the amount of transported pollutant but increases the wet deposition of locally emitted pollutants. The larger self-contribution for higher resolutions may also be partially due to the increased strength of resolved convection. The impact of enhancing spatial resolution on dry deposition is felt mostly over downstream regions where the centres of the lows and fronts pass. Contributions from upstream sources increase as cyclonic circulation becomes stronger with increasing spatial resolution. On the other hand, enhancing spatial resolution does not significantly affect the S R relationship for either dry or wet deposition in the other regions where the extra-tropical cyclone does not pass. This study indicates that improved simulation of a cold front does not significantly affect the S R relationship for wet deposition over the area of passage of the cold front. An additional discussion infers a S R relationship for the wet deposition associated with a typical extra-tropical

  5. The diagnosis of a preblocking explosively-developing extratropical cyclone system

    Science.gov (United States)

    Uhl, Mary A.; Smith, Phillip J.; Lupo, Anthony R.; Zwack, Peter

    1992-01-01

    This paper presents the diagnosis of an extratropical cyclone that developed explosively from 18 to 19 January 1979 over the North Atlantic Ocean. The diagnosis applies data obtained from the Goddard Laboratory for Atmospheres FGGE SOP-1 level III-b global analyses on a 4 deg latitude by 5 deg longitude grid to the extended height tendency and the Zwack-Okossi development equations. The cyclone developed initially in response to cyclonic vorticity advection downstream from an upper air through, warm air advection in a strongly baroclinic region, and latent heat release in the cyclone domain. As development continued, thermal advection and latent heat release increased their role in forcing height falls in the cyclone domain, while the influence of vorticity advection decreased. Finally, development ceased when anticyclonic vorticity advection below 700 mb and adiabatic cooling in the ascending air combined to neutralize the influence of warm air advection and latent heat release.

  6. Steady State Ocean Response to Wind Forcing in Extratropical Frontal Regions

    Science.gov (United States)

    Cronin, Meghan F.; Tozuka, Tomoki

    2016-01-01

    In regions of strong sea surface temperature (SST) gradients, the surface “geostrophic” currents have a vertical shear aligned with the surface density front defined by the temperature. This surface geostrophic (“thermal wind”) shear can balance a portion of the surface wind stress, altering the classic Ekman response to wind forcing. Here we show that these frontal effects cannot be ignored in the Tropics or in strong frontal regions in the extratropics, such as found in coastal regions and in western boundary currents of all basins. Frontal effects also dominate the classic Ekman response in the regions of both hemispheres where Trade winds change to westerlies. Implications for vertical motion and global heat transport are discussed. PMID:27354231

  7. Mesoscale generation of available potential energy in the warm sector of an extratropical cyclone

    Science.gov (United States)

    Fuelberg, H. E.; Ruminski, M. G.; Starr, D. OC.

    1985-01-01

    The generation of available potential energy (APE) was evaluated in the warm sector of an extratropical cyclone containing intense convective activity. Mesoscale rawinsonde data from AVE-SESAME '79 was employed. Parametrization techniques were used for latent and sensible heating components, and variations for the Kuo scheme provided convective latent heat release. Radiative transfer models were used to obtain estimates of infrared and solar processes. The results indicated that solar heating was greater than IR cooling near midday. An extensive low-level cloud deck was the most radiatively active area. Negative generation of APE occurred during most of the period for the SESAME domain as a whole. The leading contributor was convective latent heating located primarily in regions of negative efficiency. Infrared cooling was the only component to consistently produce positive generation. Sensible heating provided an important sink of APE in the low levels during the afternoon.

  8. Effects of Extratropical Cyclone Frequency and Intensity on mass balance of the Greenland Ice Sheet

    Science.gov (United States)

    Auger, J.; Birkel, S. D.; Maasch, K. A.; Mayewski, P. A.

    2014-12-01

    Significant Arctic-wide warming over the past decade is thought to result in part from a weakening of the equator-pole thermal gradient in the atmosphere. Francis and Vavrus (2012) and others link Arctic amplification, or enhanced Arctic warming, to decreasing extratropical cyclone (ETC) speeds, and increasing northward meridional heat transports. Here, we are using the latest high-resolution reanalysis models (ASR, JRA-55, CFSR, ERA-Interim, MERRA) to evaluate how Arctic amplification may be impacting the mass balance of the Greenland Ice Sheet. Our approach is to assess synoptic-scale changes in circulation as represented by changes in storm tracks and storm intensities in the North Atlantic region. As part of this work, we are validating the reanalysis models against existing accumulation, ablation, and meteorological station data available across Greenland, and therefore hope to gain insights on model performance and applicability to the problem domain.

  9. Steady State Ocean Response to Wind Forcing in Extratropical Frontal Regions.

    Science.gov (United States)

    Cronin, Meghan F; Tozuka, Tomoki

    2016-06-29

    In regions of strong sea surface temperature (SST) gradients, the surface "geostrophic" currents have a vertical shear aligned with the surface density front defined by the temperature. This surface geostrophic ("thermal wind") shear can balance a portion of the surface wind stress, altering the classic Ekman response to wind forcing. Here we show that these frontal effects cannot be ignored in the Tropics or in strong frontal regions in the extratropics, such as found in coastal regions and in western boundary currents of all basins. Frontal effects also dominate the classic Ekman response in the regions of both hemispheres where Trade winds change to westerlies. Implications for vertical motion and global heat transport are discussed.

  10. Steady State Ocean Response to Wind Forcing in Extratropical Frontal Regions

    Science.gov (United States)

    Cronin, Meghan F.; Tozuka, Tomoki

    2016-06-01

    In regions of strong sea surface temperature (SST) gradients, the surface “geostrophic” currents have a vertical shear aligned with the surface density front defined by the temperature. This surface geostrophic (“thermal wind”) shear can balance a portion of the surface wind stress, altering the classic Ekman response to wind forcing. Here we show that these frontal effects cannot be ignored in the Tropics or in strong frontal regions in the extratropics, such as found in coastal regions and in western boundary currents of all basins. Frontal effects also dominate the classic Ekman response in the regions of both hemispheres where Trade winds change to westerlies. Implications for vertical motion and global heat transport are discussed.

  11. On the Effect of Extratropical Wind Stress Forcing on Pacific Subtropical Cells and Tropical Climate

    Science.gov (United States)

    Graffino, Giorgio; Farneti, Riccardo; Kucharski, Fred

    2017-04-01

    The influence of extratropical atmospheric dynamics on the tropical ocean state is a classical example of ocean-atmosphere teleconnection. One way to influence tropical climate is through oceanic SubTropical Cells (STCs), shallow overturning circulation structures connecting the Equatorial Ocean with the subtropical regions. STC are responsible for large mass and energy transports, and their influence on tropical climate, and consequently on the global climate, is fundamental both on the mean and its variability. These circulation structures are present in all basins across the Tropics (Pacific, Atlantic, and Indian Ocean), with different properties and strengths due to the features of each basin. We focus here on the effect of off-equatorial winds on the Pacific STCs, which are the largest and have been previously studied for their potential role in driving low-frequency Pacific variability. Using the Modular Ocean Model version 5 (MOM5), we force the ocean surface with idealized wind stress and wind stress curl anomaly patterns, in order to highlight the influence of subtropical and extratropical forcing on STCs dynamics, and, eventually, on some aspects of Pacific tropical climate. Results have been compared with a control simulation, in which a climatological forcing has been applied at the ocean surface. Our simulations show an increased (reduced) meridional water transport for positive (negative) wind stress anomalies in the Subtropics; the structure of the thermocline at the Equator is modified as well, where cold (warm) anomalies appear. Those signatures result from anomalous values of Equatorial UnderCurrent (EUC), which is partly fed by the STCs. Meridional ocean heat transport is influenced too, showing larger (weaker) values for stronger (weaker) subtropical wind stress. Anomalous circulations are further analyzed for the interior and western boundary transports, and scalings are derived linking subtropical wind stress, STC transports and tropical

  12. Extratropical influences on the inter-annual variability of South-Asian monsoon

    Science.gov (United States)

    Syed, F. S.; Yoo, J. H.; Körnich, H.; Kucharski, F.

    2012-04-01

    The effects of extratropical dynamics on the interannual variations in South-Asian Monsoon (SAM) are examined. Based on NCEP/NCAR reanalysis and CRU precipitation data, a conditional maximum covariance analysis is performed on sea level pressure, 200 hPa geopotential heights and the SAM rainfall by removing the linear effects of El-Niño Southern Oscillation from the fields. It is found that two modes provide a strong connection between the upper-level circulation in the Atlantic/European region and SAM rainfall: the Circumglobal Teleconnection (CGT) and the Summer North Atlantic Oscillation (SNAO). The structures in the 200 hPa heights of both modes in the Atlantic region are similar in the Atlantic region, and their southeastward extension to South Asia (SA) also corresponds to upper-level ridges (in their positive phases) in slightly different positions. Nevertheless, the influence of both modes on SAM rainfall is distinct. Whereas a positive CGT is related to a widespread increase of rainfall in SAM, a positive SNAO is related to a precipitation dipole with its positive phase over Pakistan and the negative phase over northern India. The physical mechanisms for the influence of CGT and SNAO on SAM are related to the upper-level geopotential anomaly which affects the amplitude and position of the low-level convergence. The small displacements of the centers of these responses and the low level cold advection from the north east of SA in case of SNAO explain the differences in the corresponding SAM rainfall distributions. These findings are confirmed with the relatively high-resolution coupled climate model EC-Earth, which gives confidence in the physical basis and robustness of these extratropical variability modes and their influence on the South-Asian monsoon rainfall.

  13. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Science.gov (United States)

    Voigt, Aiko

    2017-04-01

    Climate models project that global warming will lead to substantial changes in the position of the extratropical jet streams. Yet, many quantitative aspects of such jet stream changes remain uncertain among models, and recent work has indicated a potentially important role of cloud radiative interactions. Here, I will investigate how cloud-radiative changes impact the extratropical circulation response using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. Finally, I will juxtapose these prescribed-SST simulations with interactive-SST simulations. This will allow for a comparison of the circulation impacts of atmospheric and surface cloud-radiative changes.

  14. Technological organization of the first Neanderthal societies in the Cantabrian region. Interpreting the lithic industry and fauna from the lowermost levels (V, VI and VII of Lezetxiki cave

    Directory of Open Access Journals (Sweden)

    Talía LAZUÉN

    2012-07-01

    Full Text Available This article studies the technological organization of the first Neanderthal societies that inhabited the Cantabrian region. We use the information provided by the lithic industry excavated in the three lowermost levels (V, VI and VII of Lezetxiki cave. We also explore the other related evidences, especially those inferred from faunal remains. The analysis and explanation of the technical activities fits in a general perspective centered in the production-management-function subsystem.

  15. Technological organization of the first Neanderthal societies in the Cantabrian region. Interpreting the lithic industry and fauna from the lowermost levels (V, VI and VII) of Lezetxiki cave

    OpenAIRE

    Talía LAZUÉN; Altuna, Jesús

    2011-01-01

    This article studies the technological organization of the first Neanderthal societies that inhabited the Cantabrian region. We use the information provided by the lithic industry excavated in the three lowermost levels (V, VI and VII) of Lezetxiki cave. We also explore the other related evidences, especially those inferred from faunal remains. The analysis and explanation of the technical activities fits in a general perspective centered in the production-management-function subsystem. En...

  16. Injection of iodine to the stratosphere

    Science.gov (United States)

    Saiz-Lopez, Alfonso; Baidar, Sunil; Cuevas, Carlos A.; Koening, Theodore; Fernandez, Rafael P.; Dix, Barbara; Kinnison, Douglas E.; Lamarque, Jean-Francois; Rodriguez-Lloveras, Xavier; Campos, Teresa L.; Volkamer, Rainer

    2016-04-01

    There are still many uncertainties about the influence of iodine chemistry in the stratosphere, as the real amount of reactive iodine injected to this layer the troposphere and the partitioning of iodine species are still unknown. In this work we report a new estimation of the injection of iodine into the stratosphere based on novel daytime (SZA layer (TORERO campaign) and a 3D global chemistry-climate model (CAM-Chem) with the most recent knowledge about iodine photochemistry. The results indicate that significant levels of total reactive iodine (0.25-0.7 pptv), between 2 and 5 times larger than the accepted upper limits, could be injected into the stratosphere via tropical convective outflow. At these iodine levels, modelled iodine catalytic cycles account for up to 30% of the contemporary ozone loss in the tropical lower stratosphere and can exert a stratospheric ozone depletion potential equivalent or even larger than that of very short-lived bromocarbons. Therefore, we suggest that iodine sources and chemistry need to be considered in assessments of the historical and future evolution of the stratospheric ozone layer.

  17. Seasonal Stratospheric Chemistry on Uranus and Neptune

    Science.gov (United States)

    Moses, Julianne I.; Greathouse, Thomas K.; Orton, Glenn S.; Hue, Vincent; Poppe, Andrew R.; Luszcz-Cook, Statia H.; Moullet, Arielle

    2016-10-01

    We use a time-variable photochemical model to study the change in stratospheric constituent abundances as a function of altitude, latitude, and season on Uranus and Neptune. In the absence of meridional transport, the results for Neptune are similar to those predicted for Saturn: seasonal variations in the abundances of observable hydrocarbons such as C2H2, C2H4, C2H6, C3H4, C3H8, and C4H2 are large in the upper stratosphere but become increasingly damped with depth due to increased dynamical and chemical time scales. We also find that latitude gradients in hydrocarbon abundances would be maintained on Neptune in the absence of atmospheric circulation. On Uranus, however, the more stagnant, poorly mixed stratosphere leads to a lower-altitude homopause, with methane being photolyzed relatively deep in the stratosphere, at which point both diffusion and chemical time constants have become longer than a Uranian year. Seasonal variations in stratospheric constituents on Uranus are therefore muted, despite the planet's large obliquity. We compare our model results to global-average observations from Spitzer and to spatially-resolved infrared observations from the ground. The model-data comparisons have implications with respect to the importance and strength of meridional transport, the origin of stratospheric oxygen-bearing species, and the dust and cometary influx rates on Uranus and Neptune.

  18. The Polar Stratosphere in a Changing Climate (POLSTRACC): Mission overview and first results

    Science.gov (United States)

    Oelhaf, Hermann; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Rapp, Markus; Dörnbrack, Andreas; Engel, Andreas; Bönisch, Harald

    2016-04-01

    The POLSTRACC mission aims at providing new scientific knowledge on the Arctic lowermost stratosphere and upper troposphere under the present load of halogens and state of climate variables. POLSTRACC employs the German High Altitude and LOng Range Research Aircraft (HALO) and is the only HALO mission dedicated to study the UTLS at high latitudes several years after the last intensive Arctic campaigns. The scientific scope of POLSTRACC is broadened by its combination with the SALSA (Seasonality of Air mass transport and origin in the Lowermost Stratosphere using the HALO Aircraft) and GW-LCYCLE (Gravity Wave Life Cycle Experiment, a BMBF/ROMIC project) missions, which address complementary scientific goals sharing the same HALO payload. POLSTRACC, SALSA and GW-LCYCLE offer the unique opportunity to study the bottom of the polar vortex and the high-latitude UTLS along with their impact on lower latitudes throughout an entire winter/spring cycle. The payload for the combined POLSTRACC, SALSA and GW-LCYCLE campaigns comprises an innovative combination of remote sensing techniques providing 2- and 3-D distributions of temperature and a large number of substances, and precise in-situ instruments measuring T, O3, H2O, tracers of different lifetimes and chemically active species at the aircraft level with high time-resolution. Drop sondes will add information about temperature, humidity and wind in the atmosphere underneath the aircraft. The POLSTRACC consortium includes national (KIT, Forschungszentrum Jülich, DLR, Universities of Frankfurt, Heidelberg, Mainz and Wuppertal; PTB) and international partners (e.g. NASA). The field campaign is divided into three phases for addressing (i) the early polar vortex and its wide-scale vicinity in December 2015 (from Oberpfaffenhofen, Germany), (ii) the mid-winter vortex from January to March 2016 (from Kiruna, Sweden), and (iii) the late dissipating vortex and its wide-scale vicinity in March 2016 (from Kiruna and

  19. Curing of epoxy matrix composite in stratosphere

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela

    Large structures for habitats, greenhouses, space bases, space factories are needed for next stage of space exploitation. A new approach enabling large-size constructions in space relies on the use of the polymerization technology of fiber-filled composites with a curable polymer matrix applied in the free space environment. The polymerisation process is proposed for the material exposed to high vacuum, dramatic temperature changes, space plasma, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The stratospheric flight experiments are directed to an investigation of the curing polymer matrix under the stratospheric conditions on. The unique combination of low atmospheric pressure, high intensity UV radiation including short wavelength UV and diurnal temperature variations associated with solar irradiation strongly influences the chemical processes in polymeric materials. The first flight experiment with uncured composites was a part of the NASA scientific balloon flight program realised at the NASA stratospheric balloon station in Alice Springs, Australia. A flight cassette installed on payload was lifted with a “zero-pressure” stratospheric balloon filled with Helium. Columbia Scientific Balloon Facility (CSBF) provided the launch, flight telemetry and landing of the balloon and payload. A cassette of uncured composite materials with an epoxy resin matrix was exposed 3 days in the stratosphere (40 km altitude). The second flight experiment was realised in South Australia in 2012, when the cassette was exposed in 27 km altitude. An analysis of the chemical structure of the composites showed, that the space irradiations are responsible for crosslinking of the uncured polymers exposed in the stratosphere. The first prepreg in the world was cured successfully in stratosphere. The investigations were supported by Alexander von Humboldt Foundation, NASA and RFBR (12-08-00970) grants.

  20. Connecting Stratospheric and Ionospheric Anomalies

    Science.gov (United States)

    Spraggs, M. E.; Goncharenko, L. P.; Zhang, S.; Coster, A. J.; Benkevitch, L. V.

    2014-12-01

    This study investigates any relationship between lunar phases and ionospheric anomalies that appear at low latitudes concurrently with sudden stratospheric warmings (SSWs). The study utilizes World-wide GPS Receiver Network Total Electron Content (TEC) data spanning 13 years (2001-2014) and focuses on the changes in the equatorial ionization anomaly the Western hemisphere. TEC is highly variable due to the influences of solar flux, geomagnetic activity, and seasonal variation and these influences are removed by the use of model. This empirical TEC model is a combination of linear dependencies of solar flux (F10.7) and geomagnetic activity (Ap3) with a third degree polynomial dependency for day-of-year (DOY). With such dependencies removed, the remaining TEC variation could be resolved and attributed to an appropriate mechanism. Lunar phase and apside was investigated in particular, especially the new and full moon phases during perigees when tidal forcing would be most powerful. Lunar tidal forcing on planetary waves is also examined as being physically responsible for setting up conditions that may give rise to SSWs and ionospheric anomalies. Preliminary results suggest that such anomalies may be enhanced in intensity during the full or new moon and even more so during perigee by different amounts depending on whether the SSW is a major (40-60%) or minor (20-45%) event.

  1. Quantifying the contributions to stratospheric ozone changes from ozone depleting substances and greenhouse gases

    Directory of Open Access Journals (Sweden)

    D. A. Plummer

    2010-09-01

    Full Text Available A state-of-the-art chemistry climate model coupled to a three-dimensional ocean model is used to produce three experiments, all seamlessly covering the period 1950–2100, forced by different combinations of long-lived Greenhouse Gases (GHGs and Ozone Depleting Substances (ODSs. The experiments are designed to quantify the separate effects of GHGs and ODSs on the evolution of ozone, as well as the extent to which these effects are independent of each other, by alternately holding one set of these two forcings constant in combination with a third experiment where both ODSs and GHGs vary. We estimate that up to the year 2000 the net decrease in the column amount of ozone above 20 hPa is approximately 75% of the decrease that can be attributed to ODSs due to the offsetting effects of cooling by increased CO2. Over the 21st century, as ODSs decrease, continued cooling from CO2 is projected to account for more than 50% of the projected increase in ozone above 20 hPa. Changes in ozone below 20 hPa show a redistribution of ozone from tropical to extra-tropical latitudes with an increase in the Brewer-Dobson circulation. In addition to a latitudinal redistribution of ozone, we find that the globally averaged column amount of ozone below 20 hPa decreases over the 21st century, which significantly mitigates the effect of upper stratospheric cooling on total column ozone. Analysis by linear regression shows that the recovery of ozone from the effects of ODSs generally follows the decline in reactive chlorine and bromine levels, with the exception of the lower polar stratosphere where recovery of ozone in the second half of the 21st century is slower than would be indicated by the decline in reactive chlorine and bromine concentrations. These results also reveal the degree to which GHG-related effects mute the chemical effects of N2O on ozone in the standard future scenario used for the WMO Ozone Assessment. Increases in the

  2. Stratospheric solar geoengineering without ozone loss

    Science.gov (United States)

    Keith, David W.; Weisenstein, Debra K.; Dykema, John A.; Keutsch, Frank N.

    2016-12-01

    Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of ‑1 Wṡm‑2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tgṡy‑1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

  3. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  4. A global climate model based, Bayesian climate projection for northern extra-tropical land areas

    Science.gov (United States)

    Arzhanov, Maxim M.; Eliseev, Alexey V.; Mokhov, Igor I.

    2012-04-01

    Projections with contemporary global climate models (GCMs) still markedly deviate from each other on magnitude of climate changes, in particular, in middle to subpolar latitudes. In this work, a climate projection based on the ensemble of 18 CMIP3 GCM models forced by SRES A1B scenario is performed for the northern extra-tropical land. To assess the change of soil state, off-line simulations are performed with the Deep Soil Simulator (DSS) developed at the A.M.Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS). This model is forced by output of the above-mentioned GCM simulations. Ensemble mean and ensemble standard deviation for any variable are calculated by using Bayesian averaging which allows to enhance a contribution from more realistic models and diminish that from less realistic models. As a result, uncertainty for soil and permafrost variables become substantially narrower. The Bayesian weights for each model are calculated based on their performance for the present-day surface air temperature (SAT) and permafrost distributions, and for SAT trend during the 20th century. The results, except for intra-ensemble standard deviations, are not very sensitive to particular choice of Bayesian traits. Averaged over the northern extra-tropical land, annual mean surface air temperature in the ensemble increases by 3.1 ± 1.4 K (ensemble mean±intra-ensemble standard deviation) during the 21st century. Precipitation robustly increases in the pan-Arctic and decreases in the Mediterranean/Black Sea region. The models agree on near-surface permafrost degradation during the 21st century. The area underlain by near-surface permafrost decreases from the contemporary value 20 ± 3 mln sq. km to 14 ± 3 mln sq. km in the late 21st century. This leads to risk for geocryological hazard due to soil subsidence. This risk is classified as moderate to high in the southern and western parts of Siberia and Tibet in Eurasia, and in the region from Alaska

  5. Traveling Weather Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins

    Science.gov (United States)

    Hollingsworth, Jeffery L.

    2016-04-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars

  6. The interannual leading modes of the extratropical variability in the Southern Hemisphere simulated by the ECHAM-4 atmospheric model

    Energy Technology Data Exchange (ETDEWEB)

    Carril, A.F. [ISAO, Istituto di Scienze dell' Atmosfera e dell' Oceano, Bologna (Italy); Navarra, A. [INGV, Istituto Nazionale di Geofisicae Vulcanologia, Rome (Italy)

    2001-11-01

    An ensemble of twenty-three 14-year experiments conducted with the ECHAM-4 GCM has been examined to test the model's capability to simulate the principal modes of interannual variability. The integrations were performed under specified monthly SST between 1979-1993. The analysis was focused on the Southern Hemisphere (SH) extratropics. Empirical orthogonal functions analysis (EOF) using seasonal anomaly fields has been performed to isolate the principal modes that dominate the southern extratropical variability at the interannual time scale. Leading patterns of 500 hPa geopotential height (z500) have been compared with those estimated from the ECMWF re-analysis dataset. The model is able to adequately reproduce the spatial pattern of the annular mode, but it represents the temporal variations of the oscillation less satisfactorily. The model simulation of the Pacific South American (PSA) pattern is better, both in the shape of the pattern and in the temporal evolution. To verify if the capability of the model to adequately simulate the temporal oscillation of the propagating patterns is related to the increased influence of the tropical external forcing, covarying SST-atmospheric modes have been identified by singular value decomposition (SVD). In winter (July-August-September, JAS) the tropical SST variability is highly correlated with the ENSO mode. In summer (January-February-March, JFM) the strength of the teleconnections is related to strong westerly anomalies, disrupted by a meridional out of phase relation near to South America. The large size of the ensemble was exploited by comparing the time-varying model spread and degrees of freedom of the simulated extratropical circulation. Results show that when the extratropical circulation has a few degrees of freedom, the reproducibility is relatively low and the ensemble is governed by a fairly robust zonally symmetric structure of dispersion. (orig.)

  7. WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya

    OpenAIRE

    2015-01-01

    © 2015. American Geophysical Union. All Rights Reserved. Two extreme snowfall events associated with extratropical cyclones, one interacting with the western and one with the central Himalaya, are simulated with the Weather Research and Forecasting (WRF) model over 8 days. One event in January 1999 was driven by a longwave trough over west Asia, with the cyclone becoming terrain-locked in the western Himalayan notch. Another event in March 2006 was driven by a trough further south and east, f...

  8. Sources and sinks of stratospheric water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Ellsaesser, H.W.

    1979-11-01

    A tutorial review of the understanding of stratospheric H/sub 2/O and the processes controlling it is presented. Paradoxes posed by currently available observational data are cited and suggestions made as to how they might be resolved. Such resolution appears to require: that the bulk of our current data provides unrepresentative and misleading vertical and latitudinal H/sub 2/O gradients immediately downstream from the tropical tropopause; and, that there exists within the troposphere a mechanism different from or in addition to the tropical tropopause cold trap for drying air to the mixing ratios found in the lower stratosphere. Satisfaction of these requirements will reconcile much heretofore puzzling observational data and will obviate the necessity for a stratospheric sink for H/sub 2/O.

  9. Sources of particulates in the upper stratosphere

    Science.gov (United States)

    Bigg, E. Keith

    2011-10-01

    The dominant forms of particles collected at altitudes of 39, 42 and 45km during three balloon flights over Australia were aggregates having components with diameters typically 40 to 50nm. Their partial electron transparency suggested an organic composition and all were accompanied by a volatile liquid that could be stabilised by reaction with a thin copper film. They closely resembled particles called "fluffy micrometeorites" collected earlier in the mesosphere from rockets and their properties were consistent with those of particles collected from a comet by a recent spacecraft experiment. Particles in the upper stratosphere included some that resembled viruses and cocci, the latter being one of the organisms cultured from upper stratospheric air in a recent experiment. A plausible source of the stratospheric, mesospheric and cometary aggregates is consistent with the "panspermia" theory, that microorganisms present in space at the birth of the solar system could have reproduced in water within comets and brought life to Earth.

  10. Solid particles in the tropical lowest stratosphere

    Directory of Open Access Journals (Sweden)

    J. K. Nielsen

    2007-01-01

    Full Text Available We report in situ and remote observations proving occasional occurrence of solid particles in the tropical lowest stratosphere, 200 km from deep convective events. The particles were found during field campaigns in Southeast Brazil (49.03 W 22.36 S. They occur in the altitude range from 17.5 to 20.8 km, at temperatures up to at least 10 K above the expected frost point temperature. While stability of ice particles at these altitudes is unexpected from a theoretical point of view, it is argued that these observations are indications of tropospheric air masses penetrating into the stratosphere during convective overshoots. It is argued that the intrusion of tropospheric air must have carried a large amount of water with it, which effectively hydrated the lowest stratosphere, and consequently suppressed sublimation. This conclusion is further supported by a separate water vapor mixing ratio profile obtained at the same observation site.

  11. The role of the cold sector of extratropical cyclones in setting atmospheric mean state features of the Gulf Stream basin.

    Science.gov (United States)

    Vannière, Benoît; Czaja, Arnaud; Dacre, Helen; Woollings, Tim

    2016-04-01

    The mechanism by which the Gulf Stream SST front anchors a band of precipitation on its warm edge is still a matter of debate and little is known about how synoptic activity contributes to shape precipitation mean state pattern. In this talk, we introduce a new indicator for the cold sector of extratropical storms based on low-level PV. This indicator is used in ERA interim data to separate the cold sector contribution to precipitation and vertical wind from the contribution of the rest of the storm. We find that cold sector precipitation forms a band following the SST front closely. In contrast, the enhanced ascent on the warm edge of the front is set primarily by the warm sector and cannot be directly related to the precipitation band as proposed by previous studies. Numerical sensitivity experiments of an extratropical cyclone passing over different sets of SST further confirms that the anchoring effect of the SST front on precipitation comes exclusively from the cold sector. These results lead us to revisit the atmospheric boundary layer model proposed to describe air-sea interactions over the Gulf-Stream SST gradient. Finally, we explore the role of the cold sector convection in restoring baroclinicity in the wake of an extratropical cyclone.

  12. New stratospheric UV/visible radiance measurements

    Directory of Open Access Journals (Sweden)

    F. J. Marceau

    Full Text Available A stratospheric balloon was launched on 12 October 1986 from the "CNES" base at Aire sur l'Adour (France to record twilight radiance in the stratosphere. The near-UV and visible radiances were continuously monitored by a photometer during sunrise. Some observations are presented for different viewing azimuthal planes and viewing elevation angles. They show the influence of aerosols layers and clouds which can be also seen on related photographs. The results as a whole may be used for testing some radiative models, especially for twilight conditions.

  13. SSTs, nitrogen fertiliser and stratospheric ozone

    Science.gov (United States)

    Turco, R. P.; Whitten, R. C.; Poppoff, I. G.; Capone, L. A.

    1978-01-01

    A recently revised model of the stratosphere is used to show that a substantial enhancement in the ozone layer could accompany worldwide SST fleet operations and that water vapor may be an important factor in SST assessments. Revised rate coefficients for various ozone-destroying reactions are employed in calculations which indicate a slight increase in the total content of stratospheric ozone for modest-sized fleets of SSTs flying below about 25 km. It is found that water-vapor chemical reactions can negate in large part the NOx-induced ozone gains computed below 25 km and that increased use of nitrogen fertilizer might also enhance the ozone layer.

  14. An intimate coupling of ocean-atmospheric interaction over the extratropical North Atlantic and Pacific

    Science.gov (United States)

    Li, Chun; Wu, Lixin; Wang, Qi; Qu, Liwei; Zhang, Liping

    2009-05-01

    The inter-basin teleconnection between the North Atlantic and the North Pacific ocean-atmosphere interaction is studied using a coupled ocean-atmosphere general circulation model. In the model, an idealized oceanic temperature anomaly is initiated over the Kuroshio and the Gulf Stream extension region to track the coupled evolution of ocean and atmosphere interaction, respectively. The experiments explicitly demonstrate that both the North Pacific and the North Atlantic ocean-atmosphere interactions are intimately coupled through an inter-basin atmospheric teleconnection. This fast inter-basin communication can transmit oceanic variability between the North Atlantic and the North Pacific through local ocean-to-atmosphere feedbacks. The leading mode of the extratropical atmospheric internal variability plays a dominant role in shaping the hemispheric-scale response forced by oceanic variability over the North Atlantic and Pacific. Modeling results also suggest that a century (two centuries) long observations are necessary for the detection of Pacific response to Atlantic forcings (Atlantic response to Pacific forcing).

  15. Partial Whitening SVD Analysis and its application to tropical-extratropical teleconnections

    Science.gov (United States)

    Swenson, Erik

    2014-05-01

    Various multivariate statistical methods have been established and proven useful for isolating relationships between datasets. Many popular linear methods are based on Singular Value Decomposition (SVD) and include Canonical Correlation Analysis (CCA), Maximum Covariance Analysis (MCA), and Redundancy Analysis (RDA). In this study, Partial Whitening SVD Analysis (PWSVD) is introduced as a new technique that maximizes the squared covariance between partially-whitened variables. Applied as a pre-filter, the partial whitening transformation acts to decorrelate and normalize individual variables to a fractional degree that is specified prior. Particular PWSVD solutions include a new and effective regularization for CCA as well a variance bias correction for MCA. Also, given some crude prior expectation of the signal-to-noise, asymmetric PWSVD solutions can provide significant benefit, and the full range of solutions bridges those of CCA, MCA and RDA. After deriving PWSVD, it is used to linearly relate precipitation in the tropical Pacific with Northern Hemisphere extratropical circulation during boreal winter, and solutions are contrasted with those of traditional methods. It is demonstrated that PWSVD produces a highly robust representation of the dominant teleconnections, namely ENSO and ENSO Modoki, or flavors of ENSO. Lastly, the practical use of PWSVD is encouraged for a range of applications.

