WorldWideScience

Sample records for extrapolating materials durability

  1. Bases for extrapolating materials durability in fuel storage pools

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at ∼ 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage

  2. Durability of building materials and components

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    Durability of Building Materials and Components provides a collection of recent research works to contribute to the systematization and dissemination of knowledge related to the long-term performance and durability of construction and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of durability, service life prediction methodologies, the durability approach for historical and old buildings, asset and maintenance management and on the durability of materials, systems and components. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

  3. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  4. Cement replacement materials. Properties, durability, sustainability

    International Nuclear Information System (INIS)

    Ramezanianpour, Ali Akbar

    2014-01-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  5. Assessment of the Durability of Cementitious Materials in Repository Environment

    International Nuclear Information System (INIS)

    Vicente, R.; Marumo, J.T.; Miyamoto, H.; Isiki, V.L.K.; Ferreira, E.G.

    2013-01-01

    The Radioactive Waste Management Laboratory of the Energy and Nuclear Research Institute is developing the concept of a borehole repository for disused sealed radioactive sources drilled in a deep granite batholite. In this concept, the annular space between the well steel casing and the geological formation is backfilled with cement paste. The hardened cement paste functions as an additional barrier against the escape of radionuclides from the repository and their migration to the environment. It also functions as an obstacle to the flow of groundwater between different layers of the geological setting crossed by the borehole. The long term behavior of hydrated cement compounds is yet incompletely known and therefore more research is needed to increase the confidence on the performance of the material under the repository conditions as required. For the repository to achieve the required performance, the cement paste must be durable. However, in a deep repository, the cementitious materials is exposed to the deleterious action of high temperatures and pressures, the radiation field created by the radioactive sources and aggressive ion species that may be present in groundwater. Furthermore, it is necessary to consider that the cement paste is unstable in the long term because its microstructure and mineralogy change with time as the cement gel components recrystallize and react chemically with materials of the repository environment. In principle, the lifetime of this material could be determined based on the study of its long-term behavior, which, in turn, could be estimated from the extrapolation of short-term results, by accelerating, under controlled laboratory conditions, the composition changes and the loss of mechanical strength and cohesion induced by any detrimental component of the repository environment. Loss of mechanical strength, dimensional variations, changes in chemical-mineralogical composition, and leaching of hydrate compounds are all possible

  6. Generalized empirical equation for the extrapolated range of electrons in elemental and compound materials

    International Nuclear Information System (INIS)

    Lima, W. de; Poli CR, D. de

    1999-01-01

    The extrapolated range R ex of electrons is useful for various purposes in research and in the application of electrons, for example, in polymer modification, electron energy determination and estimation of effects associated with deep penetration of electrons. A number of works have used empirical equations to express the extrapolated range for some elements. In this work a generalized empirical equation, very simple and accurate, in the energy region 0.3 keV - 50 MeV is proposed. The extrapolated range for elements, in organic or inorganic molecules and compound materials, can be well expressed as a function of the atomic number Z or two empirical parameters Zm for molecules and Zc for compound materials instead of Z. (author)

  7. Study of the collecting electrode material of an extrapolation chamber by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2017-01-01

    In this work, the influence of different materials of the collecting electrode on the response of an extrapolation ionization chamber, was evaluated. This ionization chamber was simulated with the MCNP-4C Monte Carlo code and the spectrum of a standard diagnostic radiology beam (RQR5) was utilized. The different results are due to interactions of photons with different materials of the collecting electrode contributing with different values of energy deposited in the sensitive volume of the ionization chamber, which depends on the atomic number of the evaluated materials. The material that presented the least influence was graphite, the original constituent of the ionization chamber. (author)

  8. Parametric methods of describing and extrapolating the characteristics of long-term strength of refractory materials

    International Nuclear Information System (INIS)

    Tsvilyuk, I.S.; Avramenko, D.S.

    1986-01-01

    This paper carries out the comparative analysis of the suitability of parametric methods for describing and extrapolating the results of longterm tests on refractory materials. Diagrams are presented of the longterm strength of niobium based alloys tested in a vacuum of 1.3 X 10 -3 Pa. The predicted values and variance of the estimate of endurance of refractory alloys are presented by parametric dependences. The longterm strength characteristics can be described most adequately by the Manson-Sakkop and Sherby-Dorn methods. Several methods must be used to ensure the reliable extrapolation of the longterm strength characteristics to the time period an order of magnitude longer than the experimental data. The most suitable method cannot always be selected on the basis of the correlation ratio

  9. Durability and performance optimization of cathode materials for fuel cells

    Science.gov (United States)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  10. Durability of Selected Membrane Materials when Exposed to Chlorine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Marianne Soerflaten

    2001-03-01

    This thesis is focusing on the durability of selected membrane materials when exposed to chlorine gas in the temperature range 30-100{sup o}C. Studies of the changes of membrane separation properties and the mechanisms promoting these changes have been studied. The selected membrane materials were poly(dimethylsioxane) (PDMS), Fluorel, fluorosilicone, and blends of PDMS and Fluorel. The thesis is organised in seven chapters. The first chapter gives an introduction to the background of the work. The second chapter presents the theory for gas separation using dense rubbery membranes. The properties of the selected membrane materials are presented in chapter three. The fourth chapter describes degradation mechanisms for polymeric materials in general and for the selected membrane materials in particular. Presentation of the experimental work is given in chapter five, while the results with discussions are presented in chapter six. The conclusions and recommendations for further studies are given in chapter seven. Five appendixes are attached: Appendix A describes the calculations of permeability and solubility coefficients and the accuracy of the experimental measurements. Appendix B summarises the measured values in tables and Appendix C describes the analytical methods. Appendix D gives the properties of the gases used in the experiments. Appendix E is the article ''Durability of Poly(dimethylsiloxane) when Exposed to Chlorine Gas'', submitted to the Journal of Applied Polymer Science. Highly crosslinked PDMS was found to have an initial high permeability for chlorine gas and a high Cl{sub 2}/O{sub 2} selectivity. However when exposed to chlorine gas the permeability decreased significantly. Crosslinking of the PDMS polymer chain and chlorination of the polymer gave a denser polymer structure and thus lower permeability. Fluorel showed very low permeabilities and selectivities for the gases in question and was thus not interesting for this

  11. The Effectiveness of Materials Different with Regard to Increasing the Durability

    Directory of Open Access Journals (Sweden)

    Erofeev Vladimir

    2016-01-01

    Full Text Available The article considers contemporary materials and structures for construction of buildings. The article conducts an economic study of the problem of durability. It addresses the issue of increasing longevity, affecting the term of service to building structures and the efficiency of their operation. Revealed the main factors affecting the durability. It identifies measures its realisation. The method of calculation of economic efficiency of improving the durability of building constructions.

  12. Rock as a construction material: durability, deterioration and conservation

    Directory of Open Access Journals (Sweden)

    Esbert, Rosa M.ª

    1991-03-01

    Full Text Available The different aspects related to the deterioration and conservation of stone, used as a construction material, are reviewed in this article. The petrographical characteristics and physical properties which control the durability of stone material are stated. The importance of the voids and the properties more directly linked to the up-taking and transfer of humidity through the stone are pointed out. Regarding to the deterioration processes, the role of water, soluble salts and atmospheric pollutants upon the different alteration mechanisms of the building stones is emphasized. Finally, the steps related to the stone conservation, and the methods and products more currently employed to that aim are revised.

    Se compendian los distintos aspectos relacionados con el deterioro y la conservación de la piedra utilizada como material de edificación. Se revisan las características petrográficas y propiedades físicas que controlan la durabilidad de los materiales pétreos, resaltando la importancia de los espacios vacíos y de aquellas propiedades más directamente relacionadas con la captación y transferencia de humedad por el interior de la piedra. En cuanto a los procesos de deterioro se destaca el papel del agua, de las sales solubles y de los contaminantes atmosféricos en los diversos mecanismos de alteración desarrollados en la piedra de edificación. Finalmente se plantean las diversas fases relacionadas con la conservación de la piedra, y se revisan los métodos y productos más empleados en la actualidad para tal fin.

  13. Thermal durability of modified Synroc material as reactor fuel matrix

    International Nuclear Information System (INIS)

    Kikuchi, Akira; Kanazawa, Hiroyuki; Togashi, Yoshihiro; Matumoto, Seiichiro; Nishino, Yasuharu; Ohwada, Isao; Nakata, Masahito; Amano, Hidetoshi; Mitamura, Hisayoshi

    1994-08-01

    A Synroc, a polyphase titanate ceramics composed of three mineral phases (perovskite, hollandite and zirconolite), has an excellent performance of immobilization of high level nuclear waste. A working group in the Department of Hot Laboratories paid special attention to this merit and started a development study on a LWR fuel named 'Waste Disposal Possible (WDP) Fuel', which has the two functions of a reactor fuel and a waste form. The present paper mainly describes thermal durability of a modified Synroc material, which is essentially important for applying the material to a fuel matrix. The two kinds of Synroc specimens, designated 'SM' as modified and 'SB' as a reference, were prepared by hot-pressing and annealed at 1200degC to 1500degC for 30 min in air. Unexpected and peculiar spherical voids were observed in the specimen SM at 1400degC and 1500degC, which caused the specimen swelling. The formation of the voids depends significantly on the existence of spherical precipitates seen in the as-fabricated specimen including latent micropores with high pressure. On the other hand, the heat treatment at 1500degC formed additional new phases, designated 'Phase A' for the specimen SB and 'Phase X' for SM. Phase A is a decomposition product of hollandite and Phase X a reaction product of Phase A and perovskite in the spherical voids. Furthermore, additional information and thermal properties examined are presented in Appendix 1 and Appendix 2, respectively. It was recognized that the modified Synroc specimen SM had excellent thermal properties. (author)

  14. New MEA Materials for Improved DMFC Performance, Durability and Cost

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, James H. [University of North Florida; Campbell, Joseph L. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J. [University of North Florida

    2013-09-16

    Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled “New MEA Materials for Improved DMFC Performance, Durability and Cost”. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative “passive water recovery” MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for

  15. Recent advances in the mechanical durability of superhydrophobic materials.

    Science.gov (United States)

    Milionis, Athanasios; Loth, Eric; Bayer, Ilker S

    2016-03-01

    Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered. As such, we summarize progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces. This includes an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance. The review is organized in terms of various types of mechanical wear ranging from substrate adhesion, tangential surface abrasion, and dynamic impact to ultrasonic processing underwater. In each of these categories, we highlight the most successful approaches to produce robust surfaces that can maintain their non-wetting state after the wear or abrasive action. Finally, various recommendations for improvement of mechanical wear durability and its quantitative evaluation are discussed along with potential future directions towards more systematic testing methods which will also be acceptable for industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Next Generation , Lightweight, Durable Boot Materials to Provide Active & Passive Thermal Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Phase I SBIR program is to leverage lightweight, durable materials developed by NanoSonic for use within extra vehicular activity (EVA)...

