WorldWideScience

Sample records for extrastriatal dopaminergic dysfunction

  1. Extrastriatal dopaminergic changes in Parkinson's disease patients with impulse control disorders.

    Science.gov (United States)

    Lee, Jee-Young; Seo, Seong Ho; Kim, Yu Kyeong; Yoo, Hye Bin; Kim, Young Eun; Song, In Chan; Lee, Jae Sung; Jeon, Beom S

    2014-01-01

    To investigate the extrastriatal dopaminergic neural changes in relation to the medication-related impulse control disorders (ICD) in Parkinson's disease (PD). A total of 31 subjects (11 and 11 drug-treated PD patients with and without medication-related ICDs and 9 healthy controls) having no other co-morbid psychiatric disorders participated in this study. Each subject underwent dynamic N-(3-[(18)F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane (FP-CIT) positron emission tomography scans. Binding potentials (BP) at nucleus accumbens, amygdala, orbitofrontal and ventromedial prefrontal cortex (VMPFC), putamen and caudate nucleus were estimated, and whole brain parametric maps of [(18)F]-FP-CIT binding were analysed by original and putaminal normalised manners. Compared with the healthy controls, BPs at both VMPFCs were significantly high and the extrastriatal to putaminal BP ratios at all regions were approximately three times higher in both PD groups. The PD ICD patients showed significantly higher BPs at the right VMPFC and tendency to lower BPs at the left nucleus accumbens compared with those free of ICD. The ICD subjects also showed reduced uptakes at both ventral striatal regions in the original parametric analysis and higher uptakes at the left insular and right posterior cingulate cortex and lower uptakes at both ventral pallidums in the putaminal normalised parametric analysis compared with the non-ICD subjects. A great gap in extrastriatal versus striatal dopaminergic fibre degenerations is an intrinsic condition predisposing to ICD in PD. Distinct pattern of extrastriatal changes between the ICD and non-ICD patients could provide a further insight into a mechanism of ICD in PD.

  2. Extrastriatal monoaminergic dysfunction and enhanced microglial activation in idiopathic rapid eye movement sleep behaviour disorder

    DEFF Research Database (Denmark)

    Stokholm, Morten Gersel; Iranzo, Alex; Østergaard, Karen

    2018-01-01

    BACKGROUND: The majority of patients diagnosed with idiopathic rapid eye movement sleep behaviour disorder (iRBD) progress over time to a Lewy-type α-synucleinopathy such as Parkinson's disease or dementia with Lewy bodies. This in vivo molecular imaging study aimed to investigate if extrastriatal...

  3. Characterization of dopaminergic dysfunction in familial progressive supranuclear palsy: an 18F-dopa PET study

    International Nuclear Information System (INIS)

    Tai, Y.F.; Ahsan, R.L.; Pavese, N.; Brooks, D.J.; Piccini, P.; Yebenes de, J.G.

    2007-01-01

    We analyzed 18 F-dopa PET data from 11 members of kindreds with familial progressive supranuclear palsy (PSP) to characterize their cerebral dopaminergic dysfunction. Three clinically-affected PSP patients showed reduced 18 F-dopa uptake in the striatum, orbitofrontal cortex and amygdala. One asymptomatic subject exhibited progressive putamen dopaminergic dysfunction. 60 % of subjects with abnormal 18 F-dopa scans developed PSP subsequently. This is the first in vivo documentation of cortical dopaminergic deficiency in PSP. Reduced striatal 18 F-dopa uptake in susceptible relatives may predict later clinical disease. (author)

  4. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  5. Molecular Aspects of Dopaminergic Neurodegeneration: Gene-Environment Interaction in Parkin Dysfunction

    Directory of Open Access Journals (Sweden)

    Syed Z. Imam

    2011-12-01

    Full Text Available Parkinson’s disease (PD is a common neurodegenerative movement disorder that is characterized pathologically by a progressive loss of midbrain dopaminergic neurons and by protein inclusions, designated Lewy bodies and Lewy neurites. PD is one of the most common neurodegenerative diseases, affecting almost 1% of the population over 60 years old. Although the symptoms and neuropathology of PD have been well characterized, the underlying mechanisms and causes of the disease are still not clear. Genetic mutations can provide important clues to disease mechanism, but most PD cases are sporadic rather than familial; environmental factors have long been suspected to contribute to the disease. Although more than 90% of PD cases occur sporadically and are thought to be due, in part, to oxidative stress and mitochondrial dysfunction, the study of genetic mutations has provided great insight into the molecular mechanisms of PD. Furthermore, rotenone, a widely used pesticide, and paraquat and maneb cause a syndrome in rats and mice that mimics, both behaviorally and neurologically, the symptoms of PD. In the current review, we will discuss various aspects of gene-environment interaction that lead to progressive dopaminergic neurodegenration, mainly focusing on our current finding based on stress-mediated parkin dysfunction.

  6. Dopaminergic dysfunction and psychiatric symptoms in movement disorders: a 123I-FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Di Giuda, Daniela; Cocciolillo, Fabrizio; Bruno, Isabella; Giordano, Alessandro; Camardese, Giovanni; Pucci, Lorella; Janiri, Luigi; Bentivoglio, Anna Rita; Guidubaldi, Arianna; Fasano, Alfonso

    2012-01-01

    Psychiatric symptoms frequently occur in patients with movement disorders. They are not a mere reaction to chronic disability, but most likely due to a combination of psychosocial factors and biochemical dysfunction underlying the movement disorder. We assessed dopamine transporter (DAT) availability by means of 123 I-FP-CIT SPECT, and motor and psychiatric features in patients with Parkinson's disease, primary dystonia and essential tremor, exploring the association between SPECT findings and symptom severity. Enrolled in the study were 21 patients with Parkinson's disease, 14 patients with primary dystonia and 15 patients with essential tremor. The severity of depression symptoms was assessed using the Hamilton depression rating scale, anxiety levels using the Hamilton anxiety rating scale and hedonic tone impairment using the Snaith-Hamilton pleasure scale. Specific 123 I-FP-CIT binding in the caudate and putamen was calculated based on ROI analysis. The control group included 17 healthy subjects. As expected, DAT availability was significantly decreased in patients with Parkinson's disease, whereas in essential tremor and dystonia patients it did not differ from that observed in the control group. In Parkinson's disease patients, an inverse correlation between severity of depression symptoms and DAT availability in the left caudate was found (r = -0.63, p = 0.002). In essential tremor patients, levels of anxiety symptoms were inversely correlated with DAT availability in the left caudate (r = -0.69, p = 0.004). In dystonia patients, the severities of both anxiety and depression symptoms were inversely associated with DAT availability in the left putamen (r = -0.71, p = 0.004, and r = -0.75, p = 0.002, respectively). There were no correlations between psychometric scores and 123 I-FP-CIT uptake ratios in healthy subjects. We found association between presynaptic dopaminergic function and affective symptoms in different movement disorders. Interestingly, the

  7. [18F]fallypride characterization of striatal and extrastriatal D2/3 receptors in Parkinson's disease.

    Science.gov (United States)

    Stark, Adam J; Smith, Christopher T; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Donahue, Manus J; Kessler, Robert M; Deutch, Ariel Y; Zald, David H; Claassen, Daniel O

    2018-01-01

    Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D 2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D 2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D 2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [ 18 F]fallypride, a high affinity D 2/3 receptor ligand, to measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BP ND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D 2/3 receptors, where reduced BP ND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D 2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D 2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.

  8. AF-6 Protects Against Dopaminergic Dysfunction and Mitochondrial Abnormalities in Drosophila Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Adeline H. Basil

    2017-08-01

    Full Text Available Afadin 6 (AF-6 is an F-actin binding multidomain-containing scaffolding protein that is known for its function in cell-cell adhesion. Interestingly, besides this well documented role, we recently found that AF-6 is a Parkin-interacting protein that augments Parkin/PINK1-mediated mitophagy. Notably, mutations in Parkin and PINK1 are causative of recessively inherited forms of Parkinson’s disease (PD and aberrant mitochondrial homeostasis is thought to underlie PD pathogenesis. Given the novel role of AF-6 in mitochondrial quality control (QC, we hypothesized that AF-6 overexpression may be beneficial to PD. Using the Drosophila melanogaster as a model system, we demonstrate in this study that transgenic overexpression of human AF-6 in parkin and also pink1 null flies rescues their mitochondrial pathology and associated locomotion deficit, which results in their improved survival over time. Similarly, AF-6 overexpression also ameliorates the pathological phenotypes in flies expressing the Leucine Rich Repeat Kinase 2 (LRRK2 G2019S mutant, a mutation that is associated with dominantly-inherited PD cases in humans. Conversely, when endogenous AF-6 expression is silenced, it aggravates the disease phenotypes of LRRK2 mutant flies. Aside from these genetic models, we also found that AF-6 overexpression is protective against the loss of dopaminergic neurons in flies treated with rotenone, a mitochondrial complex I inhibitor commonly used to generate animal models of PD. Taken together, our results demonstrate that AF-6 protects against dopaminergic dysfunction and mitochondrial abnormalities in multiple Drosophila models of PD, and suggest the therapeutic value of AF-6-related pathways in mitigating PD pathogenesis.

  9. Correlation of dopaminergic terminal dysfunction and microstructural abnormalities of the basal ganglia and the olfactory tract in Parkinson's disease.

    Science.gov (United States)

    Scherfler, Christoph; Esterhammer, Regina; Nocker, Michael; Mahlknecht, Philipp; Stockner, Heike; Warwitz, Boris; Spielberger, Sabine; Pinter, Bernadette; Donnemiller, Eveline; Decristoforo, Clemens; Virgolini, Irene; Schocke, Michael; Poewe, Werner; Seppi, Klaus

    2013-10-01

    .48, P < 0.01) and between mean putaminal 6-[(18)F] fluorolevodopa uptake and the total odour score (r = 0.58; P < 0.05) as well as the Unified Parkinson's Disease Rating Scale motor score (r = -0.53, P < 0.05). This study reports a significant association between increased mean diffusivity signal and decreased 6-[(18)F] fluorolevodopa uptake, indicating that microstructural degradation of the substantia nigra and the olfactory tract parallels progression of putaminal dopaminergic dysfunction in Parkinson's disease. Since increases in nigral mean diffusivity signal also correlated with motor dysfunction, diffusion tensor imaging may serve as a surrogate marker for disease progression in future studies of putative disease modifying therapies.

  10. Methamphetamine-induced neurotoxicity linked to UPS dysfunction and autophagy related changes that can be modulated by PKCδ in dopaminergic neuronal cells

    Science.gov (United States)

    Lin, Mengshien; Shivalingappa, Prashanth Chandramani; Jin, Huajun; Ghosh, Anamitra; Anantharam, Vellareddy; Ali, Syed; Kanthasamy, Anumantha G.; Kanthasamy, Arthi

    2012-01-01

    A compromised protein degradation machinery has been implicated in methamphetamine (MA)-induced neurodegeneration. However, the signaling mechanisms that induce autophagy and UPS dysfunction are not well understood. The present study investigates the contributions of PKC delta (PKCδ) mediated signaling events in MA-induced autophagy, UPS dysfunction and cell death. Using an in vitro mesencephalic dopaminergic cell culture model, we demonstrate that MA-induced early induction of autophagy is associated with reduction in proteasomal function and concomitant dissipation of mitochondrial membrane potential (MMP), followed by significantly increased of PKCδ activation, caspase-3 activation, accumulation of ubiquitin positive aggregates and microtubule associated light chain-3 (LC3-II) levels. Interestingly, siRNA mediated knockdown of PKCδ or overexpression of cleavage resistant mutant of PKCδ dramatically reduced MA-induced autophagy, proteasomal function, and associated accumulation of ubiquitinated protein aggregates, which closely paralleled cell survival. Importantly, when autophagy was inhibited either pharmacologically (3-MA) or genetically (siRNA mediated silencing of LC3), the dopaminergic cells became sensitized to MA-induced apoptosis through caspase-3 activation. Conversely, overexpression of LC3 partially protected against MA-induced apoptotic cell death, suggesting a neuroprotective role for autophagy in MA-induced neurotoxicity. Notably, rat striatal tissue isolated from MA treated rats also exhibited elevated LC3-II, ubiquitinated protein levels, and PKCδ cleavage. Taken together, our data demonstrate that MA-induced autophagy serves as an adaptive strategy for inhibiting mitochondria mediated apoptotic cell death and degradation of aggregated proteins. Our results also suggest that the sustained activation of PKCδ leads to UPS dysfunction, resulting in the activation of caspase-3 mediated apoptotic cell death in the nigrostriatal dopaminergic

  11. Dopaminergic dysfunction and psychiatric symptoms in movement disorders: a {sup 123}I-FP-CIT SPECT study

    Energy Technology Data Exchange (ETDEWEB)

    Di Giuda, Daniela; Cocciolillo, Fabrizio; Bruno, Isabella; Giordano, Alessandro [Universita Cattolica del Sacro Cuore, Istituto di Medicina Nucleare, Rome (Italy); Camardese, Giovanni; Pucci, Lorella; Janiri, Luigi [Universita Cattolica del Sacro Cuore, Istituto di Psichiatria e Psicologia, Rome (Italy); Bentivoglio, Anna Rita; Guidubaldi, Arianna [Universita Cattolica del Sacro Cuore, Istituto di Neurologia, Rome (Italy); Fasano, Alfonso [Universita Cattolica del Sacro Cuore, Istituto di Neurologia, Rome (Italy); AFaR-Associazione Fatebenefratelli per la Ricerca, Rome (Italy)

    2012-12-15

    Psychiatric symptoms frequently occur in patients with movement disorders. They are not a mere reaction to chronic disability, but most likely due to a combination of psychosocial factors and biochemical dysfunction underlying the movement disorder. We assessed dopamine transporter (DAT) availability by means of {sup 123}I-FP-CIT SPECT, and motor and psychiatric features in patients with Parkinson's disease, primary dystonia and essential tremor, exploring the association between SPECT findings and symptom severity. Enrolled in the study were 21 patients with Parkinson's disease, 14 patients with primary dystonia and 15 patients with essential tremor. The severity of depression symptoms was assessed using the Hamilton depression rating scale, anxiety levels using the Hamilton anxiety rating scale and hedonic tone impairment using the Snaith-Hamilton pleasure scale. Specific {sup 123}I-FP-CIT binding in the caudate and putamen was calculated based on ROI analysis. The control group included 17 healthy subjects. As expected, DAT availability was significantly decreased in patients with Parkinson's disease, whereas in essential tremor and dystonia patients it did not differ from that observed in the control group. In Parkinson's disease patients, an inverse correlation between severity of depression symptoms and DAT availability in the left caudate was found (r = -0.63, p = 0.002). In essential tremor patients, levels of anxiety symptoms were inversely correlated with DAT availability in the left caudate (r = -0.69, p = 0.004). In dystonia patients, the severities of both anxiety and depression symptoms were inversely associated with DAT availability in the left putamen (r = -0.71, p = 0.004, and r = -0.75, p = 0.002, respectively). There were no correlations between psychometric scores and {sup 123}I-FP-CIT uptake ratios in healthy subjects. We found association between presynaptic dopaminergic function and affective symptoms in different movement

  12. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction

    Directory of Open Access Journals (Sweden)

    Pan Jing

    2012-08-01

    Full Text Available Abstract Curcumin,a natural polyphenol obtained from turmeric,has been implicated to be neuroprotective in a variety of neurodegenerative disorders although the mechanism remains poorly understood. The results of our recent experiments indicated that curcumin could protect dopaminergic neurons from apoptosis in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson’s disease (PD. The death of dopaminergic neurons and the loss of dopaminergic axon in the striatum were significantly suppressed by curcumin in MPTP mouse model. Further studies showed that curcumin inhibited JNKs hyperphosphorylation induced by MPTP treatment. JNKs phosphorylation can cause translocation of Bax to mitochondria and the release of cytochrome c which both ultimately contribute to mitochondria-mediated apoptosis. These pro-apoptosis effect can be diminished by curcumin. Our experiments demonstrated that curcumin can prevent nigrostriatal degeneration by inhibiting the dysfunction of mitochondrial through suppressing hyperphosphorylation of JNKs induced by MPTP. Our results suggested that JNKs/mitochondria pathway may be a novel target in the treatment of PD patients.

  13. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease.

    Science.gov (United States)

    Ay, Muhammet; Luo, Jie; Langley, Monica; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-06-01

    Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits. © 2017 International Society for Neurochemistry.

  14. Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection.

    Science.gov (United States)

    Sharma, Neha; Sharma, Sheetal; Nehru, Bimla

    2017-06-01

    Various studies have indicated a lower incidence and prevalence of neurological conditions in people consuming curcumin. The ability of curcumin to target multiple cascades, simultaneously, could be held responsible for its neuroprotective effects. The present study was designed to investigate the potential of curcumin in minimizing microglia-mediated damage in lipopolysaccharide (LPS) induced model of PD. Altered microglial functions and increased inflammatory profile of the CNS have severe behavioral consequences. In the current investigation, a single injection of LPS (5 ug/5 µl PBS) was injected into the substantia nigra (SN) of rats, and curcumin [40 mg/kg b.wt (i.p.)] was administered daily for a period of 21 days. LPS triggered an inflammatory response characterized by glial activation [Iba-1 and glial fibrillary acidic protein (GFAP)] and pro-inflammatory cytokine production (TNF-α and IL-1β) leading to extensive dopaminergic loss and behavioral abnormality in rats. The behavioral observations, biochemical markers, quantification of dopamine and its metabolites (DOPAC and HVA) using HPLC followed by IHC of tyrosine hydroxylase (TH) were evaluated after 21 days of LPS injection. Curcumin supplementation prevented dopaminergic degeneration in LPS-treated animals by normalizing the altered levels of biomarkers. Also, a significant improvement in TH levels as well as behavioral parameters (actophotometer, rotarod, beam walking and grid walking tests) were seen in LPS injected rats. Curcumin shielded the dopaminergic neurons against LPS-induced inflammatory response, which was associated with suppression of glial activation (microglia and astrocytes) and transcription factor NF-κB as depicted from RT-PCR and EMSA assay. Curcumin also suppressed microglial NADPH oxidase activation as observed from NADPH oxidase activity. The results suggested that one of the important mechanisms by which curcumin mediates its protective effects in the LPS-induced PD

  15. Imaging of dopaminergic system in movement disorders

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    Parkinson's disease is a common neurodegenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several radiopharmaceutics have been developed to evaluated the integrity of dopaminergic neuronal system. In vivo PET and SPECT imaging of presynaptic dopamine imaging are already applied to Parkinson's disease and other parkinsonism, and can demonstrate the dopaminergic dysfunction. This review summarized the use of the presynaptic dopaminergic imaging in PD as biomarkers in evaluation of disease progression as well as in diagnosis of PD

  16. Dysfunction of serotoninergic and dopaminergic neuronal systems in the antidepressant-resistant impairment of social behaviors induced by social defeat stress exposure as juveniles.

    Science.gov (United States)

    Hasegawa, Sho; Miyake, Yuriko; Yoshimi, Akira; Mouri, Akihiro; Hida, Hirotake; Yamada, Kiyofumi; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2018-03-29

    Extensive studies have been performed on the role of monoaminergic neuronal systems in rodents exposed to social defeat stress as adults. In the present study, we investigated the role of monoaminergic neuronal systems in the impairment of social behaviors induced by social defeat stress exposure as juveniles. Juvenile, male C57BL/6J mice were exposed to social defeat stress for 10 consecutive days. From 1 day after the last stress exposure, desipramine, sertraline, and aripiprazole, were administered for 15 days. Social behaviors were assessed at 1 and 15 days after the last stress exposure. Monoamine turnover was determined in specific regions of the brain in the mice exposed to the stress. Stress exposure as juveniles induced the impairment of social behaviors in adolescent mice. In mice that showed the impairment of social behaviors, turnover of the serotonin and dopamine, but not noradrenaline was decreased in specific brain regions. Acute and repeated administration of desipramine, sertraline, and aripiprazole failed to attenuate the impairment of social behaviors, whereas repeated administration of a combination of sertraline and aripiprazole showed additive attenuating effects. These findings suggest that social defeat stress exposure as juveniles induces the treatment-resistant impairment of social behaviors in adolescents through dysfunction in the serotoninergic and dopaminergic neuronal systems. The combination of sertraline and aripiprazole may be used as a new treatment strategy for treatment-resistant stress-related psychiatric disorders in adolescents with adverse juvenile experiences.

  17. Striatal and extra-striatal dopamine transporter in cannabis and tobacco addiction: a high resolution PET study

    International Nuclear Information System (INIS)

    Leroy, C.; Martinot, J.L.; Duchesnay, E.; Artiges, E.; Ribeiro, M.J.; Trichard, Ch.; Karila, L.; Lukasiewicz, M.; Benyamina, A.; Reynaud, M.; Martinot, J.L.; Duchesnay, E.; Artiges, E.; Comtat, C.; Artiges, E.; Trichard, Ch.

    2011-01-01

    The dopamine (DA) system is known to be involved in the reward and dependence mechanisms of addiction. However, modifications in dopaminergic neurotransmission associated with long-term tobacco and cannabis use have been poorly documented in vivo. In order to assess striatal and extra-striatal dopamine transporter (DAT) availability in tobacco and cannabis addiction, three groups of male age-matched subjects were compared: 11 healthy non-smoker subjects, 14 tobacco-dependent smokers (17.6 ± 5.3 cigarettes/day for 12.1 ± 8.5 years) and 13 cannabis and tobacco smokers (CTS) (4.8 ± 5.3 cannabis joints/day for 8.7 ± 3.9 years). DAT availability was examined in positron emission tomography (HRRT) with a high resolution research tomograph after injection of [ 11 C]PE2I, a selective DAT radioligand. Region of interest and voxel-by-voxel approaches using a simplified reference tissue model were performed for the between-group comparison of DAT availability. Measurements in the dorsal striatum from both analyses were concordant and showed a mean 20% lower DAT availability in drug users compared with controls. Whole-brain analysis also revealed lower DAT availability in the ventral striatum, the midbrain, the middle cingulate and the thalamus (ranging from -15 to -30%). The DAT availability was slightly lower in all regions in CTS than in subjects who smoke tobacco only, but the difference does not reach a significant level. These results support the existence of a decrease in DAT availability associated with tobacco and cannabis addictions involving all dopaminergic brain circuits. These findings are consistent with the idea of a global decrease in cerebral DA activity in dependent subjects. (authors)

  18. Extrastriatal binding of [¹²³I]FP-CIT in the thalamus and pons

    DEFF Research Database (Denmark)

    Koch, Walter; Unterrainer, Marcus; Xiong, Guoming

    2014-01-01

    extrastriatal binding (predominantly due to SERT) and its age and gender dependencies in a large cohort of healthy controls. METHODS: SPECT data from 103 healthy controls with well-defined criteria of normality acquired at 13 different imaging centres were analysed for extrastriatal binding using volumes...... error) of 8.2 ± 1.3 % for the thalamus and 6.8 ± 2.9 % for the pons was shown. CONCLUSION: The potential to evaluate extrastriatal predominant SERT binding in addition to the striatal DAT in a single imaging session was shown using a large database of [(123)I]FP-CIT scans in healthy controls. For both...... the thalamus and the pons, an age-related decline in radiotracer binding was observed. Gender effects were demonstrated for binding in the thalamus only. As a potential clinical application, the data could be used as a reference to estimate SERT occupancy in addition to nigrostriatal integrity when using [(123...

  19. Acute effect of intravenously applied alcohol in the human striatal and extrastriatal D2 /D3 dopamine system.

    Science.gov (United States)

    Pfeifer, Philippe; Tüscher, Oliver; Buchholz, Hans Georg; Gründer, Gerhard; Vernaleken, Ingo; Paulzen, Michael; Zimmermann, Ulrich S; Maus, Stephan; Lieb, Klaus; Eggermann, Thomas; Fehr, Christoph; Schreckenberger, Mathias

    2017-09-01

    Investigations on the acute effects of alcohol in the human mesolimbic dopamine D 2 /D 3 receptor system have yielded conflicting results. With respect to the effects of alcohol on extrastriatal D 2 /D 3 dopamine receptors no investigations have been reported yet. Therefore we applied PET imaging using the postsynaptic dopamine D 2 /D 3 receptor ligand [ 18 F]fallypride addressing the question, whether intravenously applied alcohol stimulates the extrastriatal and striatal dopamine system. We measured subjective effects of alcohol and made correlation analyses with the striatal and extrastriatal D 2 /D 3 binding potential. Twenty-four healthy male μ-opioid receptor (OPRM1)118G allele carriers underwent a standardized intravenous and placebo alcohol administration. The subjective effects of alcohol were measured with a visual analogue scale. For the evaluation of the dopamine response we calculated the binding potential (BP ND ) by using the simplified reference tissue model (SRTM). In addition, we calculated distribution volumes (target and reference regions) in 10 subjects for which metabolite corrected arterial samples were available. In the alcohol condition no significant dopamine response in terms of a reduction of BP ND was observed in striatal and extrastriatal brain regions. We found a positive correlation for 'liking' alcohol and the BP ND in extrastriatal brain regions (Inferior frontal cortex (IFC) (r = 0.533, p = 0.007), orbitofrontal cortex (OFC) (r = 0.416, p = 0.043) and prefrontal cortex (PFC) (r = 0.625, p = 0.001)). The acute alcohol effects on the D 2 /D 3 dopamine receptor binding potential of the striatal and extrastriatal system in our experiment were insignificant. A positive correlation of the subjective effect of 'liking' alcohol with cortical D 2 /D 3 receptors may hint at an addiction relevant trait. © 2016 Society for the Study of Addiction.

  20. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice.

    Science.gov (United States)

    Edut, S; Rubovitch, V; Rehavi, M; Schreiber, S; Pick, C G

    2014-12-01

    Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.

  1. Dopaminergic dysfunction in abstinent dexamphetamine users: results from a pharmacological fMRI study using a reward anticipation task and a methylphenidate challenge.

    Science.gov (United States)

    Schouw, M L J; De Ruiter, M B; Kaag, A M; van den Brink, W; Lindauer, R J L; Reneman, L

    2013-06-01

    Dopamine (DA) is involved in systems governing motor actions, motivational processes and cognitive functions. Preclinical studies have shown that even relatively low doses of d-amphetamine (dAMPH) (equivalent to doses used in clinical Practice) can lead to DA neurotoxicity in rodents and non-human primates (Ricaurte et al., 2005). Therefore, we investigated the DAergic function in eight male recreational users of dAMPH and eight male healthy controls using functional magnetic resonance imaging (fMRI). We compared brain activation between both groups during a monetary incentive delay task (Knutson et al., 2001) with and without an oral methylphenidate (MPH) challenge. All subjects were abstinent for at least 2 weeks during the baseline scan. The second scan was performed on the same day 1.5 h after receiving an oral dose of 35 mg MPH (approximately 0.5 mg/kg) when peak MPH binding was assumed. When anticipating reward, dAMPH users showed lower striatal activation in comparison to control subjects. In addition, MPH induced a reduction in the striatal activation during reward anticipation in healthy controls, whereas no such effect was observed in dAMPH users. The combination of these findings provides further evidence for frontostriatal DAergic dysfunction in recreational dAMPH users and is consistent with preclinical data suggesting neurotoxic effects of chronic dAMPH use. The findings of this explorative study could have important implications for humans in need for treatment with dAMPH, such as patients suffering from ADHD and therefore this study needs replication in a larger sample. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Dopaminergic Dysregulation, Artistic Expressiveness, and Parkinson's Disease

    Science.gov (United States)

    López-Pousa, S.; Lombardía-Fernández, C.; Olmo, J. Garre; Monserrat-Vila, S.; Vilalta-Franch, J.; Calvó-Perxas, L.

    2012-01-01

    Background The most frequent behavioral manifestations in Parkinson's disease (PD) are attributed to the dopaminergic dysregulation syndrome (DDS), which is considered to be secondary to the iatrogenic effects of the drugs that replace dopamine. Over the past few years some cases of patients improving their creative abilities after starting treatment with dopaminergic pharmaceuticals have been reported. These effects have not been clearly associated to DDS, but a relationship has been pointed out. Methods Case study of a patient with PD. The evolution of her paintings along medication changes and disease advance has been analyzed. Results The patient showed a compulsive increase of pictorial production after the diagnosis of PD was made. She made her best paintings when treated with cabergolide, and while painting, she reported a feeling of well-being, with loss of awareness of the disease and reduction of physical limitations. Conclusions Dopaminergic antagonists (DA) trigger a dopaminergic dysfunction that alters artistic creativity in patients having a predisposition for it. The development of these skills might be due to the dopaminergic overstimulation due to the therapy with DA, which causes a neurophysiological alteration that globally determines DDS. PMID:23185168

  3. Dopaminergic agonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with an impairment of the dopaminergic neurotransmission. Dopaminergic agonists may therefore have a beneficial effect on patients with hepatic encephalopathy....

  4. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kugaya, Akira; Fujita, Masahiro; Innis, R.B. [Yale Univ., New Haven, CT (United States). School of Medicine

    2000-02-01

    Single photon emission computed tomography (SPECT) tracers selective for pre- and post-synaptic targets have allowed measurements of several aspects of dopaminergic (DA) neurotransmission. In this article, we will first review our DA transporter imaging in Parkinson's disease. We have developed the in vivo dopamine transporter (DAT) imaging with [{sup 123}I]{beta}-CIT ((1R)-2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)tropane). This method showed that patients with Parkinson's disease have markedly reduced DAT levels in striatum, which correlated with disease severity and disease progression. Second, we applied DA imaging techniques in patients with schizophrenia. Using amphetamine as a releaser of DA, we observed the enhanced DA release, which was measured by imaging D2 receptors with [{sup 123}I]IBZM (iodobenzamide), in schizophrenics. Further we developed the measurement of basal synaptic DA levels by AMPT (alpha-methyl-paratyrosine)-induced unmasking of D2 receptors. Finally, we expanded our techniques to the measurement of extrastriatal DA receptors using [{sup 123}I]epidepride. The findings suggest that SPECT is a useful technique to measure DA transmission in human brain and may further our understanding of the pathophysiology of neuropsychiatric disorders. (author)

  5. Dorsal-to-Ventral Shift in Midbrain Dopaminergic Projections and Increased Thalamic/Raphe Serotonergic Function in Early Parkinson Disease.

    Science.gov (United States)

    Joutsa, Juho; Johansson, Jarkko; Seppänen, Marko; Noponen, Tommi; Kaasinen, Valtteri

    2015-07-01

    Loss of nigrostriatal neurons leading to dopamine depletion in the dorsal striatum is the pathologic hallmark of Parkinson disease contributing to the primary motor symptoms of the disease. However, Parkinson pathology is more widespread in the brain, affecting also other dopaminergic pathways and neurotransmitter systems, but these changes are less well characterized. This study aimed to investigate the mesencephalic striatal and extrastriatal dopaminergic projections together with extrastriatal serotonin transporter binding in Parkinson disease. Two hundred sixteen patients with Parkinson disease and 204 control patients (patients without neurodegenerative parkinsonism syndromes and normal SPECT imaging) were investigated with SPECT using the dopamine/serotonin transporter ligand (123)I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123)I-FP-CIT) in the clinical setting. The group differences and midbrain correlations were analyzed voxel by voxel over the entire brain. We found that Parkinson patients had lower (123)I-FP-CIT uptake in the striatum and ventral midbrain but higher uptake in the thalamus and raphe nuclei than control patients. In patients with Parkinson disease, the correlation of the midbrain tracer uptake was shifted from the putamen to widespread corticolimbic areas. All findings were highly significant at the voxel level familywise error-corrected P value of less than 0.05. Our findings show that Parkinson disease is associated not only with the degeneration of the nigrostriatal dopamine neurotransmission, but also with a parallel shift toward mesolimbic and mesocortical function. Furthermore, Parkinson disease patients seem to have upregulation of brain serotonin transporter function at the early phase of the disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Dopaminergic medication affects choice bias in Parkinson's disease

    NARCIS (Netherlands)

    Nuland, A.J.M. van; Helmich, R.C.G.; Dirkx, M.F.M.; Zach, H.; Bloem, B.R.; Toni, I.; Cools, R.; Ouden, H.E.M. den

    2016-01-01

    Objective: Assess dopaminergic effects on choice bias in Parkinson's disease (PD). Background: Bradykinesia, rigidity and resting tremor are the core symptoms of PD, but many patients also suffer from cognitive dysfunction. For instance, PD patients have an increased tendency to learn from aversive

  7. Correlation of individual differences in schizotypal personality traits with amphetamine-induced dopamine release in striatal and extrastriatal brain regions.

    Science.gov (United States)

    Woodward, Neil D; Cowan, Ronald L; Park, Sohee; Ansari, M Sib; Baldwin, Ronald M; Li, Rui; Doop, Mikisha; Kessler, Robert M; Zald, David H

    2011-04-01

    Schizotypal personality traits are associated with schizophrenia spectrum disorders, and individuals with schizophrenia spectrum disorders demonstrate increased dopamine transmission in the striatum. The authors sought to determine whether individual differences in normal variation in schizotypal traits are correlated with dopamine transmission in the striatum and in extrastriatal brain regions. Sixty-three healthy volunteers with no history of psychiatric illness completed the Schizotypal Personality Questionnaire and underwent positron emission tomography imaging with [(18)F]fallypride at baseline and after administration of oral d-amphetamine (0.43 mg/kg). Dopamine release, quantified by subtracting each participant's d-amphetamine scan from his or her baseline scan, was correlated with Schizotypal Personality Questionnaire total and factor scores using region-of-interest and voxel-wise analyses. Dopamine release in the striatum was positively correlated with overall schizotypal traits. The association was especially robust in the associative subdivision of the striatum. Voxel-wise analyses identified additional correlations between dopamine release and schizotypal traits in the left middle frontal gyrus and left supramarginal gyrus. Exploratory analyses of Schizotypal Personality Questionnaire factor scores revealed correlations between dopamine release and disorganized schizotypal traits in the striatum, thalamus, medial prefrontal cortex, temporal lobe, insula, and inferior frontal cortex. The association between dopamine signaling and psychosis phenotypes extends to individual differences in normal variation in schizotypal traits and involves dopamine transmission in both striatal and extrastriatal brain regions. Amphetamine-induced dopamine release may be a useful endophenotype for investigating the genetic basis of schizophrenia spectrum disorders.

  8. Carbon-11 epidepride: a suitable radioligand for PET investigation of striatal and extrastriatal dopamine D{sub 2} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver; Halldin, Christer E-mail: christer.halldin@neuro.ks.se; Dolle, Frederic; Swahn, Carl-Gunnar; Olsson, Hans; Lundkvist, Per Karlsson; Hall, Haakan; Sandell, Johan; Vaufrey, Camilla; Loc' h, Christian; Franzoise; Crouzel, Christian; Maziere, Bernard; Farde, Lars

    1999-07-01

    Epidepride {l_brace}(S)-(-)-N-([1-ethyl-2-pyrrolidinyl]methyl)-5-iodo-2,3-dimethoxybenzamide= {r_brace} binds with a picomolar affinity (K{sub i}=24 pM) to the dopamine D{sub 2} receptor. Iodine-123-labeled epidepride has been used previously to study striatal and extrastriatal dopamine D{sub 2} receptors with single photon emission computed tomography (SPECT). Our aim was to label epidepride with carbon-11 for comparative quantitative studies between positron emission tomography (PET) and SPECT. Epidepride was synthesized from its bromo-analogue FLB 457 via the corresponding trimethyl-tin derivative. In an alternative synthetic pathway, the corresponding substituted benzoic acid was reacted with the optically pure aminomethylpyrrolidine-derivative. Demethylation of epidepride gave the desmethyl-derivative, which was reacted with [{sup 11}C]methyl triflate. Total radiochemical yield was 40-50% within a total synthesis time of 30 min. The specific radioactivity at the end of synthesis was 37-111 GBq/{mu}mol (1,000-3,000 Ci/mmol). Human postmortem whole-hemisphere autoradiography demonstrated dense binding in the caudate putamen, and also in extrastriatal areas such as the thalamus and the neocortex. The binding was inhibited by unlabeled raclopride. PET studies in a cynomolgus monkey demonstrated high uptake in the striatum and in several extrastriatal regions. At 90 min after injection, uptake in the striatum, thalamus and neocortex was about 11, 4, and 2 times higher than in the cerebellum, respectively. Pretreatment experiment with unlabeled raclopride (1 mg/kg) inhibited 50-70% of [{sup 11}C]epidepride binding. The fraction of unchanged [{sup 11}C]epidepride in monkey plasma determined by a gradient high performance liquid chromatography (HPLC) method was about 30% of the total radioactivity at 30 min after injection of [{sup 11}C]epidepride. The availability of [{sup 11}C]epidepride allows the PET-verification of the data obtained from quantitation studies with

  9. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism

    NARCIS (Netherlands)

    Booij, J.; Tissingh, G.; Winogrodzka, A.; van Royen, E. A.

    1999-01-01

    Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays,

  10. Extrastriatal dopamine D-2/3 receptors and cortical grey matter volumes in antipsychotic-naive schizophrenia patients before and after initial antipsychotic treatment

    DEFF Research Database (Denmark)

    Nørbak-Emig, Henrik; Pinborg, Lars H.; Raghava, Jayachandra M.

    2017-01-01

    OBJECTIVES: Long-term dopamine D2/3 receptor blockade, common to all antipsychotics, may underlie progressive brain volume changes observed in patients with chronic schizophrenia. In the present study, we examined associations between cortical volume changes and extrastriatal dopamine D2/3 recept...... binding potentials (BPND) in first-episode schizophrenia patents at baseline and after antipsychotic treatment. METHODS: Twenty-two initially antipsychotic-naïve patients underwent magnetic resonance imaging (MRI), [(123)I]epidepride single-photon emission computerised tomography (SPECT......), and psychopathology assessments before and after 3 months of treatment with either risperidone (N = 13) or zuclopenthixol (N = 9). Twenty healthy controls matched on age, gender and parental socioeconomic status underwent baseline MRI and SPECT. RESULTS: Neither extrastriatal D2/3 receptor BPND at baseline, nor...

  11. Extrastriatal binding of [123I]FP-CIT in the thalamus and pons: gender and age dependencies assessed in a European multicentre database of healthy controls

    International Nuclear Information System (INIS)

    Koch, Walter; Unterrainer, Marcus; Xiong, Guoming; Bartenstein, Peter; Diemling, Markus; Varrone, Andrea; Dickson, John C.; Tossici-Bolt, Livia; Sera, Terez; Asenbaum, Susanne; Booij, Jan; Kapucu, Ozlem L.; Kluge, Andreas; Ziebell, Morten; Darcourt, Jacques; Nobili, Flavio; Pagani, Marco; Hesse, Swen; Borght, Thierry Vander; Laere, Koen van; Tatsch, Klaus; La Fougere, Christian

    2014-01-01

    Apart from binding to the dopamine transporter (DAT), [ 123 I]FP-CIT shows moderate affinity for the serotonin transporter (SERT), allowing imaging of both monoamine transporters in a single imaging session in different brain areas. The aim of this study was to systematically evaluate extrastriatal binding (predominantly due to SERT) and its age and gender dependencies in a large cohort of healthy controls. SPECT data from 103 healthy controls with well-defined criteria of normality acquired at 13 different imaging centres were analysed for extrastriatal binding using volumes of interest analysis for the thalamus and the pons. Data were examined for gender and age effects as well as for potential influence of striatal DAT radiotracer binding. Thalamic binding was significantly higher than pons binding. Partial correlations showed an influence of putaminal DAT binding on measured binding in the thalamus but not on the pons. Data showed high interindividual variation in extrastriatal binding. Significant gender effects with 31 % higher binding in women than in men were observed in the thalamus, but not in the pons. An age dependency with a decline per decade (±standard error) of 8.2 ± 1.3 % for the thalamus and 6.8 ± 2.9 % for the pons was shown. The potential to evaluate extrastriatal predominant SERT binding in addition to the striatal DAT in a single imaging session was shown using a large database of [ 123 I]FP-CIT scans in healthy controls. For both the thalamus and the pons, an age-related decline in radiotracer binding was observed. Gender effects were demonstrated for binding in the thalamus only. As a potential clinical application, the data could be used as a reference to estimate SERT occupancy in addition to nigrostriatal integrity when using [ 123 I]FP-CIT for DAT imaging in patients treated with selective serotonin reuptake inhibitors. (orig.)

  12. Extrastriatal binding of [{sup 123}I]FP-CIT in the thalamus and pons: gender and age dependencies assessed in a European multicentre database of healthy controls

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Walter; Unterrainer, Marcus; Xiong, Guoming; Bartenstein, Peter [University of Munich, Department of Nuclear Medicine, Munich (Germany); Diemling, Markus [Hermes Medical Solutions, Stockholm (Sweden); Varrone, Andrea [Karolinska University Hospital, Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (Sweden); Dickson, John C. [UCLH NHS Foundation Trust and University College, Institute of Nuclear Medicine, London (United Kingdom); Tossici-Bolt, Livia [University Hospitals Southampton NHS Trust, Department of Medical Physics, Southampton (United Kingdom); Sera, Terez [University of Szeged, Department of Nuclear Medicine and Euromedic Szeged, Szeged (Hungary); Asenbaum, Susanne [Medical University of Vienna, Department of Neurology, Vienna (Austria); Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Centre, Amsterdam (Netherlands); Kapucu, Ozlem L. [Gazi University, Department of Nuclear Medicine, Faculty of Medicine, Ankara (Turkey); Kluge, Andreas [ABX-CRO, Dresden (Germany); Ziebell, Morten [Rigshospitalet and University of Copenhagen, Neurobiology Research Unit, Copenhagen (Denmark); Darcourt, Jacques [University of Nice-Sophia Antipolis, Nuclear Medicine Department, Centre Antoine Lacassagne, Nice (France); Nobili, Flavio [University of Genoa, Clinical Neurology Unit, Department of Neuroscience (DINOGMI), Genoa (Italy); Pagani, Marco [CNR, Institute of Cognitive Sciences and Technologies, Rome (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Hesse, Swen [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Medical Centre, Molecular Neuroimaging IFB Adiposity Diseases, Leipzig (Germany); Borght, Thierry Vander [Universite Catholique de Louvain, Nuclear Medicine Division, CHU Dinant Godinne, Yvoir (Belgium); Laere, Koen van [University Hospital and K.U. Leuven, Nuclear Medicine, Leuven (Belgium); Tatsch, Klaus [Staedtisches Klinikum Karlsruhe, Department of Nuclear Medicine, Karlsruhe (Germany); La Fougere, Christian [University of Munich, Department of Nuclear Medicine, Munich (Germany); University of Tuebingen, Department of Nuclear Medicine, Tuebingen (Germany)

    2014-10-15

    Apart from binding to the dopamine transporter (DAT), [{sup 123}I]FP-CIT shows moderate affinity for the serotonin transporter (SERT), allowing imaging of both monoamine transporters in a single imaging session in different brain areas. The aim of this study was to systematically evaluate extrastriatal binding (predominantly due to SERT) and its age and gender dependencies in a large cohort of healthy controls. SPECT data from 103 healthy controls with well-defined criteria of normality acquired at 13 different imaging centres were analysed for extrastriatal binding using volumes of interest analysis for the thalamus and the pons. Data were examined for gender and age effects as well as for potential influence of striatal DAT radiotracer binding. Thalamic binding was significantly higher than pons binding. Partial correlations showed an influence of putaminal DAT binding on measured binding in the thalamus but not on the pons. Data showed high interindividual variation in extrastriatal binding. Significant gender effects with 31 % higher binding in women than in men were observed in the thalamus, but not in the pons. An age dependency with a decline per decade (±standard error) of 8.2 ± 1.3 % for the thalamus and 6.8 ± 2.9 % for the pons was shown. The potential to evaluate extrastriatal predominant SERT binding in addition to the striatal DAT in a single imaging session was shown using a large database of [{sup 123}I]FP-CIT scans in healthy controls. For both the thalamus and the pons, an age-related decline in radiotracer binding was observed. Gender effects were demonstrated for binding in the thalamus only. As a potential clinical application, the data could be used as a reference to estimate SERT occupancy in addition to nigrostriatal integrity when using [{sup 123}I]FP-CIT for DAT imaging in patients treated with selective serotonin reuptake inhibitors. (orig.)

  13. Preliminary assessment of extrastriatal dopamine d-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, {sup 18}F-fallypride

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jogeshwar E-mail: jogeshwar-mukherjee@ketthealth.com; Yang, Z.-Y.; Brown, Terry; Lew, Robert; Wernick, Miles; Ouyang Xiaohu; Yasillo, Nicholas; Chen, C.-T.; Mintzer, Robert; Cooper, Malcolm

    1999-07-01

    We have identified the value of {sup 18}F-fallypride {l_brace}(S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3-dim= ethoxybenzamide{r_brace}, as a dopamine D-2 receptor radiotracer for the study of striatal and extrastriatal receptors. Fallypride exhibits high affinities for D-2 and D-3 subtypes and low affinity for D-4 ({sup 3}H-spiperone IC{sub 50}s: D-2=0.05 nM [rat striata], D-3=0.30 nM [SF9 cell lines, rat recombinant], and D-4=240 nM [CHO cell lines, human recombinant]). Biodistribution in the rat brain showed localization of {sup 18}F-fallypride in striata and extrastriatal regions such as the frontal cortex, parietal cortex, amygdala, hippocampus, thalamus, and hypothalamus. In vitro autoradiographic studies in sagittal slices of the rat brain showed localization of {sup 18}F-fallypride in striatal and several extrastriatal regions, including the medulla. Positron emission tomography (PET) experiments with {sup 18}F-fallypride in male rhesus monkeys were carried out in a PET VI scanner. In several PET experiments, apart from the specific binding seen in the striatum, specific binding of {sup 18}F-fallypride was also identified in extracellular regions (in a lower brain slice, possibly the thalamus). Specific binding in the extrastriata was, however, significantly lower compared with that observed in the striata of the monkeys (extrastriata/cerebellum = 2, striata/cerebellum = 10). Postmortem analysis of the monkey brain revealed significant {sup 18}F-fallypride binding in the striata, whereas binding was also observed in extrastriatal regions such as the thalamus, cortical areas, and brain stem.

  14. The effects of d-amphetamine on extrastriatal dopamine D{sub 2}/D{sub 3} receptors: a randomized, double-blind, placebo-controlled PET study with [{sup 11}C]FLB 457 in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, Sargo [University of Turku, Turku PET Centre, Turku (Finland); Aabo Akademi University, Department of Psychology, Turku (Finland); Hirvonen, Jussi; Kajander, Jaana; Naagren, Kjell; Rinne, Juha O. [University of Turku, Turku PET Centre, Turku (Finland); Kaasinen, Valtteri [University of Turku, Department of Neurology, P.O. Box 52, Turku (Finland); Hagelberg, Nora [University of Turku, Turku PET Centre, Turku (Finland); Turku University Central Hospital, Department of Anaesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku (Finland); Seppaelae, Timo [Drug Research Unit, National Public Health Institute, Helsinki (Finland); Scheinin, Harry [University of Turku, Turku PET Centre, Turku (Finland); University of Turku, Department of Pharmacology, Drug Development and Therapeutics, Turku (Finland); Hietala, Jarmo [University of Turku, Turku PET Centre, Turku (Finland); University of Turku, Department of Psychiatry, Turku (Finland)

    2009-03-15

    The dopamine D{sub 2}/D{sub 3} receptor ligand [{sup 11}C]FLB 457 and PET enable quantification of low-density extrastriatal D{sub 2}/D{sub 3} receptors, but it is uncertain whether [{sup 11}C]FLB 457 can be used for measuring extrastriatal dopamine release. We studied the effects of d-amphetamine (0.3 mg/kg i.v.) on extrastriatal [{sup 11}C]FLB 457 binding potential (BP{sub ND}) in a randomized, double-blind, placebo-controlled study including 24 healthy volunteers. The effects of d-amphetamine on [{sup 11}C]FLB 457 BP{sub ND} and distribution volume (V{sub T}) in the frontal cortex were not different from those of placebo. Small decreases in [{sup 11}C]FLB 457 BP{sub ND} were observed only in the posterior cingulate and hippocampus. The regional changes in [{sup 11}C]FLB 457 BP{sub ND} did not correlate with d-amphetamine-induced changes in subjective ratings of euphoria. This placebo-controlled study showed that d-amphetamine does not induce marked changes in measures of extrastriatal dopamine D{sub 2}/D{sub 3} receptor binding. Our results indicate that [{sup 11}C]FLB 457 PET is not a useful method for measuring extrastriatal dopamine release in humans. (orig.)

  15. Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity.

    Science.gov (United States)

    Schrantee, A; Reneman, L

    2014-09-01

    Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Managing Parkinson's disease with continuous dopaminergic stimulation

    NARCIS (Netherlands)

    Wolters, Erik; Lees, Andrew J.; Volkmann, Jens; van Laar, Teus; Hovestadt, Ad

    The pathophysiology of Parkinson's disease is marked by the loss of dopaminergic neurons, which leads to striatal dopaminergic deficiency. This causes resting tremor, hypokinesia, rigidity, bradykinesia, and loss of postural reflexes. Most current treatments for Parkinson's disease aim to restore

  17. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism

    International Nuclear Information System (INIS)

    Booij, J.; Tissingh, G.; Winogrodzka, A.; Royen, E.A. van

    1999-01-01

    Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays, by using single-photon emission tomography (SPET) and positron emission tomography (PET) it is possible to visualise both the nigrostriatal dopaminergic neurons and the striatal dopamine D 2 receptors in vivo. Consequently, SPET and PET imaging of elements of the dopaminergic system can play an important role in the diagnosis of several parkinsonian syndromes. This review concentrates on findings of SPET and PET studies of the dopaminergic neurotransmitter system in various parkinsonian syndromes. (orig.)

  18. N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells

    Directory of Open Access Journals (Sweden)

    Prashanth Chandramani Shivalingappa

    2012-01-01

    Full Text Available Methamphetamine- (MA- induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells. The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC. Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT and 4-hydroxynonenal (4-HNE. Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.

  19. Chronic Hypergravity Induces Changes in the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  20. Effects of Chronic Hypergravity on the Dopaminergic Neuronal System in Drosophila Melanogaster

    Science.gov (United States)

    Pelos, Andrew; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2017-01-01

    Upon atmospheric exitre-entry and during training, astronauts are subjected to temporary periods of hypergravity, which has been implicated in the activation of oxidative stress pathways contributing to mitochondrial dysfunction and neuronal degeneration. The pathogenesis of Parkinsons disease and other neurodegenerative disorders is associated with oxidative damage to neurons involved in dopamine systems of the brain. Our study aims to examine the effects of a hypergravitational developmental environment on the degeneration of dopaminergic systems in Drosophila melanogaster. Male and female flies (Gal4-UAS transgenic line) were hatched and raised to adulthood in centrifugal hypergravity (97rpm, 3g). The nuclear expression of the reporter, Green Fluorescent Protein (GFP) is driven by the dopaminergic enzyme tyrosine hydroxylase (TH) promoter, allowing for the targeted visualization of dopamine producing neurons. After being raised to adulthood and kept in hypergravity until 18 days of age, flies were dissected and the expression of TH was measured by fluorescence confocal microscopy. TH expression in the fly brains was used to obtain counts of healthy dopaminergic neurons for flies raised in chronic hypergravity and control groups. Dopaminergic neuron expression data were compared with those of previous studies that limited hypergravity exposure to late life in order to determine the flies adaptability to the gravitational environment when raised from hatching through adulthood. Overall, we observed a significant effect of chronic hypergravity exposure contributing to deficits in dopaminergic neuron expression (p 0.003). Flies raised in 3g had on average lower dopaminergic neuron counts (mean 97.7) when compared with flies raised in 1g (mean 122.8). We suspect these lower levels of TH expression are a result of oxidative dopaminergic cell loss in flies raised in hypergravity. In future studies, we hope to further elucidate the mechanism by which hypergravity

  1. An overview on benzylisoquinoline derivatives with dopaminergic and serotonergic activities.

    Science.gov (United States)

    Cabedo, N; Berenguer, I; Figadère, B; Cortes, D

    2009-01-01

    Dopamine and serotonin are important neurotransmitters in the mammalian central nervous system (CNS) involved in numerous physiological and behavioural disorders such as schizophrenia, major depression, anxiety, Parkinson's and Huntington's diseases, and attention deficit hyperactivity disorder. Several natural and synthetic benzylisoquinoline derivatives have displayed affinity for dopamine and serotonin receptors in nanomolar or micromolar ranges. This review covers the last three decades of dopaminergic and serotonergic activities, and especially focuses on structure-activity relationships of natural and synthetic benzylisoquinoline derivatives. We have included aporphines, 1-benzyltetrahydroisoquinolines, bis-benzylisoquinolines, protoberberines, cularines and other structural analogues. Further molecular modelling calculations have been considered as important tools to not only obtain structural information of both neurotransmitter receptors, but to also identify their pharmacophore features. The development of selective potential ligands like benzylisoquinoline derivatives may help in the therapy of diseases related to CNS dysfunction.

  2. Brain metabolic correlates of dopaminergic degeneration in de novo idiopathic Parkinson's disease

    International Nuclear Information System (INIS)

    Berti, Valentina; Polito, Cristina; Vanzi, Eleonora; Cristofaro, Maria Teresa de; Pellicano, Giannantonio; Mungai, Francesco; Formiconi, Andreas Robert; Pupi, Alberto; Ramat, Silvia; Marini, Paolo; Sorbi, Sandro

    2010-01-01

    The aim of the present study was to evaluate the reciprocal relationships between motor impairment, dopaminergic dysfunction, and cerebral metabolism (rCMRglc) in de novo Parkinson's disease (PD) patients. Twenty-six de novo untreated PD patients were scanned with 123 I-FP-CIT SPECT and 18 F-FDG PET. The dopaminergic impairment was measured with putaminal 123 I-FP-CIT binding potential (BP), estimated with two different techniques: an iterative reconstruction algorithm (BP OSEM ) and the least-squares (LS) method (BP LS ). Statistical parametric mapping (SPM) multiple regression analyses were performed to determine the specific brain regions in which UPDRS III scores and putaminal BP values correlated with rCMRglc. The SPM results showed a negative correlation between UPDRS III and rCMRglc in premotor cortex, and a positive correlation between BP OSEM and rCMRglc in premotor and dorsolateral prefrontal cortex, not surviving at multiple comparison correction. Instead, there was a positive significant correlation between putaminal BP LS and rCMRglc in premotor, dorsolateral prefrontal, anterior prefrontal, and orbitofrontal cortex (p LS is an efficient parameter for exploring the correlations between PD severity and rCMRglc cortical changes. The correlation between dopaminergic degeneration and rCMRglc in several prefrontal regions likely represents the cortical functional correlate of the dysfunction in the motor basal ganglia-cortical circuit in PD. This finding suggests focusing on the metabolic course of these areas to follow PD progression and to analyze treatment effects. (orig.)