  16. Objective determination of the extratropical transition of tropical cyclones in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Joshua Studholme

    2015-05-01

    Full Text Available Extratropical transition (ET has eluded objective identification since the realisation of its existence in the 1970s. Recent advances in numerical, computational models have provided data of higher resolution than previously available. In conjunction with this, an objective characterisation of the structure of a storm has now become widely accepted in the literature. Here we present a method of combining these two advances to provide an objective method for defining ET. The approach involves applying K-means clustering to isolate different life-cycle stages of cyclones and then analysing the progression through these stages. This methodology is then tested by applying it to five recent years from the European Centre of Medium-Range Weather Forecasting operational analyses. It is found that this method is able to determine the general characteristics for ET in the Northern Hemisphere. Between 2008 and 2012, 54% (±7, 32 of 59 of Northern Hemisphere tropical storms are estimated to undergo ET. There is great variability across basins and time of year. To fully capture all the instances of ET is necessary to introduce and characterise multiple pathways through transition. Only one of the three transition types needed has been previously well-studied. A brief description of the alternate types of transitions is given, along with illustrative storms, to assist with further study.

  17. Has influence of extratropical waves in modulating Indian summer monsoon rainfall (ISMR) increased?

    Indian Academy of Sciences (India)

    A K Srivastava; Somenath Dutta; S R Kshirsagar; Kavita Srivastava

    2014-04-01

    In the paper, influence of extratropical circulation features on Indian Summer Monsoon Rainfall (ISMR) is examined. Energetics of extra tropics, north of Indian subcontinent for deficient and nondeficient ISMR years, during two periods 1951–1978 and 1979–2005, are calculated and critically analyzed. It is observed that for the period 1951–1978, only two out of the 10 energetic parameters, viz., the zonal available potential energy (high) and conversion of zonal available potential with kinetic energy to eddy kinetic energy (low) differed significantly in JJA months of the deficient years from that of the nondeficient years. However, during the 1979–2005 period, as many as six out of the 10 energetic parameters, viz., eddy available potential energy, zonal available potential energy, eddy kinetic energy, generation of zonal available potential energy, conversion of zonal available potential energy to zonal kinetic energy and conversion of zonal kinetic energy to eddy kinetic energy differed significantly in JJA months of the deficient years from that of the nondeficient years. These results confirm growing influence of the transient stationary waves in deficient years after the climate shift year, 1979. Analysis of energetic parameters of the pre-monsoon season of the two periods also reveals similar results. This suggests that forcings apparently responsible for energetics in JJA months of the deficient years of the later period were present even before the advent of Indian summer monsoon season.

  18. The kinetic and available potential energy budget of a winter extratropical cyclone system

    Science.gov (United States)

    Smith, P. J.; Dare, P. M.

    1986-01-01

    The energy budget of an extratropical cyclone system which traversed North America and intensified through the period January 9-11, 1975 is presented. The objectives of the study are: (1) to document the complete energy budget of a significant winter cyclone event, and (2) to comment on the significance of latent heat release (LHR) in the cyclone's evolution. Results reveal an overall increase in both kinetic (K) and available potential energy (A). K increases are accounted for by boundary flux convergence of K, while A increases are due to generation by LHR and K to A conversion. In addition, the general A increase is accompanied by a 24 h oscillation that is explained largely by the flux quantity in the A budget equation and is correlated with a similar fluctuation in the K to A conversion. LHR does not appear to be critical in the development of this cyclone system. Rather, LHR acts to increase the intensity of the event. It is hypothesized that the direct influence that LHR had on the deepening cyclone's reduced mass was augmented by an indirect influence, in which pre-existing dry dynamical forcing was enhanced by diabatic heating, thus leading to accelerated cyclone development at a later time.

  19. A Dynamic Analysis and Numerical Simulation of Explosive Development of an Extratropical Cyclone Over Land

    Institute of Scientific and Technical Information of China (English)

    丁一汇; 朱彤

    1994-01-01

    The present paper has made a dynamic and diagnostic study of the process of explosive deepening of an extratropical cyclone over North China on April 25-26, 1983, in order to gain an insight into the physical mechanism of explosive development of cyclone over land. It turns out that this cyclone occurred in the strong baroclinic zone, and the vorticity and thermal advection triggered the initial development of the cyclone. Subsequently, as the rainfall increased, the effect of condensational heating became more and more important. During the time period of rapid intensification (from 1200GMT 25 to 0000GMT 26 April, 1983, the central surface pressure fell down from 998. 2 to 988. 3 hPa), the peak of diabatic heating profile continuously descended, leading to a rapid increase in heating amount in the lower troposphere. This condition is favorable to the explosive development of rotational circulation or vortex. The numerical simulations have further demonstrated the importance of the lowering of heating p

  20. Understanding the impact of extra-tropical storms from CORDEX projections over the Scandinavian coast

    Science.gov (United States)

    Veldore, Vidyunmala; Luna, Byron Quan

    2017-04-01

    Response of extra-tropical storms to climate change over the Scandinavian coast in high resolution regional climate projection is investigated in the current study. The complex interactions between North Atlantic oscillation, arctic amplification, ocean-atmospheric interactions and changing nature of synoptic waves will affect the generation and extremity of storm types. The nature of these storms is dependent on large-scale systems over this region, and hence higher resolution climate models might be able to represent the structure and intensity of the storms with accuracy. We propose a tracking algorithm for two seasons autumn (September-October-November) and winter season (December-January-February) providing features to detect the frequency and intensity of storm types for a given coast. Our objective is to understand the impact of changing nature of extreme storm types over the Scandinavian coast. Using a spatial assessment, possible impacts due to future storms in RCP8.5 scenario are assessed and hazard levels are represented.

  1. The kinetic and available potential energy budget of a winter extratropical cyclone system

    Science.gov (United States)

    Smith, P. J.; Dare, P. M.

    1986-01-01

    The energy budget of an extratropical cyclone system which traversed North America and intensified through the period January 9-11, 1975 is presented. The objectives of the study are: (1) to document the complete energy budget of a significant winter cyclone event, and (2) to comment on the significance of latent heat release (LHR) in the cyclone's evolution. Results reveal an overall increase in both kinetic (K) and available potential energy (A). K increases are accounted for by boundary flux convergence of K, while A increases are due to generation by LHR and K to A conversion. In addition, the general A increase is accompanied by a 24 h oscillation that is explained largely by the flux quantity in the A budget equation and is correlated with a similar fluctuation in the K to A conversion. LHR does not appear to be critical in the development of this cyclone system. Rather, LHR acts to increase the intensity of the event. It is hypothesized that the direct influence that LHR had on the deepening cyclone's reduced mass was augmented by an indirect influence, in which pre-existing dry dynamical forcing was enhanced by diabatic heating, thus leading to accelerated cyclone development at a later time.

  2. An unusual taphocoenosis of a sea urchin and a rectally inserted turriform gastropod from the lowermost Paleocene of Stevs klint, Denmark

    DEFF Research Database (Denmark)

    Milan, Jesper; Rasmussen, Bo Wilhelm; Vallon, Lothar H.

    2015-01-01

    A specimen of the common irregular echinoid Echinocorys sulcata (Goldfuss, 1826), recovered from the lowermost Paleocene Stevns Klint Formation, at Stevns Klint, Denmark, is of note in revealing a perfect external mold of the turriform gastropod Cerithiella fenestrata (Ravn, 1902) in the anal...... opening. The gastropod penetrated over a length of 21 mm perpendicularly into the echinoid test, and impressions in the surrounding matrix show the gastropod to have protruded over a length of 8 mm out of the test, being tightly lodged in the periproctal opening. It is assumed that this unusual...

  3. Composite materials with uncured epoxy matrix exposed in stratosphere during NASA stratospheric balloon flight

    CERN Document Server

    Kondyurin, Alexey; Bilek, Marcela

    2010-01-01

    A cassette of uncured composite materials with an epoxy resin matrix was exposed in the stratosphere (40 km altitude) over 3 days. Temperature variations of -76...+32.50C and pressure up to 2.1 Torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polycondensation reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed, that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composite in a free space environment during an orbital space flight.

  4. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    Science.gov (United States)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  5. Recent Increases in Stratospheric HCl: Stratospheric Dynamics versus the Montreal Protocol

    Science.gov (United States)

    Chipperfield, Martyn; Mahieu, Emmanuel; Notholt, Justus

    2014-05-01

    Long-lived chlorine-containing source gases, such as chlorofluorocarbons (CFCs), are transported into the stratosphere where they decompose and cause ozone depletion. Increases in chlorine during the 1970s-1990s resulted in long-term ozone decreases, especially in the polar regions. Following the implementation of the Montreal Protocol, the near-surface chlorine loading was observed to peak in 1993 and, since then, to decrease in line with expectations. After release from source gases in the stratosphere, chlorine mainly forms the reservoir HCl, providing an alternative method for monitoring the progress of the Montreal Protocol. A maximum in stratospheric HCl was observed around 1996, followed by decay at a rate close to 1%/year, consistent with the tropospheric chlorine peak and known transport timescales. However, we will present total column observations from ground-based FTIR instruments which show an unexpected and significant upturn in stratospheric HCl around 2007 in the northern hemisphere. Height-resolved observations from satellite instruments (HALOE, MLS, ACE) confirm this increase and show that it occurs in the lower stratosphere. These observations contrast with the ongoing monotonic decrease of near-surface chlorine source gases. Using 3-D model simulations (TOMCAT/SLIMCAT and KASIMA) we attribute this trend anomaly to a slowdown in the NH atmospheric circulation, causing air in the lower stratosphere to become more aged with a larger relative conversion of source gases to HCl. An important conclusion is that the Montreal Protocol is still on track and will still lead to long-term decreases in stratospheric chlorine. This dynamical variability could also significantly affect the evolution of stratospheric ozone and must be accounted for when searching for signs of ozone recovery.

  6. The latitudinal structure of recent changes in the boreal Brewer–Dobson circulation

    Directory of Open Access Journals (Sweden)

    C. Shi

    2015-09-01

    Full Text Available Upwelling branch of the Brewer–Dobson circulation (BDC controls the tropical lower stratospheric water vapor (WV through dynamic cooling near the tropopause. Downwelling branch of BDC dominates the extratropical middle-lower stratospheric Hydrogen Chloride (HCl by dynamic transport. Climatologically, a symmetric weakening BDC indicates increasing tropical lower stratospheric WV and decreasing extratropical middle-lower stratospheric HCl. However, the global ozone chemistry and related trace gas data records for the stratosphere data (GOZCARDS show that the tropical lowermost stratospheric WV increased by 18 % decade−1 during 2001–2011 and the boreal mid-latitude lower stratospheric HCl rose 25 % decade−1 after 2006. We interpret this as resulting from a slowdown of the tropical upwelling and a speedup of the mid-latitude downwelling. This interpretation is supported by composite analysis of Eliasen–Palm Flux (EPF, zonal wind and regression of temperature on the EPF from the ERA-Interim data. Results present that the enhancing polar vortex and weakening planetary wave activity leads to a downwelling branch narrowing equatorward and a local speedup of 24 % at 20 hPa in the mid-latitudes. Moreover, there are regressive temperature increase of 1.5 K near the tropical tropopause and that of 0.5 K in the mid-latitude middle stratosphere, which also indicates the tropical upwelling slowdown and the mid-latitude downwelling speedup during 2001–2011.

  7. Stratospheric aerosol—Observations, processes, and impact on climate

    Science.gov (United States)

    Kremser, Stefanie; Thomason, Larry W.; Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; Fueglistaler, Stephan; Prata, Fred J.; Vernier, Jean-Paul; Schlager, Hans; Barnes, John E.; Antuña-Marrero, Juan-Carlos; Fairlie, Duncan; Palm, Mathias; Mahieu, Emmanuel; Notholt, Justus; Rex, Markus; Bingen, Christine; Vanhellemont, Filip; Bourassa, Adam; Plane, John M. C.; Klocke, Daniel; Carn, Simon A.; Clarisse, Lieven; Trickl, Thomas; Neely, Ryan; James, Alexander D.; Rieger, Landon; Wilson, James C.; Meland, Brian

    2016-06-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfate matter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  8. Stratospheric Aerosol--Observations, Processes, and Impact on Climate

    Science.gov (United States)

    Kresmer, Stefanie; Thomason, Larry W.; von Hobe, Marc; Hermann, Markus; Deshler, Terry; Timmreck, Claudia; Toohey, Matthew; Stenke, Andrea; Schwarz, Joshua P.; Weigel, Ralf; Fueglistaler, Stephan; Prata, Fred J.; Vernier, Jean-Paul; Schlager, Hans; Barnes, John E.; Antuna-Marrero, Juan-Carlos; Fairlie, Duncan; Palm, Mathias; Mahieu, Emmanuel; Notholt, Justus; Rex, Markus; Bingen, Christine; Vanhellemont, Filip; Bourassa, Adam; Plane, John M. C.; Klocke, Daniel; Carn, Simon A.; Clarisse, Lieven; Trickl, Thomas; Neeley, Ryan; James, Alexander D.; Rieger, Landon; Wilson, James C.; Meland, Brian

    2016-01-01

    Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfatematter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.

  9. Stratospheric solar geoengineering without ozone loss?

    Science.gov (United States)

    Keutsch, F. N.; Keith, D.; Weisenstein, D.; Dykema, J. A.

    2016-12-01

    Injecting sulfate aerosol into the stratosphere, a form of solar geoengineering, may reduce some climate risks, but it also entails new risks including ozone loss and heating of the lower tropical stratosphere which in turn increases water vapor concentration causing additional ozone loss and surface warming. Selection of a solid aerosol such as alumina or diamond for geoengineering purposes was found to minimize stratospheric heating for a given shortwave forcing, though ozone depletion via heterogeneous surface activation remains a potential problem. Here we investigate the use of solid aerosols composed of alkaline metal salts whose surfaces would convert halogens, nitric and sulfuric acid into stable salts, reducing the ozone depletion potential of these ubiquitous stratospheric substances and preventing heterogeneous activation on the geoengineering particles. Specifically, injection of calcite (CaCO3) aerosol might reduce net radiative forcing while simultaneously increasing column ozone towards its pre-anthropogenic baseline. A radiative forcing of -1 Wm-2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg yr-1 of 275 nm radius calcite aerosol with ten-fold less radiative heating compared to sulfate aerosol. Geoengineering injection of reactive alkali metal salts in combination with another high refractive index material may also enable solar geoengineering with lower risk than with sulfates.

  10. Benefits, risks, and costs of stratospheric geoengineering

    Science.gov (United States)

    Robock, Alan; Marquardt, Allison; Kravitz, Ben; Stenchikov, Georgiy

    2009-10-01

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers, and costs to those of other responses to global warming, including doing nothing. Here we evaluate those factors for stratospheric geoengineering with sulfate aerosols. Using existing U.S. military fighter and tanker planes, the annual costs of injecting aerosol precursors into the lower stratosphere would be several billion dollars. Using artillery or balloons to loft the gas would be much more expensive. We do not have enough information to evaluate more exotic techniques, such as pumping the gas up through a hose attached to a tower or balloon system. Anthropogenic stratospheric aerosol injection would cool the planet, stop the melting of sea ice and land-based glaciers, slow sea level rise, and increase the terrestrial carbon sink, but produce regional drought, ozone depletion, less sunlight for solar power, and make skies less blue. Furthermore it would hamper Earth-based optical astronomy, do nothing to stop ocean acidification, and present many ethical and moral issues. Further work is needed to quantify many of these factors to allow informed decision-making.

  11. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  12. Chlorine Monoxide in the Antarctic Spring Stratosphere.

    Science.gov (United States)

    Jaramillo-Ayerbe, Mauricio

    1988-06-01

    A series of observations of stratospheric chlorine monoxide (ClO) were carried out during the austral springs of 1986 and 1987 in McMurdo Station, Antarctica, as part of two experimental campaigns sent to investigate the seasonal decrease in ozone over the antarctic continent (the ozone "hole"). Measurements of the vertical distribution of ClO were obtained by high resolution ground-based emission spectroscopy at 278 GHz, using the Stony Brook mm-wave receiver. They show the presence of an anomalous layer of lower stratospheric ClO which is not observed at other latitudes. This anomalous layer is centered at ~20 km altitude and exhibits a pronounced diurnal variation, reaching a maximum at midday and disappearing at night. During the period of Sep. 20-24, 1987, the lower-stratospheric ClO had a maximum volume mixing ratio of 1.8_sp{+0cdot5}{ -0cdot9} ppbv. A normal ClO layer centered at ~36 km was also observed, with concentrations and diurnal behavior similar to those seen in tropical latitudes. These findings are evidence of anomalous chlorine chemistry taking place in the lower stratosphere during the antarctic spring, and indicate that increasing anthropogenic chlorine is a prime causative agent in the formation of the ozone hole.

  13. Benefits, risks, and costs of stratospheric geoengineering

    KAUST Repository

    Robock, Alan

    2009-10-02

    Injecting sulfate aerosol precursors into the stratosphere has been suggested as a means of geoengineering to cool the planet and reduce global warming. The decision to implement such a scheme would require a comparison of its benefits, dangers, and costs to those of other responses to global warming, including doing nothing. Here we evaluate those factors for stratospheric geoengineering with sulfate aerosols. Using existing U.S. military fighter and tanker planes, the annual costs of injecting aerosol precursors into the lower stratosphere would be several billion dollars. Using artillery or balloons to loft the gas would be much more expensive. We do not have enough information to evaluate more exotic techniques, such as pumping the gas up through a hose attached to a tower or balloon system. Anthropogenic stratospheric aerosol injection would cool the planet, stop the melting of sea ice and land-based glaciers, slow sea level rise, and increase the terrestrial carbon sink, but produce regional drought, ozone depletion, less sunlight for solar power, and make skies less blue. Furthermore it would hamper Earth-based optical astronomy, do nothing to stop ocean acidification, and present many ethical and moral issues. Further work is needed to quantify many of these factors to allow informed decision-making.

  14. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    Directory of Open Access Journals (Sweden)

    J.-P. Cammas

    2009-08-01

    Full Text Available This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is based on airborne MOZAIC observations of ozone, carbon monoxide, nitrogen oxides and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June and on a vertical profile over Washington DC on 30 June, and on lidar observations of aerosol backscattering at Madison (University of Wisconsin on 28 June. Attribution of the observed CO plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART. A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2–5 pvu layer during the diurnal convective cycle at isentropic levels (above 335 K corresponding to those of the downstream MOZAIC observations. It is shown that the order of magnitude of the time needed by the parameterized convective detrainment flux to fill the volume of a model mesh (20 km horizontal, 500 m vertical above the tropopause with pure boundary layer air would be about 7.5 h, i.e. a time period compatible with the convective diurnal cycle. Over the area of interest, the maximum instantaneous detrainment fluxes deposited about 15 to 20% of the initial boundary layer tracer concentration at 335 K. According to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over Eastern Atlantic, such detrainment fluxes would be associated with a 1.4–1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  15. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    Directory of Open Access Journals (Sweden)

    J.-P. Cammas

    2008-12-01

    Full Text Available This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is done using MOZAIC observations of ozone, carbon monoxide, nitrogen oxides (NOx+PAN and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June 03:00 UTC and 10:00 UTC and in a vertical profile over Washington DC on 30 June 17:00 UTC, and by lidar observations of aerosol backscattering at Madison (University of Wisconsin on 28 June. Attribution of the plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART. A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2–5 pvu layer during the diurnal convective cycle. The isentropic levels (above 335 K correspond to those of the downstream MOZAIC observations. The parameterized convective detrainment flux is intense enough to fill the volume of a model mesh (20 km horizontal, 500 m vertical above the tropopause with pure boundary layer air in a time period compatible with the convective diurnal cycle, i.e. about 5 h. The maximum instantaneous detrainment fluxes deposited about 15–20% of the initial boundary layer tracer concentration at 335 K, which according to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over eastern Atlantic, would be associated with a 1.4–1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  16. Intraseasonal oscillations of stratospheric ozone above Switzerland

    Science.gov (United States)

    Studer, Simone; Hocke, Klemens; Kämpfer, Niklaus

    2012-01-01

    GROMOS, the ground-based millimeter-wave ozone spectrometer, continuously measures the stratospheric ozone profile between the altitudes of 20 and 65 km above Bern (46°57‧N, 7°27‧E) since November 1994. Characteristics of intraseasonal oscillations of stratospheric ozone are derived from the long-term data set. Spectral analysis gives evidence for a dominant oscillation period of about 20 days in the lower and middle stratosphere during winter time. A strong 20-day wave is also found in collocated geopotential height measurements of the microwave limb sounder onboard the Aura satellite (Aura/MLS) confirming the ground-based observations of GROMOS and underlining the link between ozone and dynamics. Remarkably, the ozone series of GROMOS show an interannual variability of the strength of intraseasonal oscillations of stratospheric ozone. The interannual variability of ozone fluctuations is possibly due to influences of planetary wave forcing and the quasi-biennial oscillation (QBO) on the meridional Brewer-Dobson circulation of the middle atmosphere. In detail, time series of the mean amplitude of ozone fluctuations with periods ranging from 10 to 60 days are derived at fixed pressure levels. The mean amplitude series are regarded as a measure of the strength of intraseasonal oscillations of stratospheric ozone above Bern. After deseasonalizing the mean amplitude series, we find QBO-like amplitude modulations of the intraseasonal oscillations of ozone. The amplitudes of the intraseasonal oscillations are enhanced by a factor of 2 in 1997, 2001, 2003, and 2005. QBO-like variations of intraseasonal oscillations are also present in wind, temperature and other parameters above Bern as indicated by meteorological reanalyses of the European Centre for Medium-range Weather Forecasts (ECMWF). Further, intercomparisons of interannual variability of intraseasonal tropospheric and stratospheric oscillations are performed where the NAO index (North-Atlantic oscillation

  17. Analysis of the frequency-dependent response to wave forcing in the extratropics

    Directory of Open Access Journals (Sweden)

    A. J. Haklander

    2006-01-01

    Full Text Available A quasigeostrophic model for the frequency-dependent response of the zonal-mean flow to planetary-wave forcing at Northern Hemisphere (NH midlatitudes is applied to 4-D-Var ECMWF analysis data for six extended winter seasons. The theoretical response is a non-linear function of the frequency of the forcing, the thermal damping time α−1, and a scaling parameter µ which includes the aspect ratio of the meridional to the vertical length scale of the response. Regression of the calculated response from the analyses onto the theoretical response yields height-dependent estimates for both α−1 and µ. The thermal damping time estimated from this dynamical model is about 2 days in the troposphere, 7–10 days in the stratosphere, and 2–4 days in the lower mesosphere. For the stratosphere and lower mesosphere, the estimates lie within the range of existing radiative damping time estimates, but for the troposphere they are significantly smaller.

  18. Stratospheric experiments on curing of composite materials

    Science.gov (United States)

    Chudinov, Viacheslav; Kondyurin, Alexey; Svistkov, Alexander L.; Efremov, Denis; Demin, Anton; Terpugov, Viktor; Rusakov, Sergey

    2016-07-01

    Future space exploration requires a large light-weight structure for habitats, greenhouses, space bases, space factories and other constructions. A new approach enabling large-size constructions in space relies on the use of the technology of polymerization of fiber-filled composites with a curable polymer matrix applied in the free space environment on Erath orbit. In orbit, the material is exposed to high vacuum, dramatic temperature changes, plasma of free space due to cosmic rays, sun irradiation and atomic oxygen (in low Earth orbit), micrometeorite fluence, electric charging and microgravitation. The development of appropriate polymer matrix composites requires an understanding of the chemical processes of polymer matrix curing under the specific free space conditions to be encountered. The goal of the stratospheric flight experiment is an investigation of the effect of the stratospheric conditions on the uncured polymer matrix of the composite material. The unique combination of low residual pressure, high intensity UV radiation including short-wave UV component, cosmic rays and other aspects associated with solar irradiation strongly influences the chemical processes in polymeric materials. We have done the stratospheric flight experiments with uncured composites (prepreg). A balloon with payload equipped with heater, temperature/pressure/irradiation sensors, microprocessor, carrying the samples of uncured prepreg has been launched to stratosphere of 25-30 km altitude. After the flight, the samples have been tested with FTIR, gel-fraction, tensile test and DMA. The effect of cosmic radiation has been observed. The composite was successfully cured during the stratospheric flight. The study was supported by RFBR grants 12-08-00970 and 14-08-96011.

  19. Squalicorax Chips a Tooth: A Consequence of Feeding-Related Behavior from the Lowermost Navesink Formation (Late Cretaceous: Campanian-Maastrichtian of Monmouth County, New Jersey, USA

    Directory of Open Access Journals (Sweden)

    John A. Chamberlain

    2012-05-01

    Full Text Available Chipped and broken functional teeth are common in modern sharks with serrated tooth shape. Tooth damage consists of splintering, cracking, and flaking near the cusp apex where the enameloid is broken and exposes the osteodentine and orthodentine. Such damage is generally viewed as the result of forces applied during feeding as the cusp apex impacts the skeletal anatomy of prey. Damage seen in serrated functional teeth from sharks Squalicorax kaupi [1] and Squalicorax pristodontus [1] from the late Cretaceous lowermost Navesink Formation of New Jersey resembles that occurring in modern sharks and suggests similar feeding behavior. Tumbling experiments using serrated modern and fossil functional shark teeth, including those of Squalicorax, show that teeth are polished, not cracked or broken, by post-mortem abrasion in lowermost Navesink sediment. This provides further evidence that chipped and broken Squalicorax teeth are feeding-related and not taphonomic in origin. Evolution of rapid tooth replacement in large sharks such as Squalicorax ensured maximum functionality after feeding-related tooth damage occurred. Serrated teeth and rapid tooth replacement in the large sharks of the Mesozoic and Cenozoic afforded them competitive advantages that helped them to achieve their place as apex predators in today’s ocean.

  20. A Comparison of Precipitation Distribution of Two Landfalling Tropical Cyclones during the Extratropical Transition

    Institute of Scientific and Technical Information of China (English)

    CHEN Guanghua

    2011-01-01

    The precipitation distributions associated with two landfalling tropical cyclones (TCs) during extratropical transition (ET) were examined in this study.Their distinction is that the bulk of precipitation fell to the left of the TC track in one TC and to the right in the other.The analyses indicate that,for the TC Haima (2004) case,accompanied by the approach of a deep midlatitude trough throughout the depth of the troposphere,the warm and moist air advection by the southeasterly flow north of TC was favorable for warm advection and frontogenesis to the northwest of the TC.Due to the steepening of equivalent potential temperature (θe),the air-parcel uplift along the θe surface,in collaboration with thermally direct circulation related to frontogenesis,led to enhanced precipitation northwest of the TC.In contrast,for TC Matsa (2005)embedded within a moister environment,a weak midlatitude trough was situated at the mid-upper level.The convection was triggered by the conditional instability at the lower level and then sustained by dynamic forcing at the mid-upper level so that the heavy precipitation occurred to the northeast of TC.For the two TC cases,the precipitation enhancement was also linked to the upper-level anomalous divergence associated with the jet-related forcing on the right side of the jet entrance.From the quasigeostrophic perspective,the advection of geostrophic absolute vorticity by the thermal wind most likely served as an indication reflecting the displacement of the vertical motion relative to the center of the TC.

  1. Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium

    Directory of Open Access Journals (Sweden)

    M. Widmann

    2009-09-01

    Full Text Available Climate proxy data provide noisy, and spatially incomplete information on some aspects of past climate states, whereas palaeosimulations with climate models provide global, multi-variable states, which may however differ from the true states due to unpredictable internal variability not related to climate forcings, as well as due to model deficiencies. Using data assimilation for combining the empirical information from proxy data with the physical understanding of the climate system represented by the equations in a climate model is in principle a promising way to obtain better estimates for the climate of the past.

    Data assimilation has been used for a long time in weather forecasting and atmospheric analyses to control the states in atmospheric General Circulation Models such that they are in agreement with observation from surface, upper air, and satellite measurements. Here we discuss the similarities and the differences between the data assimilation problem in palaeoclimatology and in weather forecasting, and present and conceptually compare three data assimilation methods that have been developed in recent years for applications in palaeoclimatology. All three methods (selection of ensemble members, Forcing Singular Vectors, and Pattern Nudging are illustrated by examples that are related to climate variability over the extratropical Northern Hemisphere during the last millennium. In particular it is shown that all three methods suggest that the cold period over Scandinavia during 1790–1820 is linked to anomalous northerly or easterly atmospheric flow, which in turn is related to a pressure anomaly that resembles a negative state of the Northern Annular Mode.

  2. Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium

    Directory of Open Access Journals (Sweden)

    M. Widmann

    2010-09-01

    Full Text Available Climate proxy data provide noisy, and spatially incomplete information on some aspects of past climate states, whereas palaeosimulations with climate models provide global, multi-variable states, which may however differ from the true states due to unpredictable internal variability not related to climate forcings, as well as due to model deficiencies. Using data assimilation for combining the empirical information from proxy data with the physical understanding of the climate system represented by the equations in a climate model is in principle a promising way to obtain better estimates for the climate of the past.

    Data assimilation has been used for a long time in weather forecasting and atmospheric analyses to control the states in atmospheric General Circulation Models such that they are in agreement with observation from surface, upper air, and satellite measurements. Here we discuss the similarities and the differences between the data assimilation problem in palaeoclimatology and in weather forecasting, and present and conceptually compare three data assimilation methods that have been developed in recent years for applications in palaeoclimatology. All three methods (selection of ensemble members, Forcing Singular Vectors, and Pattern Nudging are illustrated by examples that are related to climate variability over the extratropical Northern Hemisphere during the last millennium. In particular it is shown that all three methods suggest that the cold period over Scandinavia during 1790–1820 is linked to anomalous northerly or easterly atmospheric flow, which in turn is related to a pressure anomaly that resembles a negative state of the Northern Annular Mode.

  3. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    Science.gov (United States)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  4. A Study of Extratropical Transition and Re-Intensification of Typhoon Mindulle (2004)

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiande; WANG Qi; FU Gang; LIU Yulong; TIAN Ying

    2011-01-01

    In this study,the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSUNCAR) Mesoscale Model (MM5) is used to simulate Typhoon Mindulle (2004) at high resolution (3-km grid size).The data from measurements show that in the upper atmosphere the existence of an upper jet is important to the transition cyclone.When Mindulle moved to the area of the upper jet entrance,where high-altitude divergence existed,the pumping of the high-altitude divergence would enhance the vertical motion and low-level cyclone convergence.The enhanced vertical motion was confirmed by the simulation results and indicated that the existence of upper divergence enhanced the vertical motion which was favorable for the maintenance of Typhoon Mindulle.The process of extratropical transition (ET) and re-intensification always accompanies the process of cold air invasion.This process enhances the baroclinicity of the atmosphere and the formation of front at high altitudes,which converts baroclinic potential energy into kinetic energy and strengthens the cyclone vortex.The distributions of equivalent potential temperature (θe) and temperature anomalies show that the warm-core of the typhoon at the tropopause aids the re-intensification of the system.As the typhoon reenters the ocean,latent heat flux (LHF) increases in the north and west and the strong reflectivity and vertical motion occur in the east and southeast,and the west.With the re-intensification of the typhoon the wind field evolves from an oval to a circle at the lower atmosphere,the area coverage by high winds increases,and the distribution of the tangential wind shows an asymmetric pattern.

  5. How will climate change affect explosive cyclones in the extratropics of the Northern Hemisphere?

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2016-06-01

    Explosive cyclones are rapidly intensifying low pressure systems generating severe wind speeds and heavy precipitation primarily in coastal and marine environments. This study presents the first analysis on how explosive cyclones respond to climate change in the extratropics of the Northern Hemisphere. An objective-feature tracking algorithm is used to identify and track cyclones from 23 CMIP5 climate models for the recent past (1981-1999) and future (2081-2099). Explosive cyclones are projected to shift northwards by about 2.2^circ latitude on average in the northern Pacific, with fewer and weaker events south of 45^circ hbox {N}, and more frequent and stronger events north of this latitude. This shift is correlated with a poleward shift of the jet stream in the inter-model spread (R=0.56). In the Atlantic, the total number of explosive cyclones is projected to decrease by about 17 % when averaging across models, with the largest changes occurring along North America's East Coast. This reduction is correlated with a decline in the lower-tropospheric Eady growth rate (R=0.51), and is stronger for models with smaller frequency biases (R=-0.65). The same region is also projected to experience a small intensification of explosive cyclones, with larger vorticity values for models that predict stronger increases in the speed of the jet stream (R=0.58). This strengthening of the jet stream is correlated with an enhanced sea surface temperature gradient in the North Atlantic (R=-0.63). The inverse relationship between model bias and projection, and the role of model resolution are discussed.

  6. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    Science.gov (United States)

    Frey, William R.; Kay, Jennifer E.