  17. Old materials and techniques to improve the durability of earth buildings

    OpenAIRE

    Camões, Aires; Eires, R.; Jalali, Said

    2012-01-01

    Quite a big part of the world’s heritage is still made by earth constructions. The durability of the existent heritage, as well as the new earth buildings is particularly conditioned by erosion caused by water action, especially in countries with high rainfall index. With this research one intends to value the ancient knowledge in order to allow higher durability. Analysing the old building techniques to protect the earth material from the water action it is possible to understand how ear...

  18. Water-thinnable polymers for durable coatings for different materials

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Piotr, E-mail: piotr.jankowski@ichp.pl; Kijowska, Dorota, E-mail: piotr.jankowski@ichp.pl [Industrial Chemistry Research Institute, Department of Polyesters, Epoxides and Polyurethanes, 8 Rydygiera Str., 01-793 Warszawa (Poland)

    2014-05-15

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  19. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  20. Durability of recycled aggregate concrete using pozzolanic materials.

    Science.gov (United States)

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  1. Durability of Materials in Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller

    . The construction of the Pearl-Chain arch is simple. The arch is assembled on its side, next to the road that the bridge will span, by placing a number of plane prefabricated Super-Light Decks that consist of lightweight aggregate concrete and conventional concrete, in the desired arch shape. Mortar joints are cast...... is stabilized by casting a fill material between the spandrel walls of the arch. Finally, the road surface is cast on top of the fill material. New bridges are designed for a service lifetime of at least 100 years. Hence, the specifications of the materials used in Pearl-Chain Bridges are high. This PhD study...... and pervious concrete were also investigated. The most suitable fill material for Pearl-Chain Bridges depends on the particular bridge design; the results obtained and presented in the present PhD study provide guidance on how to decide which fill material is most suitable regarding strength, permeability...

  2. Direct alcohol fuel cells materials, performance, durability and applications

    CERN Document Server

    Corti, Horacio R; Antolini, Ermete

    2014-01-01

    After an introductory overview of this emerging form of clean, portable energy, experts from industry and academia discuss the challenges in materials development, performance, and commercialization standing between DAFCs and widespread public use.

  3. Durability and plasticity of a material under different trajectories cycle loading in dependence on the loading prehistory

    International Nuclear Information System (INIS)

    Mozharovskij, N.S.; Bobyr', N.I.

    1979-01-01

    Results of investigations into the durability and plasticity of a material under combined proportional cyclic loading over different trajectories depending upon the values of intensity of preliminary plastic deformation obtained by different loading methods are presented. The effect of loading prehistory type on material plastic properties and its durability are shown

  4. Durability and plasticity of a material under different trajectories cycle loading in dependence on the loading prehistory

    Energy Technology Data Exchange (ETDEWEB)

    Mozharovskii, N S; Bobyr, N I [Kievskij Politekhnicheskij Inst. (Ukrainian SSR)

    1979-12-01

    Results of investigations into the durability and plasticity of a material under combined proportional cyclic loading over different trajectories depending upon the values of intensity of preliminary plastic deformation obtained by different loading methods are presented. The effect of loading prehistory type on material plastic properties and its durability are shown.

  5. Radiometric emanation method for the assessment of the durability of building materials towards aggressive media

    International Nuclear Information System (INIS)

    Balek, V.; Beckman, I.N.

    1991-01-01

    A new express method has been suggested for testing durability of building materials in contact with aggressive liquids and gases. The method is based on the measurement of radon released from samples studied, continuously during the interaction of the sample with the aggressive medium. The samples are previously labeled by the source of radon atoms, i.e. thorium Th-228 and radium Ra-224 are incorporated in the samples to be tested. Due to high sensitivity of the method the first stages of the interaction between the cement stone (concrete) sample and aggressive liquid or gas can be followed. The express information about the relative durability of the building materials was obtained. This method was also advantageously used for the investigation of corrosion early stage of marble (calcium carbonate) by sulphur dioxide (in the concentrations of 500-3,000 ppm). The most advantageous application of the method is for rapid assessment of the relative durability of building materials, e.g. the information about the relative durability of the samples studied was obtained within several minutes, resp. hours, whereas by means of traditional chemical methods it needs several weeks or months

  6. Durability of concrete materials in high-magnesium brine

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation

  7. Investigation of the Environmental Durability of a Powder Metallurgy Material

    Science.gov (United States)

    Ward, LaNita D.

    2004-01-01

    PM304 is a NASA-developed composite powder metallurgy material that is being developed for high temperature applications such as bushings in high temperature industrial furnace conveyor systems. My goal this summer was to analyze and evaluate the effects that heat exposure had on the PM304 material at 500 C and 650 C. The material is composed of Ni-Cr, Ag, Cr2O3, and eutectic BaF2-CaF2. PM304 is designed to eliminate the need for oil based lubricants in high temperature applications, while reducing friction and wear. However, further investigation was needed to thoroughly examine the properties of PM304. The effects of heat exposure on PM304 bushings were investigated. This investigation was necessary due to the high temperatures that the material would be exposed to in a typical application. Each bushing was cut into eight sections. The specimens were heated to 500 C or 650 C for time intervals from 1 hr to 5,000 hrs. Control specimens were kept at room temperature. Weight and thickness measurements were taken before and after the bushing sections were exposed to heat. Then the heat treated specimens were mounted and polished side by side with the control specimens. This enabled optical examination of the material's microstructure using a metallograph. The specimens were also examined with a scanning electron microscope (SEM). The microstructures were compared to observe the effects of the heat exposure. Chemical analysis was done to investigate the interactions between Ni-Cr and BaF2-CaF2 and between Cr2O3 and BaF2-CaF2 at high temperature. To observe this, the two compounds that were being analyzed were mixed in a crucible in varied weight percentages and heated to 1100 C in a furnace for approximately two hours. Then the product was allowed to cool and was then analyzed by X-ray diffraction. Interpretation of the results is in progress.

  8. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  9. The Network of Excellence 'Knowledge-based Multicomponent Materials for Durable and Safe Performance'

    International Nuclear Information System (INIS)

    Moreno, Arnaldo

    2008-01-01

    The Network of Excellence 'Knowledge-based Multicomponent Materials for Durable and Safe Performance' (KMM-NoE) consists of 36 institutional partners from 10 countries representing leading European research institutes and university departments (25), small and medium enterprises, SMEs (5) and large industry (7) in the field of knowledge-based multicomponent materials (KMM), more specifically in intermetallics, metal-ceramic composites, functionally graded materials and thin layers. The main goal of the KMM-NoE (currently funded by the European Commission) is to mobilise and concentrate the fragmented scientific potential in the KMM field to create a durable and efficient organism capable of developing leading-edge research while spreading the accumulated knowledge outside the Network and enhancing the technological skills of the related industries. The long-term strategic goal of the KMM-NoE is to establish a self-supporting pan-European institution in the field of knowledge-based multicomponent materials--KMM Virtual Institute (KMM-VIN). It will combine industry oriented research with educational and training activities. The KMM Virtual Institute will be founded on three main pillars: KMM European Competence Centre, KMM Integrated Post-Graduate School, KMM Mobility Programme. The KMM-NoE is coordinated by the Institute of Fundamental Technological Research (IPPT) of the Polish Academy of Sciences, Warsaw, Poland

  10. Utilizing waste materials to enhance mechanical and durability characteristics of concrete incorporated with silica fume

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Construction and demolition wastes are increasing significantly due to augmented boom of modern construction. Although the partial cement replacement materials do promote the idea of sustainable construction, the use of construction and demolition waste can also be considered to be viable option to advance the sustainability in modern construction practices. This paper investigates the use of industrial waste materials namely marble dust and crushed bricks as replacement of natural fine aggregates along with the use of silica fume as a partial cement replacement on the mechanical properties and durability characteristics of concrete. Partial replacement levels of waste materials were 10 and 20 percent by volume while the partial replacement level of silica fume was kept to 20 percent at all concrete samples. The results reported in this paper show that the use of marble dust as a replacement material to the natural fine aggregates resulted in an increase in the mechanical properties of concrete. However, the use of crushed bricks did not substantially contribute in the development of strength. Water permeability of concrete incorporated with both silica fume and waste materials (marble dust and crushed bricks decreased significantly. The decrease in water permeability of concrete was attributed to the pozzolanic reaction of silica fume with calcium hydroxide of cement and the filler effect of the waste materials of marble dust and crushed bricks. The use of waste materials also enhance the freeze and thaw resistance of concrete. Authors strongly suggest that the pozzolanic reaction and the development of the microstructure of the concrete through the use of waste materials are largely responsible from the advances in the durability of concrete.

  11. The Network of Excellence ``Knowledge-based Multicomponent Materials for Durable and Safe Performance''

    Science.gov (United States)

    Moreno, Arnaldo

    2008-02-01

    The Network of Excellence "Knowledge-based Multicomponent Materials for Durable and Safe Performance" (KMM-NoE) consists of 36 institutional partners from 10 countries representing leading European research institutes and university departments (25), small and medium enterprises, SMEs (5) and large industry (7) in the field of knowledge-based multicomponent materials (KMM), more specifically in intermetallics, metal-ceramic composites, functionally graded materials and thin layers. The main goal of the KMM-NoE (currently funded by the European Commission) is to mobilise and concentrate the fragmented scientific potential in the KMM field to create a durable and efficient organism capable of developing leading-edge research while spreading the accumulated knowledge outside the Network and enhancing the technological skills of the related industries. The long-term strategic goal of the KMM-NoE is to establish a self-supporting pan-European institution in the field of knowledge-based multicomponent materials—KMM Virtual Institute (KMM-VIN). It will combine industry oriented research with educational and training activities. The KMM Virtual Institute will be founded on three main pillars: KMM European Competence Centre, KMM Integrated Post-Graduate School, KMM Mobility Programme. The KMM-NoE is coordinated by the Institute of Fundamental Technological Research (IPPT) of the Polish Academy of Sciences, Warsaw, Poland.

  12. Durable protection of the surface of wood used outdoors: material constraints, problems and approaches to solutions

    Directory of Open Access Journals (Sweden)

    Merlin A.