  3. Mesocortical dopaminergic function and human cognition

    International Nuclear Information System (INIS)

    Weinberger, D.R.; Berman, K.F.; Chase, T.N.

    1988-01-01

    In summary, we have reviewed rCBF data in humans that suggest that mesoprefrontal dopaminergic activity is involved in human cognition. In patients with Parkinson's disease and possibly in patients with schizophrenia, prefrontal physiological activation during a cognitive task that appears to depend on prefrontal neural systems correlates positively with cognitive performance on the task and with clinical signs of dopaminergic function. It may be possible in the future to examine prefrontal dopamine metabolism directly during prefrontal cognition using positron emission tomography and tracers such as F-18 DOPA. 21 references

  4. Dopaminergic Polymorphisms, Academic Achievement, and Violent Delinquency.

    Science.gov (United States)

    Yun, Ilhong; Lee, Julak; Kim, Seung-Gon

    2015-12-01

    Recent research in the field of educational psychology points to the salience of self-control in accounting for the variance in students' report card grades. At the same time, a novel empirical study from molecular genetics drawing on the National Longitudinal Study of Adolescent Health (Add Health) data has revealed that polymorphisms in three dopaminergic genes (dopamine transporter [DAT1], dopamine D2 receptor [DRD2], and dopamine D4 receptor [DRD4]) are also linked to adolescents' grade point averages (GPAs). Juxtaposing these two lines of research, the current study reanalyzed the Add Health genetic subsample to assess the relative effects of these dopaminergic genes and self-control on GPAs. The results showed that the effects of the latter were far stronger than those of the former. The interaction effects between the dopaminergic genes and a set of environmental factors on academic performance were also examined, producing findings that are aligned with the "social push hypothesis" in behavioral genetics. Finally, based on the criminological literature on the link between academic performance and delinquency, we tested whether dopaminergic effects on violent delinquency were mediated by GPAs. The results demonstrated that academic performance fully mediated the linkage between these genes and violent delinquency. © The Author(s) 2014.

  5. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson's disease.

    Science.gov (United States)

    Kim, Mia; Cho, Ki-Ho; Shin, Mal-Soon; Lee, Jae-Min; Cho, Han-Sam; Kim, Chang-Ju; Shin, Dong-Hoon; Yang, Hyeon Jeong

    2014-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of nigral dopaminergic neurons and a reduction in striatal dopaminergic fibers, which result in tremors, rigidity, bradykinesia and gait disturbance. In addition to motor dysfunction, dementia is a widely recognized symptom of patients with PD. Berberine, an isoquinoline alkaloid isolated from Berberis vulgaris L., is known to exert anxiolytic, analgesic, anti-inflammatory, antipsychotic, antidepressant and anti-amnesic effects. In the present study, we investigated the effects of berberine on short-term memory in relation to dopamine depletion and hippocampal neurogenesis using a mouse model of PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/P) treatment. Mice in the berberine-treated groups were orally administered berberine once a day for a total of 5 weeks. Our results revealed that the injection of MPTP/P induced dopaminergic neuronal death in the substantia nigra and fiber loss in the striatum. This resulted in impaired motor balance and coordination, as assessed by the beam walking test. We further demonstrated that MPTP/P-induced apoptosis in the hippocampus deteriorated short-term memory, as shown by the step-down avoidance task. By contrast, neurogenesis in the hippocampal dentate gyrus, which is a compensatory adaptive response to excessive apoptosis, was increased upon PD induction. However, treatment with berberine enhanced motor balance and coordination by preventing dopaminergic neuronal damage. Treatment with berberine also improved short-term memory by inhibiting apoptosis in the hippocampus. Berberine demonstrated maximal potency at 50 mg/kg. Based on these data, treatment with berberine may serve as a potential therapeutic strategy for the alleviation of memory impairment and motor dysfunction in patients with PD.

  6. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [123I]epidepride SPET

    International Nuclear Information System (INIS)

    Fujita, Masahiro; Seneca, Nicholas; Innis, Robert B.; Varrone, Andrea; Kim, Kyeong Min; Watabe, Hiroshi; Iida, Hidehiro; Zoghbi, Sami S.; Tipre, Dnyanesh; Seibyl, John P.

    2004-01-01

    Prior studies with anthropomorphic phantoms and single, static in vivo brain images have demonstrated that scatter correction significantly improves the accuracy of regional quantitation of single-photon emission tomography (SPET) brain images. Since the regional distribution of activity changes following a bolus injection of a typical neuroreceptor ligand, we examined the effect of scatter correction on the compartmental modeling of serial dynamic images of striatal and extrastriatal dopamine D 2 receptors using [ 123 I]epidepride. Eight healthy human subjects [age 30±8 (range 22-46) years] participated in a study with a bolus injection of 373±12 (354-389) MBq [ 123 I]epidepride and data acquisition over a period of 14 h. A transmission scan was obtained in each study for attenuation and scatter correction. Distribution volumes were calculated by means of compartmental nonlinear least-squares analysis using metabolite-corrected arterial input function and brain data processed with scatter correction using narrow-beam geometry μ (SC) and without scatter correction using broad-beam μ (NoSC). Effects of SC were markedly different among brain regions. SC increased activities in the putamen and thalamus after 1-1.5 h while it decreased activity during the entire experiment in the temporal cortex and cerebellum. Compared with NoSC, SC significantly increased specific distribution volume in the putamen (58%, P=0.0001) and thalamus (23%, P=0.0297). Compared with NoSC, SC made regional distribution of the specific distribution volume closer to that of [ 18 F]fallypride. It is concluded that SC is required for accurate quantification of distribution volumes of receptor ligands in SPET studies. (orig.)

  7. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D{sub 2} receptors using [{sup 123}I]epidepride SPET

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Masahiro; Seneca, Nicholas; Innis, Robert B. [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Varrone, Andrea [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Biostructure and Bioimaging Institute, National Research Council, Napoli (Italy); Kim, Kyeong Min; Watabe, Hiroshi; Iida, Hidehiro [Department of Investigative Radiology, National Cardiovascular Center Research Institute, Osaka (Japan); Zoghbi, Sami S. [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Department of Radiology, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Tipre, Dnyanesh [Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Seibyl, John P. [Institute for Neurodegenerative Disorders, New Haven, CT (United States)

    2004-05-01

    Prior studies with anthropomorphic phantoms and single, static in vivo brain images have demonstrated that scatter correction significantly improves the accuracy of regional quantitation of single-photon emission tomography (SPET) brain images. Since the regional distribution of activity changes following a bolus injection of a typical neuroreceptor ligand, we examined the effect of scatter correction on the compartmental modeling of serial dynamic images of striatal and extrastriatal dopamine D{sub 2} receptors using [{sup 123}I]epidepride. Eight healthy human subjects [age 30{+-}8 (range 22-46) years] participated in a study with a bolus injection of 373{+-}12 (354-389) MBq [{sup 123}I]epidepride and data acquisition over a period of 14 h. A transmission scan was obtained in each study for attenuation and scatter correction. Distribution volumes were calculated by means of compartmental nonlinear least-squares analysis using metabolite-corrected arterial input function and brain data processed with scatter correction using narrow-beam geometry {mu} (SC) and without scatter correction using broad-beam {mu} (NoSC). Effects of SC were markedly different among brain regions. SC increased activities in the putamen and thalamus after 1-1.5 h while it decreased activity during the entire experiment in the temporal cortex and cerebellum. Compared with NoSC, SC significantly increased specific distribution volume in the putamen (58%, P=0.0001) and thalamus (23%, P=0.0297). Compared with NoSC, SC made regional distribution of the specific distribution volume closer to that of [{sup 18}F]fallypride. It is concluded that SC is required for accurate quantification of distribution volumes of receptor ligands in SPET studies. (orig.)

  8. Severe Dopaminergic Neurotoxicity in Primates After a Common Recreational Dose Regimen of MDMA (``Ecstasy'')

    Science.gov (United States)

    Ricaurte, George A.; Yuan, Jie; Hatzidimitriou, George; Cord, Branden J.; McCann, Una D.

    2002-09-01

    The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or ``ecstasy'') is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.

  9. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures.

    Science.gov (United States)

    Sandoval-Avila, S; Diaz, N F; Gómez-Pinedo, U; Canales-Aguirre, A A; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; Marquez-Aguirre, A L; Díaz-Martínez, N E

    2016-06-21

    Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  10. Erectile Dysfunction

    Science.gov (United States)

    ... or other heart problems take medications that contain nitrates to help the blood flow better to the ... erectile dysfunction can affect the way that the nitrates work—and cause blood pressure to drop to ...

  11. Interaction of Synuclein and Inflammation in Dopaminergic Neurodegeneration

    Science.gov (United States)

    2014-06-01

    induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 19: 63-72, (2011). Kalia, L. V., S...1998). Zhang J, Niu N, Wang M, McNutt MA, Zhang D, Zhang B, Lu S, Liu Y, Liu Z. Neuron-derived IgG protects dopaminergic neurons from insult by 6...AD_________________ Award Number: W81XWH-08-1-0465 TITLE: Interaction of Synuclein and Inflammation in Dopaminergic

  12. Role of Inflammation in MPTP-Induced Dopaminergic Neuronal Death

    Science.gov (United States)

    2008-12-01

    of MPTP to MPP+ and MPP+ entry into dopaminergic neurons are key to the neurotoxic effects of MPTP and interference in any of these processes...presented at the Society for Neuroscience Meetings in 2006 Figure 1. Tempol Structure 29 Figure 2. Tempol protects dopaminergic neurons...in PD. Dopaminergic neurons in the SNpc were protected to a significant degree against the damaging effects of MPTP by M40401 whereas its isoforms

  13. Human neuromelanin: an endogenous microglial activator for dopaminergic neuron death

    OpenAIRE

    Zhang, Wei; Zecca, Luigi; Wilson, Belinda; Ren, RW; Wang, Yong-jun; Wang, Xiao-min; Hong, Jau-Shyong

    2013-01-01

    Substantial evidence indicates that neuroinflammation caused by over-activation of microglial in the substantia nigra is critical in the pathogenesis of dopaminergic neurodegeneration in Parkinson’s disease (PD). Increasing data demonstrates that environmental factors such as rotenone, paraquat play pivotal roles in the death of dopaminergic neurons. Here, potential role and mechanism of neuromelanin (NM), a major endogenous component in dopaminergic neurons of the substantia nigra, on microg...

  14. Brain metabolic correlates of dopaminergic degeneration in de novo idiopathic Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Valentina; Polito, Cristina; Vanzi, Eleonora; Cristofaro, Maria Teresa de; Pellicano, Giannantonio; Mungai, Francesco; Formiconi, Andreas Robert; Pupi, Alberto [University of Florence, Department of Clinical Pathophysiology, Florence (Italy); Ramat, Silvia; Marini, Paolo; Sorbi, Sandro [University of Florence, Department of Psychiatric and Neurological Sciences, Florence (Italy)

    2010-03-15

    The aim of the present study was to evaluate the reciprocal relationships between motor impairment, dopaminergic dysfunction, and cerebral metabolism (rCMRglc) in de novo Parkinson's disease (PD) patients. Twenty-six de novo untreated PD patients were scanned with {sup 123}I-FP-CIT SPECT and {sup 18}F-FDG PET. The dopaminergic impairment was measured with putaminal {sup 123}I-FP-CIT binding potential (BP), estimated with two different techniques: an iterative reconstruction algorithm (BP{sub OSEM}) and the least-squares (LS) method (BP{sub LS}). Statistical parametric mapping (SPM) multiple regression analyses were performed to determine the specific brain regions in which UPDRS III scores and putaminal BP values correlated with rCMRglc. The SPM results showed a negative correlation between UPDRS III and rCMRglc in premotor cortex, and a positive correlation between BP{sub OSEM} and rCMRglc in premotor and dorsolateral prefrontal cortex, not surviving at multiple comparison correction. Instead, there was a positive significant correlation between putaminal BP{sub LS} and rCMRglc in premotor, dorsolateral prefrontal, anterior prefrontal, and orbitofrontal cortex (p < 0.05, corrected for multiple comparison). Putaminal BP{sub LS} is an efficient parameter for exploring the correlations between PD severity and rCMRglc cortical changes. The correlation between dopaminergic degeneration and rCMRglc in several prefrontal regions likely represents the cortical functional correlate of the dysfunction in the motor basal ganglia-cortical circuit in PD. This finding suggests focusing on the metabolic course of these areas to follow PD progression and to analyze treatment effects. (orig.)

  15. INFLUENCE OF DOPAMINERGIC SYSTEM ON INTERNET ADDICTION

    Directory of Open Access Journals (Sweden)

    Jelena Jović

    2011-03-01

    Full Text Available Internet addiction is a clinical anomaly with strong negative consequences on social, work-related, family, financial, and economic function of a person. It is regarded as a serious public health issue. The basic idea of this paper is to, based on the currently available body of research work on this topic, point out to neurobiological pathos of Internet addiction, and its connection to the dopaminergic system. Dopamine contains all physiological functions of neurotransmitters and it is a part of chatecholamine family. Five dopaminergic receptors (D1 - D5 belong to the super family of receptors related to G-protein. Through these receptors, dopamine achieves its roles: regulation of voluntary movement, regulation of center of pleasure, hormonal regulation, and regulation of hypertension. In order to recognize an Internet user as an addict, he or she needs to comply with the criteria suggested by the American Psychiatric Association (APA. Phenomenological, neurobiological, and pharmacological data indicates similarities in pathopsychology of substance addiction and pathological gambling, which are indirectly related to the similarity with the Internet addiction. Responding to stimuli from the game, addicts have shown more brain activity in the nape region, left dorsolateral, prefrontal cortex, and left parachipocampal gyrus than in the control group. After the six-week bupropion therapy, desire to play Internet and video games, the total duration of playing, and induced brain activity in dorsolateral prefrontal cortex are lowered with the addicts.

  16. The dopaminergic system in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Rodrigo ePacheco

    2014-03-01

    Full Text Available Bidirectional interactions between the immune and the nervous systems are of considerable interest both for deciphering their functioning and for designing novel therapeutic strategies. The past decade has brought a burst of insights into the molecular mechanisms involved in neuro-immune communications mediated by dopamine. Studies of dendritic cells (DCs revealed that they express the whole machinery to synthesize and store dopamine, which may act in an autocrine manner to stimulate dopamine receptors (DARs. Depending on specific DARs stimulated on DCs and T cells, dopamine may differentially favor CD4+ T cell differentiation into Th1 or Th17 inflammatory cells. Regulatory T cells can also release high amounts of dopamine that acts in an autocrine DAR-mediated manner to inhibit their suppressive activity. These dopaminergic regulations could represent a driving force during autoimmunity. Indeed, dopamine levels are altered in the brain of mouse models of multiple sclerosis (MS and lupus, and in inflamed tissues of patients with inflammatory bowel diseases or rheumatoid arthritis. The distorted expression of DARs in peripheral lymphocytes of lupus and MS patients also supports the importance of dopaminergic regulations in autoimmunity. Moreover, dopamine analogs had beneficial therapeutic effects in animal models, and in patients with lupus or rheumatoid arthritis. We propose models that may underlie key roles of dopamine and its receptors in autoimmune diseases.

  17. Do Substantia Nigra Dopaminergic Neurons Differentiate Between Reward and Punishment?

    Institute of Scientific and Technical Information of China (English)

    Michael J. Frank; D. James Surmeier

    2009-01-01

    The activity of dopaminergic neurons are thought to be increased by stimuli that predict reward and decreased by stimuli that predict aversive outcomes. Recent work by Matsumoto and Hikosaka challenges this model by asserting that stimuli associated with either rewarding or aversive outcomes increase the activity of dopaminergic neurons in the substantia nigra pars compacta.

  18. Erectile Dysfunction

    Science.gov (United States)

    ... cut out alcohol. Excess alcohol can contribute to erectile dysfunction. If you choose to drink alcohol, do so in moderation. For healthy adults, that means up to one drink a day for men older than age 65, and up to two drinks ...

  19. Silicon surface biofunctionalization with dopaminergic tetrahydroisoquinoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Lucena-Serrano, A.; Lucena-Serrano, C.; Contreras-Cáceres, R.; Díaz, A.; Valpuesta, M. [Dep. Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain); Cai, C. [Dep. Chemistry, University of Houston, Houston, TX 77204-5003 (United States); López-Romero, J.M., E-mail: jmromero@uma.es [Dep. Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga (Spain)

    2016-01-01

    Graphical abstract: - Highlights: • Two dopaminergic tetrahydroisoquinolines (THI) were synthesized. • Vinyl-terminated THI incorporated onto the H−Si(1 1 1) substrates via a hydrosilylation. • The highest yield in coverage was obtained in DMSO, at 4 h of irradiation and 0.1 mbar of vacuum. • Alkynyl-terminated Si surface was produced for incorporation of azide-THI by click reaction. • Best yields on grafted molecule were obtained by click reaction in absence of ascorbic acid. - Abstract: In this work we grafted vinyl- and azido-terminated tetrahydroisoquinolines (compounds 1 and 2, respectively) onto H−Si(1 1 1) silicon wafers obtaining highly stable modified surfaces. A double bond was incorporated into the tetrahydroisoquinoline structure of 1 to be immobilized by a light induced hydrosilylation reaction on hydrogen-terminated Si(1 1 1). The best results were obtained employing a polar solvent (DMSO), rather than a non-polar solvent (toluene). The azide derivative 2 was grafted onto alkenyl-terminated silicon substrates with copper-catalyzed azide-alkyne cycloaddition (CuAAC). Atomic force microscopy (AFM), contact angle goniometry (CA) and X-ray photoemission spectroscopy (XPS) were used to demonstrate the incorporation of 1 and 2 into the surfaces, study the morphology of the modified surfaces and to calculate the yield of grafting and surface coverage. CA measurements showed the increase in the surface hydrophobicity when 1 or 2 were incorporated into the surface. Moreover, compounds 1 and 2 were prepared starting from 1-(p-nitrophenyl)tetrahydroisoquinoline 3 under smooth conditions and in good yields. The structures of 1 and 2 were designed with a reduced A-ring, two substituents at positions C-6 and C-7, an N-methyl group and a phenyl moiety at C-1 in order to provide a high affinity against dopaminergic receptors. Moreover, O-demethylation of 1 was carried out once it was adsorbed onto the surface by treatment with BBr{sub 3}. The method

  20. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  1. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway.

    Science.gov (United States)

    Yan, Xuan; Liu, Dian-Feng; Zhang, Xiang-Yang; Liu, Dong; Xu, Shi-Yao; Chen, Guang-Xin; Huang, Bing-Xu; Ren, Wen-Zhi; Wang, Wei; Fu, Shou-Peng; Liu, Ju-Xiong

    2017-02-12

    Neuroinflammation plays a very important role in the pathogenesis of Parkinson's disease (PD). After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS)-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN), and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  2. Vanillin Protects Dopaminergic Neurons against Inflammation-Mediated Cell Death by Inhibiting ERK1/2, P38 and the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xuan Yan

    2017-02-01

    Full Text Available Neuroinflammation plays a very important role in the pathogenesis of Parkinson’s disease (PD. After activation, microglia produce pro-inflammatory mediators that damage surrounding neurons. Consequently, the inhibition of microglial activation might represent a new therapeutic approach of PD. Vanillin has been shown to protect dopaminergic neurons, but the mechanism is still unclear. Herein, we further study the underlying mechanisms in lipopolysaccharide (LPS-induced PD models. In vivo, we firstly established rat models of PD by unilateral injection of LPS into substantia nigra (SN, and then examined the role of vanillin in motor dysfunction, microglial activation and degeneration of dopaminergic neurons. In vitro, murine microglial BV-2 cells were treated with vanillin prior to the incubation of LPS, and then the inflammatory responses and the related signaling pathways were analyzed. The in vivo results showed that vanillin markedly improved the motor dysfunction, suppressed degeneration of dopaminergic neurons and inhibited microglial over-activation induced by LPS intranigral injection. The in vitro studies demonstrated that vanillin reduces LPS-induced expression of inducible nitric oxide (iNOS, cyclooxygenase-2 (COX-2, IL-1β, and IL-6 through regulating ERK1/2, p38 and NF-κB signaling. Collectively, these data indicated that vanillin has a role in protecting dopaminergic neurons via inhibiting inflammatory activation.

  3. The dopaminergic system in the aging brain of Drosophila

    Directory of Open Access Journals (Sweden)

    Katherine E White

    2010-12-01

    Full Text Available Drosophila models of Parkinson’s disease are characterised by two principal phenotypes: the specific loss of dopaminergic neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analysed the dopaminergic system and motor behavior in aging Drosophila. Dopaminergic neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH>mCD8::GFP and cell type-specific MARCM clones revealed that dopaminergic neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, dopaminergic neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH>Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct dopaminergic behaviors in Drosophila. Moreover, dopaminergic neurons were maintained between early- and late life, as quantified by TH>mCD8::GFP and anti-TH labelling, indicating that adult onset, age-related degeneration of dopaminergic neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson’s disease as well as other disorders affecting dopaminergic neurons

  4. HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function.

    Science.gov (United States)

    Kesby, James P; Najera, Julia A; Romoli, Benedetto; Fang, Yiding; Basova, Liana; Birmingham, Amanda; Marcondes, Maria Cecilia G; Dulcis, Davide; Semenova, Svetlana

    2017-10-01

    Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for

  5. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms.

    Science.gov (United States)

    Bloomfield, Michael A P; Morgan, Celia J A; Egerton, Alice; Kapur, Shitij; Curran, H Valerie; Howes, Oliver D

    2014-03-15

    Cannabis is the most widely used illicit drug globally, and users are at increased risk of mental illnesses including psychotic disorders such as schizophrenia. Substance dependence and schizophrenia are both associated with dopaminergic dysfunction. It has been proposed, although never directly tested, that the link between cannabis use and schizophrenia is mediated by altered dopaminergic function. We compared dopamine synthesis capacity in 19 regular cannabis users who experienced psychotic-like symptoms when they consumed cannabis with 19 nonuser sex- and age-matched control subjects. Dopamine synthesis capacity (indexed as the influx rate constant [Formula: see text] ) was measured with positron emission tomography and 3,4-dihydroxy-6-[(18)F]-fluoro-l-phenylalanine ([(18)F]-DOPA). Cannabis users had reduced dopamine synthesis capacity in the striatum (effect size: .85; t36 = 2.54, p = .016) and its associative (effect size: .85; t36 = 2.54, p = .015) and limbic subdivisions (effect size: .74; t36 = 2.23, p = .032) compared with control subjects. The group difference in dopamine synthesis capacity in cannabis users compared with control subjects was driven by those users meeting cannabis abuse or dependence criteria. Dopamine synthesis capacity was negatively associated with higher levels of cannabis use (r = -.77, p < .001) and positively associated with age of onset of cannabis use (r = .51, p = .027) but was not associated with cannabis-induced psychotic-like symptoms (r = .32, p = .19). These findings indicate that chronic cannabis use is associated with reduced dopamine synthesis capacity and question the hypothesis that cannabis increases the risk of psychotic disorders by inducing the same dopaminergic alterations seen in schizophrenia. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Memory Dysfunction

    Science.gov (United States)

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  7. In vivo binding of tritiated dopaminergic ligands in mouse brain

    International Nuclear Information System (INIS)

    Baudry, Michel; Martres, M.-P.; Le Sellin, Michel; Schwartz, J.-C.; Guyon, Anne; Morgat, J.-L.

    1977-01-01

    The regional distribution of various dopaminergic radiolabelled ligands has been studied in the mouse brain after their intravenous injections. Among them, 3 H-pimozide and, to a lesser extent, 3 H-apomorphine are preferentially accumulated in the striatum, a region rich in dopaminergic receptors, as compared to cerebellum, a region believed not to contain dopaminergic receptors. For 3 H-pimozide, this preferential retention is due to a more rapid disappearance from the cerebellum than from the striatum. Moreover, prior administration of various neuroleptics which do not modify 3 H-pimozide levels recovered in the cerebellum, abolishes the differential retention of 3 H-pimozide in the striatum. These results indicate that the retention of 3 H-pimozide in the brain may be regarded as the sum of two components: a non-specific retention evaluated by 3 H-pimozide level in the cerebellum and the binding to dopaminergic receptors [fr

  8. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive

    Science.gov (United States)

    Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  9. Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys

    Institute of Scientific and Technical Information of China (English)

    Jian-Hong Wang; Joshua Dominie Rizak; Yan-Mei Chen; Liang Li; Xin-Tian Hu; Yuan-Ye Ma

    2013-01-01

    Opiates and dopamine (DA) play key roles in learning and memory in humans and animals.Although interactions between these neurotransmitters have been found,their functional roles remain to be fully elucidated,and their dysfunction may contribute to human diseases and addiction.Here we investigated the interactions of morphine and dopaminergic neurotransmitter systems with respect to learning and memory in rhesus monkeys by using the Wisconsin General Test Apparatus (WGTA) delayed-response task.Morphine and DA agonists (SKF-38393,apomorphine and bromocriptine) or DA antagonists (SKF-83566,haloperidol and sulpiride) were co-administered to the monkeys 30 min prior to the task.We found that dose-patterned co-administration of morphine with D1 or D2 antagonists or agonists reversed the impaired spatial working memory induced by morphine or the compounds alone.For example,morphine at 0.01 mg/kg impaired spatial working memory,while morphine (0.01 mg/kg) and apomorphine (0.01 or 0.06 mg/kg) co-treatment ameliorated this effect.Our findings suggest that the interactions between morphine and dopaminergic compounds influence spatial working memory in rhesus monkeys.A better understanding of these interactive relationships may provide insights into human addiction.

  10. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Camacho, V. M., E-mail: victormlc13@hotmail.com; Ávila-García, M. C., E-mail: victormlc13@hotmail.com; Ávila-Rodríguez, M. A., E-mail: victormlc13@hotmail.com [Unidad PET, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, D.F. (Mexico)

    2014-11-07

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [{sup 11}C]-DTBZ, [{sup 11}C]-RAC, and [{sup 18}F]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  11. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    Directory of Open Access Journals (Sweden)

    Anders H. Andersen

    2015-01-01

    Full Text Available Parkinson’s disease (PD is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD patients. Participants included 18 ndPD patients (11 men, 7 women and 10 dPD patients (7 men, 3 women. Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN. DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients.

  12. Executive Dysfunction

    Science.gov (United States)

    Rabinovici, Gil D.; Stephens, Melanie L.; Possin, Katherine L.

    2015-01-01

    Purpose of Review: Executive functions represent a constellation of cognitive abilities that drive goal-oriented behavior and are critical to the ability to adapt to an ever-changing world. This article provides a clinically oriented approach to classifying, localizing, diagnosing, and treating disorders of executive function, which are pervasive in clinical practice. Recent Findings: Executive functions can be split into four distinct components: working memory, inhibition, set shifting, and fluency. These components may be differentially affected in individual patients and act together to guide higher-order cognitive constructs such as planning and organization. Specific bedside and neuropsychological tests can be applied to evaluate components of executive function. While dysexecutive syndromes were first described in patients with frontal lesions, intact executive functioning relies on distributed neural networks that include not only the prefrontal cortex, but also the parietal cortex, basal ganglia, thalamus, and cerebellum. Executive dysfunction arises from injury to any of these regions, their white matter connections, or neurotransmitter systems. Dysexecutive symptoms therefore occur in most neurodegenerative diseases and in many other neurologic, psychiatric, and systemic illnesses. Management approaches are patient specific and should focus on treatment of the underlying cause in parallel with maximizing patient function and safety via occupational therapy and rehabilitation. Summary: Executive dysfunction is extremely common in patients with neurologic disorders. Diagnosis and treatment hinge on familiarity with the clinical components and neuroanatomic correlates of these complex, high-order cognitive processes. PMID:26039846

  13. Serotonergic and dopaminergic modulation of attentional processes.

    Science.gov (United States)

    Boulougouris, Vasileios; Tsaltas, Eleftheria

    2008-01-01

    Disturbances in attentional processes are a common feature of several psychiatric disorders such as schizophrenia, attention deficit/hyperactivity disorder and Huntington's disease. The use of animal models has been useful in defining various candidate neural systems thus enabling us to translate basic laboratory science to the clinic and vice-versa. In this chapter, a comparative and integrated account is provided on the neuroanatomical and neurochemical modulation of basic behavioural operations such as selective attention, vigilance, set-shifting and executive control focusing on the comparative functions of the serotonin and dopamine systems in the cognitive control exerted by the prefrontal cortex. Specifically, we have reviewed evidence emerging from several behavioural paradigms in experimental animals and humans each of which centres on a different aspect of the attentional function. These paradigms offering both human and animal variants include the five-choice serial reaction time task (5CSRTT), attentional set-shifting and stop-signal reaction time task. In each case, the types of operation that are measured by the given paradigm and their neural correlates are defined. Then, the role of the ascending dopaminergic and serotonergic systems in the neurochemical modulation of its behavioural output are examined, and reference is made to clinical implications for neurological and neuropsychiatric disorders which exhibit deficits in these cognitive tests.

  14. Hemispheric differences in the mesostriatal dopaminergic system

    Directory of Open Access Journals (Sweden)

    Ilana eMolochnikov

    2014-06-01

    Full Text Available The mesostriatal dopaminergic system, which comprises the mesolimbic and the nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic functions. Multiple reports suggest that these processes are influenced by hemispheric differences in striatal dopamine (DA levels, DA turnover and its receptor activity. Here, we review studies which measured the concentration of DA and its metabolites to examine the relationship between DA imbalance and animal behavior under different conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric DA imbalance; determine whether the known anatomy provides a suitable substrate for this imbalance; examine the relationship between DA imbalance and animal behavior; and characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal and the mesolimbic DA systems. We conclude that many studies provide supporting evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system. Nonetheless, a variety of brain and behavioral manipulations demonstrate that the nigrostriatal system displays symmetrical laterality whereas the mesolimbic system displays asymmetrical laterality which supports hemispheric specialization in rodents. The reciprocity of the relationship between DA imbalance and animal behavior (i.e. the capacity of animal training to alter DA imbalance for prolonged time periods remains controversial, however, if confirmed, may provide a valuable noninvasive therapeutic means for treating abnormal DA imbalance.

  15. Brain dopaminergic systems : imaging with positron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J C [University of Caen/INSERM U, Caen (France). CYCERON; Comar, D [E.E.C. Concerted Action on P.E.T. Investigations of Cellular Regeneration and Degeneration, Orsay (France) CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot; Farde, L [Karolinska Sjukhuset, Stockholm (Sweden); Martinot, J L; Mazoyer, B [CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot Paris-

    1991-01-01

    Imaging of the dopaminergic system in the human brain with the in vivo use of Positron Emission Tomography emerged in the late 1980s as a tool of major importance in clinical neurosciences and pharmacology. The last few years have witnessed rapid development of new radiotracers specific to receptors, reuptake sites and enzymes of the dopamine system; the application of these radiotracers has led to major break-troughs in the pathophysiology and therapy of movement disorders and schizophrenic-like psychoses. This book is the first to collect, in a single volume, state-of-the-art contributions to the various aspects of this research. Its contents address methodological issues related to the design, labelling, quantitative imaging and compartmental modeli-sation of radioligands of the post-synaptic, pre-synaptic and enzyme sites of the dopamine system and to their use in clinical research in the fields of Parkinson's disease as well as other movement disorders, psychoses and neuroleptic receptor occupancy. The chapters were written by leading European scientists in the field of PET, gathered together in Caen (France, November 1990) under the aegis of the EEC Concerted Action on PET Investigations of Cellular Regeneration and Degeneration. This book provides a current and comprehensive overview on PET studies of the brain dopamine system which should aid and interest neurologists , psychiatrists, pharmacologists and medical imaging scientists. (author). refs.; figs.; tabs.

  16. Neuroprotective Effects of Erucin against 6-Hydroxydopamine-Induced Oxidative Damage in a Dopaminergic-like Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Giorgio Cantelli-Forti

    2012-08-01

    Full Text Available Oxidative stress (OS contributes to the cascade leading to the dysfunction or death of dopaminergic neurons during Parkinson’s disease (PD. A strategy to prevent the OS of dopaminergic neurons may be the use of phytochemicals as inducers of endogenous antioxidants and phase 2 enzymes. In this study, we demonstrated that treatment of the dopaminergic-like neuroblastoma SH-SY5Y cell line with isothiocyanate erucin (ER, a compound of cruciferous vegetables, resulted in significant increases of both total glutathione (GSH levels and total antioxidant capacity at the cytosolic level. The increase of GSH levels was associated with an increase in the resistance of SH-SY5Y cells to neuronal death, in terms of apoptosis, induced by 6-hydroxydopamine (6-OHDA. The pretreatment of SH-SY5Y cells with ER was also shown to prevent the redox status impairment, in terms of intracellular ROS and O2•− formation, and loss of mitochondrial membrane potential, early events that are initiators of the apoptotic process, induced by 6-OHDA. Last, the antiapoptotic and antioxidant effects of ER were abolished by buthionine sulfoximine, supporting the main role of GSH in the neuroprotective effects recorded by ER. These results suggest that ER may prevent the oxidative damage induced by 6-OHDA.

  17. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    Science.gov (United States)

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  18. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    Science.gov (United States)

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  19. Effect of basal ganglia calcification on its glucose metabolism and dopaminergic function in idiopathic hypoparathyroidism.

    Science.gov (United States)

    Modi, Sagar; Arora, Geetanjali; Bal, Chandra Shekhar; Sreenivas, Vishnubhatla; Kailash, Suparna; Sagar, Rajesh; Goswami, Ravinder

    2015-10-01

    The functional significance of basal ganglia calcification (BGC) in idiopathic hypoparathyroidism (IH) is not clear. To assess the effect of BGC on glucose metabolism and dopaminergic function in IH. (18) F-FDG and (99m) Tc-TRODAT-1 nuclear imaging were performed in 35 IH patients with (n = 26) and without (n = 9) BGC. Controls were subjects without hypoparathyroidism or BGC (nine for (18) F-FDG and 12 for (99m) Tc-TRODAT-1). Relationship of the glucose metabolism and dopaminergic function was assessed with the neuropsychological and biochemical abnormalities. (18) F-FDG uptake in IH patients with calcification at caudate and striatum was less than that of IH patients without calcification (1·06 ± 0·13 vs 1·24 ± 0·09, P = <0·0001 and 1·06 ± 0·09 vs 1·14 ± 0·08, P = 0·03, respectively). (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. (18) F-FDG uptake in IH without BGC was significantly lower than that of controls. The mean (99m) Tc-TRODAT-1 uptake at basal ganglia was comparable between IH with and without BGC and between IH without BGC and controls. Serum calcium-phosphorus ratio maintained by the patients correlated with (18) F-FDG uptake at striatum (r = 0·57, P = 0·001). For every 0·1 unit reduction in calcium-phosphorus ratio, (18) F-FDG uptake decreased by 2·5 ± 0·68% (P = 0·001). BGC was associated with modest reduction (15%) in (18) F-FDG uptake at basal ganglia in IH but did not affect dopaminergic function. (18) F-FDG uptake did not correlate with neuropsychological dysfunctions. Interestingly, chronic hypocalcaemia-hyperphosphataemia also contributed to reduction in (18) F-FDG uptake which was independent of BGC. © 2014 John Wiley & Sons Ltd.

  20. Physiological characterisation of human iPS-derived dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hartfield

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD, in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2, representative of the A9 population of substantia nigra pars compacta (SNc neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3 receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+ which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.

  1. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E

    2016-08-01

    Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.

  2. Alkaloids from piper longum protect dopaminergic neurons against inflammation-mediated damage induced by intranigral injection of lipopolysaccharide.

    Science.gov (United States)

    He, Huan; Guo, Wei-Wei; Xu, Rong-Rong; Chen, Xiao-Qing; Zhang, Nan; Wu, Xia; Wang, Xiao-Min

    2016-10-24

    Alkaloids from Piper longum (PLA), extracted from P. longum, have potent anti-inflammatory effects. The aim of this study was to investigate whether PLA could protect dopaminergic neurons against inflammation-mediated damage by inhibiting microglial activation using a lipopolysaccharide (LPS)-induced dopaminergic neuronal damage rat model. The animal behaviors of rotational behavior, rotarod test and open-field test were investigated. The survival ratio of dopaminergic neurons and microglial activation were examined. The dopamine (DA) and its metabolite were detected by high performance liquid chromatography (HPLC). The effects of PLA on the expression of interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) and nitric oxide (NO) were also estimated. We showed that the survival ratio of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc) and DA content in the striatum were reduced after a single intranigral dose of LPS (10 μg) treatment. The survival rate of TH-ir neurons in the SNpc and DA levels in the striatum were significantly improved after treatment with PLA for 6 weeks. The over-activated microglial cells were suppressed by PLA treatment. We also observed that the levels of inflammatory cytokines, including TNF-α, IL-6 and IL-1β were decreased and the excessive production of ROS and NO were abolished after PLA treatment. Therefore, the behavioral dysfunctions induced by LPS were improved after PLA treatment. This study suggests that PLA plays a significant role in protecting dopaminergic neurons against inflammatory reaction induced damage.

  3. Evidence of dopaminergic processing of executive inhibition.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging technique to detect and map dopamine released during performance of a modified Eriksen's flanker task. In this study, young healthy volunteers received an intravenous injection of a dopamine receptor ligand ((11C-raclopride after they were positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand displacement (from receptor sites and decrease in the ligand binding potential in the Incongruent condition, suggesting dopamine release during task performance. These changes were observed in small areas of the putamen and caudate bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive processing can be detected and mapped in a single scan session using dynamic molecular imaging.

  4. 3-aminopyridazine derivatives with atypical antidepressant, serotonergic, and dopaminergic activities.

    Science.gov (United States)

    Wermuth, C G; Schlewer, G; Bourguignon, J J; Maghioros, G; Bouchet, M J; Moire, C; Kan, J P; Worms, P; Biziere, K

    1989-03-01

    Minaprine [3-[(beta-morpholinoethyl)amino]-4-methyl-6-phenylpyridazine dihydrochloride] is active in most animal models of depression and exhibits in vivo a dual dopaminomimetic and serotoninomimetic activity profile. In an attempt to dissociate these two effects and to characterize the responsible structural requirements, a series of 47 diversely substituted analogues of minaprine were synthesized and tested for their potential antidepressant, serotonergic, and dopaminergic activities. The structure-activity relationships show that dopaminergic and serotonergic activities can be dissociated. Serotonergic activity appears to be correlated mainly with the substituent in the 4-position of the pyridazine ring whereas the dopaminergic activity appears to be dependent on the presence, or in the formation, of a para-hydroxylated aryl ring in the 6-position of the pyridazine ring.

  5. Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila.

    Science.gov (United States)

    Zhang, Shixing; Yin, Yan; Lu, Huimin; Guo, Aike

    2008-05-23

    Dopamine is necessary for the aversive olfactory associative memory formation in Drosophila, but its effect on other stages of memory is not known. Herein, we studied the effect of enhanced dopaminergic signaling on aversive olfactory memory retention in flies. We used l-3,4-dihydroxyphenylalanine (l-DOPA) to elevate dopamine levels: l-DOPA-treated flies exhibited a normal learning performance, but a decrease in 1-h memory. Dopamine transporter (DAT) mutant flies or flies treated with the DAT inhibitor desipramine exhibited poor memory retention. Flies subjected to heat stress after training exhibited a decrease in memory. Memory was restored by blocking dopaminergic neuronal output during heat stress, suggesting that dopamine is involved in heat stress-induced memory impairment in flies. Taken together, our findings suggest that increased dopaminergic signaling impairs aversive olfactory memory retention in flies.

  6. Influence of dopaminergically mediated reward on somatosensory decision-making.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    2009-07-01

    Full Text Available Reward-related dopaminergic influences on learning and overt behaviour are well established, but any influence on sensory decision-making is largely unknown. We used functional magnetic resonance imaging (fMRI while participants judged electric somatosensory stimuli on one hand or other, before being rewarded for correct performance at trial end via a visual signal, at one of four anticipated financial levels. Prior to the procedure, participants received either placebo (saline, a dopamine agonist (levodopa, or an antagonist (haloperidol.higher anticipated reward improved tactile decisions. Visually signalled reward reactivated primary somatosensory cortex for the judged hand, more strongly for higher reward. After receiving a higher reward on one trial, somatosensory activations and decisions were enhanced on the next trial. These behavioural and neural effects were all enhanced by levodopa and attenuated by haloperidol, indicating dopaminergic dependency. Dopaminergic reward-related influences extend even to early somatosensory cortex and sensory decision-making.

  7. Renin angiotensin system and gender differences in dopaminergic degeneration

    Directory of Open Access Journals (Sweden)

    Rodriguez-Perez Ana I

    2011-08-01

    Full Text Available Abstract Background There are sex differences in dopaminergic degeneration. Men are approximately two times as likely as premenopausal women of the same age to develop Parkinson's disease (PD. It has been shown that the local renin angiotensin system (RAS plays a prominent role in sex differences in the development of chronic renal and cardiovascular diseases, and there is a local RAS in the substantia nigra and dopaminergic cell loss is enhanced by angiotensin via type 1 (AT1 receptors. Results In the present study, we observed that intrastriatal injection of 6-hydroxydopamine induced a marked loss of dopaminergic neurons in the substantia nigra of male rats, which was significantly higher than the loss induced in ovariectomized female rats given estrogen implants (i.e. rats with estrogen. However, the loss of dopaminergic neurons was significantly lower in male rats treated with the AT1 antagonist candesartan, and similar to that observed in female rats with estrogen. The involvement of the RAS in gender differences in dopaminergic degeneration was confirmed with AT1a-null mice lesioned with the dopaminergic neurotoxin MPTP. Significantly higher expression of AT1 receptors, angiotensin converting enzyme activity, and NADPH-oxidase complex activity, and much lower levels of AT2 receptors were observed in male rats than in female rats with estrogen. Conclusions The results suggest that brain RAS plays a major role in the increased risk of developing PD in men, and that manipulation of brain RAS may be an efficient approach for neuroprotective treatment of PD in men, without the feminizing effects of estrogen.

  8. Dopaminergic profile of new heterocyclic N-phenylpiperazine derivatives

    Directory of Open Access Journals (Sweden)

    Neves G.

    2003-01-01

    Full Text Available Dopamine constitutes about 80% of the content of central catecholamines and has a crucial role in the etiology of several neuropsychiatric disorders, including Parkinson's disease, depression and schizophrenia. Several dopaminergic drugs are used to treat these pathologies, but many problems are attributed to these therapies. Within this context, the search for new more efficient dopaminergic agents with less adverse effects represents a vast research field. The aim of the present study was to report the structural design of two N-phenylpiperazine derivatives, compound 4: 1-[1-(4-chlorophenyl-1H-4-pyrazolylmethyl]-4-phenylhexahydropyrazine and compound 5: 1-[1-(4-chlorophenyl-1H-1,2,3-triazol-4-ylmethyl]-4-phenylhexahydropyrazine, planned to be dopamine ligands, and their dopaminergic action profile. The two compounds were assayed (dose range of 15-40 mg/kg in three experimental models: 1 blockade of amphetamine (30 mg/kg, ip-induced stereotypy in rats; 2 the catalepsy test in mice, and 3 apomorphine (1 mg/kg, ip-induced hypothermia in mice. Both derivatives induced cataleptic behavior (40 mg/kg, ip and a hypothermic response (30 mg/kg, ip which was not prevented by haloperidol (0.5 mg/kg, ip. Compound 5 (30 mg/kg, ip also presented a synergistic hypothermic effect with apomorphine (1 mg/kg, ip. Only compound 4 (30 mg/kg, ip significantly blocked the amphetamine-induced stereotypy in rats. The N-phenylpiperazine derivatives 4 and 5 seem to have a peculiar profile of action on dopaminergic functions. On the basis of the results of catalepsy and amphetamine-induced stereotypy, the compounds demonstrated an inhibitory effect on dopaminergic behaviors. However, their hypothermic effect is compatible with the stimulation of dopaminergic function which seems not to be mediated by D2/D3 receptors.

  9. Tc-99m TRODAT uptake in an osteoid tumor of clivus.

    Science.gov (United States)

    Taywade, Sameer; Tripathi, Madhavi; Tandon, Vivek; Das, Chandan Jyoti; Damle, Nishikant Avinash; Shamim, Shamim Ahmed; Thukral, Parul; Bal, Chandrasekhar

    2016-01-01

    Tc-99m TRODAT is cocaine analog and binds to the dopamine transporter in vivo . Tc-99m TRODAT single-photon emission computed tomography/computed tomography. (SPECT/CT) is useful for demonstrating presynaptic dopaminergic dysfunction in patients with Parkinsonism. However, few reports have shown extrastriatal uptake of Tc-99m TRODAT. We present the case of a 67-year-old male who underwent Tc-99m TRODAT SPECT/CT for evaluation of Parkinsonism. In addition to tracer binding in the striatum, tracer uptake was noted in an osteoid tumor of the clivus. Integrated SPECT/CT enabled precise localization and characterization of the extrastriatal site of tracer binding and emphasizes the importance of such coincidental findings.

  10. Effects of dopaminergic and subthalamic stimulation on musical performance.

    Science.gov (United States)

    van Vugt, Floris T; Schüpbach, Michael; Altenmüller, Eckart; Bardinet, Eric; Yelnik, Jérôme; Hälbig, Thomas D

    2013-05-01

    Although subthalamic-deep brain stimulation (STN-DBS) is an efficient treatment for Parkinson's disease (PD), its effects on fine motor functions are not clear. We present the case of a professional violinist with PD treated with STN-DBS. DBS improved musical articulation, intonation and emotional expression and worsened timing relative to a timekeeper (metronome). The same effects were found for dopaminergic treatment. These results suggest that STN-DBS, mimicking the effects of dopaminergic stimulation, improves fine-tuned motor behaviour whilst impairing timing precision.

  11. NAD+ Supplementation Attenuates Methylmercury Dopaminergic and Mitochondrial Toxicity in Caenorhabditis Elegans

    Science.gov (United States)

    Caito, Samuel W.; Aschner, Michael

    2016-01-01

    Methylmercury (MeHg) is a neurotoxic contaminant of our fish supply that has been linked to dopaminergic (DAergic) dysfunction that characterizes Parkinson’s disease. We have previously shown that MeHg causes both morphological and behavioral changes in the Caenorhabditis elegans DAergic neurons that are associated with oxidative stress. We were therefore interested in whether the redox sensitive cofactor nicotinamide adenine dinucleotide (NAD+) may be affected by MeHg and whether supplementation of NAD + may prevent MeHg-induced toxicities. Worms treated with MeHg showed depletion in cellular NAD + levels, which was prevented by NAD + supplementation prior to MeHg treatment. NAD + supplementation also prevented DAergic neurodegeneration and deficits in DAergic-dependent behavior upon MeHg exposure. In a mutant worm line that cannot synthesize NAD + from nicotinamide, MeHg lethality and DAergic behavioral deficits were more sensitive to MeHg than wildtype worms, demonstrating the importance of NAD + in MeHg toxicity. In wildtype worms, NAD + supplementation provided protection from MeHg-induced oxidative stress and mitochondrial dysfunction. These data show the importance of NAD + levels in the response to MeHg exposure. NAD + supplementation may be beneficial for MeHg-induced toxicities and preventing cellular damage involved in Parkinson’s disease. PMID:26865665

  12. Calcium Homeostatasis and Mitochondrial Dysfunction in Dopaminergic Neurons of the Substantia Nigra

    Science.gov (United States)

    2010-03-01

    complex I of the electron transport chain (ETC) [18]; this deficit is specific to PD patients [19] and seems to reflect oxidative damage to complex I...to drive pacemaking, SNc DA neurons also engage ion channels that enable Ca2+ to enter the cyto- plasm [36–38], leading to elevated intracellular Ca2...shown schematically are elements of the tricarboxylic acid (TCA) cycle that produces reducing equivalents for the electron transport chain; complexes I

  13. The Mesolimbic Dopaminergic Dysfunction in Psychosis: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Pedro Alves de Moura

    2015-11-01

    Full Text Available Background: For several decades now it is thought that dopamine hyperactivity on the mesolimbic pathway is implied on the genesis of schizophrenic psychotic symptoms. Aims: In this review we sought to interconnect the various areas of current knowledge, seeking to relate them to clinical practice. Methods: A systematic English language PUBMED search was done, using MeSH (medical subject headings terms “mesolimbic” and “psychosis”, until April 2014, including reviews. Results and Conclusions: We found 111 papers, and excluded 56 after an abstract review. We selected 14 papers of the remaining 55. We present evidence on the part played by the neurodevelopment, acetylcholine nicotinic receptor regulation, influence of KCNQ potassium channels, neurotransmitter peptides, adenosine and phosphodiesterase 10A, as well as advances on understanding the etiology of schizophrenia on the development of psychotic symptoms associated not only with this disease but also with several disturbances on which they can occur, as well as a possible relation between these various influences, where it has been possible to do so. It is, therefore, an enunciation of the neurobiological substrate underlying psychotic symptoms.

  14. Examination of the presynaptic dopaminergic system using positron emission tomography in a family with autosomal dominant parkinsonism and dementia due to pallido-ponto-nigral degeneration (PPNO)

    International Nuclear Information System (INIS)

    Cordes, M.; Wszolek, Z.K.; Pfeiffer, R.F.; Calne, D.B.

    1993-01-01

    We report positron emission tomography (PET) examinations of presynaptic nigrostriatal dopaminergic function in a large family with an autosomal dominant neuro-degenerative disorder characterized pathologically by pallido-ponto-nigral degeneration, and clinically by parkinsonism, dystonia, paresis of conjugate gaze, apraxia of eyelid opening and closing, pyramidal tract dysfunction, and urinary incontinence. Dopaminergic function was studied and quantified with [ 18 F[-L-6-fluorodopa (6 FD) and PET in five affected patients, 13 individuals at-risk, and 15 similarly aged controls. The rate constant K i (mL/striatum/min) for 6 FD was decreased in all patients. None of the individuals at risk had reduced 6 FD uptake. In fact, three of them had increased values. Repeat scans have revealed a fall in 6 FD uptake in two out of the three with initially high constants. This may reflect a preclinical stage of involvement, but longer observation is necessary. (orig.) [de

  15. Generational Association Studies of Dopaminergic Genes in Reward Deficiency Syndrome (RDS Subjects: Selecting Appropriate Phenotypes for Reward Dependence Behaviors

    Directory of Open Access Journals (Sweden)

    Frank Fornari

    2011-11-01

    Full Text Available Abnormal behaviors involving dopaminergic gene polymorphisms often reflect an insufficiency of usual feelings of satisfaction, or Reward Deficiency Syndrome (RDS. RDS results from a dysfunction in the “brain reward cascade,” a complex interaction among neurotransmitters (primarily dopaminergic and opioidergic. Individuals with a family history of alcoholism or other addictions may be born with a deficiency in the ability to produce or use these neurotransmitters. Exposure to prolonged periods of stress and alcohol or other substances also can lead to a corruption of the brain reward cascade function. We evaluated the potential association of four variants of dopaminergic candidate genes in RDS (dopamine D1 receptor gene [DRD1]; dopamine D2 receptor gene [DRD2]; dopamine transporter gene [DAT1]; dopamine beta-hydroxylase gene [DBH]. Methodology: We genotyped an experimental group of 55 subjects derived from up to five generations of two independent multiple-affected families compared to rigorously screened control subjects (e.g., N = 30 super controls for DRD2 gene polymorphisms. Data related to RDS behaviors were collected on these subjects plus 13 deceased family members. Results: Among the genotyped family members, the DRD2 Taq1 and the DAT1 10/10 alleles were significantly (at least p < 0.015 more often found in the RDS families vs. controls. The TaqA1 allele occurred in 100% of Family A individuals (N = 32 and 47.8% of Family B subjects (11 of 23. No significant differences were found between the experimental and control positive rates for the other variants. Conclusions: Although our sample size was limited, and linkage analysis is necessary, the results support the putative role of dopaminergic polymorphisms in RDS behaviors. This study shows the importance of a nonspecific RDS phenotype and informs an understanding of how evaluating single subset behaviors of RDS may lead to spurious results. Utilization of a nonspecific

  16. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qin; Qin, Liyue; Huang, Fei, E-mail: Fei_H@hotmail.com; Wang, Xiaoshuang; Yang, Liu; Shi, Hailian; Wu, Hui; Zhang, Beibei; Chen, Ziyu; Wu, Xiaojun, E-mail: xiaojunwu320@126.com

    2017-03-15

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP{sup +})-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP{sup +} in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP{sup +}-induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.

  17. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways

    International Nuclear Information System (INIS)

    Cao, Qin; Qin, Liyue; Huang, Fei; Wang, Xiaoshuang; Yang, Liu; Shi, Hailian; Wu, Hui; Zhang, Beibei; Chen, Ziyu; Wu, Xiaojun

    2017-01-01

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP + )-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP + in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP + -induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP + -induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.

  18. Adrenal androgen secretion and dopaminergic activity in anorexia nervosa.

    Science.gov (United States)

    Devesa, J; Pérez-Fernández, R; Bokser, L; Gaudiero, G J; Lima, L; Casanueva, F F

    1988-01-01

    The aim of the present study was to investigate if the postulated deficient adrenal androgen secretion in Anorexia Nervosa (AN), could be associated with a status of sustained dopaminergic hyperactivity. The adrenal responses to ACTH and PRL response to dopaminergic receptor blockade were studied in seven patients with Anorexia Nervosa and seven regularly menstruating women. AN patients showed lower baseline DHEA-sulphate (DHEA-S), androstenedione (Adione) and prolactin (PRL) levels than controls. The response to ACTH revealed evidences of significantly decreased 17-20 desmolase activity in AN, with apparent predominance of glucocorticoid over androgenic pathways relative to controls. Because dopaminergic receptor blockade with Domperidone (DOM) showed intense dopaminergic hyperactivity in AN, we postulate that the adrenal regression seen in the disease is the consequence of a reduced zona reticularis as a consequence of the lack of trophic support by PRL and/or intermediate lobe proopiomelanocortin (IL-POMC). This is consistent with our previous results in pre-adrenarchal dogs and rabbits.

  19. Dopaminergic and clinical correlates of pathological gambling in Parkinson's disease

    DEFF Research Database (Denmark)

    Callesen, Mette Buhl; Hansen, K V; Gjedde, A

    2013-01-01

    Dopaminergic medication for motor symptoms in Parkinson's disease (PD) recently has been linked with impulse control disorders, including pathological gambling (PG), which affects up to 8% of patients. PG often is considered a behavioral addiction associated with disinhibition, risky decision-mak...... decision-making. Overall, the findings are consistent with the hypothesis of medication-related PG in PD and underscore the importance of taking clinical variables, such as age and personality, into account when patients with PD are medicated, to reduce the risk of PG.......Dopaminergic medication for motor symptoms in Parkinson's disease (PD) recently has been linked with impulse control disorders, including pathological gambling (PG), which affects up to 8% of patients. PG often is considered a behavioral addiction associated with disinhibition, risky decision-making......, and altered striatal dopaminergic neurotransmission. Using [(11)C]raclopride with positron emission tomography, we assessed dopaminergic neurotransmission during Iowa Gambling Task performance. Here we present data from a single patient with PD and concomitant PG. We noted a marked decrease in [(11)C...