    2017-07-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  7. On the structure of the extra-tropical transition layer from in-situ observations

    Directory of Open Access Journals (Sweden)

    I. Pisso

    2012-10-01

    Full Text Available In-situ observations of atmospheric tracers from multiple measurement campaigns over the period 1994–2007 were combined to investigate the Extra-tropical Transition Layer (ExTL region and the properties of large scale meridional transport. We used potential temperature, equivalent latitude and distance relative to the local dynamical tropopause as vertical coordinates to highlight the behaviour of trace gases in the tropopause region. Vertical coordinates based on constant PV surfaces allowed us to relate the dynamical definition of the tropopause with trace gases distributions and vertical gradients and hence analyse its latitudinal dependence and seasonal variability. Analysis of the available data provides a working definition of the upper limit of the ExTL based on the upper limit of the region of high vertical CO gradient in PV relative coordinates. A secondary local maximum in vertical O3 gradient can be used a proxy for the lower limit, although it is less clearly defined than that of CO. The sloping isopleths of CO and O3 mixing ratios and the CO mixing ratio gradient are consistent with isopleths in purely dynamical diagnostics such as χ30 d, the proportion of air masses in contact with the PBL within one month and underline the differences between the PV based and chemical tropopauses. The use of tropopause relative coordinates allows different seasons to be analysed together to produce climatological means. The weak dependence of dynamical diagnostics of transport on the absolute values of tracer concentrations makes them a suitable process-oriented tool to evaluate global chemical models and make Lagrangian comparisons.

  8. On the structure of the extra-tropical transition layer from in-situ observations

    Science.gov (United States)

    Pisso, I.; Law, K. S.; Fierli, F.; Haynes, P. H.; Hoor, P.; Palazzi, E.; Ravegnani, F.; Viciani, S.

    2012-10-01

    In-situ observations of atmospheric tracers from multiple measurement campaigns over the period 1994-2007 were combined to investigate the Extra-tropical Transition Layer (ExTL) region and the properties of large scale meridional transport. We used potential temperature, equivalent latitude and distance relative to the local dynamical tropopause as vertical coordinates to highlight the behaviour of trace gases in the tropopause region. Vertical coordinates based on constant PV surfaces allowed us to relate the dynamical definition of the tropopause with trace gases distributions and vertical gradients and hence analyse its latitudinal dependence and seasonal variability. Analysis of the available data provides a working definition of the upper limit of the ExTL based on the upper limit of the region of high vertical CO gradient in PV relative coordinates. A secondary local maximum in vertical O3 gradient can be used a proxy for the lower limit, although it is less clearly defined than that of CO. The sloping isopleths of CO and O3 mixing ratios and the CO mixing ratio gradient are consistent with isopleths in purely dynamical diagnostics such as χ30 d, the proportion of air masses in contact with the PBL within one month and underline the differences between the PV based and chemical tropopauses. The use of tropopause relative coordinates allows different seasons to be analysed together to produce climatological means. The weak dependence of dynamical diagnostics of transport on the absolute values of tracer concentrations makes them a suitable process-oriented tool to evaluate global chemical models and make Lagrangian comparisons.

  9. The relevance of individual microphysical processes for potential vorticity anomalies in extratropical cyclones

    Science.gov (United States)

    Crezee, Bas; Joos, Hanna; Wernli, Heini

    2016-04-01

    Extratropical cyclones have a large impact on daily weather through their accompanying strong winds and precipitation. The latent heating and cooling associated with microphysical processes like condensation, freezing and melting, sublimation and evaporation leads to the formation of distinct cloud diabatic potential vorticity (CDPV) anomalies. Positive low-level CDPV anomalies - which typically are formed along the fronts and close to the cyclone center - have been shown to interact with upper-level PV anomalies thereby potentially enhancing storm intensification. Here a novel method is applied, which calculates backward trajectories from the mature storm stage, integrates cloud diabatic PV changes due to microphysical processes, and constructs a CDPV budget for each individual anomaly. Thereby we quantify the contributions of, e.g., cloud condensation, depositional growth of snow and melting of snow to the individual anomalies and in turn to the near-surface circulation. First, we apply this method to an idealized mid-latitude cyclone. The formation of the relatively small low-level negative CDPV anomalies is dominated each by one specific process, depending on their location relative to the front. For the large positive PV anomaly we find that the strongest contributions are from in-cloud condensation and below-cloud snow melting and rain evaporation. Although contributions of in-cloud depositional growth of ice are rather small, they cover a very large area and are therefore dynamically significant, i.e., they produce a fairly large-scale but low-amplitude anomaly. In addition the results from the idealized simulations are compared to a wintertime cyclone. It will be discussed how well the method works for real cyclones and how closely the results agree with those from the idealized channel model experiment.

  10. Which way will the circulation shift in a changing climate? Possible nonlinearity of extratropical cloud feedbacks

    Science.gov (United States)

    Tandon, Neil F.; Cane, Mark A.

    2017-06-01

    In a suite of idealized experiments with the Community Atmospheric Model version 3 coupled to a slab ocean, we show that the atmospheric circulation response to CO2 increase is sensitive to extratropical cloud feedback that is potentially nonlinear. Doubling CO2 produces a poleward shift of the Southern Hemisphere (SH) midlatitude jet that is driven primarily by cloud shortwave feedback and modulated by ice albedo feedback, in agreement with earlier studies. More surprisingly, for CO2 increases smaller than 25 %, the SH jet shifts equatorward. Nonlinearities are also apparent in the Northern Hemisphere, but with less zonal symmetry. Baroclinic instability theory and climate feedback analysis suggest that as the CO2 forcing amplitude is reduced, there is a transition from a regime in which cloud and circulation changes are largely decoupled to a regime in which they are highly coupled. In the dynamically coupled regime, there is an apparent cancellation between cloud feedback due to warming and cloud feedback due to the shifting jet, and this allows the ice albedo feedback to dominate in the high latitudes. The extent to which dynamical coupling effects exceed thermodynamic forcing effects is strongly influenced by cloud microphysics: an alternate model configuration with slightly increased cloud liquid (LIQ) produces poleward jet shifts regardless of the amplitude of CO2 forcing. Altering the cloud microphysics also produces substantial spread in the circulation response to CO2 doubling: the LIQ configuration produces a poleward SH jet shift approximately twice that produced under the default configuration. Analysis of large ensembles of the Canadian Earth System Model version 2 demonstrates that nonlinear, cloud-coupled jet shifts are also possible in comprehensive models. We still expect a poleward trend in SH jet latitude for timescales on which CO2 increases by more than 25 %. But on shorter timescales, our results give good reason to expect significant

  11. Robustness of serial clustering of extratropical cyclones to the choice of tracking method

    Directory of Open Access Journals (Sweden)

    Joaquim G. Pinto

    2016-07-01

    Full Text Available Cyclone clusters are a frequent synoptic feature in the Euro-Atlantic area. Recent studies have shown that serial clustering of cyclones generally occurs on both flanks and downstream regions of the North Atlantic storm track, while cyclones tend to occur more regulary on the western side of the North Atlantic basin near Newfoundland. This study explores the sensitivity of serial clustering to the choice of cyclone tracking method using cyclone track data from 15 methods derived from ERA-Interim data (1979–2010. Clustering is estimated by the dispersion (ratio of variance to mean of winter [December – February (DJF] cyclone passages near each grid point over the Euro-Atlantic area. The mean number of cyclone counts and their variance are compared between methods, revealing considerable differences, particularly for the latter. Results show that all different tracking methods qualitatively capture similar large-scale spatial patterns of underdispersion and overdispersion over the study region. The quantitative differences can primarily be attributed to the differences in the variance of cyclone counts between the methods. Nevertheless, overdispersion is statistically significant for almost all methods over parts of the eastern North Atlantic and Western Europe, and is therefore considered as a robust feature. The influence of the North Atlantic Oscillation (NAO on cyclone clustering displays a similar pattern for all tracking methods, with one maximum near Iceland and another between the Azores and Iberia. The differences in variance between methods are not related with different sensitivities to the NAO, which can account to over 50% of the clustering in some regions. We conclude that the general features of underdispersion and overdispersion of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO on cyclone dispersion.

  12. Scavenging of biomass burning refractory black carbon and ice nuclei in a Western Pacific extratropical storm

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2011-01-01

    Full Text Available In situ airborne sampling of refractory black carbon (rBC particles and Ice Nuclei (IN was conducted in and near an extratropical cyclonic storm in the Western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Cloud hydrometeors were evaporated by a counterflow virtual impactor and the residue was sampled by a single particle soot photometer (SP2 instrument and a continuous flow diffusion chamber ice nucleus detector. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. In storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here −24 to −29 °C, IN measurements from ice particle residues generally agreed well with simultaneous measurements of total ice concentrations provided that the measurements were made at ambient temperatures similar to those in the CFDC chamber, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures (−22 to −6.4 °C, ice particle concentrations were similar to IN concentrations at CFDC chamber temperatures representative of colder temperatures. This is consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by sedimentation to lower altitudes. Homogeneous freezing did not appear to contribute significantly to midlevel ice concentrations and rime-splintering was also unlikely due to the absence of significant supercooled liquid water in the warm sector clouds. IN number concentrations were typically about a~factor of five to ten lower than simultaneous measurements of rBC concentrations in cloud.

  13. Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 Field Experiment

    Directory of Open Access Journals (Sweden)

    Fuqing Zhang

    2015-02-01

    Full Text Available This study analyzes in situ airborne measurements from the 2008 Stratosphere–Troposphere Analyses of Regional Transport (START08 experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS region. The focus is on the second research flight (RF02, which took place on 21–22 April 2008. This was the first airborne mission dedicated to probing gravity waves associated with strong upper-tropospheric jet-front systems. Based on spectral and wavelet analyses of the in situ observations, along with a diagnosis of the polarization relationships, clear signals of mesoscale variations with wavelengths ~50–500 km are found in almost every segment of the 8 h flight, which took place mostly in the lower stratosphere. The aircraft sampled a wide range of background conditions including the region near the jet core, the jet exit and over the Rocky Mountains. In contrast to the long wavelength mesoscale variations, smaller-scale wavelike oscillations below 50 km are found to be quite transient. In particular, aircraft measurements of several flight segments are dominated by signals with periods of ~20– ~60 s and wavelengths of ~5– ~15 km. We speculate that at least part of these nearly-periodic high-frequency signals are a result of intrinsic observational errors in the aircraft measurements or small-scale flight-altitude fluctuations that are difficult to fully characterize. Despite the presence of possibly spurious wave oscillations in several flight segments, the power spectra of horizontal winds and temperature averaged over the analyzed START08 flight segments follow closely the -5/3 power law.

  14. Stratospheric Impacts on Arctic Sea Ice

    Science.gov (United States)

    Reichler, Thomas

    2016-04-01

    Long-term circulation change in the stratosphere can have substantial effects on the oceans and their circulation. In this study we investigate whether and how sea ice at the ocean surface responds to intraseasonal stratospheric variability. Our main question is whether the surface impact of stratospheric sudden warmings (SSWs) is strong and long enough to affect sea ice. A related question is whether the increased frequency of SSWs during the 2000s contributed to the rapid decrease in Arctic sea ice during this time. To this end we analyze observations of sea ice, NCEP/NCAR reanalysis, and a long control integration with a stratospherically-enhanced version of the GFDL CM2.1 climate model. From both observations and the model we find that stratospheric extreme events have a demonstrable impact on the distribution of Arctic sea ice. The areas most affected are near the edge of the climatological ice line over the North Atlantic, North Pacific, and the Arctic Ocean. The absolute changes in sea ice coverage amount to +/-10 %. Areas and magnitudes of increase and decrease are about the same. It is thus unlikely that the increased SSW frequency during the 2000s contributed to the decline of sea ice during that period. The sea ice changes are consistent with the impacts of a negative NAO at the surface and can be understood in terms of (1) dynamical change due to altered surface wind stress and (2) thermodynamical change due to altered temperature advection. Both dynamical and thermodynamical change positively reinforce each other in producing sea change. A simple advection model is used to demonstrate that most of the sea ice change can be explained from the sea ice drift due to the anomalous surface wind stress. Changes in the production or melt of sea ice by thermodynamical effects are less important. Overall, this study adds to an increasing body of evidence that the stratosphere not only impacts weather and climate of the atmosphere but also the surface and

  15. Hierarchical structures in Northern Hemispheric extratropical winter ocean-atmosphere interactions

    CERN Document Server

    Wiedermann, Marc; Handorf, Dörthe; Kurths, Jürgen; Donner, Reik V

    2015-01-01

    In recent years extensive studies on the Earth's climate system have been carried out by means of advanced complex network statistics. The great majority of these studies, however, have been focusing on investigating interaction structures within single climatological fields directly on or parallel to the Earth's surface. In this work, we develop a novel approach of node weighted interacting network measures to study ocean-atmosphere coupling in the Northern Hemisphere and construct 18 coupled climate networks, each consisting of two subnetworks. In all cases, one subnetwork represents monthly sea-surface temperature (SST) anomalies while the other is based on the monthly geopotential height (HGT) of isobaric surfaces at different pressure levels covering the troposphere as well as the lower stratosphere. The weighted cross-degree density proves to be consistent with the leading coupled pattern obtained from maximum covariance analysis, while network measures of higher order allow for a further analysis of th...

  16. Stratospheric ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere

    Directory of Open Access Journals (Sweden)

    J. W. Greenslade

    2017-09-01

    Full Text Available Stratosphere-to-troposphere transport (STT provides an important natural source of ozone to the upper troposphere, but the characteristics of STT events in the Southern Hemisphere extratropics and their contribution to the regional tropospheric ozone budget remain poorly constrained. Here, we develop a quantitative method to identify STT events from ozonesonde profiles. Using this method we estimate the seasonality of STT events and quantify the ozone transported across the tropopause over Davis (69° S, 2006–2013, Macquarie Island (54° S, 2004–2013, and Melbourne (38° S, 2004–2013. STT seasonality is determined by two distinct methods: a Fourier bandpass filter of the vertical ozone profile and an analysis of the Brunt–Väisälä frequency. Using a bandpass filter on 7–9 years of ozone profiles from each site provides clear detection of STT events, with maximum occurrences during summer and minimum during winter for all three sites. The majority of tropospheric ozone enhancements owing to STT events occur within 2.5 and 3 km of the tropopause at Davis and Macquarie Island respectively. Events are more spread out at Melbourne, occurring frequently up to 6 km from the tropopause. The mean fraction of total tropospheric ozone attributed to STT during STT events is  ∼ 1. 0–3. 5 % at each site; however, during individual events, over 10 % of tropospheric ozone may be directly transported from the stratosphere. The cause of STTs is determined to be largely due to synoptic low-pressure frontal systems, determined using coincident ERA-Interim reanalysis meteorological data. Ozone enhancements can also be caused by biomass burning plumes transported from Africa and South America, which are apparent during austral winter and spring and are determined using satellite measurements of CO. To provide regional context for the ozonesonde observations, we use the GEOS-Chem chemical transport model, which is too coarsely

  17. How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?

    Science.gov (United States)

    Lubis, Sandro W.; Silverman, Vered; Matthes, Katja; Harnik, Nili; Omrani, Nour-Eddine; Wahl, Sebastian

    2017-02-01

    It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry-climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.

  18. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2014-08-01

    Full Text Available The Asian summer monsoon involves complex transport patterns with large scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS. We employ the global chemistry–climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide reservoir species PAN, NOx, and HNO3 from various monsoon regions, to the UTLS over Southern Asia and vice versa. The model is evaluated with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-E and aircraft campaigns during the monsoon season (June–September. There are three regions which contribute substantial pollution to the UTLS during the monsoon: the Asian summer monsoon (ASM, the North American Monsoon (NAM and the West African monsoon (WAM. However, penetration due to ASM convection is deeper into the UTLS as compared to NAM and WAM outflow. The circulation in these monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere. Remote transport also occurs in the extratropical upper troposphere where westerly winds drive North American and European pollutants eastward to partly merge with the ASM plume. Strong ASM convection transports these remote and regional pollutants into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. The intense convective activity in the monsoon regions is associated with lightning generation and thereby the emission of NOy species. This will affect the distribution of PAN in the UTLS. The estimates of lightning produced PAN, HNO3, NOx and ozone obtained from control and lightning-off simulations shows high percentage changes over the regions of convective transport especially equatorial Africa and America and comparatively less over the ASM. This indicates higher anthropogenic pollution transport from the ASM region into the UTLS.

  19. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2015-06-01

    Full Text Available The Asian summer monsoon involves complex transport patterns with large scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS. We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species PAN, NOx, and HNO3 from various monsoon regions, to the UTLS over Southern Asia and vice versa. Simulated long term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E and aircraft campaigns during the monsoon season (June–September in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM, the North American Monsoon (NAM and the West African monsoon (WAM. However, penetration due to ASM convection reaches deeper into the UTLS as compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere. Remote transport also occurs in the extratropical upper troposphere where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and be lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. The intense convective activity in the monsoon regions is associated with lightning and thereby the formation of additional NOx. This also affects the distribution of PAN in the UTLS. According to sensitivity simulations with and without lightning, increase in concentrations of PAN (~ 40%, HNO3 (75%, NOx (70% and ozone (30% over the regions of convective transport, especially over equatorial Africa and America and comparatively less over the ASM. This indicates that

  20. Stratospheric age of air computed with trajectories based on various 3D-Var and 4D-Var data sets

    Directory of Open Access Journals (Sweden)

    M. P. Scheele

    2005-01-01

    Full Text Available The age of stratospheric air is computed with a trajectory model, using ECMWF ERA-40 3D-Var and operational 4D-Var winds. Analysis as well as forecast data are used. In the latter case successive forecast segments are put together to get a time series of the wind fields. This is done for different forecast segment lengths. The sensitivity of the computed age to the forecast segment length and assimilation method are studied, and the results are compared with observations and with results from a chemistry transport model that uses the same data sets. A large number of backward trajectories are started in the stratosphere, and from the fraction of these trajectories that has passed the tropopause the age of air is computed. First, for ten different data sets 50-day backward trajectories starting in the tropical lower stratosphere are computed. The results show that in this region the computed cross-tropopause transport decreases with increasing forecast segment length. Next, for three selected data sets (3D-Var 24-h and 4D-Var 72-h forecast segments, and 4D-Var analyses 5-year backward trajectories are computed that start all over the globe at an altitude of 20km. For all data sets the computed ages of air in the extratropics are smaller than the observation-based age. For 4D-Var forecast series they are closest to the observation-based values, but still 0.5-1.5 year too small. Compared to the difference in age between the results for the different data sets, the difference in age between the trajectory and the chemistry transport model results is small.

  1. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  2. Modeling Nitrogen Oxides in the Lower Stratosphere

    Science.gov (United States)

    Kawa, S. Randy; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This talk will focus on the status of current understanding (not a historical review) as regards modeling nitrogen oxides (NOy) in the lower stratosphere (LS). The presentation will be organized around three major areas of process understanding: 1) NOy sources, sinks, and transport to the LS, 2) NOy species partitioning, and 3) polar multiphase processes. In each area, process topics will be identified with an estimate of the degree of confidence associated with their representation in numerical models. Several exotic and/or speculative processes will also be discussed. Those topics associated with low confidence or knowledge gaps, weighted by their prospective importance in stratospheric chemical modeling, will be collected into recommendations for further study. Suggested approaches to further study will be presented for discussion.

  3. The potential for ozone depletion in the Arctic polar stratosphere

    Science.gov (United States)

    Brune, W. H.; Anderson, J. G.; Toohey, D. W.; Fahey, D. W.; Kawa, S. R.; Poole, L. R.

    1991-01-01

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (CHl and ClONO2) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl2O2 thoroughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO3, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15 percent at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8 percent losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50 percent over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  4. HiSentinel: A Stratospheric Airship

    Science.gov (United States)

    Smith, I.; Lew, T.; Perry, W.; Smith, M.

    On December 4 2005 a team led by Southwest Research Institute SwRI successfully demonstrated powered flight of the HiSentinel stratospheric airship at an altitude of 74 000 feet The development team of Aerostar International the Air Force Research Laboratory AFRL and SwRI launched the airship from Roswell N M for a five-hour technology demonstration flight The 146-foot-long airship carried a 60-pound equipment pod and propulsion system when it became only the second airship in history to achieve powered flight in the stratosphere Designed for launch from remote sites these airships do not require large hangars or special facilities Unlike most stratospheric airship concepts HiSentinel is launched flaccid with the hull only partially inflated with helium As the airship rises the helium expands until it completely inflates the hull to the rigid aerodynamic shape required for operation A description of previous Team development results of the test flight plans for future development and applicability to future science missions will be presented

  5. Seasonal radiative modeling of Titan's stratosphere

    Science.gov (United States)

    Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard

    2016-10-01

    We have developed a seasonal radiative model of Titan's stratosphere to investigate the time variation of stratospheric temperatures in the 10-3 - 5 mbar range as observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS spectra to calculate the heating and cooling rate profiles as a function of time and latitude. In the equatorial region, the radiative equilibrium profile is warmer than the observed one. Adding adiabatic cooling in the energy equation, with a vertical velocity profile decreasing with depth and having w ≈ 0.4 mm sec-1 at 1 mbar, allows us to reproduce the observed profile. The model predicts a 5 K decrease at 1 mbar between 2008 and 2016 as a result of orbit eccentricity, in relatively good agreement with the observations. At other latitudes, as expected, the radiative model predicts seasonal variations of temperature larger than observed, pointing to latitudinal redistribution of heat by dynamics. Vertical velocities seasonally varying between -0.4 and 1.2 mm sec-1 at 1 mbar provide adiabatic cooling and heating adequate to reproduce the time variation of 1-mbar temperatures from 2005 to 2016 at 30°N and S. The model is also used to investigate the role of the strong compositional changes observed at high southern latitudes after equinox in the concomitant rapid cooling of the stratosphere.

  6. COS in the stratosphere. [sulfuric acid aerosol precursor

    Science.gov (United States)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  7. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    E. Emili

    2013-08-01

    Full Text Available Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. In this study we examine the impact of assimilating ozone observations from the Microwave Limb Sounder (MLS and the Infrared Atmospheric Sounding Interferometer (IASI in a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE. The assimilation of the two instruments is performed by means of a variational algorithm (4-D-VAR and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozone-sondes measurements to verify the presence of observations and model biases. It is found that the IASI Tropospheric Ozone Column (TOC, 1000–225 hPa should be bias-corrected prior to assimilation and MLS lowermost level (215 hPa excluded from the analysis. Furthermore, a longer analysis of 6 months (July–August 2008 showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (Root Mean Square Error, RMSE of the modeled ozone columns from 30% to 15% in the Upper-Troposphere/Lower-Stratosphere (UTLS, 70–225 hPa and from 25% to 20% in the free troposphere. The positive effect of assimilating IASI tropospheric observations is very significant at low latitudes (30° S–30° N, whereas it is not demonstrated at higher latitudes. Results are confirmed by a comparison with additional ozone datasets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC data, the Ozone Monitoring Instrument (OMI total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be little sensitive to the assimilation parameters and the model chemical scheme, due to the high frequency of satellite observations compared to the average life-time of free-troposphere/low-stratosphere

  8. Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2011-07-01

    Full Text Available In situ airborne sampling of refractory black carbon (rBC particles and Ice Nuclei (IN was conducted in and near an extratropical cyclonic storm in the western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. Cloud hydrometeors were evaporated by a counterflow virtual impactor (CVI and the residuals were sampled by a single particle soot photometer (SP2 instrument, a continuous flow diffusion chamber ice nucleus detector (CFDC and collected for electron microscope analysis. In clouds containing large ice particles, multiple residual particles were observed downstream of the CVI for each ice particle sampled on average. The fraction of rBC compared to total particles in the residual particles increased with decreasing condensed water content, while the fraction of IN compared to total particles did not, suggesting that the scavenging process for rBC is different than for IN. In the warm sector storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here −24 to −29 °C, IN concentrations from ice particle residuals generally agreed with simultaneous measurements of total ice concentrations or were higher in regions where aggregates of crystals were found, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures, ice concentrations were affected by aggregation and were somewhat less than measured IN concentrations at colder temperatures. The results are consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by aggregation and sedimentation to lower altitudes. Compositional analysis of the aerosol and back trajectories of the air in the warm sector suggested a possible biomass

  9. The 1985/86 Intraseasonal Oscillation and the Role of the Extratropics.

    Science.gov (United States)

    Hsu, Huang-Hsiung; Hoskins, Brian J.; Jin, Fei-Fei

    1990-04-01

    studies and new numerical model experiments. It describes a mixture of eastward propagation and the flaring of stationary features of tropical convection. However, it does not describe an oscillation. It is possible that equatorial Kelvin waves of very small magnitude do play a role in making such an oscillation possible and that the variable magnitude and period of the oscillation depend on the match of the extratropical structures with the Kelvin wave.

  10. Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm

    Science.gov (United States)

    Stith, J. L.; Twohy, C. H.; Demott, P. J.; Baumgardner, D.; Campos, T.; Gao, R.; Anderson, J.

    2011-07-01

    In situ airborne sampling of refractory black carbon (rBC) particles and Ice Nuclei (IN) was conducted in and near an extratropical cyclonic storm in the western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. Cloud hydrometeors were evaporated by a counterflow virtual impactor (CVI) and the residuals were sampled by a single particle soot photometer (SP2) instrument, a continuous flow diffusion chamber ice nucleus detector (CFDC) and collected for electron microscope analysis. In clouds containing large ice particles, multiple residual particles were observed downstream of the CVI for each ice particle sampled on average. The fraction of rBC compared to total particles in the residual particles increased with decreasing condensed water content, while the fraction of IN compared to total particles did not, suggesting that the scavenging process for rBC is different than for IN. In the warm sector storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here -24 to -29 °C), IN concentrations from ice particle residuals generally agreed with simultaneous measurements of total ice concentrations or were higher in regions where aggregates of crystals were found, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures, ice concentrations were affected by aggregation and were somewhat less than measured IN concentrations at colder temperatures. The results are consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by aggregation and sedimentation to lower altitudes. Compositional analysis of the aerosol and back trajectories of the air in the warm sector suggested a possible biomass burning source for much

  11. Structural and Environmental Characteristics of Extratropical Cyclones that Cause Tornado Outbreaks in the Warm Sector

    Science.gov (United States)

    Tochimoto, Eigo; Niino, Hiroshi

    2016-04-01

    The differences in structural and environmental characteristics of extratropical cyclones (hereafter, ECs) that cause tornado outbreaks and those that do not were examined through composite analyses of the newly-released Japanese reanalysis data (JRA-55) and idealized numerical experiments. ECs that developed in the United States in April and May between 1995 and 2012 are categorized into two groups: ECs accompanied by 15 or more tornadoes (hereafter, outbreak cyclones (OCs)) and ECs accompanied by 5 or less tornadoes (non-outbreak cyclones (NOCs)). 55 OCs and 41 NOCs that are of similar strength as OCs are selected in this study. The composite analyses show significant differences in convective environmental parameters between OCs and NOCs. For OCs, convective available potential energy (CAPE) and storm relative environmental helicity (SREH) are larger and the areas in which these parameters have significant values are wider in the warm sector. The larger CAPE in OCs is due to larger amount of low-level water vapor, while the larger SREH in OCs due to stronger southerly wind at low levels. A piecewise potential vorticity (PV) diagnostics (Davis and Emanuel, 1991) indicates that low- to mid-level PV anomalies mainly contribute to the difference in the low-level winds between OCs and NOCs. On the other hand, the low-level winds associated with upper-level PV anomalies are not the major contributor to the difference. The results of the idealized numerical experiments for OCs and NOCs (hereafter, referred to as OC-CTL and NOC-CTL, respectively) using WRF ver. 3.4 show that the characteristics of the low-level wind fields and SREH distributions for the simulated ECs in OC-CTL and NOC-CTL are similar to those for OCs and NOCs, respectively. In OC-CTL, SREH and low-level winds in the east-southeast region of the EC center is larger than those in NOC-CTL, respectively. It is suggested that these differences are due to the structures of jetstream. The structure of

  12. Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010

    National Research Council Canada - National Science Library

    F. Khosrawi; J. Urban; M. C. Pitts; P. Voelger; P. Achtert; M. Kaphlanov; M. L. Santee; G. L. Manney; D. Murtagh; K.-H. Fricke

    2011-01-01

    The sedimentation of HNO3 containing Polar Stratospheric Cloud (PSC) particles leads to a permanent removal of HNO3 and thus to a denitrification of the stratosphere, an effect which plays an important role in stratospheric ozone depletion...

  13. The representation of solar cycle signals in stratospheric ozone - Part 1: A comparison of recently updated satellite observations

    Science.gov (United States)

    Maycock, Amanda C.; Matthes, Katja; Tegtmeier, Susann; Thiéblemont, Rémi; Hood, Lon

    2016-08-01

    .6) (1970-2012) and SBUV Merged Cohesive VN8.6 (1978-2012) datasets and compare them to the previous SBUVMOD VN8.0 (1970-2009). Over their full lengths, the three records generally agree in terms of the broad magnitude and structure of the annual mean SOR. The main difference is that SBUVMOD VN8.6 shows a smaller and less significant SOR in the tropical upper stratosphere and therefore more closely resembles the SAGE II v7.0 mixing ratio data than does the SBUV Merged Cohesive VN8.6, which has a more continuous SOR of ˜ 2 % in this region. The sparse spatial and temporal sampling of limb satellite instruments prohibits the extraction of sub-annual variations in the SOR from SAGE-based datasets. However, the SBUVMOD VN8.6 dataset suggests substantial month-to-month variations in the SOR, particularly in the winter extratropics, which may be important for the proposed high-latitude dynamical response to the solar cycle. Overall, the results highlight substantial uncertainties in the magnitude and structure of the observed SOR from different satellite records. The implications of these uncertainties for understanding and modelling the effects of solar variability on climate should be explored.

  14. Exposing Microorganisms in the Stratosphere for Planetary Protection Project

    Science.gov (United States)

    Smith, David J. (Compiler)

    2015-01-01

    Earths stratosphere is similar to the surface of Mars: rarified air which is dry, cold, and irradiated. E-MIST is a balloon payload that has 4 independently rotating skewers that hold known quantities of spore-forming bacteria isolated from spacecraft assembly facilities at NASA. Knowing the survival profile of microbes in the stratosphere can uniquely contribute to NASA Planetary Protection for Mars.Objectives 1. Collect environmental data in the stratosphere to understand factors impacting microbial survival. 2. Determine of surviving microbes (compared to starting quantities). 3. Examine microbial DNA mutations induced by stratosphere exposure.

  15. Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements

    Directory of Open Access Journals (Sweden)

    J. Curtius

    2005-01-01

    gaseous sulfuric acid and water in the polar vortex and these additional particles may be responsible for the increase in the observed particle concentration at low N2O. The number concentrations of particles >0.4 μm measured with the FSSP decrease markedly inside the polar vortex with increasing potential temperature, also a consequence of subsidence of air from higher altitudes inside the vortex. Another focus of the analysis was put on the particle measurements in the lowermost stratosphere. For the total particle density relatively high number concentrations of several hundred particles per cm3 at altitudes below ~14 km were observed in several flights. To investigate the origin of these high number concentrations we conducted air mass trajectory calculations and compared the particle measurements with other trace gas observations. The high number concentrations of total particles in the lowermost stratosphere are probably caused by transport of originally tropospheric air from lower latitudes and are potentially influenced by recent particle nucleation.

  16. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    Science.gov (United States)

    Yettella, Vineel; Kay, Jennifer E.

    2017-09-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  17. How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere?

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2016-02-01

    Extratropical explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and heavy precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. This study evaluates how well the most recent generation of climate models reproduces extratropical explosive cyclones in the Northern Hemisphere for the period 1980-2005. An objective-feature tracking algorithm is used to identify and track cyclones from 25 climate models and three reanalysis products. Model biases are compared to biases in the sea surface temperature (SST) gradient, the polar jet stream, the Eady growth rate, and model resolution. Most models accurately reproduce the spatial distribution of explosive cyclones when compared to reanalysis data ( R = 0.94), with high frequencies along the Kuroshio Current and the Gulf Stream. Three quarters of the models however significantly underpredict explosive cyclone frequencies, by a third on average and by two thirds in the worst case. This frequency bias is significantly correlated with jet stream speed in the inter-model spread ( R ≥ 0.51), which in the Atlantic is correlated with a negative meridional SST gradient ( R = -0.56). The importance of the jet stream versus other variables considered in this study also applies to the interannual variability of explosive cyclone frequency. Furthermore, models with fewer explosive cyclones tend to underpredict the corresponding deepening rates ( R ≥ 0.88). A follow-up study will assess the impacts of climate change on explosive cyclones, and evaluate how model biases presented in this study affect the projections.