    2018-01-01

    Full Text Available The aesthetic durability of wooden structures is a major challenge for the use of this material in construction. Wood is used for its technical performances but also for its architectural qualities and its aesthetic perception. The premature aging of the wooden structures is detrimental because these disorders, even if they do not affect the strength of the structures, are mostly irremediable. The surface protection of wood is generally ensured by the use of a finish, whose essential role is to protect wood from climatic aggressions (water, solar radiation, oxygen, .... The secondary wood processing industry consists of a series of manufacturing and processing activities, each containing a portion of the added value of the product. The application of a finish on a wood-based work is usually the last and most visible step in this value chain.In outdoor use, the protection of the wood surface with transparent finishes is not yet sufficiently durable to be able to compete with materials used in industrial carpentry such as PVC or aluminum. Opaque finishes generally provide more durable protection but they mask the appearance of the wood sought by users.With the aim of positioning wood in this construction sector, research on transparent finishes has focused on the efficiency and improvement of the durability of the protection of the surface appearance of structures. Faced with climatic aggressions, the optimum conservation of a structure is not only linked to the performance of the finish but also to the characteristics of the wood material. In particular, in order to fulfill its protective function, the finish film must be able to follow the dimensional variations of the wood it covers without breaking and without detachment. In addition to the criteria for the effectiveness of finishes in the protection of structures, the environmental impact must be considered with increasing attention. Currently, more than 80% of composite or solid wood

  13. Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Mariaenrica Frigione

    2018-02-01

    Full Text Available The use of fiber reinforced polymer (FRP composites for the rehabilitation of buildings or other infrastructure is increasingly becoming an effective and popular solution, being able to overcome some of the drawbacks experienced with traditional interventions and/or traditional materials. The knowledge of long-term performance and of durability behavior of FRP, in terms of their degradation/aging causes and mechanisms taking place in common as well as in harsh environmental conditions, still represents a critical issue for a safe and advantageous implementation of such advanced materials. The research of new and better performing materials in such fields is somewhat limited by practical and economical constrains and, as a matter of fact, is confined to an academic argument.

  14. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  15. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  16. Self-Healing Superhydrophobic Materials Showing Quick Damage Recovery and Long-Term Durability.

    Science.gov (United States)

    Wang, Liming; Urata, Chihiro; Sato, Tomoya; England, Matt W; Hozumi, Atsushi

    2017-09-26

    Superhydrophobic coatings/materials are important for a wide variety of applications, but the majority of these man-made coatings/materials still suffer from poor durability because of their lack of self-healing ability. Here, we report novel superhydrophobic materials which can quickly self-heal from various severe types of damage. In this study, we used poly(dimethylsiloxane) (PDMS) infused with two liquids: trichloropropylsilane, which reacts with ambient moisture to self-assemble into grass-like microfibers (named silicone micro/nanograss) on the surfaces and low-viscosity silicone oil (SO), which remains within the PDMS matrices and acts as a self-healing agent. Because of the silicone micro/nanograss structures on the PDMS surfaces and the effective preserve/protection system of a large quantity of SO within the PDMS matrices, our superhydrophobic materials showed quick superhydrophobic recovery under ambient conditions (within 1-2 h) even after exposure to plasma (24 h), boiling water, chemicals, and outside environments. Such an ability is superior to the best self-healing superhydrophobic coatings/materials reported so far.

  17. Durability of low-pH cementitious materials based on OPC or CAC

    International Nuclear Information System (INIS)

    Garcia Calvo, J.L.; Sanchez, M.; Alonso, M.C.; Fernandez Luco, L.

    2015-01-01

    Low pH cementitious materials are considered to be used in underground repositories for high level waste but there are still some characteristics related to their long-term durability that must be analyzed in depth. In this sense, different shrinkage tests have been made using low-pH cement formulations based on Ordinary Portland Cement (OPC) or Calcium Aluminate Cement (CAC), on mortar and concrete specimens. The obtained results show that, regarding the autogenous shrinkage, low-pH cementitious materials show similar values than those observed in the reference samples. In fact, the main shrinkage problems in the low-pH materials are related with those based on OPC with high silica fume contents in drying conditions. Besides, as the use of reinforced concrete can be required in underground repositories, the susceptibility of reinforcements to corrosion when using low-pH cementitious materials based on OPC was analyzed, using two different reinforcements: carbon steel and galvanized steel. The lower pore solution pH of the low-pH OPC based materials generates the corrosion of the carbon steel reinforcement. However, when galvanized steels are used, any corrosion problem is detected regardless of the cement formulation. (authors)

  18. A Coupled Transport and Chemical Model for Durability Predictions of Cement Based Materials

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    The use of multi-physics numerical models to estimate different durability indicators and determine the service life of cement based materials is increasing. Service life documentation for concrete used in new infrastructure structures is required and the service life requirement....... The differential equations includes exchange terms between the phases and species accounting for the exchange of physical quantities which are essential for a stringent physical description of concrete. Balance postulates for, mass, momentum and energy, together with an entropy inequality are studied within...... mixture theories. Special attention is paid to the criteria for the exchange terms in the studied balance postulates. A simple case of mixture theory is used to demonstrate how constitutive assumptions are used to obtain the governing equations for a specific model. The governing equation system used...

  19. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    Science.gov (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  20. Concrete durability

    OpenAIRE

    Gaspar Tébar, Demetrio

    1991-01-01

    The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of rese...

  1. Radiation durability of polymeric materials in solid polymer electrolyzer for fusion tritium plant

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Hiroki, Akihiro; Tamada, Masao

    2009-02-01

    This document presents the radiation durability of various polymeric materials applicable to a solid-polymer-electrolyte (SPE) water electrolyzer to be used in the tritium facility of fusion reactor. The SPE water electrolyzers are applied to the water detritiation system (WDS) of the ITER. In the ITER, an electrolyzer should keep its performance during two years operation in the tritiated water of 9TBq/kg, the design tritium concentration of the ITER. The tritium exposure of 9TBq/kg for two years is corresponding to the irradiation of no less than 530 kGy. In this study, the polymeric materials were irradiated with γ-rays or with electron beams at various conditions up to 1600 kGy at room temperature or at 343 K. The change in mechanical and functional properties were investigated by stress-strain measurement, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectra (XPS), and so on. Our selection of polymeric materials for a SPE water electrolyzer used in a radiation environment was Pt + Ir applied Nafion N117 ion exchange membrane, VITON O-ring seal and polyimide insulator. (author)

  2. Effect of Different Supplementary Cementitious Materials on Mechanical and Durability Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2016-09-01

    Full Text Available Concrete is the most widely used composite in the world. Ordinary Portland cement (OPC is the most commonly used binding material but the energy required for its production is large and its production leads to release of green house gases in the atmosphere therefore, the need for supplementary cementitious material is real. The utilization of Fly Ash (FA, Silica Fume (SF,Metakaolin (MK and Ground Granulated Blast Furnace Slag (GGBS, as a pozzolanic material for concrete has received considerable attention in the recent years. This interest is a part of the widely spread attention directed towards the utilization of wastes and industrial byproducts in order to minimize the Portland cement consumption, the manufacture of which is being environment damaging. The paper reviews were carried out on the use of FA, SF, MK and GGBS as partial pozzolanic replacement for cement in concrete. The literature demonstrates that GGBS was found to increase the mechanical and durability properties at later age depending upon replacement level. Silica fume concrete performed better than OPC concrete even at early period for production of high strength concrete and high performance concrete. Fly ash increases the later age strength due to slow rate of pozzlanic reaction. Metakaolin was found to improve early age strength as well as long term strength but had poor workability.

  3. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  4. Alternative nano-structured thin-film materials used as durable thermal nanoimprint lithography templates

    Science.gov (United States)

    Bossard, M.; Boussey, J.; Le Drogoff, B.; Chaker, M.

    2016-02-01

    Nanoimprint templates made of diamond-like carbon (DLC) and amorphous silicon carbide (SiC) thin films and fluorine-doped associated materials, i.e. F-DLC and F-SiC were investigated in the context of thermal nanoimprint lithography (NIL) with respect to their release properties. Their performances in terms of durability and stability were evaluated and compared to those of conventional silicon or silica molds coated with antisticking molecules applied as a self-assembled monolayer. Plasma-enhanced chemical vapor deposition parameters were firstly tuned to optimize mechanical and structural properties of the DLC and SiC thin films. The impact of the amount of fluorine dopant on the deposited thin films properties was then analyzed. A comparative analysis of DLC, F-DLC as well as SiC and F-SiC molds was then carried out over multiple imprints, performed into poly (methyl methacrylate) (PMMA) thermo-plastic resist. The release properties of un-patterned films were evaluated by the measurement of demolding energies and surface energies, associated with a systematic analysis of the mold surface contamination. These analyses showed that the developed materials behave as intrinsically easy-demolding and contamination-free molds over series of up to 40 imprints. To our knowledge, it is the first time that such a large number of imprints has been considered within an exhaustive comparative study of materials for NIL. Finally, the developed materials went through standard e-beam lithography and plasma etching processes to obtain nanoscale-patterned templates. The replicas of those patterned molds, imprinted into PMMA, were shown to be of high fidelity and good stability after several imprints.

  5. The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2017-01-01

    Full Text Available In many cases, service life of reinforced concrete structures is severely limited by chloride penetration until the steel reinforcement or by carbonation of the covercrete. Water repellent treatment on the surfaces of cement-based materials has often been considered to protect concrete from these deteriorations. In this paper, three types of water repellent agents have been applied on the surface of concrete specimens. Penetration profiles of silicon resin in treated concrete have been determined by FT-IR spectroscopy. Water capillary suction, chloride penetration, carbonation, and reinforcement corrosion in both surface impregnated and untreated specimens have been measured. Results indicate that surface impregnation reduced the coefficient of capillary suction of concrete substantially. An efficient chloride barrier can be established by deep impregnation. Water repellent surface impregnation by silanes also can make the process of carbonation action slow. In addition, it also has been concluded that surface impregnation can provide effective corrosion protection to reinforcing steel in concrete with migrating chloride. The improvement of durability and extension of service life for reinforced concrete structures, therefore, can be expected through the applications of appropriate water repellent surface impregnation.