  20. The dopaminergic system and aggression in laying hens

    Science.gov (United States)

    The dopaminergic system regulates aggression in humans and other mammals. To investigate if birds with genetic propensity for high and low aggressiveness may exhibit distinctly different aggressive mediation via dopamine (DA) D1 and D2 receptor pathways, two high aggressive (DXL and LGPS) and one lo...

  1. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Alison Wood-Kaczmar

    2008-06-01

    Full Text Available Parkinson's disease (PD is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD.

  2. p73 gene in dopaminergic neurons is highly susceptible to manganese neurotoxicity.

    Science.gov (United States)

    Kim, Dong-Suk; Jin, Huajun; Anantharam, Vellareddy; Gordon, Richard; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-03-01

    Chronic exposure to elevated levels of manganese (Mn) has been linked to a Parkinsonian-like movement disorder, resulting from dysfunction of the extrapyramidal motor system within the basal ganglia. However, the exact cellular and molecular mechanisms of Mn-induced neurotoxicity remain elusive. In this study, we treated C57BL/6J mice with 30mg/kg Mn via oral gavage for 30 days. Interestingly, in nigral tissues of Mn-exposed mice, we found a significant downregulation of the truncated isoform of p73 protein at the N-terminus (ΔNp73). To further determine the functional role of Mn-induced p73 downregulation in Mn neurotoxicity, we examined the interrelationship between the effect of Mn on p73 gene expression and apoptotic cell death in an N27 dopaminergic neuronal model. Consistent with our animal study, 300μM Mn treatment significantly suppressed p73 mRNA expression in N27 dopaminergic cells. We further determined that protein levels of the ΔNp73 isoform was also reduced in Mn-treated N27 cells and primary striatal cultures. Furthermore, overexpression of ΔNp73 conferred modest cellular protection against Mn-induced neurotoxicity. Taken together, our results demonstrate that Mn exposure downregulates p73 gene expression resulting in enhanced susceptibility to apoptotic cell death. Thus, further characterization of the cellular mechanism underlying p73 gene downregulation will improve our understanding of the molecular underpinnings of Mn neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish.

    Science.gov (United States)

    Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A

    2015-08-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Matthew E Gegg

    Full Text Available Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD. Impairment of the mitochondrial electron transport chain (ETC and an increased frequency in deletions of mitochondrial DNA (mtDNA, which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease.

  5. Tp53 gene mediates distinct dopaminergic neuronal damage in different dopaminergic neurotoxicant models

    Directory of Open Access Journals (Sweden)

    Tao Lu

    2017-01-01

    Full Text Available Tp53, a stress response gene, is involved in diverse cell death pathways and its activation is implicated in the pathogenesis of Parkinson's disease. However, whether the neuronal Tp53 protein plays a direct role in regulating dopaminergic (DA neuronal cell death or neuronal terminal damage in different neurotoxicant models is unknown. In our recent studies, in contrast to the global inhibition of Tp53 function by pharmacological inhibitors and in traditional Tp53 knock-out mice, we examined the effects of DA-specific Tp53 gene deletion after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and methamphetamine exposure. Our data suggests that the Tp53 gene might be involved in both neuronal apoptosis and neuronal terminal damage caused by different neurotoxicants. Additional results from other studies also suggest that as a master regulator of many pathways that regulate apoptosis and synaptic terminal damage, it is possible that Tp53 may function as a signaling hub to integrate different signaling pathways to mediate distinctive target pathways. Tp53 protein as a signaling hub might be able to evaluate the microenvironment of neurons, assess the forms and severities of injury incurred, and determine whether apoptotic cell death or neuronal terminal degeneration occurs. Identification of the precise mechanisms activated in distinct neuronal damage caused by different forms and severities of injuries might allow for development of specific Tp53 inhibitors or ways to modulate distinct downstream target pathways involved.

  6. Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations

    Directory of Open Access Journals (Sweden)

    Bohr Iwo

    2008-12-01

    Full Text Available Abstract There is increasing evidence for a role of dopamine in the development of obesity. More specifically, dopaminergic hypofunction might lead to (overcompensatory food intake. Overeating and resulting weight gain may be induced by genetic predisposition for lower dopaminergic activity, but might also be a behavioral mechanism of compensating for decreased dopamine signaling after dopaminergic overstimulation, for example after smoking cessation or overconsumption of high palatable food. This hypothesis is in line with our incidental finding of increased weight gain after discontinuation of pharmaceutical dopaminergic overstimulation in rats. These findings support the crucial role of dopaminergic signaling for eating behaviors and offer an explanation for weight-gain after cessation of activities associated with high dopaminergic signaling. They further support the possibility that dopaminergic medication could be used to moderate food intake.

  7. Effect of different modes of therapy on vestibular and balance dysfunction in Parkinson’s disease

    OpenAIRE

    El-Kholy, Wafaa Abdel-Hay; Taha, Hesham Mohamed; Hamada, Soha Mohamed; Sayed, Mona Abdel-Fattah

    2015-01-01

    Background: Patients with Parkinson’s disease (PD) have difficulties in performing various motor tasks such as walking, writing and speaking, together with significant balance dysfunction. Despite gains made in the field of pharmacotherapy and deep brain stimulation, dopaminergic medications may produce a limited improvement in postural stability. Sustained improvement in motor skills can be achieved through physiotherapy. Aim of the work: To measure the effect of different modes of therap...

  8. PET measurements od dopaminergic pathways in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, J.S. [Washington Univ., St. Louis, MO (United States). School of Medicine. Dept. of Neurology and Neurological Surgery, Anatomy and Neurobiology; Moerlein, S.M. [Washington Univ., St. Louis, MO (United States). School of Medicine. Dept. of Biochemistry and Molecular Biophysics, Mallinckrodt Institute of Radiology

    1999-06-01

    Position emission tomography (PET) measurements of dopaminergic pathways have revealed several new insights into the role of dopamine in the pathophysiology and pharmacology of brain diseases such as Parkinson's disease (PD), dystonia and schizophrenia. PET studies of regional blood flow of metabolism identifies sites of regional pathology. Drug-induced changes in flow or metabolism indicate the function of dopamine-mediated pathways. Measurements of radioligand binding 'in vivo' with PET reveals abnormalities associated with specific diseases and the actions of various drugs that effect the dopaminergic system. Finally, PET measurements of the uptake of analogues of levodopa provide clues to the function of dopamine pathways potentially important for diagnosis and treatment of disease like PD.

  9. Brief debrisoquin administration to assess central dopaminergic function in children.

    Science.gov (United States)

    Riddle, M A; Shaywitz, B A; Leckman, J F; Anderson, G M; Shaywitz, S E; Hardin, M T; Ort, S I; Cohen, D J

    1986-03-17

    Central dopaminergic (DA) function in children was assessed by monitoring plasma-free homovanillic acid (pHVA) levels after brief (18 hour) administration with debrisoquin sulfate, a peripherally active antihypertensive agent that blocks peripheral, but not central, HVA production. Brief debrisoquin administration resulted in marked reductions in pHVA in each of six patients studied. In five of the six patients, post-debrisoquin pHVA levels remained relatively stable over the six-hour period of observation. No significant cardiovascular or behavioral side effects of debrisoquin were observed. The brief debrisoquin administration method appears to be a safe, simple, and potentially valid peripheral technique for evaluating aspects of central dopaminergic function in children with neuropsychiatric disorders. Additional work is needed to further establish this method's validity and reliability.

  10. Food-Related Odors Activate Dopaminergic Brain Areas

    OpenAIRE

    Agnieszka Sorokowska; Agnieszka Sorokowska; Katherina Schoen; Cornelia Hummel; Pengfei Han; Jonathan Warr; Thomas Hummel

    2017-01-01

    Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving careful...

  11. Music improves dopaminergic neurotransmission: demonstration based on the effect of music on blood pressure regulation.

    Science.gov (United States)

    Sutoo, Den'etsu; Akiyama, Kayo

    2004-08-06

    The mechanism by which music modifies brain function is not clear. Clinical findings indicate that music reduces blood pressure in various patients. We investigated the effect of music on blood pressure in spontaneously hypertensive rats (SHR). Previous studies indicated that calcium increases brain dopamine (DA) synthesis through a calmodulin (CaM)-dependent system. Increased DA levels reduce blood pressure in SHR. In this study, we examined the effects of music on this pathway. Systolic blood pressure in SHR was reduced by exposure to Mozart's music (K.205), and the effect vanished when this pathway was inhibited. Exposure to music also significantly increased serum calcium levels and neostriatal DA levels. These results suggest that music leads to increased calcium/CaM-dependent DA synthesis in the brain, thus causing a reduction in blood pressure. Music might regulate and/or affect various brain functions through dopaminergic neurotransmission, and might therefore be effective for rectification of symptoms in various diseases that involve DA dysfunction.

  12. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism

    DEFF Research Database (Denmark)

    Dodson, Paul D.; Dreyer, Jakob K.; Jennings, Katie Ann

    2016-01-01

    receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types......Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates...... of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine...

  13. Endorphinic neurons are contacting the tuberoinfundibular dopaminergic neurons in the rat brain

    International Nuclear Information System (INIS)

    Morel, G.; Pelletier, G.

    1986-01-01

    The anatomical relationships between endorphinic neurons and dopaminergic neurons were evaluated in the rat hypothalamus using a combination of immunocytochemistry and autoradiography. In the arcuate nucleus, endorphinic endings were seen making contacts with dopaminergic cell bodies and dendrites. No synapsis could be observed at the sites of contacts. These results strongly suggest that the endorphinic neurons are directly acting on dopaminergic neurons to modify the release of dopamine into the pituitary portal system

  14. Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila

    OpenAIRE

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Mart?n; Burke, Christopher; Waddell, Scott

    2015-01-01

    Dopaminergic neurons provide reward learning signals in mammals and insects. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor specifically convey the short-term reinforcing effects of sweet taste. These dopamin...

  15. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    George Naijil

    2010-05-01

    Full Text Available Abstract Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  16. Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kumar, T Peeyush; Antony, Sherin; Gireesh, G; George, Naijil; Paulose, C S

    2010-05-31

    Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, B(max) showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  17. Development of clinical study and application on dopaminergic neurotransmitters and neuroreceptor imaging

    International Nuclear Information System (INIS)

    Wang Rongfu

    2000-01-01

    In recent years, the neurotransmitter mapping has been rapidly developed from a lot of fundamental researches to the studies of clinical applications. At present, the dopaminergic neurotransmitter and receptor imaging in the central neurotransmitter mapping study are the most active area including dopaminergic receptor, dopaminergic neurotransmitter and dopaminergic transporter imaging, etc,. The nuclear medicine functional imaging technique with positron emission tomography and single photon emission computed tomography possesses potential advantages in the diagnosis and distinguished diagnosis of neuropsychiatric disorders and movement disorders, and in the study of recognition function

  18. Burden of Sexual Dysfunction.

    Science.gov (United States)

    Balon, Richard

    2017-01-02

    Similar to the burden of other diseases, the burden of sexual dysfunction has not been systematically studied. However, there is growing evidence of various burdens (e.g., economic, symptomatic, humanistic) among patients suffering from sexual dysfunctions. The burden of sexual dysfunction has been studied a bit more often in men, namely the burden of erectile dysfunction (ED), premature ejaculation (PE) and testosterone deficiency syndrome (TDS). Erectile dysfunction is frequently associated with chronic conditions such as cardiovascular disease, diabetes, and depression. These conditions could go undiagnosed, and ED could be a marker of those diseases. The only available report from the United Kingdom estimated the total economic burden of ED at £53 million annually in terms of direct costs and lost productivity. The burden of PE includes significant psychological distress: anxiety, depression, lack of sexual confidence, poor self-esteem, impaired quality of life, and interpersonal difficulties. Some suggest that increase in female sexual dysfunction is associated with partner's PE, in addition to significant interpersonal difficulties. The burden of TDS includes depression, sexual dysfunction, mild cognitive impairment, and osteoporosis. One UK estimate of the economic burden of female sexual dysfunctions demonstrated that the average cost per patient was higher than the per annum cost of ED. There are no data on burden of paraphilic disorders. The burden of sexual dysfunctions is underappreciated and not well studied, yet it is significant for both the patients and the society.

  19. Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells.

    Science.gov (United States)

    Selvakumar, Govindhasamy Pushpavathi; Iyer, Shankar S; Kempuraj, Duraisamy; Raju, Murugesan; Thangavel, Ramasamy; Saeed, Daniyal; Ahmed, Mohammad Ejaz; Zahoor, Harris; Raikwar, Sudhanshu P; Zaheer, Smita; Zaheer, Asgar

    2018-01-30

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.

  20. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor.

    Science.gov (United States)

    Kang, Kai-Hsiang; Liou, Horng-Hui; Hour, Mann-Jen; Liou, Houng-Chi; Fu, Wen-Mei

    2013-10-01

    Neuroinflammation and oxidative stress are important factors that induce neurodegeneration in age-related neurological disorders. 5-Lipoxygenase (5-LOX) is the enzyme responsible for catalysing the synthesis of leukotriene or 5-HETE from arachidonic acid. 5-LOX is expressed in the central nervous system and may cause neurodegenerative disease. In this study, we investigated the effect of the pharmacological inhibition of 5-lipoxygenase on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/MPP(+)-induced dopaminergic neuronal death in midbrain neuron-glia co-cultures and in mice. It was found that 5-LOX was over-expressed in astrocytes after the injection of MPTP into C57BL6 mice. MK-886, a specific inhibitor of 5-LOX activating protein (FLAP), significantly increased [(3)H]-dopamine uptake, a functional indicator of the integrity of dopaminergic neurons, in midbrain cultures or the SH-SY5Y human dopaminergic cell line following MPP(+) treatment. In addition, LTB₄, one of 5-LOX's downstream products, was increased in the striatum and substantia nigra following MPTP injection in mice. LTB₄ but not LTD₄ and 5-HETE enhanced MPP(+)-induced neurotoxicity in primary midbrain cultures. MK-886 administration increased the number of tyrosine hydroxylase-positive neurons in the substantia nigra and the dopamine content in the striatum in MPTP-induced parkinsonian mice. Furthermore, the MPTP-induced upregulation of LTB₄ in the striatum and substantia nigra was antagonised by MK-886. These results suggest that 5-LOX inhibitors may be developed as novel neuroprotective agents and LTB₄ may play an important pathological role in Parkinson's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Dopaminergic Neurogenetics of Sleep Disorders in Reward Deficiency Syndrome (RDS).

    Science.gov (United States)

    Blum, Kenneth; Oscar-Berman, Marlene; Badgaiyan, Rajendra D; Khurshid, Khurshid A; Gold, Mark S

    2014-02-18

    It is well-known that sleep has a vital function especially as it relates to prevention of substance-related disorders as discussed in the DSM-V. We are cognizant that certain dopaminergic gene polymorphisms have been associated with various sleep disorders. The importance of "normal dopamine homeostasis" is tantamount for quality of life especially for the recovering addict. Since it is now know that sleep per se has been linked with metabolic clearance of neurotoxins in the brain, it is parsonomiuos to encourage continued research in sleep science, which should ultimately result in attenuation of sleep deprivation especially associated with substance related disorders.

  2. Loneliness and Sexual Dysfunctions.

    Science.gov (United States)

    Mijuskovic, Ben

    1987-01-01

    Argues that sexual dysfunctions result from early childhood experiences which were originally nonsexual in nature. Contends that psychological difficulties centered around problems of loneliness tend to generate certain sexual dysfunctions. Extends and explores suggestion that genesis of sexual conflicts is in nonsexual infant separation anxiety…

  3. [Social dysfunction in schizotypy].

    Science.gov (United States)

    de Wachter, O; De La Asuncion, J; Sabbe, B; Morrens, M

    2016-01-01

    Schizotypy is a personality organisation that is closely related to schizotypal personality disorder and schizophrenia and is characterised by deficits in social functioning. Although the dimensions of social dysfunction have not yet been fully explored certain aspects of social dysfunction are promising predictive markers for schizophrenia. To describe schizotypy and its influence on social functioning. We reviewed the literature systematically using the online databases PubMed and PsycINFO. The disorder known as schizotypy lies at the basis of schizotypal personality disorder. Both disorders are characterised by an increased risk for schizophrenia. The social dysfunctioning seen in schizotypy corresponds to the social dysfunction seen in schizophrenia. Impairments in social cognition are causal factors of this social dysfunction. Both the negative and the positive dimension of schizotypy influence social cognition. More focused, objective and interactive research to the various aspects of social functioning in schizotypy is needed in order to discover potential premorbid markers for schizophrenia.

  4. Food-Related Odors Activate Dopaminergic Brain Areas

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving carefully preselected odors of edible and non-edible substances. We compared activations generated by three food and three non-food odorants matching in terms of intensity, pleasantness and trigeminal qualities. We observed that for our mixed sample of 30 hungry and satiated participants, food odors generated significantly higher activation in the anterior cingulate cortex (right and left, insula (right, and putamen (right than non-food odors. Among hungry subjects, regardless of the odor type, we found significant activation in the ventral tegmental area in response to olfactory stimulation. As our stimuli were matched in terms of various perceptual qualities, this result suggests that edibility of an odor source indeed generates specific activation in dopaminergic brain areas.

  5. Advances in non-dopaminergic pharmacological treatments of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Sandy eStayte

    2014-05-01

    Full Text Available Since the 1960’s treatments for Parkinson's disease (PD have traditionally been directed to effectively restore or replace dopamine, with L-Dopa the gold standard. However, chronic L-Dopa use is associated with debilitating dyskinesias, limiting its effectiveness. This has created a need to develop new therapies that work in ways other than restoring or replacing dopamine. We provide a comprehensive overview of the emerging non-dopaminergic pharmacological treatments including drugs targeting adenosine, glutamate, adrenergic, and serotonin receptors, as well as GLP-1 agonists, calcium channel blockers, iron chelators, anti-inflammatories, neurotrophic factors and gene therapy, with a detailed overview of their success in animal models and their translation to human clinical trials. We suggest that further developments in the identification of novel therapeutics, particularly those offering disease-modifying effects, will consistently be met with challenges until improvements in clinical trial design and advances in understanding the basic science of PD are made. We consider how developments in genetics, the possibility that PD may consist of multiple disease states, and potential etiology in non-dopaminergic regions will influence drug development. We conclude that despite the challenges ahead patients have much cause for optimism that novel therapeutics that offer better disease management and/or which slow disease progression are inevitable.

  6. Ketogenic diet alters dopaminergic activity in the mouse cortex.

    Science.gov (United States)

    Church, William H; Adams, Ryan E; Wyss, Livia S

    2014-06-13

    The present study was conducted to determine if the ketogenic diet altered basal levels of monoamine neurotransmitters in mice. The catecholamines dopamine (DA) and norephinephrine (NE) and the indolamine serotonin (5HT) were quantified postmortem in six different brain regions of adult mice fed a ketogenic diet for 3 weeks. The dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the serotonin metabolite 5-hydroxyindole acetic acid (5HIAA) were also measured. Tissue punches were collected bilaterally from the motor cortex, somatosensory cortex, nucleus accumbens, anterior caudate-putamen, posterior caudate-putamen and the midbrain. Dopaminergic activity, as measured by the dopamine metabolites to dopamine content ratio - ([DOPAC]+[HVA])/[DA] - was significantly increased in the motor and somatosensory cortex regions of mice fed the ketogenic diet when compared to those same areas in brains of mice fed a normal diet. These results indicate that the ketogenic diet alters the activity of the meso-cortical dopaminergic system, which may contribute to the diet's therapeutic effect in reducing epileptic seizure activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Rasgrf2 controls dopaminergic adaptations to alcohol in mice.

    Science.gov (United States)

    Easton, Alanna C; Rotter, Andrea; Lourdusamy, Anbarasu; Desrivières, Sylvane; Fernández-Medarde, Alberto; Biermann, Teresa; Fernandes, Cathy; Santos, Eugenio; Kornhuber, Johannes; Schumann, Gunter; Müller, Christian P

    2014-10-01

    Alcohol abuse leads to serious health problems with no effective treatment available. Recent evidence suggests a role for ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) in alcoholism. Rasgrf2 is a calcium sensor and MAPK/ERK activating protein, which has been linked to neurotransmitter release and monoaminergic receptor adaptations. Rasgrf2 knock out (KO) mice do not develop a dopamine response in the nucleus accumbens after an alcohol challenge and show a reduced consumption of alcohol. The present study aims to further characterise the role of Rasgrf2 in dopaminergic activation beyond the nucleus accumbens following alcohol treatment. Using in vivo microdialysis we found that alcohol induces alterations in dopamine levels in the dorsal striatum between wildtype (WT) and Rasgrf2 KO mice. There was no difference in the expression of dopamine transporter (DAT), dopamine receptor regulating factor (DRRF), or dopamine D2 receptor (DRD2) mRNA in the brain between Rasgrf2 KO and WT mice. After sub-chronic alcohol treatment, DAT and DRRF, but not DRD2 mRNA expression differed between WT and Rasgrf2 KO mice. Brain adaptations were positively correlated with splenic expression levels. These data suggest that Rasgrf2 controls dopaminergic signalling and adaptations to alcohol also in other brain regions, beyond the nucleus accumbens. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  9. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice

    DEFF Research Database (Denmark)

    Thomsen, Annika Højrup Runegaard; Jensen, Kathrine L; Fitzpatrick, Ciarán M

    2017-01-01

    assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice...

  10. Effects of dopaminergic treatment on functional cortico-cortical connectivity in Parkinson's disease

    DEFF Research Database (Denmark)

    Zittel, S; Heinbokel, C; van der Vegt, J P M

    2015-01-01

    under chronic dopaminergic stimulation, but not in de novo PD patients at low stimulus intensities at an ISI of 4 ms. First-time exposure to levodopa exerts different effects on cortico-cortical pathways than chronic dopaminergic stimulation in PD, suggesting a change in the responsiveness of cortico...

  11. The Transcription Factor Orthodenticle Homeobox 2 Influences Axonal Projections and Vulnerability of Midbrain Dopaminergic Neurons

    Science.gov (United States)

    Chung, Chee Yeun; Licznerski, Pawel; Alavian, Kambiz N.; Simeone, Antonio; Lin, Zhicheng; Martin, Eden; Vance, Jeffery; Isacson, Ole

    2010-01-01

    Two adjacent groups of midbrain dopaminergic neurons, A9 (substantia nigra pars compacta) and A10 (ventral tegmental area), have distinct projections and exhibit differential vulnerability in Parkinson's disease. Little is known about transcription factors that influence midbrain dopaminergic subgroup phenotypes or their potential role in disease.…

  12. Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism

    Directory of Open Access Journals (Sweden)

    Mireia Rabella

    2016-01-01

    Conclusions: These results indicate that SPD individuals show deficits in self-monitoring analogous to those in schizophrenia. These deficits can be evidenced by neurophysiological measures, suggest a dopaminergic imbalance, and can be reverted by dopaminergic antagonists.

  13. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism.

    Science.gov (United States)

    Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo

    2017-07-01

    The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Diastolic dysfunction characterizes cirrhotic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Piyush O. Somani

    2014-11-01

    Conclusions: Present study shows that although diastolic dysfunction is a frequent event in cirrhosis, it is usually of mild degree and does not correlate with severity of liver dysfunction. There are no significant differences in echocardiographic parameters between alcoholic and non-alcoholic cirrhosis. HRS is not correlated to diastolic dysfunction in cirrhotic patients. There is no difference in survival at one year between patients with or without diastolic dysfunction. Diastolic dysfunction in cirrhosis is unrelated to circulatory dysfunction, ascites and HRS.

  15. miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation

    Directory of Open Access Journals (Sweden)

    Roberto De Gregorio

    2018-04-01

    Full Text Available Summary: The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we identified miR-34b/c among the most upregulated microRNAs during dopaminergic differentiation. Interestingly, miR-34b/c modulates Wnt1 expression, promotes cell cycle exit, and induces dopaminergic differentiation. When combined with transcription factors ASCL1 and NURR1, miR-34b/c doubled the yield of transdifferentiated fibroblasts into dopaminergic neurons. Induced dopaminergic (iDA cells synthesize dopamine and show spontaneous electrical activity, reversibly blocked by tetrodotoxin, consistent with the electrophysiological properties featured by brain dopaminergic neurons. Our findings point to a role for miR-34b/c in neuronal commitment and highlight the potential of exploiting its synergy with key transcription factors in enhancing in vitro generation of dopaminergic neurons. : In this article, Bellenchi and colleagues show that the microRNA miR-34b/c is expressed in FACS-purified Pitx3-GFP+ neurons and promotes dopaminergic differentiation by negative modulating Wnt1 and the downstream WNT signaling pathway. Induced dopaminergic cells, expressing miR-34b/c, synthesize dopamine and show the electrophysiological properties featured by brain dopaminergic neurons. Keywords: microRNA, dopamine, mESC, miR34b/c, epiSC, transdifferentiation, Wnt1, Wnt pathway, reprogramming

  16. Dopaminergic modulation of the human reward system: a placebo-controlled dopamine depletion fMRI study

    NARCIS (Netherlands)

    da Silva Alves, Fabiana; Schmitz, Nicole; Figee, Martijn; Abeling, Nico; Hasler, Gregor; van der Meer, Johan; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-01-01

    Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity

  17. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  18. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  19. Chronic pelvic floor dysfunction.

    Science.gov (United States)

    Hartmann, Dee; Sarton, Julie

    2014-10-01

    The successful treatment of women with vestibulodynia and its associated chronic pelvic floor dysfunctions requires interventions that address a broad field of possible pain contributors. Pelvic floor muscle hypertonicity was implicated in the mid-1990s as a trigger of major chronic vulvar pain. Painful bladder syndrome, irritable bowel syndrome, fibromyalgia, and temporomandibular jaw disorder are known common comorbidities that can cause a host of associated muscular, visceral, bony, and fascial dysfunctions. It appears that normalizing all of those disorders plays a pivotal role in reducing complaints of chronic vulvar pain and sexual dysfunction. Though the studies have yet to prove a specific protocol, physical therapists trained in pelvic dysfunction are reporting success with restoring tissue normalcy and reducing vulvar and sexual pain. A review of pelvic anatomy and common findings are presented along with suggested physical therapy management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sacroiliac joint dysfunction.

    Science.gov (United States)

    Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait

    2010-07-01

    Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.

  1. Erec tile dysfunction

    African Journals Online (AJOL)

    2009-01-29

    Jan 29, 2009 ... Successful treatment of ED has been demonstrated to ... Incidence. Sexual dysfunction is highly prevalent in men and women. ... an important role in the integration and control of reproductive and sexual .... stress disorder.

  2. A Multi-tracer Dopaminergic PET Study of Young-Onset Parkinsonian Patients With and Without Parkin Gene Mutations

    International Nuclear Information System (INIS)

    Ribeiro, M.J.; Thobois, St.; Broussolle, E.; Lohmann, E.; Lesage, S.; Dubois, B.; Agid, Y.; Brice, A.; Lohmann, E.; Agid, Y.; Brice, A.; Lohmann, E.; Lesage, S.; Dubois, B.; Agid, Y.; Brice, A.; Tezenas du Montcel, S.; Tezenas du Montcel, S.; Pelissolo, A.; Dubois, B.; Mallet, L.; Pollak, P.; Agid, Y.; Brice, A.; Remy, Ph.; Remy, Ph.

    2009-01-01

    mutations are indistinguishable on PET markers of dopaminergic dysfunction from other YOPD patients with long disease duration. (authors)

  3. A Multi-tracer Dopaminergic PET Study of Young-Onset Parkinsonian Patients With and Without Parkin Gene Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M.J. [CEA, I2BM, Service Hospitalier Frederic Joliot, Orsay (France); Thobois, St.; Broussolle, E. [University of Lyon, Hospices Civils de Lyon, Neurological Hospital, Lyon (France); Lohmann, E.; Lesage, S.; Dubois, B.; Agid, Y.; Brice, A. [INSERM, Paris (France); Lohmann, E.; Agid, Y.; Brice, A. [Department of the Nervous System Disorders, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Lohmann, E.; Lesage, S.; Dubois, B.; Agid, Y.; Brice, A. [UPMC University of Paris, Paris (France); Tezenas du Montcel, S. [Unit of de Biostatistics and Medical Information and Unit of Medical Research, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Tezenas du Montcel, S. [Modelisation in Clinical Research, UPMC University of Paris, Paris (France); Pelissolo, A. [Department of Psychiatry, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Dubois, B. [Centre de Reference sur la Maladie de Pick, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Mallet, L. [Behaviour, Emotion and Basal Ganglia, Center of Clinical Investigation, INSERM Avenir Group, Paris (France); Pollak, P. [Department of Clinical and Biological Neurosciences, University Hospital of Grenoble, Grenoble (France); Agid, Y. [Clinical Investigation Center, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Brice, A. [Department of Genetics and Cytogenetics, AP-HP, Pitie-Salpetriere Hospital, Paris (France); Remy, Ph. [CEA, I2BM, MIRCEN, URA CEA-CNRS 2210, Orsay (France); Remy, Ph. [CHU Henri Mondor, AP-HP and Faculte de Medecine Paris 12, Creteil (France)

    2009-07-01

    (P {<=} 0.05, false-discovery rate-corrected). Conclusion: Carriers of parkin mutations are indistinguishable on PET markers of dopaminergic dysfunction from other YOPD patients with long disease duration. (authors)

  4. Dopaminergic circuitry and risk/reward decision making: implications for schizophrenia.

    Science.gov (United States)

    Stopper, Colin M; Floresco, Stan B

    2015-01-01

    Abnormal reinforcement learning and representations of reward value are present in schizophrenia, and these impairments can manifest as deficits in risk/reward decision making. These abnormalities may be due in part to dopaminergic dysfunction within cortico-limbic-striatal circuitry. Evidence from studies with laboratory animal have revealed that normal DA activity within different nodes of these circuits is critical for mediating dissociable processes that can refine decision biases. Moreover, both phasic and tonic dopamine transmission appear to play separate yet complementary roles in these processes. Tonic dopamine release within the prefrontal cortex and nucleus accumbens, serves as a "running rate-meter" of reward and reflects contextual information such as reward uncertainty and overt choice behavior. On the other hand, manipulations of outcome-related phasic dopamine bursts and dips suggest these signals provide rapid feedback to allow for quick adjustments in choice as reward contingencies change. The lateral habenula is a key input to the DA system that phasic signals is necessary for expressing subjective decision biases; as suppression of activity within this nucleus leads to catastrophic impairments in decision making and random patterns of choice behavior. As schizophrenia is characterized by impairments in using positive and negative feedback to appropriately guide decision making, these findings suggest that these deficits in these processes may be mediated, at least in part, by abnormalities in both tonic and phasic dopamine transmission. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Dopaminergic and beta-adrenergic effects on gastric antral motility

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P; Gottrup, F

    1984-01-01

    of bethanechol or pentagastrin inducing motor activity patterns as in the phase III of the MMC and the digestive state respectively. The stimulated antral motility was dose-dependently inhibited by dopamine. The effect was significantly blocked by specifically acting dopaminergic blockers, while alpha- and beta......-adrenergic blockers were without any significant effects. Dose-response experiments with bethanechol and dopamine showed inhibition of a non-competitive type. Isoprenaline was used alone and in conjunction with selective blockade of beta 1- and beta 2-receptors during infusion of bethanechol which induces a pattern...... similar to phase III in the migrating myoelectric complex. The stimulated antral motility was dose-dependently inhibited by isoprenaline. The effect could be significantly blocked by propranolol (beta 1 + beta 2-adrenoceptor blocker) and by using in conjunction the beta 1-adrenoceptor blocker practolol...

  6. Dopaminergic sensitivity and cocaine abuse: response to apomorphine.

    Science.gov (United States)

    Hollander, E; Nunes, E; DeCaria, C M; Quitkin, F M; Cooper, T; Wager, S; Klein, D F

    1990-08-01

    Ten male patients with chronic cocaine abuse received a single dose of the dopamine agonist apomorphine. Self-ratings of cocaine craving, depression, and anxiety decreased in response to apomorphine. Neuroendocrine response was consistent with central dopaminergic stimulation. Patients in the "craving" phase of the cocaine abuse cycle differed in behavioral but not neuroendocrine response to apomorphine from patients in the "crash" phase. Decrease in cocaine craving correlated with decrease in plasma homovanillic acid (pHVA). Total cocaine consumption correlated negatively with baseline prolactin and pHVA levels and inversely with peak change in prolactin following apomorphine. Patients had blunted neuroendocrine response to apomorphine in comparison to historical normal controls. Implications for the "dopamine" hypothesis of cocaine abuse are discussed.

  7. Dysfunctional HCN ion channels in neurological diseases

    Directory of Open Access Journals (Sweden)

    Jacopo C. DiFrancesco

    2015-03-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are expressed as four different isoforms (HCN1-4 in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic and

  8. Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation.

    Science.gov (United States)

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori

    2009-07-01

    Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.

  9. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    Science.gov (United States)

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  10. Self-reported impulsivity in Huntington's disease patients and relationship to executive dysfunction and reward responsiveness.

    Science.gov (United States)

    Johnson, Patricia L; Potts, Geoffrey F; Sanchez-Ramos, Juan; Cimino, Cynthia R

    2017-09-01

    Few studies have directly investigated impulsivity in Huntington's disease (HD) despite known changes in dopaminergic and frontal functioning, changes that have been associated with impulsivity in other disorders and in the normal population. This study sought to further categorize impulsivity in HD through examining differences in self-reported impulsivity between community controls and HD patients, the relationship between executive dysfunction and impulsivity, and the relationship of a reward/punishment behavioral inhibition task in relation to these self-report measures. It was expected that HD patients would report higher impulsivity and executive dysfunction and that these measures would relate to a reward/punishment behavioral inhibition task. The Barratt Impulsivity Scale (BIS-11) and Behavioral Inhibition/Behavioral Activation Scale (BIS/BAS) were completed, and the Mini-Mental State Examination (MMSE) and a reward-based flanker task with punishing and rewarding conditions were administered to 22 HD patients and 14 control participants. HD patients reported higher trait impulsivity (BIS-11) and executive dysfunction (Frontal Systems Behavior Scale, FrSBE) but not increased impulsivity on the BIS/BAS relative to controls. Higher BIS-11 scores were related to increased self-reported executive dysfunction and the attention/working memory factor of the MMSE. On a reward/punishment behavioral inhibition task, BAS was uniquely related to increased accuracy on rewarding trials of the flanker task, but was not related to punishing trials in HD patients. The relationships found suggest that trait impulsivity is reported higher in HD and may not be driven by altered reward evaluation and the appetitive nature of stimuli but rather by increased executive dysfunction and lack of sensitivity to punishment. Impulsivity in HD may represent a combination of trait impulsivity, altered dopaminergic circuitry, and executive dysfunction. Understanding impulsivity in HD is

  11. ELECTROPHYSIOLOGICAL CHARACTERIZATION OF DOPAMINERGIC AND NONDOPAMINERGIC NEURONS IN ORGANOTYPIC SLICE CULTURES OF THE RAT VENTRAL MESENCEPHALON

    DEFF Research Database (Denmark)

    STEENSEN, BH; NEDERGAARD, S; OSTERGAARD, K

    1995-01-01

    -old organotypic slice cultures of the ventral mesencephalon prepared from newborn rats. Dopaminergic neurones were distinguished from non-dopaminergic neurones by staining with the autofluorescent serotonin analogue 5,7-dihydroxytryptamine and briefly viewing the preparation with short exposures to ultraviolet...... 81 M Omega), were silent or fired spontaneously at a low frequency (0-9 Hz), and no spontaneous GABA(A)-ergic inhibitory postsynaptic potentials or inward rectification were present. In contrast, non-dopaminergic neurones had fast action potentials (0.6-3.2 ms), low input resistance (mean 32 M Omega...

  12. Examination of the presynaptic dopaminergic system using positron emission tomography in a family with autosomal dominant parkinsonism and dementia due to pallido-ponto-nigral degeneration (PPNO)

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, M. [Neurodegenerative Disorders Centre, Univ. of British Columbia, Vancouver, BC (Canada)]|[Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf Virchow, Freie Univ. Berlin (Germany); Wszolek, Z.K. [Neurodegenerative Disorders Centre, Univ. of British Columbia, Vancouver, BC (Canada)]|[Section of Neurology, Univ. of Nebraska Medical Center, Omaha, NE (United States); Pfeiffer, R.F. [Section of Neurology, Univ. of Nebraska Medical Center, Omaha, NE (United States); Calne, D.B. [Neurodegenerative Disorders Centre, Univ. of British Columbia, Vancouver, BC (Canada)

    1993-12-31

    We report positron emission tomography (PET) examinations of presynaptic nigrostriatal dopaminergic function in a large family with an autosomal dominant neuro-degenerative disorder characterized pathologically by pallido-ponto-nigral degeneration, and clinically by parkinsonism, dystonia, paresis of conjugate gaze, apraxia of eyelid opening and closing, pyramidal tract dysfunction, and urinary incontinence. Dopaminergic function was studied and quantified with [{sup 18}F]-L-6-fluorodopa (6 FD) and PET in five affected patients, 13 individuals at-risk, and 15 similarly aged controls. The rate constant K{sub i} (mL/striatum/min) for 6 FD was decreased in all patients. None of the individuals at risk had reduced 6 FD uptake. In fact, three of them had increased values. Repeat scans have revealed a fall in 6 FD uptake in two out of the three with initially high constants. This may reflect a preclinical stage of involvement, but longer observation is necessary. (orig.) [Deutsch] Wir berichten ueber Untersuchungen der praesynaptischen dopaminergen Funktion mit der Positronenemissionstomographie bei einer grossen Familie mit autosomal-dominant vererbtem Parkinsonismus und Demenz. Die Erkrankung ist pathologisch-anatomisch gekennzeichnet durch eine pallido-ponto-nigrale Degeneration. Klinisch bestehen ein Parkinsonismus, Dystonien, eine Apraxie der Augenoeffnung und -schliessung, pyramidale Dysfunktionen und eine Harninkontinenz. Die praesynaptische dopaminerge Funktion wurde untersucht und quantifiziert mittels [{sup 18}F]-L-6-Fluorodopa (6FD) PET bei fuenf erkrankten Patienten, 13 Risikopatienten und 15 Kontrollpersonen vergleichbaren Alters. Die Transportkonstante K{sub i} (ml/Striatum/min) fuer die striatale Aufnahme des Radiotracers war bei allen erkrankten Patienten erniedrigt. Von den 13 Risikopatienten hatte keiner eine reduzierte Aufnahme von 6FD. Drei Risikopatienten zeigten sogar Werte fuer K{sub i}, die oberhalb des Referenzbereiches der Kontrollpersonen lagen

  13. Dysfunctional GABAergic inhibition in the prefrontal cortex leading to "psychotic" hyperactivation

    Directory of Open Access Journals (Sweden)

    Tanaka Shoji

    2008-04-01

    Full Text Available Abstract Background The GABAergic system in the brain seems to be dysfunctional in various psychiatric disorders. Many studies have suggested so far that, in schizophrenia patients, GABAergic inhibition is selectively but consistently reduced in the prefrontal cortex (PFC. Results This study used a computational model of the PFC to investigate the dynamics of the PFC circuit with and without chandelier cells and other GABAergic interneurons. The inhibition by GABAergic interneurons other than chandelier cells effectively regulated the PFC activity with rather low or modest levels of dopaminergic neurotransmission. This activity of the PFC is associated with normal cognitive functions and has an inverted-U shaped profile of dopaminergic modulation. In contrast, the chandelier cell-type inhibition affected only the PFC circuit dynamics in hyperdopaminergic conditions. Reduction of chandelier cell-type inhibition resulted in bistable dynamics of the PFC circuit, in which the upper stable state is associated with a hyperactive mode. When both types of inhibition were reduced, this hyperactive mode and the conventional inverted-U mode merged. Conclusion The results of our simulation suggest that, in schizophrenia, a reduction of GABAergic inhibition increases vulnerability to psychosis by (i producing the hyperactive mode of the PFC with hyperdopaminergic neurotransmission by dysfunctional chandelier cells and (ii increasing the probability of the transition to the hyperactive mode from the conventional inverted-U mode by dysfunctional GABAergic interneurons.

  14. Biology of Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj

    2009-05-01

    Full Text Available Sexual activity is a multifaceted activity, involving complex interactions between the nervous system, the endocrine system, the vascular system and a variety of structures that are instrumental in sexual excitement, intercourse and satisfaction. Sexual function has three components i.e., desire, arousal and orgasm. Many sexual dysfunctions can be categorized according to the phase of sexual response that is affected. In actual clinical practice however, sexual desire, arousal and orgasmic difficulties more often than not coexist, suggesting an integration of phases. Sexual dysfunction can result from a wide variety of psychological and physiological causes including derangements in the levels of sex hormones and neurotrensmitters. This review deals with the biology of different phases of sexual function as well as implications of hormones and neurotransmitters in sexual dysfunction

  15. Exercise and reproductive dysfunction.

    Science.gov (United States)

    Chen, E C; Brzyski, R G

    1999-01-01

    To provide an overview of our current understanding of exercise-induced reproductive dysfunction and an approach to its evaluation and management. A MEDLINE search was performed to review all articles with title words related to menstrual dysfunction, amenorrhea, oligomenorrhea, exercise, and athletic activities from 1966 to 1998. The pathophysiology, proposed mechanisms, clinical manifestations, evaluation, and management of exercise-associated reproductive dysfunction were compiled. Exercise-induced menstrual irregularity appears to be multifactorial in origin and remains a diagnosis of exclusion. The underlying mechanisms are mainly speculative. Clinical manifestations range from luteal phase deficiency to anovulation, amenorrhea, and even delayed menarche. Evaluation should include a thorough history and a complete physical plus pelvic examination. Most cases are reversible with dietary and exercise modifications. Hormonal replacement in cases of a prolonged hypoestrogenic state with evidence of increased bone loss is recommended, although the long-term consequences of prolonged hormonal deficiency are ill-defined.

  16. Immune dysfunction in cirrhosis

    Science.gov (United States)

    Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria

    2014-01-01

    Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality. PMID:24627592

  17. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons

    DEFF Research Database (Denmark)

    Jensen, Pia; Ducray, A D; Widmer, H R

    2015-01-01

    shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10days......, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells....... to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which...

  18. Role of Nitric Oxide in MPTP-Induced Dopaminergic Neuron Degeneration

    National Research Council Canada - National Science Library

    Przedborski, Serge

    2002-01-01

    ...) induced dopaminergic (DA) neuron death in this mouse model of Parkinson's Disease (PD). Our previous work demonstrated that the superoxide radical is involved in the MPTP neurotoxic process in SNpc DA neurons...

  19. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Rajib Paul

    Full Text Available Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  20. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Science.gov (United States)

    Paul, Rajib; Choudhury, Amarendranath; Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat; Borah, Anupom

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  1. Neuromodulation in bladder dysfunction.

    Science.gov (United States)

    Hasan, S T; Neal, D E

    1998-10-01

    Neuromodulation is one option for the management of a wide variety of lower urinary tract disorders, including non-neuropathic and neuropathic bladder dysfunctions. The mechanisms of action of the reported techniques remain unclear; urodynamic changes are minimal, but symptomatic improvements are common. Although the treatment is relatively free from side-effects compared with more aggressive surgical options, the placebo effect is likely to be significant. Its exact cost effectiveness is unclear, but the technology is a welcome addition to the range of treatment options for lower urinary tract dysfunctions, such as urgency and urge incontinence.

  2. Chrysotoxine, a novel bibenzyl compound selectively antagonizes MPP⁺, but not rotenone, neurotoxicity in dopaminergic SH-SY5Y cells.

    Science.gov (United States)

    Song, Ju-Xian; Shaw, Pang-Chui; Wong, Ngok-Shun; Sze, Cho-Wing; Yao, Xin-Sheng; Tang, Chi-Wai; Tong, Yao; Zhang, Yan-Bo

    2012-07-11

    Chrysotoxine is a naturally occurring bibenzyl compound found in medicinal Dendrobium species. We previously reported that chrysotoxine structure-specifically suppressed 6-hydroxydopamine (6-OHDA)-induced dopaminergic cell death. Whether chrysotoxine and other structurally similar bibenzyl compounds could also inhibit the neurotoxicity of 1-methyl-4-phenyl pyridinium (MPP(+)) and rotenone has not been investigated. We showed herein that chrysotoxine inhibited MPP(+), but not rotenone, induced dopaminergic cell death in SH-SY5Y cells. The overproduction of reactive oxygen species (ROS), mitochondrial dysfunction as indexed by the decrease in membrane potential, increase in calcium concentration and NF-κB activation triggered by MPP(+) were blocked by chrysotoxine pretreatment. The imbalance between the pro-apoptotic signals (Bax, caspase-3, ERK and p38 MAPK) and the pro-survival signals (Akt/PI3K/GSK-3β) induced by MPP(+) was partially or totally rectified by chrysotoxine. The results indicated that ROS inhibition, mitochondria protection, NF-κB modulation and regulation of multiple signals determining cell survival and cell death were involved in the protective effects of chrysotoxine against MPP(+) toxicity in SH-SY5Y cells. Given the different toxic profiles of 6-OHDA and MPP(+) as compared to rotenone, our results also indicated that DAT inhibition may partially account for the neuroprotective effects of chrysotoxine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. The I2020T Leucine-rich repeat kinase 2 transgenic mouse exhibits impaired locomotive ability accompanied by dopaminergic neuron abnormalities

    Directory of Open Access Journals (Sweden)

    Maekawa Tatsunori

    2012-04-01

    Full Text Available Abstract Background Leucine-rich repeat kinase 2 (LRRK2 is the gene responsible for autosomal-dominant Parkinson’s disease (PD, PARK8, but the mechanism by which LRRK2 mutations cause neuronal dysfunction remains unknown. In the present study, we investigated for the first time a transgenic (TG mouse strain expressing human LRRK2 with an I2020T mutation in the kinase domain, which had been detected in the patients of the original PARK8 family. Results The TG mouse expressed I2020T LRRK2 in dopaminergic (DA neurons of the substantia nigra, ventral tegmental area, and olfactory bulb. In both the beam test and rotarod test, the TG mice exhibited impaired locomotive ability in comparison with their non-transgenic (NTG littermates. Although there was no obvious loss of DA neurons in either the substantia nigra or striatum, the TG brain showed several neurological abnormalities such as a reduced striatal dopamine content, fragmentation of the Golgi apparatus in DA neurons, and an increased degree of microtubule polymerization. Furthermore, the tyrosine hydroxylase-positive primary neurons derived from the TG mouse showed an increased frequency of apoptosis and had neurites with fewer branches and decreased outgrowth in comparison with those derived from the NTG controls. Conclusions The I2020T LRRK2 TG mouse exhibited impaired locomotive ability accompanied by several dopaminergic neuron abnormalities. The TG mouse should provide valuable clues to the etiology of PD caused by the LRRK2 mutation.

  4. Methamphetamine treatment during development attenuates the dopaminergic deficits caused by subsequent high-dose methamphetamine administration

    OpenAIRE

    McFadden, Lisa M; Hoonakker, Amanda J; Vieira-Brock, Paula L; Stout, Kristen A; Sawada, Nicole M; Ellis, Jonathan D; Allen, Scott C; Walters, Elliot T; Nielsen, Shannon M; Gibb, James W; Alburges, Mario E; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2011-01-01

    Administration of high doses of methamphetamine (METH) causes persistent dopaminergic deficits in both nonhuman preclinical models and METH-dependent persons. Noteworthy, adolescent (i.e., postnatal day (PND) 40) rats are less susceptible to this damage than young adult (PND90) rats. In addition, biweekly treatment with METH, beginning at PND40 and continuing throughout development, prevents the persistent dopaminergic deficits caused by a “challenge” high-dose METH regimen when administered ...

  5. Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission.

    OpenAIRE

    Piazza, P V; Rougé-Pont, F; Deroche, V; Maccari, S; Simon, H; Le Moal, M

    1996-01-01

    An increase in the activity of mesencephalic dopaminergic neurons has been implicated in the appearance of pathological behaviors such as psychosis and drug abuse. Several observations suggest that glucocorticoids might contribute to such an increase in dopaminergic activity. The present experiments therefore analyzed the effects of corticosterone, the major glucocorticoid in the rat, both on dopamine release in the nucleus accumbens of freely moving animals by means of microdialysis, and on ...

  6. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila.

    Science.gov (United States)

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-03-16

    Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β'2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death.

    Science.gov (United States)

    Ha, Ji-Young; Kim, Ji-Soo; Kim, Seo-Eun; Son, Jin H

    2014-02-21

    Abnormal autophagy is frequently observed during dopaminergic neurodegeneration in Parkinson's disease (PD). However, it is not yet firmly established whether active autophagy is beneficial or pathogenic with respect to dopaminergic cell loss. Staurosporine, a common inducer of apoptosis, is often used in mechanistic studies of dopaminergic cell death. Here we report that staurosporine activates both autophagy and mitophagy simultaneously during dopaminergic neuronal cell death, and evaluate the physiological significance of these processes during cell death. First, staurosporine treatment resulted in induction of autophagy in more than 75% of apoptotic cells. Pharmacological inhibition of autophagy by bafilomycin A1 decreased significantly cell viability. In addition, staurosporine treatment resulted in activation of the PINK1-Parkin mitophagy pathway, of which deficit underlies some familial cases of PD, in the dopaminergic neuronal cell line, SN4741. The genetic blockade of this pathway by PINK1 null mutation also dramatically increased staurosporine-induced cell death. Taken together, our data suggest that staurosporine induces both mitophagy and autophagy, and that these pathways exert a significant neuroprotective effect, rather than a contribution to autophagic cell death. This model system may therefore be useful for elucidating the mechanisms underlying crosstalk between autophagy, mitophagy, and cell death in dopaminergic neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    Science.gov (United States)

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  9. Postirradiation cardiovascular dysfunction

    International Nuclear Information System (INIS)

    Hawkins, R.N.; Cockerham, L.G.

    1987-01-01

    Cardiovascular dysfunction may be defined as the inability of any element of the cardiovascular system to perform adequately upon demand, leading to inadequate performance and nutritive insufficiency of various parts of the body. Exposure to supralethal doses of radiation (accidental and therapeutic) has been show to induce significant alterations in cardiovascular function in man. These findings indicate that, after irradiation, cardiovascular function is a major determinant of continued performance and even survival. For the two persons who received massive radiation doses (45 and 88 Gy, respectively) in criticality accidents, the inability to maintain systematic arterial blood pressure (AP) was the immediate cause of death. In a study of cancer patients given partial-body irradiation, two acute lethalities were attributed to myocardial infarction after an acute hypotensive episode during the first few hours postexposure. Although radiation-induced cardiovascular dysfunction has been observed in many species, its severity, duration, and even etiology may vary with the species, level of exposure, and dose rate. For this reason, our consideration of the effects of radiation on cardiovascular performance is limited to the circulatory derangements that occur in rat, dog, and monkey after supralethal doses and lead to radiation-induced cardiovascular dysfunction in these experimental models. The authors consider other recent data as they pertain to the etiology of cardiovascular dysfunction in irradiated animals

  10. Female sexual dysfunction

    DEFF Research Database (Denmark)

    Giraldi, Annamaria; Wåhlin-Jacobsen, Sarah

    2016-01-01

    Female sexual dysfunction (FSD) is a controversial condition, which has prompted much debate regarding its aetiology, components, and even its existence. Our inability to work together as clinicians, psychologists, patients, and advocates hinders our understanding of FSD, and we will only improve...

  11. Mitochondrial Dysfunction in Gliomas

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227 ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  12. Erectile Dysfunction (ED)

    Science.gov (United States)

    ... Talking to Your Kids About VirginityTalking to Your Kids About Sex Home Diseases and Conditions Erectile Dysfunction (ED) Condition ... Well-Being Mental Health Sex and Birth Control Sex and Sexuality Birth Control ... and Toddlers Kids and Teens Pregnancy and Childbirth Women Men Seniors ...

  13. Mitochondrial dysfunction in epilepsy

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Kunz, W.S.

    2012-01-01

    Roč. 12, č. 1 (2012), s. 35-40 ISSN 1567-7249 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR GA309/08/0292 Institutional research plan: CEZ:AV0Z50110509 Keywords : epilepsy * mitochondrial dysfunction * neurodegeneration Subject RIV: FH - Neurology Impact factor: 4.025, year: 2012

  14. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's

    Directory of Open Access Journals (Sweden)

    Houchard Kimberly R

    2005-02-01

    Full Text Available Abstract Background Excessive sequential stereotypy of behavioral patterns (sequential super-stereotypy in Tourette's syndrome and obsessive compulsive disorder (OCD is thought to involve dysfunction in nigrostriatal dopamine systems. In sequential super-stereotypy, patients become trapped in overly rigid sequential patterns of action, language, or thought. Some instinctive behavioral patterns of animals, such as the syntactic grooming chain pattern of rodents, have sufficiently complex and stereotyped serial structure to detect potential production of overly-rigid sequential patterns. A syntactic grooming chain is a fixed action pattern that serially links up to 25 grooming movements into 4 predictable phases that follow 1 syntactic rule. New mutant mouse models allow gene-based manipulation of brain function relevant to sequential patterns, but no current animal model of spontaneous OCD-like behaviors has so far been reported to exhibit sequential super-stereotypy in the sense of a whole complex serial pattern that becomes stronger and excessively rigid. Here we used a hyper-dopaminergic mutant mouse to examine whether an OCD-like behavioral sequence in animals shows sequential super-stereotypy. Knockdown mutation of the dopamine transporter gene (DAT causes extracellular dopamine levels in the neostriatum of these adult mutant mice to rise to 170% of wild-type control levels. Results We found that the serial pattern of this instinctive behavioral sequence becomes strengthened as an entire entity in hyper-dopaminergic mutants, and more resistant to interruption. Hyper-dopaminergic mutant mice have stronger and more rigid syntactic grooming chain patterns than wild-type control mice. Mutants showed sequential super-stereotypy in the sense of having more stereotyped and predictable syntactic grooming sequences, and were also more likely to resist disruption of the pattern en route, by returning after a disruption to complete the pattern from the

  15. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    Science.gov (United States)

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The Effect of Dopaminergic Medication on Joint Kinematics during Haptic Movements in Individuals with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Kuan-yi Li

    2017-01-01

    Full Text Available This study examined whether altered joint angular motion during haptic exploration could account for a decline in haptic sensitivity in individuals with PD by analyzing joint position data during haptic exploration of a curved contour. Each participant’s hand was passively moved by a robotic arm along the edges of a virtual box (5 cm × 15 cm with a curved left wall. After each trial, participants indicated whether the contour was curved or straight. Visual, auditory, and tactile cues were occluded, and an electrogoniometer recorded shoulder and elbow joint angles during each trial. The PD group in the OFF state had a higher mean detection threshold (4.67 m−1 than the control group (3.06 m−1. Individuals with PD in the OFF state also had a significantly greater magnitude of shoulder abduction than those in the ON state (p=0.003 and a smaller magnitude of elbow flexion than those in the ON state or compared to the control group (both p<0.001. These findings suggest that individuals with PD employ joint configurations that may contribute to haptic insensitivity. Dopamine replacement therapy improved joint configurations during haptic exploration in patients with PD, suggesting a role for dopaminergic dysfunction in PD-related haptic insensitivity.