  18. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

    Science.gov (United States)

    Yettella, Vineel; Kay, Jennifer E.

    2016-10-01

    The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016-2035) than in the far-future (2081-2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

  19. The relationship between clouds and dynamics in Southern Hemisphere extratropical cyclones in the real world and a climate model

    Science.gov (United States)

    Govekar, Pallavi D.; Jakob, Christian; Catto, Jennifer

    2014-06-01

    The representation of clouds over the Southern Ocean in contemporary climate models remains a major challenge. A major dynamical influence on the structure of clouds is the passage of extratropical cyclones. They exert significant dynamical influences on the clouds in the dynamically active frontal regions as well as in the dynamically suppressed regions ahead and behind the cyclones. A cyclone compositing methodology is applied to a reanalysis and vertical profiles of cloudiness from CloudSat/CALIPSO to quantify the relationship between clouds and dynamics in extratropical cyclones over the Southern Ocean. It is found that the range of cloud fraction, vertical motion, and relative humidity changes considerably with height. There is a strong quasi-linear relationship between the three variables which changes with altitude. After establishing the observed relationships, the methodology is applied to the Australian Community Climate and Earth System Simulator to evaluate the model's ability to simulate the identified cloud-dynamics relationships. While the model is able to qualitatively reproduce the overall cloud structure, the circulation around the cyclone is generally too weak. As a result, the model fails to represent the observed cloud to dynamics relationship. This wrong relationship in the model leads to a misrepresentation of the cloud field manifested as either an error in the cloud fraction or as simulating the "right" clouds for the "wrong" reason. The result underscores the importance of relationship-oriented model evaluation techniques over simple right or wrong assessments.

  20. Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Directory of Open Access Journals (Sweden)

    V. Romaniello

    2007-06-01

    Full Text Available Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m by means of a Ground-Based Millimeter-wave Spectrometer (GBMS. Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km

  1. P- and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: Implications for seismic Moho discontinuity attributed to abundant garnet

    Science.gov (United States)

    Kono, Yoshio; Ishikawa, Masahiro; Harigane, Yumiko; Michibayashi, Katsuyoshi; Arima, Makoto

    2009-03-01

    P- (Vp) and S-wave (Vs) velocities of garnet-free (two-pyroxene granulite) and garnet-bearing (garnet granulite and garnet pyroxenite) lowermost crustal rocks collected from the Kohistan arc, northern Pakistan, were measured at 0.1-1.0 GPa and 25-400 °C. Garnet granulite had higher Vp (+ 0.31 km/s) and Vs (+ 0.27 km/s) than two-pyroxene granulite. Although Vp and Vs increased with increasing volume percent of garnet, plagioclase-free garnet pyroxenite showed significantly higher Vp and Vs than plagioclase-rich garnet granulite mainly due to the low Vp and Vs of plagioclase. In contrast, we observed two quasi-linear relationships between Vp (Vs) and SiO 2 content for the garnet-bearing and garnet-free rocks. The garnet-bearing rocks had relatively higher Vp and Vs and stronger SiO 2 dependences than the garnet-free rocks. The stronger SiO 2 dependences of Vp and Vs in the garnet-bearing rocks suggest that the garnet formation in mafic to ultramafic rocks (e.g., pyroxenite and hornblendite), having relatively lower SiO 2, leads to more pronounced increases in Vp and Vs than that of relatively felsic rocks (e.g., felsic-to-mafic granulite). Indeed, the Vp and Vs of the garnet pyroxenite were significantly higher than those of garnet granulite but comparable to those of dunite. The significantly high Vp and Vs of the garnet pyroxenite yielded high reflection coefficients between the garnet granulite and garnet pyroxenite of up to 0.13 for P-waves and 0.14 for S-waves, comparable to values expected for Moho reflection. Thus the lithological boundary between plagioclase-rich garnet granulite and plagioclase-free garnet pyroxenite in the lowermost crust of the Kohistan arc corresponds to the seismic Moho discontinuity.

  2. Exploring post-cold frontal moisture transport in an idealized extratropical cyclone study

    Science.gov (United States)

    Sheffield, Amanda Marie

    Moisture transport in extratropical cyclones (ETCs) has been studied in the past in the context of the warm conveyor belt (WCB), a 'conveyor belt' transferring moisture from the warm sector boundary layer to the free troposphere both eastward and poleward of the warm front. Recent research has highlighted a different, potentially important mechanism of transporting water vapor in ETCs by post-cold frontal (PCF) clouds. PCF clouds are typically boundary layer cumulus clouds located in the cold sector of an ETC that transfer moisture to the free troposphere through convective-evaporative processes. Recent studies have suggested that these PCF cumuli may vertically transport nearly equivalent amounts of moisture as the WCB. Therefore, not only are these PCF cumuli important in venting the PCF boundary layer, they also play a role in limiting the amount of moisture available for convergence in the source region of the WCB. This limitation can have important consequences for regional weather and climate through its impact on the timing and location of precipitation, the three-dimensional redistribution of water vapor, and the distribution of clouds within ETCs. The goal of this study is to investigate the role of PCF clouds in the moisture transport of an ETC, and the impacts of environmental factors such as SST and aerosol loading on this transport role. We have achieved this goal through the use of numerical simulations of such a storm system. Previous studies have utilized model simulations with relatively coarse grid resolutions and convective parameterization schemes. Here, we simulate a wintertime ETC over the Pacific Ocean using high spatial and temporal resolution, advanced microphysics and explicitly resolved convection. The results of this research demonstrate that PCF cumuli are found to vertically ventilate BL moisture over an expansive region behind the cold front. The free tropospheric moisture contents and stability profile of the cold sector exert a

  3. The impact of the stratosphere on tropospheric climate

    NARCIS (Netherlands)

    Hinssen, Y.B.L.

    2010-01-01

    The stratospheric potential vorticity (PV) field in the current climate, its variations around the occurrence of a sudden stratospheric warming, and possible future changes are examined. The PV presents a compact way to describe the state of the atmosphere, and is linked to all other dynamical field

  4. Stratospheric aluminum oxide. [possibly from solid-fuel rocket exhausts

    Science.gov (United States)

    Brownlee, D. E.; Tomandl, D.; Ferry, G. V.

    1976-01-01

    Balloons and U-2 aircraft were used to collect micrometer-sized stratospheric aerosols. It was discovered that for the past 6 years at least, aluminum oxide spheres have been the major stratospheric particulate in the size range from 3 to 8 micrometers. The most probable source of the spheres is the exhaust from solid-fuel rockets.

  5. A New Connection Between Greenhouse Warming and Stratospheric Ozone Depletion

    Science.gov (United States)

    Salawitch, R.

    1998-01-01

    The direct radiative effects of the build-up of carbon dioxide and other greenhouse gases have led to a gradual cooling of the stratosphere with largest changes in temperature occurring in the upper stratosphere, well above the region of peak ozone concentration.

  6. Detection of deep stratospheric intrusions by cosmogenic 35S

    Science.gov (United States)

    Lin, Mang; Su, Lin; Shaheen, Robina; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-10-01

    The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic 35S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high 35S concentrations (7,390 atoms m-3; ˜16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced 35S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that 35S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level.

  7. Detection of deep stratospheric intrusions by cosmogenic 35S.

    Science.gov (United States)

    Lin, Mang; Su, Lin; Shaheen, Robina; Fung, Jimmy C H; Thiemens, Mark H

    2016-10-04

    The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic (35)S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high (35)S concentrations (7,390 atoms m(-3); ∼16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced (35)S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that (35)S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level.

  8. Odin stratospheric proxy NOy measurements and climatology

    Directory of Open Access Journals (Sweden)

    D. Murtagh

    2008-03-01

    Full Text Available Five years of OSIRIS (Optical Spectrograph and InfraRed Imager System NO2 and SMR (Sub-Millimetre Radiometer HNO3 observations from the Odin satellite, combined with data from a photochemical box model, have been used to construct a stratospheric proxy NOy data set including the gases: NO, NO2, HNO3, 2×N2O5 and CIONO2. This Odin NOy climatology is based on all daytime measurements and contains monthly mean and standard deviation, expressed as mixing ratio or number density, as function of latitude or equivalent latitude (5° bins on 17 vertical layers (altitude, pressure or potential temperature between 14 and 46 km. Comparisons with coincident NOy profiles from the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE-FTS instrument were used to evaluate several methods to combine Odin observations with model data. This comparison indicates that the most appropriate merging technique uses OSIRIS measurements of NO2, scaled with model NO/NO2 ratios, to estimate NO. The sum of 2×N2O5 and CIONO2 is estimated from uncertainty-based weighted averages of scaled observations of SMR HNO3 and OSIRIS NO2. Comparisons with ACE-FTS suggest the precision (random error and accuracy (systematic error of Odin NOy profiles are about 15% and 20%, respectively. Further comparisons between Odin and the Canadian Middle Atmosphere Model (CMAM show agreement to within 20% and 2 ppb throughout most of the stratosphere except in the polar vortices. A particularly large disagreement within the Antarctic vortex in the upper stratosphere during spring indicates too strong descent of air in CMAM. The combination of good temporal and spatial coverage, a relatively long data record, and good accuracy and precision make this a valuable NOy product for various atmospheric studies and model assessments.

  9. On particles in the Arctic stratosphere

    Directory of Open Access Journals (Sweden)

    T. S. Jørgensen

    2003-06-01

    Full Text Available Soon after the discovery of the Antarctic ozone hole it became clear that particles in the polar stratosphere had an infl uence on the destruction of the ozone layer. Two major types of particles, sulphate aerosols and Polar Stratospheric Clouds (PSCs, provide the surfaces where fast heterogeneous chemical reactions convert inactive halogen reservoir species into potentially ozone-destroying radicals. Lidar measurements have been used to classify the PSCs. Following the Mt. Pinatubo eruption in June 1991 it was found that the Arctic stratosphere was loaded with aerosols, and that aerosols observed with lidar and ozone observed with ozone sondes displayed a layered structure, and that the aerosol and ozone contents in the layers frequently appeared to be negatively correlated. The layered structure was probably due to modulation induced by the dynamics at the edge of the polar vortex. Lidar observations of the Mt. Pinatubo aerosols were in several cases accompanied by balloon-borne backscatter soundings, whereby backscatter measurements in three different wavelengths made it possible to obtain information about the particle sizes. An investigation of the infl uence of synoptic temperature histories on the physical properties of PSC particles has shown that most of the liquid type 1b particles were observed in the process of an ongoing, relatively fast, and continuous cooling from temperatures clearly above the nitric acid trihydrate condensation temperature (TNAT. On the other hand, it appeared that a relatively long period, with a duration of at least 1-2 days, at temperatures below TNAT provide the conditions which may lead to the production of solid type 1a PSCs.

  10. Titan's south polar stratospheric vortex evolution

    Science.gov (United States)

    Teanby, Nicholas A.; Vinatier, Sandrine; Sylvestre, Melody; de Kok, Remco; Nixon, Conor; Irwin, Patrick Gerard Joseph

    2016-10-01

    Titan experienced northern spring equinox in August 2009 when the south polar region was plunged into perpetual darkness. Following equinox, the south pole experienced the most extreme changes in stratospheric behaviour ever observed: the global stratospheric circulation cell reversed direction (Teanby et al 2012), HCN ice clouds (de Kok et al 2014) and other exotic condensates appeared over the south pole (Jennings et al 2015, West et al 2016), and significant composition and temperature changes occurred (Vinatier et al 2015, Teanby et al 2015, Coustenis et al 2016). Here we use Cassini CIRS limb and nadir observations from 2004-2016 to investigate the evolution of south polar stratospheric temperature and composition in the post-equinox period. Reversal following equinox was extremely rapid, taking less than 6 months (1/60th of a Titan year), which resulted in an initial adiabatic polar hot spot and increased trace gas abundances (Teanby et al 2012). However, rather than develop this trend further as winter progressed, Titan's polar hot spot subsequently disappeared, with the formation of a polar cold spot. Recently in late 2015 / early 2016 a more subdued hotspot began to return with associated extreme trace gas abundances. This talk will reveal the rapid and significant changes observed so far and discuss implications for possible polar feedback mechanisms and Titan's atmospheric dynamics.Coustenis et al (2016), Icarus, 270, 409-420.de Kok et al (2014), Nature, 514, 65-67.Jennings et al (2015), ApJL, 804, L34.Teanby et al (2012), Nature, 491, 732-735.Teanby et al (2015), DPS47, National Harbor, 205.02.Vinatier et al (2015), Icarus, 250, 95-115.West et al (2016), Icarus, 270, 399-408.

  11. Stratospheric electric field measurements with transmediterranean balloons

    Science.gov (United States)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  12. Photochemistry of materials in the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.S. [Lawrence Berkeley Laboratories, CA (United States)

    1993-12-01

    This research is concerned with global change in the atmosphere, including photochemical modeling and, in the past, experimental gas-phase photochemistry involving molecular dynamics and laboratory study of atmospheric chemical reactions. The experimental work on this project concluded in August 1991, but there is a back-log of several journal articles to be written and submitted for publication. The theoretical work involves photochemical modeling in collaboration with Lawrence Livermore National Laboratory (LLNL) and advising the Upper Atmosphere Research Program on Atmospheric Effects of Stratospheric Aircraft, National Aeronautics and Space Administration (NASA).

  13. Condensation in Saturn's Stratospheric Haze Layers

    Science.gov (United States)

    Barth, Erika L.; Moses, Julianne I.

    2016-10-01

    Haze particles in Saturn's stratosphere can be seen in the visible limb images of Cassini's Imaging Science Subsystem (ISS). These hazes are likely a mix of particles, including solid organics formed as a result of methane photolysis and electron deposition, as well as the condensation of water and hydrocarbon ices. We have examined data from both Cassini and Voyager to study the detailed vertical structure of absorbing/scattering particulates in Saturn's stratosphere and developed a Saturn version of the Community Aerosol and Radiation Model for Atmospheres (CARMA), adding a large database of hydrocarbons that are observed or expected to be present in Saturn's atmosphere.Our modeling indicates that water ice condenses independently of the hydrocarbons to form a thin layer above the 0.1 mbar pressure level. Between about 5 and 50 mbar, the hydrocarbons reach their condensation levels (in order of increasing pressure level): C6H6, C5H12, C4H2, C4H10, and C2H2. Because of the proximity of their condensation levels and due to the gravitational settling of the particles, the hydrocarbons are likely condensing on one another and forming a thicker layer of mixed composition. Interestingly, butane (C4H10) has a triple point around 135 K which is much lower than most of the other condensing species we've explored. Given an approximate condensation level of 10 mbar and the observed temperature changes at this pressure level following the December 2010 northern-hemisphere storm (stratospheric temperatures were elevated by as much as 50-70 K in a region near 40° N latitude.), melting and further nucleation of droplets could be occurring.A number of factors including temperature profile, vapor pressure equation, volatile abundance, nucleation critical saturation, and coagulation efficiency will affect the altitudes of the individual ice layers. We will present a summary of results following the nucleation and growth of compounds in order to quantify the likely size and

  14. Helium and neon isotopes in stratospheric particles

    Science.gov (United States)

    Nier, A. O.; Schlutter, D. J.

    1990-01-01

    He and Ne isotope ratios were determined for 16 interplanetary dust particles (IDPs) collected in the stratosphere. The observed He concentration varied greatly from particle to particle, with the highest values approaching those found for lunar surface fines and some gas-rich meteorites. The average Ne-20/Ne-22 ratio was 12.0 + or - 0.5. The data suggest that the observed IDPs could have entered the atmosphere at relatively low velocities, and hence may be primarily of asteroidal rather than cometary origin.

  15. Stratospheric composition from balloon based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mencaraglia, F.; Carli, B. [Ist. per le Ricerche sulle Onde Elettromagnetiche, Firenze (Italy); Bonetti, A.; Ciarpallini, P. [Univ. di Firenze (Italy); Carlotti, M.; Lepri, G. [Univ. di Bologna (Italy); Alboni, F.; Cortesi, U.; Ridolfi, M. [Fondazione per la Metereologia Applicata, Firenze (Italy)

    1995-12-31

    Measurements of the composition of the earth`s atmosphere is of fundamental importance for the study of atmospheric chemistry and for developing models that can predict the evolution of the atmosphere itself. Here, the chemical composition of the lower stratosphere has been measured using a polarizing interferometer operating in the far infrared and submillimetric spectral region. The instrument was flown three times (in 1992, 1993 and 1994) from the NSBF balloon base (Fort Sumner, New Mexico) in coincidence with overpasses of the UARS satellite, for a total of about 50 hours of measurements. In this paper the authors report some of the results obtained from the data analysis made up to now.

  16. Hurricane Force Winds in Explosive Maritime Extratropical Cyclones: A Modeling and Observational Study of Their Evolution and Dynamics

    Science.gov (United States)

    Albright, Benjamin Scott

    Extratropical cyclones can be as powerful as tropical cyclones with winds reaching 33 m s-1 or even stronger. They can also be very large in scale, and impact life and property on the oceans as well as over the land if the storms make a landfall. Two conceptual models exist that attempt to explain how the extreme winds in the bent-back frontal zone of these cyclones occur. The first is a jet associated with the cold conveyor belt and the second is through a phenomenon known as a sting jet. Some of the objectives this thesis will address are: (1) The role of gradient wind is during the life-cycle of the cyclone, (2) how model results compare to actual observations, and (3) if the sting jet or cold conveyor belt jet are the only causes for high winds within the bent-back frontal zone, among others. This thesis will examine two case studies of extreme, extratropical cyclones that occurred over the North Atlantic Ocean. Extensive observations including dropsondes, Stepped Frequency Microwave Radiometer (SFMR) measurements from a NOAA WP-3D aircraft and satellite scatterometer measurements are used to compare with modeled results of the two case studies. The Weather Research and Forecasting (WRF) Model Version 3.4.1 and the NOAA Environmental Modeling System (NEMS) NMM-B Launcher are used to model the two case studies and for high resolution and sensitivity testing. Trajectories calculated by the Read/Interpolate/Plot program and cross sections are additional tools used in the study. Some of the major conclusions included identifying sting jets in each storm but they were found not to be the major cause of the highest winds within the bent-back frontal zone. A secondary stream of air that accelerates from the west of the rapidly intensifying cyclone into a low-level jet located within a larger pressure gradient force and thermal gradient was found to be the major source of the high winds. It is suggested that the findings and conclusions based on the results of this

  17. Internal structure of ex-Typhoon Phanfone (2014) under an extratropical transition as observed by the research vessel Mirai

    Science.gov (United States)

    Katsumata, Masaki; Mori, Shuichi; Geng, Biao; Inoue, Jun

    2016-09-01

    The internal structure of Typhoon Phanfone (2014) undergoing "extratropical transition" over ocean was captured from the research vessel Mirai. The observed time series from world first shipboard polarimetric weather radar and frequent radiosonde launches revealed both dynamic and thermodynamic structure simultaneously in detail for four phases: cirrus shield, warm front, precipitation core, and western flank. To the east of the low-pressure center, a warm front developed along the midlatitude baroclinic zone. In the eastern vicinity of the center, remnants of the warm core worked to enhance precipitation through convergence and frontogenesis against cold ambient air. This frontogenesis and related latent heating/cooling are suggested to maintain/enhance convection in these phases. In contrast, the warm core suppressed convection in the northern/western vicinity of the low-pressure center.

  18. Modulation of air-sea fluxes by extratropical planetary waves and its impact during the recent surface warming slowdown

    Science.gov (United States)

    Molteni, Franco; Farneti, Riccardo; Kucharski, Fred; Stockdale, Timothy N.

    2017-02-01

    It is widely accepted that natural decadal variability played a major role in the slowdown in global warming observed in the 21st century, with sea surface cooling in the tropical Pacific recognized as a major contributor. However, the warming pause was most pronounced during boreal winter, with Northern Hemisphere flow anomalies also playing a role. Here we quantify the contribution of extratropical heat exchanges by comparing geopotential and temperature anomalies simulated by ensembles of seasonal forecasts with similar ocean temperature but different heat fluxes north of 40°N, as a result of planetary wave variability. We show that an important part of heat flux anomalies is associated with decadal variations in the phase of a specific planetary wave pattern. In model simulations covering the last three decades, this variability pattern accounts for a decrease of 0.35°C/decade in the post-1998 wintertime temperature trend over northern continents.

  19. On the role of extratropical air-sea interaction in the persistence of the Southern Annular Mode

    Science.gov (United States)

    Xiao, Bei; Zhang, Yang; Yang, Xiu-Qun; Nie, Yu

    2016-08-01

    Using the daily atmosphere and ocean reanalysis data, this study highlights the role of extratropical air-sea interaction in the variability of the Southern Annular Mode (SAM). Our analysis shows that the SAM-induced meridional dipolar sea surface temperature (SST) anomalies, through surface heat fluxes, can maintain persistent lower tropospheric temperature anomalies, which further results in anomalous eddy momentum forcing enhancing the persistence of the SAM. With the Finite Amplitude Wave Activity diagnosis, we illustrate that response of the eddy momentum forcing to SST anomalies can be attributed to changes in both baroclinic processes as baroclinic eddy generation and barotropic processes as wave breaking thus resultant diffusive eddy mixing, with the former confined at high latitudes and the latter strongest at midlatitudes. Spectral analysis further suggests that the above air-sea interactions are important for bimonthly and longer time scale SAM variations. The dipolar SST pattern may be an indicator for predicting subseasonal and interseasonal variabilities of the SAM.

  20. NUMERICAL EXPERIMENTS OF EFFECT OF SSTA OVER THE INDIAN OCEAN ON ATMOSPHERIC LOW-FREQUENCY OSCILLATION IN THE EXTRATROPICAL LATITUDE

    Institute of Scientific and Technical Information of China (English)

    QIU Ming-yu; LU Wei-song; CHEN Hui-lin; CAI Qin-bo

    2007-01-01

    Numerical experiments on forcing dissipation and heating response of dipole (unipole) are carried out using global spectral models with quasi-geostrophic barotropic vorticity equations. For each experiment nodel integration is run for 90 days on the condition of three-wave quasi-resonance. The results are given as follows: Under the effects of dipole (unipole) forcing source and basic flow intensity, there exist strong interactions among the three planetary waves and quasi-biweekly and intraseasonal oscillation of the three planetary waves. In the meantime, the changes in the intensity of dipole or unipole forcing source and basic flow have different frequency modulation effects on LFO in the middle and higher latitudes.The results of the stream function field of three quasi-resonant waves evolving with time confirm that the low-frequency oscillation exists in extratropical latitude.

  1. Detection of Propene in Titan's Stratosphere

    CERN Document Server

    Nixon, Conor A; Bezard, Bruno; Vinatier, Sandrine; Teanby, Nicholas A; Sung, Keeyoon; Ansty, Todd M; Irwin, Patrick G J; Gorius, Nicolas; Cottini, Valeria; Coustenis, Athena; Flasar, F Michael

    2013-01-01

    The Voyager 1 flyby of Titan in 1980 gave a first glimpse of the chemical complexity of Titan's atmosphere, detecting many new molecules with the infrared spectrometer (IRIS). These included propane (C3H8) and propyne (CH3C2H), while the intermediate-sized C3Hx hydrocarbon (C3H6) was curiously absent. Using spectra from the Composite Infrared Spectrometer (CIRS) on Cassini, we show the first positive detection of propene (C3H6) in Titan's stratosphere (5-sigma significance), finally filling the three-decade gap in the chemical sequence. We retrieve a vertical abundance profile from 100-250 km, that varies slowly with altitude from ~2 ppbv at 100 km, to ~5 ppbv at 200 km. The abundance of C3H6 is less than both C3H8 and CH3C2H, and we remark on an emerging paradigm in Titan's hydrocarbon abundances whereby: alkanes > alkynes > alkenes within the C2Hx and C3Hx chemical families in the lower stratosphere. More generally, there appears to be much greater ubiquity and relative abundance of triple-bonded species th...

  2. Modeling survey of ices in Titan's stratosphere

    Science.gov (United States)

    Barth, Erika L.

    2017-03-01

    Processes in Titan's upper atmosphere, such as photochemical destruction of methane along with the destruction of nitrogen molecules from energetic electrons, result in the production of a number of hydrocarbon and nitrile compounds which are capable of condensing in the colder temperatures of Titan's mid to lower stratosphere. Stratospheric ices can contribute to the opacity of Titan's atmosphere as well as affect the chemistry of the more optically thick clouds seen in the troposphere, should they serve as condensation nuclei. We model the microphysics of a dozen trace species in Titan's atmosphere and show the resulting cloud properties. Clouds form and settle into layers between 50 and 80 km. Condensation timescales can be slow, with half the species only growing to a radius ≲ 1 μ m . Ethane cloud particles grow the largest with radii up to 20 μm. Factors such as the vapor pressure equation, nucleation rate, gas abundance, and temperature profile can have a significant effect on the appearance of the cloud particles. Though the data on optical constants is sparse for many of these ices, estimates show opacities of 10-5 -10-3 for visible wavelengths.

  3. Titan's zonal winds in its lower stratosphere

    Science.gov (United States)

    Flasar, F. Michael; Schinder, Paul J.

    2016-10-01

    Titan's atmosphere near 80 km (20 mbar) marks the transition between lower altitudes, where radiative damping times are large and seasonal variations are muted, and higher higher altitudes, where the damping times are much smaller and temperatures and winds vary significantly over the year. Cassini radio occultation soundings at high northern latitudes in winter have indicated a sharp transition from a highly stable temperature profile in the lower stratosphere to a layer between 80 and 100 km where temperatures decrease with altitude. The cause of this destabilization may be associated with the enhanced infrared opacity of a cloud of organic ices. It is curious that 20 mbar is also the level where the Doppler Wind Experiment on the Huygens Probe at 10° S observed a deep minimum in the zonal wind profile. Application of the gradient wind relation to the altitude-pressure profiles obtained from the Cassini radio occultation soundings have shown that this minimum is global. More recent soundings, obtained as Titan's southern hemisphere moves toward winter, indicate that this structure persists. The cause of this peculiar behavior is not really understood, but the the deceleration of the zonal winds observed in the lower stratosphere may be caused by radiative damping of vertically propagating atmospheric waves in a region where the damping time decreases rapidly with altitude.

  4. Detection of Propene in Titan's Stratosphere

    Science.gov (United States)

    Nixon, C. A.; Jennings, D. E.; Bézard, B.; Vinatier, S.; Teanby, N. A.; Sung, K.; Ansty, T. M.; Irwin, P. G. J.; Gorius, N.; Cottini, V.; Coustenis, A.; Flasar, F. M.

    2013-10-01

    The Voyager 1 flyby of Titan in 1980 gave a first glimpse of the chemical complexity of Titan's atmosphere, detecting many new molecules with the infrared interferometer spectrometer (IRIS). These included propane (C3H8) and propyne (CH3C2H), while the intermediate-sized C3H x hydrocarbon (C3H6) was curiously absent. Using spectra from the Composite Infrared Spectrometer on Cassini, we show the first positive detection of propene (C3H6) in Titan's stratosphere (5σ significance), finally filling the three-decade gap in the chemical sequence. We retrieve a vertical abundance profile from 100-250 km, that varies slowly with altitude from 2.0 ± 0.8 ppbv at 125 km, to 4.6 ± 1.5 ppbv at 200 km. The abundance of C3H6 is less than both C3H8 and CH3C2H, and we remark on an emerging paradigm in Titan's hydrocarbon abundances whereby alkanes > alkynes > alkenes within the C2H x and C3H x chemical families in the lower stratosphere. More generally, there appears to be much greater ubiquity and relative abundance of triple-bonded species than double-bonded, likely due to the greater resistance of triple bonds to photolysis and chemical attack.

  5. The extra-tropical NH temperature in the last two millennia: reconstructions of low-frequency variability

    Directory of Open Access Journals (Sweden)

    B. Christiansen

    2011-11-01

    Full Text Available We present two new multi-proxy reconstructions of the extra-tropical Northern Hemisphere (30–90° N mean temperature: a two-millennia long reconstruction reaching back to AD 1 based on 32 proxies and a 500-yr long reconstruction reaching back to AD 1500 based on 91 proxies. The proxies are of different types and of different resolutions (annual, annual-to-decadal, and decadal but all have previously been shown to relate to local or regional temperature. We use a reconstruction method, LOC, that recently has been shown to confidently reproduce low-frequency variability. Confidence intervals are obtained by an ensemble pseudo-proxy method that both estimates the variance and the bias of the reconstructions. The two-millennia long reconstruction shows a well defined Medieval Warm Period with a peak warming ca. AD 950–1050 reaching 0.7 °C relative to the reference period AD 1880–1960. The 500-yr long reconstruction confirms previous results obtained with the LOC method applied to a smaller proxy compilation; in particular it shows the Little Ice Age cumulating in AD 1580–1720 with a temperature minimum of −1.1 °C below the reference period. The reconstructed local temperatures, the magnitude of which are subject to wide confidence intervals, show a rather geographically homogeneous LIA while more geographical inhomogeneities are found for the Medieval Warm Period. Reconstructions based on different number of proxies show only small differences suggesting that LOC reconstructs 50-yr smoothed extra-tropical NH mean temperatures well and that low-frequency noise in the proxies is a relatively small problem.

  6. Magnetostratigraphy of the Lowermost Paleocene Fort Union Formation in the Williston Basin of North Dakota: Base of a Terrestrial Reference Section for Early Cenozoic Global Change

    Science.gov (United States)

    Peppe, D. J.; Evans, D. D.

    2006-05-01

    Within the North Dakota Little Missouri Badlands, a continuous succession of Cretaceous through lowermost Eocene age sediments exposes a nearly complete terrestrial Paleocene record. Using the K-T boundary as the basal datum, a ca.180 meter composite section of the lowermost Fort Union Formation has been constructed. Paleomagnetic samples that have been analyzed from this section demonstrate a series of geomagnetic reversals that can be correlated from C29r through C28n of the Geomagnetic Polarity Time Scale. Based on these paleomagnetic data, the mean sedimentation rates during the interval from the K-T boundary to the top of 28r are estimated to be ca. 100 m/Myr. These data have allowed us to calibrate the two tongues of the marine Cannonball Member to within C29n and C28r respectively, and identify a major change in the composition and dominant taxa in the megafloral record near the end of C28r. One potential implication of this result, pending further data analysis and correlations to fossil-bearing sections, is the temporal restriction of the Puercan-Torrejonian 1 North American Land Mammal "Ages" (NALMAs) by nearly a factor of two relative to previous estimates (i.e. from ca. 2 Myr to ca. 1 Myr). This would in turn suggest that post-extinction mammal speciation occurred twice as fast as previously supposed. The ultimate aim of this research is to develop a high-precision chronostratigraphic reference section for the Paleocene of the Rocky Mountain Region of North America using lithostratigraphy, magnetostratigraphy, pollen and megafloral biostratigraphy, chemostratigraphy, and chronostratigraphy, that can be used to determine the temporal extent of floral and faunal radiation after the Cretaceous-Paleogene extinctions, and to assess patterns of floral and faunal diversity and composition in response to numerous climatic changes. Furthermore, we hope to use this chronostratigraphic section for comparisons with contemporaneous sections worldwide, which will

  7. The contribution of ozone to future stratospheric temperature trends

    Science.gov (United States)

    Maycock, Amanda

    2017-04-01

    The projected recovery of ozone from the effects of ozone depleting substances this century will modulate the stratospheric cooling due to CO2, thereby affecting the detection and attribution of stratospheric temperature trends. Here the impact of future ozone changes on stratospheric temperatures is quantified for three representative concentration pathways (RCPs) using simulations from the Fifth Coupled Model Intercomparison Project (CMIP5). For models with interactive chemistry, ozone trends offset 50% of the global annual mean upper stratospheric cooling due to CO2 for RCP4.5 and 20% for RCP8.5 between 2006-2015 and 2090-2099. For RCP2.6, ozone trends cause a net warming of the upper and lower stratosphere. The misspecification of ozone trends for RCP2.6/RCP4.5 in models that used the International Global Atmospheric Chemistry (IGAC)/Stratosphere-troposphere Processes and their Role in Climate (SPARC) Ozone Database causes anomalous warming (cooling) of the upper (lower) stratosphere compared to chemistry-climate models. The dependence of ozone chemistry on greenhouse gas concentrations should therefore be better represented in CMIP6.