  6. Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-02-15

    Biodiesel, derived from the transesterification of vegetable oils or animal fats, is composed of saturated and unsaturated long-chain fatty acid alkyl esters. In spite of having some application problems, recently it is being considered as one of the most promising alternative fuels in internal combustion engine. From scientific literatures, this paper has collected and analyzed the data on both advantages and disadvantages of biodiesel over conventional diesel. Since the aim of this study is to evaluate the biodiesel feasibility in automobiles, the first section is dedicated to materials compatibility in biodiesel as compared to that in diesel. The highest consensus is related to enhanced corrosion of automotive parts due to its compositional differences. In the subsequent sections, data on performance, emission and engine durability have been analyzed and compared. In this case, the highest consensus is found in reducing emissions as well as in increasing moving parts sticking, injector coking and filter plugging. This paper has also summarized the factors of biodiesel in contributing these technical performances. (author)

  7. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    International Nuclear Information System (INIS)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-01-01

    Highlights: • The scraped debris can be recycled and easily reused to fabricate the superhydrophobic materials. • The obtained materials displayed liquid-repellent toward water and several other liquids of daily life. • The superhydrophobic materials can retain excellent chemical stability and mechanical durability after rigorous tests. • This as-prepared material can be regarded as a real superhydrophobic “material”, not just the superhydrophobic “surface”. - Abstract: In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  8. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Mengnan, E-mail: mnanqu@gmail.com; Liu, Shanshan; He, Jinmei, E-mail: jinmhe@gmail.com; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-15

    Highlights: • The scraped debris can be recycled and easily reused to fabricate the superhydrophobic materials. • The obtained materials displayed liquid-repellent toward water and several other liquids of daily life. • The superhydrophobic materials can retain excellent chemical stability and mechanical durability after rigorous tests. • This as-prepared material can be regarded as a real superhydrophobic “material”, not just the superhydrophobic “surface”. - Abstract: In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  9. Durability evaluation of photovoltaic blanket materials exposed on LDEF tray S1003

    International Nuclear Information System (INIS)

    Rutledge, S.K.; Olle, R.M.

    1992-01-01

    Several candidate protective coatings on Kapton and uncoated Kapton were exposed to the low Earth orbital (LEO) environment on the Long Duration Exposure Facility (LDEF) to determine if the coatings could be used to protect polymeric substrates from degradation in the LEO environment. The coatings that were evaluated were 700 A of aluminum oxide, 650 A of silicon dioxide, and 650 A of a 4 percent polytetrafluoroethylene-96 percent silicon dioxide mixed coating. All of the coatings evaluated were ion beam sputter deposited. These materials were exposed to a very low atomic oxygen fluence (4.8 x 10 exp 19 atoms/sq. cm) as a result of the experiment tray being located 98 degrees from the ram direction. As a result of the low atomic oxygen fluence, determination of a change in mass was not possible for any of the samples including the uncoated Kapton. There was no evidence of spalling of any of the coatings after the approximately 33,600 thermal cycles recorded for LDEF. The surface of the uncoated Kapton, however, did show evidence of grazing incidence texturing. There was a 7-8 percent increase in solar absorptance for the silicon dioxide and aluminum oxide coated Kapton and only a 4 percent increase for the mixed coating. It appears that the addition of a small amount of fluoropolymer may reduce the magnitude of absorptance increase due to environmental exposure. Thermal emittance did not change significantly for any of the exposed samples. Scanning electron microscopy revealed few micrometeoroid or debris impacts, but the impact sites found indicated that the extent of damage or cracking of the coating around the defect site did not extend beyond a factor of three of the impact crater diameter. This limiting of impact damage is of great significance for the durability of thin film coatings used for protection against the LEO environment

  10. Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Chufeng Sun

    2018-01-01

    Full Text Available To increase the durability of antibacterial coating on cotton and polymeric substrates, surface initiated grafting polymer brushes are introduced onto the substrates surface to bridge copper nanoparticles coatings and substrate. The morphologies of the composites consisting of the copper nanoparticles and polymer brushes were characterized with scanning electron microscopy (SEM. It was found that copper nanoparticles were uniformly and firmly distributed on the surfaces of the substrates by the polymer brushes; meanwhile, the reinforced concrete-like structures were formed in the composite materials. The substrates coated by the copper nanoparticles showed the efficient antibacterial activity against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli even after washing by 30 cycles. The copper nanoparticles were tethered on the substrates by the strong chemical bonds, which led to the excellent washable fitness and durability. The change of the phase structure of the copper was analyzed to investigate the release mechanism of copper ions.

  11. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride

    Science.gov (United States)

    Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong

    2017-07-01

    In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.

  12. Effects of radiation and environmental factors on the durability of materials in spent fuel storage and disposal

    International Nuclear Information System (INIS)

    2002-12-01

    This is the second report that addresses results from the Coordinated Research Project (CRP) on Irradiation Enhanced Degradation of Materials in Spent Fuel Storage Facilities. This second report addresses results of topical studies that are relevant to issues important to materials behaviour in wet storage technology, but also involves topics on materials behaviour in dry storage and repository environments, including effects of radiation. The material is in seven separate papers contributed by the participants in the CRP and contains details of research studies started within the framework of the CRP and in several cases completed well after the CRP was finished. The seven contributions fall into three broad subject areas: Effects of temperature and radiation on aqueous and moist air corrosion of stainless steels; Studies of materials behaviour in wet and dry storage; Effects of gamma radiation on the durability of candidate canister materials for repository applications: carbon steel, titanium, and copper. Each of the papers has been indexed separately

  13. Electrocatalysts and their Supporting Materials for Proton Exchange Membrane Fuel Cells: Activity and Durability Studies

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna

    of methanol electro-oxidation for ALD deposited Pt films on Si(100) and Pt-Si alloys on Si(100). ALD deposited Pt films on Si(100) were subsequently annealed at various temperatures to obtain Pt-Si alloy film on Si(100). Obtained alloys were subsequently characterised as potentially highly active methanol...... in oxygen reduction, carbon monoxide and methanol electro-oxidation reactions were explored. Employed catalysts were characterized electrochemically and physiochemically using techniques such as: cyclic voltammetry, rotating disk electrode technique, SEM, TEM, EDS, XPS, TGA/DTA, Raman, XRD, FTIR-IR among...... to long-term durability procedures. A significant part of the PhD study involved development of electrochemical instrumentation and techniques, such as: RDE and set-up, oxygen reduction, methanol and CO electrooxidation, long-term durability procedures, etc. The techniques employed by the author were self...

  14. Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries

    International Nuclear Information System (INIS)

    Meligrana, Giuseppina; Lueangchaichaweng, Warunee; Colò, Francesca; Destro, Matteo; Fiorilli, Sonia; Pescarmona, Paolo P.; Gerbaldi, Claudio

    2017-01-01

    Highlights: • Gallium oxide nanorods applied for the first time as anode material for Li-/Na-ion batteries. • Durable ambient temperature cycling (400 cycles) was observed in Li-based cells. • Stable reversible cycling (> 200 mAh g"−"1) was achieved for the first time in Na-based cells. - Abstract: Gallium oxide nanorods prepared by template-free synthesis are reported for the first time as safe and durable anode material for lithium- and sodium-ion batteries. The ambient temperature electrochemical response of the nanorods, tested by cyclic voltammetry and constant-current reversible cycling, is highly satisfying in terms of remarkable stability and capacity retention upon long-term operation (400 cycles), even at high current densities. The newly proposed application of gallium oxide nanorods as electrode material is notable also because this material can preserve the electrical pathway without the need of any “buffer matrix” to compensate for the expansion upon lithium or sodium reversible storage. The highly promising electrochemical performance is attributed to the high aspect ratio and high surface area that stem from the nanorod morphology and which can lead to short diffusion path and fast kinetics of both cations (Li"+ or Na"+) and electrons.

  15. Principles of animal extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, E.J.

    1991-01-01

    Animal Extrapolation presents a comprehensive examination of the scientific issues involved in extrapolating results of animal experiments to human response. This text attempts to present a comprehensive synthesis and analysis of the host of biomedical and toxicological studies of interspecies extrapolation. Calabrese's work presents not only the conceptual basis of interspecies extrapolation, but also illustrates how these principles may be better used in selection of animal experimentation models and in the interpretation of animal experimental results. The book's theme centers around four types of extrapolation: (1) from average animal model to the average human; (2) from small animals to large ones; (3) from high-risk animal to the high risk human; and (4) from high doses of exposure to lower, more realistic, doses. Calabrese attacks the issues of interspecies extrapolation by dealing individually with the factors which contribute to interspecies variability: differences in absorption, intestinal flora, tissue distribution, metabolism, repair mechanisms, and excretion. From this foundation, Calabrese then discusses the heterogeneticity of these same factors in the human population in an attempt to evaluate the representativeness of various animal models in light of interindividual variations. In addition to discussing the question of suitable animal models for specific high-risk groups and specific toxicological endpoints, the author also examines extrapolation questions related to the use of short-term tests to predict long-term human carcinogenicity and birth defects. The book is comprehensive in scope and specific in detail; for those environmental health professions seeking to understand the toxicological models which underlay health risk assessments, Animal Extrapolation is a valuable information source.

  16. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  17. E-Area Vault Concrete Material Property And Vault Durability/Degradation Projection Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-03-11

    Subsequent to the 2008 E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) (WSRC 2008), two additional E-Area vault concrete property testing programs have been conducted (Dixon and Phifer 2010 and SIMCO 2011a) and two additional E-Area vault concrete durability modeling projections have been made (Langton 2009 and SIMCO 2012). All the information/data from these reports has been evaluated and consolidated herein by the Savannah River National Laboratory (SRNL) at the request of Solid Waste Management (SWM) to produce E-Area vault concrete hydraulic and physical property data and vault durability/degradation projection recommendations that are adequately justified for use within associated Special Analyses (SAs) and future PA updates. The Low Activity Waste (LAW) and Intermediate Level (IL) Vaults structural degradation predictions produced by Carey 2006 and Peregoy 2006, respectively, which were used as the basis for the 2008 ELLWF PA, remain valid based upon the results of the E-Area vault concrete durability simulations reported by Langton 2009 and those reported by SIMCO 2012. Therefore revised structural degradation predictions are not required so long as the mean thickness of the closure cap overlying the vaults is no greater than that assumed within Carey 2006 and Peregoy 2006. For the LAW Vault structural degradation prediction (Carey 2006), the mean thickness of the overlying closure cap was taken as nine feet. For the IL Vault structural degradation prediction (Peregoy 2006), the mean thickness of the overlying closure cap was taken as eight feet. The mean closure cap thicknesses as described here for both E-Area Vaults will be included as a key input and assumption (I&A) in the next revision to the closure plan for the ELLWF (Phifer et al. 2009). In addition, it has been identified as new input to the PA model to be assessed in the ongoing update to the new PA Information UDQE (Flach 2013). Once the UDQE is approved, the SWM Key I

  18. E-Area Vault Concrete Material Property And Vault Durability/Degradation Projection Recommendations

    International Nuclear Information System (INIS)

    Phifer, M. A.