  17. Dysfunctions in public psychiatric bureaucracies.

    Science.gov (United States)

    Marcos, L R

    1988-03-01

    The author describes common dysfunctions in public psychiatric organizations according to the model of bureaucracy articulated by Max Weber. Dysfunctions are divided into the categories of goal displacement, outside interference, unclear authority structure and hierarchy, and informal relations in the work place. The author emphasizes the bureaucratic nature of public psychiatry and the need for mental health professionals to understand the dysfunctions of the organizations in which they work, including the impact of these dysfunctions on the provision of quality care.

  18. [Thyroid dysfunction and amiodarone].

    Science.gov (United States)

    Lima, Jandira; Carvalho, Patrícia; Molina, M Auxiliadora; Rebelo, Marta; Dias, Patrícia; Vieira, José Diniz; Costa, José M Nascimento

    2013-02-01

    Although most patients remain clinically euthyroid, some develop amiodarone-induced hyperthyroidism (HPEAI) or hypothyroidism (HPOAI). The authors present a retrospective analysis of ten patients with amiodarone-induced thyroid dysfunction. Six patients were female and mean amiodarone intake was 17.7 months. HPOIA was more common (six patients). From all the patients with HPEAI, two had type 2, one had type 1, and one had type 3 hyperthyroidism. Symptoms suggestive of thyroid dysfunction occurred in five patients, most of them with HPOAI. In HPEAI, the most frequent symptom was exacerbation of arrhythmia (three patients). Discontinuation of amiodarone and treatment with levothyroxine was chosen in 83.3% of the HPOAI cases, while thyonamide treatment with corticosteroids and without amiodarone was the option in 75% of the HPEAI cases. There were three deaths, all in patients with HPEAI. HPEAI is potentially fatal. The clinical picture may be vague, so the thyroid monitoring is mandatory.

  19. Electrophysiological effects of trace amines on mesencephalic dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Ada eLedonne

    2011-07-01

    Full Text Available Trace amines (TAs are a class of endogenous compounds strictly related to classic monoamine neurotransmitters with regard to their structure, metabolism and tissue distribution. Although the presence of TAs in mammalian brain has been recognized for decades, until recently they were considered to be by-products of amino acid metabolism or as ‘false’ neurotransmitters. The discovery in 2001 of a new family of G protein-coupled receptors (GPCRs, namely trace amines receptors, has re-ignited interest in TAs. In particular, two members of the family, trace amine receptor 1 (TA1 and trace amine receptor 2 (TA2, were shown to be highly sensitive to these endogenous compounds. Experimental evidence suggests that TAs modulate the activity of catecholaminergic neurons and that TA dysregulation may contribute to neuropsychiatric disorders, including schizophrenia, attention deficit hyperactivity disorder, depression and Parkinson’s disease, all of which are characterised by altered monoaminergic networks. Here we review recent data concerning the electrophysiological effects of TAs on the activity of mesencephalic dopaminergic neurons. In the context of recent data obtained with TA1 receptor knockout mice, we also discuss the mechanisms by which the activation of these receptors modulates the activity of these neurons. Three important new aspects of TAs action have recently emerged: (a inhibition of firing due to increased release of dopamine; (b reduction of D2 and GABAB receptor-mediated inhibitory responses (excitatory effects due to dysinhibition; and (c a direct TA1 receptor-mediated activation of GIRK channels which produce cell membrane hyperpolarization. While the first two effects have been well documented in our laboratory, the direct activation of GIRK channels by TA1 receptors has been reported by others, but has not been seen in our laboratory (Geracitano et al., 2004. Further research is needed to address this point, and to further

  20. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Wnt5a regulates midbrain dopaminergic axon growth and guidance.

    Directory of Open Access Journals (Sweden)

    Brette D Blakely

    2011-03-01

    Full Text Available During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM the cues that guide dopaminergic (DA axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway. Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a-/- mice, where fasciculation of the medial forebrain bundle (MFB as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance.

  2. Thyroid dysfunction in pregnancy

    Directory of Open Access Journals (Sweden)

    El Baba KA

    2012-03-01

    Full Text Available Khalid A El Baba1, Sami T Azar21Department of Internal Medicine, Division of Endocrinology, Bahrain Specialist Hospital, Manama, Bahrain; 2Department of Internal Medicine, Division of Endocrinology, American University of Beirut-Medical Center, New York, NY, USAAbstract: Timely treatment of thyroid disease during pregnancy is important in preventing adverse maternal and fetal outcomes. Thyroid abnormalities are very often subclinical in nature and not easily recognized without specific screening programs. Even mild maternal thyroid hormone deficiency may lead to neurodevelopment complications in the fetus. The main diagnostic indicator of thyroid disease is the measurement of serum thyroid-stimulating hormone and free thyroxine levels. Availability of gestation-age-specific thyroid-stimulating hormone thresholds is an important aid in the accurate diagnosis and treatment of thyroid dysfunction. Pregnancy-specific free thyroxine thresholds not presently available are also required. Large-scale intervention trials are urgently needed to assess the efficacy of preconception or early pregnancy screening for thyroid disorders. Accurate interpretation of both antepartum and postpartum levels of thyroid hormones is important in preventing pregnancy-related complication secondary to thyroid dysfunction. This article sheds light on the best ways of management of thyroid dysfunction during pregnancy in order to prevent any possible maternal or fetal complication.Keywords: TSH, HCG, TBG

  3. Mitochondrial dysfunction in obesity.

    Science.gov (United States)

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ail, S F

    2000-09-11

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.

  5. Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease.

    Science.gov (United States)

    Arkadir, David; Bergman, Hagai; Fahn, Stanley

    2014-03-25

    Neurodegenerative diseases become clinically apparent only after a substantial population of neurons is lost. This raises the possibility of compensatory mechanisms in the early phase of these diseases. The importance of understanding these mechanisms cannot be underestimated because it may guide future disease-modifying strategies. Because the anatomy and physiology of the nigrostriatal dopaminergic pathways have been well described, the study of Parkinson disease can offer insight into these early compensatory mechanisms. Collateral axonal sprouting of dopaminergic terminals into the denervated striatum is the most studied compensatory mechanism in animal (almost exclusively rodent) models of Parkinson disease and is correlated with behavioral recovery after partial lesions. This sprouting, however, does not respect the normal anatomy of the original nigrostriatal pathways and leads to aberrant neuronal networks. We suggest here that the unique physiologic property of the dopaminergic innervation of the striatum, namely redundancy of information encoding, is crucial to the efficacy of compensatory axonal sprouting in the presence of aberrant anatomical connections. Redundant information encoding results from the similarity of representation of salient and rewarding events by many dopaminergic neurons, from the wide axonal field of a single dopaminergic neuron in the striatum, and from the nonspecific spatial effect of dopamine on striatal neurons (volume conductance). Finally, we discuss the relevance of these findings in animal models to human patients with Parkinson disease.

  6. Reduced TH expression and α-synuclein accumulation contribute towards nigrostriatal dysfunction in experimental hepatic encephalopathy.

    Science.gov (United States)

    Suárez, Isabel; Bodega, Guillermo; Rubio, Miguel; Fernández, Benjamín

    2017-01-01

    The present work examines α-synuclein expression in the nigrostriatal system of a rat chronic hepatic encephalopathy model induced by portacaval anastomosis (PCA). There is evidence that dopaminergic dysfunction in disease conditions is strongly associated with such expression. Possible relationships among dopaminergic neurons, astroglial cells and α-synuclein expression were sought. Brain tissue samples from rats at 1 and 6 months post-PCA, and controls, were analysed immunohistochemically using antibodies against tyrosine hydroxylase (TH), α-synuclein, glial fibrillary acidic protein (GFAP) and ubiquitin (Ub). In the control rats, TH immunoreactivity was detected in the neuronal cell bodies and processes in the substantia nigra pars compacta (SNc). A dense TH-positive network of neurons was also seen in the striatum. In the PCA-exposed rats, however, a reduction in TH-positive neurons was seen at both 1 and 6 months in the SNc, as well as a reduction in TH-positive fibres in the striatum. This was coincident with the appearance of α-synuclein-immunoreactive neurons in the SNc; some of the TH-positive neurons also showed α-synuclein immunoreactivity. In addition, α-synuclein accumulation was seen in the SNc and striatum at both 1 and 6 months post-PCA, whereas α-synuclein was only mildly expressed in the nigrostriatal pathway of the controls. Astrogliosis was also seen following PCA, as revealed by increased GFAP expression from 1 month to 6 months post-PCA in both the SN and striatum. The astroglial activation level in the SN paralleled the reduced neuronal expression of TH throughout PCA exposure. α-synuclein accumulation following PCA may induce dopaminergic dysfunction via the downregulation of TH, as well as astroglial activation.

  7. Induced dopaminergic neurons: A new promise for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Zhimin Xu

    2017-04-01

    Full Text Available Motor symptoms that define Parkinson’s disease (PD are caused by the selective loss of nigral dopaminergic (DA neurons. Cell replacement therapy for PD has been focused on midbrain DA neurons derived from human fetal mesencephalic tissue, human embryonic stem cells (hESC or human induced pluripotent stem cells (iPSC. Recent development in the direct conversion of human fibroblasts to induced dopaminergic (iDA neurons offers new opportunities for transplantation study and disease modeling in PD. The iDA neurons are generated directly from human fibroblasts in a short period of time, bypassing lengthy differentiation process from human pluripotent stem cells and the concern for potentially tumorigenic mitotic cells. They exhibit functional dopaminergic neurotransmission and relieve locomotor symptoms in animal models of Parkinson’s disease. In this review, we will discuss this recent development and its implications to Parkinson’s disease research and therapy.

  8. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    Science.gov (United States)

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  9. FMR1 gene expansion and scans without evidence of dopaminergic deficits in parkinsonism patients.

    Science.gov (United States)

    Hall, D A; Jennings, D; Seibyl, J; Tassone, F; Marek, K

    2010-11-01

    To determine if patients with parkinsonism and fragile X mental retardation 1 (FMR1) gene expansions have a striatal dopamine deficit similar to Parkinson disease (PD) patients. The authors studied three patients with parkinsonism carrying small expansions in the FMR1 gene (41-60 CGG) with [(123)I]β-CIT SPECT imaging. The patients responded to dopaminergic medications, but had preserved dopamine transporter density. These results suggest that parkinsonism associated with smaller FMR1 expansions may be related to mechanisms other than pre-synaptic dopaminergic changes and may represent a potential explanation for at least some parkinsonian cases with scans without evidence of dopaminergic deficits (SWEDD). Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Functional properties and synaptic integration of genetically labelled dopaminergic neurons in intrastriatal grafts

    DEFF Research Database (Denmark)

    Sørensen, Andreas Toft; Thompson, Lachlan; Kirik, Deniz

    2005-01-01

    in the dopamine-depleted striatum than of those in the intact striatum. Our findings define specific electrophysiological characteristics of transplanted fetal dopaminergic neurons, and we provide the first direct evidence of functional synaptic integration of these neurons into host neural circuitries......., the electrophysiological properties grafted cells need to have in order to induce substantial functional recovery are poorly defined. It has not been possible to prospectively identify and record from dopaminergic neurons in fetal transplants. Here we used transgenic mice expressing green fluorescent protein under control...... of the rat tyrosine hydroxylase promoter for whole-cell patch-clamp recordings of endogenous and grafted dopaminergic neurons. We transplanted ventral mesencephalic tissue from E12.5 transgenic mice into striatum of neonatal rats with or without lesions of the nigrostriatal dopamine system. The transplanted...

  11. Dopaminergic variants in siblings at high risk for autism: Associations with initiating joint attention.

    Science.gov (United States)

    Gangi, Devon N; Messinger, Daniel S; Martin, Eden R; Cuccaro, Michael L

    2016-11-01

    Younger siblings of children with autism spectrum disorder (ASD; high-risk siblings) exhibit lower levels of initiating joint attention (IJA; sharing an object or experience with a social partner through gaze and/or gesture) than low-risk siblings of children without ASD. However, high-risk siblings also exhibit substantial variability in this domain. The neurotransmitter dopamine is linked to brain areas associated with reward, motivation, and attention, and common dopaminergic variants have been associated with attention difficulties. We examined whether these common dopaminergic variants, DRD4 and DRD2, explain variability in IJA in high-risk (n = 55) and low-risk (n = 38) siblings. IJA was assessed in the first year during a semi-structured interaction with an examiner. DRD4 and DRD2 genotypes were coded according to associated dopaminergic functioning to create a gene score, with higher scores indicating more genotypes associated with less efficient dopaminergic functioning. Higher dopamine gene scores (indicative of less efficient dopaminergic functioning) were associated with lower levels of IJA in the first year for high-risk siblings, while the opposite pattern emerged in low-risk siblings. Findings suggest differential susceptibility-IJA was differentially associated with dopaminergic functioning depending on familial ASD risk. Understanding genes linked to ASD-relevant behaviors in high-risk siblings will aid in early identification of children at greatest risk for difficulties in these behavioral domains, facilitating targeted prevention and intervention. Autism Res 2016, 9: 1142-1150. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  12. Finasteride inhibited brain dopaminergic system and open-field behaviors in adolescent male rats.

    Science.gov (United States)

    Li, Li; Kang, Yun-Xiao; Ji, Xiao-Ming; Li, Ying-Kun; Li, Shuang-Cheng; Zhang, Xiang-Jian; Cui, Hui-Xian; Shi, Ge-Ming

    2018-02-01

    Finasteride inhibits the conversion of testosterone to dihydrotestosterone. Because androgen regulates dopaminergic system in the brain, it could be hypothesized that finasteride may inhibit dopaminergic system. The present study therefore investigates the effects of finasteride in adolescent and early developmental rats on dopaminergic system, including contents of dopamine and its metabolites (dihydroxy phenyl acetic acid and homovanillic acid) and tyrosine hydroxylase expressions both at gene and protein levels. Meanwhile, open-field behaviors of the rats are examined because of the regulatory effect of dopaminergic system on the behaviors. Open-field behaviors were evaluated by exploratory and motor behaviors. Dopamine and its metabolites were assayed by liquid chromatography-mass spectrometry. Tyrosine hydroxylase mRNA and protein expressions were determined by real-time qRT-PCR and western blot, respectively. It was found that in adolescent male rats, administration of finasteride at doses of 25 and 50 mg/kg for 14 days dose dependently inhibited open-field behaviors, reduced contents of dopamine and its metabolites in frontal cortex, hippocampus, caudate putamen, nucleus accumbens, and down-regulated tyrosine hydroxylase mRNA and protein expressions in substantia nigra and ventral tegmental area. However, there was no significant change of these parameters in early developmental rats after finasteride treatment. These results suggest that finasteride inhibits dopaminergic system and open-field behaviors in adolescent male rats by inhibiting the conversion of testosterone to dihydrotestosterone, and imply finasteride as a potential therapeutic option for neuropsychiatric disorders associated with hyperactivities of dopaminergic system and androgen. © 2017 John Wiley & Sons Ltd.

  13. CALBINDIN CONTENT AND DIFFERENTIAL VULNERABILITY OF MIDBRAIN EFFERENT DOPAMINERGIC NEURONS IN MACAQUES

    Directory of Open Access Journals (Sweden)

    Iria G Dopeso-Reyes

    2014-12-01

    Full Text Available Calbindin (CB is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%, followed by neurons located in the SNcd (34.7%. As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%, whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%. Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus. As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not

  14. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem...... cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...... in Parkinson's disease....

  15. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  16. Evidence for a dopaminergic deficit in sporadic amyotrophic lateral sclerosis on positron emission scanning

    International Nuclear Information System (INIS)

    Takahashi, Hirohide; Snow, B.J.; Bhatt, M.H.; Peppard, R.; Eisen, A.; Calne, D.B.

    1993-01-01

    Although rare, the chronic neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and idiopathic parkinsonism coexist to a greater degree than expected by chance. This suggests that patients with ALS may have subclinical lesions of the nigrostriatal dopaminergic pathway. To study this hypothesis, the authors did positron emission tomography with 6-fluorodopa on 16 patients with sporadic ALS and without extrapyramidal disease, and compared the results with age-matched controls. They found a significant progressive fall in 6-fluorodopa uptake with time since diagnosis, and reduced dopaminergic function in 3 patients with ALS of long duration. This supports the hypothesis that ALS and IP may share pathogenesis, and, perhaps, etiology

  17. Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis

    Directory of Open Access Journals (Sweden)

    Jose Carlos Pereira Jr.

    2010-01-01

    Full Text Available Data collected from medical literature indicate that dopaminergic agonists alleviate Restless Legs Syndrome symptoms while dopaminergic agonists antagonists aggravate them. Dopaminergic agonists is a physiological regulator of thyroid-stimulating hormone. Dopaminergic agonists infusion diminishes the levels of thyroid hormones, which have the ability to provoke restlessness, hyperkinetic states, tremors, and insomnia. Conditions associated with higher levels of thyroid hormones, such as pregnancy or hyperthyroidism, have a higher prevalence of Restless Legs Syndrome symptoms. Low iron levels can cause secondary Restless Legs Syndrome or aggravate symptoms of primary disease as well as diminish enzymatic activities that are involved in dopaminergic agonists production and the degradation of thyroid hormones. Moreover, as a result of low iron levels, dopaminergic agonists diminishes and thyroid hormones increase. Iron therapy improves Restless Legs Syndrome symptoms in iron deprived patients. Medical hypothesis. To discuss the theory that thyroid hormones, when not counterbalanced by dopaminergic agonists, may precipitate the signs and symptoms underpinning Restless Legs Syndrome. The main cause of Restless Legs Syndrome might be an imbalance between the dopaminergic agonists system and thyroid hormones.

  18. Effect of long-term estrogen therapy on dopaminergic responsivity in post-menopausal women--a preliminary study

    NARCIS (Netherlands)

    Craig, M. C.; Cutter, W. J.; Wickham, H.; van Amelsvoort, T. A. M. J.; Rymer, J.; Whitehead, M.; Murphy, D. G. M.

    2004-01-01

    Females have a higher prevalence than men of neuropsychiatric disorders in which dopaminergic abnormalities play a prominent role, e.g. very late-onset schizophrenia and Parkinson's disease (PD). The biological basis of these sex differences is unknown but may include modulation of the dopaminergic

  19. Vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T

    2014-01-01

    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.

  20. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration.

    Science.gov (United States)

    Choi, Dong-Young; Lee, Myung Koo; Hong, Jin Tae

    2013-01-01

    Constitutive expression of C-C chemokine receptor (CCR) 5 has been detected in astrocytes, microglia and neurons, but its physiological roles in the central nervous system are obscure. The bidirectional interactions between neuron and glial cells through CCR5 and its ligands were thought to be crucial for maintaining normal neuronal activities. No study has described function of CCR5 in the dopaminergic neurodegeneration in Parkinson's disease. In order to examine effects of CCR5 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration, we employed CCR5 wild type (WT) and knockout (KO) mice. Immunostainings for tyrosine hydroxylase (TH) exhibited that CCR5 KO mice had lower number of TH-positive neurons even in the absence of MPTP. Difference in MPTP (15mg/kg×4 times, 2hr interval)-mediated loss of TH-positive neurons was subtle between CCR5 WT and KO mice, but there was larger dopamine depletion, behavioral impairments and microglial activation in CCR5 deficient mice. Intriguingly, CCR5 KO brains contained higher immunoreactivity for monoamine oxidase (MAO) B which was mainly localized within astrocytes. In agreement with upregulation of MAO B, concentration of MPP+ was higher in the substantia nigra and striatum of CCR5 KO mice after MPTP injection. We found remarkable activation of p38 MAPK in CCR5 deficient mice, which positively regulates MAO B expression. These results indicate that CCR5 deficiency modifies the nigrostriatal dopaminergic neuronal system and bidirectional interaction between neurons and glial cells via CCR5 might be important for dopaminergic neuronal survival. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The use of monoamine pharmacological agents in the treatment of sexual dysfunction: evidence in the literature.

    Science.gov (United States)

    Moll, Jennifer L; Brown, Candace S

    2011-04-01

    The monoamine neurotransmitters serotonin, dopamine, and norepinephrine play an important role in many medical and psychological conditions, including sexual responsiveness and behavior. Pharmacological agents that modulate monoamines may help alleviate sexual dysfunction. To provide an overview of pharmacological agents that modulate monoamines and their use in the treatment of sexual dysfunction. EMBASE and PubMed search for articles published between 1950 and 2010 using key words "sexual dysfunction,"monoamines,"monoaminergic receptors," and "generic names for pharmacological agents." To assess the literature evaluating the efficacy of monoamine pharmacologic agents used in the treatment of sexual dysfunction. The literature primarily cites the use of monoaminergic agents to treat sexual side effects from serotonergic reuptake inhibitors (SSRIs), with bupropion, buspirone and ropinirole providing the most convincing evidence. Controlled trials have shown that bupropion improves overall sexual dysfunction, but not frequency of sexual activity in depressed and nondepressed patients. Nefazodone and apomorphine have been used to treat sexual dysfunction, but their use is limited by significant side effect and safety profiles. New research on pharmacologic agents with subtype selectivity at dopaminergic and serotonergic receptors and those that possess dual mechanisms of action are being investigated. There has been tremendous progress over the past 50 years in understanding the role of monoamines in sexual function and the effect of pharmacologic agents which stimulate or antagonize monoaminergic receptors on sexual dysfunction. Nevertheless, large, double-blind, placebo-controlled studies evaluating the efficacy of currently available agents in populations without comorbid disorders are limited, preventing adequate interpretation of data. Continued research on sexual function and specific receptor subtypes will result in the development of more selective

  2. Neurogenic bowel dysfunction in patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Richard A Awad

    2011-01-01

    Exciting new features have been described concerning neurogenic bowel dysfunction, including interactions between the central nervous system, the enteric nervous system, axonal injury, neuronal loss, neurotransmission of noxious and non-noxious stimuli, and the fields of gastroenterology and neurology. Patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson's disease present with serious upper and lower bowel dysfunctions characterized by constipation, incontinence, gastrointestinal motor dysfunction and altered visceral sensitivity. Spinal cord injury is associated with severe autonomic dysfunction, and bowel dysfunction is a major physical and psychological burden for these patients. An adult myelomeningocele patient commonly has multiple problems reflecting the multisystemic nature of the disease. Multiple sclerosis is a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system can lead to permanent neurological damage and clinical disability. Parkinson's disease is a multisystem disorder involving dopaminergic, noradrenergic, serotoninergic and cholinergic systems, characterized by motor and non-motor symptoms. Parkinson's disease affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. Recent reports have shown that the lesions in the enteric nervous system occur in very early stages of the disease, even before the involvement of the central nervous system. This has led to the postulation that the enteric nervous system could be critical in the pathophysiology of Parkinson's disease, as it could represent the point of entry for a putative environmental factor to initiate the pathological process. This review covers the data related to the etiology, epidemiology, clinical expression, pathophysiology, genetic aspects, gastrointestinal motor dysfunction, visceral sensitivity, management, prevention and prognosis of neurogenic bowel

  3. Ciliary dysfunction and obesity.

    Science.gov (United States)

    Mok, C A; Héon, E; Zhen, M

    2010-01-01

    Obesity associates with increased health risks such as heart disease, stroke and diabetes. The steady rise in the obese population worldwide poses an increasing burden on health systems. Genetic factors contribute to the development of obesity, and the elucidation of their physiological functions helps to understand the cause, and improve the prevention, diagnosis and treatment for this disorder. Primary cilia are evolutionarily conserved organelles whose dysfunctions lead to human disorders now defined as ciliopathies. Human ciliopathies present pleiotropic and overlapping phenotypes that often include retinal degeneration, cystic renal anomalies and obesity. Increasing evidence implicates an intriguing involvement of cilia in lipid/energy homeostasis. Here we discuss recent studies in support of the key roles of ciliary genes in the development and pathology of obesity in various animal models. Genes affecting ciliary development and function may pose promising candidate underlying genetic factors that contribute to the development of common obesity.

  4. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  5. Progressive posterior cortical dysfunction

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  6. Epilepsy and Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    Russell P. Saneto DO, PhD

    2017-10-01

    Full Text Available Epilepsy is a common manifestation of mitochondrial disease. In a large cohort of children and adolescents with mitochondrial disease (n = 180, over 48% of patients developed seizures. The majority (68% of patients were younger than 3 years and medically intractable (90%. The electroencephalographic pattern of multiregional epileptiform discharges over the left and right hemisphere with background slowing occurred in 62%. The epilepsy syndrome, infantile spasms, was seen in 17%. Polymerase γ mutations were the most common genetic etiology of seizures, representing Alpers-Huttenlocher syndrome (14%. The severity of disease in those patients with epilepsy was significant, as 13% of patients experienced early death. Simply the loss of energy production cannot explain the development of seizures or all patients with mitochondrial dysfunction would have epilepsy. Until the various aspects of mitochondrial physiology that are involved in proper brain development are understood, epilepsy and its treatment will remain unsatisfactory.

  7. A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain

    Directory of Open Access Journals (Sweden)

    Stevanus R. Tedjakumala

    2017-07-01

    Full Text Available Dopamine (DA plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US. Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH immunoreactivity (ir to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1–C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES and the antennal lobe (AL; the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL of the mushroom body (MB; the C3 cluster is located below the calyces (CA of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning.

  8. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.

    Science.gov (United States)

    Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias

    2017-01-01

    Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Pathological gambling and hypersexuality due to dopaminergic treatment in Parkinson' disease.

    Science.gov (United States)

    Martín Fernández, F; Martín González, T

    2009-01-01

    Prevalence of psychiatric disorders in patients suffering from Parkinson's disease varies from 12 to 90%. The most common disorder in the natural evolution of Parkinson's disease is depression. However, episodes of psychosis and hypomania are related to treatment with L-dopa and dopaminergic agents. Other recognized, although less frequent, psychiatric disorders are hypersexuality and development of certain addictive behaviors, which is compulsive gambling and overdosing of anti-Parkinson agents. A case is presented of a male patient diagnosed with Parkinson's Disease at an early age who was treated with L-dopa and a combination of dopaminergic agents. During the course of his evolution he manifested symptoms of hypersexuality and pathological gambling which were unrelated to psychotic or mood changes. A number of hospital admissions were needed into order to detect a pattern of abusive consumption of L-dopa as the main factor behind his behavior changes. The possibility of overdosage of L-dopa and dopaminergic drugs should be considered when there is pathological gambling conduct and/or hypersexuality, without psychotic or accompanying affective symptoms, in a male who develops Parkinson's disease at an early age and who undergoes treatment with these drugs and manifests motor fluctuations and dyskinesias. Early detection of the presence of these alterations, included within those described as "dopaminergic dysregulation syndrome", would allow for an early intervention on the cause behind them and would hence avoid the possible medical and social complications.

  10. Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst.

    Science.gov (United States)

    Imam, S Z; Crow, J P; Newport, G D; Islam, F; Slikker, W; Ali, S F

    1999-08-07

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is believed to be produced by oxidative stress and free radical generation. The present study was undertaken to investigate if METH generates peroxynitrite and produces dopaminergic neurotoxicity. We also investigated if this generation of peroxynitrite can be blocked by a selective peroxynitrite decomposition catalyst, 5, 10,15, 20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and protect against METH-induced dopaminergic neurotoxicity. Administration of METH resulted in the significant formation of 3-nitrotyrosine (3-NT), an in vivo marker of peroxynitrite generation, in the striatum and also caused a significant increase in the body temperature. METH injection also caused a significant decrease in the concentration of dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) by 76%, 53% and 40%, respectively, in the striatum compared with the control group. Treatment with FeTMPyP blocked the formation of 3-NT by 66% when compared with the METH group. FeTMPyP treatment also provided significant protection against the METH-induced hyperthermia and depletion of DA, DOPAC and HVA. Administration of FeTMPyP alone neither resulted in 3-NT formation nor had any significant effect on DA or its metabolite concentrations. These findings indicate that peroxynitrite plays a role in METH-induced dopaminergic neurotoxicity and also suggests that peroxynitrite decomposition catalysts may be beneficial for the management of psychostimulant abuse. Copyright 1999 Published by Elsevier Science B.V.

  11. Nigral dopaminergic neuron replenishment in adult mice through VE-cadherin-expressing neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Abir A Rahman

    2017-01-01

    Full Text Available The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2– neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:THlox/THlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.

  12. Wnt/beta-catenin signaling blockade promotes neuronal induction and dopaminergic differentiation in embryonic stem cells

    Czech Academy of Sciences Publication Activity Database

    Čajánek, L.; Ribeiro, D.; Liste, I.; Parish, C.L.; Bryja, Vítězslav; Arenas, E.

    2009-01-01

    Roč. 27, č. 12 (2009), s. 2917-2927 ISSN 1066-5099 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : embryonic stem cells * Wnt pathway * dopaminergic neurons Subject RIV: BO - Biophysics Impact factor: 7.747, year: 2009

  13. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons

    DEFF Research Database (Denmark)

    Bauer, Matthias; Szulc, Jolanta; Meyer, Morten

    2008-01-01

    function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro. Dlk1 treatment during expansion increased DA progenitor proliferation...

  14. Ontogeny of open field activity in rats after neonatal lesioning of the mesocortical dopaminergic projection

    NARCIS (Netherlands)

    Kalsbeek, A.; de Bruin, J. P.; Matthijssen, M. A.; Uylings, H. B.

    1989-01-01

    In order to examine the effect of neonatal depletion of the dopaminergic mesocortical projection on the development of a prefrontal cortex-mediated behaviour the ontogeny of open field behaviour was studied after neonatal depletion of cortical dopamine. Cortical dopamine was depleted by neonatal

  15. Dopaminergic and clinical correlates of pathological gambling in Parkinson's disease: A case report

    Directory of Open Access Journals (Sweden)

    Mette Buhl Callesen

    2013-07-01

    Full Text Available Dopaminergic medication for motor symptoms in Parkinson’s disease recently has been linked with impulse control disorders, including pathological gambling, which affects up to 8% of patients. Pathological gambling often is considered a behavioral addiction associated with disinhibition, risky decision-making, and altered striatal dopaminergic neurotransmission. Using [11C]raclopride with positron emission tomography, we assessed dopaminergic neurotransmission during Iowa Gambling Task performance. Here we present data from a single patient with Parkinson’s disease and concomitant pathological gambling. We noted a marked decrease in [11C]raclopride binding in the left ventral striatum upon gambling, indicating a gambling-induced dopamine release. The results imply that pathological gambling in Parkinson’s disease is associated with a high dose of dopaminergic medication, pronounced motor symptomatology, young age at disease onset, high propensity for sensation seeking, and risky decision-making. Overall, the findings are consistent with the hypothesis of medication-related pathological gambling in Parkinson’s disease and underscore the importance of taking clinical variables, such as age and personality, into account when patients with Parkinson’s disease are medicated, to reduce the risk of pathological gambling.

  16. Relations between Three Dopaminergic System Genes, School Attachment, and Adolescent Delinquency

    Science.gov (United States)

    Fine, Adam; Mahler, Alissa; Simmons, Cortney; Chen, Chuansheng; Moyzis, Robert; Cauffman, Elizabeth

    2016-01-01

    Both environmental factors and genetic variation, particularly in genes responsible for the dopaminergic system such as "DRD4," "DRD2," and "DAT1" ("SLC6A3"), affect adolescent delinquency. The school context, despite its developmental importance, has been overlooked in gene-environment research. Using data…

  17. Sexually dimorphic activation of dopaminergic areas depends on affiliation during courtship and pair formation

    Directory of Open Access Journals (Sweden)

    Mai eIwasaki

    2014-06-01

    Full Text Available For many species, dyadic interaction during courtship and pair bonding engage intense emotional states that control approach or avoidance behavior. Previous studies have shown that one component of a common social brain network (SBN, dopaminergic areas, are highly engaged during male songbird courtship of females. We tested whether the level of activity in dopaminergic systems of both females and males during courtship is related to their level of affiliation. In order to objectively quantify affiliative behaviors, we developed a system for tracking the position of both birds during free interaction sessions. During a third successive daily interaction session, there was a range of levels of affiliation among bird pairs, as quantified by several position and movement parameters. Because both positive and negative social interactions were present, we chose to characterize affiliation strength by pair valence. As a potential neural system involved in regulating pair valence, the level of activity of the dopaminergic group A11 (within the central gray was selectively reduced in females of positive valence pairs. Further, activation of non-dopaminergic neurons in VTA was negatively related to valence, with this relationship strongest in ventral VTA of females. Together, these results suggest that inhibition of fear or avoidance networks may be associated with development of close affiliation, and highlight the importance of negative as well as positive emotional states in the process of courtship, and in development of long-lasting social bonds.

  18. MiR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation

    NARCIS (Netherlands)

    De Gregorio, Roberto; Pulcrano, Salvatore; De Sanctis, Claudia; Volpicelli, Floriana; Guatteo, Ezia; von Oerthel, Lars; Latagliata, Emanuele Claudio; Esposito, Roberta; Piscitelli, Rosa Maria; Perrone-Capano, Carla; Costa, Valerio; Greco, Dario; Puglisi-Allegra, Stefano; Smidt, Marten P.; di Porzio, Umberto; Caiazzo, Massimiliano; Mercuri, Nicola Biagio; Li, Meng; Bellenchi, Gian Carlo

    2018-01-01

    The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we

  19. The cellular and Genomic response of rat dopaminergic neurons (N27) to coated nanosilver

    Science.gov (United States)

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5ppm) to a set of nanoAg of different sizes (10nm, 75nm) and coatings (PVP, citrate) and thei...

  20. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Petra eAmchova

    2014-03-01

    Full Text Available Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed higher voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 µg/kg/infusion. To this aim, olfactory-bulbectomized (OBX and sham-operated (SHAM Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous (FR-1 schedule of reinforcement in 2h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behaviour after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg, did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2 reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.

  1. Working with Chronically Dysfunctional Families.

    Science.gov (United States)

    Younger, Robert; And Others

    This paper reviews family therapy with chronically dysfunctional families including the development of family therapy and current trends which appear to give little guidance toward working with severely dysfunctional families. A theoretical stance based upon the systems approach to family functioning and pathology is presented which suggests: (1)…

  2. Organizational Dysfunctions: Sources and Areas

    Directory of Open Access Journals (Sweden)

    Jacek Pasieczny

    2016-12-01

    Full Text Available Objective:The purpose of this article is to identify and describe various types and sources of organizational dysfunctions. Research Design & Methods: The findings are based on literature review and an ongoing empirical research project conducted in private sector organisations. The empirical study can be situated within interpretative approach. In this qualitative project open interviews and observations were used to collect data. Findings: The study indicates that various types and sources of organizational dysfunctions can be identified in organizations operating in Poland. The sources of dysfunctions may be found both within the organization and its environment. Regardless of its specific features, most of the dysfunctions may be interpreted as an undesirable goal displacement. Very often areas of these dysfunctions are strongly interconnected and create a system that hinders organizational performance. Yet, it is difficult to study these phenomena as respondents are unwilling, for various reasons, to disclose the problems faced by their organizations. Implications & Recommendations: The results imply that the issue of organisational dysfunctions requires open, long-lasting and comparative studies. Recommendations for further studies are formulated in the last section of the paper. Contribution & Value Added: The paper provides insight into "the dark side of organising" by identifying sources and areas of dysfunctions. It also reveals difficulties connected with conducting research on dysfunctions in the Polish context.

  3. Bladder Dysfunction and Vesicoureteral Reflux

    Directory of Open Access Journals (Sweden)

    Ulla Sillén

    2008-01-01

    Full Text Available In this overview the influence of functional bladder disturbances and of its treatment on the resolution of vesicoureteral reflux (VUR in children is discussed. Historically both bladder dysfunction entities, the overactive bladder (OAB and the dysfunctional voiding (DV, have been described in conjunction with VUR. Treatment of the dysfunction was also considered to influence spontaneous resolution in a positive way. During the last decades, however, papers have been published which could not support these results. Regarding the OAB, a prospective study with treatment of the bladder overactivity with anticholinergics, did not influence spontaneous resolution rate in children with a dysfunction including also the voiding phase, DV and DES (dysfunctional elimination syndrome, most studies indicate a negative influence on the resolution rate of VUR in children, both before and after the age for bladder control, both with and without treatment. However, a couple of uncontrolled studies indicate that there is a high short-term resolution rate after treatment with flow biofeedback. It should be emphasized that the voiding phase dysfunctions (DV and DES are more severe than the genuine filling phase dysfunction (OAB, with an increased frequency of UTI and renal damage in the former groups. To be able to answer the question if treatment of bladder dysfunction influence the resolution rate of VUR in children, randomized controlled studies must be performed.

  4. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-01-01

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (∼ 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25–400 μg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: ► Mn nanoparticles activate mitochondrial cell death signaling

  5. Dopaminergic modulation of the spectral characteristics in the rat brain oscillatory activity

    International Nuclear Information System (INIS)

    Valencia, Miguel; López-Azcárate, Jon; Nicolás, María Jesús; Alegre, Manuel; Artieda, Julio

    2012-01-01

    Highlights: ► The oscillatory activity recorded at different locations of the rat brain present a power law characteristic (PLC). ► Dopaminergic drugs are able to modify the power law spectral characteristic of the oscillatory activity. ► Drugs with opposite effects over the dopaminergic system (agonists/antagonists), induce opposite changes in the PLC. ► There is a fulcrum point for the modulation of the PLC around 20 Hz. ► The brain operates in a state of self-organized criticality (SOC) sensitive to dopaminergic modulation. - Abstract: Oscillatory activity can be widely recorded in the brain. It has been demonstrated to play an important role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of a variety of diseases. In frequency domain, neurophysiological recordings show a power spectrum (PSD) following a log (PSD) ∝ log (f) −β , that reveals an intrinsic feature of many complex systems in nature: the presence of a scale-free dynamics characterized by a power-law component (PLC). Here we analyzed the influence of dopaminergic drugs over the PLC of the oscillatory activity recorded from different locations of the rat brain. Dopamine (DA) is a neurotransmitter that is required for a number of physiological functions like normal feeding, locomotion, posturing, grooming and reaction time. Alterations in the dopaminergic system cause vast effects in the dynamics of the brain activity, that may be crucial in the pathophysiology of neurological (like Parkinson’s disease) or psychiatric (like schizophrenia) diseases. Our results show that drugs with opposite effects over the dopaminergic system, induce opposite changes in the characteristics of the PLC: DA agonists/antagonists cause the PLC to swing around a fulcrum point in the range of 20 Hz. Changes in the harmonic component of the spectrum were also detected. However, differences between recordings are better explained by the modulation of the PLC

  6. Noradrenergic Dysfunction in Alzheimer's and Parkinson's Diseases—An Overview of Imaging Studies

    Directory of Open Access Journals (Sweden)

    Andrew C. Peterson

    2018-05-01

    Full Text Available Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer's Disease (AD and Parkinson's Disease (PD. Conventional therapeutic strategies seek to enhance cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and few studies have examined noradrenergic dysfunction as a target for medication development. We review the literature of noradrenergic dysfunction in AD and PD with a focus on human imaging studies that implicate the locus coeruleus (LC circuit. The LC sends noradrenergic projections diffusely throughout the cerebral cortex and plays a critical role in attention, learning, working memory, and cognitive control. The LC undergoes considerable degeneration in both AD and PD. Advances in magnetic resonance imaging have facilitated greater understanding of how structural and functional alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the potential roles of the noradrenergic system in the pathogenesis of AD and PD with an emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI studies, where we highlight changes in LC connectivity with the default mode network (DMN. LC degeneration may accompany deficient capacity in suppressing DMN activity and increasing saliency and task control network activities to meet behavioral challenges. We finish by proposing potential and new directions of research to address noradrenergic dysfunction in AD and PD.

  7. The Hyperpolarization-Activated Current Determines Synaptic Excitability, Calcium Activity and Specific Viability of Substantia Nigra Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Carmen Carbone

    2017-06-01

    Full Text Available Differential vulnerability between Substantia Nigra pars compacta (SNpc and Ventral Tegmental Area (VTA dopaminergic (DAergic neurons is a hallmark of Parkinson’s disease (PD. Understanding the molecular bases of this key histopathological aspect would foster the development of much-needed disease-modifying therapies. Non-heterogeneous DAergic degeneration is present in both toxin-based and genetic animal models, suggesting that cellular specificity, rather than causing factors, constitutes the background for differential vulnerability. In this regard, we previously demonstrated that MPP+, a neurotoxin able to cause selective nigrostriatal degeneration in animal rodents and primates, inhibits the Hyperpolarization-activated current (Ih in SNpc DAergic neurons and that pharmacological Ih antagonism causes potentiation of evoked Excitatory post-synaptic potentials (EPSPs. Of note, the magnitude of such potentiation is greater in the SNpc subfield, consistent with higher Ih density. In the present work, we show that Ih block-induced synaptic potentiation leads to the amplification of somatic calcium responses (SCRs in vitro. This effect is specific for the SNpc subfield and largely mediated by L-Type calcium channels, as indicated by sensitivity to the CaV 1 blocker isradipine. Furthermore, Ih is downregulated by low intracellular ATP and determines the efficacy of GABAergic inhibition in SNpc DAergic neurons. Finally, we show that stereotaxic administration of Ih blockers causes SNpc-specific neurodegeneration and hemiparkinsonian motor phenotype in rats. During PD progression, Ih downregulation may result from mitochondrial dysfunction and, in concert with PD-related disinhibition of excitatory inputs, determine a SNpc-specific disease pathway.

  8. Emotion recognition in early Parkinson's disease patients undergoing deep brain stimulation or dopaminergic therapy: a comparison to healthy participants

    Directory of Open Access Journals (Sweden)

    Lindsey G. McIntosh

    2015-01-01

    Full Text Available Parkinson’s disease (PD is traditionally regarded as a neurodegenerative movement disorder, however, nigrostriatal dopaminergic degeneration is also thought to disrupt non-motor loops connecting basal ganglia to areas in frontal cortex involved in cognition and emotion processing. PD patients are impaired on tests of emotion recognition, but it is difficult to disentangle this deficit from the more general cognitive dysfunction that frequently accompanies disease progression. Testing for emotion recognition deficits early in the disease course, prior to cognitive decline, better assesses the sensitivity of these non-motor corticobasal ganglia-thalamocortical loops involved in emotion processing to early degenerative change in basal ganglia circuits. In addition, contrasting this with a group of healthy aging individuals demonstrates changes in emotion processing specific to the degeneration of basal ganglia circuitry in PD. Early PD patients (EPD were recruited from a randomized clinical trial testing the safety and tolerability of deep brain stimulation of the subthalamic nucleus (STN-DBS in early-staged PD. EPD patients were previously randomized to receive optimal drug therapy only (ODT, or drug therapy plus STN-DBS (ODT+DBS. Matched healthy elderly controls (HEC and young controls (HYC also participated in this study. Participants completed two control tasks and three emotion recognition tests that varied in stimulus domain. EPD patients were impaired on all emotion recognition tasks compared to HEC. Neither therapy type (ODT or ODT+DBS nor therapy state (ON/OFF altered emotion recognition performance in this study. Finally, HEC were impaired on vocal emotion recognition relative to HYC, suggesting a decline related to healthy aging. This study supports the existence of impaired emotion recognition early in the PD course, implicating an early disruption of fronto-striatal loops mediating emotional function.

  9. Muscle dysfunction in cancer patients

    DEFF Research Database (Denmark)

    Christensen, Jesper Frank; Jones, L W; Andersen, J L

    2014-01-01

    dysfunction in cancer patients lies in the correlation to vital clinical end points such as cancer-specific and all-cause mortality, therapy complications and quality of life (QoL). Such associations strongly emphasize the need for effective therapeutic countermeasures to be developed and implemented...... implications of muscle dysfunction in cancer patients. The efficacy of exercise training to prevent and/or mitigate cancer-related muscle dysfunction is also discussed. DESIGN: We identified 194 studies examining muscular outcomes in cancer patients by searching PubMed and EMBASE databases. RESULTS: Muscle...... dysfunction is evident across all stages of the cancer trajectory. The causes of cancer-related muscle dysfunction are complex, but may involve a wide range of tumor-, therapy- and/or lifestyle-related factors, depending on the clinical setting of the individual patient. The main importance of muscle...

  10. Dopaminergic influences on executive function and impulsive behaviour in impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Leroi, Iracema; Barraclough, Michelle; McKie, Shane; Hinvest, Neal; Evans, Jonathan; Elliott, Rebecca; McDonald, Kathryn

    2013-09-01

    The development of impulse control disorders (ICDs) in Parkinson's disease (PD) may arise from an interaction among cognitive impairment, impulsive responding and dopaminergic state. Dopaminergic state may be influenced by pharmacologic or genotypic (catechol-O-methyltransferase; COMT) factors. We sought to investigate this interaction further by comparing those with (n = 35) and without (n = 55) ICDs on delay-discounting in different pharmacologic conditions (ON or OFF dopaminergic medication) and on response inhibition as well as aspects of executive functioning in the ON state. We then undertook an exploratory sub-group analysis of these same tasks when the overall PD group was divided into different allelic variants of COMT (val/val vs. met/met). A healthy control group (HC; n = 20) was also included. We found that in those with PD and ICDs, 'cognitive flexibility' (set shifting, verbal fluency, and attention) in the ON medication state was not impaired compared with those without ICDs. In contrast, our working memory, or 'cognitive focus', task was impaired in both PD groups compared with the HC group when ON. During the delay-discounting task, the PD with ICDs group expressed greater impulsive choice compared with the PD group without ICDs, when in the ON, but not the OFF, medication state. However, no group difference on the response inhibition task was seen when ON. Finally, the met homozygous group performed differently on tests of executive function compared with the val homozygous group. We concluded that the disparity in levels of impairment among different domains of executive function and impulsive decision-making distinguishes those with ICD in PD from those without ICD, and may in part be affected by dopaminergic status. Both pharmacologic and genotypic influences on dopaminergic state may be important in ICD. © 2013 The British Psychological Society.

  11. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    International Nuclear Information System (INIS)

    Maguire, G.W.; Smith, E.L. III

    1985-01-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by [ 3 H]dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced [ 3 H]dopamine uptake compared with that of their matched controls. Normal appearing [ 3 H]GABA and [ 3 H]-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry

  12. Dopaminergic stimulation increases selfish behavior in the absence of punishment threat.

    Science.gov (United States)

    Pedroni, Andreas; Eisenegger, Christoph; Hartmann, Matthias N; Fischbacher, Urs; Knoch, Daria

    2014-01-01

    People often face decisions that pit self-interested behavior aimed at maximizing personal reward against normative behavior such as acting cooperatively, which benefits others. The threat of social sanctions for defying the fairness norm prevents people from behaving overly selfish. Thus, normative behavior is influenced by both seeking rewards and avoiding punishment. However, the neurochemical processes mediating the impact of these influences remain unknown. Several lines of evidence link the dopaminergic system to reward and punishment processing, respectively, but this evidence stems from studies in non-social contexts. The present study investigates dopaminergic drug effects on individuals' reward seeking and punishment avoidance in social interaction. Two-hundred one healthy male participants were randomly assigned to receive 300 mg of L-3,4-dihydroxyphenylalanine (L-DOPA) or a placebo before playing an economic bargaining game. This game involved two conditions, one in which unfair behavior could be punished and one in which unfair behavior could not be punished. In the absence of punishment threats, L-DOPA administration led to more selfish behavior, likely mediated through an increase in reward seeking. In contrast, L-DOPA administration had no significant effect on behavior when faced with punishment threats. The results of this study broaden the role of the dopaminergic system in reward seeking to human social interactions. We could show that even a single dose of a dopaminergic drug may bring selfish behavior to the fore, which in turn may shed new light on potential causal relationships between the dopaminergic system and norm abiding behaviors in certain clinical subpopulations.

  13. Minocycline Rescues from Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration: Biochemical and Molecular Interventions.

    Science.gov (United States)

    Kumar, Vinod; Singh, Brajesh Kumar; Chauhan, Amit Kumar; Singh, Deepali; Patel, Devendra Kumar; Singh, Chetna

    2016-07-01

    Accumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson's disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the role and underlying mechanism of microglial activation in Zn-induced nigrostriatal dopaminergic neurodegeneration. Male Wistar rats were treated intraperitoneally with/without zinc sulphate (20 mg/kg) in the presence/absence of minocycline (30 mg/kg), a microglial activation inhibitor, for 2-12 weeks. While neurobehavioral and biochemical indexes of PD and number of dopaminergic neurons were reduced, the number of microglial cells was increased in the substantia nigra of the Zn-exposed animals. Similarly, Zn elevated lipid peroxidation (LPO) and activities of superoxide dismutase (SOD) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; however, catalase activity was reduced. Besides, Zn increased an association of NADPH oxidase subunit p67(phox) with membrane, cytochrome c release from the mitochondria and cleavage of pro-caspase 3. Zn attenuated the expression of tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT-2) while augmented the expression of dopamine transporter (DAT) and heme oxygenase-1 (HO-1). Minocycline alleviated Zn-induced behavioural impairments, loss of TH-positive neurons, activated microglial cells and biochemical indexes and modulated the expression of studied genes/proteins towards normalcy. The results demonstrate that minocycline reduces the number of activated microglial cells and oxidative stress, which rescue from Zn-induced changes in the expression of monoamine transporter and nigrostriatal dopaminergic neurodegeneration.

  14. Psychotic Symptoms Associated with the use of Dopaminergic Drugs, in Patients with Cocaine Dependence or Abuse.

    Science.gov (United States)

    Roncero, Carlos; Abad, Alfonso C; Padilla-Mata, Antonio; Ros-Cucurull, Elena; Barral, Carmen; Casas, Miquel; Grau-López, Lara

    2017-01-01

    In the field of dual diagnosis, physicians are frequently presented with pharmacological questions. Questions about the risk of developing psychotic symptoms in cocaine users who need treatment with dopaminergic drugs could lead to an undertreatment. Review the presence of psychotic symptoms in patients with cocaine abuse/dependence, in treatment with dopaminergic drugs. Systematic PubMed searches were conducted including December 2014, using the keywords: "cocaine", dopaminergic drug ("disulfuram-methylphenidate-bupropion-bromocriptine-sibutramineapomorphine- caffeine") and ("psychosis-psychotic symptoms-delusional-paranoia"). Articles in English, Spanish, Portuguese, French, and Italian were included. Articles in which there was no history of cocaine abuse/dependence, absence of psychotic symptoms, systematic reviews, and animal studies, were excluded. 313 papers were reviewed. 7 articles fulfilled the inclusion-exclusion criteria. There is a clinical trial including 8 cocaine-dependent patients using disulfiram in which 3 of them presented psychotic symptoms and 6 case-reports: disulfuram (1), methylphenidate (1), disulfiram with methylphenidate (2), and bupropion (2), reporting psychotic symptoms, especially delusions of reference and persecutory ideation. Few cases have been described, which suggests that the appearance of these symptoms is infrequent. The synergy of dopaminergic effects or the dopaminergic sensitization in chronic consumption are the explanatory theories proposed by the authors. In these cases, a relationship was found between taking these drugs and the appearance of psychotic symptoms. Given the low number of studies found, further research is required. The risk of psychotic symptoms seems to be acceptable if we compare it with the benefits for the patients but a closer monitoring seems to be advisable.

  15. An imperfect dopaminergic error signal can drive temporal-difference learning.

    Directory of Open Access Journals (Sweden)

    Wiebke Potjans

    2011-05-01

    Full Text Available An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards.

  16. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    Directory of Open Access Journals (Sweden)

    Niurka Trujillo-Paredes

    2016-03-01

    Full Text Available Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs, but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+. These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  17. [Thyroid dysfunction during pregnancy].

    Science.gov (United States)

    Díez, Juan J; Iglesias, Pedro; Donnay, Sergio

    2015-10-21

    Recent clinical practice guidelines on thyroid dysfunction and pregnancy have changed health care provided to pregnant women, although their recommendations are under constant revision. Trimester- and area-specific reference ranges for serum thyroid-stimulating hormone are required for proper diagnosis of hypothyroidism and hyperthyroidism. There is no doubt on the need of therapy for overt hypothyroidism, while therapy for subclinical hypothyroidism is controversial. Further research is needed to settle adverse effects of isolated hypothyroxinemia and thyroid autoimmunity. Differentiation between hyperthyroidism due to Graves' disease and the usually self-limited gestational transient thyrotoxicosis is critical. It is also important to recognize risk factors for postpartum thyroiditis. Supplementation with iodine is recommended to maintain adequate iodine nutrition during pregnancy and avoid serious consequences in offspring. Controversy remains about universal screening for thyroid disease during pregnancy or case-finding in high-risk women. Opinions of some scientific societies and recent cost-benefit studies favour universal screening. Randomized controlled studies currently under development should reduce the uncertainties that still remain in this area. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  18. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model.

    Science.gov (United States)

    Bock, J; Breuer, S; Poeggel, G; Braun, K

    2017-03-01

    In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ( 14 C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.

  19. Cognitive dysfunction after cardiovascular surgery

    DEFF Research Database (Denmark)

    Funder, K S; Steinmetz, J; Rasmussen, L S

    2009-01-01

    This review describes the incidence, risk factors, and long-term consequences of cognitive dysfunction after cardiovascular surgery. Postoperative cognitive dysfunction (POCD) is increasingly being recognized as an important complication, especially in the elderly. A highly sensitive neuropsychol......This review describes the incidence, risk factors, and long-term consequences of cognitive dysfunction after cardiovascular surgery. Postoperative cognitive dysfunction (POCD) is increasingly being recognized as an important complication, especially in the elderly. A highly sensitive...... neuropsychological test battery must be used to detect POCD and a well-matched control group is very useful for the analysis and interpretation of the test RESULTS: Cardiovascular surgery is associated with a high incidence of POCD. Cardiopulmonary bypass was thought to explain this difference, but randomized...

  20. Sexual dysfunction associated with infertility'

    African Journals Online (AJOL)

    1989-07-15

    Jul 15, 1989 ... incidence of sexual dysfunction during this phase; loss of libido was the ... association with decreased orgasmic response and diminished sexual satisfaction (Fig. 2). ..... Human Sexual Inadequacy. Boston: Little, Brown,.