  8. Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation

    Science.gov (United States)

    Garfinkel, Chaim; silverman, vered; harnik, nili; Erlich, caryn

    2016-04-01

    Superposed epoch analysis of meteorological reanalysis data is used to demonstrate a significant connection between intraseasonal solar variability and temperatures in the stratosphere. Decreasing solar flux leads to a cooling of the tropical upper stratosphere above 7hPa, while increasing solar flux leads to a warming of the tropical upper stratosphere above 7hPa, after a lag of approximately six to ten days. Late winter (February-March) Arctic stratospheric temperatures also change in response to changing incoming solar flux in a manner consistent with that seen on the 11 year timescale: ten to thirty days after the start of decreasing solar flux, the polar cap warms during the easterly phase of the Quasi-Biennal Oscillation. In contrast, cooling is present after decreasing solar flux during the westerly phase of the Quasi-Biennal Oscillation (though it is less robust than the warming during the easterly phase). The estimated composite mean changes in Northern Hemisphere upper stratospheric (~ 5hPa) polar temperatures exceed 8K, and are potentially a source of intraseasonal predictability for the surface. These changes in polar temperature are consistent with the changes in wave driving entering the stratosphere. Garfinkel, C.I., V. Silverman, N. Harnik, C. Erlich, Y. Riz (2015), Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation, J. Geophys. Res. Atmos., 120, 7648-7660. doi: 10.1002/2015JD023244.

  9. Processes Controlling Water Vapor in the Winter Arctic Stratospheric Middleworld

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry; Jensen, Eric; Sachse, Glenn; Podolske, James; Schoeberl, Mark; Browell, Edward; Ismail, Syed; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Water vapor in the winter arctic stratospheric middleworld is import-an: for two reasons: (1) the arctic middleworld is a source of air for the upper Troposphere because of the generally downward motion, and thus its water vapor content helps determine upper tropospheric water, a critical part of the earth's radiation budget; and (2) under appropriate conditions, relative humidities will be large, even to the point of stratospheric cirrus cloud formation, leading to the production of active chlorine species that could destroy ozone. On a number of occasions during SOLVE, clouds were observed in the stratospheric middleworld by the DC-8 aircraft. These tended to coincide with regions of low temperatures, though some cases suggest water vapor enhancements due to troposphere-to-stratosphere transport. The goal of this work is to understand the importance of processes in and at the edge of the arctic stratospheric middleworld in determining water vapor at these levels. Specifically, is water vapor at these levels determined largely by the descent of air from above, or are clouds both within and at the edge of the stratospheric middleworld potentially important? How important is troposphere-to-stratosphere transport of air in determining stratospheric middleworld water vapor content? To this end, we will first examine the minimum saturation mixing ratios along theta/EPV tubes during the SOLVE winter and compare these with DC-8 water vapor observations. This will be a rough indicator of how high relative humidities can get, and the likelihood of cirrus cloud formation in various parts of the stratospheric middleworld. We will then examine saturation mixing ratios along both diabatic and adiabatic trajectories, comparing these values with actual aircraft water vapor observations, both in situ and remote. Finally, we will attempt to actually predict water vapor using minimum saturation mixing ratios along trajectories, cloud injection (derived from satellite imagery) along

  10. Classification of extratropical cyclogenesis events based on a set of precursors

    Science.gov (United States)

    Graf, Michael; Sprenger, Michael; Wernli, Heini

    2014-05-01

    Many studies indicate a large variability of the relevant physical processes (so-called precursors) responsible for cyclogenesis. In this study, potential precursors for cyclogenesis are systematically and comprehensibly investigated on a statistical basis. For this reason, cyclones are objectively identified during the time period 2000-2011 in the ERA-interim dataset and then tracked along their life cycle. The starting points of these tracks are considered as the points of cyclogenesis. In the environment of these cyclogenesis locations a set of about 30 potential precursors is determined. The set includes the following parameters: (a) the surface conditions and fluxes (e.g., sensible and latent heat fluxes, sea surface temperature); (b) characteristic conditions in the troposphere (e.g., vertically integrated water vapor, amplitude of low-level potential vorticity); (c) measures of baroclinic and convective stability (e.g., horizontal temperature gradients, convective available potential energy, Eady growth rate); and (d) flow patterns and forcings from upper-tropospheric and stratospheric levels (e.g., jet streams and streaks, potential vorticity anomalies). In addition to simple Eulerian characterisations, more advanced diagnostic approaches are applied: Lagrangian backward trajectories, averaged time since oceanic moisture uptake of involved low-level air parcels, and layerwise quasi-geostrophic forcing for vertical motion. In the phase space of these potential precursors - determined for a multitude of cyclones and suitably normalized - a principal component analysis is performed. The first two principal components are used subsequently for the separation of the cyclogenesis events in nine classes. Composites of each class are constructed in order to represent the averaged spatial pattern of the precursors. This statistical approach reveals that the most important separating mechanisms are upper-level forcing and moist processes. They are to a large extent

  11. Stratospheric BrONO2 observed by MIPAS

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2008-11-01

    Full Text Available The first measurements of stratospheric bromine nitrate (BrONO2 are reported. Bromine nitrate has been clearly identified in atmospheric infrared emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS aboard the European Envisat satellite, and stratospheric concentration profiles have been determined for different conditions (day and night, different latitudes. The BrONO2 concentrations show strong day/night variations, with much lower concentrations during the day. Maximum volume mixing ratios observed during night are 20 to 25 pptv. The observed concentration profiles are in agreement with estimations from photochemical models and show that the current understanding of stratospheric bromine chemistry is generally correct.

  12. Stratospheric BrONO2 observed by MIPAS

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2009-03-01

    Full Text Available The first measurements of stratospheric bromine nitrate (BrONO2 are reported. Bromine nitrate has been clearly identified in atmospheric infrared emission spectra recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS aboard the European Envisat satellite, and stratospheric concentration profiles have been determined for different conditions (day and night, different latitudes. The BrONO2 concentrations show strong day/night variations, with much lower concentrations during the day. Maximum volume mixing ratios observed during night are 20 to 25 pptv. The observed concentration profiles are in agreement with estimations from photochemical models and show that the current understanding of stratospheric bromine chemistry is generally correct.

  13. A brief history of stratospheric ozone research

    Directory of Open Access Journals (Sweden)

    Rolf Müller

    2009-03-01

    Full Text Available Ozone is one of the most important trace species in the atmosphere. Therefore, the history of research on ozone has also received a good deal of attention. Here a short overview of ozone research (with a focus on the stratosphere is given, starting from the first atmospheric measurements and ending with current developments. It is valuable to study the history of ozone research, because much can be learned for current research from an understanding of how previous discoveries were made. Moreover, since the 1970s, the history of ozone research has also encompassed also the history of the human impact on the ozone layer and thus the history of policy measures taken to protect the ozone layer, notably the Montreal Protocol and its amendments and adjustments. The history of this development is particularly important because it may serve as a prototype for the development of policy measures for the protection of the Earth's climate.

  14. Stratospheric Ozone: Transport, Photochemical Production and Loss

    Science.gov (United States)

    Douglass, A. R.; Kawa, S. R.; Jackman, C. H.

    2003-01-01

    Observations from various satellite instruments (e.g., Total Ozone Mapping Spectrometer (TOMS), Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)) specify the latitude and seasonal variations of total ozone and ozone as a function of altitude. These seasonal variations change with latitude and altitude partly due to seasonal variation in transport and temperature, partly due to differences in the balance between photochemical production and loss processes, and partly due to differences in the relative importance of the various ozone loss processes. Comparisons of modeled seasonal ozone behavior with observations test the following: the seasonal dependence of dynamical processes where these dominate the ozone tendency; the seasonal dependence of photochemical processes in the upper stratosphere; and the seasonal change in the balance between photochemical and dynamical processes.

  15. Polar stratospheric clouds and ozone depletion

    Science.gov (United States)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  16. Stratonauts pioneers venturing into the stratosphere

    CERN Document Server

    Ehrenfried, Manfred "Dutch"

    2014-01-01

    Stratonauts chronicles humankind’s quest for ever higher altitudes from ancient times to the present. It is based upon history, science and technology, and tells some interesting and fascinating stories along the way. It pays tribute to those killed while attempting to reach the stratosphere over the past several centuries.   “Dutch” von Ehrenfried uses his personal experience as a NASA sensor operator on the RB-57F, flying to an altitude of 70,000 feet, as well as the input and experience from other RB-57F, U-2, A-12, SR-71 and F-104 pilots. Although many of the aircraft and balloons are described, more emphasis is placed on the crews and what they went through. This book is intended for aviators of all kinds and flying enthusiasts in general.

  17. Stratospheric sulfate geoengineering impacts on global agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  18. Odin stratospheric proxy NOy measurements and climatology

    Directory of Open Access Journals (Sweden)

    D. Murtagh

    2008-10-01

    Full Text Available Five years of OSIRIS (Optical Spectrograph and InfraRed Imager System NO2 and SMR (Sub-millimetre and Millimetre Radiometer HNO3 observations from the Odin satellite, combined with data from a photochemical box model, have been used to construct a stratospheric proxy NOy data set including the gases: NO, NO2, HNO3, 2×N2O5 and ClONO2. This Odin NOy climatology is based on all daytime measurements and contains monthly mean and standard deviation, expressed as mixing ratio or number density, as function of latitude or equivalent latitude (5° bins on 17 vertical layers (altitude, pressure or potential temperature between 14 and 46 km. Comparisons with coincident NOy profiles from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS instrument were used to evaluate several methods to combine Odin observations with model data. This comparison indicates that the most appropriate merging technique uses OSIRIS measurements of NO2, scaled with model NO/NO2 ratios, to estimate NO. The sum of 2×N2O5 and ClONO2 is estimated from uncertainty-based weighted averages of scaled observations of SMR HNO3 and OSIRIS NO2. Comparisons with ACE-FTS suggest the precision (random error and accuracy (systematic error of Odin NOy profiles are about 15% and 20%, respectively. Further comparisons between Odin and the Canadian Middle Atmosphere Model (CMAM show agreement to within 20% and 2 ppb throughout most of the stratosphere except in the polar vortices. The combination of good temporal and spatial coverage, a relatively long data record, and good accuracy and precision make this a valuable NOy product for various atmospheric studies and model assessments.

  19. Stratospheric Aerosols for Solar Radiation Management

    Science.gov (United States)

    Kravitz, Ben

    SRM in the context of this entry involves placing a large amount of aerosols in the stratosphere to reduce the amount of solar radiation reaching the surface, thereby cooling the surface and counteracting some of the warming from anthropogenic greenhouse gases. The way this is accomplished depends on the specific aerosol used, but the basic mechanism involves backscattering and absorbing certain amounts of solar radiation aloft. Since warming from greenhouse gases is due to longwave (thermal) emission, compensating for this warming by reduction of shortwave (solar) energy is inherently imperfect, meaning SRM will have climate effects that are different from the effects of climate change. This will likely manifest in the form of regional inequalities, in that, similarly to climate change, some regions will benefit from SRM, while some will be adversely affected, viewed both in the context of present climate and a climate with high CO2 concentrations. These effects are highly dependent upon the means of SRM, including the type of aerosol to be used, the particle size and other microphysical concerns, and the methods by which the aerosol is placed in the stratosphere. SRM has never been performed, nor has deployment been tested, so the research up to this point has serious gaps. The amount of aerosols required is large enough that SRM would require a major engineering endeavor, although SRM is potentially cheap enough that it could be conducted unilaterally. Methods of governance must be in place before deployment is attempted, should deployment even be desired. Research in public policy, ethics, and economics, as well as many other disciplines, will be essential to the decision-making process. SRM is only a palliative treatment for climate change, and it is best viewed as part of a portfolio of responses, including mitigation, adaptation, and possibly CDR. At most, SRM is insurance against dangerous consequences that are directly due to increased surface air

  20. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  1. Natural and anthropogenic perturbations of the stratospheric ozone layer

    Science.gov (United States)

    Brasseur, Guy P.

    1992-01-01

    The paper reviews potential causes for reduction in the ozone abundance. The response of stratospheric ozone to solar activity is discussed. Ozone changes are simulated in relation with the potential development of a fleet of high-speed stratospheric aircraft and the release in the atmosphere of chlorofluorocarbons. The calculations are performed by a two-dimensional chemical-radiative-dynamical model. The importance of heterogeneous chemistry in polar stratospheric clouds and in the Junge layer (sulfate aerosol) is emphasized. The recently reported ozone trend over the last decade is shown to have been largely caused by the simultaneous effects of increasing concentrations of chlorofluorocarbons and heterogeneous chemistry. The possibility for a reduction in stratospheric ozone following a large volcanic eruption such as that of Mount Pinatubo in 1991 is discussed.

  2. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    NARCIS (Netherlands)

    Steinbrecht, W; Claude, H; Schönenborn, F; McDermid, I S; Leblanc, T; Godin, S; Song, T; Swart, D P J; Meijer, Y J; Bodeker, G E; Connor, B J; Kämpfer, N; Hocke, K; Calisesi, Y; Schneider, N; Noë, J de la; Parrish, A D; Boyd, I S; Brühl, C; Steil, B; Giorgetta, M A; Manzini, E; Thomason, L W; Zawodny, J M; McCormick, M P; Russell, J M; Bhartia, P K; Stolarski, R S; Hollandsworth-Frith, S M

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas

  3. Source regions of stratospheric VSLS in the Indian Ocean

    Science.gov (United States)

    Quack, Birgit; Hepach, Helmke; Atlas, Elliot; Bracher, Astrid; Endres, Sonja; Arevalo-Martinez, Damian; Bange, Hermann; Lennartz, Sinikka; Steinhoff, Tobias; Booge, Dennis; Zarvasky, Alexander; Marandino, Christa; Patey, Matt; Achterberg, Eric; Dengler, Markus; Fiehn, Alina; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated very-short-lived substances (VSLS), which are naturally produced in the ocean, play a significant role in present day ozone depletion, in particular in combination with enhanced stratospheric sulfate aerosol, which is also partly derived from oceanic VSLS. The decline of anthropogenic chlorine in the stratosphere within the 21st century will increase the relative importance of the natural emissions on stratospheric ozone destruction. Especially, oceanic sources and source regions of the compounds need to be better constrained, in order to improve the future prediction. During boreal summer the Asian monsoon circulation transports air masses from the Indian Ocean to the stratosphere, while the contribution of VSLS from this ocean to stratospheric halogen and sulfur is unknown. During the research cruises SO 234/2 and SO 235 in July-August 2014 onboard RV SONNE oceanic and atmospheric halogenated VSLS such as bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) were measured in the subtropical and tropical West Indian Ocean for the first time. Here we present the oceanic sources of the halogenated compounds and their relation to other biogeochemical parameters (short- and longlived trace gases, phytoplankton and nutrients) along the cruise track, which covered coastal, upwelling and open ocean regimes and the Seychelles-Chagos thermocline ridge as important source region for stratospheric bromine.

  4. Stratospheric Annular Modes Induced By Stationary Wave Forcing

    Science.gov (United States)

    Körnich, H.; Schmitz, G.

    The variability of the winter stratosphere shows distinguishable features in the north- ern and southern hemisphere. Since these differences are based on the different plan- etary waves of the underlying atmosphere, we explore the mechanism how stationary wave forcing in the troposphere can induce a stratospheric Annular Mode using a simple GCM. The model KMCM (Kühlungsborn Mechanistic Circulation Model) extends from the ground up to 60 km height and produces a reasonable winter climate. It takes into account the different large-scale wave forcings in the troposphere as prescribed pro- cesses. This allows us to examine the stratospheric Annular-Mode generation depend- ing on different wave forcings under perpetual January conditions. Principal com- ponent analysis is applied to identify the variability patterns of the geopotential and of the zonally averaged zonal wind. By this way, it is shown that the amplitude and composition of the orographic and thermal eddy forcing determines the stratospheric Annular Mode and the related downward propagation in the temperature field. Further model simplifications are introduced in order to understand the mechanism of the stratospheric AM-generation. Using a linear model version we illuminate the influence of the different wave forcing processes on the Annular Modes. Addition- ally, a constant-troposphere model is used to clarify the importance of transient and stationary waves. Finally, the Annular Mode is interpreted in terms of the dynamical coupling of the troposphere and stratosphere.

  5. The synoptic-scale evolution during the extratropical transition of Irene (2011), Sandy (2012), and Andrea (2013)

    Science.gov (United States)

    Towey, Katherine Lorraine

    Tropical cyclones (TCs) of varying shapes, sizes, and intensities form in nearly every ocean basin and can potentially impact heavily populated areas, threatening human life and property. As a TC moves poleward, it can interact with a variety of synoptic-scale features, which results in either the dissipation of the TC or a transition into an extratropical cyclone (EXTC) through the process of extratropical transition (ET). Given an ideal synoptic-scale setup, a TC can transition into a fast-moving and rapidly developing EXTC, which could extend TC-like conditions such as strong surface winds and intense rainfall over a broad area at high latitudes. In recent years, three TCs, Irene (2011), Sandy (2012), and Andrea (2013), transitioned to EXTCs while approaching the middle latitudes and subsequently impacted the Northeast as EXTCs. In order to analyze the ET of these TCs, the cyclone phase space, developed by Hart (2003), was utilized. This product aids in determining the structural evolution associated with ET in which a symmetric, warm-core TC transitions to an asymmetric, cold-core EXTC. Changes in the structure, motion, and intensity of TCs during ET are highly dependent on the midlatitude environment into which the TC moves. A variety of factors contribute to the intensity of the resultant EXTC, including xix the overall large-scale pattern, track of the TC, time of year, as well as the intensity of the TC and the frontal system with which the TC interacts. Synoptic-scale features were analyzed for three phases of evolution throughout the ET process: tropical phase, transition period, and post-tropical phase. The TCs were not influenced by the upper-level flow until shortly after the onset of transition. It was not until the mid-way point of the transition period when the TC circulation was incorporated into the flow and began to exhibit baroclinic features. Due to differing tracks and TC intensities, the synoptic-scale features analyzed in each phase vary

  6. The influence of an atmospheric Two-Way coupled model system on the predictability of extratropical cyclones

    Science.gov (United States)

    Schuster, Mareike; Thürkow, Markus; Weiher, Stefan; Kirchner, Ingo; Ulbrich, Uwe; Will, Andreas

    2016-04-01

    A general bias of global atmosphere ocean models, and also of the MPI-ESM, is an under-representation of the high latitude cyclone activity and an overestimation of the mid latitude cyclone activity in the North Atlantic, thus representing the extra-tropical storm track too zonal. We will show, that this effect can be antagonized by applying an atmospheric Two-Way Coupling (TWC). In this study we present a newly developed Two-Way Coupled model system, which is based on the MPI-ESM, and show that it is able to capture the mean storm track location more accurate. It also influences the sub-decadal deterministic predictability of extra-tropical cyclones and shows significantly enhanced skill compared to the "uncoupled" MPI-ESM standalone system. This study evaluates a set of hindcast experiments performed with said Two-Way Coupled model system. The regional model COSMO CLM is Two-Way Coupled to the atmosphere of the global Max-Plack-Institute Earth System Model (MPI-ESM) and therefore integrates and exchanges the state of the atmosphere every 10 minutes (MPI-TWC-ESM). In the coupled source region (North Atlantic), mesoscale processes which are relevant for the formation and early-stage development of cyclones are expected to be better represented, and therefore influence the large scale dynamics of the target region (Europe). The database covers 102 "uncoupled" years and 102 Two-Way Coupled years of the recent climate (1960-2010). Results are validated against the ERA-Interim reanalysis. Besides the climatological point of view, the design of this single model ensemble allows for an analysis of the predictability of the first and second leadyears of the hindcasts. As a first step to understand the improved predictability of cyclones, we will show a detailed analysis of climatologies for specific cyclone categories, sorted by season and region. Especially for cyclones affecting Europe, the TWC is capable to counteract the AOGCM's biases in the North Atlantic. Also

  7. The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution

    Science.gov (United States)

    Beirle, Steffen; Hörmann, Christoph; Jöckel, Patrick; Liu, Song; Penning de Vries, Marloes; Pozzer, Andrea; Sihler, Holger; Valks, Pieter; Wagner, Thomas

    2016-07-01

    The STRatospheric Estimation Algorithm from Mainz (STREAM) determines stratospheric columns of NO2 which are needed for the retrieval of tropospheric columns from satellite observations. It is based on the total column measurements over clean, remote regions as well as over clouded scenes where the tropospheric column is effectively shielded. The contribution of individual satellite measurements to the stratospheric estimate is controlled by various weighting factors. STREAM is a flexible and robust algorithm and does not require input from chemical transport models. It was developed as a verification algorithm for the upcoming satellite instrument TROPOMI, as a complement to the operational stratospheric correction based on data assimilation. STREAM was successfully applied to the UV/vis satellite instruments GOME 1/2, SCIAMACHY, and OMI. It overcomes some of the artifacts of previous algorithms, as it is capable of reproducing gradients of stratospheric NO2, e.g., related to the polar vortex, and reduces interpolation errors over continents. Based on synthetic input data, the uncertainty of STREAM was quantified as about 0.1-0.2 × 1015 molecules cm-2, in accordance with the typical deviations between stratospheric estimates from different algorithms compared in this study.

  8. Northern Hemisphere Stratospheric Polar Vortex Extremes in February under the Control of Downward Wave Flux in the Lower Stratosphere

    Institute of Scientific and Technical Information of China (English)

    WEI Ke; CHEN Wen

    2012-01-01

    Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.

  9. Impact of Stratospheric Ozone Distribution on Features of Tropospheric Circulation

    Science.gov (United States)

    Barodka, Siarhei; Krasouski, Aliaksandr; Mitskevich, Yaroslav; Shalamyansky, Arkady

    2016-04-01

    In this work we study connections between stratospheric ozone distribution and general circulation patterns in the troposphere and aim to investigate the causal relationship between them, including the practical side of the influence of stratospheric ozone on tropospheric medium-range weather and regional climate. Analysis of several decades of observational data, which has been performed at the A.I. Voeikov Main Geophysical Observatory, suggests a clear relation between the stratospheric ozone distribution, upper stratospheric temperature field and planetary-scale air-masses boundaries in the troposphere [1]. Furthermore, it has been shown that each global air-mass, which can be attributed to the corresponding circulation cell in a conceptual model of tropospheric general circulation, has a distinct "regime" of ozone vertical distribution in the stratosphere [1-3]. Proceeding from atmospheric reanalyses combined with satellite and ground-based observations, we study time evolution of the upper-level frontal zones (stationary fronts) with the relevant jet streams, which can be treated as boundaries of global air-masses, in connection with the tropopause height and distribution of ozone in the stratosphere. For that, we develop an algorithm for automated identification of jet streams, stationary fronts and tropopause surface from gridded data (reanalyses or modelling results), and apply it for several cases associated with rapid changes in the stratospheric temperature and ozone fields, including SSW events over Eastern Siberia. Aiming to study the causal relationship between the features of tropospheric circulation and changes in the stratospheric ozone field, we estimate the time lag between these categories of processes on different time scales. Finally, we discuss the possibility to use the elementary circulation mechanisms classification (by B.L. Dzerdzeevski) in connection with analysis of the stratospheric ozone field and the relevant stratosphere

  10. Stratosphere-troposphere coupling and the solar cycle

    Science.gov (United States)

    Black, R.; Whitesides, B.

    There is a surprisingly large amount of tropospheric climate variability that is linked to the solar cycle. This signal is manifested by annular temperature and wind anomaly structures in both the troposphere and stratosphere. The relatively strong variability in UV radiation observed during the solar cycle has focused attention on the impact of the solar cycle upon the stratosphere. This idea is confirmed in modeling studies which also indicate a climate response extending into the troposphere. Better knowledge of the dynamic linkages between the middle and lower atmosphere is essential in pursuing a mechanistic understanding of solar cycle-climate linkages. An overview is first provided of the key mechanisms that dynamically couple the stratosphere and troposphere. The direct and indirect means by which the stratosphere can influence tropospheric climate are emphasized. Direct downward influences include tropospheric circulation changes induced by latitudinal redistributions of mass and potential vorticity within the stratosphere. Indirect influences involve alterations in the vertical and meridional propagation of tropospheric Rossby waves, which in turn provide local wave forcings to the longitudinally averaged wind field. A statistical and diagnostic framework is then introduced for studying the dynamic coupling between the stratosphere and troposphere in association with the solar cycle. We hypothesize that the solar cycle provides dynamical influences to the tropospheric circulation via variations in the strength of the wintertime stratospheric polar vortex. Synoptic and dynamic atmospheric circulation structures linked to the solar cycle are first isolated using multivariate statistical analyses. Diagnostic analyses are then performed to answer the following questions: What are the relative importance of stratospheric and tropospheric dynamic structures in comprising tropospheric circulation anomalies? How do the propagation characteristics of tropospheric

  11. The Seasonal Timing of Stratospheric Sudden Warmings

    Science.gov (United States)

    Horan, Matthew; Reichler, Thomas

    2017-04-01

    We aim to diagnose causes for the differences in the seasonal distribution of stratospheric sudden warmings (SSWs) between reanalysis and models. Observations over the past 60 years indicate that most SSWs occur during mid-winter (January), but climate models tend to simulate the maximum number of SSWs during late-winter or early-spring. This discrepancy has led to the speculation that models might be flawed and that the simulation of a January maximum represents a measure of model performance. However, the relatively short observational record and rare occurrence of SSWs also implies considerable uncertainty in the observation derived result. The goal of this work is to understand the seasonal distribution of SSWs using a simple statistical model, to test the model using a variety of data sets, and to answer the questions when SSWs are most likely to occur and what the reasons for it are. Our analysis is based on Charlton and Polvani's (2007) criteria for SSWs and on the assumption that the polar vortex wind approximately follows a normal distribution. The statistical model successfully predicts the day-to-day variations in the empirically derived occurrence frequency of SSWs, demonstrating that the seasonal distribution of SSWs can be almost entirely understood in terms of the climatological seasonal cycle of the polar vortex wind. The statistical model indicates that the maximum frequency of SSWs in climate models and reanalysis occurs during late-winter, and not during mid-winter as implied by the observations. This strongly suggests that sampling uncertainty is responsible for the January maximum seen in the reanalysis and that the simulation of a January maximum does not represent a metric of model performance. The reason for the late-winter maximum is the decreasing strength of the polar vortex, making it more likely that the winds of the polar vortex reach the zero-threshold required by the WMO definition for SSWs. This further suggests that climatological

  12. A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: observing system simulation experiments

    Directory of Open Access Journals (Sweden)

    M. Höpfner

    2011-02-01

    Full Text Available This paper presents observing system simulation experiments (OSSEs to compare the relative capabilities of two geostationary thermal infrared (TIR instruments to monitor ozone (O3 and carbon monoxide (CO for air quality (AQ purposes over Europe. The originality of this study is to use OSSEs to assess how these infrared instruments can constrain different errors affecting AQ hindcasts and forecasts (emissions, meteorology, initial condition and the 3 parameters together. The first instrument (GEO-TIR has a configuration optimized to monitor O3 and CO in the lowermost tr posphere (LmT; defined to be the atmosphere between the surface and 3 km, and the second instrument (GEO-TIR2 is designed to monitor temperature and humidity. Both instruments measure radiances in the same spectral TIR band. Results show that GEO-TIR could have a significant impact (GEO-TIR is closer to the reference atmosphere than GEO-TIR2 on the analyses of O3 and CO LmT column. The value of the measurements for both instruments is mainly over the Mediterranean Basin and some impact can be found over the Atlantic Ocean and Northern Europe. The impact of GEO-TIR is mainly above 1 km for O3 and CO but can also improve the surface analyses for CO. The analyses of GEO-TIR2 show low impact for O3 LmT column but a significant impact (but lower than for GEO-TIR for CO above 1 km. The results of this study indicate the beneficial impact from an infrared instrument (GEO-TIR dedicated to monitoring O3 and CO concentrations in the LmT, and quantify the value of this information for constraining AQ models.

  13. In situ ∼2.0 Ma trees discovered as fossil rooted stumps, lowermost Bed I, Olduvai Gorge, Tanzania.

    Science.gov (United States)

    Habermann, Jörg M; Stanistreet, Ian G; Stollhofen, Harald; Albert, Rosa M; Bamford, Marion K; Pante, Michael C; Njau, Jackson K; Masao, Fidelis T

    2016-01-01

    The discovery of fossil rooted tree stumps in lowermost Lower Bed I from the western Olduvai Basin, Tanzania, age-bracketed by the Naabi Ignimbrite (2.038 ± 0.005 Ma) and Tuff IA (1.88 ± 0.05 Ma), provides the first direct, in situ, and to date oldest evidence of living trees at Olduvai Gorge. The tree relicts occur in an interval dominated by low-viscosity mass flow and braided fluvial sediments, deposited at the toe of a largely Ngorongoro Volcano-sourced volcaniclastic fan apron that comprised a widely spaced network of ephemeral braided streams draining northward into the Olduvai Basin. Preservation of the trees occurred through their engulfment by mass flows, post-mortem mold formation resulting from differential decay of woody tissues, and subsequent fluvially-related sediment infill, calcite precipitation, and cast formation. Rhizolith preservation was triggered by the interaction of root-induced organic and inorganic processes to form rhizocretionary calcareous root casts. Phytolith analyses were carried out to complete the paleoenvironmental reconstruction. They imply a pronounced seasonality and indicate a wooded landscape with grasses, shrubs, and sedges growing nearby, comparable to the low, open riverine woodland (unit 4c) along the Garusi River and tributaries in the Laetoli area. Among the tree stump cluster were found outsized lithic clasts and those consisting of quartzite were identified as Oldowan stone tool artifacts. In the context of hominin activity, the identification of wooded grassland in association with nearby freshwater drainages and Oldowan artifacts significantly extends our paleoenvironmental purview on the basal parts of Lower Bed I, and highlights the hitherto underrated role of the yet poorly explored western Olduvai Gorge area as a potential ecologically attractive setting and habitat for early hominins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A new global real-time Lagrangian diagnostic system for stratosphere-troposphere exchange: evaluation during a balloon sonde campaign in eastern Canada

    Directory of Open Access Journals (Sweden)

    M. S. Bourqui

    2012-03-01

    Full Text Available A new global real-time Lagrangian diagnostic system for stratosphere-troposphere exchange (STE developed for Environment Canada (EC has been delivering daily archived data since July 2010. The STE calculations are performed following the Lagrangian approach proposed in Bourqui (2006 using medium-range, high-resolution operational global weather forecasts. Following every weather forecast, trajectories are started from a dense three-dimensional grid covering the globe, and are calculated forward in time for six days of the forecast. All trajectories crossing either the dynamical tropopause (±2 PVU or the 380 K isentrope and having a residence time greater than 12 h are archived, and also used to calculate several diagnostics. This system provides daily global STE forecasts that can be used to guide field campaigns, among other applications. The archived data set offers unique high-resolution information on transport across the tropopause for both extra-tropical hemispheres and the tropics. This will be useful for improving our understanding of STE globally, and as a reference for the evaluation of lower-resolution models. This new data set is evaluated here against measurements taken during a balloon sonde campaign with daily launches from three stations in eastern Canada (Montreal, Egbert, and Walsingham for the period 12 July to 4 August 2010. The campaign found an unexpectedly high number of observed stratospheric intrusions: 79% (38% of the profiles appear to show the presence of stratospheric air below than 500 hPa (700 hPa. An objective identification algorithm developed for this study is used to identify layers in the balloon-sonde profiles affected by stratospheric air and to evaluate the Lagrangian STE forecasts. We find that the predictive skill for the overall intrusion depth is very good for intrusions penetrating down to 300 and 500 hPa, while it becomes negligible for intrusions penetrating below 700 hPa. Nevertheless, the

  15. Stratospheric temperature trends: impact of ozone variability and the QBO

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Amico, Mauro [University of Reading, NCAS Climate, Department of Meteorology, Reading (United Kingdom); Institut fuer Physik der Atmosphaere, Deutsches Zentrum fuer Luft-und Raumfahrt, Oberpfaffenhofen (Germany); Gray, Lesley J. [University of Reading, NCAS Climate, Department of Meteorology, Reading (United Kingdom); Rosenlof, Karen H. [NOAA Earth System Research Laboratory, Boulder, CO (United States); Scaife, Adam A.; Stott, Peter A. [Met Office Hadley Centre, Exeter (United Kingdom); Shine, Keith P. [University of Reading, Department of Meteorology, Reading (United Kingdom)

    2010-02-15

    In most climate simulations used by the Intergovernmental Panel on Climate Change 2007 fourth assessment report, stratospheric processes are only poorly represented. For example, climatological or simple specifications of time-varying ozone concentrations are imposed and the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind is absent. Here we investigate the impact of an improved stratospheric representation using two sets of perturbed simulations with the Hadley Centre coupled ocean atmosphere model HadGEM1 with natural and anthropogenic forcings for the 1979-2003 period. In the first set of simulations, the usual zonal mean ozone climatology with superimposed trends is replaced with a time series of observed zonal mean ozone distributions that includes interannual variability associated with the solar cycle, QBO and volcanic eruptions. In addition to this, the second set of perturbed simulations includes a scheme in which the stratospheric zonal wind in the tropics is relaxed to appropriate zonal mean values obtained from the ERA-40 re-analysis, thus forcing a QBO. Both of these changes are applied strictly to the stratosphere only. The improved ozone field results in an improved simulation of the stepwise temperature transitions observed in the lower stratosphere in the aftermath of the two major recent volcanic eruptions. The contribution of the solar cycle signal in the ozone field to this improved representation of the stepwise cooling is discussed. The improved ozone field and also the QBO result in an improved simulation of observed trends, both globally and at tropical latitudes. The Eulerian upwelling in the lower stratosphere in the equatorial region is enhanced by the improved ozone field and is affected by the QBO relaxation, yet neither induces a significant change in the upwelling trend. (orig.)