    2014-01-01

    Subsequent to the 2008 E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) (WSRC 2008), two additional E-Area vault concrete property testing programs have been conducted (Dixon and Phifer 2010 and SIMCO 2011a) and two additional E-Area vault concrete durability modeling projections have been made (Langton 2009 and SIMCO 2012). All the information/data from these reports has been evaluated and consolidated herein by the Savannah River National Laboratory (SRNL) at the request of Solid Waste Management (SWM) to produce E-Area vault concrete hydraulic and physical property data and vault durability/degradation projection recommendations that are adequately justified for use within associated Special Analyses (SAs) and future PA updates. The Low Activity Waste (LAW) and Intermediate Level (IL) Vaults structural degradation predictions produced by Carey 2006 and Peregoy 2006, respectively, which were used as the basis for the 2008 ELLWF PA, remain valid based upon the results of the E-Area vault concrete durability simulations reported by Langton 2009 and those reported by SIMCO 2012. Therefore revised structural degradation predictions are not required so long as the mean thickness of the closure cap overlying the vaults is no greater than that assumed within Carey 2006 and Peregoy 2006. For the LAW Vault structural degradation prediction (Carey 2006), the mean thickness of the overlying closure cap was taken as nine feet. For the IL Vault structural degradation prediction (Peregoy 2006), the mean thickness of the overlying closure cap was taken as eight feet. The mean closure cap thicknesses as described here for both E-Area Vaults will be included as a key input and assumption (I and A) in the next revision to the closure plan for the ELLWF (Phifer et al. 2009). In addition, it has been identified as new input to the PA model to be assessed in the ongoing update to the new PA Information UDQE (Flach 2013). Once the UDQE is approved, the SWM Key I and

  19. The durability of concrete containing a high-level of fly ash or a ternary blend of supplementary cementing materials

    Science.gov (United States)

    Gilbert, Christine M.

    The research for this study was conducted in two distinct phases as follows: Phase 1: The objective was to determine the effect of fly ash on the carbonation of concrete. The specimens made for this phase of the study were larger in size than those normally used in carbonation studies and were are meant to more accurately reflect real field conditions. The results from early age carbonation testing indicate that the larger size specimens do not have a measured depth of carbonation as great as that of the smaller specimens typically used in carbonation studies at the same age and under the same conditions. Phase 2: The objective was to evaluate the performance of ternary concrete mixes containing a ternary cement blend consisting of Portland cement, slag and Type C fly ash. It was found that concrete mixtures containing the fly ash with the lower calcium (CaO) content (in binary or ternary blends) provided superior durability performance and resistance to ASR compared to that of the fly ash with the higher CaO content. Ternary blends (regardless of the CaO content of the fly ash) provided better overall durability performance than binary blends of cementing materials or the control.

  20. The ATLAS Track Extrapolation Package

    CERN Document Server

    Salzburger, A

    2007-01-01

    The extrapolation of track parameters and their associated covariances to destination surfaces of different types is a very frequent process in the event reconstruction of high energy physics experiments. This is amongst other reasons due to the fact that most track and vertex fitting techniques are based on the first and second momentum of the underlying probability density distribution. The correct stochastic or deterministic treatment of interactions with the traversed detector material is hereby crucial for high quality track reconstruction throughout the entire momentum range of final state particles that are produced in high energy physics collision experiments. This document presents the main concepts, the algorithms and the implementation of the newly developed, powerful ATLAS track extrapolation engine. It also emphasises on validation procedures, timing measurements and the integration into the ATLAS offline reconstruction software.

  1. Finite lattice extrapolation algorithms

    International Nuclear Information System (INIS)

    Henkel, M.; Schuetz, G.

    1987-08-01

    Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)

  2. Ecotoxicological effects extrapolation models

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II

    1996-09-01

    One of the central problems of ecological risk assessment is modeling the relationship between test endpoints (numerical summaries of the results of toxicity tests) and assessment endpoints (formal expressions of the properties of the environment that are to be protected). For example, one may wish to estimate the reduction in species richness of fishes in a stream reach exposed to an effluent and have only a fathead minnow 96 hr LC50 as an effects metric. The problem is to extrapolate from what is known (the fathead minnow LC50) to what matters to the decision maker, the loss of fish species. Models used for this purpose may be termed Effects Extrapolation Models (EEMs) or Activity-Activity Relationships (AARs), by analogy to Structure-Activity Relationships (SARs). These models have been previously reviewed in Ch. 7 and 9 of and by an OECD workshop. This paper updates those reviews and attempts to further clarify the issues involved in the development and use of EEMs. Although there is some overlap, this paper does not repeat those reviews and the reader is referred to the previous reviews for a more complete historical perspective, and for treatment of additional extrapolation issues.

  3. On the classification and prediction of characteristics of heat resisting materials durability

    International Nuclear Information System (INIS)

    Krivenyuk, V.V.

    1976-01-01

    The proposed methods - one of which is based on the direct or indirect use of comparable temperature and load conditions, while the other takes into account in addition structural features of the material that are governed by the short-term ductility characteristics - are practically equivalent to the Larson and Miller method as regards accuracy and reliability of prediction. The classification of materials employed in the theory of high-temperature strength may promote the development of rapid methods of predicting the long-term strength and deformation properties by also taking into consideration the state of the material characterized by the short-term mechanical properties

  4. A process for imparting durable flame retardancy to fabric, fibres and other materials

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1981-01-01

    The invention provides a process for grafting a fire-retarding additive including one or more phosphorus and/or halogen-rich compounds to fabrics, fibres and other flammable materials, the process comprising: applying to the material a solution of the additive and a copolymerization-grafting compound for effecting copolymerization with the additive; adjusting the solids content of the applied solution to correspond to a predetermined desired add-on level; at least partly drying the material; exposing the material so treated to an electron irradiating beam; and adjusting the electron irradiation within energy ranges of substantially 50 to 250 keV and dose levels of from substantially 2 to 5 megarads. (author)

  5. Radiation durability and functional reliability of polymeric materials in space systems

    International Nuclear Information System (INIS)

    Haruvy, Y.

    1990-01-01

    Polymeric materials are preferred for the light-weight construction of space-systems. Materials in space systems are required to fulfill a complete set of specifications, at utmost reliability, throughout the whole period of service in space, while being exposed to the hazardous influence of the space environment. The major threats of the space environment in orbits at the geostationary altitude (GSO) arise from ionizing radiations, the main constituents of which are highly energetic protons (affecting mainly the surface) and fast electrons (which produce the main threat to the electronic components). The maximum dose of ionizing radiation (within the limits of uncertainty of the calculations) at the surface of a material mounted on a space system, namely the ''Skin-Dose'', is ca. 2500 Mrads/yr. Space systems such as telecommunication satellites are planned to serve for prolonged periods of 30 years and longer. The cumulative predicted dose of ionizing-radiation over such periods presents a severe threat of chemical degradation to most of the polymeric construction materials commonly utilized in space systems. The reliability of each of the polymeric materials must be evaluated in detail, considering each of the relevant typical threats, such as ionizing-radiation, UV radiation, meteoroides flux, thermal cycling and ultra-high vacuum. For each of the exposed materials, conservation of the set of functional characteristics such as mechanical integrity, electrical and thermo-optical properties, electrical conductivity, surface charging and outgassing properties, which may cause contamination of neighboring systems, is evaluated. The reliability of functioning of the materials exposed to the space environment can thus be predicted, utilizing data from the literature, experimental results reported from space flights and laboratory simulations, and by chemical similarity of untested polymers to others. (author)

  6. Evaluation of the color durability of acrylic resin veneer materials after immersion in common beverages at different time intervals: A spectrophotometric study.

    Science.gov (United States)

    Kohli, Shivani; Bhatia, Shekhar

    2015-01-01

    Proper function, esthetics, and cost are the prime factors to be considered while selecting bridge veneering materials. The purpose of the study is to evaluate color durability of acrylic veneer materials after immersion in common beverages at different time intervals. Spectrophotometer was used for taking color measurements based on the transmission of light through the specimens made of the selected materials which were Tooth moulding powder (DPI) and Acrylux (Ruthinium). Thirty specimens of standardized dimensions were prepared from each material. The specimens were divided into three groups of 10 each. One group of each material was immersed in tea (TajMahal) and another group of each material in cola (Pepsi) as the staining solutions. The remaining group of 10 from each material served as control and was stored in distilled water. Color measurements were obtained pre-immersion, and after 1, 15, and 30 days of immersion. Tooth moulding powder displayed better color durability than Acrylux over the 1 month immersion period in both staining solutions. Tea resulted in more discoloration compared to cola (Pepsi). The difference in the color durability of Acrylux and Tooth moulding powder may be attributed to the differences in the composition of tested resin veneering materials, i.e. their polar properties, which contribute to the absorption of staining solution, and the different brands and the strengths of the solutions.

  7. Evaluation of the color durability of acrylic resin veneer materials after immersion in common beverages at different time intervals: A spectrophotometric study

    Directory of Open Access Journals (Sweden)

    Shivani Kohli

    2015-06-01

    Full Text Available Background: Proper function, esthetics, and cost are the prime factors to be considered while selecting bridge veneering materials. The purpose of the study is to evaluate color durability of acrylic veneer materials after immersion in common beverages at different time intervals. Methods: Spectrophotometer was used for taking color measurements based on the transmission of light through the specimens made of the selected materials which were Tooth moulding powder (DPI and Acrylux (Ruthinium. Thirty specimens of standardized dimensions were prepared from each material. The specimens were divided into three groups of 10 each. One group of each material was immersed in tea (TajMahal and another group of each material in cola (Pepsi as the staining solutions. The remaining group of 10 from each material served as control and was stored in distilled water. Color measurements were obtained pre-immersion, and after 1, 15, and 30 days of immersion. Results: Tooth moulding powder displayed better color durability than Acrylux over the 1 month immersion period in both staining solutions. Tea resulted in more discoloration compared to cola (Pepsi. Conclusion: The difference in the color durability of Acrylux and Tooth moulding powder may be attributed to the differences in the composition of tested resin veneering materials, i.e. their polar properties, which contribute to the absorption of staining solution, and the different brands and the strengths of the solutions.