  1. Oral Health and Erectile Dysfunction

    OpenAIRE

    Singh, Vijendra P.; Nettemu, Sunil K.; Nettem, Sowmya; Hosadurga, Rajesh; Nayak, Sangeeta U.

    2017-01-01

    Ample evidence strongly supports the fact that periodontal disease is a major risk factor for various systemic diseases namely cardio-vascular disease, diabetes mellitus, etc. Recently, investigators focussed on exploring the link between chronic periodontitis (CP) and erectile dysfunction (ED) by contributing to the endothelial dysfunction. Both the diseases share common risk factors. Various studies conducted in different parts of the world in recent years reported the evidence linking this...

  2. Psychological model of adolescent dysfunctionality

    Directory of Open Access Journals (Sweden)

    Cvetkov A. V.

    2016-05-01

    Full Text Available teenage dysfunctionality could be caused by a number of factors, which are an integral part of modern life. Particularly, in this work we considered such factors as uncertainty, frustration, and a mismatch of sexual behavior setting. The path analysis based on using structural equations. The results proved that teenage dysfunctionality is a consequence of the direct effect of the interconnection between moral reflection and moral and ethical responsibility on the perception level of social frustration, corporeality and sexual mismatch.

  3. Thyroid dysfunction and pregnancy outcomes

    Directory of Open Access Journals (Sweden)

    Sima Nazarpour

    2015-07-01

    Full Text Available Background: Pregnancy has a huge impact on the thyroid function in both healthy women and those that have thyroid dysfunction. The prevalence of thyroid dysfunction in pregnant women is relatively high. Objective: The objective of this review was to increase awareness and to provide a review on adverse effect of thyroid dysfunction including hyperthyroidism, hypothyroidism and thyroid autoimmune positivity on pregnancy outcomes. Materials and Methods: In this review, Medline, Embase and the Cochrane Library were searched with appropriate keywords for relevant English manuscript. We used a variety of studies, including randomized clinical trials, cohort (prospective and retrospective, case-control and case reports. Those studies on thyroid disorders among non-pregnant women and articles without adequate quality were excluded. Results: Overt hyperthyroidism and hypothyroidism has several adverse effects on pregnancy outcomes. Overt hyperthyroidism was associated with miscarriage, stillbirth, preterm delivery, intrauterine growth retardation, low birth weight, preeclampsia and fetal thyroid dysfunction. Overt hypothyroidism was associated with abortion, anemia, pregnancy-induced hypertension, preeclampsia, placental abruption, postpartum hemorrhage, premature birth, low birth weight, intrauterine fetal death, increased neonatal respiratory distress and infant neuro developmental dysfunction. However the adverse effect of subclinical hypothyroidism, and thyroid antibody positivity on pregnancy outcomes was not clear. While some studies demonstrated higher chance of placental abruption, preterm birth, miscarriage, gestational hypertension, fetal distress, severe preeclampsia and neonatal distress and diabetes in pregnant women with subclinical hypothyroidism or thyroid autoimmunity; the other ones have not reported these adverse effects. Conclusion: While the impacts of overt thyroid dysfunction on feto-maternal morbidities have been clearly

  4. On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson’s disease

    Science.gov (United States)

    de Oliveira, M. Elias; Menegaldo, L. L.; Lucarelli, P.; Andrade, B. L. B.; Büchler, P.

    2011-11-01

    Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunctions. Several potential early diagnostic markers of PD have been proposed. Since they have not been validated in presymptomatic PD, the diagnosis and monitoring of the disease is based on subjective clinical assessment of cognitive and motor symptoms. In this study, we investigated interjoint coordination synergies in the upper limb of healthy and parkinsonian subjects during the performance of unconstrained linear-periodic movements in a horizontal plane using the mutual information (MI). We found that the MI is a sensitive metric in detecting upper limb motor dysfunction, thus suggesting that this method might be applicable to quantitatively evaluating the effects of the antiparkinsonian medication and to monitor the disease progression.

  5. Mitochondrial Dysfunction and α-Synuclein Synaptic Pathology in Parkinson’s Disease: Who’s on First?

    Directory of Open Access Journals (Sweden)

    Michela Zaltieri

    2015-01-01

    Full Text Available Parkinson’s disease (PD is the most common neurodegenerative movement disorder. Its characteristic neuropathological features encompass the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies and Lewy neurites. These are intraneuronal and intraneuritic proteinaceous insoluble aggregates whose main constituent is the synaptic protein α-synuclein. Compelling lines of evidence indicate that mitochondrial dysfunction and α-synuclein synaptic deposition may play a primary role in the onset of this disorder. However, it is not yet clear which of these events may come first in the sequel of processes leading to neurodegeneration. Here, we reviewed data supporting either that α-synuclein synaptic deposition precedes and indirectly triggers mitochondrial damage or that mitochondrial deficits lead to neuronal dysfunction and α-synuclein synaptic accumulation. The present overview shows that it is still difficult to establish the exact temporal sequence and contribution of these events to PD.

  6. Does the cerebral cortex exacerbate dopaminergic cell death in the substantia nigra of 6OHDA-lesioned rats?

    Science.gov (United States)

    Luquin, Natasha; Mitrofanis, John

    2008-01-01

    We have explored the survival of dopaminergic cells of the substantia nigra pars compacta (SNc) in 6 hydroxydopamine (6OHDA)-lesioned rats with prior cortical removal. There were approximately 35% more dopaminergic cells in the ventral sector of SNc (vSNc) of 6OHDA-lesioned rats that had prior cortical removal compared to those that did not. By contrast, there were no differences in dopaminergic cell number between these experimental groups in the ventral tegmental area (VTA) and the dorsal sector of SNc (dSNc). Hence, prior cortical removal in 6OHDA-lesioned rats neuroprotected vSNc--but not VTA or dSNc--dopaminergic cells from death.

  7. Enhanced dopaminergic differentiation of human neural stem cells by synergistic effect of Bcl-xL and reduced oxygen tension

    DEFF Research Database (Denmark)

    Krabbe, Christina; Courtois, Elise; Jensen, Pia

    2009-01-01

    Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-x(L) and oxygen tension on dopaminergic different......Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-x(L) and oxygen tension on dopaminergic...... days at 20% oxygen, hVMbcl-x(L) cultures contained proportionally more tyrosine hydroxylase(TH)-positive cells than hVM1 control cultures. This difference was significantly potentiated from 11 +/- 0.8% to 17.2 +/- 0.2% of total cells when the oxygen tension was lowered to 3%. Immunocytochemistry and Q...

  8. Nucleus Accumbens and Dopamine-Mediated Turning Behavior of the Rat: Role of Accumbal Non-dopaminergic Receptors

    NARCIS (Netherlands)

    Ikeda, H.; Kamei, J.; Koshikawa, N.; Cools, A.R.

    2012-01-01

    Accumbal dopamine plays an important role in physiological responses and diseases such as schizophrenia, Parkinson's disease, and depression. Since the nucleus accumbens contains different neurotransmitters, it is important to know how they interact with dopaminergic function: this is because

  9. Emerging drugs for the treatment of erectile dysfunction.

    Science.gov (United States)

    Peak, Taylor C; Yafi, Faysal A; Sangkum, Premsant; Hellstrom, Wayne J G

    2015-06-01

    Erectile dysfunction adversely affects the lives of millions of men, and is the most commonly treated sexual disorder today. The erectile process has been extensively investigated, with major advances made in elucidating many of the complex molecular pathways involved. These advances have allowed researchers to design and study drug formulations that target various aspects of this complex process. The initial culmination of this research was the introduction of phosphodiesterase 5-inhibitors. While effective in many patients, they are not satisfactory for all afflicted men. As a result, researchers are developing novel drugs that target different molecular pathways. The paper will review these pathways, and the potential agents that target them. More specifically, first dopaminergic and melanocortin receptor agonists that act centrally will be covered. Then, the paper will examine the "second-generation" phosphodiesterase 5-inhibitors, soluble guanylate cyclases, rho-kinase inhibitors, and maxi-k channel activators that act peripherally. Most of these novel drugs have yet to reach Phase III studies. However, it is likely that in years to come, patients will be selectively treated with these novel agents as a monotherapy or in combination with others acting in a synergistic manner.

  10. Sexual dimorphism in striatal dopaminergic responses promotes monogamy in social songbirds.

    Science.gov (United States)

    Tokarev, Kirill; Hyland Bruno, Julia; Ljubičić, Iva; Kothari, Paresh J; Helekar, Santosh A; Tchernichovski, Ofer; Voss, Henning U

    2017-08-11

    In many songbird species, males sing to attract females and repel rivals. How can gregarious, non-territorial songbirds such as zebra finches, where females have access to numerous males, sustain monogamy? We found that the dopaminergic reward circuitry of zebra finches can simultaneously promote social cohesion and breeding boundaries. Surprisingly, in unmated males but not in females, striatal dopamine neurotransmission was elevated after hearing songs. Behaviorally too, unmated males but not females persistently exchanged mild punishments in return for songs. Song reinforcement diminished when dopamine receptors were blocked. In females, we observed song reinforcement exclusively to the mate's song, although their striatal dopamine neurotransmission was only slightly elevated. These findings suggest that song-triggered dopaminergic activation serves a dual function in social songbirds: as low-threshold social reinforcement in males and as ultra-selective sexual reinforcement in females. Co-evolution of sexually dimorphic reinforcement systems can explain the coexistence of gregariousness and monogamy.

  11. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...... in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content...... of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells...

  12. Detection of dopamine in dopaminergic cell using nanoparticles-based barcode DNA analysis.

    Science.gov (United States)

    An, Jeung Hee; Kim, Tae-Hyung; Oh, Byung-Keun; Choi, Jeong Woo

    2012-01-01

    Nanotechnology-based bio-barcode-amplification analysis may be an innovative approach to dopamine detection. In this study, we evaluated the efficacy of this bio-barcode DNA method in detecting dopamine from dopaminergic cells. Herein, a combination DNA barcode and bead-based immunoassay for neurotransmitter detection with PCR-like sensitivity is described. This method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA, and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated in order to remove the conjugated barcode DNA. The DNA barcodes were then identified via PCR analysis. The dopamine concentration in dopaminergic cells can be readily and rapidly detected via the bio-barcode assay method. The bio-barcode assay method is, therefore, a rapid and high-throughput screening tool for the detection of neurotransmitters such as dopamine.

  13. Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease

    Science.gov (United States)

    Hindle, Samantha J.; Elliott, Christopher J.H.

    2013-01-01

    Flies expressing the most common Parkinson disease (PD)-related mutation, LRRK2-G2019S, in their dopaminergic neurons show loss of visual function and degeneration of the retina, including mitochondrial abnormalities, apoptosis and autophagy. Since the photoreceptors that degenerate are not dopaminergic, this demonstrates nonautonomous degeneration, and a spread of pathology. This provides a model consistent with Braak’s hypothesis on progressive PD. The loss of visual function is specific for the G2019S mutation, implying the cause is its increased kinase activity, and is enhanced by increased neuronal activity. These data suggest novel explanations for the variability in animal models of PD. The specificity of visual loss to G2019S, coupled with the differences in neural firing rate, provide an explanation for the variability between people with PD in visual tests. PMID:23529190

  14. Control of sleep by dopaminergic inputs to the Drosophila mushroom body

    Directory of Open Access Journals (Sweden)

    Divya eSitaraman

    2015-11-01

    Full Text Available The Drosophila mushroom body (MB is an associative learning network that is important for the control of sleep. We have recently identified particular intrinsic MB Kenyon cell (KC classes that regulate sleep through synaptic activation of particular MB output neurons (MBONs whose axons convey sleep control signals out of the MB to downstream target regions. Specifically, we found that sleep-promoting KCs increase sleep by preferentially activating cholinergic sleep-promoting MBONs, while wake-promoting KCs decrease sleep by preferentially activating glutamatergic wake-promoting MBONs. Here we use a combination of genetic and physiological approaches to identify wake-promoting dopaminergic neurons (DANs that innervate the MB, and show that they activate wake-promoting MBONs. These studies reveal a dopaminergic sleep control mechanism that likely operates by modulation of KC-MBON microcircuits.

  15. Assessment of central dopaminergic function using plasma-free homovanillic acid after debrisoquin administration.

    Science.gov (United States)

    Riddle, M A; Leckman, J F; Cohen, D J; Anderson, M; Ort, S I; Caruso, K A; Shaywitz, B A

    1986-01-01

    Central dopaminergic (DA) function in children and adults was assessed by monitoring plasma-free levels of the dopamine metabolite homovanillic acid (pHVA) before and after a single oral dose and chronic oral administration of debrisoquin. Debrisoquin inhibits peripheral metabolism of dopamine to HVA and does not cross the blood-brain barrier. By reducing peripheral formation of HVA through the use of debrisoquin, the remaining HVA in plasma more accurately reflects central DA activity. Debrisoquin administration resulted in marked reductions of pHVA in each of 12 patients studied. Eleven of the 12 subjects tolerated debrisoquin without physical or behavioral side effects. The debrisoquin administration method appears to be a safe and potentially valid technique for evaluating aspects of central dopaminergic function in children and adults.

  16. Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana

    Directory of Open Access Journals (Sweden)

    Kühnel Dana

    2002-06-01

    Full Text Available Abstract Background The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. Results The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Conclusion Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.

  17. Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: involvement of ?-synuclein aggregation and programmed cell death

    OpenAIRE

    Wang, Yi-Ting; Lin, Hui-Ching; Zhao, Wei-Zhong; Huang, Hui-Ju; Lo, Yu-Li; Wang, Hsiang-Tsui; Maan-Yuh Lin, Anya

    2017-01-01

    Clinical studies report significant increases in acrolein (an ?,?-unsaturated aldehyde) in the substantia nigra (SN) of patients with Parkinson?s disease (PD). In the present study, acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system was investigated by local infusion of acrolein (15, 50, 150?nmoles/0.5??l) in the SN of Sprague-Dawley rats. Acrolein-induced neurodegeneration of nigrostriatal dopaminergic system was delineated by reductions in tyrosine hydroxylase (TH) leve...

  18. Neuropsychiatric and metabolic aspects of dopaminergic therapy: perspectives from an endocrinologist and a psychiatrist

    Science.gov (United States)

    Athanasoulia-Kaspar, Anastasia P; Popp, Kathrin H; Stalla, Gunter Karl

    2018-01-01

    The dopaminergic treatment represents the primary treatment in prolactinomas, which are the most common pituitary adenomas and account for about 40% of all pituitary tumours with an annual incidence of six to ten cases per million population. The dopaminergic treatment includes ergot and non-ergot derivatives with high affinity for the dopamine receptors D1 or/and D2. Through the activation of the dopaminergic pathway on pituitary lactotrophs, the dopamine agonists inhibit the prolactin synthesis and secretion, therefore normalizing the prolactin levels and restoring eugonadism, but they also lead to tumour shrinkage. Treatment with dopamine agonists has been associated – apart from the common side effects such as gastrointestinal symptoms, dizziness and hypotension – with neuropsychiatric side effects such as impulse control disorders (e.g. pathological gambling, compulsive shopping, hypersexuality and binge eating) and also with behavioral changes from low mood, irritability and verbal aggressiveness up to psychotic and manic symptoms and paranoid delusions not only in patients with prolactinomas but also in patients with Parkinson’s disease and restless leg syndrome. They usually have de novo onset after initiation of the dopaminergic treatment and have been mainly reported in patients with Parkinson’s disease, who are being treated with higher doses of dopamine agonists. Moreover, dopamine and prolactin seem to play an essential role in the metabolic pathway. Patients with hyperprolactinemia tend to have increased body weight and an altered metabolic profile with hyperinsulinemia and increased prevalence of diabetes mellitus in comparison to healthy individuals and patients with non-functioning pituitary adenomas. Treatment with dopamine agonists in these patients in short-term studies seems to lead to weight loss and amelioration of the metabolic changes. Together these observations provide evidence that dopamine and prolactin have a crucial role both

  19. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Zhenqiang Zhao

    2016-12-01

    Full Text Available Mouse embryonic fibroblasts (MEFs and human foreskin fibroblasts (HFFs are used for the culture of human embryonic stem cells (hESCs. MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs =1:1 and HFFs feeder respectively, and then were differentiated into DA neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR (qRT-PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of TH positive cells and expressed higher levels of FOXA2, PITX3, NURR1 and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons.

  20. Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect.

    Science.gov (United States)

    Mizunami, Makoto; Unoki, Sae; Mori, Yasuhiro; Hirashima, Daisuke; Hatano, Ai; Matsumoto, Yukihisa

    2009-08-04

    In insect classical conditioning, octopamine (the invertebrate counterpart of noradrenaline) or dopamine has been suggested to mediate reinforcing properties of appetitive or aversive unconditioned stimulus, respectively. However, the roles of octopaminergic and dopaminergic neurons in memory recall have remained unclear. We studied the roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in olfactory and visual conditioning in crickets. We found that pharmacological blockade of octopamine and dopamine receptors impaired aversive memory recall and appetitive memory recall, respectively, thereby suggesting that activation of octopaminergic and dopaminergic neurons and the resulting release of octopamine and dopamine are needed for appetitive and aversive memory recall, respectively. On the basis of this finding, we propose a new model in which it is assumed that two types of synaptic connections are formed by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus to neurons inducing conditioned response and the other being connections from neurons representing conditioned stimulus to octopaminergic or dopaminergic neurons representing appetitive or aversive unconditioned stimulus, respectively. The former is called 'stimulus-response connection' and the latter is called 'stimulus-stimulus connection' by theorists studying classical conditioning in higher vertebrates. Our model predicts that pharmacological blockade of octopamine or dopamine receptors during the first stage of second-order conditioning does not impair second-order conditioning, because it impairs the formation of the stimulus-response connection but not the stimulus-stimulus connection. The results of our study with a cross-modal second-order conditioning were in full accordance with this prediction. We suggest that insect classical conditioning involves the formation of two kinds of memory

  1. Contribution of dopamine to mitochondrial complex I inhibition and dopaminergic deficits caused by methylenedioxymethamphetamine in mice.

    Science.gov (United States)

    Barros-Miñones, L; Goñi-Allo, B; Suquia, V; Beitia, G; Aguirre, N; Puerta, E

    2015-06-01

    Methylenedioxymethamphetamine (MDMA) causes a persistent loss of dopaminergic cell bodies in the substantia nigra of mice. Current evidence indicates that MDMA-induced neurotoxicity is mediated by oxidative stress probably due to the inhibition of mitochondrial complex I activity. In this study we investigated the contribution of dopamine (DA) to such effects. For this, we modulated the dopaminergic system of mice at the synthesis, uptake or metabolism levels. Striatal mitochondrial complex I activity was decreased 1 h after MDMA; an effect not observed in the striatum of DA depleted mice or in the hippocampus, a dopamine spare region. The DA precursor, L-dopa, caused a significant reduction of mitochondrial complex I activity by itself and exacerbated the dopaminergic deficits when combined with systemic MDMA. By contrast, no damage was observed when L-dopa was combined with intrastriatal injections of MDMA. On the other hand, dopamine uptake blockade using GBR 12909, inhibited both, the acute inhibition of complex I activity and the long-term dopaminergic toxicity caused by MDMA. Moreover, the inhibition of DA metabolism with the monoamine oxidase (MAO) inhibitor, pargyline, afforded a significant protection against MDMA-induced complex I inhibition and neurotoxicity. Taken together, these findings point to the formation of hydrogen peroxide subsequent to DA metabolism by MAO, rather than a direct DA-mediated mitochondrial complex I inhibition, and the contribution of a peripheral metabolite of MDMA, as the key steps in the chain of biochemical events leading to DA neurotoxicity caused by MDMA in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Schlafmedizinische Charakterisierung von Parkinson-Patienten mit Schlafattacken unter dopaminerger Therapie

    OpenAIRE

    Rethfeldt, Mira

    2006-01-01

    1999 wurden erstmals sogenannte Schlafattacken bei Parkinson-Patienten unter der Therapie mit Nonergolin-Dopaminagonisten berichtet. Später zeigten Studien, dass diese Schlafattacken unter jeglicher dopaminerger Therapie auftreten können. Bis heute ist jedoch die Pathophysiologie dieses Phänomens nicht hinreichend geklärt. Es wird diskutiert, ob diese Attacken als paroxysmales Symptom überhaupt bestehen oder nicht vielmehr ...

  3. Abnormal striatal dopaminergic neurotransmission during rest and task production in spasmodic dysphonia.

    Science.gov (United States)

    Simonyan, Kristina; Berman, Brian D; Herscovitch, Peter; Hallett, Mark

    2013-09-11

    Spasmodic dysphonia is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech production. The pathophysiology of spasmodic dysphonia is thought to involve structural and functional abnormalities in the basal ganglia-thalamo-cortical circuitry; however, neurochemical correlates underpinning these abnormalities as well as their relations to spasmodic dysphonia symptoms remain unknown. We used positron emission tomography with the radioligand [(11)C]raclopride (RAC) to study striatal dopaminergic neurotransmission at the resting state and during production of symptomatic sentences and asymptomatic finger tapping in spasmodic dysphonia patients. We found that patients, compared to healthy controls, had bilaterally decreased RAC binding potential (BP) to striatal dopamine D2/D3 receptors on average by 29.2%, which was associated with decreased RAC displacement (RAC ΔBP) in the left striatum during symptomatic speaking (group average difference 10.2%), but increased RAC ΔBP in the bilateral striatum during asymptomatic tapping (group average difference 10.1%). Patients with more severe voice symptoms and subclinically longer reaction time to initiate the tapping sequence had greater RAC ΔBP measures, while longer duration of spasmodic dysphonia was associated with a decrease in task-induced RAC ΔBP. Decreased dopaminergic transmission during symptomatic speech production may represent a disorder-specific pathophysiological trait involved in symptom generation, whereas increased dopaminergic function during unaffected task performance may be explained by a compensatory adaptation of the nigrostriatal dopaminergic system possibly due to decreased striatal D2/D3 receptor availability. These changes can be linked to the clinical and subclinical features of spasmodic dysphonia and may represent the neurochemical basis of basal ganglia alterations in this disorder.

  4. Protective Effects of Ferulic Acid against Chronic Cerebral Hypoperfusion-Induced Swallowing Dysfunction in Rats

    Directory of Open Access Journals (Sweden)

    Takashi Asano

    2017-03-01

    Full Text Available Ferulic acid (FA, a phenolic phytochemical, has been reported to exert antioxidative and neuroprotective effects. In this study, we investigated the protective effects of FA against the dysfunction of the swallowing reflex induced by ligation of bilateral common carotid arteries (2VO in rats. In 2VO rats, topical administration of water or citric acid to the pharyngolaryngeal region evoked a diminished number of swallowing events with prolonged latency compared to sham-operated control rats. 2VO rats had an increased level of superoxide anion radical, and decreased dopamine and tyrosine hydroxylase enzyme levels in the striatum, suggesting that 2VO augmented cerebral oxidative stress and impaired the striatal dopaminergic system. Furthermore, substance P (SP expression in the laryngopharyngeal mucosa, which is believed to be positively regulated by dopaminergic signaling in the basal ganglia, was decreased in 2VO rats. Oral treatment with FA (30 mg/kg for 3 weeks (from one week before 2VO to two weeks after improved the swallowing reflex and maintained levels of striatal dopamine and laryngopharyngeal SP expression in 2VO rats. These results suggest that FA maintains the swallowing reflex by protecting the dopamine-SP system against ischemia-induced oxidative damage in 2VO rats.

  5. Transcranial magnetic stimulation promotes the proliferation of dopaminergic neuronal cells in vitro

    Science.gov (United States)

    Zhong, Xiaojing; Luo, Jie; Rastogi, Priyam; Kanthasamy, Anumantha G.; Jiles, David C.; Fellow, IEEE

    2018-05-01

    Transcranial magnetic stimulation (TMS) is a safe and non-invasive treatment for neurological disorders. TMS has been approved as a treatment for major depressive disorders by the US Food and Drug Administration (FDA) in 2008. Due to the phenomenon of electromagnetic induction, a time-varying magnetic field induces an electric field in the conductive tissues in the brain, TMS has the ability to activate neurons in vivo. However, the effects of the magnetic fields on neurons in cell culture have not been investigated adequately. The magnetic fields affect the neurons when the potential across the neuronal membrane exceeds the threshold which in turn causes an action potential. Based on these theories, we investigated the effects of the magnetic fields generated by a monophasic stimulator with a 70 mm double coil on rat dopaminergic neuronal cell lines (N27). The directions of the magnetic fields in each coil of the double coil oppose each other. The effects of changing the direction of the magnetic field on N27 neurons was also investigated. The results of the experiments showed that both of the fields perpendicular to the coil surface promoted the proliferation of N27 dopaminergic neurons. In order to investigate the gene expression and protein expression affected by TMS, quantitative Polymerase Chain Reaction (qPCR) was used. Here we report changes in glial cell line-derived neurotrophic factor (GDNF) in dopaminergic neuronal cells (N27) after TMS treatment.

  6. Increased Fos expression among midbrain dopaminergic cell groups during birdsong tutoring.

    Science.gov (United States)

    Nordeen, E J; Holtzman, D A; Nordeen, K W

    2009-08-01

    During avian vocal learning, birds memorize conspecific song patterns and then use auditory feedback to match their vocal output to this acquired template. Some models of song learning posit that during tutoring, conspecific visual, social and/or auditory cues activate neuromodulatory systems that encourage acquisition of the tutor's song and attach incentive value to that specific acoustic pattern. This hypothesis predicts that stimuli experienced during social tutoring activate cell populations capable of signaling reward. Using immunocytochemistry for the protein product of the immediate early gene c-Fos, we found that brief exposure of juvenile male zebra finches to a live familiar male tutor increased the density of Fos+ cells within two brain regions implicated in reward processing: the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). This activation of Fos appears to involve both dopaminergic and non-dopaminergic VTA/SNc neurons. Intriguingly, a familiar tutor was more effective than a novel tutor in stimulating Fos expression within these regions. In the periaqueductal gray, a dopamine-enriched cell population that has been implicated in emotional processing, Fos labeling also was increased after tutoring, with a familiar tutor again being more effective than a novel conspecific. As several neural regions implicated in song acquisition receive strong dopaminergic projections from these midbrain nuclei, their activation in conjunction with hearing the tutor's song could help to establish sensory representations that later guide motor sequence learning.

  7. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation.

    Science.gov (United States)

    Kamiński, Jan; Mamelak, Adam N; Birch, Kurtis; Mosher, Clayton P; Tagliati, Michele; Rutishauser, Ueli

    2018-04-12

    The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions.

    Science.gov (United States)

    Søvik, E; LaMora, A; Seehra, G; Barron, A B; Duncan, J G; Ben-Shahar, Y

    2017-06-01

    Members of the natural resistance-associated macrophage protein (NRAMP) family are evolutionarily conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here, we show that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision-making in insects. Our studies suggest that the homeostatic regulation of the intraneuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Caffeine induces differential cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic agonists.

    Science.gov (United States)

    Jain, Raka; Holtzman, Stephen G

    2005-05-15

    The purpose of this study was to determine if caffeine induces cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic drugs that act through distinct mechanisms (e.g., release, uptake inhibition, direct activation of dopamine D(1)- or D(2)-family receptors). Rats were trained to discriminate 1.0 mg/kg d-amphetamine from saline in a two-choice discrete-trial procedure. Stimulus-generalization curves were generated by cumulative dosing for d-amphetamine (0.1-1.0 mg/kg), methylphenidate (0.3-5.6 mg/kg), SKF 81297 (0.3-3.0 mg/kg), and R-(-)-propylnorapomorphine (NPA; 0.001-1.78 mg/kg), as well as for caffeine (3.0-56 mg/kg); curves were re-determined after twice daily injections of caffeine (30 mg/kg) for 3.5 days. The rats generalized dose dependently to the four dopaminergic drugs, but only to a limited extent to caffeine. Twice daily injections of caffeine induced significant cross tolerance (i.e., increased ED(50)) to the amphetamine-like discriminative effects of methylphenidate and SKF 81297, attenuated non-significantly the effects of NPA, and did not alter the effects of amphetamine. Thus, caffeine produces differential cross tolerance to the amphetamine-like discriminative effects of dopaminergic drugs, a phenomenon in which the dopamine D(1) receptor appears to have an important role.

  10. Effects of combined BDNF and GDNF treatment on cultured dopaminergic midbrain neurons

    DEFF Research Database (Denmark)

    Sautter, J; Meyer, Morten; Spenger, C

    1998-01-01

    Neural transplantation is an experimental therapy for Parkinson's disease. Pretreatment of fetal donor tissue with neurotrophic factors may improve survival of grafted dopaminergic neurons. Free-floating roller tube cultures of fetal rat ventral mesencephalon were treated with brain-derived neuro......Neural transplantation is an experimental therapy for Parkinson's disease. Pretreatment of fetal donor tissue with neurotrophic factors may improve survival of grafted dopaminergic neurons. Free-floating roller tube cultures of fetal rat ventral mesencephalon were treated with brain......-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), or a combination of both. Dopamine content of the culture medium, the number of tyrosine hydroxylase-immunoreactive neurons, and culture volumes were moderately increased in the BDNF- and GDNF-treated cultures but significantly...... increased by 6.8-, 3.2- and 2.4-fold, respectively after treatment with the combination of both factors. We conclude that pretreatment of dopaminergic tissue in culture with a combination of BDNF and GDNF may be an effective means to improve the quality of tissue prior to grafting....

  11. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity.

    Science.gov (United States)

    Antenor-Dorsey, Jo Ann V; O'Malley, Karen L

    2012-02-08

    The WldS mouse mutant ("Wallerian degeneration-slow") delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury. Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate that WldS but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+). Moreover, NAD+ synthesis is not required since enzymatically-inactive WldS still protects. In addition, NAD+ by itself is axonally protective and together with WldS is additive in the MPP+ model. Our data suggest that NAD+ and WldS act through separate and possibly parallel mechanisms to protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that WldS might be involved in preserving mitochondrial health or maintaining cellular metabolism.

  12. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity

    Directory of Open Access Journals (Sweden)

    Antenor-Dorsey Jo Ann V

    2012-02-01

    Full Text Available Abstract Background The WldS mouse mutant ("Wallerian degeneration-slow" delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic neurons from toxin-mediated axonal injury. Results Using mutant mice and lentiviral transduction of dopaminergic neurons, the present findings demonstrate that WldS but not Nmnat1, Nmnat3, or cytoplasmically-targeted Nmnat1 protects dopamine axons from the parkinsonian mimetic N-methyl-4-phenylpyridinium (MPP+. Moreover, NAD+ synthesis is not required since enzymatically-inactive WldS still protects. In addition, NAD+ by itself is axonally protective and together with WldS is additive in the MPP+ model. Conclusions Our data suggest that NAD+ and WldS act through separate and possibly parallel mechanisms to protect dopamine axons. As MPP+ is thought to impair mitochondrial function, these results suggest that WldS might be involved in preserving mitochondrial health or maintaining cellular metabolism.

  13. Clinical Features Indicating Nigrostriatal Dopaminergic Degeneration in Drug-Induced Parkinsonism

    Directory of Open Access Journals (Sweden)

    Seung Ha Lee

    2017-01-01

    Full Text Available Objective Patients with drug-induced parkinsonism (DIP may have nigrostriatal dopaminergic degeneration. We studied the clinical features that may indicate nigrostriatal dopaminergic degeneration in patients with DIP. Methods Forty-one DIP patients were classified into normal and abnormal [18F] FP-CIT scan groups. Differences in 32 clinical features and drug withdrawal effects were studied. Results Twenty-eight patients had normal (Group I and 13 patients had abnormal (Group II scans. Eight patients of Group I, but none of Group II, had taken calcium channel blockers (p = 0.040. Three patients of Group I and six of Group II had hyposmia (p = 0.018. After drug withdrawal, Group I showed greater improvement in Unified Parkinson’s Disease Rating Scale total motor scores and subscores for bradykinesia and tremors than Group II. Only hyposmia was an independent factor associated with abnormal scans, but it had suboptimal sensitivity. Conclusion None of the clinical features were practical indicators of nigrostriatal dopaminergic degeneration in patients with DIP.

  14. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticles-based barcode DNA.

    Science.gov (United States)

    An, Jeung Hee; Oh, Byung-Keun; Choi, Jeong Woo

    2013-04-01

    Tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosysthesis, is predominantly expressed in several cell groups within the brain, including the dopaminergic neurons of the substantia nigra and ventral tegmental area. We evaluated the efficacy of this protein-detection method in detecting tyrosine hydroxylase in normal and oxidative stress damaged dopaminergic cells. In this study, a coupling of DNA barcode and bead-based immnunoassay for detecting tyrosine hydroxylaser with PCR-like sensitivity is reported. The method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes were identified by PCR analysis. The concentration of tyrosine hydroxylase in dopaminergic cell can be easily and rapidly detected using bio-barcode assay. The bio-barcode assay is a rapid and high-throughput screening tool to detect of neurotransmitter such as dopamine.

  15. The role of the dopaminergic projections in MFB self-stimulation.

    Science.gov (United States)

    Gallistel, C R

    1986-11-01

    Psychophysical experiments indicate that the first stage of the reward pathway in medial forebrain bundle self-stimulation consists of small myelinated descending axons. Pharmacological experiments show that neuroleptics attenuate or abolish the rewarding effect. This had led to the hypothesis that the descending myelinated axons synapse on an ascending dopaminergic second stage projection. 2-Deoxy-[14C]glucose autoradiography in self-stimulating animals or animals receiving automatically administered rewarding stimulation after treatment with reward-blocking doses of pimozide reveals activation of a descending myelinated system but no stimulation-produced activation of an ascending dopaminergic projection system, even though the autoradiographic method reveals the mild elevations and depressions of activity in dopaminergic terminal fields consequent upon injections of neuroleptics and amphetamine, respectively, and the strong activation of the nigrostriatal projection produced by stimulating directly in the substantia nigra. When the effects of neuroleptics and clonidine are measured by the psychophysical method (that is, by lateral shifts in the rate-frequency function), it is found that both drugs produce only gradual and rather small attenuations of rewarding efficacy up to doses at which it is no longer possible to measure their effects. It is suggested that, for neuroleptics at least, the rewarding effect abruptly fails at these doses. It is further suggested that these drugs do not act on the rewarding pathway itself, but on the process by which the rewarding signal is converted to an enduring rewarding effect.

  16. Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD).

    Science.gov (United States)

    Nguyen, Michael; Roth, Andrew; Kyzar, Evan J; Poudel, Manoj K; Wong, Keith; Stewart, Adam Michael; Kalueff, Allan V

    2014-01-01

    Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Clinical Investigation of the Dopaminergic System with PET and FLUORINE-18-FLUORO-L-DOPA.

    Science.gov (United States)

    Oakes, Terrence Rayford

    1995-01-01

    Positron Emission Tomography (PET) is a tool that provides quantitative physiological information. It is valuable both in a clinical environment, where information is sought for an individual, and in a research environment, to answer more fundamental questions about physiology and disease states. PET is particularly attractive compared to other nuclear medicine imaging techniques in cases where the anatomical regions of interest are small or when true metabolic rate constants are required. One example with both of these requirements is the investigation of Parkinson's Disease, which is characterized as a presynaptic motor function deficit affecting the striatum. As dopaminergic neurons die, the ability of the striatum to affect motor function decreases. The extent of functional neuronal damage in the small sub-structures may be ascertained by measuring the ability of the caudate and putamen to trap and store dopamine, a neurotransmitter. PET is able to utilize a tracer of dopamine activity, ^ {18}F- scL-DOPA, to quantitate the viability of the striatum. This thesis work deals with implementing and optimizing the many different elements that compose a PET study of the dopaminergic system, including: radioisotope production; conversion of aqueous ^{18}F ^-into [^ {18}F]-F2; synthesis of ^{18}F- scL -DOPA; details of the PET scan itself; measurements to estimate the radiation dosimetry; accurate measurement of a plasma input function; and the quantitation of dopaminergic activity in normal human subjects as well as in Parkinson's Disease patients.

  18. PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival

    Directory of Open Access Journals (Sweden)

    Yunjong Lee

    2017-01-01

    Full Text Available Mutations in PTEN-induced putative kinase 1 (PINK1 and parkin cause autosomal-recessive Parkinson’s disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746 that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival.

  19. Investigations into potential extrasynaptic communication between the dopaminergic and nitrergic systems

    Directory of Open Access Journals (Sweden)

    Miso eMitkovski

    2012-09-01

    Full Text Available Nitric oxide is unconstrained by cell membranes and can therefore act along a broad distance as a volume transmitter. Spillover of nitric oxide between neurons may have a major impact on central nervous system diseases and particularly on neurodegeneration. There is evidence whereby communication between nitrergic and dopaminergic systems plays an essential role in the control of the nigrostriatal pathway. However, there is sparse information for either the coexistence or overlap of nitric oxide and dopaminergic structures. The present study used double-labeling immunofluorescent microscopy to investigate the degree of cellular co-localization between nitric oxide synthase and tyrosine hydroxylase, enzymes responsible for the synthesis of nitric oxide and dopamine, respectively, was examined in neurons of the nigrostriatal pathway regions in the rat brain. After perfusional fixation, the brains were cut and double immunostained. A proximity analysis of tyrosine hydroxylase and nitric oxide synthase structures was made using confocal laser scanning microscopy, in nigrostriatal regions of the rat brain. We used image acquired at the optical limit and generated binary masks at 2µm-wide margin from the respective maximum projections. Co-localization between the two antigens was infrequent (<10% in most areas examined. However, tyrosine hydroxylase labeling was particularly concentrated close to nitric oxide synthase dendrites/axons and the cell bodies. These results further substantiate an extrasynaptic substrate for interaction between nitrergic and dopaminergic systems, thereby modulating sensitivity to neural inputs and its gene expression.

  20. Activation of the HMGB1-RAGE axis upregulates TH expression in dopaminergic neurons via JNK phosphorylation.

    Science.gov (United States)

    Kim, Soo Jeong; Ryu, Min Jeong; Han, Jeongsu; Jang, Yunseon; Kim, Jungim; Lee, Min Joung; Ryu, Ilhwan; Ju, Xianshu; Oh, Eungseok; Chung, Woosuk; Kweon, Gi Ryang; Heo, Jun Young

    2017-11-04

    The derangement of tyrosine hydroxylase (TH) activity reduces dopamine synthesis and is implicated in the pathogenesis of Parkinson's disease. However, the extracellular modulator and intracellular regulatory mechanisms of TH have yet to be identified. Recently, high-mobility group box 1 (HMGB1) was reported to be actively secreted from glial cells and is regarded as a mediator of dopaminergic neuronal loss. However, the mechanism for how HMGB1 affects TH expression, particularly through the receptor for advanced glycation endproducts (RAGE), has not yet been investigated. We found that recombinant HMGB1 (rHMGB1) upregulates TH mRNA expression via simultaneous activation of JNK phosphorylation, and this induction of TH expression is blocked by inhibitors of RAGE and JNK. To investigate how TH expression levels change through the HMGB1-RAGE axis as a result of MPP + toxicity, we co-treated SN4741 dopaminergic cells with MPP + and rHMGB1. rHMGB1 blocked the reduction of TH mRNA following MPP + treatment without altering cell survival rates. Our results suggest that HMGB1 upregulates TH expression to maintain dopaminergic neuronal function via activating RAGE, which is dependent on JNK phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    Directory of Open Access Journals (Sweden)

    Imène Achour

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE, the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA. We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  2. Transcranial magnetic stimulation promotes the proliferation of dopaminergic neuronal cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhong

    2018-05-01

    Full Text Available Transcranial magnetic stimulation (TMS is a safe and non-invasive treatment for neurological disorders. TMS has been approved as a treatment for major depressive disorders by the US Food and Drug Administration (FDA in 2008. Due to the phenomenon of electromagnetic induction, a time-varying magnetic field induces an electric field in the conductive tissues in the brain, TMS has the ability to activate neurons in vivo. However, the effects of the magnetic fields on neurons in cell culture have not been investigated adequately. The magnetic fields affect the neurons when the potential across the neuronal membrane exceeds the threshold which in turn causes an action potential. Based on these theories, we investigated the effects of the magnetic fields generated by a monophasic stimulator with a 70 mm double coil on rat dopaminergic neuronal cell lines (N27. The directions of the magnetic fields in each coil of the double coil oppose each other. The effects of changing the direction of the magnetic field on N27 neurons was also investigated. The results of the experiments showed that both of the fields perpendicular to the coil surface promoted the proliferation of N27 dopaminergic neurons. In order to investigate the gene expression and protein expression affected by TMS, quantitative Polymerase Chain Reaction (qPCR was used. Here we report changes in glial cell line-derived neurotrophic factor (GDNF in dopaminergic neuronal cells (N27 after TMS treatment.

  3. Pathological Gambling in Parkinson's disease patients: Dopaminergic medication or personality traits fault?

    Science.gov (United States)

    Brusa, L; Pavino, V; Massimetti, M C; Ceravolo, R; Stefani, S; Stanzione, P

    2016-07-15

    Impulse control disorders (ICDs) are clinically relevant in Parkinson disease (PD) patients, with an established association with PD medication. Aim of our study was to study whether the increased frequency of pathological gambling (PG), reported in subgroups of PD patients, is related to specific personality tracts additional to dopaminergic medications. Thirty-seven PD patients with a personal history of PG where enrolled. Twenty one PD patients, matched for disease and dopaminergic therapy, never experiencing PG, were enrolled as controls. All subjects were tested with the Minnesota Multiphasic Inventory Personality scales (MMPI-2). Our data showed that PD group with PG exhibited significantly higher mean values of the three validity scales in comparison to the non-PG-PD group, demonstrating an higher tendency to lie. Content scales showed a significant increase of cynicism and bizarre ideation scales score in the PG-PD group, not exhibiting pathological values at the validity scales, (p: 0.02) in comparison to non-PG PD patients. According to our results, PG seems to be associated with precise personality tracts. Personality profiles of cluster A personality disturbances - Axys 2 according with DSM-5 TR (paranoid type) at MMPI-2 might be a warning index helpful in selecting dopaminergic treatment, to avoid subsequent ICDs appearance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Complementary neural correlates of motivation in dopaminergic and noradrenergic neurons of monkeys.

    Directory of Open Access Journals (Sweden)

    Sebastien eBouret

    2012-07-01

    Full Text Available Rewards have many influences on learning, decision-making and performance. All seem to rely on complementary actions of two closely related catecholaminergic neuromodulators, dopamine and noradrenaline. We compared single unit activity of dopaminergic neurons of the substantia nigra pars compacta and noradrenergic neurons of the locus coeruleus in monkeys performing a reward schedule task. Their motivation, indexed using operant performance, increased as they progressed through schedules ending in reward delivery. The responses of dopaminergic and noradrenergic neurons around the time of major task events, visual cues predicting trial outcome and operant action to complete a trial, were similar, in that they occurred at the same time. They were also similar in that they both responded most strongly to the first cues in schedules, which are the most informative cues. The neuronal responses around the time of the monkeys’ actions were different, in that the response intensity profiles changed in opposite directions. Dopaminergic responses were stronger around predictably rewarded correct actions whereas noradrenergic responses were greater around predictably unrewarded correct actions. The complementary response profiles related to the monkeys operant actions suggest that dopamine neurons might relate to the value of the current action whereas the noradrenergic neurons relate to the psychological cost of that action.

  5. Inhibition of the mesoamygdala dopaminergic pathway impairs the retrieval of conditioned fear associations.

    Science.gov (United States)

    Nader, K; LeDoux, J E

    1999-10-01

    Previous findings have demonstrated that systemic dopaminergic manipulations impair the retrieval of Pavlovian conditioned fear. A second-order fear-conditioning paradigm was used to test whether the dopaminergic projection from the ventral tegmental area (VTA) to the lateral and basal amygdala (LBA) can affect conditioned fear. Phase 1 entailed conditioned stimulus-unconditioned stimulus (CS1-US) pairings. In Phase 2, drugs were infused in either the LBA or VTA prior to pairings of CS2 (a second cue) with CS1. In Phase 3, freezing behavior elicited by CS2 was tested without drugs. Infusions of the D2 agonist quinpirole into the VTA or of the D1 antagonist SCH 23390 into the LBA caused a decrease in freezing to CS2. Both manipulations decrease D1 receptor activation in the LBA. Infusions of the D1 agonist SKF 38393 into the LBA had no effect. This pattern of results is consistent with the hypothesis that the VTA-LBA dopaminergic projection modulates the retrieval of an association between a CS and footshock US.

  6. The emerging role of norepinephrine in cognitive dysfunctions of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Elena eVazey

    2012-07-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disorder, affecting 1% of the population over age 60. In those patients cognitive dysfunction is a persistent issue that impairs quality of life and productivity. Neuropathological studies demonstrate significant damage in brain regions outside the nigral dopamine (DA system, including early degeneration of locus coeruleus norepinephrine (LC-NE neurons, yet discussion of PD and treatment focus has remained dopaminergic-based. Motor symptoms benefit from DA replacement for many years, but other symptoms including several cognitive deficits continue unabated. Recent interest in non-DA substrates of PD highlights early involvement of LC-NE neurons and provides evidence for a prodromal phase, with cognitive disturbance, even in sporadic PD. We outline insights from basic research in LC-NE function to clinical and pathological evidence highlighting a role for NE in PD cognitive dysfunction. We propose that loss of LC-NE regulation, particularly in higher cortical regions, critically underlies certain cognitive dysfunctions in early PD. As a major unmet need for patients, research and use of NE drugs in PD may provide significant benefits for cognitive processing.

  7. Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage.

    Science.gov (United States)

    Viveros-Paredes, J M; Gonzalez-Castañeda, R E; Escalante-Castañeda, A; Tejeda-Martínez, A R; Castañeda-Achutiguí, F; Flores-Soto, M E

    2017-01-16

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our study included 4 experimental groups (n = 6 mice per group): a control group receiving no treatment, a group receiving URB597 (0.2mg/kg) every 3 days for 30 days, a group treated with MPTP (30mg/kg) for 5 days, and a group receiving URB597 and subsequently MPTP injections. Three days after the last dose, we conducted a series of behavioural tests (beam test, pole test, and stride length test) to compare motor coordination between groups. We subsequently analysed immunoreactivity of dopaminergic cells and microglia in the SNpc and striatum. Mice treated with URB597 plus MPTP were found to perform better on behavioural tests than mice receiving MPTP only. According to the immunohistochemistry study, mice receiving MPTP showed fewer dopaminergic cells and fibres in the SNpc and striatum. Animals treated with URB597 plus MPTP displayed increased tyrosine hydroxylase immunoreactivity compared to those treated with MPTP only. Regarding microglial immunoreactivity, the group receiving MPTP showed higher Iba1 immunoreactivity in the striatum and SNpc than did the group treated with URB597 plus MPTP. Our results show that URB597 exerts a protective effect since it inhibits dopaminergic neuronal death, decreases microglial immunoreactivity, and improves MPTP-induced motor alterations. Copyright © 2016 Sociedad Española de Neurología. Publicado

  8. Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Wang Feifei

    2008-08-01

    Full Text Available Abstract Background Parkinson's disease (PD is a neurological disorder characterized by the degeneration of nigrostriatal dopaminergic systems. Free radicals induced by oxidative stress are involved in the mechanisms of cell death in PD. This study clarifies the neuroprotective effects of edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one, which has already been used for the treatment of cerebral ischemia in Japan, on TH-positive dopaminergic neurons using PD model both in vitro and in vivo. 6-hydroxydopamine (6-OHDA, a neurotoxin for dopaminergic neurons, was added to cultured dopaminergic neurons derived from murine embryonal ventral mesencephalon with subsequet administration of edaravone or saline. The number of surviving TH-positive neurons and the degree of cell damage induced by free radicals were analyzed. In parallel, edaravone or saline was intravenously administered for PD model of rats receiving intrastriatal 6-OHDA lesion with subsequent behavioral and histological analyses. Results In vitro study showed that edaravone significantly ameliorated the survival of TH-positive neurons in a dose-responsive manner. The number of apoptotic cells and HEt-positive cells significantly decreased, thus indicating that the neuroprotective effects of edaravone might be mediated by anti-apoptotic effects through the suppression of free radicals by edaravone. In vivo study demonstrated that edaravone-administration at 30 minutes after 6-OHDA lesion reduced the number of amphetamine-induced rotations significantly than edaravone-administration at 24 hours. Tyrosine hydroxylase (TH staining of the striatum and substantia nigra pars compacta revealed that edaravone might exert neuroprotective effects on nigrostriatal dopaminergic systems. The neuroprotective effects were prominent when edaravone was administered early and in high concentration. TUNEL, HEt and Iba-1 staining in vivo might demonstrate the involvement of anti-apoptotic, anti

  9. Vocal cord dysfunction in children.

    Science.gov (United States)

    Noyes, Blakeslee E; Kemp, James S

    2007-06-01

    Vocal cord dysfunction is characterised by paradoxical vocal cord adduction that occurs during inspiration, resulting in symptoms of dyspnoea, wheeze, chest or throat tightness and cough. Although the condition is well described in children and adults, confusion with asthma often triggers the use of an aggressive treatment regimen directed against asthma. The laryngoscopic demonstration of vocal cord adduction during inspiration has been considered the gold standard for the diagnosis of vocal cord dysfunction, but historical factors and pulmonary function findings may provide adequate clues to the correct diagnosis. Speech therapy, and in some cases psychological counselling, is often beneficial in this disorder. The natural course and prognosis of vocal cord dysfunction are still not well described in adults or children.

  10. Sexual dysfunctions in psoriatic patients

    Directory of Open Access Journals (Sweden)

    Maria Isabela Sarbu

    2015-04-01

    Full Text Available Psoriasis is a chronic, immune-mediated disorder with a worldwide occurrence characterized by well-defined infiltrated erythematous papules and plaques, covered by silvery white or yellowish scales. It is a physically, socially and emotionally invalidating disorder that affects 1-2% of the population. Sexual health is an important part of general health and sexual dysfunctions can negatively affect self-esteem, confidence, interpersonal relationships and the quality of life. Dermatology Life Quality Index (DLQI, Psoriasis Disability Index (PDI and the Impact of Psoriasis on Quality of Life (IPSO questionnaire are all questionnaires used to assess the quality of life of patients with psoriasis and each has one question regarding sexual dysfunction. Several scales were also designed to particularly assess sexual satisfaction in men and women. The aim of this paper is to perform an overview of the existing studies on sexual dysfunction in psoriatic patients.

  11. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  12. Cognitive dysfunction in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Joana eGuimarães

    2012-05-01

    Full Text Available In Multiple Sclerosis (MS prevalence studies of community and clinical samples, indicate that 45–60% of patients are cognitively impaired. These cognitive dysfunctions have been traditionally described as heterogeneous, but more recent studies suggest that there is a specific pattern of MS-related cognitive dysfunctions. With the advent of disease-modifying medications for MS and emphasis on early intervention and treatment, detection of cognitive impairment at its earliest stage becomes particularly important. In this review the authors address: the cognitive domains most commonly impaired in MS (memory, attention, executive functions, speed of information processing and visual spatial abilities; the physiopathological mechanism implied in MS cognitive dysfunction and correlated brain MRI features; the importance of neuropsychological assessment of MS patients in different stages of the disease and the influence of its course on cognitive performance; the most used tests and batteries for neuropsychological assessment; therapeutic strategies to improve cognitive abilities.

  13. Bladder Dysfunction and Urinary Incontinence

    OpenAIRE

    F. faizi

    2009-01-01

      "nIn the name of God. Dear colleagues, ladies and gentlemen, it is a great honor to be here. Bladder dysfunction is serious enough to seek serious help. If you may know I am working in a private clinic which it is impossible to follow the patients so this lecture is based on unusual and rare cases who came to me. Bladder dysfunction (BD) is common among 30% of young and old people who are suffering from it, however it is more common in old ages. According to a research, women ...

  14. Hormonal Changes and Sexual Dysfunction.

    Science.gov (United States)

    Zhou, Eric S; Frederick, Natasha N; Bober, Sharon L

    2017-11-01

    Sexual dysfunction is a common concern for many patients with cancer after treatment. Hormonal changes as a result of cancer-directed therapy can affect both male and female sexual health. This has the potential to significantly impact patients' quality of life, but is underreported and undertreated in the oncology setting. This review discusses commonly reported sexual issues and the role that hormonal changes play in this dysfunction. Although medical and psychosocial intervention strategies exist, there is a clear need for further research to formally develop programming that can assist people whose sexual health has been impacted by cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain.

    Science.gov (United States)

    Frau, Lucia; Simola, Nicola; Porceddu, Pier Francesca; Morelli, Micaela

    2016-09-01

    3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dopaminergic Therapy Increases Go Timeouts in the Go/No-Go Task in Patients with Parkinson’s Disease

    Science.gov (United States)

    Yang, Xue Q.; Lauzon, Brian; Seergobin, Ken N.; MacDonald, Penny A.

    2018-01-01

    Parkinson’s disease (PD) is characterized by resting tremor, rigidity and bradykinesia. Dopaminergic medications such as L-dopa treat these motor symptoms, but can have complex effects on cognition. Impulse control is an essential cognitive function. Impulsivity is multifaceted in nature. Motor impulsivity involves the inability to withhold pre-potent, automatic, erroneous responses. In contrast, cognitive impulsivity refers to improper risk-reward assessment guiding behavior. Informed by our previous research, we anticipated that dopaminergic therapy would decrease motor impulsivity though it is well known to enhance cognitive impulsivity. We employed the Go/No-go paradigm to assess motor impulsivity in PD. Patients with PD were tested using a Go/No-go task on and off their normal dopaminergic medication. Participants completed cognitive, mood, and physiological measures. PD patients on medication had a significantly higher proportion of Go trial Timeouts (i.e., trials in which Go responses were not completed prior to a deadline of 750 ms) compared to off medication (p = 0.01). No significant ON-OFF differences were found for Go trial or No-go trial response times (RTs), or for number of No-go errors. We interpret that dopaminergic therapy induces a more conservative response set, reflected in Go trial Timeouts in PD patients. In this way, dopaminergic therapy decreased motor impulsivity in PD patients. This is in contrast to the widely recognized effects of dopaminergic therapy on cognitive impulsivity leading in some patients to impulse control disorders. Understanding the nuanced effects of dopaminergic treatment in PD on cognitive functions such as impulse control will clarify therapeutic decisions. PMID:29354045

  17. Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons.

    Science.gov (United States)

    Collins, Louise M; O'Keeffe, Gerard W; Long-Smith, Caitriona M; Wyatt, Sean L; Sullivan, Aideen M; Toulouse, André; Nolan, Yvonne M

    2013-06-01

    A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.

  18. Medical therapy and smell dysfunction

    NARCIS (Netherlands)

    Hellings, P. W.; Rombaux, P.