  16. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  17. Cryogenics on the stratospheric terahertz observatory (STO)

    Science.gov (United States)

    Mills, G.; Young, A.; Dominguez, R.; Duffy, B.; Kulesa, C.; Walker, C.

    2015-12-01

    The Stratospheric TeraHertz Observatory (STO) is a NASA funded, Long Duration Balloon experiment designed to address a key problem in modern astrophysics: understanding the Life Cycle of the Interstellar Medium. STO surveys a section of the Galactic plane in the dominant interstellar cooling line at 1.9 THz and the important star formation tracer at 1.46 THz, at ∼1 arc minute angular resolution, sufficient to spatially resolve atomic, ionic, and molecular clouds at 10 kpc. The STO instrument package uses a liquid helium cryostat to maintain the THz receiver at < 9 K and to cool the low noise amplifiers to < 20 K. The first STO mission (STO-1) flew in January of 2012 and the second mission (STO-2) is planned for December 2015. For the STO-2 flight a cryocooler will be added to extend the mission lifetime. This paper discusses the integration of the STO instrument into an existing cryostat and the cryogenic aspects of the launch and operation of the STO balloon mission in the challenging Antarctic environment.

  18. Tropical stratospheric circulation and monsoon rainfall

    Science.gov (United States)

    Sikder, A. B.; Patwardhan, S. K.; Bhalme, H. N.

    1993-09-01

    Interannual variability of both SW monsoon (June September) and NE monsoon (October December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958 1986). Correlations of zonal wind anomalies to SW monsoon rainfall ( r=0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu. Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks.

  19. Growth rates of stratospheric HCFC-22

    Directory of Open Access Journals (Sweden)

    D. P. Moore

    2007-07-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding onboard ENVISAT (MIPAS-E offers the opportunity to detect and spectrally resolve many atmospheric minor constituents affecting atmospheric chemistry. In this paper, we describe an algorithm produced to retrieve HCFC–22 profiles from MIPAS-E measurements made in 2003 and present results from this scheme between 300 and 50 mb. By comparison with ATMOS (AT–3 version 3 data, we find a mean Northern Hemisphere mid-latitude (20–50° N HCFC–22 growth rate between 1994 and 2003 of 5.4±0.7 pptv/yr in the lower stratosphere (LS and a mean LS Southern Hemisphere growth rate (60–80°S of 6.0±0.7 pptv/yr in the same period. We test the feasibility of using a global data set to estimate the chemical lifetime of HCFC–22 in the LS and we derive this for two regions; 20–50° N (259±38 years and 60–80° S (288±34 years. From these data we note a global LS lifetime of 274±25 years, significantly longer than previous estimates.

  20. A constitutive equation for stratospheric balloon materials

    Science.gov (United States)

    Rand, J.; Sterling, J.

    The selection of a suitable material for use as a reliable stratospheric balloon gas barrier and structural component is based on a variety of desired properties. In order to achieve the required combination of weight per unit area, helium permeation, strength, flexibility and toughness at low temperatures, low density polyethylene has been used for the last half century. During the last decade, linear low density polyethylene (LLDPE) has been found to have even better properties for this application. Thin films extruded from this type resin have been found to have time dependent properties which should be understood in order to make an intelligent analysis of the balloon. This paper describes the current effort to characterize a 38 micron coextrusion of LLDPE as a nonlinearly viscoelastic material. The resulting constitutive equation may be used to accurately describe the time dependent creep and/or relaxation of this film when subjected to a biaxial state of stress. Recent laboratory data have been used to modify an existing model of LLDPE to account for differences caused by the coextrusion process. The new model will facilitate structure design optimization and reliability assessment, and may further be utilized as a predictive tool to benefit in-flight operations. Unfortunately, current structural analysis techniques based on linear elastic properties will predict stresses in excess of those which actually exist. An example will be presented which demonstrates the magnitude of this error when nonlinear behavior is ignored.

  1. Evaluation of the inter-annual variability of stratospheric chemical composition in chemistry-climate models using ground-based multi species time series

    Science.gov (United States)

    Poulain, V.; Bekki, S.; Marchand, M.; Chipperfield, M. P.; Khodri, M.; Lefèvre, F.; Dhomse, S.; Bodeker, G. E.; Toumi, R.; De Maziere, M.; Pommereau, J.-P.; Pazmino, A.; Goutail, F.; Plummer, D.; Rozanov, E.; Mancini, E.; Akiyoshi, H.; Lamarque, J.-F.; Austin, J.

    2016-07-01

    The variability of stratospheric chemical composition occurs on a broad spectrum of timescales, ranging from day to decades. A large part of the variability appears to be driven by external forcings such as volcanic aerosols, solar activity, halogen loading, levels of greenhouse gases (GHG), and modes of climate variability (quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO)). We estimate the contributions of different external forcings to the interannual variability of stratospheric chemical composition and evaluate how well 3-D chemistry-climate models (CCMs) can reproduce the observed response-forcing relationships. We carry out multivariate regression analyses on long time series of observed and simulated time series of several traces gases in order to estimate the contributions of individual forcings and unforced variability to their internannual variability. The observations are typically decadal time series of ground-based data from the international Network for the Detection of Atmospheric Composition Change (NDACC) and the CCM simulations are taken from the CCMVal-2 REF-B1 simulations database. The chemical species considered are column O3, HCl, NO2, and N2O. We check the consistency between observations and model simulations in terms of the forced and internal components of the total interannual variability (externally forced variability and internal variability) and identify the driving factors in the interannual variations of stratospheric chemical composition over NDACC measurement sites. Overall, there is a reasonably good agreement between regression results from models and observations regarding the externally forced interannual variability. A much larger fraction of the observed and modelled interannual variability is explained by external forcings in the tropics than in the extratropics, notably in polar regions. CCMs are able to reproduce the amplitudes of responses in chemical composition to specific external forcings

  2. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    Science.gov (United States)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  3. Impact of geoengineered aerosols on the troposphere and stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tilmes, S.; Garcia, Rolando R.; Kinnison, Douglas E.; Gettelman, A.; Rasch, Philip J.

    2009-06-27

    A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic-sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth’s climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates.

  4. Impact of major volcanic eruptions on stratospheric water vapour

    Science.gov (United States)

    Löffler, Michael; Brinkop, Sabine; Jöckel, Patrick

    2016-05-01

    Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry-climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg - Modular Earth Submodel System (ECHAM/MESSy) Atmospheric Chemistry (EMAC) model, performed within the Earth System Chemistry integrated Modelling (ESCiMo) project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño-Southern Oscillation (ENSO) are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  5. Stratospheric ozone: History and concepts and interactions with climate

    Directory of Open Access Journals (Sweden)

    Bekki S.

    2009-02-01

    Full Text Available Although in relatively low concentration of a few molecules per million of e e air molecules, atmospheric ozone (trioxygen O3 is essential to sustaining life on the surface of the Earth. Indeed, by absorbing solar radiation between 240 and 320 nm, it shields living organisms including humans from the very harmful ultraviolet radiation UV-B. About 90% of the ozone resides in the stratosphere, a region that extends from the tropopause, whose altitude ranges from 7 km at the poles to 17 km in the tropics, to the stratopause located at about 50 km altitude. Stratospheric ozone is communally referred as the « ozone layer ». Unlike the atmosphere surrounding it, the stratosphere is vertically stratified and stable because the temperature increases with height within it. This particularity originates from heating produced by the absorption of UV radiation by stratospheric ozone. The present chapter describes the main mechanisms that govern the natural balance of ozone in the stratosphere, and its disruption under the influence of human activities.

  6. Microbial survival in the stratosphere and implications for global dispersal

    Science.gov (United States)

    Smith, David J.; Griffin, Dale W.; McPeters, Richard D.; Ward, Peter D.; Schuerger, Andrew C.

    2011-01-01

    Spores of Bacillus subtilis were exposed to a series of stratosphere simulations. In total, five distinct treatments measured the effect of reduced pressure, low temperature, high desiccation, and intense ultraviolet (UV) irradiation on stratosphereisolated and ground-isolated B. subtilis strains. Environmental conditions were based on springtime data from a mid-latitude region of the lower stratosphere (20 km). Experimentally, each treatment consisted of the following independent or combined conditions: -70 °C, 56 mb, 10-12%relative humidity and 0.00421, 5.11, and 54.64 W/m2 of UVC (200-280 nm), UVB (280-315 nm), UVA (315-400 nm), respectively. Bacteria were deposited on metal coupon surfaces in monolayers of ~1 x 106 spores and prepared with palagonite (particle size< 20 μm). After 6 h of exposure to the stratosphere environment, 99.9% of B. subtilis spores were killed due to UV irradiation. In contrast, temperature, desiccation, and pressure simulations without UV had no effect on spore viability up through 96 h. There were no differences in survival between the stratosphere-isolated versus ground-isolated B. subtilis strains. Inactivation of most bacteria in our simulation indicates that the stratosphere can be a critical barrier to long-distance microbial dispersal and that survival in the upper atmosphere may be constrained by UV irradiation.

  7. The impact of tropospheric planetary wave variability on stratospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Michael B.; Schneider, Hans R.

    2002-06-25

    The goal of this project was to improve understanding of the role of the stratosphere in inducing long-term variations of the chemical composition of the troposphere. Changes in stratospheric transport occur on decadel timescales in response to changes in the structure of planetary wave patterns, forced in the troposphere. For many important tracers, such as column amounts of ozone, this variability of the transport leads to changes with signatures very similar to those induced by anthropogenic releases of chemicals into the atmosphere. During this project, a new interactive two-dimensional model of the dynamics, chemistry and radiation of the stratosphere was developed. The model was used to interpret available data of tracers. It was found that a fairly coherent picture of tracer distributions is obtained when a layer of reduced gravity wave drag is assumed for the lower stratosphere. The results suggest that the power of models to predict variability in tracer transport in the upper troposphere and lower stratosphere is limited until current theories of gravity wave breaking have been refined.

  8. Impact of lower stratospheric ozone on seasonal prediction systems

    Directory of Open Access Journals (Sweden)

    Kelebogile Mathole

    2014-03-01

    Full Text Available We conducted a comparison of trends in lower stratospheric temperatures and summer zonal wind fields based on 27 years of reanalysis data and output from hindcast simulations using a coupled ocean-atmospheric general circulation model (OAGCM. Lower stratospheric ozone in the OAGCM was relaxed to the observed climatology and increasing greenhouse gas concentrations were neglected. In the reanalysis, lower stratospheric ozone fields were better represented than in the OAGCM. The spring lower stratospheric/ upper tropospheric cooling in the polar cap observed in the reanalysis, which is caused by a direct ozone depletion in the past two decades and is in agreement with previous studies, did not appear in the OAGCM. The corresponding summer tropospheric response also differed between data sets. In the reanalysis, a statistically significant poleward trend of the summer jet position was found, whereas no such trend was found in the OAGCM. Furthermore, the jet position in the reanalysis exhibited larger interannual variability than that in the OAGCM. We conclude that these differences are caused by the absence of long-term lower stratospheric ozone changes in the OAGCM. Improper representation or non-inclusion of such ozone variability in a prediction model could adversely affect the accuracy of the predictability of summer rainfall forecasts over South Africa.

  9. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation

    Science.gov (United States)

    Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.

    2015-09-01

    One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.

  10. Variability of water vapour in the Arctic stratosphere

    Science.gov (United States)

    Thölix, Laura; Backman, Leif; Kivi, Rigel; Karpechko, Alexey Yu.

    2016-04-01

    This study evaluates the stratospheric water vapour distribution and variability in the Arctic. A FinROSE chemistry transport model simulation covering the years 1990-2014 is compared to observations (satellite and frost point hygrometer soundings), and the sources of stratospheric water vapour are studied. In the simulations, the Arctic water vapour shows decadal variability with a magnitude of 0.8 ppm. Both observations and the simulations show an increase in the water vapour concentration in the Arctic stratosphere after the year 2006, but around 2012 the concentration started to decrease. Model calculations suggest that this increase in water vapour is mostly explained by transport-related processes, while the photochemically produced water vapour plays a relatively smaller role. The increase in water vapour in the presence of the low winter temperatures in the Arctic stratosphere led to more frequent occurrence of ice polar stratospheric clouds (PSCs) in the Arctic vortex. We perform a case study of ice PSC formation focusing on January 2010 when the polar vortex was unusually cold and allowed large-scale formation of PSCs. At the same time a large-scale persistent dehydration was observed. Ice PSCs and dehydration observed at Sodankylä with accurate water vapour soundings in January and February 2010 during the LAPBIAT (Lapland Atmosphere-Biosphere facility) atmospheric measurement campaign were well reproduced by the model. In particular, both the observed and simulated decrease in water vapour in the dehydration layer was up to 1.5 ppm.

  11. Stratospheric winds: longitudinal distribution and long-term trends

    Directory of Open Access Journals (Sweden)

    M. Kozubek

    2014-06-01

    Full Text Available The wind is very important parameter of the stratospheric dynamics which can be affected by many factors like tropospheric North Atlantic Oscillation (NAO or El Nino Southern Oscillation (ENSO, stratospheric Quasi-biennial Oscillation (QBO or Sudden Stratospheric Warming (SSW and solar activity. Due to lack of direct observations we have to use reanalysis data, here NCEP/NCAR reanalysis. The behaviour and trends of wind and its meridional component is analysed in this paper. The influence of NAO on trend in wind is significant in the lower stratosphere (100 hPa in Atlantic sector; the trend is also affected by QBO, whereas influence of SSW is rather minor and observable only in the middle stratosphere (10 hPa. The most interesting result seems to be the longitudinal distribution of the meridional wind component. We identify two-core structure of strong but opposite winds, one at each hemisphere at 10 hPa, and a four-core structure at 100 hPa. These structures are not associated with tides. However, they appear to be related to the well-pronounced Aleutian pressure high at the 10 hPa level.

  12. Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) data set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set is a merged record of stratospheric ozone and water vapor measurements taken by a number of...

  13. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-01-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chem- istry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chem...

  14. A Preliminary Study of the Potential to Kinetic Energy Conversion Process in the Stratosphere

    OpenAIRE

    White, Robert M.; Nolan, George F.

    2011-01-01

    The potential to kinetic energy conversion process in the lower stratosphere associated with the vertical exchange of warm and cold air is evaluated using adiabatically derived vertical velocities for the North American region for a five-day period. Preliminary results suggest the possibility that on the average the kinetic energy of stratospheric motions may not result from a conversion of potential energy within the stratosphere by this process. The further implication is that stratospheric...

  15. Stratospheric background aerosol and polar cloud observations by laser backscattersonde within the framework of the European project "Stratospheric Regular Sounding"

    Directory of Open Access Journals (Sweden)

    A. Adriani

    Full Text Available The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the "Istituto di Fisica dell'Atmosfera" launched nine laser backscattersondes (LABS on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere.

    Key words. Atmospheric composition and structure (aerosols and particles; middle atmosphere – composition and chemistry; instruments and techniques

  16. Vertical profile measurements of carbonylsulfide in the stratosphere

    Science.gov (United States)

    Engel, A.; Schmidt, U.

    Measurements of COS in the altitude region between 17 and 30 km were made, using a whole air sampling technique with subsequent gaschromatographic analysis. The data show COS mixing-ratios from about 200 pptv at 17 km decreasing to less then 20 pptv at about 28 km. This behaviour is in qualitative agreement with the model-calculations by Turco et al. (1981). From the correlation with CFCl3 and CF2Cl2 the lifetime with respect to removal in the stratosphere is calculated to be 69±28 years. This corresponds to a sink of between 47 and 112 * 109 g of COS per year in the stratosphere. Comparing this number to the estimated fluxes needed to sustain the background sulfuric-acid aerosol confirms that most of the non-volcanic aerosol is produced by the oxidation of COS in the stratosphere.

  17. Lower stratospheric aerosols at a tropical latitude station

    Science.gov (United States)

    Krishnamurthy, B. V.; Parameswaran, K.; Rose, K. O.; Satyanarayana, M.

    1989-01-01

    A pulsed ruby lidar has been in regular operation at the tropical station Trivandrum (8 deg 33 sec N, 76 deg 57 sec E) since October 1986. The lidar data were analyzed to obtain monthly mean aerosol extinction at lower stratospheric altitudes. The monthly mean variation of aerosol extinction shows a peak in March to April with a trough in the winter months. This behavior is compared with that of temperature at the same altitude, obtained from balloonsonde measurements at the same station. It is found that there is a negative correlation between the two with high extinction values corresponding to low temperature values and vice versa. This is attributed to the stratospheric aerosol microphysical processes. The association of stratospheric aerosol extinction with the tropopause altitude and temperature was studied along with the implications of these results.

  18. A Numerical Study on the Effect of an Extratropical Cyclone on the Evolution of a Midlatitude Front

    Institute of Scientific and Technical Information of China (English)

    CHEN Guanghua

    2013-01-01

    The extratropical transition (ET) of tropical cyclone (TC) Haima (2004) was simulated to understand the impact of TC on midlatitude frontal systems.Two experiments were conducted using the Advanced Research version of the Weather Research and Forecast (WRF) model.In the control run (CTL),a vortex was extracted from the 24-hour pre-run output and then inserted into the National Centers for Environmental Prediction (NCEP) global final (FNL) analysis as an initial condition,while TC circulation was removed from the initial conditions in the sensitivity run (NOTC).Comparisons of the experiments demonstrate that the midlatitude front has a wider meridional extent in the NOTC run than that in the CTL run.Furthermore,the CTL run produces convection suppression to the southern side of the front due to strong cold advection related to the TC circulation.The easterly flow north of the TC not only decelerates the eastward displacement of the front and contracts its zonal scale but also transports more moisture westward and lifts the air along equivalent potential temperature surfaces ahead of the front.As a result,the ascending motion and diabatic heating are enhanced in the northeastern edge of the front,and the anticyclonic outflow in the upper-level is intensified.The increased pressure gradient and divergent flow aloft strengthen the upper-level jet and distort the trough axis in a northwest-southeast orientation.The thermal contrast between the two systems and the dynamic contribution related to the TC circulation can facilitate scalar and rotational frontogenesis to modulate the frontal structure.

  19. Accelerating two-stage explosive development of an extratropical cyclone over the northwestern Pacific Ocean: a piecewise potential vorticity diagnosis

    Directory of Open Access Journals (Sweden)

    Shenming Fu

    2014-03-01

    Full Text Available An extreme explosive extratropical cyclone over the northwestern Pacific Ocean (NPO that formed in winter 2004 and went through two distinct rapid deepening periods was successfully simulated by a non-hydrostatic mesoscale model (MM5. Based on the simulation, the cyclone's rapid deepening was investigated in detail using the piecewise potential vorticity (PV inversion method which successfully captured the characteristics of the cyclone and its associated background circulations. Results indicated that explosive development of the cyclone was dominated by forcings in the extended surface layer (ESL, which were closely related to baroclinity (temperature advection and boundary layer processes (sensible heat exchange. In the interior layer (IL, direct effects of condensation were mainly conducive to the cyclone's development, whereas indirect effects (interactions with other layers mainly acted conversely. Processes associated with latent heat release (LHR were characterised by nonlinearity. Features of the precipitation, including intensity, duration, range and relative configuration to the cyclone determined the influences of condensation on the cyclone. In the upper layer (UL, tropopause-folding processes and horizontal PV advection were main influencing factors to the evolution of the cyclone. Upper-level forcings firstly exerted slight effects on the cyclone's development, since upper-level positive PV anomalies were far from the cyclone; then, as the influencing short-wave trough and the cyclone both moved northeastward, upper-level positive PV anomalies merged, enhanced and entered key areas of the cyclone, and thus both direct and indirect effects associated with the upper-level forcings strengthened significantly around the cyclone, and this dominated the cyclone's transition from a moderate explosive cyclone to an extreme one.

  20. The arctic winter stratosphere: simulated with a 3-D chemistry transport model

    NARCIS (Netherlands)

    Broek, Martina Maria Petronella van den

    2004-01-01

    During the past two decades, the ozone layer has developed a “hole” each winter and spring above the Antarctic continent. Also in cold Arctic winters substantial stratospheric ozone depletion has been measured, although less than in the Antarctic stratosphere. In the Arctic winter stratosphere,

  1. Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere

    Institute of Scientific and Technical Information of China (English)

    BI Yun; CHEN Yuejuan; ZHOU Renjun; YI Mingjian; DENG Shumei

    2011-01-01

    To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional,interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height,and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infiared radiative cooling by water vapor is a pivotal factor in niddle-lower stratospheric cooling. However. in the npper stratosphere (above 45 kn), infrared radiation is not a factor in cooling;there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere,and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions.Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However,ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric teinperature change.

  2. The arctic winter stratosphere: simulated with a 3-D chemistry transport model

    NARCIS (Netherlands)

    Broek, M.M.P. (Martina Maria Petronella) van den

    2004-01-01

    During the past two decades, the ozone layer has developed a “hole” each winter and spring above the Antarctic continent. Also in cold Arctic winters substantial stratospheric ozone depletion has been measured, although less than in the Antarctic stratosphere. In the Arctic winter stratosphere, the

  3. Impact of stratospheric variability on tropospheric climate change

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Amico, Mauro [University of Reading, NCAS Climate, Reading (United Kingdom); Institut fuer Physik der Atmosphaere, Deutsches Zentrum fuer Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Stott, Peter A.; Scaife, Adam A. [Met Office Hadley Centre, Exeter (United Kingdom); Gray, Lesley J. [University of Reading, NCAS Climate, Reading (United Kingdom); Rosenlof, Karen H. [NOAA Earth System Research Laboratory, Boulder, CO (United States); Karpechko, Alexey Yu. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom)

    2010-02-15

    An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979-2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichon eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichon eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed. (orig.)

  4. Tropospheric and Stratospheric Ozone From Assimilation of Aura Data

    Science.gov (United States)

    Stajner, I.; Wargan, K.; Chang, L.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.; Bowman, K.

    2006-05-01

    Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and ozone may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from the EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data provides a good representation of ozone gradients and variability in the lower stratosphere. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. We discuss the impacts of Aura data and their role in the representation of ozone variability in the lower stratosphere and troposphere.

  5. Is there a solar signal in lower stratospheric water vapour?

    Science.gov (United States)

    Schieferdecker, Tobias; Lossow, Stefan; Stiller, Gabriele; von Clarmann, Thomas

    2016-04-01

    A merged time series of stratospheric water vapour built from the Halogen Occultation Instrument (HALOE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) data between 60 deg S and 60 deg N and 15 to 30 km, and covering the years 1992 to 2012, was analysed by multivariate linear regression, including an 11-year solar cycle proxy. Lower stratospheric water vapour was found to reveal a phase-shifted anti-correlation with the solar cycle, with lowest water vapour after solar maximum. The phase shift is composed of an inherent constant time lag of about 2 years and a second component following the stratospheric age of air. The amplitudes of the water vapour response are largest close to the tropical tropopause (up to 0.35 ppmv) and decrease with altitude and latitude. Including the solar cycle proxy in the regression results in linear trends of water vapour being negative over the full altitude/latitude range, while without the solar proxy, positive water vapour trends in the lower stratosphere were found. We conclude from these results that a solar signal seems to be generated at the tropical tropopause which is most likely imprinted on the stratospheric water vapour abundances and transported to higher altitudes and latitudes via the Brewer-Dobson circulation. Hence it is concluded that the tropical tropopause temperature at the final dehydration point of air may also be governed to some degree by the solar cycle. The negative water vapour trends obtained when considering the solar cycle impact on water vapour abundances can possibly solve the "water vapour conundrum" of increasing stratospheric water vapour abundances despite constant or even decreasing tropopause temperatures.

  6. Modeling flow and sediment transport dynamics in the lowermost Mississippi River, Louisiana, USA, with an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition: Implications for land building using engineered diversions

    Science.gov (United States)

    Viparelli, Enrica; Nittrouer, Jeffrey A.; Parker, Gary

    2015-03-01

    The lowermost Mississippi River, defined herein as the river segment downstream of the Old River Control Structure and hydrodynamically influenced by the Gulf of Mexico, extends for approximately 500 km. This segment includes a bedrock (or more precisely, mixed bedrock-alluvial) reach that is bounded by an upstream alluvial-bedrock transition and a downstream bedrock-alluvial transition. Here we present a one-dimensional mathematical formulation for the long-term evolution of lowland rivers that is able to reproduce the morphodynamics of both the alluvial-bedrock and the bedrock-alluvial transitions. Model results show that the magnitude of the alluvial equilibrium bed slope relative to the bedrock surface slope and the depth of bedrock surface relative to the water surface base level strongly influence the mobile bed equilibrium of low-sloping river channels. Using data from the lowermost Mississippi River, the model is zeroed and validated at field scale by comparing the numerical results with field measurements. The model is then applied to predict the influence on the stability of channel bed elevation in response to delta restoration projects. In particular, the response of the river bed to the implementation of two examples of land-building diversions to extract water and sediment from the main channel is studied. In this regard, our model results show that engineered land-building diversions along the lowermost Mississippi River are capable of producing equilibrated bed profiles with only modest shoaling or erosion, and therefore, such diversions are a sustainable strategy for mitigating land loss within the Mississippi River Delta.

  7. Human Health Effects of Ozone Depletion From Stratospheric Aircraft

    Science.gov (United States)

    Wey, Chowen (Technical Monitor)

    2001-01-01

    This report presents EPA's initial response to NASA's request to advise on potential environmental policy issues associated with the future development of supersonic flight technologies. Consistent with the scope of the study to which NASA and EPA agreed, EPA has evaluated only the environmental concerns related to the stratospheric ozone impacts of a hypothetical HSCT fleet, although recent research indicates that a fleet of HSCT is predicted to contribute to climate warming as well. This report also briefly describes the international and domestic institutional frameworks established to address stratospheric ozone depletion, as well as those established to control pollution from aircraft engine exhaust emissions.

  8. Effects of El Chichon volcanic effluents on stratospheric aerosol dynamics

    Science.gov (United States)

    Pueschel, R. F.; Snetsinger, K. G.; Russell, P. B.; Oberbeck, V. R.; Livingston, J. M.

    1988-01-01

    The effects of El Chichon's April 1982 eruption on stratospheric aerosol dynamics are presently discussed in terms of log-normal size distributions over 15-20 km sample altitudes between 30 and 45 deg N over the contiguous U.S. After collection, samples were studied by SEM, and log-normal size distributions were fitted to the data-points obtained. It is found that stratospheric aerosol behavior is explainable by the laws of aerosol mechanics more easily than has been the case for tropospheric aerosol, for which the source-sink relationship is much more complex.

  9. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    Directory of Open Access Journals (Sweden)

    J. G. Anet

    2013-06-01

    Full Text Available The response of atmospheric chemistry and climate to volcanic eruptions and a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean-chemistry general circulation model SOCOL-MPIOM covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i reduced solar ultra-violet (UV irradiance, (ii reduced solar visible and near infrared irradiance, (iii enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric climate in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15% causes global ozone decrease below the stratopause reaching 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the midstratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere allowing more water vapor to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the DM – this effect is especially well visible for NOx/NOy. Thus, this study highlights the non-linear behavior of the coupled chemistry-climate system. Finally, we

  10. Free radicals in the stratosphere - A new observational technique

    Science.gov (United States)

    Anderson, J. G.; Hazen, N. L.; Mclaren, B. E.; Rowe, S. P.; Schiller, C. M.; Schwab, M. J.; Solomon, L.; Thompson, E. E.; Weinstock, E. M.

    1985-01-01

    A new approach to in situ observations of trace reactive species in the stratosphere is described. A balloon-borne system, floating 40 kilometers above the earth's surface, successfully lowered and then retracted a cluster of instruments a distance of 12 kilometers on a filament of Kevlar. This instrument cluster is capable of detecting gas-phase free radicals at the part-per-trillion level. The suspended instrument array has excellent stability and has been used to measured atomic oxygen concentrations in the stratosphere.

  11. 飓风“桑迪”温带变性过程特征分析%Characteristics of extratropical transition of hurricane Sandy

    Institute of Scientific and Technical Information of China (English)

    黄蔚薇; 董静舒; 王洁; 许映龙

    2015-01-01

    Based on the 1°×1°NCEP reanalysis data,characteristics of extratropical transition of hurricane Sandy were analyzed.The results indicate that thermal asymmetry of extratropical transition system is displayed directly u-sing thickness fields in low,middle and upper levels of the troposphere,which is favorable to diagnose the extrat-ropical transition of hurricane.Vorticity field could diagnose the coupling of upper-level trough and hurricane,and the extratropical transition begins because the hurricane is impacted by the baroclinic trough after the combination of their positive vorticity.The strong convection during the process of extratropical transition could be enhanced by forced rising of thickness deformation field,lifting of lower frontal zone,positive feedback of condensation and in-creasing upper divergence,which are also reasons of westerly deviation of strong upwarding zone.The warm core of hurricane Sandy falls to the middle and lower levels of the troposphere,which is associated with the sink of strong ascending motion.The warm core can be ruined by strong cold advection,but moderate cold air advection is in favor of Sandy′s redevelopment.Temperature advection distribution at 850 hPa is indicative to Sandy′s track during the extratropical transition process,which approximately parallels the connection between warm and cold ad-vection centers.%利用 NCEP 的1°×1°资料,分析飓风“桑迪”温带变性前后物理量的特征和变化。结果表明:利用对流层低层、中层及高层的厚度场可立体直观地展现热带气旋中心热力结构的对称性,便于进行飓风温带变性的诊断分析。涡度场可诊断高空槽和飓风耦合的情况,两者的正涡度场连接后使热带气旋受到高空槽的影响开始变性。厚度变形场动力强迫上升、低层锋区抬升、强降水区凝结潜热正反馈作用和高空辐散加强等有利于飓风“桑迪”变性过程中深对流的维持及发展

  12. Two-dimensional monthly average ozone balance from limb infrared monitor of the stratosphere and stratospheric and mesospheric sounder data

    Science.gov (United States)

    Jackman, C. H.; Stolarski, R. S.; Kaye, J. A.

    1986-01-01

    For many years, atmospheric scientists have been concerned with the balance of ozone production and loss terms in the upper stratosphere. Crutzen and Schmailzl (1983) found that the ozone loss was higher than the ozone production in the upper stratosphere. In the present investigation, previous studies are used as a basis in the conduction of a two-dimensional calculation of the production and loss of ozone. The monthly and zonally averaged loss and production rates for ozone are computed using recent Nimbus 7 satellite measurements of stratospheric constituents and accepted reaction and photodissociation rates. It is found that ozone has a loss rate which is about 40-60 percent higher than the production in the photochemical region.

  13. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    Science.gov (United States)

    Ebert, Martin; Weigel, Ralf; Kandler, Konrad; Günther, Gebhard; Molleker, Sergej; Grooß, Jens-Uwe; Vogel, Bärbel; Weinbruch, Stephan; Borrmann, Stephan

    2016-07-01

    Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate / carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ˜ 5 µm) taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  14. Effects of a polar stratospheric cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model

    Energy Technology Data Exchange (ETDEWEB)

    Considine, D.B. [Applied Research Corp., Landover, MD (United States); Douglass, A.R.; Jackman, C.H. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1994-09-20

    A parameterization of Type 1 and 2 polar stratospheric cloud (PSC) formation is presented which is appropriate for use in two-dimensional (2-D) photochemical models of the stratosphere. The calculation of PSC frequency of occurrence and surface area density uses climatological temperature probability distributions obtained from National Meteorological Center data to avoid using zonal mean temperatures, which are not good predictors of PSC behavior. The parameterization does not attempt to model the microphysics of PSCs. The parameterization predicts changes in PSC formation and heterogeneous processing due to perturbations of stratospheric trace constituents. It is therefore useful in assessing the potential effects of a fleet of stratospheric aircraft (high speed civil transports, or HSCTs) on stratospheric composition. The model calculated frequency of PSC occurrence agrees well with a climatology based on stratospheric aerosol measurement (SAM) II observations. PSCs are predicted to occur in the tropics. Their vertical range is narrow, however, and their impact on model O{sub 3} fields is small. When PSC and sulfate aerosol heterogeneous processes are included in the model calculations, the O{sub 3} change for 1980-1990 is in substantially better agreement with the total ozone mapping spectrometer (TOMS) - derived O{sub 3} trend than otherwise. However, significant discrepancies in the northern midlatitudes remain. The overall changes in model O{sub 3} response to standard HSCT perturbation scenarios produced by the parameterization are small and tend to decrease the model sensitivity to the HSCT perturbation. However, in the southern hemisphere spring a significant increase in O{sub 3} sensitivity to HSCT perturbations is found. At this location and time, increased PSC formation leads to increased levels of active chlorine, which produce the O{sub 3} decrease. 38 refs., 13 figs., 3 tabs.