  8. Selection and durability of seal materials for a bedded salt repository: preliminary studies

    International Nuclear Information System (INIS)

    Roy, D.M.; Grutzeck, M.W.; Wakeley, L.D.

    1983-11-01

    This report details preliminary results of both experimental and theoretical studies of cementitious seal materials for use in a proposed nuclear waste repository in bedded salt. Effects of changes in bulk composition and environment upon phase stability and physical/mechanical properties have been evaluated for more than 25 formulations. Bonding and interfacial characteristics of the region between host rock and seal material or concrete aggregate and cementitious matrix for selected formulations have been studied. Compatibilities of clays and zeolites in brines typical of the SE New Mexico region have been investigated, and their stabilities reviewed. Results of these studies have led to the conclusion that cementitious materials can be formulated which are compatible with the major rock types in a bedded salt repository environment. Strengths are more than adequate, permeabilities are consistently very low, and elastic moduli generally increase only very slightly with time. Seal formulation guidelines and recommendations for present and future work are presented. 73 references, 25 figures, 61 tables

  9. Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications

    Science.gov (United States)

    Hu, Meishao; Ni, Jiangpeng; Zhang, Boping; Neelakandan, Sivasubramaniyan; Wang, Lei

    2018-06-01

    Crosslinking is an effective method to improve the properties of high temperature proton exchange membranes based on polybenzimidazole. However, the compact structure of crosslinked polybenzimidazole hinders the phosphoric acid absorption of the membranes, resulting in a relatively poor fuel cell performance. Recently, we find that branched polymers can absorb more phosphoric acid with a larger free volume, but suffer from deteriorated mechanical strength. In this work, a new method is proposed to obtain excellent over-all properties of high temperature proton exchange membranes. A series of crosslinked polybenzimidazoles containing branching structure as membrane materials are successfully prepared for the first time. Compared with conventional crosslinked membranes, these crosslinked polybenzimidazole membranes containing branching structure exhibit a higher phosphoric acid doping level and proton conductivity, improved durability, lower swelling rate and comparable mechanical strength. In particular, the fuel cell base on the crosslinked and branched membrane with a 10% ratio of crosslinker in non-humidified hydrogen/air at 160 °C achieves a power density of 404 mW cm-2. The results indicate that the combination of crosslinking and branching is an effective approach to improve the properties of polybenzimidazole membrane materials.

  10. Micro-level Porosimetry of Virtual Cementitious Materials : Structural Impact on Mechanical and Durability Evolution

    NARCIS (Netherlands)

    Le, L.B.N.

    2015-01-01

    Understanding the microstructure of cement paste is the basis of a study towards properties and behaviour of cementi¬tious materials. It is attractive exploit¬ing modern computer facilities for this purpose, favourably competing with time-consuming and laborious experimental approaches. This study

  11. Durability study on material of wooden panel elements used for the old living hut built in 1969 at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Toshimasa Konishi

    2002-09-01

    Full Text Available The purpose of this study is to determine the durability of the old living hut built in 1969 at Syowa Station, Japan's permanent Antarctic observation facility, especially of its wooden panels. The hut, of high floor type wooden panel construction, was built in January 1969. To determine the durability, part of the hut, which was brought back to Japan after 30 years, was rebuilt, then taken apart again under controlled test conditions. Tests included visual observation, testing of the wooden material, and testing of the performance of the thermal insulation material. The results showed that the material in the roof panels deteriorated considerably more than that in the walls and floors. In the severe polar conditions, the strength of the overall structure depends heavily on the joints between panels. It is clear that material on the indoor sides, and in the interiors of the panels, hardly deteriorated at all after 30 years.

  12. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of materials

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Guerrero, A.; Lopez, F. A.; Perez, C.; Alguacil, F. J.

    2012-11-01

    Under the European LIFE Program a microencapsulation process was developed for liquid mercury using Sulfur Polymer Stabilization/Solidification (SPSS) technology, obtaining a stable concrete-like sulfur matrix that allows the immobilization of mercury for long-term storage. The process description and characterization of the materials obtained were detailed in Part I. The present document, Part II, reports the results of different tests carried out to determine the durability of Hg-S concrete samples with very high mercury content (up to 30 % w/w). Different UNE and RILEM standard test methods were applied, such as capillary water absorption, low pressure water permeability, alkali/acid resistance, salt mist aging, freeze-thaw resistance and fire performance. The samples exhibited no capillarity and their resistance in both alkaline and acid media was very high. They also showed good resistance to very aggressive environments such as spray salt mist, freeze-thaw and dry-wet. The fire hazard of samples at low heat output was negligible. (Author)

  13. Modeling of geo-material durability and contaminant fate in recycling or disposal of industrial and radioactive waste

    International Nuclear Information System (INIS)

    De Windt, L.

    2011-01-01

    This report deals with the HYTEC model, coupling chemical and hydrodynamic processes, and its application to the recycling of inorganic wastes and the disposal of hazardous and radioactive wastes. A common feature is the assessment of geo-material durability while submitted to chemical disturbances by their industrial or natural environment and, reciprocally, the quantification of contaminant fate in soils and aquifers. Research papers in a first section numerically oriented, HYTEC is validated by means of an intercomparison exercise based on oxidative UO 2 dissolution and the subsequent migration of U species in subsurface environments. A numerical approach of leaching tests is also discussed. Several researches based on HYTEC follows. The evolution of the cement/clay interface is simulated in the framework of the multi-barrier system of radioactive waste disposal and the Tournemire engineering analog; discriminating between the physical and chemical key processes. The physico-chemical processes of cement biodegradation by fungi are investigated with a focus on acidic hydrolysis and complexation by biogenic carboxylic acids. Modeling of source-terms and ageing with respect to contaminant migration is discussed in the case of the chemical alteration of spent fuel pellets under disposal conditions by considering radiolytic dissolution, inhibiting effect and radioactive decay, and by analyzing the effect of fractures on the containment properties of subsurface disposal facilities of stabilized/solidified waste. Leaching lab experiments applied to steel slag and the chemical evolution of leachate from MSWI sub-bases of two pilot roads over 10 years are eventually modelled to better estimate the environmental impact of such recycling scenarios. On-going research In the straight lines of the modeling of radioactive waste disposal, a first perspective is to investigate the transient states driven by thermal gradient and water re-saturation of the near-field barriers and

  14. Well materials durability in case of carbon dioxide and hydrogen sulphide geological sequestration

    International Nuclear Information System (INIS)

    Jacquemet, N.

    2006-01-01

    The geological sequestration of carbon dioxide (CO 2 ) and hydrogen sulphide (H 2 S) is a promising solution for the long-term storage of these undesirable gases. It consists in injecting them via wells into deep geological reservoirs. The steel and cement employed in the well casing can be altered and provide pathways for leakage with subsequent human and environmental consequences. The materials ageing was investigated by laboratory experiments in geologically relevant P-T conditions. A new experimental and analysis procedure was designed for this purpose. A numerical approach was also done. The cement and steel were altered in various fluid phases at 500 bar-120 C and 500 bar-200 C: a brine, a brine saturated with H 2 S-CO 2 , a mixture of brine saturated with H 2 S-CO 2 and of supercritical H 2 S-CO 2 phase, a dry supercritical H 2 S-CO 2 phase without liquid water. In all cases, two distinct reactions are observed: the cement carbonation by the CO 2 and the steel sulfidation by the H 2 S. The carbonation and sulfidation are respectively maximal and minimal when they occur within the dry supercritical phase without liquid water. The textural and porosity properties of the cement are weakly affected by all the treatments at 120 C. The porosity even decreases in presence of H 2 S-CO 2 . But these properties are affected at 200 C when liquid water is present in the system. At this temperature, the initial properties are only preserved or improved by the treatments within the dry supercritical phase. The steel is corroded in all cases and thus is the vulnerable material of the wells. (author)

  15. A microencapsulation process of liquid mercury by sulfur polymer stabilization/solidification technology. Part II: Durability of materials

    Directory of Open Access Journals (Sweden)

    López-Delgado, A.

    2012-02-01

    Full Text Available Under the European LIFE Program a microencapsulation process was developed for liquid mercury using Sulfur Polymer Stabilization/Solidification (SPSS technology, obtaining a stable concrete-like sulfur matrix that allows the immobilization of mercury for long-term storage. The process description and characterization of the materials obtained were detailed in Part I. The present document, Part II, reports the results of different tests carried out to determine the durability of Hg-S concrete samples with very high mercury content (up to 30 % w/w. Different UNE and RILEM standard test methods were applied, such as capillary water absorption, low pressure water permeability, alkali/acid resistance, salt mist aging, freeze-thaw resistance and fire performance. The samples exhibited no capillarity and their resistance in both alkaline and acid media was very high. They also showed good resistance to very aggressive environments such as spray salt mist, freeze-thaw and dry-wet. The fire hazard of samples at low heat output was negligible.

    Dentro del Programa Europeo LIFE, se ha desarrollado un proceso de microencapsulación de mercurio liquido, utilizando la tecnología de estabilización/solidificación con azufre polimérico (SPSS. Como resultado se ha obtenido un material estable tipo concreto que permite la inmovilización de mercurio y su almacenamiento a largo plazo. La descripción del proceso y la caracterización de los materiales obtenidos, denominados concretos Hg-S, se detallan en la Parte I. El presente trabajo, Parte II, incluye los resultados de los diferentes ensayos realizados para determinar la durabilidad de las muestras de concreto Hg-S con un contenido de mercurio de hasta el 30 %. Se han utilizado diferentes métodos de ensayo estándar, UNE y RILEM, para determinar propiedades como la absorción de agua por capilaridad, la permeabilidad de agua a baja presión, la resistencia a álcali y ácido, el comportamiento en

  16. Wavefield extrapolation in pseudodepth domain

    KAUST Repository

    Ma, Xuxin

    2013-02-01

    Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.

  17. Comparative Study on the Performance of Blended and Nonblended Fly Ash Geopolymer Composites as Durable Construction Materials

    Directory of Open Access Journals (Sweden)

    Debabrata Dutta

    2018-01-01

    Full Text Available This article represents that the mechanical and microstructural properties and durability of fly ash-based geopolymers blended with silica fume and borax are better than those of conventional fly ash-based geopolymers. Fly ash itself contains the sources of silica and alumina which are required for geopolymerisation. But a sufficient amount of high-reactive silica is able to rapidly initiate geopolymerisation with activation. Pure potassium hydroxide pellets and sodium silicate solution were used for preparation of alkaline activator solution. Fly ash geopolymer paste exhibited better mechanical properties in the presence of silica fume with slight portion of borax. The effect of silica fume-blended geopolymer paste on temperature fluctuation (heating and cooling cycle at certain temperatures showed better performance than nonblended fly ash-based specimens. Durability property was evaluated by immersion of geopolymer specimens in 10% magnesium sulfate solution for a period of one year. The change in weight, strength, and microstructure was studied and compared. In the magnesium sulfate solution, a significant drop of strength to around 37.26% occurred after one year for nonblended fly ash-based specimens. It is evident that specimens prepared incorporating silica fume had the best performance in terms of their properties.