    2009-01-01

    Olfactory dysfunction is deemed to be a significant contributor to poor quality of life in different nasal inflammatory conditions like common cold, allergic rhinitis, and acute and chronic rhinosinusitis with and without nasal polyps (NP). The mechanism underlying olfactory impairment in

  19. Sweating dysfunction in Parkinson's disease

    NARCIS (Netherlands)

    Swinn, L; Schrag, A; Viswanathan, R; Lees, A; Quinn, N; Bloem, Bastiaan R.

    2003-01-01

    We sought to determine the prevalence and nature of sweating disturbances in patients with Parkinson's disease (PD), and investigated their correlation with other clinical features and with Quality of Life (QoL) measures. A questionnaire on symptoms and consequences of sweating dysfunction was

  20. Ageing with neurogenic bowel dysfunction

    DEFF Research Database (Denmark)

    Nielsen, S D; Faaborg, Pia Møller; Finnerup, Nanna Brix

    2017-01-01

    The aim of this longitudinal study with postal survey was to describe changes in the patterns of neurogenic bowel dysfunction and bowel management in a population of people with spinal cord injury (SCI) followed for two decades. In 1996, a validated questionnaire on bowel function was sent to the...

  1. Defining sphincter of oddi dysfunction

    DEFF Research Database (Denmark)

    Funch-Jensen, Peter

    1996-01-01

    Sphincter of Oddi (SO) dysmotility may give rise to pain. The golden standard for the demonstration of SO dysfunction is endoscopic manometry. A number of abnormalities are observed in patients with postcholecystectomy pain and in patients with idiopathic recurrent pancreatitis. Criteria for defi...

  2. COMT Val158Met Polymorphism, Executive Dysfunction, and Sexual Risk Behavior in the Context of HIV Infection and Methamphetamine Dependence

    Directory of Open Access Journals (Sweden)

    C. A. Bousman

    2010-01-01

    Full Text Available Catechol-O-methyltransferease (COMT metabolizes prefrontal cortex dopamine (DA, a neurotransmitter involved in executive behavior; the Val158Met genotype has been linked to executive dysfunction, which might increase sexual risk behaviors favoring HIV transmission. Main and interaction effects of COMT genotype and executive functioning on sexual risk behavior were examined. 192 sexually active nonmonogamous men completed a sexual behavior questionnaire, executive functioning tests, and were genotyped using blood-derived DNA. Main effects for executive dysfunction but not COMT on number of sexual partners were observed. A COMT x executive dysfunction interaction was found for number of sexual partners and insertive anal sex, significant for carriers of the Met/Met and to a lesser extent Val/Met genotypes but not Val/Val carriers. In the context of HIV and methamphetamine dependence, dopaminergic overactivity in prefrontal cortex conferred by the Met/Met genotype appears to result in a liability for executive dysfunction and potentially associated risky sexual behavior.

  3. Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP.

    Science.gov (United States)

    Aguirre, Jose A; Kehr, Jan; Yoshitake, Takashi; Liu, Fang-Ling; Rivera, Alicia; Fernandez-Espinola, Sergio; Andbjer, Beth; Leo, Giuseppina; Medhurst, Andrew D; Agnati, Luigi F; Fuxe, Kjell

    2005-02-08

    The mGluR5 antagonist MPEP was used to study the role of mGluR5 in MPTP-induced injury of the nigrostriatal DA neurons. The findings indicate that acute blockade of mGluR5 may result in neuroprotective actions against MPTP neurotoxicity on nigral DA cell bodies and striatal DA terminals using stereological analysis of TH immunoreactivity and microdensitometry. Biochemical analysis showed no restoration of DA levels and metabolism indicating a maintained reduction of DA transmission.

  4. Electrophysiological and pharmacological evidence for the existence of distinct subpopulations of nigrostriatal dopaminergic neuron in the rat.

    Science.gov (United States)

    Shepard, P D; German, D C

    1988-11-01

    The electrophysiological and pharmacological properties of dopaminergic neurons were systematically examined throughout the anterior-posterior extent of the substantia nigra zona compacta in the rat. Cells were characterized in terms of their (1) firing pattern, (2) firing rate, (3) antidromic response properties, and (4) inhibition in firing rate following dopaminergic agonist administration. These properties were then related to the cell's position within one of four anterior-posterior segments of the nucleus. There were three types of neuronal discharge pattern encountered; irregular, burst and regular. Cells which exhibited different firing patterns exhibited different firing rates and anatomical locations within the substantia nigra zona compacta. All neurons were antidromically activated from the striatum, however, the burst- and regular-firing cells exhibited significantly faster estimated conduction velocities than irregular-firing cells. The irregular-firing cells were most sensitive to dopaminergic autoreceptor agonists whereas the burst-firing cells were most sensitive to an indirect-acting dopaminergic agonist. These experiments provide both electrophysiological and pharmacological evidence to indicate that nigrostriatal dopaminergic neurons are composed of distinct subpopulations which are characterized by their firing pattern.

  5. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: A possible link with Parkinson's disease.

    Science.gov (United States)

    Abbaoui, Abdellatif; Chatoui, Hicham; El Hiba, Omar; Gamrani, Halima

    2017-11-01

    Numerous findings indicate an involvement of heavy metals in the neuropathology of several neurodegenerative disorders, especially Parkinson's disease (PD). Previous studies have demonstrated that Copper (Cu) exhibits a potent neurotoxic effect on dopaminergic neurons and triggers profound neurobehavioral alterations. Curcumin is a major component of Curcuma longa rhizomes and a powerful medicinal plant that exerts many pharmacological effects. However, the neuroprotective action of curcumin on Cu-induced dopaminergic neurotoxicity is yet to be investigated. The aim of the present study was to evaluate the impact of acute Cu-intoxication (10mg/kg B.W. i.p) for 3days on the dopaminergic system and locomotor performance as well as the possible therapeutic efficacy of curcumin I (30mg/kg B.W.). Intoxicated rats showed a significant loss of Tyrosine Hydroxylase (TH) expression within substantia nigra pars compacta (SNc), ventral tegmental area (VTA) and the striatal outputs. This was correlated with a clear decrease in locomotor performance. Critically, curcumin-I co-treatment reversed these changes and showed a noticeable protective effect; both TH expression and locomotor performance was reinstated in intoxicated rats. These results demonstrate altered dopaminergic innervations following Cu intoxication and a new therapeutic potential of curcumin against Cu-induced dopaminergic neurotransmission failure. Curcumin may therefore prevent heavy metal related Parkinsonism. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Altered dopaminergic regulation of the dorsal striatum is able to induce tic-like movements in juvenile rats

    Science.gov (United States)

    Rizzo, Francesca; Boeckers, Tobias; Schulze, Ulrike

    2018-01-01

    Motor tics are sudden, repetitive, involuntary movements representing the hallmark behaviors of the neurodevelopmental disease Tourette’s syndrome (TS). The primary cause of TS remains unclear. The initial observation that dopaminergic antagonists alleviate tics led to the development of a dopaminergic theory of TS etiology which is supported by post mortem and in vivo studies indicating that non-physiological activation of the striatum could generate tics. The striatum controls movement execution through the balanced activity of dopamine receptor D1 and D2-expressing medium spiny neurons of the direct and indirect pathway, respectively. Different neurotransmitters can activate or repress striatal activity and among them, dopamine plays a major role. In this study we introduced a chronic dopaminergic alteration in juvenile rats, in order to modify the delicate balance between direct and indirect pathway. This manipulation was done in the dorsal striatum, that had been associated with tic-like movements generation in animal models. The results were movements resembling tics, which were categorized and scored according to a newly developed rating scale and were reduced by clonidine and riluzole treatment. Finally, post mortem analyses revealed altered RNA expression of dopaminergic receptors D1 and D2, suggesting an imbalanced dopaminergic regulation of medium spiny neuron activity as being causally related to the observed phenotype. PMID:29698507

  7. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    Science.gov (United States)

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  8. The effect of bifenthrin on the dopaminergic pathway in juvenile rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Crago, Jordan; Schlenk, Daniel

    2015-05-01

    Bifenthrin is a type I pyrethroid pesticide, which has been shown to increase plasma estrogen concentrations in several fish models. The mechanism of action by which bifenthrin alters 17β-estradiol (E2) is unclear. E2 biosynthesis is regulated through pituitary follicle stimulating hormone, which is directly controlled by hypothalamic gonadotropin releasing hormone (GnRH2). Since dopaminergic signaling significantly influences GnRH2 release in fish, the goal of the study was to determine the effect of a 96 h and 2 weeks exposure to bifenthrin on dopaminergic signaling in juvenile rainbow trout (Oncorhynchus mykiss) (RT). Our results indicated that a decrease in dopamine receptor 2A (DR2A) expression was associated with a trend toward an increase in plasma E2 following exposure at 96 h and 2 weeks, and a significant increase in the relative expression of vitellogenin mRNA at 2 weeks. DR2A mRNA expression decreased 426-fold at 96 h and 269-fold at 2 weeks in the brains of 1.5 ppb (3.55 pM) bifenthrin treated RT. There was an increase in tyrosine hydroxylase transcript levels at 96 h, which is indicative of dopamine production in the brains of the 1.5 ppb (3.55 pM) bifenthrin treated RT. A significant increase in the relative expression of GnRH2 was observed at 96 h but a significant decrease was noted after 2 weeks exposure indicating potential feedback loop activation. These results indicate that the estrogenic-effects of bifenthrin may result in part from changes in signaling within the dopaminergic pathway, but that other feedback pathways may also be involved. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The effects of long-term dopaminergic treatment on locomotor behavior in rats.

    Science.gov (United States)

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-12-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole-PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  10. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Science.gov (United States)

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-01-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole—PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions. PMID:26483930

  11. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Directory of Open Access Journals (Sweden)

    Welinton Alessandro Oliveira de Almeida

    2014-12-01

    Full Text Available Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL and drug (Pramipexole—PPX groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  12. Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence.

    Science.gov (United States)

    Ersche, Karen D; Bullmore, Edward T; Craig, Kevin J; Shabbir, Shaila S; Abbott, Sanja; Müller, Ulrich; Ooi, Cinly; Suckling, John; Barnes, Anna; Sahakian, Barbara J; Merlo-Pich, Emilio V; Robbins, Trevor W

    2010-06-01

    There are no effective pharmacotherapies for stimulant dependence but there are many plausible targets for development of novel therapeutics. We hypothesized that dopamine-related targets are relevant for treatment of stimulant dependence, and there will likely be individual differences in response to dopaminergic challenges. To measure behavioral and brain functional markers of drug-related attentional bias in stimulant-dependent individuals studied repeatedly after short-term dosing with dopamine D(2)/D(3) receptor antagonist and agonist challenges. Randomized, double-blind, placebo-controlled, parallel-groups, crossover design using pharmacological functional magnetic resonance imaging. Clinical research unit (GlaxoSmithKline) and local community in Cambridge, England. Stimulant-dependent individuals (n = 18) and healthy volunteers (n = 18). Amisulpride (400 mg), pramipexole dihydrochloride (0.5 mg), or placebo were administered in counterbalanced order at each of 3 repeated testing sessions. Attentional bias for stimulant-related words was measured during functional magnetic resonance imaging by a drug-word Stroop paradigm; trait impulsivity and compulsivity of dependence were assessed at baseline by questionnaire. Drug users demonstrated significant attentional bias for drug-related words, which was correlated with greater activation of the left prefrontal and right cerebellar cortex. Attentional bias was greater in people with highly compulsive patterns of stimulant abuse; the effects of dopaminergic challenges on attentional interference and related frontocerebellar activation were different between high- and low-compulsivity subgroups. Greater attentional bias for and greater prefrontal activation by stimulant-related words constitute a candidate neurocognitive marker for dependence. Individual differences in compulsivity of stimulant dependence had significant effects on attentional bias, its brain functional representation, and its short-term modulation

  13. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Tianhong Pan

    Full Text Available The relatively high co-occurrence of Parkinson's disease (PD and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM, the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR and inhibit tyrosine hydroxylase (TH, both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA, led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in

  14. Differentiation and Characterization of Dopaminergic Neurons From Baboon Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Grow, Douglas A; Simmons, DeNard V; Gomez, Jorge A; Wanat, Matthew J; McCarrey, John R; Paladini, Carlos A; Navara, Christopher S

    2016-09-01

    : The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson's disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and baboon

  15. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  16. Relationship between nigrostriatal dopaminergic degeneration, urinary symptoms, and bladder control in Parkinson's disease

    DEFF Research Database (Denmark)

    Winge, K; Friberg, L; Werdelin, L

    2005-01-01

    Patients with Parkinson's disease (PD) often have lower urinary tract symptoms (LUTS). Studies have indicated a correlation between dopaminergic degeneration and LUTS and presence of overactive bladder. We evaluated 18 patients with Parkinson's disease using single-photon emission computerized....... The effects of medication on bladder control, as evaluated by urodynamics are believed to involve structures outside the basal ganglia....... tomography (SPECT) imaging of the dopamine transporter with [(123)I]-FP-CIT, and bladder symptoms were assessed using questionnaires and full urodynamic evaluation both in medicated state and after cessation. Bladder symptoms correlated with age, stage and severity of disease but not with uptake...

  17. Omission of expected reward sensitizes the brain dopaminergic system of classically conditioned Atlantic salmon

    DEFF Research Database (Denmark)

    Vindas, M.A.; Höglund, Erik; Folkedal, O.

    in fishes. Here we show that the omission of expected reward (OER) leads to increased aggression towards conspecifics in classically conditioned Atlantic salmon (Salmo salar). Furthermore, in response to an acute stressor, OER fish displayed increased dopaminergic (DA) neurotransmission compared to controls....... There was also a general downregulation of dopamine receptor D1 gene expression in the telencephalon of OER groups, which suggests a coping mechanism in response to unbalanced DA metabolism. These results indicate that animals subjected to unpredictable reward conditions develop a senzitation of the DA...

  18. Spectrophotometric determination of dopaminergic drugs used for Parkinson's disease, cabergoline and ropinirole, in pharmaceutical preparations.

    Science.gov (United States)

    Onal, Armağan; Cağlar, Sena

    2007-04-01

    Simple and reproducible spectrophotometric methods have been developed for determination of dopaminergic drugs used for Parkinson's disease, cabergoline (CAB) and ropinirole hydrochloride (ROP), in pharmaceutical preparations. The methods are based on the reactions between the studied drug substances and ion-pair agents [methyl orange (MO), bromocresol green (BCG) and bromophenol blue (BPB)] producing yellow colored ion-pair complexes in acidic buffers, after extracting in dichloromethane, which are spectrophotometrically determined at the appropriate wavelength of ion-pair complexes. Beer's law was obeyed within the concentration range from 1.0 to 35 microg ml(-1). The developed methods were applied successfully for the determination of these drugs in tablets.

  19. Elicitation of dopaminergic features of Parkinson's disease in C. elegans by monocrotophos, an organophosphorous insecticide.

    Science.gov (United States)

    Ali, Shaheen Jafri; Rajini, Padmanabhan Sharda

    2012-12-01

    Positive correlations have been suggested between usage of pesticides and the incidence of Parkinson's disease (PD) through epidemiological as well as few experimental evidences. Organophosphorus insecticides (OPI), which are extensively used in agricultural and household insect control, have been the subject of increasing concern in the past decades due to their neurotoxic potential. However, very few studies have demonstrated the potentials of OPI to induce features of PD in model organisms. In the present study, Caenorhabditis elegans was selected as the model organism to evaluate the potential of monocrotophos (MCP), an OPI, to elicit dopaminergic features of Parkinson's disease in terms of dopamine content, basic movement and integrity of dopaminergic neurons along with its effect on acetylcholinesterase (AChE) activity and life span. All the responses elicited by MCP were compared with that elicited by 1-methyl-4-phenyl- 1, 2, 3, 6-tetrahydropyridine (MPTP) in both N2 and BZ555 worms. N2 worms were exposed to varying concentrations of MCP (50, 100 and 200 μM) or MPTP (200, 300 and 400 μM) for 48 hours and locomotory rate, as measured by the number of body bends made in 20 seconds, was enumerated. Worms subjected to the same dose paradigms were also analyzed for the dopamine content by HPLC. The results indicated a significant reduction in the dopamine levels in the worms that were treated with MCP/MPTP and this correlated with the changes in locomotion compared to untreated worms. Worms treated with MCP also exhibited significant reduction in AChE activity. Both MPTP and MCP caused a marked reduction in life span in the worms. Transgenic worms (BZ555, which has GFP tagged to its 8 dopaminergic neurons) exposed to MCP and MPTP at the above concentrations showed a dose-dependent reduction in the number of green pixels in CEP and ADE neurons which also correlated with the neurodegeneration as visualized by decreased fluorescence in photomicrographs. Taken

  20. Autonomic dysfunction in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Dümcke, Christine Winkler; Møller, Søren

    2008-01-01

    Liver cirrhosis and portal hypertension are frequently associated with signs of circulatory dysfunction and peripheral polyneuropathy, which includes defects of the autonomic nervous system. Autonomic dysfunction, which is seen in both alcoholic and non-alcoholic liver cirrhosis and increases...

  1. Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β Signaling in Cadmium-Induced DA-D2 Receptor-Mediated Motor Dysfunctions: Protective Role of Quercetin.

    Science.gov (United States)

    Gupta, Richa; Shukla, Rajendra K; Pandey, Ankita; Sharma, Tanuj; Dhuriya, Yogesh K; Srivastava, Pranay; Singh, Manjul P; Siddiqi, Mohammad Imran; Pant, Aditya B; Khanna, Vinay K

    2018-02-06

    Given increasing risk of cadmium-induced neurotoxicity, the study was conducted to delineate the molecular mechanisms associated with cadmium-induced motor dysfunctions and identify targets that govern dopaminergic signaling in the brain involving in vivo, in vitro, and in silico approaches. Selective decrease in dopamine (DA)-D2 receptors on cadmium exposure was evident which affected the post-synaptic PKA/DARPP-32/PP1α and β-arrestin/Akt/GSK-3β signaling concurrently in rat corpus striatum and PC12 cells. Pharmacological inhibition of PKA and Akt in vitro demonstrates that both pathways are independently modulated by DA-D2 receptors and associated with cadmium-induced motor deficits. Ultrastructural changes in the corpus striatum demonstrated neuronal degeneration and loss of synapse on cadmium exposure. Further, molecular docking provided interesting evidence that decrease in DA-D2 receptors may be due to direct binding of cadmium at the competitive site of dopamine on DA-D2 receptors. Treatment with quercetin resulted in the alleviation of cadmium-induced behavioral and neurochemical alterations. This is the first report demonstrating that cadmium-induced motor deficits are associated with alteration in postsynaptic dopaminergic signaling due to a decrease in DA-D2 receptors in the corpus striatum. The results further demonstrate that quercetin has the potential to alleviate cadmium-induced dopaminergic dysfunctions.

  2. History of the Treatment of Female Sexual Dysfunction(s).

    Science.gov (United States)

    Kleinplatz, Peggy J

    2018-01-22

    This article reviews the history of the treatment of women's sexual problems from the Victorian era to the twenty-first century. The contextual nature of determining what constitutes female sexual psychopathology is highlighted. Conceptions of normal sexuality are subject to cultural vagaries, making it difficult to identify female sexual dysfunctions. A survey of the inclusion, removal, and collapsing of women's sexual diagnoses in the Diagnostic and Statistical Manual of Mental Disorders from 1952 to 2013 illuminates the biases in the various editions. Masters and Johnson's models of sexual response and dysfunction paved the way for the diagnosis and treatment of women's sexual dysfunctions. Their sex therapy paradigm is described. Conceptions of and treatments for anorgasmia, arousal difficulties, vaginismus, dyspareunia, and low desire are reviewed. The medicalization of human sexuality and the splintering of sex therapy are discussed, along with current trends and new directions in sexual health care for women. Expected final online publication date for the Annual Review of Clinical Psychology Volume 14 is May 7, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  3. Erectile dysfunction among men attending surgical outpatients ...

    African Journals Online (AJOL)

    Background: Erectile dysfunction is becoming a public health issue with high incidences reported in community studies. Objective: To evaluate the characteristics and outcome of treatment in men with erectile dysfunction in a tertiary center in Ibadan southwestern Nigeria. Methods: Data of men with erectile dysfunction was ...

  4. Paranormal experience and the COMT dopaminergic gene: a preliminary attempt to associate phenotype with genotype using an underlying brain theory.

    Science.gov (United States)

    Raz, Amir; Hines, Terence; Fossella, John; Castro, Daniella

    2008-01-01

    Paranormal belief and suggestibility seem related. Given our recent findings outlining a putative association between suggestibility and a specific dopaminergic genetic polymorphism, we hypothesized that similar exploratory genetic data may offer supplementary insights into a similar correlation with paranormal belief. With more affordable costs and better technology in the aftermath of the human genome project, genotyping is increasingly ubiquitous. Compelling brain theories guide specific research hypotheses as scientists begin to unravel tentative relationships between phenotype and genotype. In line with a dopaminergic brain theory, we tried to correlate a specific phenotype concerning paranormal belief with a dopaminergic gene (COMT) known for its involvement in prefrontal executive cognition and for a polymorphism that is positively correlated with suggestibility. Although our preliminary findings are inconclusive, the research approach we outline should pave the road to a more scientific account of elucidating paranormal belief.

  5. Linkage of cDNA expression profiles of mesencephalic dopaminergic neurons to a genome-wide in situ hybridization database

    Directory of Open Access Journals (Sweden)

    Simon Horst H

    2009-01-01

    Full Text Available Abstract Midbrain dopaminergic neurons are involved in control of emotion, motivation and motor behavior. The loss of one of the subpopulations, substantia nigra pars compacta, is the pathological hallmark of one of the most prominent neurological disorders, Parkinson's disease. Several groups have looked at the molecular identity of midbrain dopaminergic neurons and have suggested the gene expression profile of these neurons. Here, after determining the efficiency of each screen, we provide a linked database of the genes, expressed in this neuronal population, by combining and comparing the results of six previous studies and verification of expression of each gene in dopaminergic neurons, using the collection of in situ hybridization in the Allen Brain Atlas.

  6. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, Robert; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V 2 O 5 ). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V 2 O 5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC 50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (> fourfold) and caspase-3 (> ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V 2 O 5 -induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V 2 O 5 -induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.

  7. Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line

    International Nuclear Information System (INIS)

    Zhang Danhui; Kanthasamy, Arthi; Anantharam, Vellareddy; Kanthasamy, Anumantha

    2011-01-01

    Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn impairs the dopaminergic neurotransmitter system remains unclear. We previously demonstrated that caspase-3-dependent proteolytic activation of protein kinase C delta (PKCδ) plays a key role in Mn-induced apoptotic cell death in dopaminergic neurons. Recently, we showed that PKCδ negatively regulates tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, by enhancing protein phosphatase-2A activity in dopaminergic neurons. Here, we report that Mn exposure can affect the enzymatic activity of TH, the rate-limiting enzyme in dopamine synthesis, by activating PKCδ-PP2A signaling pathway in a dopaminergic cell model. Low dose Mn (3-10 μM) exposure to differentiated mesencephalic dopaminergic neuronal cells for 3 h induced a significant increase in TH activity and phosphorylation of TH-Ser40. The PKCδ specific inhibitor rottlerin did not prevent Mn-induced TH activity or TH-Ser40 phosphorylation. On the contrary, chronic exposure to 0.1-1 μM Mn for 24 h induced a dose-dependent decrease in TH activity. Interestingly, chronic Mn treatment significantly increased PKCδ kinase activity and protein phosphatase 2A (PP2A) enzyme activity. Treatment with the PKCδ inhibitor rottlerin almost completely prevented chronic Mn-induced reduction in TH activity, as well as increased PP2A activity. Neither acute nor chronic Mn exposures induced any cytotoxic cell death or altered TH protein levels. Collectively, these results demonstrate that low dose Mn exposure impairs TH activity in dopaminergic cells through activation of PKCδ and PP2A activity.

  8. Oral Health and Erectile Dysfunction.

    Science.gov (United States)

    Singh, Vijendra P; Nettemu, Sunil K; Nettem, Sowmya; Hosadurga, Rajesh; Nayak, Sangeeta U

    2017-01-01

    Ample evidence strongly supports the fact that periodontal disease is a major risk factor for various systemic diseases namely cardio-vascular disease, diabetes mellitus, etc. Recently, investigators focussed on exploring the link between chronic periodontitis (CP) and erectile dysfunction (ED) by contributing to the endothelial dysfunction. Both the diseases share common risk factors. Various studies conducted in different parts of the world in recent years reported the evidence linking this relationship as well as improvement in ED with periodontal treatment. Systemic exposure to the periodontal pathogen and periodontal infection-induced systemic inflammation was thought to associate with these conditions. The objective of this review was to highlight the evidence of the link between CP and ED and the importance of oral health in preventing the systemic conditions.

  9. COGNITIVE DYSFUNCTIONS IN DIABETIC POLYNEUROPATHY

    Directory of Open Access Journals (Sweden)

    Mirena Valkova

    2011-12-01

    Full Text Available Introduction: The objective of our study was to examine cognitive status, short – term memory, delayed recall and the retention of visual information in diabetics with polyneuropathy and to establish the impacts of some risk factors on cognitive performance.Contingent and methods: We assessed 47 diabetic patients with polyneuropathy, using the Mini Mental State Examination, 10 words test, the Benton visual retention test and the Hamilton scale.Results: Global cognitive dysfunction, decline in verbal memory and visual retention and tendency for depressive mood were observed. We found statistically significant interaction of ageing, sex, severity of pain, duration and late onset of diabetes mellitus (DM on cognitive functioning. Therapy association on cognition was not found.Conclusions: Our study confirms the hypothesis of global cognitive dysfunction, associated with diabetic polyneuropathy. The interactions of sex and pain severity require further study. We arise a hypothesis of asymmetrical brain injury in diabetics.

  10. Oral health and erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Vijendra P Singh

    2017-01-01

    Full Text Available Ample evidence strongly supports the fact that periodontal disease is a major risk factor for various systemic diseases namely cardio-vascular disease, diabetes mellitus, etc. Recently, investigators focussed on exploring the link between chronic periodontitis (CP and erectile dysfunction (ED by contributing to the endothelial dysfunction. Both the diseases share common risk factors. Various studies conducted in different parts of the world in recent years reported the evidence linking this relationship as well as improvement in ED with periodontal treatment. Systemic exposure to the periodontal pathogen and periodontal infection-induced systemic inflammation was thought to associate with these conditions. The objective of this review was to highlight the evidence of the link between CP and ED and the importance of oral health in preventing the systemic conditions.

  11. Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans.

    Science.gov (United States)

    Tiveron, Marie-Catherine; Beclin, Christophe; Murgan, Sabrina; Wild, Stefan; Angelova, Alexandra; Marc, Julie; Coré, Nathalie; de Chevigny, Antoine; Herrera, Eloisa; Bosio, Andreas; Bertrand, Vincent; Cremer, Harold

    2017-11-01

    In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegans SIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species. Copyright © 2017 the authors 0270-6474/17/3710611-13$15.00/0.

  12. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    International Nuclear Information System (INIS)

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P.

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with [18F]N-methylspiroperidol [( 18F]NMSP) (to probe D2 receptor availability) and [N-11C-methyl]benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of [18F]NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of [N-11C-methyl]benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either [18F]NMSP or [N-11C-methyl]benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration

  13. Dissociable contribution of prefrontal and striatal dopaminergic genes to learning in economic games.

    Science.gov (United States)

    Set, Eric; Saez, Ignacio; Zhu, Lusha; Houser, Daniel E; Myung, Noah; Zhong, Songfa; Ebstein, Richard P; Chew, Soo Hong; Hsu, Ming

    2014-07-01

    Game theory describes strategic interactions where success of players' actions depends on those of coplayers. In humans, substantial progress has been made at the neural level in characterizing the dopaminergic and frontostriatal mechanisms mediating such behavior. Here we combined computational modeling of strategic learning with a pathway approach to characterize association of strategic behavior with variations in the dopamine pathway. Specifically, using gene-set analysis, we systematically examined contribution of different dopamine genes to variation in a multistrategy competitive game captured by (i) the degree players anticipate and respond to actions of others (belief learning) and (ii) the speed with which such adaptations take place (learning rate). We found that variation in genes that primarily regulate prefrontal dopamine clearance--catechol-O-methyl transferase (COMT) and two isoforms of monoamine oxidase--modulated degree of belief learning across individuals. In contrast, we did not find significant association for other genes in the dopamine pathway. Furthermore, variation in genes that primarily regulate striatal dopamine function--dopamine transporter and D2 receptors--was significantly associated with the learning rate. We found that this was also the case with COMT, but not for other dopaminergic genes. Together, these findings highlight dissociable roles of frontostriatal systems in strategic learning and support the notion that genetic variation, organized along specific pathways, forms an important source of variation in complex phenotypes such as strategic behavior.

  14. Colour vision in ADHD: part 1--testing the retinal dopaminergic hypothesis.

    Science.gov (United States)

    Kim, Soyeon; Al-Haj, Mohamed; Chen, Samantha; Fuller, Stuart; Jain, Umesh; Carrasco, Marisa; Tannock, Rosemary

    2014-10-24

    To test the retinal dopaminergic hypothesis, which posits deficient blue color perception in ADHD, resulting from hypofunctioning CNS and retinal dopamine, to which blue cones are exquisitely sensitive. Also, purported sex differences in red color perception were explored. 30 young adults diagnosed with ADHD and 30 healthy young adults, matched on age and gender, performed a psychophysical task to measure blue and red color saturation and contrast discrimination ability. Visual function measures, such as the Visual Activities Questionnaire (VAQ) and Farnsworth-Munsell 100 hue test (FMT), were also administered. Females with ADHD were less accurate in discriminating blue and red color saturation relative to controls but did not differ in contrast sensitivity. Female control participants were better at discriminating red saturation than males, but no sex difference was present within the ADHD group. Poorer discrimination of red as well as blue color saturation in the female ADHD group may be partly attributable to a hypo-dopaminergic state in the retina, given that color perception (blue-yellow and red-green) is based on input from S-cones (short wavelength cone system) early in the visual pathway. The origin of female superiority in red perception may be rooted in sex-specific functional specialization in hunter-gather societies. The absence of this sexual dimorphism for red colour perception in ADHD females warrants further investigation.

  15. Gastrodin Protects Apoptotic Dopaminergic Neurons in a Toxin-Induced Parkinson’s Disease Model

    Directory of Open Access Journals (Sweden)

    Hemant Kumar

    2013-01-01

    Full Text Available Gastrodia elata (GE Blume is one of the most important traditional plants in Oriental countries and has been used for centuries to improve various conditions. The phenolic glucoside gastrodin is an active constituent of GE. The aim of this study was to investigate the neuroprotective role of gastrodin in 1-methyl-4-phenylpyridinium (MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP induced human dopaminergic SH-SY5Y cells and mouse model of Parkinson’s disease (PD, respectively. Gastrodin significantly and dose dependently protected dopaminergic neurons against neurotoxicity through regulating free radicals, Bax/Bcl-2 mRNA, caspase-3, and cleaved poly(ADP-ribose polymerase (PARP in SH-SY5Y cells stressed with MPP+. Gastrodin also showed neuroprotective effects in the subchronic MPTP mouse PD model by ameliorating bradykinesia and motor impairment in the pole and rotarod tests, respectively. Consistent with this finding, gastrodin prevented dopamine depletion and reduced reactive astrogliosis caused by MPTP as assessed by immunohistochemistry and immunoblotting in the substantiae nigrae and striatata of mice. Moreover, gastrodin was also effective in preventing neuronal apoptosis by attenuating antioxidant and antiapoptotic activities in these brain areas. These results strongly suggest that gastrodin has protective effects in experimental PD models and that it may be developed as a clinical candidate to ameliorate PD symptoms.

  16. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    Science.gov (United States)

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  17. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum.

    Science.gov (United States)

    Granado, Noelia; Lastres-Becker, Isabel; Ares-Santos, Sara; Oliva, Idaira; Martin, Eduardo; Cuadrado, Antonio; Moratalla, Rosario

    2011-12-01

    Oxidative stress that correlates with damage to nigrostriatal dopaminergic neurons and reactive gliosis in the basal ganglia is a hallmark of methamphetamine (METH) toxicity. In this study, we analyzed the protective role of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2), a master regulator of redox homeostasis, in METH-induced neurotoxicity. We found that Nrf2 deficiency exacerbated METH-induced damage to dopamine neurons, shown by an increase in loss of tyrosine hydroxylase (TH)- and dopamine transporter (DAT)-containing fibers in striatum. Consistent with these effects, Nrf2 deficiency potentiated glial activation, indicated by increased striatal expression of markers for microglia (Mac-1 and Iba-1) and astroglia (GFAP) one day after METH administration. At the same time, Nrf2 inactivation dramatically potentiated the increase in TNFα mRNA and IL-15 protein expression in GFAP+ cells in the striatum. In sharp contrast to the potentiation of striatal damage, Nrf2 deficiency did not affect METH-induced dopaminergic neuron death or expression of glial markers or proinflammatory molecules in the substantia nigra. This study uncovers a new role for Nrf2 in protection against METH-induced inflammatory and oxidative stress and striatal degeneration. Copyright © 2011 Wiley‐Liss, Inc.

  18. Methamphetamine treatment during development attenuates the dopaminergic deficits caused by subsequent high-dose methamphetamine administration.

    Science.gov (United States)

    McFadden, Lisa M; Hoonakker, Amanda J; Vieira-Brock, Paula L; Stout, Kristen A; Sawada, Nicole M; Ellis, Jonathan D; Allen, Scott C; Walters, Elliot T; Nielsen, Shannon M; Gibb, James W; Alburges, Mario E; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2011-08-01

    Administration of high doses of methamphetamine (METH) causes persistent dopaminergic deficits in both nonhuman preclinical models and METH-dependent persons. Noteworthy, adolescent [i.e., postnatal day (PND) 40] rats are less susceptible to this damage than young adult (PND90) rats. In addition, biweekly treatment with METH, beginning at PND40 and continuing throughout development, prevents the persistent dopaminergic deficits caused by a "challenge" high-dose METH regimen when administered at PND90. Mechanisms underlying this "resistance" were thus investigated. Results revealed that biweekly METH treatment throughout development attenuated both the acute and persistent deficits in VMAT2 function, as well as the acute hyperthermia, caused by a challenge METH treatment. Pharmacokinetic alterations did not appear to contribute to the protection afforded by the biweekly treatment. Maintenance of METH-induced hyperthermia abolished the protection against both the acute and persistent VMAT2-associated deficits suggesting that alterations in thermoregulation were caused by exposure of rats to METH during development. These findings suggest METH during development prevents METH-induced hyperthermia and the consequent METH-related neurotoxicity. Copyright © 2011 Wiley-Liss, Inc.

  19. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ.

    Science.gov (United States)

    Shin, Eun-Joo; Duong, Chu Xuan; Nguyen, Xuan-Khanh Thi; Li, Zhengyi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F; Kanthasamy, Anumantha G; Cadet, Jean Lud; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2012-06-15

    This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    Science.gov (United States)

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  1. Subthalamic deep brain stimulation and dopaminergic medication in Parkinson's disease: Impact on inter-limb coupling.

    Science.gov (United States)

    Daneault, Jean-François; Carignan, Benoit; Sadikot, Abbas F; Duval, Christian

    2016-10-29

    Patients with Parkinson's disease (PD) often present with bimanual coordination deficits whose exact origins remain unclear. One aspect of bimanual coordination is inter-limb coupling. This is characterized by the harmonization of movement parameters between limbs. We assessed different aspects of bimanual coordination in patients with PD, including inter-limb coupling, and determined whether they are altered by subthalamic (STN) deep brain stimulation (DBS) or dopaminergic medication. Twenty PD patients were tested before STN DBS surgery; with and without medication. Post- surgery, patients were tested with their stimulators on and off as well as with and without medication. Patients were asked to perform a unimanual and bimanual rapid repetitive diadochokinesis task. The difference in mean amplitude and mean duration of cycles between hands was computed in order to assess inter-limb coupling. Also, mean angular velocity of both hands and structural coupling were computed for the bimanual task. There was a positive effect of medication and stimulation on mean angular velocity, which relates to clinical improvement. PD patients exhibited temporal inter-limb coupling that was not altered by either medication or STN stimulation. However, PD patients did not exhibit spatial inter-limb coupling. Again, this was not altered by medication or stimulation. Collectively, the results suggest that structures independent of the dopaminergic system and basal ganglia may mediate temporal and spatial inter-limb coupling. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Memo, M; Battaini, F; Spano, P F; Trabucchi, M [University of Brescia, (Italy). Dept. of Pharmacology

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D/sub 1/ receptors, associated with adenylyl cyclase activity, and D/sub 2/ receptor, uncoupled to a cyclic AMP generating system. In order to understand the role of D/sub 1/ and D/sub 2/ receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D/sub 1/ receptors, and sulpiride, a selective antagonist to D/sub 2/ receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D/sub 2/ receptors. In fact under these conditions /sup 3/H-(-)-sulpiride binding, which is a marker of D/sub 2/ receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D/sub 2/ receptors. Moreover, sulpiride does not induce supersensitivity of the D/sub 1/ receptors, characterized by /sup 3/H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by /sup 3/H-spiroperidol and /sup 3/H-(-)-sulpiride binding. These findings suggest that D/sub 1/ and D/sub 2/ receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements.

  3. Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, Michael R; Frey, Kirk A; Vander Borght, Thierry; Sherman, Phillip S

    1996-05-01

    The effects of various dopaminergic drug treatments on the in vivo regional brain distribution of high-affinity radioligands ([{sup 11}C]dihydrotetrabenazine and [{sup 11}C]methoxytetrabenazine) for the rat brain vesicular monoamine transporter (VMAT2) were determined. Acute treatments with reserpine (2 mg/kg i.p.), tetrabenazine (10 mg/kg i.v.) or related benzoisoquinolines significantly reduced radiotracer binding in vivo. In contrast, radiotracer distributions remained unchanged after treatments with other dopaminergic drugs, whether given by single injection (haloperidol, 1 mg/kg i.p., pargyline 80 mg/kg), repeatedly (pargyline, 80 mg/kg s.c., 14 days), or by continuous infusion (deprenyl, 10 mg/kg/day, 5 days; L-DOPA methyl ester 100 mg/kg/day, 5 days). Repeated injections of tetrabenazine (5 mg/kg i.p., twice daily, 3 days) did not alter in vivo radioligand binding measured after allowing drug washout from the brain. These studies support the proposal that in vivo PET imaging of VMAT2 radioligands in patients with extrapyramidal movement disorders will not be affected by concurrent use of L-DOPA or deprenyl.

  4. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    International Nuclear Information System (INIS)

    Memo, M.; Battaini, F.; Spano, P.F.; Trabucchi, M.

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D 1 receptors, associated with adenylyl cyclase activity, and D 2 receptor, uncoupled to a cyclic APM generating system. In order to understand the role of D 1 and D 2 receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D 1 receptors, and sulpiride, a selective antagonist to D 2 receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D 2 receptors. In fact under these conditions 3 H-(-)-sulpiride binding, which is a marker of D 2 receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D 2 receptors. Moreover, sulpiride does not induce supersensitivity of the D 1 receptors, characterized by 3 H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by 3 H-spiroperidol and 3 H-(-)-sulpiride binding. These findings suggest that D 1 and D 2 receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements. (author)

  5. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish.

    Science.gov (United States)

    Fontaine, Romain; Affaticati, Pierre; Bureau, Charlotte; Colin, Ingrid; Demarque, Michaël; Dufour, Sylvie; Vernier, Philippe; Yamamoto, Kei; Pasqualini, Catherine

    2015-08-01

    Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.

  6. Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice

    Directory of Open Access Journals (Sweden)

    Waijiao Cai

    2018-03-01

    Full Text Available Alpha-synuclein (αSyn is encoded by the first causal gene identified in Parkinson's disease (PD and is the main component of Lewy bodies, a pathological hallmark of PD. aSyn-based animal models have contributed to our understanding of PD pathophysiology and to the development of therapeutics. Overexpression of human wildtype αSyn by viral vectors in rodents recapitulates the loss of dopaminergic neurons from the substantia nigra, another defining pathological feature of the disease. The development of a rat model exhibiting bimolecular fluorescence complementation (BiFC of αSyn by recombinant adeno-associated virus facilitates detection of the toxic αSyn oligomers species. We report here neurochemical, neuropathological and behavioral characterization of BiFC of αSyn in mice. Overexpression and oligomerization of αSyn through BiFC is detected by conjugated fluorescence. Reduced striatal dopamine and loss of nigral dopaminergic neurons are accompanied neuroinflammation and abnormal motor activities. Our mouse model may provide a valuable tool to study the role of αSyn in PD and to explore therapeutic approaches. Keywords: Parkinson's disease, Alpha-synuclein, Mouse model, Oligomers, Neuroinflammation

  7. Oxidative stress induces nuclear translocation of C-terminus of α-synuclein in dopaminergic cells

    International Nuclear Information System (INIS)

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu

    2006-01-01

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of α-synuclein. However, the role of α-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the α-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 μM H 2 O 2 treatment induced the translocation of α-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of α-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of α-synuclein, while full-length α-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no β-sheet structures. Our present results indicated that 200 μM H 2 O 2 treatment induces the intranuclear accumulation of the C-terminal fragment of α-synuclein in dopaminergic neurons, whose role remains to be investigated

  8. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors

    Directory of Open Access Journals (Sweden)

    Han-Seop Kim

    2014-01-01

    Full Text Available The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs. Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs were generated. Interestingly, the inhibition of both Jak and Gsk3β notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.

  9. The role of system Xc- in methamphetamine-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Dang, Duy-Khanh; Shin, Eun-Joo; Tran, Hai-Quyen; Kim, Dae-Joong; Jeong, Ji Hoon; Jang, Choon-Gon; Nah, Seung-Yeol; Sato, Hideyo; Nabeshima, Toshitaka; Yoneda, Yukio; Kim, Hyoung-Chun

    2017-09-01

    The cystine/glutamate antiporter (system Xc - , Sxc) transports cystine into cell in exchange for glutamate. Since xCT is a specific subunit of Sxc, we employed xCT knockout mice and investigated whether this antiporter affected methamphetamine (MA)-induced dopaminergic neurotoxicity. MA treatment significantly increased striatal oxidative burdens in wild type mice. xCT inhibitor [i.e., S-4-carboxy-phenylglycine (CPG), sulfasalazine] or an xCT knockout significantly protected against these oxidative burdens. MA-induced increases in Iba-1 expression and Iba-1-labeled microglial immunoreactivity (Iba-1-IR) were significantly attenuated by CPG or sulfasalazine administration or xCT knockout. CPG or sulfasalazine significantly attenuated MA-induced TUNEL-positive cell populations in the striatum of Taconic ICR mice. The decrease in excitatory amino acid transporter-2 (or glutamate transporter-1) expression and increase in glutamate release were attenuated by CPG, sulfasalazine or xCT knockout. In addition, CPG, sulfasalazine or xCT knockout significantly protected against dopaminergic loss (i.e., decreases in tyrosine hydroxylase expression and immunoreactivity, and an increase in dopamine turnover rate) induced by MA. However, CPG, sulfasalazine or xCT knockout did not significantly affect the impaired glutathione system [i.e., decrease in reduced glutathione (GSH) and increase in oxidized glutathione (GSSG)] induced by MA. Our results suggest that Sxc mediates MA-induced neurotoxicity via facilitating oxidative stress, microgliosis, proapoptosis, and glutamate-related toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tracers tor the investigation of cerebral presynaptic dopaminergic function with positron emission tomography

    International Nuclear Information System (INIS)

    Firnau, G.; Chirakal, R.; Nahmias, C.; Garnett, E.S.

    1991-01-01

    Two pharmacologic concepts, open-quotes metabolic precursorsclose quotes and open-quotes enzyme inhibitorsclose quotes have been applied to the design of PET tracers for the metabolic aspects of the neurotransmitter dopamine. As the result, highly useful, positron-emitting radiotracers have been developed with which to visualize and measure the cerebral distribution and metabolism of dopaminergic neurons. Positron emitter-labeled DOPA, particularly 6-[ 18 F]fluoro-L-DOPA, is being used to obtain information about the neurochemical anatomy of the dopamine system, and potentially, the rate constant of dopamine biosynthesis. 6-[ 18 F]Fluoro-L- meta-tyrosine delineates the dopaminergic structures even better than 6-[ 18 F]fluoro-L-DOPA but cannot provide kinetic information about dopamine biosynthesis. The in vivo activity of the enzyme aromatic L-aminoacid decarboxylase and that of monoamine oxidase types A and B can be measured with a-fluoro-methyl-6-[ 18 F]fluoro-L-DOPA, [ 11 C]clorgyline and L-[ 11 C]deprenyl, respectively. Thus, neuropharmacologic investigations of human presynaptic dopamine pharmacology are now possible in vivo

  11. Frontotemporal Lobe Degeneration as Origin of Scans Without Evidence of Dopaminergic Deficit

    Directory of Open Access Journals (Sweden)

    Manuel Menéndez-González

    2018-05-01

    Full Text Available The term scans without evidence of dopaminergic deficit (SWEDD can be associated with any patient diagnosed at first with Parkinson’s disease but with a negative dopamine transporter-single photon emission computed tomography (DaTSPECT, which does not confirm the presynaptic dopaminergic deficiency. Therefore, an alternative diagnosis should be sought to support parkinsonism as a clinical diagnosis. Parkinsonism is a well-known manifestation of frontotemporal lobar degeneration (FTLD, particularly frequent in those with positive DaTSPECT. Here, we reinforce previous observations that parkinsonism can be present in FTLD patients with negative DaTSPECT and therefore, FTLD may account for a percentage of patients with SWEDD. We gather the clinical observations supporting this hypothesis and describe a case report illustrating this idea. Studies suggest the result of DaTSPECT in FTLD may depend on the neuropathology and clinical subtype. However, most studies do not provide a clinical description of the clinical subtype or pathological features making the association between subtypes of FTLD and DaTSPECT results impossible at the moment. Further studies correlating clinical, neuropsychological, neuroimaging, genetic, and pathology findings are needed to better understand parkinsonism in FTLD.

  12. White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus.

    Science.gov (United States)

    Rausch, Vanessa H; Bauch, Eva M; Bunzeck, Nico

    2014-07-01

    In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise-but not control sounds, such as a sinus tone-slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS-a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging.

  13. Dopaminergic mesocortical projections to M1: role in motor learning and motor cortex plasticity

    Directory of Open Access Journals (Sweden)

    Jonas Aurel Hosp

    2013-10-01

    Full Text Available Although the architecture of a dopaminergic (DA system within the primary motorcortex (M1 was well characterized anatomically, its functional significance remainedobscure for a long time. Recent studies in rats revealed that the integrity ofdopaminergic fibers in M1 is a prerequisite for successful acquisition of motor skills.This essential contribution of DA for motor learning is plausible as it modulates M1circuitry at multiple levels thereby promoting plastic changes that are required forinformation storage: at the network level, DA increases cortical excitability andenhances the stability of motor maps. At the cellular level, DA induces the expressionof learning related genes via the transcription factor c-fos. At the level of synapses,DA is required for the formation of long-term potentiation (LTP, a mechanism thatlikely is a fingerprint of a motor memory trace within M1. Dopaminergic fibersinnervating M1 originate within the midbrain, precisely the ventral tegmental area(VTA and the medial portion of substantia nigra (SN. Thus, they could be part of themeso-cortico-limibic pathway – a network that provides information about saliencyand motivational value of an external stimulus and is commonly referred as

  14. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  15. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-01-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  16. Ambulatory anaesthesia and cognitive dysfunction

    DEFF Research Database (Denmark)

    Rasmussen, Lars S; Steinmetz, Jacob

    2015-01-01

    serious adverse outcomes, hence difficult to obtain sound scientific evidence for avoiding complications. RECENT FINDINGS: Few studies have assessed recovery of cognitive function after ambulatory surgery, but it seems that both propofol and modern volatile anaesthetics are rational choices for general...... anaesthesia in the outpatient setting. Cognitive complications such as delirium and postoperative cognitive dysfunction are less frequent in ambulatory surgery than with hospitalization. SUMMARY: The elderly are especially susceptible to adverse effects of the hospital environment such as immobilisation...

  17. Insulin dysfunction and Tau pathology

    Directory of Open Access Journals (Sweden)

    Noura eEl Khoury

    2014-02-01

    Full Text Available The neuropathological hallmarks of Alzheimer's disease (AD include senile plaques of β-amyloid (Aβ peptides (a cleavage product of the Amyloid Precursor Protein, or APP and neurofibrillary tangles (NFT of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF. NFT pathology is important since it correlates with the degree of cognitive impairment in AD.Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99% is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease.Insulin dysfunction, manifested by diabetes mellitus (DM might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM and type 2 diabetes (T2DM are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment.Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting on Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  18. A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat

    Directory of Open Access Journals (Sweden)

    Fany eMessanvi

    2013-12-01

    Full Text Available Several findings have indicated an involvement of dopamine in panic and defensive behaviors. The dorsolateral column of the periaqueductal gray (dlPAG is crucially involved in the expression of panic attacks in humans and defensive behaviors, also referred to as panic-like behaviors, in animals. Although the dlPAG is known to receive a specific innervation of dopaminergic fibers and abundantly expresses dopamine receptors, the origin of this dopaminergic input is largely unknown. This study aimed at mapping the dopaminergic projections to the dlPAG in order to provide further insight into the panic-like related behavior circuitry of the dlPAG. For this purpose, the retrograde tracer cholera toxin subunit b (CTb was injected into the dlPAG of male Wistar rats and double immunofluorescence for CTb and tyrosine hydroxylase (TH, the rate-limiting enzyme in the synthesis of dopamine, was performed. Neurons labeled for both CTb and TH were counted in different dopaminergic cell groups. The findings indicate that the dopaminergic nerve terminals present in the dlPAG originate from multiple dopamine-containing cell groups in the hypothalamus and mesencephalon. Interestingly, the A13 cell group is the main source of dopaminergic afferents to the dlPAG and contains at least 45% of the total number of CTb/TH-positive neurons. Anterograde tracing with biotinylated dextran amine (BDA combined with double immunofluorescence for BDA and TH confirmed the projections from the A13 cell group to the dlPAG. The remainder of the dopamine-positive terminals present in the dlPAG was found to originate from the extended A10 cell group and the A11 group. The A13 cell group is known to send dopaminergic efferents to several other brain regions implicated in defensive behavior, including the central amygdala and ventromedial hypothalamus. Therefore, although direct behavioral evidence is lacking, our finding that the A13 cell group is also the main source of dopaminergic

  19. Gut dysfunction in Parkinson's disease

    Science.gov (United States)

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  20. Erectile dysfunction and amatorial cycling.

    Science.gov (United States)

    Colpi, Giovanni Maria; Contalbi, Gianfranco; Ciociola, E; Mihalca, Radu

    2008-09-01

    Today cycling is considered a useful form of exercise for reducing cardiovascular risk, but it may also represent a risk factor for erectile dysfunction and perineal-genital paresthesia. These disorders are attributed to the local reduction of oxygen in the perineal-genital area, secondary to the perineal compression. Numerous studies have been carried out measuring the penile oxygen pressure or penile blood flow by echo-colour-Doppler: a reduced inflow of blood and oxygen to the cavernous tissue was demonstrated. The attention of the specialist is therefore concentrated on the compression of the perineum on the bicycle saddle and how to reduce this through the position of the cyclist on the bicycle (i.e. height and tilt of the saddle), the different shapes of saddle available (i.e. noseless, grooved, wide, etc.) and the padding materials of the saddle. In order to reduce perineal compression, the posterior part of the saddle should be as wide as the distance between the two ischiatic tuberosities. In addition, the saddle should be studied on the basis of the biotype of the cyclist: ectomorphic, mesomorphic or endomorphic. However, in the genesis of the erectile dysfunction of the cyclist, apart from the above-mentioned factors, an "individual predisposition to developing erectile dysfunction" linked to the perineal-genital anatomy (i.e. type of insertion of the perineum into the root of the penis, number of layers of the tunica albuginea of the corpus cavernosum) cannot be excluded.

  1. Diaphragm Dysfunction in Critical Illness.

    Science.gov (United States)

    Supinski, Gerald S; Morris, Peter E; Dhar, Sanjay; Callahan, Leigh Ann

    2018-04-01

    The diaphragm is the major muscle of inspiration, and its function is critical for optimal respiration. Diaphragmatic failure has long been recognized as a major contributor to death in a variety of systemic neuromuscular disorders. More recently, it is increasingly apparent that diaphragm dysfunction is present in a high percentage of critically ill patients and is associated with increased morbidity and mortality. In these patients, diaphragm weakness is thought to develop from disuse secondary to ventilator-induced diaphragm inactivity and as a consequence of the effects of systemic inflammation, including sepsis. This form of critical illness-acquired diaphragm dysfunction impairs the ability of the respiratory pump to compensate for an increased respiratory workload due to lung injury and fluid overload, leading to sustained respiratory failure and death. This review examines the presentation, causes, consequences, diagnosis, and treatment of disorders that result in acquired diaphragm dysfunction during critical illness. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  2. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  3. 3-hydroxymorphinan is neurotrophic to dopaminergic neurons and is also neuroprotective against LPS-induced neurotoxicity.

    Science.gov (United States)

    Zhang, Wei; Qin, Liya; Wang, Tongguang; Wei, Sung-Jen; Gao, Hui-ming; Liu, Jie; Wilson, Belinda; Liu, Bin; Zhang, Wanqin; Kim, Hyoung-Chun; Hong, Jau-Shyong

    2005-03-01

    The purpose of this study was to develop a novel therapy for Parkinson's disease (PD). We recently reported that dextromethorphan (DM), an active ingredient in a variety of widely used anticough remedies, protected dopaminergic neurons in rat primary mesencephalic neuron-glia cultures against lipopolysaccharide (LPS)-mediated degeneration and provided potent protection for dopaminergic neurons in a MPTP mouse model. The underlying mechanism for the protective effect of DM was attributed to its anti-inflammatory activity through inhibition of microglia activation. In an effort to develop more potent compounds for the treatment of PD, we have screened a series of analogs of DM, and 3-hydroxymorphinan (3-HM) emerged as a promising candidate for this purpose. Our study using primary mesencephalic neuron-glia cultures showed that 3-HM provided more potent neuroprotection against LPS-induced dopaminergic neurotoxicity than its parent compound. The higher potency of 3-HM was attributed to its neurotrophic effect in addition to the anti-inflammatory effect shared by both DM and 3-HM. First, we showed that 3-HM exerted potent neuroprotective and neurotrophic effects on dopaminergic neurons in rat primary mesencephalic neuron-glia cultures treated with LPS. The neurotrophic effect of 3-HM was glia-dependent since 3-HM failed to show any protective effect in the neuron-enriched cultures. We subsequently demonstrated that it was the astroglia, not the microglia, that contributed to the neurotrophic effect of 3-HM. This conclusion was based on the reconstitution studies, in which we added different percentages of microglia (10-20%) or astroglia (40-50%) back to the neuron-enriched cultures and found that 3-HM was neurotrophic after the addition of astroglia, but not microglia. Furthermore, 3-HM-treated astroglia-derived conditioned media exerted a significant neurotrophic effect on dopaminergic neurons. It appeared likely that 3-HM caused the release of neurotrophic factor

  4. Ketamine Causes Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Neurons

    Science.gov (United States)

    Ito, Hiroyuki; Uchida, Tokujiro; Makita, Koshi

    2015-01-01

    Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P ketamine (100 μM) decreased the ATP level (22%, P ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons. PMID:26020236

  5. dysfunction

    African Journals Online (AJOL)

    pulmonary vascular resistance falls and left coronary blood flow diminishes. Decreased ... The septal and posterior walls of the left ventricle, as well .... pathologische A e und Physiologie und für klinische Medizin, Berlin 1911; 203: 413–420. 3.