  15. Effects of a polar stratosphere cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model

    Science.gov (United States)

    Considine, David B.; Douglass, Anne R.; Jackman, Charles H.

    1994-01-01

    A parameterization of Type 1 and 2 polar stratospheric cloud (PSC) formation is presented which is appropriate for use in two-dimensional (2-D) photochemical models of the stratosphere. The calculations of PSC frequency of occurrence and surface area density uses climatological temperature probability distributions obtained from National Meteorological Center data to avoid using zonal mean temperatures, which are not good predictors of PSC behavior. The parameterization does not attempt to model the microphysics of PSCs. The parameterization predicts changes in PSC formation and heterogeneous processing due to perturbations of stratospheric trace constituents. It is therefore useful in assessing the potential effects of a fleet of stratospheric aircraft (high speed civil transports, or HSCTs) on stratospheric composition. the model calculated frequency of PSC occurrence agrees well with a climatology based on stratospheric aerosol measurement (SAM) 2 observations. PSCs are predicted to occur in the tropics. Their vertical range is narrow, however, and their impact on model O3 fields is small. When PSC and sulfate aerosol heterogeneous processes are included in the model calculations, the O3 change for 1980 - 1990 is in substantially better agreement with the total ozone mapping spectrometer (TOMS)-derived O3 trend than otherwise. The overall changes in model O3 response to standard HSCT perturbation scenarios produced by the parameterization are small and tend to decrease the model sensitivity to the HSCT perturbation. However, in the southern hemisphere spring a significant increase in O3 sensitivity to HSCT perturbations is found. At this location and time, increased PSC formation leads to increased levels of active chlorine, which produce the O3 decreases.

  16. UV spectroscopy applied to stratospheric chemistry, methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K.

    1996-03-01

    The publication from the Norwegian Institute for Air Research (NILU) deals with an investigation done on stratospheric chemistry by UV spectroscopy. The scientific goals are briefly discussed, and it gives the results from the measuring and analysing techniques used in the investigation. 6 refs., 11 figs.

  17. The impact of geoengineering aerosols on stratospheric temperature and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Heckendorn, P; Luo, B P; Rozanov, E; Schraner, M; Peter, T [Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich (Switzerland); Weisenstein, D [AER, Lexington, MA (United States); Fueglistaler, S [DAMTP, University of Cambridge (United Kingdom); Thomason, L W, E-mail: patricia.heckendorn@env.ethz.c [NASA Langley Research Center, Hampton, VA (United States)

    2009-10-15

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model, to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H{sub 2}O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will be significantly reduced.

  18. Effects of stratospheric radiations on human glioblastoma cells.

    Science.gov (United States)

    Cerù, Maria Paola; Amicarelli, Fernanda; Cristiano, Loredana; Colafarina, Sabrina; Aimola, Pierpaolo; Falone, Stefano; Cinque, Benedetta; Ursini, Ornella; Moscardelli, Roberto; Ragni, Pietro

    2005-01-01

    The aim of this work was to evaluate the effect of stratospheric radiations on neural tumour cells. ADF human glioblastoma cells were hosted on a stratospheric balloon within the 2002 biological experiment campaign of the Italian Space Agency. The flight at an average height of 37 km lasted about 24 hrs. Cell morphology, number and viability, cell cycle and apoptosis, some antioxidant enzymes and proteins involved in cell cycle regulation, DNA repair and gene expression were studied. Stratospheric radiations caused a significant decrease in cell number, as well as a block of proliferation, but not apoptosis or necrosis. Radiations also induced activation and induction of some antioxidant enzymes, increase in DNA repair-related proteins (p53 and Proliferating Cell Nuclear Antigen) and variations of the transcription factors Peroxisome Proliferator-Activated Receptors. Morphologically, test cells exhibited more electron dense cytoplasm and less condensed chromatin than controls and modification of their surfaces. Our results indicate that glioblastoma cells, exposed to continuous stratospheric radiations for 24 hrs, show activation of cell cycle check point, decrease of cell number, variations of Peroxisome Proliferator-Activated Receptors and increase of Reactive Oxygen Species-scavenging enzymes.

  19. Man's effect on stratospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ellsaesser, H.W.

    1979-08-01

    Since McDonald, at the beginning of this decade, first proposed that water vapor from SST exhaust would lead to increases in skin cancer, about a dozen man-induced mechanisms have been suggested as threatening to modify our stratospheric ozone uv-shield. Possible thinning of the ozone layer has been attributed to one or more of the catalytic ozone destroyers, water vapor (HO/sub x/), oxides of nitrogen (NO/sub x/), chlorine (ClX); or bromine (BrX). The original catalyst, HO/sub x/, rather quickly lost its role to NO/sub x/. In an almost unique evolution, computed sensitivity of stratospheric ozone to NO/sub x/ progressively declined until a reversal of effect occurred. Models now compute a thickening of the ozone layer for any but high level or very massive injections of NO/sub x/. Meanwhile, computed sensitivity to ClX has fluctuated widely and in 1978 models increased to the point where comparisons with observations were becoming an embarrassment. The potential role of BrX has also increased but awaits a credible source of stratospheric bromine to bring it center stage. More recently the atmospheric build-up of carbon dioxide, by cooling the stratosphere and increasing the chemical equilibrium level of ozone, has also been recognized as a potential modifier of the ozone layer.

  20. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10/sup 1/ g is sufficient to reduce photosynthesis to 10/sup -3/ of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated.

  1. Bidirectional infrasonic ducts associated with sudden stratospheric warming events

    Science.gov (United States)

    Assink, J. D.; Waxler, R.; Smets, P.; Evers, L. G.

    2014-02-01

    In January 2011, the state of the polar vortex in the midlatitudes changed significantly due to a minor sudden stratospheric warming event. As a result, a bidirectional duct for infrasound propagation developed in the middle atmosphere that persisted for 2 weeks. The ducts were due to two zonal wind jets, one between 30 and 50 km and the other around 70 km altitude. In this paper, using microbarom source modeling, a previously unidentified source region in the eastern Mediterranean is identified, besides the more well known microbarom source regions in the Atlantic Ocean. Infrasound data are then presented in which the above mentioned bidirectional duct is observed in microbarom signals recorded at the International Monitoring System station I48TN in Tunisia, from the Mediterranean region to the east and from the Atlantic Ocean to the west. While the frequency bands of the two sources overlap, the Mediterranean signal is coherent up to about 0.6 Hz. This observation is consistent with the microbarom source modeling; the discrepancy in the frequency band is related to differences in the ocean wave spectra for the two basins considered. This work demonstrates the sensitivity of infrasound to stratospheric dynamics and illustrates that the classic paradigm of a unidirectional stratospheric duct for infrasound propagation can be broken during a sudden stratospheric warming event.

  2. Bidirectional infrasonic ducts associated with sudden stratospheric warming events

    NARCIS (Netherlands)

    Assink, J.D.; Waxler, R.; Smets, P.S.M.; Evers, L.G.

    2014-01-01

    In January 2011, the state of the polar vortex in the midlatitudes changed significantly due to a minor sudden stratospheric warming event. As a result, a bidirectional duct for infrasound propagation developed in the middle atmosphere that persisted for 2 weeks. The ducts were due to two zonal wind

  3. Strong thermospheric cooling during the 2009 major stratosphere warming

    NARCIS (Netherlands)

    Liu, H.; Doornbos, E.N.; Yamamoto, M.; Ram, S.T.

    2011-01-01

    Thermospheric density simultaneously observed by the CHAMP and GRACE satellites in both the pre‐dawn and afternoon local time sectors undergoes significant decrease across both hemispheres during the major stratospheric sudden warming (SSW) in January 2009. This decrease is largest in the equatorial

  4. Equatorial ionospheric electrodynamic perturbations during Southern Hemisphere stratospheric warming events

    DEFF Research Database (Denmark)

    Olson, M. E.; Fejer, B. G.; Stolle, Claudia;

    2013-01-01

    We use ground-based and satellite measurements to examine, for the first time, the characteristics of equatorial electrodynamic perturbations measured during the 2002 major and 2010 minor Southern Hemisphere sudden stratospheric warming (SSW) events. Our data suggest the occurrence of enhanced qu...

  5. Vapor Measurements from the GSFC Stratospheric Ozone Lidar

    Science.gov (United States)

    McGee, T.

    2003-01-01

    Water vapor measurements from the GSFC Stratospheric Ozone Lidar were made for the first time during a campaign at NOAA's Mauna Loa Observatory. Comparisons were made among the GSFC lidar, the NOAA Lidar and water vapor sondes which were flown from the observatory at times coincident with the lidar measurements.

  6. The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone

    Science.gov (United States)

    Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B. P.; Rozanov, E.; Schraner, M.; Thomason, L. W.; Peter, T.

    2011-01-01

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model. to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H2O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will he significantly reduced.

  7. Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate

    Science.gov (United States)

    Xia, L.; Robock, A.; Tilmes, S.; Neely, R. R., III

    2016-02-01

    Stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. With an 8 Tg yr-1 injection of SO2 to produce a stratospheric aerosol cloud to balance anthropogenic radiative forcing from the Representative Concentration Pathway 6.0 (RCP6.0) scenario, we conducted climate model simulations with the Community Earth System Model - the Community Atmospheric Model 4 fully coupled to tropospheric and stratospheric chemistry (CAM4-chem). During the geoengineering period, as compared to RCP6.0, land-averaged downward visible (300-700 nm) diffuse radiation increased 3.2 W m-2 (11 %). The enhanced diffuse radiation combined with the cooling increased plant photosynthesis by 0.07 ± 0.02 µmol C m-2 s-1, which could contribute to an additional 3.8 ± 1.1 Gt C yr-1 global gross primary productivity without explicit nutrient limitation. This increase could potentially increase the land carbon sink. Suppressed plant and soil respiration due to the cooling would reduce natural land carbon emission and therefore further enhance the terrestrial carbon sink during the geoengineering period. This potentially beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about the implementation of geoengineering.

  8. Man's effect on stratospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ellsaesser, H.W.

    1979-08-01

    Since McDonald, at the beginning of this decade, first proposed that water vapor from SST exhaust would lead to increases in skin cancer, about a dozen man-induced mechanisms have been suggested as threatening to modify our stratospheric ozone uv-shield. Possible thinning of the ozone layer has been attributed to one or more of the catalytic ozone destroyers, water vapor (HO/sub x/), oxides of nitrogen (NO/sub x/), chlorine (ClX); or bromine (BrX). The original catalyst, HO/sub x/, rather quickly lost its role to NO/sub x/. In an almost unique evolution, computed sensitivity of stratospheric ozone to NO/sub x/ progressively declined until a reversal of effect occurred. Models now compute a thickening of the ozone layer for any but high level or very massive injections of NO/sub x/. Meanwhile, computed sensitivity to ClX has fluctuated widely and in 1978 models increased to the point where comparisons with observations were becoming an embarrassment. The potential role of BrX has also increased but awaits a credible source of stratospheric bromine to bring it center stage. More recently the atmospheric build-up of carbon dioxide, by cooling the stratosphere and increasing the chemical equilibrium level of ozone, has also been recognized as a potential modifier of the ozone layer.

  9. Lidar measurement of stratospheric dust from St. Augustine Volcano

    Science.gov (United States)

    Remsberg, E. E.; Browell, E. V.; Northam, G. B.

    1976-01-01

    The detection of a stratospheric dust layer of probable volcanic origin over Hampton, Va., on the evening of Jan. 28, 1976, with a 20-inch lidar system is reported. A digitized cathode-ray-tube trace of a return signal from altitudes of 12 to 24 km on January 28 is provided, and it is shown that 38% of the return was due to stratospheric aerosol. Noting that measurements on January 22 and February 2 showed no traces of this stratospheric dust layer, trajectories of dust-laden air parcels are followed from initiation at 0000 GMT on January 24 at the St. Augustine Volcano on Augustine Island, Alaska (59 deg N, 153 deg W). Analysis of the trajectories indicates that dust injected into the stratosphere at 59 deg N, 153 deg W could have been transported to Virginia in about 4 days. It is concluded that if the St. Augustine Volcano was the source of the dust, at least 23 deg of meridional transport from polar latitudes was observed.

  10. Strong thermospheric cooling during the 2009 major stratosphere warming

    NARCIS (Netherlands)

    Liu, H.; Doornbos, E.N.; Yamamoto, M.; Ram, S.T.

    2011-01-01

    Thermospheric density simultaneously observed by the CHAMP and GRACE satellites in both the pre‐dawn and afternoon local time sectors undergoes significant decrease across both hemispheres during the major stratospheric sudden warming (SSW) in January 2009. This decrease is largest in the equatorial

  11. Stratospheric Ozone Reactive Chemicals Generated by Space Launches Worldwide.

    Science.gov (United States)

    1994-11-01

    I ODCs). Their carbon - chlorine bond is severed in the stratosphere by solar photolysis or reaction. Once the carbon-chlorine bond is broken, the...include the Russian Proton and Energia , and the Chinese Long March series. Roughly half (seven per year) of the Ariane 4 launches use two solid strap-ons

  12. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  13. Effects of melting ice sheets and orbital forcing on the early Holocene warming in extratropical Northern Hemisphere

    Science.gov (United States)

    zhang, yurui; Renssen, Hans; Seppä, Heikki

    2016-04-01

    The early Holocene is an important climatological period, as it marked the final transition from the last deglaciation to the relatively warm and stable Holocene. Previous studies have analyzed the influence of the demise of the ice sheets and other forcings on the climate system during the Holocene. However, the climate response to the forcings together with the internal feedbacks before 9 ka remains not fully comprehended. In this study, we therefore disentangle how these forcings contributed to climate change during the earliest part of Holocene (11.5-7 ka) by employing the LOVECLIM climate model for both equilibrium and transient experiments. The results of our equilibrium experiments for 11.5 ka reveal that the annual mean temperature at the onset of the Holocene was lower than in the preindustrial era over most of the extratropical Northern Hemisphere. The magnitude of this cooler climate varies regionally and this spatial pattern is suggested by the biologically based proxies as well. In eastern N America and NW Europe the temperatures were 2-5 °C lower than in the preindustrial era as the climate was strongly influenced by the cooling effects of the ice sheets at here. This cooling of the ice-sheet surface was caused both by the enhanced surface albedo and by the orography of the ice sheets. In contrast, in Alaska, temperatures in all seasons were 0.5-3 °C higher than in the control run primarily due to the orbitally induced positive insolation anomaly and the enhanced southerly winds which advected warm air from the South as a response to the high air pressure over the Laurentide Ice Sheet (LIS). Our transient experiments indicate that the Holocene temperature evolution and the early Holocene warming were also geographically heterogeneous. In Alaska, the climate is constantly cooling over the whole Holocene. In contrast, in N Canada, there was an overall warming during the early Holocene up to 1.88 °C ka-1 in summer as a consequence of the progressive

  14. Observations and parameterization of the stratospheric electrical conductivity

    Science.gov (United States)

    Hu, Hua; Holzworth, Robert H.

    1996-12-01

    Simultaneous in situ measurements of the stratospheric electrical conductivity, made from multiple balloon platforms during the 1992-1993 Extended Life Balloon-Borne Observatories (ELBBO) experiment, have yielded the most comprehensive data set on the stratospheric electrical conductivity. The ELBBO project involved launches of five superpressure balloons into the stratosphere from Dunedin, New Zealand, beginning November 10, 1992, and lasting through March 18, 1993. Most of the balloons floated at a constant altitude of 26 km for over 3 months, covered a wide range of latitudes from the South Pole to 28°S, and circled around the southern hemisphere several times. On average, the positive polar conductivity (conductivity of positive ions alone) was about 15% higher than that of the negative conductivity, suggesting that differences may exist between the mobilities of positive and negative ions. Data from each polarity of polar conductivity also indicate persistent, apparently organized, short-term and localized variations, with amplitude within 30% of the mean value. In corrected geomagnetic (CGM) coordinates the conductivity variations were found to be a function of latitude but not of longitude. The total conductivity can increase 150% from low latitude to high latitude, and does remain nearly constant at latitudes above 55° (namely, the cosmic ray knee latitude). Calculations based on ionization theory demonstrate that the latitudinal variations in the conductivity measurements were mainly due to the latitudinal variations in incident galactic cosmic ray intensity, with only little effect from the air temperature variations. The calculations shown here also suggest that small ions (as opposed to large ions) provide the main contribution to the stratospheric conductivity. The comparisons between conductivity measurements and models show that commonly used models can underestimate the latitudinal variation by a factor of 2. In this paper the stratospheric

  15. The long-term evolution of hydrocarbons in Jupiter's stratosphere

    Science.gov (United States)

    Melin, Henrik; Fletcher, Leigh N.; Greathouse, Thomas K.; Giles, Rohini Sara; Sinclair, James; Orton, Glenn S.; Irwin, Patrick Gerard Joseph

    2016-10-01

    We present the global distribution of hydrocarbons in Jupiter's stratosphere using ground-based mid-infrared R~15,000 TEXES observations from the NASA Infrared Telescope Facility (IRTF), obtained between 2013 and 2016. Ethane and acetylene are the primary products of methane photolysis in Jupiter's stratosphere, and their spatial distribution can be used to trace atmospheric circulation and the lifetimes of chemical constituents. Zonal mean distributions of these species have been previously studied from the Voyager and Cassini spacecraft (Nixon et al., 2010, doi: 10.1016/j.pss.2010.05.008), but the TEXES dataset now provides the opportunity to track the evolution of the hydrocarbons from Earth (Fletcher et al., 2016, doi:10.1016/j.icarus.2016.06.008 ). Global spectral maps of methane, ethane and acetylene emission are used to characterize the temporal evolution of large scale features in Jupiter's stratosphere (0.5-20 mbar?), including: equator to pole contrasts driven by large-scale stratospheric overturning; mid-latitude bands of elevated hydrocarbon emission; small-scale wave phenomena driven by meteorological activity in the underlying troposphere; and the tropical changes in emission related to Jupiter's Quasi-Quadrennial Oscillation. The NEMESIS spectral inversion tool (Irwin et al., 2008, doi: 10.1016/j.jqsrt.2007.11.006) is used to derive stratospheric temperatures and hydrocarbon abundances from spatially-resolved spectra at 744, 819, and 1247 cm-1. We use these to investigate the changes in the vertical temperature and ethane and acetylene distributions over time, with the aim of providing the global and temporal context for Juno's exploration of the jovian atmosphere in 2016/17.

  16. Indonesia Stratosphere and Troposphere Response to Solar Activity Variations

    Science.gov (United States)

    Sinambela, Wilson; Muh, La Ode; Musafar, K.; Sutastio, Heri

    2000-10-01

    Tropospheric and stratospheric response of Indonesia to the solar activity was analyzed based on the stratospheric total ozone concentrations above Watukosek station (07,6 deg S, 112,5 deg E) from 1979 to 1992, and tropospheric temperature at tropopause geopotential height, 500 mBar, 700 mbar above Cengkareng - Jakarta station (06 deg) 07 min 37 sec S, 106 deg 39 min 28 sec E) from 1986 to 1992, and ground surface air temperature above Polonia Median (03 deg 34 sec N, 98 deg 41 min E) and Kemayoran - Jakarta station (06 deg 09 min S 106 deg 51 min E) from 1979 - 1989. By using the moving average analysis of monthly average this tropospheric and stratospheric variable, were found that the behavior of the time series of the stratospheric ozone concentration, tropospheric temperature at geopotential height tropopause, 500 mBar, 700 mBar and ground surface air temperature above Indonesia showed a tendency to vary with a period of about 22 - 32 months. This is so - called " Quasi Biennial" (Q B 0). The behavior of the relative sunspot numbers and / or F 10,7 Cm solar radio flux as the measure of the solar activity also showed a tendency to vary Quasi - Biennially with a period about 27 - 30 months which was superimposed to the eleven - year solar cycle variations. The source of the variations was predicted from the inside of the sun, since the experiment showed that the neutrino flux from the sun varies with a period almost equal to the Quasi - Biennial variations of the solar activity. The Quasi - Biennial variations of the solar activity seems produce a similar variations on the earth atmospheric phenomena such as the stratospheric total ozone concentrations, mean tropospheric temperature at geopotential tropopause height, 500 mBar, 700 mBar, and mean ground surface air temperature above Indonesia.

  17. Stratospheric ozone depletion from future nitrous oxide increases

    Directory of Open Access Journals (Sweden)

    W. Wang

    2014-12-01

    Full Text Available We have investigated the impact of the assumed nitrous oxide (N2O increases on stratospheric chemistry and dynamics using a series of idealized simulations with a coupled chemistry-climate model (CCM. In a future cooler stratosphere the net yield of NOy from N2O is shown to decrease in a reference run following the IPCC A1B scenario, but NOy can still be significantly increased by extra increases of N2O over 2001–2050. Over the last decade of simulations, 50% increases in N2O result in a maximal 6% reduction in ozone mixing ratios in the middle stratosphere at around 10 hPa and an average 2% decrease in the total ozone column (TCO compared with the control run. This enhanced destruction could cause an ozone decline in the first half of this century in the middle stratosphere around 10 hPa, while global TCO still shows an increase at the same time. The results from a multiple linear regression analysis and sensitivity simulations with different forcings show that the chemical effect of N2O increases dominates the N2O-induced ozone depletion in the stratosphere, while the dynamical and radiative effects of N2O increases are overall insignificant. The analysis of the results reveals that the ozone depleting potential of N2O varies with the time period and is influenced by the environmental conditions. For example, carbon dioxide (CO2 increases can strongly offset the ozone depletion effect of N2O.

  18. Early work on the stratospheric ozone depletion-CFC issue

    Science.gov (United States)

    Molina, M.

    2012-12-01

    I became involved with the atmospheric chemistry of chlorofluorocarbons (CFCs) shortly after joining Sherry Rowland's research group at the University of California, Irvine, in 1973. CFCs had been detected in the troposphere by James Lovelock in 1971, and the question we set out to answer was the fate of these compounds of industrial origin in the environment, as well as possibly identifying any consequences of their accumulation in the atmosphere. After examining many potential sinks for these compounds we realized that because of their unusual stability the most likely destruction process was photolysis in the stratosphere. I carried out measurements of the absorption spectra of these compounds in the near ultraviolet; previous work involved only spectra in the far ultraviolet, not relevant for atmospheric chemistry. The results indicated that photolysis would take place in the upper stratosphere. I subsequently carried out calculations using one-dimensional atmospheric models to estimate their atmospheric residence times, which turned out to be many decades. We realized that the chlorine atoms generated by photolysis of the CFCs would participate in a catalytic chain reaction that would efficiently destroy ozone. Furthermore, we estimated that the amount of CFCs produced industrially was comparable to the amount of nitric oxide produced naturally in the stratosphere by the decomposition of nitrous oxide; work by Paul Crutzen and Harold Johnston had indicated that the abundance of ozone in the stratosphere was controlled by nitric oxide. We then formulated the hypothesis that the continued release of CFCs to the environment posed a threat to the stability of the ozone layer, and published our results in the journal Nature in 1974. The publication was noticed almost exclusively by the community of experts in stratospheric chemistry, and hence Sherry Rowland and I decided at that time that it was our responsibility to communicate this finding to society at large

  19. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    Science.gov (United States)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2017-02-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  20. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  1. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-03-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trend of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground–10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  2. Distributions of NO, NO{sub x} and NO{sub y} in the upper troposphere and lower stratosphere between 28 N and 61 N during POLINAT 2

    Energy Technology Data Exchange (ETDEWEB)

    Ziereis, H.; Schlager, H.; Schulte, P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Velthoven, P.F.J. van [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Slemr, F. [Fraunhofer-Institut fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany)

    1999-08-01

    During the POLINAT 2 field campaign the distribution of NO, NO{sub x}, and NO{sub y} in the upper troposphere and lowermost stratosphere over the eastern North Atlantic was measured using the DLR research aircraft Falcon. Based from Shannon airport in Ireland 14 flights were carried out between September 19 and October 25, 1997. The measurements were performed in and out of the North Atlantic flight corridor covering latitudes between 28 N and 61 N. A marked latitudinal gradient in NO, NO{sub x}, and NO{sub y} - the sum of all reactive nitrogen compounds - was observed. Mean NO volume mixing ratios in the upper troposphere increased from about 50 pptv at 28 N to about 180 pptv at 59 N. A similar latitude dependence was also found for NO{sub x} and NO{sub y}. In the northern part of the POLINAT 2 measuring area NO and NO{sub x} volume mixing ratios increased significantly with increasing altitude with maximum values around the tropopause while in the southern part of the measuring area no strong altitude gradient was observed. NO and NO{sub x} did not show a substantial gradient across the tropopause. NO/NO{sub y} and NO{sub y}/O{sub 3} ratios showed maximum values of about 0.30 ppbv/ppbv and 0.012 ppbv/ppbv, respectively, around the tropopause. The POLINAT 2 observations suggest that aircraft emissions are an important source of NO{sub x} and NO{sub y} in the region studied. Also, the present measurements contribute to the data set obtained in the North Atlantic flight corridor during the last few years and help to establish a NO{sub x} climatology around the tropopause for this region. (orig.)

  3. Age of stratospheric air in the ERA-Interim

    Science.gov (United States)

    Diallo, M.; Legras, B.; Chedin, A.

    2012-07-01

    The age of stratospheric air is calculated over 22 yr of the ERA-Interim reanalysis using an off-line Lagrangian transport model and heating rates. At low and mid-latitudes, the mean age of air is in good agreement with observed ages from aircraft flights, high altitude balloons and satellite observations of CO2 and SF6. The mid-latitude age spectrum in the lower stratosphere exhibits a long tail with a peak at 0.5 yr, which is maximum at the end of the winter, and a secondary flat maximum between 4 and 5 yr due to the combination of fast and slow branches of the Brewer-Dobson circulation and the reinforced barrier effect of the jet. At higher altitudes, the age spectrum exhibits the footprint of the annual modulation of the deep Brewer-Dobson circulation. The variability of the mean age is analysed through a decomposition in terms of annual cycle, QBO, ENSO and trend. The annual modulation is the dominating signal in the lower stratosphere and in the tropical pipe with amplitude up to one year. The phase of the oscillation is opposite in both hemisphere beyond 20° and is also reversed below and above 25 km with maximun arising in mid-March in the Northern Hemisphere and in mid-September in the Southern Hemisphere. The tropical pipe signal is in phase with the lower southern stratosphere and the mid northern stratosphere. The maximum amplitude of the QBO modulation is of about 0.5 yr and is mostly concentrated within the tropics between 25 and 35 km. It lags the QBO wind at 30 hPa by about 8 months. The ENSO signal is small and limited to the lower northen stratosphere. The trend is significant and negative, of the order of -0.3 to -0.5 yr dec-1, within the lower stratosphere in the Southern Hemisphere and under 40° N in the Northern Hemisphere below 25 km. It is positive (of the order of 0.3 yr dec-1) in the mid stratosphere but there is no region of consistent significance. This suggests that the shallow and deep Brewer-Dobson circulations may evolve in

  4. The effect of the 11-year solar-cycle on the temperature in the upper-stratosphere and mesosphere: Part II numerical simulations and the role of planetary waves

    Science.gov (United States)

    Hampson, J.; Keckhut, P.; Hauchecorne, A.; Chanin, M. L.

    2005-07-01

    Results from mechanistic model simulations have been analysed to examine the effect of the solar cycle, and in particular how the level of planetary wave activity changes the effect of the solar cycle. The model is a stratosphere and mesosphere model with detailed chemical, radiative and dynamical schemes. Planetary waves are initiated at the lowest boundary level of the model, which corresponds to the tropopause height. Model simulations have been carried out in pairs, with one simulation using solar forcing corresponding to solar minimum and the other to solar maximum. The level of lower boundary planetary wave forcing is varied between pairs of model simulations. The difference in temperature signal between the pairs of simulations is presented. The results illustrate the crucial role played by the planetary wave forcing in the solar cycle temperature signal. The solar cycle temperature signal in the tropics and subtropics is about 1 K for all values of wave forcing. However, in the extra-tropics the solar signal varies critically with wave forcing, giving a solar signal as strong as 16 K for intermediate values of wave forcing. Despite some spatial differences, the simulations with a specific wave forcing show good qualitative agreements with observational results presented in the companion paper [Keckhut et al., 2005. Journal of Atmospheric and Solar-Terrestrial Physics, submitted for publication]. Above a critical level of wave activity, the non-linear interaction with the mean flow induces a stratospheric warming and a strong temperature change. The critical wave-forcing amplitude necessary to produce such an event is very sensitive to the initial state of the atmosphere and a small change of the mean wind, due for example to an enhancement of the solar forcing, can generate a large difference in temperature, depending on the level of the wave forcing. The numerical simulations presented here suggest a mechanism by which a small change induced by the solar

  5. Lidar measurements of polar stratospheric clouds during the 1989 airborne Arctic stratospheric expedition

    Science.gov (United States)

    Ismail, Syed; Browell, Edward V.

    1991-01-01

    The Airborne Arctic Stratospheric Expedition (AASE) was conducted during January to February 1989 from the Sola Air Station, Norway. As part of this expedition, the NASA Langley Research Center's multiwavelength airborne lidar system was flown on the NASA Ames Research Center's DC-8 aircraft to measure ozone (O3) and aerosol profiles in the region of the polar vortex. The lidar system simultaneously transmitted laser beams at 1064, 603, 311, and 301.5 nm to measure atmospheric scattering, polarization and O3 profiles. Long range flights were made between Stavanger, Norway, and the North Pole, and between 40 deg W and 20 deg E meridians. Eleven flights were made, each flight lasting an average of 10 hours covering about 8000 km. Atmospheric scattering ratios, aerosol polarizations, and aerosol scattering ratio wavelength dependences were derived from the lidar measurements to altitudes above 27 km. The details of the aerosol scattering properties of lidar observations in the IR, VIS, and UV regions are presented along with correlations with the national meteorological Center's temperature profiles.

  6. The influence of the stratosphere on the tropospheric zonal wind response to CO2 doubling

    Directory of Open Access Journals (Sweden)

    C. J. Bell

    2011-05-01

    Full Text Available The influence of a CO2 doubling on the stratospheric potential vorticity (PV is examined in two climate models. Subsequently, the influence of changes in the stratosphere on the tropospheric zonal wind response is investigated, by inverting the stratospheric PV. Radiative effects seem to dominate the stratospheric response to CO2 doubling in the Southern Hemisphere. These lead to a stratospheric PV increase at the edge of the polar vortex, resulting in an increased westerly influence of the stratosphere on the troposphere, increasing the midlatitude tropospheric westerlies in late winter. In the Northern Hemisphere, dynamical effects are also important. Both models show a reduced polar PV and an enhanced midlatitude PV in the Northern Hemisphere winter stratosphere. These PV changes are likely related to an enhanced wave forcing of the winter stratosphere, as measured by an increase in the 100 hPa eddy heat flux, and result in a reduced westerly influence of the stratosphere on the high latitude tropospheric winds. In one model, the high latitude PV decreases are, however, restricted to higher altitudes, and the tropospheric response due to the stratospheric changes is dominated by an increased westerly influence in the midlatitudes, related to the increase in midlatitude PV in the lower stratosphere. The tropospheric response in zonal wind due to the stratospheric PV changes is of the order of 0.5 to 1 m s−1. The total tropospheric response has a somewhat different spatial structure, but is of similar magnitude. This indicates that the stratospheric influence is of importance in modifying the tropospheric zonal wind response to CO2 doubling.

  7. The influence of the stratosphere on the tropospheric zonal wind response to CO2 doubling

    Directory of Open Access Journals (Sweden)

    P. C. Siegmund

    2010-10-01

    Full Text Available The influence of a CO2 doubling on the stratospheric potential vorticity (PV is examined in two climate models. Subsequently, the influence of changes in the stratosphere on the tropospheric zonal wind response is investigated, by inverting the stratospheric PV. Radiative effects dominate the stratospheric response to CO2 doubling in the Southern Hemisphere. These lead to a stratospheric PV increase at the edge of the polar vortex, resulting in an increased westerly influence of the stratosphere on the tropospheric midlatitude winds in late winter. In the Northern Hemisphere, dynamical effects are also important. Both models show a reduced polar PV and an enhanced midlatitude PV in the Northern Hemisphere winter stratosphere. These PV changes are related to an enhanced wave forcing of the winter stratosphere, as measured by an increase in the 100 hPa eddy heat flux, and result in a reduced westerly influence of the stratosphere on the high latitude tropospheric winds. In one model, the high latitude PV decreases are, however, restricted to higher altitudes, and the tropospheric response due to the stratospheric changes is dominated by an increased westerly influence in the midlatitudes, related to the increase in midlatitude PV in the lower stratosphere. The tropospheric response in zonal wind due to the stratospheric PV changes is of the order of 0.5 to 1 m s−1. The total tropospheric response has a somewhat different spatial structure, but is of similar magnitude. This indicates that the stratospheric influence is of importance in modifying the tropospheric zonal wind response to CO2 doubling.