  18. Extrapolation methods theory and practice

    CERN Document Server

    Brezinski, C

    1991-01-01

    This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided - including some never before published results and applicat

  19. Study of the collecting electrode material of an extrapolation chamber by Monte Carlo simulation; Estudo do material do eletrodo coletor de uma câmara de extrapolação por simulação de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Vedovato, Uly Pita; Santos, William S.; Perini, Ana Paula, E-mail: anapaula.perini@ufu.br [Universidade Federal de Uberlândia (INFIS/UFU), Uberlândia, MG (Brazil). Instituto de Física; Neves, Lucio Pereira; Caldas, Linda V. E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Belinato, Walmir [Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IFBA), Vitória da Conquista, BA (Brazil)

    2017-07-01

    In this work, the influence of different materials of the collecting electrode on the response of an extrapolation ionization chamber, was evaluated. This ionization chamber was simulated with the MCNP-4C Monte Carlo code and the spectrum of a standard diagnostic radiology beam (RQR5) was utilized. The different results are due to interactions of photons with different materials of the collecting electrode contributing with different values of energy deposited in the sensitive volume of the ionization chamber, which depends on the atomic number of the evaluated materials. The material that presented the least influence was graphite, the original constituent of the ionization chamber. (author)

  20. Durability Improvements Through Degradation Mechanism Studies

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Langlois, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Papadia, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kusoglu, Ahmet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shi, Shouwnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); More, K. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grot, Steve [Ion Power, New Castle, DE (United States)

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  1. Decoration and Durability

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Munch, Anders V.

    2015-01-01

    Throughout the scales of design there has been an exploding interest in the ornament that seems to be fuelled by different kinds of digital technology and media from CAD to digital printing in both 2D and 3D. In architecture and industrial design it is discussed as a Return of ornament, because...... appropriate or not. This leads us to suggest an array of parameters that points out different situations and meanings of ornamentation: Product categories, Durability of materials, Styles, Aesthetic experience, Emotional attachment and Historical references. We discuss these parameters in cases from fashion...

  2. UFOs: Observations, Studies and Extrapolations

    CERN Document Server

    Baer, T; Barnes, M J; Bartmann, W; Bracco, C; Carlier, E; Cerutti, F; Dehning, B; Ducimetière, L; Ferrari, A; Ferro-Luzzi, M; Garrel, N; Gerardin, A; Goddard, B; Holzer, E B; Jackson, S; Jimenez, J M; Kain, V; Zimmermann, F; Lechner, A; Mertens, V; Misiowiec, M; Nebot Del Busto, E; Morón Ballester, R; Norderhaug Drosdal, L; Nordt, A; Papotti, G; Redaelli, S; Uythoven, J; Velghe, B; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zerlauth, M; Fuster Martinez, N

    2012-01-01

    UFOs (“ Unidentified Falling Objects”) could be one of the major performance limitations for nominal LHC operation. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge is summarized and extrapolations for LHC operation in 2012 and beyond are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.

  3. Contribution to the study of cementitious and clayey materials behaviour in the context of deep geological disposal: transport aspect, durability and thermo-hydro-mechanical behaviour

    International Nuclear Information System (INIS)

    Galle, C.

    2011-07-01

    Deep geological formation disposal is the reference solution in France for the management of medium and high activities radioactive waste. In this context, to demonstrate the feasibility of such a disposal, it is necessary to evaluate the long-term performances and the behaviour of the materials engaged in the elaboration of engineered barrier systems (EBS) and waste package elements. The studies mentioned and synthesized in this HDR thesis focused mainly on the convective transport of gas (under pressure gradient) in cementitious matrices, by coupling microstructure aspect (porosity/pores sizes distribution) and hydric environment (water saturation). Works on physico-chemical durability allowed the description of the chemical degradation of cement-based materials in extreme conditions using ammonium nitrate, to increase the materials damaging processes in order to identify functional margins. In relationship with the interim storage management phase, studies related to the behaviour and characterization of concrete submitted to high temperatures (up to 400 C) were also described. Finally, results concerning the gas (H 2 ) overpressure resistance of engineered barriers made of compacted clays were summarized. (author)

  4. Durability as integral characteristic of concrete

    Science.gov (United States)

    Suleymanova, L. A.; Pogorelova, I. A.; Suleymanov, K. A.; Kirilenko, S. V.; Marushko, M. V.

    2018-03-01

    The carried-out research provides insight into the internal bonds energy in material as the basis of its durability, deformability, integrity and resistance to different factors (combined effects of external loadings and (or) environment), into the limits of technical possibilities, durability and physical reality of the process of concrete deterioration, which allows designing reliable and cost-effective ferroconcrete constructions for different purposes.

  5. Durability of air lime mortar

    DEFF Research Database (Denmark)

    Nielsen, Anders

    2016-01-01

    This contribution deals with the physical and chemical reasons why pure air lime mortars used in masonry of burned bricks exposed to outdoor climate have shown to be durable from the Middle Ages to our days. This sounds strange in modern times where pure air lime mortars are regarded as weak...... materials, which are omitted from standards for new masonry buildings, where use of hydraulic binders is prescribed. The reasons for the durability seam to be two: 1. The old mortars have high lime contents. 2. The carbonation process creates a pore structure with a fine pored outer layer and coarser pores...

  6. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  7. Chemical durability of glass and glass-ceramic materials, developed in laboratory scale, from industrial oil shale residue. Preliminary results

    International Nuclear Information System (INIS)

    Araujo Fonseca, M.V. de; Souza Santos, P. de

    1990-01-01

    Industrial developments frequently drive to the natural resources extinction. The recycling era has come out a long time ago and it has been evident that great part of industrial work's problems are related to the pollution and the raw materials extinction. These problems should be solved, with advantages, through industrial residues recycling. This study deals with glass and glass-ceramics materials obtained from oil shale (Irati Formation-Sao Mateus do Sul-Parana State) industrialization residues. The reached results show that a controled devitrification of retorted oil shale glass improves its performance related to chemical attack. The crystallinity caracterization of the oil shales glass-ceramic was made through X-ray diffraction. (author) [pt

  8. Review—Multifunctional Materials for Enhanced Li-Ion Batteries Durability: A Brief Review of Practical Options

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M.; Luski, Shalom; Aurbach, Doron; Halalay, Ion C.

    2017-01-01

    Transition metal (TM) ions dissolution from positive electrodes, migration to and deposition on negative electrodes, followed by Mn-catalyzed reactions of solvents and anions, with loss of Li+ ions, is a major degradation (DMDCR) mechanism in Li-ion batteries (LIBs) with spinel positive electrode materials. While the details of the DMDCR mechanism are still under debate, it is clear that HF and other acid species’ attack is the main cause in solutions with LiPF6 electrolyte. We first review the work on various mitigation measures for the DMDCR mechanism, now spanning more than two decades. We then discuss recent progress on our understanding of Mn species in electrolyte solutions and the extension of a mitigation measure first proposed by Tarascon and coworkers in 1999, namely chelation of TM cations, to Mn cation trapping, HF scavenging, and alkali metal ions dispensing multi-functional materials. We focus on practicable, drop-in technical solutions, based on placing such materials in the inter-electrode space, with significant benefits for LIBs performance: increased capacity retention during operation at room and above-ambient temperatures as well as robust (both maximally ionically conducting and electronically insulating) solid-electrolyte interfaces, having reduced charge transfer and film resistances at both negative and positive electrodes. We illustrate the multifunctional materials approach with both new and previously published data. We also discuss and offer our evaluation regarding the merits and drawbacks of the various mitigation measures, with an eye for practically relevant technical solutions capable to meet both the performance requirements and cost constraints for commercial LIBs, and end with recommendations for future work.

  9. Development of the road aggregate test specifications for the modified ethylene glycol durability index for basic crystalline materials

    CSIR Research Space (South Africa)

    Leyland, RC

    2013-09-01

    Full Text Available had shown signs of “rapid weathering” using the method described by Higgs (1976). Both Orr and Higgs gave only qualitative assessments of the deterioration. During construction of the Lesotho Highland Water Project in South Africa (OSC 1986..., Shand and Lahmeyer McDonald Consortium (OSC). 1985. “Lesotho Highlands Water Project Feasibility Study: Supporting Report B, Geotechnical and construction materials studies.” Olivier, Shand and Lahmeyer McDonald Consortium. Orr, C.M. (1979). “Rapid...

  10. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties

    International Nuclear Information System (INIS)

    Guillon, E.

    2004-09-01

    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  11. The use of a flow test and a flow model in evaluating the durability of various nuclear waste-form materials

    International Nuclear Information System (INIS)

    Barkatt, A.; Barkatt, A.; Boroomand, M.A.

    1983-01-01

    The comprehensive predictive model described in this paper has been briefly outlined for a single particular set of repository parameters in an earlier paper. A general detailed derivation and a detailed illustration of the use of this method in comparative evaluation of a variety of waste-form materials are given. The model focuses on the long-term leach rate of materials under all possible water flow rates through a repository site, given any exposure configuration (i.e., ratio between the exposed area of the waste form and the volume of water with which it is in effective contact) which is considered most representative of the actual repository conditions. The model permits direct calculation of the annual fractional release rate of the major matrix elements as well as of any other components of a waste form. This makes it possible to evaluate how well various waste forms meet long-term durability criteria such as those proposed by the U.S. Nuclear Regulatory Commission, makes it possible to obtain such release rates, corresponding to the entire range of flow conditions expected in a repository down to very slow flow rates by conducting dynamic laboratory tests at practical rates of leachant exchange at relatively high surfaceto-volume ratios, following the leachate composition until the leach rates approach constant values, and normalizing the data to the surface-to-volume ratio expected under repository conditions. The purpose of this paper is to outline the general derivation of the model and to describe the results of applying the model in dynamic leach tests carried out on five different waste-form materials over the entire range of effective flow rates expected under repository conditions

  12. Ranking procedure based on mechanical, durability and thermal behavior of mortars with incorporation of phase change materials

    Directory of Open Access Journals (Sweden)

    Cunha, S.