  6. Antipsychotics and Sexual Dysfunction: Sexual Dysfunction - Part III

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj

    2009-11-01

    Full Text Available Satisfying sexual experience is an essential part of a healthy and enjoyable life for most people. Antipsychotic drugs are among the various factors that affect optimal sexual functioning. Both conventional and novel antipsychotics are associated with significant sexual side effects. This review has presented various studies comparing different antipsychotic drugs. Dopamine antagonism, increased serum prolactin, serotonergic, adrenergic and cholinergic mechanisms are all proposed to be the mechanisms for sexual dysfunction. Drug treatment for this has not given satisfactory long-term results. Knowledge of the receptor pharmacology of an individual antipsychotic will help to determine whether it is more or less likely to cause sexual side effects and its management.

  7. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and

  8. A simple algorithm for subregional striatal uptake analysis with partial volume correction in dopaminergic PET imaging

    International Nuclear Information System (INIS)

    Lue Kunhan; Lin Hsinhon; Chuang Kehshih; Kao Chihhao, K.; Hsieh Hungjen; Liu Shuhsin

    2014-01-01

    In positron emission tomography (PET) of the dopaminergic system, quantitative measurements of nigrostriatal dopamine function are useful for differential diagnosis. A subregional analysis of striatal uptake enables the diagnostic performance to be more powerful. However, the partial volume effect (PVE) induces an underestimation of the true radioactivity concentration in small structures. This work proposes a simple algorithm for subregional analysis of striatal uptake with partial volume correction (PVC) in dopaminergic PET imaging. The PVC algorithm analyzes the separate striatal subregions and takes into account the PVE based on the recovery coefficient (RC). The RC is defined as the ratio of the PVE-uncorrected to PVE-corrected radioactivity concentration, and is derived from a combination of the traditional volume of interest (VOI) analysis and the large VOI technique. The clinical studies, comprising 11 patients with Parkinson's disease (PD) and 6 healthy subjects, were used to assess the impact of PVC on the quantitative measurements. Simulations on a numerical phantom that mimicked realistic healthy and neurodegenerative situations were used to evaluate the performance of the proposed PVC algorithm. In both the clinical and the simulation studies, the striatal-to-occipital ratio (SOR) values for the entire striatum and its subregions were calculated with and without PVC. In the clinical studies, the SOR values in each structure (caudate, anterior putamen, posterior putamen, putamen, and striatum) were significantly higher by using PVC in contrast to those without. Among the PD patients, the SOR values in each structure and quantitative disease severity ratings were shown to be significantly related only when PVC was used. For the simulation studies, the average absolute percentage error of the SOR estimates before and after PVC were 22.74% and 1.54% in the healthy situation, respectively; those in the neurodegenerative situation were 20.69% and 2

  9. Proximal tubular dysfunction as an indicator of chronic graft dysfunction

    Directory of Open Access Journals (Sweden)

    N.O.S. Câmara

    2009-03-01

    Full Text Available New strategies are being devised to limit the impact of renal sclerosis on graft function. Individualization of immunosuppression, specifically the interruption of calcineurin-inhibitors has been tried in order to promote better graft survival once chronic graft dysfunction has been established. However, the long-term impact of these approaches is still not totally clear. Nevertheless, patients at higher risk for tubular atrophy and interstitial fibrosis (TA/IF development should be carefully monitored for tubular function as well as glomerular performance. Since tubular-interstitial impairment is an early event in TA/IF pathogenesis and associated with graft function, it seems reasonable that strategies directed at assessing tubular structural integrity and function would yield important functional and prognostic data. The measurement of small proteins in urine such as α-1-microglobulin, N-acetyl-beta-D-glucosaminidase, alpha/pi S-glutathione transferases, β-2 microglobulin, and retinol binding protein is associated with proximal tubular cell dysfunction. Therefore, its straightforward assessment could provide a powerful tool in patient monitoring and ongoing clinical assessment of graft function, ultimately helping to facilitate longer patient and graft survival associated with good graft function.

  10. Association of Polymorphisms in BDNF, MTHFR, and Genes Involved in the Dopaminergic Pathway with Memory in a Healthy Chinese Population

    Science.gov (United States)

    Yeh, Ting-Kuang; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Pei-Jung; Wu, Chung-Hsin; Lee, Po-Lei; Chang, Chun-Yen

    2012-01-01

    The contribution of genetic factors to the memory is widely acknowledged. Research suggests that these factors include genes involved in the dopaminergic pathway, as well as the genes for brain-derived neurotrophic factor (BDNF) and methylenetetrahydrofolate reductase (MTHFR). The activity of the products of these genes is affected by single…

  11. Genetic Moderation of Intervention Efficacy : Dopaminergic Genes, The Incredible Years, and Externalizing Behavior in Children

    NARCIS (Netherlands)

    Chhangur, Rabia R.; Weeland, Joyce; Overbeek, Geertjan; Matthys, Walter; Orobio De Castro, Bram; Van Der Giessen, Danielle; Belsky, Jay

    This study investigated whether children scoring higher on a polygenic plasticity index based on five dopaminergic genes (DRD4, DRD2, DAT1, MAOA, and COMT) benefited the most from the Incredible Years (IY) parent program. Data were used from a randomized controlled trial including 341 Dutch families

  12. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system

    International Nuclear Information System (INIS)

    Ismaiel, Afrah A.K.; Espinosa-Oliva, Ana M.; Santiago, Martiniano; García-Quintanilla, Albert; Oliva-Martín, María J.; Herrera, Antonio J.; Venero, José L.; Pablos, Rocío M. de

    2016-01-01

    Metformin is a widely used oral antidiabetic drug with known anti-inflammatory properties due to its action on AMPK protein. This drug has shown a protective effect on various tissues, including cortical neurons. The aim of this study was to determine the effect of metformin on the dopaminergic neurons of the substantia nigra of mice using the animal model of Parkinson's disease based on the injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an inhibitor of the mitochondrial complex I. In vivo and in vitro experiments were used to study the activation of microglia and the damage of the dopaminergic neurons. Our results show that metformin reduced microglial activation measured both at cellular and molecular levels. Rather than protecting, metformin exacerbated dopaminergic damage in response to MPTP. Our data suggest that, contrary to other brain structures, metformin treatment could be deleterious for the dopaminergic system. Hence, metformin treatment may be considered as a risk factor for the development of Parkinson's disease. - Highlights: • Metformin treatment decreases microglial activation in the MPTP model of Parkinson's disease. • Metformin treatment increases the neurodegeneration in the MPTP model of Parkinson's disease, both in vivo and vitro. • Metformin treatment could be a risk factor for the development of Parkinson's disease.

  13. Current and investigational non-dopaminergic agents for management of motor symptoms (including motor complications) in Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas

    2017-10-01

    Parkinson's disease is characterized by a heterogeneous combination of motor and non motor symptoms. The nigrostriatal dopamine deficit is one of its essential pathophysiologic features. Areas covered: This invited narrative review provides an overlook over current available and future promising non dopaminergic therapeutics to modulate altered dopaminergic neurotransmission in Parkinson's disease. Current research strategies aim to proof clinical efficacy by amelioration of motor symptoms and preponderant levodopa related movement fluctuations. These so-called motor complications are characterized by involuntary movements as a result of an overstimulation of the nigrostriatal dopaminergic system or by temporary recurrence of motor symptoms, when beneficial effects of dopamine substituting drugs vane. Expert opinion: Non dopaminergic modulation of dopamine replacement is currently mostly investigated in well defined and selected patients with motor complications to get approval. However, the world of daily maintenance of patients with its individually adapted, so-called personalised, therapy will determine the real value of these therapeutics. Here the clinical experience of the treating neurologists and the courage to use unconventional drug combinations are essential preconditions for successful treatments of motor and associated non motor complications in cooperation with the patients and their care giving surroundings.

  14. Mesenchymal Stem Cells as a Source of Dopaminergic Neurons: A Potential Cell Based Therapy for Parkinson's Disease.

    Science.gov (United States)

    Venkatesh, Katari; Sen, Dwaipayan

    2017-01-01

    Cell repair/replacing strategies for neurodegenerative diseases such as Parkinson's disease depend on well-characterized dopaminergic neuronal candidates that are healthy and show promising effect on the rejuvenation of degenerated area of the brain. Therefore, it is imperative to develop innovative therapeutic strategies that replace damaged neurons with new/functional dopaminergic neurons. Although several research groups have reported the generation of neural precursors/neurons from human/ mouse embryonic stem cells and mesenchymal stem cells, the latter is considered to be an attractive therapeutic candidate because of its high capacity for self-renewable, no adverse effect to allogeneic versus autologous transplants, high ethical acceptance and no teratoma formation. Therefore, mesenchymal stem cells can be considered as an ideal source for replacing lost cells in degenerative diseases like Parkinson's. Hence, the use of these cells in the differentiation of dopaminergic neurons becomes significant and thrives as a therapeutic approach to treat Parkinson's disease. Here we highlight the basic biology of mesenchymal stem cells, their differentiation potential into dopaminergic neurons and potential use in the clinics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Determination of dopaminergic prodrugs by high-performance liquid chromatography followed by post-column ion-pair extraction

    NARCIS (Netherlands)

    Haas, M; Moolenaar, Frits; Kluppel, A.C A; Dijkstra, D.; Meijer, D.K F; de Zeeuw, D

    1997-01-01

    One possibility to optimize the therapeutic application of dopaminergic compounds with a catechol function is the reversible protection of this moiety using a prodrug approach. Important features in this respect are a proper chemical stability in the gastrointestinal tract, an adequate release rate

  16. Dopaminergic receptor agents and the basal ganglia : pharmacological properties and interactions with the GABA-ergic system

    NARCIS (Netherlands)

    Timmerman, Wigerline

    1992-01-01

    In the present series of studies, attention was focussed particularly on dopaminergic D2 receptor compounds, with emphasis on the enantiomers of the potent and selective dopamine D2 receptor agonist N-0437. Drugs that display activity at D2 receptors are of great interest as potentially new

  17. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system

    Energy Technology Data Exchange (ETDEWEB)

    Ismaiel, Afrah A.K.; Espinosa-Oliva, Ana M.; Santiago, Martiniano; García-Quintanilla, Albert; Oliva-Martín, María J.; Herrera, Antonio J.; Venero, José L.; Pablos, Rocío M. de, E-mail: depablos@us.es

    2016-05-01

    Metformin is a widely used oral antidiabetic drug with known anti-inflammatory properties due to its action on AMPK protein. This drug has shown a protective effect on various tissues, including cortical neurons. The aim of this study was to determine the effect of metformin on the dopaminergic neurons of the substantia nigra of mice using the animal model of Parkinson's disease based on the injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an inhibitor of the mitochondrial complex I. In vivo and in vitro experiments were used to study the activation of microglia and the damage of the dopaminergic neurons. Our results show that metformin reduced microglial activation measured both at cellular and molecular levels. Rather than protecting, metformin exacerbated dopaminergic damage in response to MPTP. Our data suggest that, contrary to other brain structures, metformin treatment could be deleterious for the dopaminergic system. Hence, metformin treatment may be considered as a risk factor for the development of Parkinson's disease. - Highlights: • Metformin treatment decreases microglial activation in the MPTP model of Parkinson's disease. • Metformin treatment increases the neurodegeneration in the MPTP model of Parkinson's disease, both in vivo and vitro. • Metformin treatment could be a risk factor for the development of Parkinson's disease.

  18. Endogenous Opioid-Induced Neuroplasticity of Dopaminergic Neurons in the Ventral Tegmental Area Influences Natural and Opiate Reward

    NARCIS (Netherlands)

    Pitchers, Kyle K.; Coppens, Caroline M.; Beloate, Lauren N.; Fuller, Jonathan; Van, Sandy; Frohmader, Karla S.; Laviolette, Steven R.; Lehman, Michael N.; Coolen, Lique M.

    2014-01-01

    Natural reward and drugs of abuse converge on the mesolimbic pathway and activate common mechanism of neural plasticity in the nucleus accumbens. Chronic exposure to opiates induces plasticity in dopaminergic neurons of the ventral tegmental area (VTA), which regulates morphine reward tolerance.

  19. Hypothesizing Music Intervention Enhances Brain Functional Connectivity Involving Dopaminergic Recruitment: Common Neuro-correlates to Abusable Drugs.

    Science.gov (United States)

    Blum, Kenneth; Simpatico, Thomas; Febo, Marcelo; Rodriquez, Chris; Dushaj, Kristina; Li, Mona; Braverman, Eric R; Demetrovics, Zsolt; Oscar-Berman, Marlene; Badgaiyan, Rajendra D

    2017-07-01

    The goal of this review is to explore the clinical significance of music listening on neuroplasticity and dopaminergic activation by understanding the role of music therapy in addictive behavior treatment. fMRI data has shown that music listening intensely modifies mesolimbic structural changes responsible for reward processing (e.g., nucleus accumbens [NAc]) and may control the emotional stimuli's effect on autonomic and physiological responses (e.g., hypothalamus). Music listening has been proven to induce the endorphinergic response blocked by naloxone, a common opioid antagonist. NAc opioid transmission is linked to the ventral tegmental area (VTA) dopamine release. There are remarkable commonalities between listening to music and the effect of drugs on mesolimbic dopaminergic activation. It has been found that musical training before the age of 7 results in changes in white-matter connectivity, protecting carriers with low dopaminergic function (DRD2A1 allele, etc.) from poor decision-making, reward dependence, and impulsivity. In this article, we briefly review a few studies on the neurochemical effects of music and propose that these findings are relevant to the positive clinical findings observed in the literature. We hypothesize that music intervention enhances brain white matter plasticity through dopaminergic recruitment and that more research is needed to explore the efficacy of these therapies.

  20. Erectile dysfunction in haemodialysis patients

    International Nuclear Information System (INIS)

    Mumtaz, A.; Hussain, S.; Nazir, M.

    2009-01-01

    There is a very high prevalence of Erectile Dysfunction (ED) in dialysis patients. There is no as such available data on ED and factors affecting it in our patients. Analytical, cross-sectional, hospital based study conducted from January to March 2008, Haemodialysis unit of Shalimar and Mayo Hospital, Lahore. All male patients of end stage renal disease (ESRD) on maintenance haemodialysis therapy, whose spouses are alive and able to perform intercourse, were included in the study. Patient with cognitive and communication deficits were excluded from study. International index of erectile function-5 (IIEF-5), adopted in Urdu was used for the determination of prevalence of erectile function. Categorization of erectile dysfunction was done as mild, moderate and severe. Demographic data were collected and certain laboratory parameters (haemoglobin, haematocrit, urea, HBsAg and Anti HCV) were sent. Total numbers of patient were fifty. Major cause of ESRD was diabetes mellitus 28 (56%). Most of the patients 33 (66%) have passed 10th grade or they were under 10th grade. Prevalence of ED was 86% with mean IIEF-5 score of 10.36+-7.13. Majority of patients 33 (64.7%) were suffering from severe degree of ED. Factors responsible for ED are diabetes mellitus, age more than 50 year, high pre dialysis urea and Anti HCV positive patients. In this study, smoking, duration of dialysis and monthly spending is not related with ED. Majority of the patients suffering from ESRD, on maintenance haemodialysis are having ED. None of the patients suffering from ED were taking any treatment for it. Haemodialysis does not improve sexual dysfunction. Major factors responsible for ED are diabetes mellitus, age more than 50 years, high pre dialysis urea and Anti HCV positive patients. (author)

  1. Pseudotumor Cerebri and Glymphatic Dysfunction

    Directory of Open Access Journals (Sweden)

    Marcio Luciano de Souza Bezerra

    2018-01-01

    Full Text Available In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF through the brain parenchyma along paravascular spaces (PVSs and by exchanges with the interstitial fluid (IF. Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH. The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer’s disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.

  2. Pseudotumor Cerebri and Glymphatic Dysfunction.

    Science.gov (United States)

    Bezerra, Marcio Luciano de Souza; Ferreira, Ana Carolina Andorinho de Freitas; de Oliveira-Souza, Ricardo

    2017-01-01

    In contrast to virtually all organ systems of the body, the central nervous system was until recently believed to be devoid of a lymphatic system. The demonstration of a complex system of paravascular channels formed by the endfeet of astroglial cells ultimately draining into the venous sinuses has radically changed this idea. The system is subsidized by the recirculation of cerebrospinal fluid (CSF) through the brain parenchyma along paravascular spaces (PVSs) and by exchanges with the interstitial fluid (IF). Aquaporin-4 channels are the chief transporters of water through these compartments. This article hypothesizes that glymphatic dysfunction is a major pathogenetic mechanism underpinning idiopathic intracranial hypertension (IIH). The rationale for the hypothesis springs from MRI studies, which have shown many signs related to IIH without evidence of overproduction of CSF. We propose that diffuse retention of IF is a direct consequence of an imbalance of glymphatic flow. This imbalance, in turn, may result from an augmented flow from the arterial PVS into the IF, by impaired outflow of the IF into the paravenous spaces, or both. Our hypothesis is supported by the facts that (i) visual loss, one of the main complications of IIH, is secondary to the impaired drainage of the optic nerve, a nerve richly surrounded by water channels and with a long extracranial course in its meningeal sheath; (ii) there is a high association between IIH and obesity, a condition related to paravascular inflammation and lymphatic disturbance, and (iii) glymphatic dysfunction has been related to the deposition of β-amyloid in Alzheimer's disease. We conclude that the concept of glymphatic dysfunction provides a new perspective for understanding the pathophysiology of IIH; it may likewise entice the development of novel therapeutic approaches aiming at enhancing the flow between the CSF, the glymphatic system, and the dural sinuses.

  3. Endothelial dysfunction: a comprehensive appraisal

    Directory of Open Access Journals (Sweden)

    Vilariño Jorge O

    2006-02-01

    Full Text Available Abstract The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the

  4. Drug addiction and sexual dysfunction.

    Science.gov (United States)

    Zaazaa, Adham; Bella, Anthony J; Shamloul, Rany

    2013-09-01

    This article attempts to review the most current and the well-established facts concerning drug addiction and sexual dysfunction. Surprisingly, even though alcohol is prevalent in many societies with many myths surrounding its sexual-enhancing effects, current scientific research cannot provide a solid conclusion on its effect on sexual function. Unfortunately, the same concept applies to tobacco smoking; however, most of the current knowledge tends to support the notion that it, indeed, can negatively affect sexual function. Similar ambiguities also prevail with substances of abuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Effects of chronic fructose overload on renal dopaminergic system: alteration of urinary L-dopa/dopamine index correlates to hypertension and precedes kidney structural damage.

    Science.gov (United States)

    Rukavina Mikusic, Natalia L; Kouyoumdzian, Nicolás M; Del Mauro, Julieta S; Cao, Gabriel; Trida, Verónica; Gironacci, Mariela M; Puyó, Ana M; Toblli, Jorge E; Fernández, Belisario E; Choi, Marcelo R

    2018-01-01

    Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na + , K + -ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Parkin protects dopaminergic neurons from excessive Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-01-01

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates β-catenin protein levels in vivo. Stabilization of β-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of β-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and β-catenin-induced cell death.

  7. Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding

    International Nuclear Information System (INIS)

    Du, Huiyun; Deng, Wei; Aimone, James B.; Ge, Minyan; Parylak, Sarah

    2016-01-01

    Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.

  8. Chronic organic manganese administration in the rat does not damage dopaminergic nigrostriatal neurons.

    Science.gov (United States)

    Yong, V W; Perry, T L; Godolphin, W J; Jones, K A; Clavier, R M; Ito, M; Foulks, J G

    1986-01-01

    In an attempt to produce an animal model of Parkinson's disease, we injected rats repeatedly with high doses of methylcyclopentadienyl manganese tricarbonyl (MMT), a compound which has been reported to lower striatal dopamine content in mice. Chronic MMT administration for up to 5 months, even though it produced a substantial elevation in brain manganese content during the period of exposure, did not destroy dopaminergic nigrostriatal neurons. This was assessed by measurements of tyrosine hydroxylase activity and contents of dopamine and its metabolites in the striatum, and by histological examination of the substantia nigra. Our results differ from those of others who administered manganese chloride in drinking water to rats. This discrepancy is unlikely to be a consequence of differences in duration of exposure or route of administration. It could be due to our having used an organic rather than an inorganic manganese compound, or to a species difference in vulnerability to organic manganese between rats and mice.

  9. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity.

    Science.gov (United States)

    Yao, Yu; Vieira, Amandio

    2007-01-01

    Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, PVaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction, and provide a basis

  10. Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism.

    Science.gov (United States)

    Rabella, Mireia; Grasa, Eva; Corripio, Iluminada; Romero, Sergio; Mañanas, Miquel Àngel; Antonijoan, Rosa M; Münte, Thomas F; Pérez, Víctor; Riba, Jordi

    2016-01-01

    Schizotypal personality disorder (SPD) is a schizophrenia-spectrum disorder characterized by odd or bizarre behavior, strange speech, magical thinking, unusual perceptual experiences, and social anhedonia. Schizophrenia proper has been associated with anomalies in dopaminergic neurotransmission and deficits in neurophysiological markers of self-monitoring, such as low amplitude in cognitive event-related brain potentials (ERPs) like the error-related negativity (ERN), and the error positivity (Pe). These components occur after performance errors, rely on adequate fronto-striatal function, and are sensitive to dopaminergic modulation. Here we postulated that analogous to observations in schizophrenia, SPD individuals would show deficits in self-monitoring, as measured by the ERN and the Pe. We also assessed the capacity of dopaminergic antagonists to reverse these postulated deficits. We recorded the electroencephalogram (EEG) from 9 SPD individuals and 12 healthy controls in two separate experimental sessions while they performed the Eriksen Flanker Task, a classical task recruiting behavioral monitoring. Participants received a placebo or 1 mg risperidone according to a double-blind randomized design. After placebo, SPD individuals showed slower reaction times to hits, longer correction times following errors and reduced ERN and Pe amplitudes. While risperidone impaired performance and decreased ERN and Pe in the control group, it led to behavioral improvements and ERN amplitude increases in the SPD individuals. These results indicate that SPD individuals show deficits in self-monitoring analogous to those in schizophrenia. These deficits can be evidenced by neurophysiological measures, suggest a dopaminergic imbalance, and can be reverted by dopaminergic antagonists.

  11. Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease.

    Science.gov (United States)

    McCoy, Melissa K; Martinez, Terina N; Ruhn, Kelly A; Wrage, Philip C; Keefer, Edward W; Botterman, Barry R; Tansey, Keith E; Tansey, Malú G

    2008-03-01

    Adult adipose contains stromal progenitor cells with neurogenic potential. However, the stability of neuronal phenotypes adopted by Adipose-Derived Adult Stromal (ADAS) cells and whether terminal neuronal differentiation is required for their consideration as alternatives in cell replacement strategies to treat neurological disorders is largely unknown. We investigated whether in vitro neural induction of ADAS cells determined their ability to neuroprotect or restore function in a lesioned dopaminergic pathway. In vitro-expanded naïve or differentiated ADAS cells were autologously transplanted into substantia nigra 1 week after an intrastriatal 6-hydroxydopamine injection. Neurochemical and behavioral measures demonstrated neuroprotective effects of both ADAS grafts against 6-hydroxydopamine-induced dopaminergic neuron death, suggesting that pre-transplantation differentiation of the cells does not determine their ability to survive or neuroprotect in vivo. Therefore, we investigated whether equivalent protection by naïve and neurally-induced ADAS grafts resulted from robust in situ differentiation of both graft types into dopaminergic fates. Immunohistological analyses revealed that ADAS cells did not adopt dopaminergic cell fates in situ, consistent with the limited ability of these cells to undergo terminal differentiation into electrically active neurons in vitro. Moreover, re-exposure of neurally-differentiated ADAS cells to serum-containing medium in vitro confirmed ADAS cell phenotypic instability (plasticity). Lastly, given that gene expression analyses of in vitro-expanded ADAS cells revealed that both naïve and differentiated ADAS cells express potent dopaminergic survival factors, ADAS transplants may have exerted neuroprotective effects by production of trophic factors at the lesion site. ADAS cells may be ideal for ex vivo gene transfer therapies in Parkinson's disease treatment.

  12. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Elodie Angot

    Full Text Available Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.

  13. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction

    Science.gov (United States)

    Whittle, N; Maurer, V; Murphy, C; Rainer, J; Bindreither, D; Hauschild, M; Scharinger, A; Oberhauser, M; Keil, T; Brehm, C; Valovka, T; Striessnig, J; Singewald, N

    2016-01-01

    Extinction-based exposure therapy is used to treat anxiety- and trauma-related disorders; however, there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to promote greater protection against return-of-fear phenomena. Here, using 129S1/SvImJ mice, which display impaired fear extinction acquisition and extinction consolidation, we revealed that persistent and context-independent rescue of deficient fear extinction in these mice was associated with enhanced expression of dopamine-related genes, such as dopamine D1 (Drd1a) and -D2 (Drd2) receptor genes in the medial prefrontal cortex (mPFC) and amygdala, but not hippocampus. Moreover, enhanced histone acetylation was observed in the promoter of the extinction-regulated Drd2 gene in the mPFC, revealing a potential gene-regulatory mechanism. Although enhancing histone acetylation, via administering the histone deacetylase (HDAC) inhibitor MS-275, does not induce fear reduction during extinction training, it promoted enduring and context-independent rescue of deficient fear extinction consolidation/retrieval once extinction learning was initiated as shown following a mild conditioning protocol. This was associated with enhanced histone acetylation in neurons of the mPFC and amygdala. Finally, as a proof-of-principle, mimicking enhanced dopaminergic signaling by L-dopa treatment rescued deficient fear extinction and co-administration of MS-275 rendered this effect enduring and context-independent. In summary, current data reveal that combining dopaminergic and epigenetic mechanisms is a promising strategy to improve exposure-based behavior therapy in extinction-impaired individuals by initiating the formation of an enduring and context-independent fear-inhibitory memory. PMID:27922638

  14. The effects of social defeat on behavior and dopaminergic markers in mice.

    Science.gov (United States)

    Jin, H-M; Shrestha Muna, S; Bagalkot, T R; Cui, Y; Yadav, B K; Chung, Y-C

    2015-03-12

    The present study investigated the effects of chronic social defeat stress on several behavioral parameters, and the expression of dopaminergic markers, i.e., dopamine D1 receptors (D1Rs), dopamine D2 receptors (D2Rs), and dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein-32 (DARPP-32), in the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HIP) of mouse brains. After 10days of social defeat stress, the defeated mice were divided into two groups: one group underwent a series of behavioral tests. The other group was sacrificed on the 11th day and tissue samples were collected for Western blotting. The behavioral tests comprised tests of locomotion, light/dark preference, social interaction, as well as the novel object recognition test (NORT), Morris water maze, and forced swimming test (FST). We measured the expression of D1Rs, D2Rs, total DARPP-32, phospho-Thr34 or Thr75-DARPP-32 using Western blotting. The defeated mice showed increased anxiety- and depression-like behaviors, and impaired cognition. No significant differences in D1Rs and D2Rs expression were shown between defeated and control mice in any area studied. A significantly increased expression in total DARPP-32, and phospho-DARPP-32 was observed in the PFC or AMY of defeated mice. These data suggest that alterations in dopaminergic markers may be involved in anxiety- and depression-like behaviors, and cognitive impairment induced by social defeat stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Adolescent externalizing behaviour, psychological control, and peer rejection: Transactional links and dopaminergic moderation.

    Science.gov (United States)

    Janssens, Annelies; Van Den Noortgate, Wim; Goossens, Luc; Verschueren, Karine; Colpin, Hilde; Claes, Stephan; Van Heel, Martijn; Van Leeuwen, Karla

    2017-09-01

    This study investigated (1) reciprocal links among parental psychological control, peer rejection, and adolescent externalizing (aggressive and rule-breaking behaviour), and (2) the moderating effect of an adolescent genetic factor (biologically informed polygenic score for dopamine signalling). Three-year longitudinal data from 1,116 adolescents (51% boys; M age = 13.79) and their parents included psychological measures (adolescent-reported psychological control, peer-reported rejection, and parent-reported aggressive and rule-breaking behaviour). Cross-lagged analyses showed bidirectional effects between psychological control and both aggressive and rule-breaking behaviour and a unidirectional effect of peer rejection on both forms of problem behaviour over time. Multigroup structural equation modelling revealed genetic moderation only for rule-breaking behaviour: for adolescents with intermediate levels of dopamine signalling significant environmental effects were present, whereas adolescent effects of rule-breaking behaviour on psychological control were significant for adolescents with both intermediate and high profiles and effects on peer rejection only for adolescents with high dopamine profiles. Statement of contribution What is already known on this subject? Parental psychological control is related to adolescent externalizing problems. Experiencing peer rejection reinforces aggressive and rule-breaking behaviour. Single-gene studies show that dopaminergic genes influence externalizing problems directly or in interaction with the environment. What does this study add? Parental psychological control and adolescent aggressive and rule-breaking behaviour exacerbate one another longitudinally. Longitudinal associations between peer rejection and both subtypes of externalizing behaviour are unidirectional. With a polygenic approach, dopaminergic moderation is present for rule-breaking behaviour only. © 2017 The British Psychological Society.

  16. Effects of bifenthrin exposure on the estrogenic and dopaminergic pathways in zebrafish embryos and juveniles.

    Science.gov (United States)

    Bertotto, Luísa Becker; Richards, Jaben; Gan, Jay; Volz, David Christopher; Schlenk, Daniel

    2018-01-01

    Bifenthrin is a pyrethroid insecticide used in urban and agricultural applications. Previous studies have shown that environmentally relevant (ng/L) concentrations of bifenthrin increased plasma concentrations of 17β-estradiol (E2) and altered the expression of dopaminergic pathway components. The dopaminergic neurons can indirectly regulate E2 biosynthesis, suggesting that bifenthrin may disrupt the hypothalamic-pituitary-gonadal (HPG) axis. Because embryos do not have a complete HPG axis, the hypothesis that bifenthrin impairs dopamine regulation was tested in embryonic and 1-mo-old juvenile zebrafish (Danio rerio) with exposure to measured concentrations of 0.34 and 3.1 µg/L bifenthrin for 96 h. Quantitative reverse transcriptase polymerase chain reaction was used to investigate transcripts of tyrosine hydroxylase (TH), dopamine receptor 1 (DR1) and 2A (DR2A), dopamine active transporter (DAT), estrogen receptor α (ERα), ERβ1, ERβ2, luteinizing hormone β (LHβ), follicle-stimulating hormone β (FSHβ), vitellogenin (VTG), cytochrome P450 cyp19a1a, and cyp19a1b. Levels of E2 were measured by enzyme-linked immunosorbent assay (ELISA). Dopamine and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations were measured by liquid chromatrography-tandem mass spectrometry (LC-MS/MS). Significant decreases in TH and DR1 transcripts and HVA levels, as well as ratios of HVA/dopamine and HVA+DOPAC/dopamine, in zebrafish embryos were observed after bifenthrin treatment. In juveniles, a significant increase in the expression of ERβ1 and the DOPAC to dopamine ratio was noted. These results show a possible antiestrogenic effect of bifenthrin in embryos, and estrogenicity in juveniles, indicating life-stage-dependent toxicity in developing fish. Environ Toxicol Chem 2018;37:236-246. © 2017 SETAC. © 2017 SETAC.

  17. Dopaminergic system and dream recall: An MRI study in Parkinson's disease patients.

    Science.gov (United States)

    De Gennaro, Luigi; Lanteri, Olimpia; Piras, Fabrizio; Scarpelli, Serena; Assogna, Francesca; Ferrara, Michele; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-03-01

    We investigated the role of the dopamine system [i.e., subcortical-medial prefrontal cortex (mPFC) network] in dreaming, by studying patients with Parkinson's Disease (PD) as a model of altered dopaminergic transmission. Subcortical volumes and cortical thickness were extracted by 3T-MR images of 27 PD patients and 27 age-matched controls, who were asked to fill out a dream diary upon morning awakening for one week. PD patients do not substantially differ from healthy controls with respect to the sleep, dream, and neuroanatomical measures. Multivariate correlational analyses in PD patients show that dopamine agonist dosage is associated to qualitatively impoverished dreams, as expressed by lower bizarreness and lower emotional load values. Visual vividness (VV) of their dream reports positively correlates with volumes of both the amygdalae and with thickness of the left mPFC. Emotional load also positively correlates with hippocampal volume. Beside the replication of our previous finding on the role of subcortical nuclei in dreaming experience of healthy subjects, this represents the first evidence of a specific role of the amygdala-mPFC dopaminergic network system in dream recall. The association in PD patients between higher dopamine agonist dosages and impoverished dream reports, however, and the significant correlations between VV and mesolimbic regions, however, provide an empirical support to the hypothesis that a dopamine network plays a key role in dream generation. The causal relation is however precluded by the intrinsic limitation of assuming the dopamine agonist dosage as a measure of the hypodopaminergic state in PD. Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Dang, Duy-Khanh; Shin, Eun-Joo; Kim, Dae-Joong; Tran, Hai-Quyen; Jeong, Ji Hoon; Jang, Choon-Gon; Ottersen, Ole Petter; Nah, Seung-Yeol; Hong, Jau-Shyong; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2018-02-01

    Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translocation of p47phox. MA-induced increases in PHOX activity and reactive oxygen species were attenuated by knockout of p47phox or PKCδ. In addition, MA-induced impairments in the Nrf-2-related glutathione synthetic system were also mitigated by knockout of p47phox or PKCδ. Glutathione-immunoreactivity was co-localized in Iba-1-labeled microglial cells and in NeuN-labeled neurons, but not in GFAP-labeled astrocytes, reflecting the necessity for self-protection against oxidative stress by mainly microglia. Buthionine-sulfoximine, an inhibitor of glutathione biosynthesis, potentiated microglial activation and pro-apoptotic changes, leading to dopaminergic losses. These neurotoxic processes were attenuated by rottlerin, a pharmacological inhibitor of PKCδ, genetic inhibitions of PKCδ [i.e., PKCδ knockout mice (KO) and PKCδ antisense oligonucleotide (ASO)], or genetic inhibition of p47phox (i.e., p47phox KO or p47phox ASO). Rottlerin did not exhibit any additive effects against the protective activity offered by genetic inhibition of p47phox. Therefore, we suggest that PKCδ is a critical regulator for p47phox activation induced by MA, and that Nrf-2-dependent GSH induction via inhibition of PKCδ or p47phox, is important for dopaminergic protection against MA insult. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity.

    Science.gov (United States)

    Pajarillo, Edward; Johnson, James; Kim, Judong; Karki, Pratap; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2018-03-01

    Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Eric J Benner

    2008-01-01

    Full Text Available The neuropathology of Parkinson's disease (PD includes loss of dopaminergic neurons in the substantia nigra, nitrated alpha-synuclein (N-alpha-Syn enriched intraneuronal inclusions or Lewy bodies and neuroinflammation. While the contribution of innate microglial inflammatory activities to disease are known, evidence for how adaptive immune mechanisms may affect the course of PD remains obscure. We reasoned that PD-associated oxidative protein modifications create novel antigenic epitopes capable of peripheral adaptive T cell responses that could affect nigrostriatal degeneration.Nitrotyrosine (NT-modified alpha-Syn was detected readily in cervical lymph nodes (CLN from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP intoxicated mice. Antigen-presenting cells within the CLN showed increased surface expression of major histocompatibility complex class II, initiating the molecular machinery necessary for efficient antigen presentation. MPTP-treated mice produced antibodies to native and nitrated alpha-Syn. Mice immunized with the NT-modified C-terminal tail fragment of alpha-Syn, but not native protein, generated robust T cell proliferative and pro-inflammatory secretory responses specific only for the modified antigen. T cells generated against the nitrated epitope do not respond to the unmodified protein. Mice deficient in T and B lymphocytes were resistant to MPTP-induced neurodegeneration. Transfer of T cells from mice immunized with N-alpha-Syn led to a robust neuroinflammatory response with accelerated dopaminergic cell loss.These data show that NT modifications within alpha-Syn, can bypass or break immunological tolerance and activate peripheral leukocytes in draining lymphoid tissue. A novel mechanism for disease is made in that NT modifications in alpha-Syn induce adaptive immune responses that exacerbate PD pathobiology. These results have implications for both the pathogenesis and treatment of this disabling neurodegenerative disease.

  1. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner.

    Science.gov (United States)

    Love, Tiffany M; Enoch, Mary-Anne; Hodgkinson, Colin A; Peciña, Marta; Mickey, Brian; Koeppe, Robert A; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2012-08-01

    Oxytocin, classically involved in social and reproductive activities, is increasingly recognized as an antinociceptive and anxiolytic agent, effects which may be mediated via oxytocin's interactions with the dopamine system. Thus, genetic variation within the oxytocin gene (OXT) is likely to explain variability in dopamine-related stress responses. As such, we examined how OXT variation is associated with stress-induced dopaminergic neurotransmission in a healthy human sample. Fifty-five young healthy volunteers were scanned using [¹¹C]raclopride positron emission tomography while they underwent a standardized physical and emotional stressor that consisted of moderate levels of experimental sustained deep muscle pain, and a baseline, control state. Four haplotype tagging single nucleotide polymorphisms located in regions near OXT were genotyped. Measures of pain, affect, anxiety, well-being and interpersonal attachment were also assessed. Female rs4813625 C allele carriers demonstrated greater stress-induced dopamine release, measured as reductions in receptor availability from baseline to the pain-stress condition relative to female GG homozygotes. No significant differences were detected among males. We also observed that female rs4813625 C allele carriers exhibited higher attachment anxiety, higher trait anxiety and lower emotional well-being scores. In addition, greater stress-induced dopamine release was associated with lower emotional well-being scores in female rs4813625 C allele carriers. Our results suggest that variability within the oxytocin gene appear to explain interindividual differences in dopaminergic responses to stress, which are shown to be associated with anxiety traits, including those linked to attachment style, as well as emotional well-being in women. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Cognitive judgment bias interacts with risk based decision making and sensitivity to dopaminergic challenge in rats

    Directory of Open Access Journals (Sweden)

    Robert Drozd

    2016-08-01

    Full Text Available Although cognitive theory has implicated judgement bias in various psychopathologies, its role in decision making under risk remains relatively unexplored. In the present study we assessed the effects of cognitive judgment bias on risky choices in rats. First, we trained and tested the animals on the rat version of the probability-discounting task. During discrete trials, the rats chose between two levers; a press on the ‘small/certain’ lever always resulted in the delivery of one reward pellet, whereas a press on the ‘large/risky’ lever resulted in the delivery of four pellets. However, the probability of receiving a reward from the ‘large/risky’ lever gradually decreased over the four trial blocks. Subsequently, the rats were re-trained and evaluated on a series of ambiguous-cue interpretation tests, which permitted their classification according to the display of ‘optimistic’ or ‘pessimistic’ traits. Because dopamine has been implicated in both: risky choices and optimism, in the last experiment, we compared the reactivity of the dopaminergic system in the ‘optimistic’ and ‘pessimistic’ animals using the apomorphine (2mg/kg s.c. sensitivity test. We demonstrated that as risk increased, the proportion of risky lever choices decreased significantly slower in ‘optimists’ compared with ‘pessimists’ and that these differences between the two groups of rats were associated with different levels of dopaminergic system reactivity. Our findings suggest that cognitive judgement bias, risky decision-making and dopamine are linked, and they provide a foundation for further investigation of the behavioural traits and cognitive processes that influence risky choices in animal models.

  3. A neural population model incorporating dopaminergic neurotransmission during complex voluntary behaviors.

    Directory of Open Access Journals (Sweden)

    Stefan Fürtinger

    2014-11-01

    Full Text Available Assessing brain activity during complex voluntary motor behaviors that require the recruitment of multiple neural sites is a field of active research. Our current knowledge is primarily based on human brain imaging studies that have clear limitations in terms of temporal and spatial resolution. We developed a physiologically informed non-linear multi-compartment stochastic neural model to simulate functional brain activity coupled with neurotransmitter release during complex voluntary behavior, such as speech production. Due to its state-dependent modulation of neural firing, dopaminergic neurotransmission plays a key role in the organization of functional brain circuits controlling speech and language and thus has been incorporated in our neural population model. A rigorous mathematical proof establishing existence and uniqueness of solutions to the proposed model as well as a computationally efficient strategy to numerically approximate these solutions are presented. Simulated brain activity during the resting state and sentence production was analyzed using functional network connectivity, and graph theoretical techniques were employed to highlight differences between the two conditions. We demonstrate that our model successfully reproduces characteristic changes seen in empirical data between the resting state and speech production, and dopaminergic neurotransmission evokes pronounced changes in modeled functional connectivity by acting on the underlying biological stochastic neural model. Specifically, model and data networks in both speech and rest conditions share task-specific network features: both the simulated and empirical functional connectivity networks show an increase in nodal influence and segregation in speech over the resting state. These commonalities confirm that dopamine is a key neuromodulator of the functional connectome of speech control. Based on reproducible characteristic aspects of empirical data, we suggest a number

  4. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice.

    Science.gov (United States)

    Nasehi, Mohammad; Hasanvand, Simin; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2018-05-16

    In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.

  5. From the Cover: Harmane-Induced Selective Dopaminergic Neurotoxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Sammi, Shreesh Raj; Agim, Zeynep Sena; Cannon, Jason R

    2018-02-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disease. Although numerous exposures have been linked to PD etiology, causative factors for most cases remain largely unknown. Emerging data on the neurotoxicity of heterocyclic amines suggest that this class of compounds should be examined for relevance to PD. Here, using Caenorhabditis elegans as a model system, we tested whether harmane exposure produced selective toxicity to dopamine neurons that is potentially relevant to PD. Harmane is a known tremorigenic β-carboline (a type of heterocyclic amine) found in cooked meat, roasted coffee beans, and tobacco. Thus, this compound represents a potentially important exposure. In the nematode model, we observed dopaminergic neurons to be selectively vulnerable, showing significant loss in terms of structure and function at lower doses than other neuronal populations. In examining mechanisms of toxicity, we observed significant harmane-induced decreases in mitochondrial viability and increased reactive oxygen species levels. Blocking transport through the dopamine transporter (DAT) was not neuroprotective, suggesting that harmane is unlikely to enter the cell through DAT. However, a mitochondrial complex I activator did partially ameliorate neurodegeneration. Further, mitochondrial complex I activator treatment reduced harmane-induced dopamine depletion, measured by the 1-nonanol assay. In summary, we have shown that harmane exposure in C. elegans produces selective dopaminergic neurotoxicity that may bear relevance to PD, and that neurotoxicity may be mediated through mitochondrial mechanisms. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Predicting abuse potential of stimulants and other dopaminergic drugs: overview and recommendations.

    Science.gov (United States)

    Huskinson, Sally L; Naylor, Jennifer E; Rowlett, James K; Freeman, Kevin B

    2014-12-01

    Examination of a drug's abuse potential at multiple levels of analysis (molecular/cellular action, whole-organism behavior, epidemiological data) is an essential component to regulating controlled substances under the Controlled Substances Act (CSA). We reviewed studies that examined several central nervous system (CNS) stimulants, focusing on those with primarily dopaminergic actions, in drug self-administration, drug discrimination, and physical dependence. For drug self-administration and drug discrimination, we distinguished between experiments conducted with rats and nonhuman primates (NHP) to highlight the common and unique attributes of each model in the assessment of abuse potential. Our review of drug self-administration studies suggests that this procedure is important in predicting abuse potential of dopaminergic compounds, but there were many false positives. We recommended that tests to determine how reinforcing a drug is relative to a known drug of abuse may be more predictive of abuse potential than tests that yield a binary, yes-or-no classification. Several false positives also occurred with drug discrimination. With this procedure, we recommended that future research follow a standard decision-tree approach that may require examining the drug being tested for abuse potential as the training stimulus. This approach would also allow several known drugs of abuse to be tested for substitution, and this may reduce false positives. Finally, we reviewed evidence of physical dependence with stimulants and discussed the feasibility of modeling these phenomena in nonhuman animals in a rational and practical fashion. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice

    International Nuclear Information System (INIS)

    Cadet, J.L.; Hirata, H.; Asanuma, M.

    1998-01-01

    6-Hydroxydopamine is a neurotoxin that produces degeneration of the nigrostriatal dopaminergic pathway in rodents. Its toxicity is thought to involve the generation of superoxide anion secondary to its autoxidation. To examine the effects of the overexpression of Cu,Zn-superoxide dismutase activity on 6-hydroxydopamine-induced dopaminergic neuronal damage, we have measured the effects of 6-hydroxydopamine on striatal and nigral dopamine transporters and nigral tyrosine hydroxylase-immunoreactive neurons in Cu,Zn-superoxide dismutase transgenic mice. Intracerebroventricular injection of 6-hydroxydopamine (50 μg) in non-transgenic mice produced reductions in the size of striatal area and an enlargement of the cerebral ventricle on both sides of the brains of mice killed two weeks after the injection. In addition, 6-hydroxydopamine caused marked decreases in striatal and nigral [ 125 I]RTI-121-labelled dopamine transporters not only on the injected side but also on the non-injected side of non-transgenic mice; this was associated with decreased cell number and size of tyrosine hydroxylase-immunoreactive dopamine neurons in the substantia nigra pars compacta on both sides in these mice. In contrast, superoxide dismutase transgenic mice were protected against these neurotoxic effects of 6-hydroxydopamine, with the homozygous transgenic mice showing almost complete protection.These results provide further support for a role of superoxide anion in the toxic effects of 6-hydroxydopamine. They also provide further evidence that reactive oxygen species may be the main determining factors in the neurodegenerative effects of catecholamines. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Orgasmic Dysfunction after Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Paolo Capogrosso

    2017-04-01

    Full Text Available In addition to urinary incontinence and erectile dysfunction, several other impairments of sexual function potentially occurring after radical prostatectomy (RP have been described; as a whole, these less frequently assessed disorders are referred to as neglected side effects. In particular, orgasmic dysfunctions (ODs have been reported in a non-negligible number of cases, with detrimental impacts on patients’ overall sexual life. This review aimed to comprehensively discuss the prevalence and physiopathology of post-RP ODs, as well as potential treatment options. Orgasm-associated incontinence (climacturia has been reported to occur in between 20% and 93% of patients after RP. Similarly, up to 19% of patients complain of postoperative orgasm-associated pain, mainly referred pain at the level of the penis. Moreover, impairment in the sensation of orgasm or even complete anorgasmia has been reported in 33% to 77% of patients after surgery. Clinical and surgical factors including age, the use of a nerve-sparing technique, and robotic surgery have been variably associated with the risk of ODs after RP, although robust and reliable data allowing for a proper estimation of the risk of postoperative orgasmic function impairment are still lacking. Likewise, little evidence regarding the management of postoperative ODs is currently available. In general, physicians should be aware of the prevalence of ODs after RP, in order to properly counsel all patients both preoperatively and immediately post-RP about the potential occurrence of bothersome and distressful changes in their overall sexual function.

  9. Orgasmic Dysfunction after Radical Prostatectomy

    Science.gov (United States)

    Ventimiglia, Eugenio; Cazzaniga, Walter; Montorsi, Francesco; Salonia, Andrea

    2017-01-01

    In addition to urinary incontinence and erectile dysfunction, several other impairments of sexual function potentially occurring after radical prostatectomy (RP) have been described; as a whole, these less frequently assessed disorders are referred to as neglected side effects. In particular, orgasmic dysfunctions (ODs) have been reported in a non-negligible number of cases, with detrimental impacts on patients' overall sexual life. This review aimed to comprehensively discuss the prevalence and physiopathology of post-RP ODs, as well as potential treatment options. Orgasm-associated incontinence (climacturia) has been reported to occur in between 20% and 93% of patients after RP. Similarly, up to 19% of patients complain of postoperative orgasm-associated pain, mainly referred pain at the level of the penis. Moreover, impairment in the sensation of orgasm or even complete anorgasmia has been reported in 33% to 77% of patients after surgery. Clinical and surgical factors including age, the use of a nerve-sparing technique, and robotic surgery have been variably associated with the risk of ODs after RP, although robust and reliable data allowing for a proper estimation of the risk of postoperative orgasmic function impairment are still lacking. Likewise, little evidence regarding the management of postoperative ODs is currently available. In general, physicians should be aware of the prevalence of ODs after RP, in order to properly counsel all patients both preoperatively and immediately post-RP about the potential occurrence of bothersome and distressful changes in their overall sexual function. PMID:28459142

  10. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  11. Cognitive Dysfunctions in Epileptic Syndromes

    Directory of Open Access Journals (Sweden)

    Semih Ayta

    2014-05-01

    Full Text Available Some children with epilepsy display a low level of intelligence, learning disabilities, attention deficit hyperactivity disorder, mood disorders and anxiety. Besides specific learning disabilities like reading, writing, arithmetics, learning problems may involve other major areas of intellectual functions such as speech and language, attention, memory, fine motor coordination. Even in the presence of common pathology that leads to epilepsy and mental dysfunctions, seizures cause additional cognitive problems. Age at seizure onset, type of seizures and epileptic syndromes are some variables that determine the effect of epilepsy on cognition. As recurrent seizures may have some negative impact on the developing brain, the use of antiepileptic drugs should be considered not only to aim reducing seizures but also to prevent possible seizure-induced cortical dysfunctions. Epilepsy is a disorder requiring a complicated psychological adjustment for the patients and indeed is a disease that affects the whole family. Thus, the management of epilepsy must include educational, psychotherapeutic and behavioral interventions as well as drug treatment.

  12. Cardiovascular drugs and erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Terzić Branka M.

    2014-01-01

    Full Text Available Erectile dysfunction (ED is a disorder, which basically can have organic nature, psychological or mixed. ED is not a rarity, and data on its prevalence vary, depending on the areas in which the survey was conducted, followed by a period of research and the definition of the disorder. Most of the men associate ED problem with using drugs, especially cardiac. Even though there is some truth in it, mainly the real causes of ED are not well known even to professionals. Contemporary studies of risk factors for cardiovascular disease, particularly coronary heart disease, have shown the clear link between erectile dysfunction and coronary heart disease, wherein ED first manifests. While, ED precedes the onset of symptoms of coronary heart disease and show to the patient and the physician a clear signal of the direction for conducting diagnostic tests and further treatment in the interest of the health of patients. Endocrine, and neurological disorders, as well as bad habits in addition to the cardiac and kidney disease, lead to ED. It is known also, that the use of cardiac medicines may contribute to ED occurrence. Better knowledge of adverse reactions to medicines, a better understanding of the nature of the disease and the implementation of necessary diagnostic procedures, with a good choice of medication, contribute to solving problems related to ED. If all mentioned do not help, there is the possibility of using new drugs to correct ED.

  13. Acute renal dysfunction in liver diseases

    OpenAIRE

    Betrosian, Alex P; Agarwal, Banwari; Douzinas, Emmanuel E

    2007-01-01

    Renal dysfunction is common in liver diseases, either as part of multiorgan involvement in acute illness or secondary to advanced liver disease. The presence of renal impairment in both groups is a poor prognostic indicator. Renal failure is often multifactorial and can present as pre-renal or intrinsic renal dysfunction. Obstructive or post renal dysfunction only rarely complicates liver disease. Hepatorenal syndrome (HRS) is a unique form of renal failure associated with advanced liver dise...

  14. Sexual dysfunction in Obsessive-Compulsive disorder

    Directory of Open Access Journals (Sweden)

    Firoozeh Raisi

    2015-05-01

    Conclusion: High prevalence of sexual dysfunction in OCD women and significant correlation between male sexual dysfunction and OCD (r= -481.0 between total score of OCI-R with erectile dysfunction and r= -458.0 between total score of OCI-R and sexual satisfaction could confirm a relation between OCD and sexual disorders. So, evaluation of sexual function in all patients with OCD is recommended.

  15. The treatment of autonomic dysfunction in tetanus

    Directory of Open Access Journals (Sweden)

    T van den Heever

    2017-07-01

    Full Text Available We report a case of generalised tetanus in a 50-year-old female patient after sustaining a wound to her right lower leg. She developed autonomic dysfunction, which included labile hypertension alternating with hypotension and sweating. The autonomic dysfunction was treated successfully with a combination of morphine sulphate infusion, magnesium sulphate, and clonidine. She also received adrenaline and phenylephrine infusions as needed for hypotension. We then discuss the pathophysiology, clinical features and treatment options of autonomic dysfunction.

  16. Dopaminergic dysfunction in abstinent dexamphetamine users : Results from a pharmacological fMRI study using a reward anticipation task and a methylphenidate challenge

    NARCIS (Netherlands)

    Schouw, M.L.J.; De Ruiter, M.B.; Kaag, A.M.; van den Brink, W.; Lindauer, R.J.L.; Reneman, L.

    2013-01-01

    BACKGROUND: Dopamine (DA) is involved in systems governing motor actions, motivational processes and cognitive functions. Preclinical studies have shown that even relatively low doses of d-amphetamine (dAMPH) (equivalent to doses used in clinical Practice) can lead to DA neurotoxicity in rodents and

  17. Cardiovascular dysfunction in infants with neonatal encephalopathy.

    LENUS (Irish Health Repository)

    Armstrong, Katey

    2012-04-01

    Severe perinatal asphyxia with hypoxic ischaemic encephalopathy occurs in approximately 1-2\\/1000 live births and is an important cause of cerebral palsy and associated neurological disabilities in children. Multiorgan dysfunction commonly occurs as part of the asphyxial episode, with cardiovascular dysfunction occurring in up to a third of infants. This narrative paper attempts to review the literature on the importance of early recognition of cardiac dysfunction using echocardiography and biomarkers such as troponin and brain type natriuretic peptide. These tools may allow accurate assessment of cardiac dysfunction and guide therapy to improve outcome.