  8. Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Directory of Open Access Journals (Sweden)

    L. Xia

    2017-10-01

    Full Text Available A range of solar radiation management (SRM techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air

  9. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    Directory of Open Access Journals (Sweden)

    H. E. Thornton

    2009-02-01

    Full Text Available This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF, the Belgian Institute for Space and Aeronomy (BIRA-IASB, the French Service d'Aéronomie (SA-IPSL and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE, the Polar Ozone and Aerosol Measurement (POAM III and the Stratospheric Aerosol and Gas Experiment (SAGE II. The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in

  10. The Many Problems with Geoengineering Using Stratospheric Aerosols

    Science.gov (United States)

    Robock, Alan

    2009-05-01

    In response to the global warming problem, there has been a recent renewed call for geoengineering ``solutions'' involving injecting particles into the stratosphere or blocking sunlight with satellites between the Sun and Earth. While volcanic eruptions have been suggested as innocuous examples of stratospheric aerosols cooling the planet, the volcano analog actually argues against geoengineering because of ozone depletion and regional hydrologic and temperature responses. In this talk, I consider the suggestion to create an artificial stratospheric aerosol layer. No systems to conduct geoengineering now exist, but a comparison of different proposed stratospheric injection schemes, airplanes, balloons, artillery, and a space elevator, shows that using airplanes would not be that expensive. We simulated the climate response to both tropical and Arctic stratospheric injection of sulfate aerosol precursors using a comprehensive atmosphere-ocean general circulation model, the National Aeronautics and Space Administration Goddard Institute for Space Studies ModelE. We simulated the injection of SO2 and the model converts it to sulfate aerosols, transports them and removes them through dry and wet deposition, and calculates the climate response to the radiative forcing from the aerosols. We conducted simulations of future climate with the Intergovernmental Panel on Climate Change A1B business-as-usual scenario both with and without geoengineering, and compare the results. We found that if there were a way to continuously inject SO2 into the lower stratosphere, it would produce global cooling. Acid deposition from the sulfate would not be enough to disturb most ecosystems. Tropical SO2 injection would produce sustained cooling over most of the world, with more cooling over continents. Arctic SO2 injection would not just cool the Arctic. But both tropical and Arctic SO2 injection would disrupt the Asian and African summer monsoons, reducing precipitation to the food supply

  11. Diagnosing the Influence of Diabatic Processes on the Explosive Deepening of Extratropical Cyclones over the North Atlantic Ocean

    Science.gov (United States)

    Knippertz, P.; Fink, A. H.; Pohle, S.; Pinto, J. G.

    2012-04-01

    The relative roles of baroclinic and diabatic processes for explosive deepening of extratropical cyclones have been debated for a long time, mostly on the basis of case studies. Here we present a powerful diagnostic approach to the problem, which is based on a combination of an automatic cyclone tracking with a special version of the classical pressure tendency equation (PTE) that relates changes in surface pressure to contributions from horizontal and vertical temperature advection as well as diabatic processes, i.e., mainly latent heat release in clouds. Along the entire track of a cyclone, the PTE is evaluated in a 3°x3° box from the surface to 100 hPa centred on the location the storm is moving to within the next time step. The great advantage of this new approach is the easy applicability to large gridded datasets, even if diabatic tendencies are not explicitly available as in many reanalysis products. The strengths and limitations of the method are illustrated here through application to several explosively deepening, damaging winter storms over the North Atlantic Ocean. Data used are 6-hourly ERA-Interim re-analyses. For better interpretation of the results, the PTE analysis is complemented with other classical cyclogenetic factors, i.e., the strength of the polar jet and the equivalent-potential temperature θe at 850 hPa in the warm sector. The main conclusions from this analysis are: • The time evolutions of the actual core pressure of the storm and the 6-hourly pressure changes in the moving box used to evaluate the PTE show structural similarities that are dominated by the explosive deepening. • The vertical advection term is positive throughout the entire lifecycle of all storms indicating the dominance of ascent downstream of the cyclone center. It is (over-) compensated by negative contributions through warm advection and diabatic heating. • Storms "Martin" and "Kyrill" are dominated by baroclinic processes with contributions of diabatic

  12. Effects of melting ice sheets and orbital forcing on the early Holocene warming in extratropical Northern Hemisphere

    Science.gov (United States)

    Zhang, Y.; Renssen, H.; Seppä, H.

    2015-11-01

    The early Holocene is a critical period for climate change, as it marked the final transition from the last deglaciation to the relatively warm and stable Holocene. It is characterized by a warming trend that has been registered in numerous proxy records. This climatic warming was accompanied by major adjustments in different climate components, including the decaying of ice sheets in cryosphere, the perturbation of circulation in the ocean, the expansion of vegetation (over the high latitude) in biosphere. Previous studies have analyzed the influence of the demise of the ice sheets and other forcings on climate system. However, the climate response to the forcings together with the internal feedbacks before 9 ka remains not fully comprehended. In this study, we therefore disentangle how these forcings contributed to climate change during the earliest part of Holocene (11.5-7 ka) by employing the LOVECLIM climate model for both equilibrium and transient experiments. The results of our equilibrium experiments for 11.5 ka reveal that the annual mean temperature at the onset of the Holocene was lower than in the preindustrial era in the Northern extratropics, except in Alaska. The magnitude of this cool anomaly varies regionally as a response to varying climate forcings and diverse mechanisms. In eastern N America and NW Europe the temperatures throughout the whole year were 2-5 °C lower than in the preindustrial control, reaching the maximum cooling as here the climate was strongly influenced by the cooling effects of the ice sheets. This cooling of the ice-sheet surface was caused both by the enhanced surface albedo and by the orography of the ice sheets. For Siberia, a small deviation (-0.5-1.5 °C) in summer temperature and 0.5-1.5 °C cooler annual climate compared to the preindustrial run were caused by the counteraction of the high albedo associated with the tundra vegetation which was more southward extended at 11.5 ka than in the preindustrial period and the

  13. Orbit control of a stratospheric satellite with parameter uncertainties

    Science.gov (United States)

    Xu, Ming; Huo, Wei

    2016-12-01

    When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.

  14. Thermal performance of stratospheric airship with photovoltaic array

    Science.gov (United States)

    Liu, Qiang; Yang, Yanchu; Cui, Yanxiang; Cai, Jingjing

    2017-03-01

    The increase of airship applications makes it necessary for a comprehensive understanding of the thermal performance of stratospheric airships. A numerical model was proposed to simulate the thermal performance of a stratospheric airship with photovoltaic array, an analysis code was developed based on the thermal model and was verified by experimental data. A further inspection into the temperature field and flow field distribution of the airship was analyzed in detail. The simulation results suggest that solar radiation can exert great influence on the thermal performance of the airship. The higher temperature Helium was gathered in the upper part inside of the airship, the flow of Helium was regular at nighttime but was chaotic in the middle and upper part of the airship at daytime. The temperature and velocity performance of fin was different from that of the hull and other fins due to the shadow of hull and other fins.

  15. Wind tunnel tests of stratospheric airship counter rotating propellers

    Directory of Open Access Journals (Sweden)

    Yaxi Chen

    2015-01-01

    Full Text Available Aerodynamic performance of the high-altitude propeller, especially the counter rotation effects, is experimentally studied. Influences of different configurations on a stratospheric airship, included 2-blade counter-rotating propeller (CRP, dual 2-blade single rotation propellers (SRPs and 4-blade SRP, are also indicated. This research indicates that the effect of counter rotation can greatly improve the efficiency. It shows that the CRP configuration results in a higher efficiency than the dual 2-blade SRPs configuration or 4-blade SRP configuration under the same advance ratio, and the CRP configuration also gains the highest efficiency whether under the situation of providing the same trust or absorbing the same power. It concludes that, for a stratospheric airship, the CRP configuration is better than the multiple SRPs configuration or a multi-blade SRP one.

  16. Eight years of stratospheric ozone observations at Marambio, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Damski, J.; Taalas, P. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research

    1995-12-31

    In this work behaviour of the stratospheric ozone using the total ozone and ozone sounding measurements from Marambio (64 deg 14`S, 56 deg 37`W) at Antarctic Peninsula has been studied. The effects of depleted stratospheric ozone to the UV-B-radiation are investigated employing a radiative transfer model, and the Marambio total ozone measurements. The levels of UV-B radiation have been studied from the point of the erythemal UV-B-doses on the horizontal human epidermis. The low values of total ozone at Marambio are also reflected to the received UV-doses which have increased roughly 20-80% (compared to long term average) during austral spring and summer. In respective to the total amount of ozone, the model calculations show that during October the UV-B-doses can be at the same level they should be during normal summer

  17. Phosgene measurements in the upper troposphere and lower stratosphere

    Science.gov (United States)

    Wilson, S. R.; Crutzen, P. J.; Schuster, G.; Griffith, D. W. T.; Helas, G.

    1988-08-01

    Industrial chlorofluorocarbons have now accumulated so much in the atmosphere that the ClOx radicals produced from their oxidation are causing substantial reductions in the ozone layer. Here we measure phosgene, which is one possible product from the oxidation of natural and industrial chlorinated hydrocarbons and which can oxidize further to form ClOx. Our measurements show a mixing ratio of 17 p.p.t.v. in the upper troposphere, and an average of 22 p.p.t.v. in the lower stratosphere. These values are substantially greater than those estimated with a model that only considers the photochemical breakdown of CCl4, indicating the possible significance of other more reactive chlorocarbon compounds, especially CHCl3, CH3CCl3, C2HCl3 and C2Cl4 and their oxidation products in supplying chlorine to the lower stratosphere.

  18. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  19. Studies on ultrasmall bacteria in relation to the presence of bacteria in the stratosphere

    Science.gov (United States)

    Alshammari, Fawaz; Wainwright, Milton; Alabri, Khalid; Alharbi, Sulamain A.

    2011-04-01

    Recent studies confirm that bacteria exist in the stratosphere. It is generally assumed that these bacteria are exiting from Earth, although it is possible that some are incoming from space. Most stratospheric bacterial isolates belong to the spore-forming genus Bacillus, although non-spore formers have also been isolated. Theoretically, the smaller a bacterium is, the more likely it is to be carried from Earth to the stratosphere. Ultrasmall bacteria have been frequently isolated from Earth environments, but not yet from the stratosphere. This is an anomalous situation, since we would expect such small bacteria to be over represented in the stratosphere-microflora. Here, we show that ultrasmall bacteria are present in the environment on Earth (i.e. in seawater and rainwater) and discuss the paradox of why they have not been isolated from the stratosphere.

  20. Ascent trajectory optimization for stratospheric airship with thermal effects

    Science.gov (United States)

    Guo, Xiao; Zhu, Ming

    2013-09-01

    Ascent trajectory optimization with thermal effects is addressed for a stratospheric airship. Basic thermal characteristics of the stratospheric airship are introduced. Besides, the airship’s equations of motion are constructed by including the factors about aerodynamic force, added mass and wind profiles which are developed based on horizontal-wind model. For both minimum-time and minimum-energy flights during ascent, the trajectory optimization problem is described with the path and terminal constraints in different scenarios and then, is converted into a parameter optimization problem by a direct collocation method. Sparse Nonlinear OPTimizer(SNOPT) is employed as a nonlinear programming solver and two scenarios are adopted. The solutions obtained illustrate that the trajectories are greatly affected by the thermal behaviors which prolong the daytime minimum-time flights of about 20.8% compared with that of nighttime in scenario 1 and of about 10.5% in scenario 2. And there is the same trend for minimum-energy flights. For the energy consumption of minimum-time flights, 6% decrease is abstained in scenario 1 and 5% decrease in scenario 2. However, a few energy consumption reduction is achieved for minimum-energy flights. Solar radiation is the principal component and the natural wind also affects the thermal behaviors of stratospheric airship during ascent. The relationship between take-off time and performance of airship during ascent is discussed. it is found that the take-off time at dusk is best choice for stratospheric airship. And in addition, for saving energy, airship prefers to fly downwind.

  1. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  2. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  3. Validation of GOMOS ozone precision estimates in the stratosphere

    Directory of Open Access Journals (Sweden)

    V. F. Sofieva

    2014-03-01

    Full Text Available Accurate information about uncertainties is required in nearly all data analyses (inter-comparisons, data assimilation, combined use, etc.. Validation of precision estimates (viz., the random component of estimated uncertainty is important for remote sensing measurements, which provide the information about atmospheric parameters via solving an inverse problem. For the Global Ozone Monitoring by Occultation of Stars (GOMOS instrument, it is of a real challenge, due to dependence of signal-to-noise ratio (and thus precision estimates on stellar properties, small number of self-collocated measurements, and uncertainty estimates growing with time due to instrument ageing. Estimated uncertainties of ozone retrievals are small in the stratosphere for bright stars, which results in additional complexity of detecting them on the background of natural ozone variability. In this paper, we discuss different methods for geophysical validation of precision estimates and their applicability to GOMOS data. We propose a simple method for validation of GOMOS precision estimates for ozone in the stratosphere. This method is based on comparisons of difference in sample variance with the difference in uncertainty estimates for measurements from different stars selected in a region of small natural variability. For GOMOS, the difference in sample variances for different stars at altitudes 25–45 km is well explained by the difference in squared precisions, if stars are not dim. Since it is observed for several stars, and since normalized χ2 is close to 1 in these occultations in the stratosphere, we can conclude that GOMOS precision estimates are realistic in occultations of sufficiently bright stars. For dim stars, errors are overestimated due to improper accounting for the dark charge correction uncertainty in the error budget. The proposed method can also be applied to stratospheric ozone data from other instruments, including multi-instrument analyses.

  4. Trace Gas Trends in the Stratosphere: 1991-2005

    Science.gov (United States)

    Elkins, J. W.; Moore, F. L.; Dutton, G. S.; Hurst, D. F.; Ray, E. A.; Montzka, S. A.; Butler, J. H.; Fahey, D. W.; Hall, B. H.; Atlas, E.; Wofsy, S. C.; Romashkin, P. A.

    2005-05-01

    The first NOAA airborne gas chromatograph measured chlorofluorocarbon-11 (CFC-11) and CFC-113 during the Arctic Airborne Stratospheric Experiment in 1991-1992. In 1994, we added nitrous oxide (N2O), sulfur hexafluoride (SF6), CFC-12, halon-1211, methyl chloroform, carbon tetrachloride, methane, and hydrogen. NOAA scientists have since operated five airborne gas chromatographs on NASA airborne platforms, including the NASA Jet Propulsion Laboratory (JPL) balloon gondola and ER-2, WB-57F, DC-8, and NASA Altair Unmanned Air Vehicle (UAV) aircraft. Using these in situ measurements and tracer-tracer correlations from flask observations for the unmeasured halogen species (HCFCs and methyl halides including methyl chloride and bromide), we have estimated trends of total chlorine and bromine in the stratosphere. The determination of inorganic equivalent chlorine (Cl + 45*Br) requires the trend of tropospheric equivalent chlorine and the mean age of the parcel of stratospheric air. In general, there is good agreement between the mean age of the air mass calculations using carbon dioxide and SF6, except for regions of extreme down welling of mesospheric air where SF6 is consumed. Tropospheric trends of the methyl halides have been compiled against stable standards. We operated a airborne gas chromatograph on the Sage 3 Ozone Loss Validation Experiment (SOLVE-II) mission from Kiruna, Sweden during 2002. It measured the major HCFCs and methyl halides, so that these compounds do not have to be estimated from tracer-tracer correlations in the future. In 2005, we have added a new lightweight airborne instrument (measure CFC-11, CFC-12, halon-1211, SF6, N2O, and ozone. This instrument can operate on small or UAV aircraft and will be used for Aura satellite validation. This presentation will show trends for selected trace gases and our estimates of total equivalent chlorine stratospheric trends since 1991.

  5. Solar Signals in CMIP-5 Simulations: The Stratospheric Pathway

    Science.gov (United States)

    Mitchell, D.M.; Misios, S.; Gray, L. J.; Tourpali, K.; Matthes, K.; Hood, L.; Schmidt, H.; Chiodo, G.; Thieblemont, R.; Rozanov, E.; hide

    2015-01-01

    The 11 year solar-cycle component of climate variability is assessed in historical simulations of models taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5). Multiple linear regression is applied to estimate the zonal temperature, wind and annular mode responses to a typical solar cycle, with a focus on both the stratosphere and the stratospheric influence on the surface over the period approximately 1850-2005. The analysis is performed on all CMIP-5 models but focuses on the 13 CMIP-5 models that resolve the stratosphere (high-top models) and compares the simulated solar cycle signature with reanalysis data. The 11 year solar cycle component of climate variability is found to be weaker in terms of magnitude and latitudinal gradient around the stratopause in the models than in the reanalysis. The peak in temperature in the lower equatorial stratosphere (approximately 70 hPa) reported in some studies is found in the models to depend on the length of the analysis period, with the last 30 years yielding the strongest response. A modification of the Polar Jet Oscillation (PJO) in response to the 11 year solar cycle is not robust across all models, but is more apparent in models with high spectral resolution in the short-wave region. The PJO evolution is slower in these models, leading to a stronger response during February, whereas observations indicate it to be weaker. In early winter, the magnitude of the modeled response is more consistent with observations when only data from 1979-2005 are considered. The observed North Pacific high-pressure surface response during the solar maximum is only simulated in some models, for which there are no distinguishing model characteristics. The lagged North Atlantic surface response is reproduced in both high- and low-top models, but is more prevalent in the former. In both cases, the magnitude of the response is generally lower than in observations.

  6. Trends and variability in stratospheric mixing: 1979–2005

    Directory of Open Access Journals (Sweden)

    H. Garny

    2007-11-01

    Full Text Available Changes in climate are likely to drive changes in stratospheric mixing with associated implications for changes in transport of ozone from tropical source regions to higher latitudes, transport of water vapour and source gas degradation products from the tropical tropopause layer into the mid-latitude lower stratosphere, and changes in the meridional distribution of long-lived trace gases. To diagnose long-term changes in stratospheric mixing, global monthly fields of Lyapunov exponents were calculated on the 450 K, 550 K, and 650 K isentropic surfaces by applying a trajectory model to wind fields from NCEP/NCAR reanalyses over the period 1979 to 2005. Potential underlying geophysical drivers of trends and variability in these mixing fields were investigated by applying a least squares regression model, which included basis functions for a mean annual cycle, seasonally dependent linear trends, the quasi-biennial oscillation (QBO, the solar cycle, and the El Niño Southern Oscillation (ENSO, to zonal mean time series of the Lyapunov exponents.

    Long-term positive trends in mixing are apparent over southern middle to high latitudes at 450 K through most of the year, while negative trends over southern high latitudes are apparent at 650 K from May to August. Wintertime negative trends in mixing over northern mid-latitudes are apparent at 550 K and 650 K. Over low latitudes, within 40° of the equator, the QBO exerts a strong influence on mixing at all three analysis levels. This QBO influence is strongly modulated by the annual cycle and shows a phase shift across the subtropical mixing barrier. Solar cycle and ENSO influences on mixing are generally not significant. The diagnosed long-term changes in mixing should aid the interpretation of trends in stratospheric trace gases.

  7. Trends and variability in stratospheric mixing: 1979–2005

    Directory of Open Access Journals (Sweden)

    M. Dameris

    2007-05-01

    Full Text Available Changes in climate are likely to drive changes in stratospheric mixing with associated implications for changes in transport of ozone from tropical source regions to higher latitudes, transport of water vapour and source gas degradation products from the tropical tropopause layer into the mid-latitude lower stratosphere, and changes in the meridional distribution of long-lived trace gases. To diagnose long-term changes in stratospheric mixing, global monthly fields of Lyapunov exponents were calculated on the 450 K, 550 K, and 650 K isentropic surfaces by applying a trajectory model to wind fields from NCEP/NCAR reanalyses over the period 1979 to 2005. Potential underlying geophysical drivers of trends and variability in these mixing fields were investigated by applying a least squares regression model, which included basis functions for a mean annual cycle, seasonally dependent linear trends, the quasi-biennial oscillation (QBO, the solar cycle, and the El Niño Southern Oscillation (ENSO, to zonal mean time series of the Lyapunov exponents. Long-term positive trends in mixing are apparent over southern middle to high latitudes at 450 K through most of the year, while negative trends over southern high latitudes are apparent at 650 K from May to August. Wintertime negative trends in mixing over northern mid-latitudes are apparent at 550 K and 650 K. Over low latitudes, within 40° of the equator, the QBO exerts a strong influence on mixing at all three analysis levels. This QBO influence is strongly modulated by the annual cycle and shows a phase shift across the subtropical mixing barrier. Solar cycle and ENSO influences on mixing are generally not significant. The diagnosed long-term changes in mixing should aid the interpretation of trends in stratospheric trace gases.

  8. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  9. A new formulation of equivalent effective stratospheric chlorine (EESC

    Directory of Open Access Journals (Sweden)

    P. A. Newman

    2007-09-01

    Full Text Available Equivalent effective stratospheric chlorine (EESC is a convenient parameter to quantify the effects of halogens (chlorine and bromine on ozone depletion in the stratosphere. We show, discuss, and analyze a new formulation of EESC that now includes the effects of age-of-air dependent fractional release values and an age-of-air spectrum. This EESC can be more appropriately applied to various parts of the stratosphere because of this dependence on mean age-of-air. This new formulation provides quantitative estimates of EESC that can be directly related to inorganic chlorine and bromine throughout the stratosphere. In this paper, we first provide a detailed description of the EESC calculation. We then use this EESC formulation to estimate that human-produced ozone depleting substances will recover to 1980 levels in 2041 in the midlatitudes, and 2067 over Antarctica. These recovery dates are based upon the assumption that the international agreements for regulating ozone-depleting substances are adhered to. In addition to recovery dates, we also estimate the uncertainties and possible problems in the estimated times of recovery. The midlatitude recovery of 2041 has a 95% confidence uncertainty from 2028 to 2049, while the 2067 Antarctic recovery has a 95% confidence uncertainty from 2056 to 2078. The principal uncertainties are from the estimated mean age-of-air and fractional release values, and the assumption that these quantities are time independent. Using other model estimates of age decrease due to climate change, we estimate that midlatitude recovery may be significantly accelerated.

  10. Stratospheric Impact on the Onset of the Mesospheric Ice Season

    Science.gov (United States)

    Fiedler, J.; Baumgarten, G.; Berger, U.; Gabriel, A.; Latteck, R.; Luebken, F. J.

    2014-12-01

    Mesospheric ice layers, observed as noctilucent clouds (NLC) from ground, are the visible manifestation of extreme conditions in the polar summer mesopause region. Temperatures fall very low so that water vapor can freeze condence, which at 69°N usually occurs beginning of June. However, in 2013 the ALOMAR RMR lidar observed the first NLC on 21 May and the clouds reoccured during the following days. These were the earliest detections since 20 years and indicated an about 10 days earlier onset of the mesospheric ice season. This is supported by the colocated MAARSY radar which showed the occurrence rates of polar mesospheric summer echoes (PMSE) increasing faster than usual.The exceptional case was accompanied by ˜6 K lower temperatures and higher water vapor mixing ratios at NLC altitudes above ALOMAR from end of April until beginning of June as measured by the MLS instrument onboard the AURA satellite. Using MERRA reanalysis data we will show that the zonal mean temperature as well as the dynamic conditions in the Arctic middle atmosphere deviated in spring 2013 significantly from the mean conditions of the last 20 years. The planetary wave activity in the high latitude stratosphere was enhanced from 20 April to beginning of May. The colder and wetter upper mesosphere in May 2013 is attributed to this unusual late planetary wave activity in the stratosphere, introducing a strong upwelling in the mesosphere, lower temperatures and an upward transport of water vapor, which finally resulted into earlier existence conditions for mesospheric ice particles. For the southern hemisphere a high correlation between winter/summer transition in the stratosphere and onset of mesospheric ice is known as intra-hemispheric coupling. We regard the processes in the Arctic middle atmosphere in spring 2013 as a first evidence for intra-hemispheric coupling in the northern hemisphere, extending from the stratosphere into the mesopause region.

  11. Solar geoengineering using solid aerosol in the stratosphere

    Directory of Open Access Journals (Sweden)

    D. K. Weisenstein

    2015-04-01

    Full Text Available Solid aerosol particles have long been proposed as an alternative to sulfate aerosols for solar geoengineering. Any solid aerosol introduced into the stratosphere would be subject to coagulation with itself, producing fractal aggregates, and with the natural sulfate aerosol, producing liquid-coated solids. Solid aerosols that are coated with sulfate and/or have formed aggregates may have very different scattering properties and chemical behavior than do uncoated non-aggregated monomers. We use a two-dimensional chemical transport model to capture the dynamics of interacting solid and liquid aerosols in the stratosphere. As an example, we apply the model to the possible use of alumina and diamond particles for solar geoengineering. For 240 nm radius alumina particles, for example, an injection rate of 4 Mt yr−1 produces a global-average radiative forcing of 1.3 W m−2 and minimal self-coagulation of alumina yet almost all alumina outside the tropics is coated with sulfate. For the same radiative forcing, these solid aerosols can produce less ozone loss, less stratospheric heating, and less forward scattering than do sulfate aerosols. Our results suggest that appropriately sized alumina, diamond or similar high-index particles may have less severe technology-specific risks than do sulfate aerosols. These results, particularly the ozone response, are subject to large uncertainties due the limited data on the rate constants of reactions on the dry surfaces.

  12. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    Science.gov (United States)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.

  13. An ultrahot gas-giant exoplanet with a stratosphere

    Science.gov (United States)

    Evans, Thomas M.; Sing, David K.; Kataria, Tiffany; Goyal, Jayesh; Nikolov, Nikolay; Wakeford, Hannah R.; Deming, Drake; Marley, Mark S.; Amundsen, David S.; Ballester, Gilda E.; Barstow, Joanna K.; Ben-Jaffel, Lotfi; Bourrier, Vincent; Buchhave, Lars A.; Cohen, Ofer; Ehrenreich, David; García Muñoz, Antonio; Henry, Gregory W.; Knutson, Heather; Lavvas, Panayotis; Etangs, Alain Lecavelier Des; Lewis, Nikole K.; López-Morales, Mercedes; Mandell, Avi M.; Sanz-Forcada, Jorge; Tremblin, Pascal; Lupu, Roxana

    2017-08-01

    Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere—where temperature increases with altitude—these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

  14. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massie, S.T.; Bailey, P.L.; Gille, J.C. [National Center for Atmospheric Research, Boulder, CO (United States); Lee, E.C. [Princeton Univ., NJ (United States); Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B. [Lockheed Palo Alto Research Lab., CA (United States); Fishbein, E.F.; Waters, J.W. [California Institute of Technology, Pasadena, CA (United States); Lahoz, W.A. [Univ. of Reading (United Kingdom)

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  15. Stratospheric sulfate geoengineering enhances terrestrial gross primary productivity

    Science.gov (United States)

    Xia, L.; Robock, A.; Tilmes, S.; Neely, R. R., III

    2015-09-01

    Stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. With an 8 Tg yr-1 injection of SO2 to balance a Representative Concentration Pathway 6.0 (RCP6.0) scenario, we conducted climate model simulations with the Community Earth System Model, with the Community Atmospheric Model 4 fully coupled to tropospheric and stratospheric chemistry (CAM4-chem). During the geoengineering period, as compared to RCP6.0, land-averaged downward visible diffuse radiation increased 3.2 W m-2 (11 %). The enhanced diffuse radiation combined with the cooling increased plant photosynthesis by 2.4 %, which could contribute to an additional 3.8 ± 1.1 Gt C yr-1 global gross primary productivity without nutrient limitation. This increase could potentially increase the land carbon sink. Suppressed plant and soil respiration due to the cooling would reduce natural land carbon emission and therefore further enhance the terrestrial carbon sink during the geoengineering period. This beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about implementation of geoengineering.

  16. Solar geoengineering using solid aerosol in the stratosphere

    Science.gov (United States)

    Weisenstein, D. K.; Keith, D. W.; Dykema, J. A.

    2015-10-01

    Solid aerosol particles have long been proposed as an alternative to sulfate aerosols for solar geoengineering. Any solid aerosol introduced into the stratosphere would be subject to coagulation with itself, producing fractal aggregates, and with the natural sulfate aerosol, producing liquid-coated solids. Solid aerosols that are coated with sulfate and/or have formed aggregates may have very different scattering properties and chemical behavior than uncoated non-aggregated monomers do. We use a two-dimensional (2-D) chemistry-transport-aerosol model to capture the dynamics of interacting solid and liquid aerosols in the stratosphere. As an example, we apply the model to the possible use of alumina and diamond particles for solar geoengineering. For 240 nm radius alumina particles, for example, an injection rate of 4 Tg yr-1 produces a global-average shortwave radiative forcing of -1.2 W m-2 and minimal self-coagulation of alumina although almost all alumina outside the tropics is coated with sulfate. For the same radiative forcing, these solid aerosols can produce less ozone loss, less stratospheric heating, and less forward scattering than sulfate aerosols do. Our results suggest that appropriately sized alumina, diamond or similar high-index particles may have less severe technology-specific risks than sulfate aerosols do. These results, particularly the ozone response, are subject to large uncertainties due to the limited data on the rate constants of reactions on the dry surfaces.

  17. Stratospheric sulfate geoengineering enhances terrestrial gross primary productivity

    Directory of Open Access Journals (Sweden)

    L. Xia

    2015-09-01

    Full Text Available Stratospheric sulfate geoengineering could impact the terrestrial carbon cycle by enhancing the carbon sink. With an 8 Tg yr−1 injection of SO2 to balance a Representative Concentration Pathway 6.0 (RCP6.0 scenario, we conducted climate model simulations with the Community Earth System Model, with the Community Atmospheric Model 4 fully coupled to tropospheric and stratospheric chemistry (CAM4-chem. During the geoengineering period, as compared to RCP6.0, land-averaged downward visible diffuse radiation increased 3.2 W m−2 (11 %. The enhanced diffuse radiation combined with the cooling increased plant photosynthesis by 2.4 %, which could contribute to an additional 3.8 ± 1.1 Gt C yr−1 global gross primary productivity without nutrient limitation. This increase could potentially increase the land carbon sink. Suppressed plant and soil respiration due to the cooling would reduce natural land carbon emission and therefore further enhance the terrestrial carbon sink during the geoengineering period. This beneficial impact of stratospheric sulfate geoengineering would need to be balanced by a large number of potential risks in any future decisions about implementation of geoengineering.

  18. Comparing Sudden Stratospheric Warming Definitions in Reanalysis Data

    Science.gov (United States)

    Palmeiro, Froila M.; Barriopedro, David; García-Herrera, Ricardo; Calvo, Natalia

    2015-04-01

    Sudden Stratospheric Warmings (SSWs) are the main source of variability in the northern hemisphere polar stratosphere during winter. They are characterized by a dramatic warming of the polar stratosphere and weakening of the polar vortex circulation. SSWs can have an impact on surface weather, which makes them a potential tool for seasonal prediction. However, there is no consensus on the definition of SSWs, and multiple methods exist in the literature, yielding discrepancies on the detected events. In this presentation we compare the SSWs signatures of eight representative definitions for the 1958-2009 period and using three different reanalysis data (ERA, NCEP and JRA). The monthly distribution of SSWs is indistinguishable across definitions, with a common peak in January. However, the multi-decadal variability is method-dependent, with only three definitions displaying minimum frequencies in the 1990s. Comparison of several SSW benchmarks reveals negligible differences among methods due to the large case-to-case variability of events within a given definition. In the troposphere, the most robust signals across definitions before and after events are dominated by major SSWs, which are detected by most methods. Interestingly, minor SSWs represent the largest source of discrepancy in the surface signals of SSWs across definitions. Therefore, our results indicate that only major SSWs should be considered in future studies if robust tropospheric signals of SSWs want to be obtained regardless of the chosen method.

  19. Model Simulations of Ozone in the Summer Lower Stratosphere

    Science.gov (United States)

    Douglass, Anne R.; Kawa, S. R.

    1998-01-01

    The Goddard 3D chemistry and transport model (CTM) uses winds and temperatures from the Goddard Earth Observing System Data Assimilation S