  18. Sexual Dysfunction and Intimacy for Ostomates.

    Science.gov (United States)

    Albaugh, Jeffrey A; Tenfelde, Sandi; Hayden, Dana M

    2017-07-01

    Sex and intimacy presents special challenges for the ostomate. Since some colorectal surgery patients will require either temporary or permanent stomas, intimacy and sexuality is a common issue for ostomates. In addition to the stoma, nerve damage, radiotherapy, and chemotherapy are often used in conjunction with stoma creation for cancer patients, thereby adding physiological dysfunction to the personal psychological impact of the stoma, leading to sexual dysfunction. The purpose of this paper is to describe the prevalence, etiology, and the most common types of sexual dysfunction in men and women after colorectal surgery and particularly those patients with stomas. In addition, treatment strategies for sexual dysfunction will also be described.

  19. Imaging for evaluation of erectile dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyup [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2001-03-15

    Penile erection is a complex phenomenon that includes coordinated intraaction of the nervous, arterial, venous, and sinusoidal systems. A defect in any of these systems may result in erectile dysfunction. Erectile dysfunction is defined as the consistent inability to generate or maintain an erection of sufficient rigidity for sexual intercourse. Although the introduction of sildenafil citrate made the information from imaging studies less critical in the management of the patients with erectile dysfunction, still the imaging studies such as Doppler US, penile arteriography, and cavemosonetry/cavemosography remain the major modalities in the evaluation of erectile dysfunction.

  20. Dysfunctional gaze processing in bipolar disorder

    Directory of Open Access Journals (Sweden)

    Cristina Berchio

    2017-01-01

    The present study provides neurophysiological evidence for abnormal gaze processing in BP and suggests dysfunctional processing of direct eye contact as a prominent characteristic of bipolar disorder.

  1. Expansion and characterization of ventral mesencephalic precursor cells: effect of mitogens and investigation of FA1 as a potential dopaminergic marker

    DEFF Research Database (Denmark)

    Jensen, Pia; Bauer, Matthias; Jensen, Charlotte H

    2007-01-01

    factor 8 (FGF8) for expansion of such dopaminergic precursor cells, and fetal antigen-1 (FA1), a secreted neuronal protein of unknown function, as a non-invasive dopaminergic marker. Tissue from embryonic day (ED) 12 rat ventral mesencephalon was dissociated mechanically and cultured for 4 days...... to controls. After differentiation, biochemical analyses showed significantly more dopamine and FA1 in conditioned medium from both FGF2 and FGF8 expanded cultures than in controls. Correspondingly, numbers of tyrosine hydroxylase (TH)- and FA1-immunoreactive cells had increased 16-fold (P ... for these cells. Furthermore, FA1 was identified as a potential supplementary non-invasive marker of cultured dopaminergic neurons....

  2. Psychopathy: cognitive and neural dysfunction.

    Science.gov (United States)

    R Blair, R James

    2013-06-01

    Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause-ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder.

  3. Sleep Dysfunction and Gastrointestinal Diseases.

    Science.gov (United States)

    Khanijow, Vikesh; Prakash, Pia; Emsellem, Helene A; Borum, Marie L; Doman, David B

    2015-12-01

    Sleep deprivation and impaired sleep quality have been associated with poor health outcomes. Many patients experience sleep disturbances, which can increase the risk of medical conditions such as hypertension, obesity, stroke, and heart disease as well as increase overall mortality. Recent studies have suggested that there is a strong association between sleep disturbances and gastrointestinal diseases. Proinflammatory cytokines, such as tumor necrosis factor, interleukin-1, and interleukin-6, have been associated with sleep dysfunction. Alterations in these cytokines have been seen in certain gastrointestinal diseases, such as gastroesophageal reflux disease, inflammatory bowel disease, liver disorders, and colorectal cancer. It is important for gastroenterologists to be aware of the relationship between sleep disorders and gastrointestinal illnesses to ensure good care for patients. This article reviews the current research on the interplay between sleep disorders, immune function, and gastrointestinal diseases.

  4. Psychopathy: cognitive and neural dysfunction

    Science.gov (United States)

    R. Blair, R. James

    2013-01-01

    Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause—ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder. PMID:24174892

  5. Diabetes and Retinal Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    2014-01-01

    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  6. Animal models of erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Snehlata V Gajbhiye

    2015-01-01

    Full Text Available Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were "ED and experimental models," "ED and nervous stimulation," "ED and cavernous nerve stimulation," "ED and central stimulation," "ED and diabetes mellitus," "ED and ageing," "ED and hypercholesteremia," "ED and Peyronie′s disease," "radiation induced ED," "telemetric recording," "ED and mating test" and "ED and non-contact erection test."

  7. [Biliary dysfunction in obese children].

    Science.gov (United States)

    Aleshina, E I; Gubonina, I V; Novikova, V P; Vigurskaia, M Iu

    2014-01-01

    To examine the state of the biliary system, a study of properties of bile "case-control") 100 children and adolescents aged 8 to 18 years, held checkup in consultative and diagnostic center for chronic gastroduodenitis. BMI children were divided into 2 groups: group 1-60 children with obesity (BMI of 30 to 40) and group 2-40 children with normal anthropometric indices. Survey methods included clinical examination pediatrician, endocrinologist, biochemical parameters (ALT, AST, alkaline phosphatase level, total protein, bilirubin, lipidogram, glucose, insulin, HOMA-index), ultrasound of the abdomen and retroperitoneum, EGD with aspiration of gallbladder bile. Crystallography bile produced by crystallization of biological substrates micromethods modification Prima AV, 1992. Obese children with chronic gastroduodenita more likely than children of normal weight, had complaints and objective laboratory and instrumental evidence of insulin resistance and motor disorders of the upper gastrointestinal and biliary tract, liver enlargement and biliary "sludge". Biochemical parameters of obese children indicate initial metabolic changes in carbohydrate and fat metabolism and cholestasis, as compared to control children. Colloidal properties of bile in obese children with chronic gastroduodenita reduced, as indicated by the nature of the crystallographic pattern. Conclusions: Obese children with chronic gastroduodenitis often identified enlarged liver, cholestasis and biliary dysfunction, including with the presence of sludge in the gallbladder; most often--hypertonic bile dysfunction. Biochemical features of carbohydrate and fat metabolism reflect the features of the metabolic profile of obese children. Crystallography bile in obese children reveals the instability of the colloidal structure of bile, predisposing children to biliary sludge, which is a risk factor for gallstones.

  8. Thyroid dysfunction in infertile women

    International Nuclear Information System (INIS)

    Elahi, S.; Tanseem, A.; Nazir, I.; Nagra, S.A.

    2007-01-01

    To determine the frequency of thyroid dysfunction in infertile women referred for thyroid evaluation. Age matched infertile (n=140 each) and fertile women (n=152 each) referred to CENUM for thyroid evaluation were investigated for incidence of hyperthyroidism (TSH 20 IU/L). Serum free T4 (FT4), free T3 (FT3) and antithyroid peroxidase antibody (TPO-Ab) was determined by radioimmunoassay (RIA) and TSH by immunoradiometric assay (IRMA). Most of the infertile women (89.3%), like control women (93.4%), were euthyroid. The difference of overall thyroid dysfunction was not statistically significant in infertile and control women (10.7% vs. 7.9%; p=0.395). The same was true for incidence of hyperthyroidism (4.3% vs. 5.3%; p=0.701) as well as hypothyroidism (6.4% vs. 2.6%; p=0.104). In infertile women, the incidence of hypothyroidism (6.4%) was slightly higher as compared to hyperthyroidism (4.3%). In euthyroid women of both groups, mean FT4, FT3 and TSH levels were significantly higher (p 2.5 mIU/L compared to fertile women (31.2% vs. 15.6%; p 20 IU/L) than control women (7.2% vs. 1.4%; p<0.05). Increased incidence of high normal TSH and raised TPO-Ab titer indicate relatively more frequent occurrence of compensated thyroid function in infertile women than normal women of reproductive age. This necessitates considering them a subgroup of women in which all aspects of pituitary-thyroid axis should be thoroughly investigated than merely TSH testing. (author)

  9. Radiation-induced neurobehavioral dysfunctions

    International Nuclear Information System (INIS)

    Manda, Kailash

    2013-01-01

    There is a lacuna between sparsely reported immediate effects and the well documented delayed effects on cognitive functions seen after ionizing radiation exposure. We reported the radiation-dose dependent incongruity in the early cognitive changes and its correlation with the structural aberration as reported by imaging study. The delayed effect of radiation was investigated to understand the role of hippocampal neurogenesis in the functional recovery of cognition. C57BL/6 mice were exposed to different doses of γ-radiation and 24 hrs after exposure, the stress and anxiety levels were examined in the Open Field Exploratory Paradigms (OFT). 48hrs after irradiation, the hippocampal dependent recognition memory was observed by the Novel Object Recognition Test (NORT) and the cognitive function related to memory processing and recall was tested using the Elevated Plus Maze (EPM). Visualization of damage to the brain was done by diffusion tensor imaging at 48 hours post-irradiation. Results indicate a complex dose independent effect on the cognitive functions immediately after exposure to gamma rays. Radiation exposure caused short term memory dysfunctions at lower doses which were seen to be abrogated at higher doses, but the long term memory processing was disrupted at higher doses. The Hippocampus emerged as one of the sensitive regions to be affected by whole body exposure to gamma rays, which led to profound immediate alterations in cognitive functions. Furthermore, the results indicate a cognitive recovery process, which might be dependent on the extent of damage to the hippocampal region. While evaluating the delayed effect of radiation on the hippocampal neurogenesis, we observed that higher doses groups showed comparatively more adaptive regenerative neurogenic potential which they could not sustain at later stages. Our studies reported an important hitherto uncovered phenomenon of neurobehavioral dysfunctions in relation to radiation dose. Nevertheless, a

  10. Test Performance Related Dysfunctional Beliefs

    Directory of Open Access Journals (Sweden)

    Recep TÜTÜNCÜ

    2012-11-01

    Full Text Available Objective: Examinations by using tests are very frequently used in educational settings and successful studying before the examinations is a complex matter to deal with. In order to understand the determinants of success in exams better, we need to take into account not only emotional and motivational, but also cognitive aspects of the participants such as dysfunctional beliefs. Our aim is to present the relationship between candidates’ characteristics and distorted beliefs/schemata just before an examination. Method: The subjects of the study were 30 female and 30 male physicians who were about to take the medical specialization exam (MSE in Turkey. Dysfunctional Attitude Scale (DAS and Young Schema Questionnaire Short Form (YSQ-SF were applied to the subjects. The statistical analysis was done using the F test, Mann-Whitney, Kruskal-Wallis, chi-square test and spearman’s correlation test. Results: It was shown that some of the DAS and YSQ-SF scores were significantly higher in female gender, in the group who could not pass the exam, who had repetitive examinations, who had their first try taking an examination and who were unemployed at the time of the examination. Conclusion: Our findings indicate that candidates seeking help before MSE examination could be referred for cognitive therapy or counseling even they do not have any psychiatric diagnosis due to clinically significant cognitive distortion. Measurement and treatment of cognitive distortions that have negative impact on MSE performance may improve the cost-effectiveness and mental well being of the young doctors.

  11. Identifying and Working with Dysfunctional Families.

    Science.gov (United States)

    Bilynsky, Natalie Sufler; Vernaglia, Elizabeth Rudow

    1999-01-01

    A school counselor is often called upon to intervene when a child's progress and the classroom environment begin to suffer because of the child's dysfunctional family. The article presents a six-stage, problem-solving model for school counselors in their work with children from dysfunctional families. Presents a case example to illustrate the…

  12. Sociodemographic and clinical correlates of sexual dysfunction ...

    African Journals Online (AJOL)

    Background: Sexual dysfunction is common in patients receiving psychotropic medications and may reduce their quality of life and medication adherence with resultant negative impact on treatment outcomes. Objectives: In this study, we described the various types of sexual dysfunction among psychiatric outpatients ...

  13. Suspecting Neurological Dysfunction From E Mail Messages ...

    African Journals Online (AJOL)

    A non medical person suspected and confirmed neurological dysfunction in an individual, based only on e mail messages sent by the individual. With email communication becoming rampant “peculiar” email messages may raise the suspicion of neurological dysfunction. Organic pathology explaining the abnormal email ...

  14. Thyroid stimulating hormone and subclinical thyroid dysfunction

    International Nuclear Information System (INIS)

    Guo Yongtie

    2008-01-01

    Subclinical thyroid dysfunction has mild clinical symptoms. It is nonspecific and not so noticeable. It performs only for thyroid stimulating hormone rise and decline. The value of early diagnosis and treatment of thyroid stimulating hormone in subclinical thyroid dysfunction were reviewed. (authors)

  15. Symptoms of Nerve Dysfunction After Hip Arthroscopy

    DEFF Research Database (Denmark)

    Dippmann, Christian; Thorborg, Kristian; Kraemer, Otto

    2014-01-01

    PURPOSE: The primary purpose of this study was to analyze the rate, pattern, and severity of symptoms of nerve dysfunction after hip arthroscopy (HA) by reviewing prospectively collected data. The secondary purpose was to study whether symptoms of nerve dysfunction were related to traction time...

  16. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  17. Male Pseudoheterosexuality and Minimal Sexual Dysfunction

    Science.gov (United States)

    Gutstadt, Joseph P.

    1976-01-01

    There is often a correlation between "pseudoheterosexuality" and minor sexual dysfunction. Insight alone is not sufficient to provide relief, but when the patient can be helped to a comfortable acceptance of his homosexual feelings as a normal and healthy facet of his personality, very often the dysfunction is relieved. (Author)

  18. On the Etiology of Sexual Dysfunction

    Science.gov (United States)

    Apfelbaum, Bernard

    1977-01-01

    Lack of consideration of the sexually functional population has led to misconceptions about causes of sexual dysfunction functioning. Automatic functioning can mask effects of pathogenic influences on sexuality, making these effects appear random, confounding etiological issues and creating the belief that causes of sexual dysfunction and disorder…

  19. Herpes zoster producing temporary erectile dysfunction.

    Science.gov (United States)

    Rix, G H; Carroll, D N; MacFarlane, J R

    2001-12-01

    Varicella Zoster affecting the sacral dermatomes is a rare but well recognised cause of urinary retention. Only one case of erectile dysfunction associated with Varicella Zoster has previously been described, which was longstanding, but no cases of transient erectile dysfunction following Zoster infection are recorded. We present one such case.

  20. Understanding taste dysfunction in patients with cancer.

    Science.gov (United States)

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  1. Sexual dysfunctions after prostate cancer radiation therapy

    International Nuclear Information System (INIS)

    Droupy, S.

    2010-01-01

    Sexual dysfunctions are a quality of life main concern following prostate cancer treatment. After both radiotherapy and brachytherapy, sexual function declines progressively, the onset of occurrence of erectile dysfunction being 12-18 months after both treatments. The pathophysiological pathways by which radiotherapy and brachytherapy cause erectile dysfunction are multi-factorial, as patient co-morbidities, arterial damage, exposure of neurovascular bundle to high levels of radiation, and radiation dose received by the corpora cavernosa at the crurae of the penis may be important in the aetiology of erectile dysfunction. Diagnosis and treatment of postradiation sexual dysfunctions must integrate pre-therapeutic evaluation and information to provide to the patient and his partner a multidisciplinary sexual medicine management. (authors)

  2. Age-Dependent Effects of Methylphenidate on the Human Dopaminergic System in Young vs Adult Patients With Attention-Deficit/Hyperactivity Disorder: A Randomized Clincal Trial

    NARCIS (Netherlands)

    Schrantee, A.; Tamminga, H.G.H.; Bouziane, C.; Bottelier, M.A.; Bron, E.E.; Mutsaerts, H.-J.M.M.; Zwinderman, A.H.; Groote, I.R.; Rombouts, S.A.R.B.; Lindauer, R.J.L.; Klein, S.; Niessen, W.J.; Opmeer, B.C.; Boer, F.; Lucassen, P.J.; Andersen, S.L.; Geurts, H.M.; Reneman, L.

    2016-01-01

    Importance: Although numerous children receive methylphenidate hydrochloride for the treatment of attention-deficit/hyperactivity disorder (ADHD), little is known about age-dependent and possibly lasting effects of methylphenidate on the human dopaminergic system. Objectives: To determine whether

  3. Age-dependent effects of methylphenidate on the human dopaminergic system in young vs adult patients with attention-deficit/hyperactivity disorder: A randomized clinical trial

    NARCIS (Netherlands)

    Schrantee, A. (Anouk); Tamminga, H.G.H. (Hyke G. H.); C. Bouziane (Cheima); Bottelier, M.A. (Marco A.); E.E. Bron (Esther); H.J.M.M. Mutsaerts (Henri J. M.); A.H. Zwinderman (Ailko); Groote, I.R. (Inge R.); S.A.R.B. Rombouts (Serge); Lindauer, R.J.L. (Ramon J. L.); S. Klein (Stefan); W.J. Niessen (Wiro); B.C. Opmeer (Brent); Boer, F. (Frits); P.J. Lucassen; Andersen, S.L. (Susan L.); H.M. Geurts (Hilde ); L. Reneman (Liesbeth)

    2016-01-01

    textabstractIMPORTANCE Although numerous children receivemethylphenidate hydrochloride for the treatment of attention-deficit/hyperactivity disorder (ADHD), little is known about age-dependent and possibly lasting effects of methylphenidate on the human dopaminergic system. OBJECTIVES To determine

  4. Age-Dependent Effects of Methylphenidate on the Human Dopaminergic System in Young vs Adult Patients With Attention-Deficit/Hyperactivity Disorder: A Randomized Clinical Trial

    NARCIS (Netherlands)

    Schrantee, Anouk; Tamminga, Hyke G. H.; Bouziane, Cheima; Bottelier, Marco A.; Bron, Esther E.; Mutsaerts, Henk-Jan M. M.; Zwinderman, Aeilko H.; Groote, Inge R.; Rombouts, Serge A. R. B.; Lindauer, Ramon J. L.; Klein, Stefan; Niessen, Wiro J.; Opmeer, Brent C.; Boer, Frits; Lucassen, Paul J.; Andersen, Susan L.; Geurts, Hilde M.; Reneman, Liesbeth

    2016-01-01

    Although numerous children receive methylphenidate hydrochloride for the treatment of attention-deficit/hyperactivity disorder (ADHD), little is known about age-dependent and possibly lasting effects of methylphenidate on the human dopaminergic system. To determine whether the effects of

  5. Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation

    Directory of Open Access Journals (Sweden)

    Gordon Richard

    2012-04-01

    Full Text Available Abstract Background The mechanisms of progressive dopaminergic neuronal loss in Parkinson’s disease (PD remain poorly understood, largely due to the complex etiology and multifactorial nature of disease pathogenesis. Several lines of evidence from human studies and experimental models over the last decade have identified neuroinflammation as a potential pathophysiological mechanism contributing to disease progression. Tumor necrosis factor α (TNF has recently emerged as the primary neuroinflammatory mediator that can elicit dopaminergic cell death in PD. However, the signaling pathways by which TNF mediates dopaminergic cell death have not been completely elucidated. Methods In this study we used a dopaminergic neuronal cell model and recombinant TNF to characterize intracellular signaling pathways activated during TNF-induced dopaminergic neurotoxicity. Etanercept and neutralizing antibodies to tumor necrosis factor receptor 1 (TNFR1 were used to block TNF signaling. We confirmed the results from our mechanistic studies in primary embryonic mesencephalic cultures and in vivo using the stereotaxic lipopolysaccharide (LPS model of nigral dopaminergic degeneration. Results TNF signaling in dopaminergic neuronal cells triggered the activation of protein kinase Cδ (PKCδ, an isoform of the novel PKC family, by caspase-3 and caspase-8 dependent proteolytic cleavage. Both TNFR1 neutralizing antibodies and the soluble TNF receptor Etanercept blocked TNF-induced PKCδ proteolytic activation. Proteolytic activation of PKCδ was accompanied by translocation of the kinase to the nucleus. Notably, inhibition of PKCδ signaling by small interfering (siRNA or overexpression of a PKCδ cleavage-resistant mutant protected against TNF-induced dopaminergic neuronal cell death. Further, primary dopaminergic neurons obtained from PKCδ knockout (−/− mice were resistant to TNF toxicity. The proteolytic activation of PKCδ in the mouse substantia nigra in the

  6. Opioid receptors in midbrain dopaminergic regions of the rat. 1. Mu receptor autoradiography

    International Nuclear Information System (INIS)

    German, D.C.; Speciale, S.G.; Manaye, K.F.; Sadeq, M.

    1993-01-01

    Several lines of evidence indicate that an interaction exists between opioid peptides and midbrain dopaminergic neurons. The purpose of this study was to map and quantify the density of the mu opioid receptor subtype relative to the location of the dopaminergic (DA) neurons in the retrorubral field (nucleus A8), substantia nigra (nucleus A9), and ventral tegmental area and related nuclei (nucleus A10) in the rat. Sections through the rostral-caudal extent of the midbrain were stained with an antibody against tyrosine hydroxylase, as a DA cell marker, and comparable sections were processed for in vitro receptor autoradiography using the mu-selective ligand, 3 H-Tyr-D-Ala-N-MePhe-Gyl-ol enkephalin. In the nucleus A8 region, there were low levels of mu binding. In the rostral portion of nucleus A9, there was prominent mu binding both in the ventral pars compacta, which contains numerous DA neurons, and in regions that correspond to the location of the DA dendrites which project ventrally into the underlying substantia nigra pars reticulata. In the caudal portion of nucleus A9, mu binding was greatest in the substantia nigra pars reticulata, but also in the same region that contains DA neurons. In nucleus A10, mu receptor densities differed depending upon the nucleus A10 subdivision, and the rostral-caudal position in the nucleus. Low receptor densities were observed in rostral portions of the ventral tegmental area and interfascicular nucleus, and there was negligible binding in the parabrachial pigmented nucleus and paranigral nucleus at the level of the interpeduncular nucleus; all regions where there are high densities of DA somata. Mu binding was relatively high in the central linear nucleus, and in the dorsal and medial divisions of the medial terminal nucleus of the accessory optic system, which has been shown to contain DA dendrites. These data indicate that mu opioid receptors are located in certain regions occupied by all three midbrain DA nuclei, but in a

  7. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    Science.gov (United States)

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH

  8. Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB.

    Science.gov (United States)

    Thomas, Alan J; Attems, Johannes; Colloby, Sean J; O'Brien, John T; McKeith, Ian; Walker, Rodney; Lee, Lean; Burn, David; Lett, Debra J; Walker, Zuzana

    2017-01-17

    To conduct a validation study of 123 I-N-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) nortropane ( 123 I-FP-CIT) SPECT dopaminergic imaging in the clinical diagnosis of dementia with Lewy bodies (DLB) with autopsy as the gold standard. Patients >60 years of age with dementia who had undergone 123 I-FP-CIT imaging in research studies and who had donated their brain tissue to the Newcastle Brain Tissue Resource were included. All had structured clinical research assessments, and clinical diagnoses were applied by consensus panels using international diagnostic criteria. All underwent 123 I-FP-CIT imaging at baseline, and scans were rated as normal or abnormal by blinded raters. Patients were reviewed in prospective studies and after death underwent detailed autopsy assessment, and neuropathologic diagnoses were applied with the use of standard international criteria. Fifty-five patients (33 with DLB and 22 with Alzheimer disease) were included. Against autopsy diagnosis, 123 I-FP-CIT had a balanced diagnostic accuracy of 86% (sensitivity 80%, specificity 92%) compared with clinical diagnosis, which had an accuracy of 79% (sensitivity 87%, specificity 72%). Among patients with DLB, 10% (3 patients) met pathologic criteria for Lewy body disease but had normal 123 I-FP-CIT imaging. This large autopsy analysis of 123 I-FP-CIT imaging in dementia demonstrates that it is a valid and accurate biomarker for DLB, and the high specificity compared with clinical diagnosis (20% higher) is clinically important. The results need to be replicated with patients recruited from a wider range of settings, including movement disorder clinics and general practice. While an abnormal 123 I-FP-CIT scan strongly supports Lewy body disease, a normal scan does not exclude DLB with minimal brainstem involvement. This study provides Class I evidence that 123 I-FP-CIT dopaminergic neuroimaging accurately identifies patients with DLB. Copyright © 2016 The Author(s). Published by Wolters Kluwer

  9. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence.

    Directory of Open Access Journals (Sweden)

    Andrea Vereczkei

    Full Text Available BACKGROUND: Heroin dependence is a debilitating psychiatric disorder with complex inheritance. Since the dopaminergic system has a key role in rewarding mechanism of the brain, which is directly or indirectly targeted by most drugs of abuse, we focus on the effects and interactions among dopaminergic gene variants. OBJECTIVE: To study the potential association between allelic variants of dopamine D2 receptor (DRD2, ANKK1 (ankyrin repeat and kinase domain containing 1, dopamine D4 receptor (DRD4, catechol-O-methyl transferase (COMT and dopamine transporter (SLC6A3 genes and heroin dependence in Hungarian patients. METHODS: 303 heroin dependent subjects and 555 healthy controls were genotyped for 7 single nucleotide polymorphisms (SNPs rs4680 of the COMT gene; rs1079597 and rs1800498 of the DRD2 gene; rs1800497 of the ANKK1 gene; rs1800955, rs936462 and rs747302 of the DRD4 gene. Four variable number of tandem repeats (VNTRs were also genotyped: 120 bp duplication and 48 bp VNTR in exon 3 of DRD4 and 40 bp VNTR and intron 8 VNTR of SLC6A3. We also perform a multivariate analysis of associations using Bayesian networks in Bayesian multilevel analysis (BN-BMLA. FINDINGS AND CONCLUSIONS: In single marker analysis the TaqIA (rs1800497 and TaqIB (rs1079597 variants were associated with heroin dependence. Moreover, -521 C/T SNP (rs1800955 of the DRD4 gene showed nominal association with a possible protective effect of the C allele. After applying the Bonferroni correction TaqIB was still significant suggesting that the minor (A allele of the TaqIB SNP is a risk component in the genetic background of heroin dependence. The findings of the additional multiple marker analysis are consistent with the results of the single marker analysis, but this method was able to reveal an indirect effect of a promoter polymorphism (rs936462 of the DRD4 gene and this effect is mediated through the -521 C/T (rs1800955 polymorphism in the promoter.

  10. Enduring, Sexually Dimorphic Impact of In Utero Exposure to Elevated Levels of Glucocorticoids on Midbrain Dopaminergic Populations

    Directory of Open Access Journals (Sweden)

    Glenda E. Gillies

    2016-12-01

    Full Text Available Glucocorticoid hormones (GCs released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester, we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA and substantia nigra pars compacta (SNc (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites that impact on the adult brain. The effects of antenatal GC treatment (AGT were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked

  11. Constitutively internalized dopamine transporter is targeted to late endosomes and lysosomal degradation in heterologous cell lines and dopaminergic neurons

    DEFF Research Database (Denmark)

    Eriksen, Jacob; Madsen, Kenneth; Vægter, Christian Bjerggaard

    and amphetamine, a substrate of the DAT. In antibody feeding experiments we observed that Tac-DAT was constitutively internalized faster than Tac alone and using an ELISA based assay we could quantify time-dependent intracellular accumulation of the transporter. Incubation with inhibitors of lysosomal degradation...... (leupeptin, chloroquine, or ammonium chloride) increased the amount of transporter accumulated intracellularly over time, suggesting that constitutively endocytosed transporter was targeted to lysosomal degradation. This was further supported by expression of Tac-DAT in the immortalized dopaminergic cell...... dopaminergic neurons and visualized the DAT directly in the neurons using the fluorescent cocaine analog JHC 1-064. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little co-lolization was observed with Alexa488...

  12. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity

    OpenAIRE

    Antenor-Dorsey Jo Ann V; O'Malley Karen L

    2012-01-01

    Abstract Background The WldS mouse mutant ("Wallerian degeneration-slow") delays axonal degeneration in a variety of disorders including in vivo models of Parkinson's disease. The mechanisms underlying WldS -mediated axonal protection are unclear, although many studies have attributed WldS neuroprotection to the NAD+-synthesizing Nmnat1 portion of the fusion protein. Here, we used dissociated dopaminergic cultures to test the hypothesis that catalytically active Nmnat1 protects dopaminergic n...

  13. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  14. Sociosexual Investigation in Sexually Experienced, Hormonally Manipulated Male Leopard Geckos: Relation With Phosphorylated DARPP-32 in Dopaminergic Pathways

    OpenAIRE

    HUANG, VICTORIA; HEMMINGS, HUGH C.; CREWS, DAVID

    2014-01-01

    Dopaminergic activity is both associated with sociosexual exposure and modulated by sexual experience and hormonal state across vertebrate taxa. Mature leopard geckos, a reptile with temperature-dependent sex determination, have dopaminoceptive nuclei that are influenced by their embryonic environment and sensitive to adult hormonal manipulation. In this study, we exposed hormonally manipulated male leopard geckos from different incubation temperatures to conspecifics and measured their socio...

  15. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson's disease.

    Science.gov (United States)

    González, Hugo; Contreras, Francisco; Prado, Carolina; Elgueta, Daniela; Franz, Dafne; Bernales, Sebastián; Pacheco, Rodrigo

    2013-05-15

    Emerging evidence has demonstrated that CD4(+) T cells infiltrate into the substantia nigra (SN) in Parkinson's disease (PD) patients and in animal models of PD. SN-infiltrated CD4(+) T cells bearing inflammatory phenotypes promote microglial activation and strongly contribute to neurodegeneration of dopaminergic neurons. Importantly, altered expression of dopamine receptor D3 (D3R) in PBLs from PD patients has been correlated with disease severity. Moreover, pharmacological evidence has suggested that D3R is involved in IFN-γ production by human CD4(+) T cells. In this study, we examined the role of D3R expressed on CD4(+) T cells in neurodegeneration of dopaminergic neurons in the SN using a mouse model of PD. Our results show that D3R-deficient mice are strongly protected against loss of dopaminergic neurons and microglial activation during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. Notably, D3R-deficient mice become susceptible to MPTP-induced neurodegeneration and microglial activation upon transfer of wild-type (WT) CD4(+) T cells. Furthermore, RAG1 knockout mice, which are devoid of T cells and are resistant to MPTP-induced neurodegeneration, become susceptible to MPTP-induced loss of dopaminergic neurons when reconstituted with WT CD4(+) T cells but not when transferred with D3R-deficient CD4(+) T cells. In agreement, experiments analyzing activation and differentiation of CD4(+) T cells revealed that D3R favors both T cell activation and acquisition of the Th1 inflammatory phenotype. These findings indicate that D3R expressed on CD4(+) T cells plays a fundamental role in the physiopathology of MPTP-induced PD in a mouse model.

  16. Neurophysiological evidence of impaired self-monitoring in schizotypal personality disorder and its reversal by dopaminergic antagonism

    OpenAIRE

    Mireia Rabella; Eva Grasa; Iluminada Corripio; Sergio Romero; Miquel Àngel Mañanas; Rosa Mª. Antonijoan; Thomas F. Münte; Víctor Pérez; Jordi Riba

    2016-01-01

    BACKGROUND: Schizotypal personality disorder (SPD) is a schizophrenia-spectrum disorder characterized by odd or bizarre behavior, strange speech, magical thinking, unusual perceptual experiences, and social anhedonia. Schizophrenia proper has been associated with anomalies in dopaminergic neurotransmission and deficits in neurophysiological markers of self-monitoring, such as low amplitude in cognitive event-related brain potentials (ERPs) like the error-related negativity (ERN), and the erro...

  17. A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats.

    Science.gov (United States)

    Li, Yaochen; Li, Chunshi; Chen, Zhongshan; He, Jianrong; Tao, Zui; Yin, Zheng Qin

    2012-03-01

    The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate directly with the brain. Unfortunately, melanopsin presents lower expression levels in many acute and chronic retinal diseases. The molecular mechanisms underlying melanopsin expression are not yet really understood. MicroRNAs play important roles in the control of development. Most importantly, the link of microRNA biology to a diverse set of cellular processes, ranging from proliferation, apoptosis and malignant transformation to neuronal development and fate specification is emerging. We employed Royal College of Surgeon (RCS) rats as animal model to investigate the underlying molecular mechanism regulating melanopsin expression using a panel of miRNA by quantitative real-time reverse transcription polymerase chain reaction. We identified a microRNA, mir133b, that is specifically expressed in retinal dopaminergic amacrine cells as well as markedly increased expression at early stage during retinal degeneration in RCS rats. The overexpression of mir133b downregulates the important transcription factor Pitx3 expression in dopaminergic amacrine cells in RCS rats retinas and makes amacrine cells stratification deficit in IPL. Furthermore, deficient dopaminergic amacrine cells presented decreased TH expression and dopamine production, which lead to a failure to direct mRGCs dendrite to stratify and enter INL and lead to the reduced correct connections between amacrine cells and mRGCs. Our study suggested that overexpression of mir133b and downregulated Pitx3 suppress maturation and function of dopaminergic amacrine cells, and overexpression of mir133b decreased TH and D2 receptor expression as well as dopamine

  18. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism

    OpenAIRE

    Song Ju-Xian; Choi Mandy; Wong Kavin; Chung Winkie; Sze Stephen; Ng Tzi-Bun; Zhang Kalin

    2012-01-01

    Abstract Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-bindi...

  19. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Mia Apuschkin; Stilling, Sara; Rahbek-Clemmensen, Troels

    2015-01-01

    Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting...... of the dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co...

  20. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  1. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    Science.gov (United States)

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  2. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system.

    Science.gov (United States)

    Rukavina Mikusic, N L; Kravetz, M C; Kouyoumdzian, N M; Della Penna, S L; Rosón, M I; Fernández, B E; Choi, M R

    2014-01-01

    The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.

  3. Structural plasticity in mesencephalic dopaminergic neurons produced by drugs of abuse: critical role of BDNF and dopamine.

    Directory of Open Access Journals (Sweden)

    Ginetta eCollo

    2014-11-01

    Full Text Available Mesencephalic dopaminergic neurons were suggested to be a critical physiopathology substrate for addiction disorders. Among neuroadaptive processes to addictive drugs, structural plasticity has attracted attention. While structural plasticity occurs at both pre- and post-synaptic levels in the mesolimbic dopaminergic system, the present review focuses only on dopaminergic neurons. Exposures to addictive drugs determine two opposite structural responses, hypothrophic plasticity produced by opioids and cannabinoids (in particular during the early withdrawal phase and hypertrophic plasticity, mostly driven by psychostimulants and nicotine. In vitro and in vivo studies indentified BDNF and extracellular dopamine as two critical factors in determining structural plasticity, the two molecules sharing similar intracellular pathways involved in cell soma and dendrite growth, the MEK-ERK1/2 and the PI3K-Akt-mTOR, via preferential activation of TrkB and dopamine D3 receptors, respectively. At present information regarding specific structural changes associated to the various stages of the addiction cycle is incomplete. Encouraging neuroimaging data in humans indirectly support the preclinical evidence of hypotrophic and hypertrophic effects, suggesting a possible differential engagement of dopamine neurons in parallel and partially converging circuits controlling motivation, stress and emotions.

  4. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    Science.gov (United States)

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  5. GSTpi expression in MPTP-induced dopaminergic neurodegeneration of C57BL/6 mouse midbrain and striatum.

    Science.gov (United States)

    Castro-Caldas, Margarida; Neves Carvalho, Andreia; Peixeiro, Isabel; Rodrigues, Elsa; Lechner, Maria Celeste; Gama, Maria João

    2009-06-01

    MPTP-induced dopaminergic neurotoxicity involves major biochemical processes such as oxidative stress and impaired energy metabolism, leading to a significant reduction in the number of nigrostriatal dopaminergic neurons. Glutathione S-transferase pi (GSTpi) is a phase II detoxifying enzyme that provides protection of cells from injury by toxic chemicals and products of oxidative stress. In humans, polymorphisms of GSTP1 affect substrate selectivity and stability increasing the susceptibility to parkinsonism-inducing effects of environmental toxins. Given the ability of MPTP to increase the levels of reactive oxygen species and the link between altered redox potential and the expression and activity of GSTpi, we investigated the effect of MPTP on GSTpi cellular concentration in an in vivo model of Parkinson's disease. The present study demonstrates that GSTpi is actively expressed in both substantia nigra pars compacta and striatum of C57BL/6 mice brain, mostly in oligodendrocytes and astrocytes. After systemic administration of MPTP, GSTpi expression is significantly increased in glial cells in the vicinity of dopaminergic neurons cell bodies and fibers. The results suggest that GSTpi expression may be part of the mechanism underlying the ability of glial cells to elicit protection against the mechanisms involved in MPTP-induced neuronal death.

  6. Comparison between dopaminergic agents and physical exercise as treatment for periodic limb movements in patients with spinal cord injury.

    Science.gov (United States)

    De Mello, M T; Esteves, A M; Tufik, S

    2004-04-01

    Randomized controlled trial of physical exercise and dopaminergic agonist in persons with spinal cord injury and periodic leg movement (PLM). The objective of the present study was to compare the effectiveness of physical exercise and of a dopaminergic agonist in reducing the frequency of PLM. Centro de Estudos em Psicobiologia e Exercício. Universidade Federal de São Paulo, Brazil. A total of 13 volunteers (mean age: 31.6+/-8.3 years) received L-DOPA (200 mg) and benserazide (50 mg) 1 h before sleeping time for 30 days and were then submitted to a physical exercise program on a manual bicycle ergometer for 45 days (3 times a week). Both L-DOPA administration (35.11-19.87 PLM/h, P<0.03) and physical exercise (35.11-18.53 PLM/h, P<0.012) significantly reduced PLM; however, no significant difference was observed between the two types of treatment. The two types of treatment were found to be effective in the reduction of PLM; however, physical exercise is indicated as the first treatment approach, while dopaminergic agonists or other drugs should only be recommended for patients who do not respond to this type of treatment.

  7. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    2011-04-01

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  8. Peripheral Inflammation Increases the Damage in Animal Models of Nigrostriatal Dopaminergic Neurodegeneration: Possible Implication in Parkinson's Disease Incidence

    Directory of Open Access Journals (Sweden)

    A. Machado

    2011-01-01

    Full Text Available Inflammatory processes described in Parkinson’s disease (PD and its animal models appear to be important in the progression of the pathogenesis, or even a triggering factor. Here we review that peripheral inflammation enhances the degeneration of the nigrostriatal dopaminergic system induced by different insults; different peripheral inflammations have been used, such as IL-1β and the ulcerative colitis model, as well as insults to the dopaminergic system such as 6-hydroxydopamine or lipopolysaccharide. In all cases, an increased loss of dopaminergic neurons was described; inflammation in the substantia nigra increased, displaying a great activation of microglia along with an increase in the production of cytokines such as IL-1β and TNF-α. Increased permeability or disruption of the BBB, with overexpression of the ICAM-1 adhesion molecule and infiltration of circulating monocytes into the substantia nigra, is also involved, since the depletion of circulating monocytes prevents the effects of peripheral inflammation. Data are reviewed in relation to epidemiological studies of PD.

  9. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DEFF Research Database (Denmark)

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens

    2011-01-01

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation o...... enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells....... of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than......, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH...

  10. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  11. [Effects of perinatal exposure to bisphenol A inducing dopaminergic neuronal cell to apoptosis happening in midbrain of male rat offspring].

    Science.gov (United States)

    Lin, Yong; Zhang, Hao; Wang, Wen-dong; Wu, De-sheng; Jiang, Song-hui; Qu, Wei-dong

    2006-07-01

    To investigate the mechanism and effect of rat perinatal exposure to bisphenol A (BPA) resulting in midbrain dopaminergic neuronal cell apoptosis and tyrosine hydroxylase expression of male offspring. Rat dams were randomLy divided into 4 groups on gestational day(GD) 10 and given orally the bisphenol A doses as 0, 0.5, 5, 50 mg/kg x d from GD10 to weaning. The brains of male offspring were obtained for detecting, with immunohistochemistry protocol, the Caspase-3, Bcl-2 and tyrosine hydroxylase expression in the midbrain on postnatal day 21 or 30 respectively, and the midbrain apoptotic neuronal cell were detected by TUNEL on PND21. The expression of Caspase-3 in the midbrain of rat male offspring were increased but bcl-2 were decreased on PND21 and 30, respectively. On PND21, apoptotic neuronal cell were found in the midbrain of high and medium doses groups. TH protein expression was decreased. Perinatal exposure to bisphenol A can induce the apoptosis of midbrain dopaminergic neuron in the male rat offspring even after weaning, and concomitantly decrease the midbrain TH immunoreactivity, this may cause the abnormal function of dopaminergic pathway of rat male offspring.

  12. Can the dopaminergic-related effects of general anesthetics be linked to mechanisms involved in drug abuse and addiction?

    Science.gov (United States)

    Melo, A; Tavares, I; Sousa, N; Pêgo, J M

    2015-08-01

    General anesthetics (GA) are well known for the ability to induce a state of reversible loss of consciousness and unresponsiveness to painful stimuli. However, evidence from animal models and clinical studies show that GA exposure may induce behavioral changes beyond acute effects. Most research and concerns are focused on changes in cognition and memory. We will look at effects of GA on behavior that is mediated by the dopaminergic system. Pharmacological resemblance of GA with drugs of abuse, and the complexity and importance of dopaminergic systems in both reward seeking and addictive illnesses make us believe that it deserves an overview about what is already known and what matters to us as healthcare workers and specifically as anesthesiologists. A review of available evidence strongly suggests that there may be a link between the effects of GA on the brain and substance abuse, partly explained by their influence on the dopaminergic system. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  14. Myofascial Pain Dysfunction Syndrome (MPDS

    Directory of Open Access Journals (Sweden)

    Hamed Mortazavi

    2010-10-01

    Full Text Available Introduction: Myofascial Pain Dysfunction Syndrome (MPDS is one of the most important causes of the orofacial pain. The main purpose of this study was to evaluate 40 related variables in this regard. Materials and Methods: Thirty nine patients with MPDS were evaluated in this study. Different factors including age, gender, occupation, marital status, sensitivity of masticatory muscles, maximum opening of the mouth, deviation, deflection, involvement of temporomandibular joint, habit, parafunction, malocclusion, neck pain, headache, earache and history of jaw involvement, etc were analyzed in this  evaluation. Results: In our study, 39 patients (32 females and 7 males, 20-40 years old, with the average age of 35 ± 13.32 years were studied. 51% were housewives and 74.4% were married. The most common involvements were Clicking (74.4%, pain in temporomandibular joint (54%, headache (46.2%, earache (41%, neck-pain (35.9%, trouble in the mouth opening (71.8%, malocclusion Class I (74.4%, cross bite and deep bite (25%, clenching (64.1% and involvement of masseter and lateral pterygoid muscle (84%. Conclusion: Since MPDS consists of variable symptoms, it might be very difficult to provide any definite diagnosis and treatment. Therefore the more the specialists extend their knowledge and information about this disorder, the more they will make the best decision in this regard.

  15. The anatomy of group dysfunction.

    Science.gov (United States)

    Hayes, David F

    2014-04-01

    The dysfunction of the radiology group has 2 components: (1) the thinking component-the governance structure of the radiology group; how we manage the group; and (2) the structural component-the group's business model and its conflict with the partner's personal business model. Of the 2 components, governance is more important. Governance must be structured on classic, immutable business management principles. The structural component, the business model, is not immutable. In fact, it must continually change in response to the marketplace. Changes in the business model should occur only if demanded or permitted by the marketplace; instituting changes for other reasons, including personal interests or deficient knowledge of the deciders, is fundamentally contrary to the long-term interests of the group and its owners. First, we must learn basic business management concepts to appreciate the function and necessity of standard business models and standard business governance. Peter Drucker's The Effective Executive is an excellent primer on the subjects of standard business practices and the importance of a functional, authorized, and fully accountable chief executive officer. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  17. Dopaminergic modulation of positive expectations for goal-directed action: evidence from Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Noham eWolpe

    2015-10-01

    Full Text Available Parkinson’s disease (PD impairs the control of movement and cognition, including the planning of action and its consequences. This provides the opportunity to study the dopaminergic influences on the perception and awareness of action. Here we examined the perception of the outcome of a goal-directed action made by medicated patients with PD. A visuomotor task probed the integration of sensorimotor signals with the positive expectations of outcomes (Self priors, which in healthy adults bias perception towards success in proportion to trait optimism. We tested the hypotheses that (i the priors on the perception of the consequences of one’s own actions differ between patients and age- and sex-matched controls, and (ii that these priors are modulated by the levodopa dose equivalent in patients. There was no overall difference between patients and controls in the perceptual priors used. However, the precision of patient priors was inversely related to their levodopa dose equivalent. Patients with high levodopa dose equivalent showed more accurate priors, representing predictions that were closer to the true distribution of performance. Such accuracy has previously been demonstrated when observing the actions of others, suggesting abnormal awareness of action in these patients. These results confirm a link between dopamine and the positive expectation of the outcome of one’s own actions, and may have implications for the management of PD.

  18. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Nina [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden); Corti, Olga [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Sacchetti, Paola [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden); Ardilla-Osorio, Hector [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Sehat, Bita [Cancer Center Karolinska, Karolinska Institute, S-17177 Stockholm (Sweden); Brice, Alexis [Universite Pierre et Marie Curie-Paris 6, CRICM UMR-S975, Inserm, U975 (France); CNRS, UMR 7225, Paris (France); Department of Genetics and Cytogenetics, AP-HP, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Arenas, Ernest, E-mail: Ernest.Arenas@ki.se [Laboratory of Molecular Neurobiology, MBB, DBRM, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  19. Pro-survival role for Parkinson's associated gene DJ-1 revealed in trophically impaired dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Liviu Aron

    2010-04-01

    Full Text Available The mechanisms underlying the selective death of substantia nigra (SN neurons in Parkinson disease (PD remain elusive. While inactivation of DJ-1, an oxidative stress suppressor, causes PD, animal models lacking DJ-1 show no overt dopaminergic (DA neuron degeneration in the SN. Here, we show that aging mice lacking DJ-1 and the GDNF-receptor Ret in the DA system display an accelerated loss of SN cell bodies, but not axons, compared to mice that only lack Ret signaling. The survival requirement for DJ-1 is specific for the GIRK2-positive subpopulation in the SN which projects exclusively to the striatum and is more vulnerable in PD. Using Drosophila genetics, we show that constitutively active Ret and associated Ras/ERK, but not PI3K/Akt, signaling components interact genetically with DJ-1. Double loss-of-function experiments indicate that DJ-1 interacts with ERK signaling to control eye and wing development. Our study uncovers a conserved interaction between DJ-1 and Ret-mediated signaling and a novel cell survival role for DJ-1 in the mouse. A better understanding of the molecular connections between trophic signaling, cellular stress and aging could uncover new targets for drug development in PD.

  20. IBZM- and CIT-SPECT of the dopaminergic system in Parkinsonism

    International Nuclear Information System (INIS)

    Tissingh, G.; Winogradzka, A.; Wolters, E.C.; Booij, J.; Royen, E.A. van

    1997-01-01

    Parkinsonism is most of the time caused by idiopathic Parkinson's disease (IPD). Considering the differences in therapeutic response and prognosis. in viva discrimination between IPD and 'Parkinsonism-plus' syndromes is important. Recently, ligands have become available for imaging the pre- and postsynaptic dopaminergic system by Single Photon Emission Computed Tomography (SPECT). Visualization of postsynaptic D 2 dopamine receptors using 123 I-iodobenzamide ( 123 I-IBZM) may contribute to the differential diagnosis between IPD and 'Parkinsonism-plus' syndromes as IPD is a pure presynaptic disease. Imaging of the presynaptic dopamine transporters using [ 123 I]β-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) may be used as a diagnostic technique. Early disease detection in subjects suspected to be at risk for developing IPD has become possible using [ 123 I]β-CIT or other ligands for the dopamine transporter. Furthermore, with SPECT one is probably able to monitor in an objective way the efficacy of new pharmacological therapies. (author)

  1. Zebrafish chemical screening reveals the impairment of dopaminergic neuronal survival by cardiac glycosides.

    Directory of Open Access Journals (Sweden)

    Yaping Sun

    Full Text Available Parkinson's disease is a neurodegenerative disorder characterized by the prominent degeneration of dopaminergic (DA neurons among other cell types. Here we report a first chemical screen of over 5,000 compounds in zebrafish, aimed at identifying small molecule modulators of DA neuron development or survival. We find that Neriifolin, a member of the cardiac glycoside family of compounds, impairs survival but not differentiation of both zebrafish and mammalian DA neurons. Cardiac glycosides are inhibitors of Na(+/K(+ ATPase activity and widely used for treating heart disorders. Our data suggest that Neriifolin impairs DA neuronal survival by targeting the neuronal enriched Na(+/K(+ ATPase α3 subunit (ATP1A3. Modulation of ionic homeostasis, knockdown of p53, or treatment with antioxidants protects DA neurons from Neriifolin-induced death. These results reveal a previously unknown effect of cardiac glycosides on DA neuronal survival and suggest that it is mediated through ATP1A3 inhibition, oxidative stress, and p53. They also elucidate potential approaches for counteracting the neurotoxicity of this valuable class of medications.

  2. Exploration of N-arylpiperazine Binding Sites of D2 Dopaminergic Receptor.

    Science.gov (United States)

    Soskic, Vukic; Sukalovic, Vladimir; Kostic-Rajacic, Sladjana

    2015-01-01

    The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active N-arylpiperazines that exhibit antipsychotic and/or antidepressant properties, and as such are dopaminergic and serotonergic receptor ligands. In this short review article we are presenting synthesis and biological data on the new N-arylpipereazine as well our results on molecular modeling of the interactions of those N-arylpiperazines with the model of D2 dopamine receptors. To obtain that model the crystal structure of the D3 dopamine receptor was used. Our results show that the N-arylpiperazines binding site consists of two pockets: one is the orthosteric binding site where the N-arylpiperazine part of the ligand is docked and the second is a non-canonical accessory binding site for N-arylpipereazine that is formed by a second extracellular loop (ecl2) of the receptor. Until now, the structure of this receptor region was unresolved in crystal structure analyses of the D3 dopamine receptor. To get a more complete picture of the ligand - receptor interaction, DFT quantum mechanical calculations on N-arylpiperazine were performed and the obtained models were used to examine those interactions.

  3. Blocking Dopaminergic Signaling Soon after Learning Impairs Memory Consolidation in Guinea Pigs.

    Directory of Open Access Journals (Sweden)

    Kiera-Nicole Lee

    Full Text Available Formation of episodic memories (i.e. remembered experiences requires a process called consolidation which involves communication between the neocortex and hippocampus. However, the neuromodulatory mechanisms underlying this neocortico-hippocampal communication are poorly understood. Here, we examined the involvement of dopamine D1 receptors (D1R and D2 receptors (D2R mediated signaling on memory consolidation using the Novel Object Recognition (NOR test. We conducted the tests in male Hartley guinea pigs and cognitive behaviors were assessed in customized Phenotyper home cages utilizing Ethovision XT software from Noldus enabled for the 3-point detection system (nose, center of the body, and rear. We found that acute intraperitoneal injections of either 0.25 mg/kg SCH23390 to block D1Rs or 1.0 mg/kg sulpiride to block D2Rs soon after acquisition (which involved familiarization to two similar objects attenuated subsequent discrimination for novel objects when tested after 5-hours in the NOR test. By contrast guinea pigs treated with saline showed robust discrimination for novel objects indicating normal operational processes undergirding memory consolidation. The data suggests that involvement of dopaminergic signaling is a key post-acquisition factor in modulating memory consolidation in guinea pigs.

  4. Effect of incubation temperature and androgens on dopaminergic activity in the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Dias, Brian George; Ataya, Ramona Sousan; Rushworth, David; Zhao, Jun; Crews, David

    2007-04-01

    Male leopard geckos that hatch from eggs incubated at a female-biased temperature (Tf) behave differently when compared with males hatching at a temperature which produces a male-biased sex ratio (Tm). We investigated the effect of incubation temperature and androgen implantation on aspects of the dopaminergic system of Tf and Tm males. Our data suggest that more dopamine (DA) is stored in the nucleus accumbens of naive Tf males compared with naïve Tm males when they encounter a receptive female conspecific across a barrier. No difference was measured in the preoptic area and the ventral tegmental area (VTA). This difference in intracellular DA levels in a motivation-related brain nucleus might be correlated with differences in sociosexual behavior observed between the two morphs. There were no differences in tyrosine hydroxylase (TH) expressing cell numbers in the VTA of cholesterol (CH)-implanted naive castrated Tf and Tm males. Only Tf males implanted with testosterone had significantly higher TH immunopositive cell numbers in the VTA compared with CH- and dihydrotestosterone-implanted Tf males. These data indicate that both the embryonic environment as well as the circulating hormonal milieu can modulate neurochemistry, which might in turn be a basis for individual variation in behavior. Copyright (c) 2007 Wiley Periodicals, Inc.

  5. Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila.

    Science.gov (United States)

    Qin, Hongtao; Cressy, Michael; Li, Wanhe; Coravos, Jonathan S; Izzi, Stephanie A; Dubnau, Joshua

    2012-04-10

    Mushroom body (MB)-dependent olfactory learning in Drosophila provides a powerful model to investigate memory mechanisms. MBs integrate olfactory conditioned stimulus (CS) inputs with neuromodulatory reinforcement (unconditioned stimuli, US), which for aversive learning is thought to rely on dopaminergic (DA) signaling to DopR, a D1-like dopamine receptor expressed in MBs. A wealth of evidence suggests the conclusion that parallel and independent signaling occurs downstream of DopR within two MB neuron cell types, with each supporting half of memory performance. For instance, expression of the Rutabaga (Rut) adenylyl cyclase in γ neurons is sufficient to restore normal learning to rut mutants, whereas expression of Neurofibromatosis 1 (NF1) in α/β neurons is sufficient to rescue NF1 mutants. DopR mutations are the only case where memory performance is fully eliminated, consistent with the hypothesis that DopR receives the US inputs for both γ and α/β lobe traces. We demonstrate, however, that DopR expression in γ neurons is sufficient to fully support short- and long-term memory. We argue that DA-mediated CS-US association is formed in γ neurons followed by communication between γ and α/β neurons to drive consolidation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line.

    Science.gov (United States)

    Chandrasekhar, Y; Phani Kumar, G; Ramya, E M; Anilakumar, K R

    2018-04-18

    Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  7. N-fluoroalkylated and N-alkylated analogues of the dopaminergic D-2 receptor antagonist raclopride

    International Nuclear Information System (INIS)

    Lannoye, G.S.; Moerlein, S.M.; Parkinson, D.; Welch, M.J.

    1990-01-01

    A series of raclopride [(S)-2-[(3,5-dichloro-6-methoxy-2- hydroxybenzamido)methyl]-1-ethylpyrrolidine] derivatives bearing pyrrolidino N-fluoroalkyl or -alkyl substituents were synthesized and evaluated as potential dopaminergic receptor-based positron tomography radiopharmaceuticals. Radiosynthetic procedures for producing the corresponding N-[18F]fluoroalkylated analogues of raclopride from 18F- (beta+, t1/2 = 110 min) in high specific activity were also developed. In vitro binding assays using