    2015-12-01

    Full Text Available Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM. The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.Actualmente, existen varios productos de construcción, siendo importante una adecuada selección, con base en sus principales propiedades y funciones. En esta investigación se aplicó un procedimiento de clasificación desarrollado por Czarnecki y Lukowski, en morteros con incorporación de materiales de cambio de fase (PCM. Este procedimiento transforma los resultados experimentales de las propiedades en un único valor numérico. Los productos se clasifican de acuerdo con sus propiedades individuales o en una combinación optimizada de diferentes propiedades. El principal objetivo de este estudio fue la clasificación de morteros basado en los diferentes aglutinantes con incorporación de diferentes cantidades de PCM. Los aglutinantes utilizados fueran la cal aérea, cal hidráulica, yeso y cemento. Para cada aglutinante se han desarrollado tres morteros, siendo morteros de referencia, con incorporación de 40% de PCM y con incorporaci

  13. Test Methodology Development for Experimental Structural Assessment of ASC Planar Spring Material for Long-Term Durability

    Science.gov (United States)

    Yun, Gunjin; Abdullah, A. B. M.; Binienda, Wieslaw; Krause, David L.; Kalluri, Sreeramesh

    2014-01-01

    A vibration-based testing methodology has been developed that will assess fatigue behavior of the metallic material of construction for the Advanced Stirling Convertor displacer (planar) spring component. To minimize the testing duration, the test setup is designed for base-excitation of a multiplespecimen arrangement, driven in a high-frequency resonant mode; this allows completion of fatigue testing in an accelerated period. A high performance electro-dynamic exciter (shaker) is used to generate harmonic oscillation of cantilever beam specimens, which are clasped on the shaker armature with specially-designed clamp fixtures. The shaker operates in closed-loop control with dynamic specimen response feedback provided by a scanning laser vibrometer. A test coordinator function synchronizes the shaker controller and the laser vibrometer to complete the closed-loop scheme. The test coordinator also monitors structural health of the test specimens throughout the test period, recognizing any change in specimen dynamic behavior. As this may be due to fatigue crack initiation, the test coordinator terminates test progression and then acquires test data in an orderly manner. Design of the specimen and fixture geometry was completed by finite element analysis such that peak stress does not occur at the clamping fixture attachment points. Experimental stress evaluation was conducted to verify the specimen stress predictions. A successful application of the experimental methodology was demonstrated by validation tests with carbon steel specimens subjected to fully-reversed bending stress; high-cycle fatigue failures were induced in such specimens using higher-than-prototypical stresses

  14. Contribution to concrete modelling towards aging and durability: interactions between creep deformations and non-linear behaviour of the material

    International Nuclear Information System (INIS)

    Berthollet, A.

    2003-10-01

    Concrete structures are examined during their lifetime and often present important cracking states, which can progress with time and lead to change the structural behavior. The civil engineering works that the main function corresponds to protection's wall are very sensitive to this damage and its evolution. The growth of the time - dependent cracks represents an aging pathology linked with interaction between creep mechanism and the non-linear behavior of the material. In this thesis, a modeling for these mechanisms and their coupling are proposed. It based on creep strains analysis under different load levels, on the influence of the rate effect to the mechanical behavior. A stress limit is put on prominent manner, where beyond it, the creep - cracking interaction becomes important with the introduction of the ultimate tertiary creep kinetic. This level of strength is identified for infinitely slow loading rates and is also called intrinsic strength. It defines the limit on this side the viscous behavior of the cement paste limits the irreversibility processes as cracking. Thus, a constitutive law of viscoelastic - viscoplastic behavior with a high coupling between the cracking mechanism and the creep strains is proposed. The developments of the model are built on DUVAUT - LIONS approach integrated a generalized MAXWELL chain model. For one part, the viscoelastic behavior translates the creep mechanism under low stresses. For a second part, it associated with the viscoplastic behavior, which allows introducing both creep effect under high stresses and rate effect acting on micro-cracked zones. The cracking mechanism is described throughout a plasticity theory with multi-criteria, which induce a property of anisotropy for hardening. Qualitatively, ails of the creep kinetics are reproduced. An additional validation is based on experimental tests in compression, traction and flexion where the main parameters of the modeling are detailed. Thus, we can conclude on the

  15. Flavor extrapolation in lattice QCD

    International Nuclear Information System (INIS)

    Duffy, W.C.

    1984-01-01

    Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors

  16. Increase of cyclic durability of pressure vessels

    International Nuclear Information System (INIS)

    Vorona, V.A.; Zvezdin, Yu.I.

    1980-01-01

    The durability of multilayer pressure vessels under cyclic loading is compared with single-layer vessels. The relative conditional durability is calculated taking into account the assumption on the consequent destruction of layers and viewing a vessel wall as an indefinite plate. It is established that the durability is mainly determined by the number of layers and to a lesser degree depends on the relative size of the defect for the given layer thickness. The advantage of the multilayer vessels is the possibility of selecting layer materials so that to exclude the effect of agressive corrosion media on the strength [ru

  17. Monetary Policy with Sectoral Linkages and Durable Goods

    DEFF Research Database (Denmark)

    Petrella, Ivan; Rossi, Raffaele; Santoro, Emiliano

    We study the normative implications of a New Keynesian model featuring intersectoral trade of intermediate goods between two sectors that produce durables and non-durables. The interplay between durability and sectoral production linkages fundamentally alters the intersectoral stabilization trade....... Aggregating durable and non-durable inflation depending on the relative degrees of sectoral price stickiness may induce a severe bias. Input materials attenuate the response of sectoral inflations to movements in the real marginal costs, so that the effective slopes of the sectoral supply schedules...

  18. International Conference on Durability of Critical Infrastructure

    CERN Document Server

    Cherepetskaya, Elena; Pospichal, Vaclav

    2017-01-01

    This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.

  19. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  20. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  1. Builtin vs. auxiliary detection of extrapolation risk.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Miles Arthur; Kegelmeyer, W. Philip,

    2013-02-01

    A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.

  2. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  3. One-step lowrank wave extrapolation

    KAUST Repository

    Sindi, Ghada Atif

    2014-01-01

    Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a modified one-step lowrank wave extrapolation using Shanks transform in isotropic, and anisotropic media. Specifically, we utilize a velocity gradient term to add to the accuracy of the phase approximation function in the spectral implementation. With the higher accuracy, we can utilize larger time steps and make the extrapolation more efficient. Applications to models with strong inhomogeneity and considerable anisotropy demonstrates the utility of the approach.

  4. Scaling and extrapolation of hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Karwat, H.

    1986-01-01

    The containment plays an important role in predicting the residual risk to the environment under severe accident conditions. Risk analyses show that massive fission product release from the reactor fuel can occur only if during a loss of coolant the core is severely damaged and a containment failure is anticipated. Large amounts of hydrogen inevitably, are formed during the core degradation and will be released into the containment. More combustible gases are produced later when the coremelt will contact the containment concrete. Thus a potential for an early containment failure exists if a massive hydrogen deflagration cannot be excluded. A more remote cause for early containment failure may be an energetic steam explosion which requires a number of independent conditions when the molten core material contacts residual coolant water. The prediction of the containment loads caused by a hydrogen combustion is dependent on the prediction of the combustion mode. In the paper an attempt is made to identify on basis of a dimensional analysis such areas for which particular care must be exercised when scale experimental evidence is interpreted and extrapolated with the aid of a computer code or a system of computer codes. The study is restricted to fluid dynamic phenomena of the gas distribution process within the containment atmosphere. The gas sources and the mechanical response of containment structures are considered as given boundary conditions under which the containment is to be analyzed

  5. One-step lowrank wave extrapolation

    KAUST Repository

    Sindi, Ghada Atif; Alkhalifah, Tariq Ali

    2014-01-01

    Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a

  6. Endangered species toxicity extrapolation using ICE models

    Science.gov (United States)

    The National Research Council’s (NRC) report on assessing pesticide risks to threatened and endangered species (T&E) included the recommendation of using interspecies correlation models (ICE) as an alternative to general safety factors for extrapolating across species. ...

  7. Enhancing composite durability : using thermal treatments

    Science.gov (United States)

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  8. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification

    International Nuclear Information System (INIS)

    Meng, Xiangbo

    2015-01-01

    Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies. (viewpoint)

  9. Motion extrapolation in the central fovea.

    Directory of Open Access Journals (Sweden)

    Zhuanghua Shi

    Full Text Available Neural transmission latency would introduce a spatial lag when an object moves across the visual field, if the latency was not compensated. A visual predictive mechanism has been proposed, which overcomes such spatial lag by extrapolating the position of the moving object forward. However, a forward position shift is often absent if the object abruptly stops moving (motion-termination. A recent "correction-for-extrapolation" hypothesis suggests that the absence of forward shifts is caused by sensory signals representing 'failed' predictions. Thus far, this hypothesis has been tested only for extra-foveal retinal locations. We tested this hypothesis using two foveal scotomas: scotoma to dim light and scotoma to blue light. We found that the perceived position of a dim dot is extrapolated into the fovea during motion-termination. Next, we compared the perceived position shifts of a blue versus a green moving dot. As predicted the extrapolation at motion-termination was only found with the blue moving dot. The results provide new evidence for the correction-for-extrapolation hypothesis for the region with highest spatial acuity, the fovea.

  10. Wavefield extrapolation in pseudo-depth domain

    KAUST Repository

    Ma, Xuxin; Alkhalifah, Tariq Ali

    2012-01-01

    Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.

  11. Chemical durability of glasses containing radioactive fission product waste

    International Nuclear Information System (INIS)

    Mendel, J.E.; Ross, W.A.

    1974-04-01

    Measurements made to determine the chemical durability of glasses for disposal of radioactive waste are discussed. The term glass covers materials varying from true glass with only minute quantities of crystallites, such as insoluble RuO 2 , to quasi glass-ceramics which are mostly crystalline. Chemical durability requirements and Soxhlet extractor leach tests are discussed

  12. A Method for Extrapolation of Atmospheric Soundings

    Science.gov (United States)

    2014-05-01

    case are not shown here. We also briefly examined data for the Anchorage, AK ( PANC ), radiosonde site for the case of the inversion height equal to...or greater than the extrapolation depth (i.e., hinv ≥ hext). PANC lies at the end of a broad inlet extending northward from the Gulf of Alaska at...type of terrain can affect the model and in turn affect the extrapolation. We examined a sounding from PANC (61.16 N and –150.01 W, elevation of 40

  13. Load Extrapolation During Operation for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In the recent years load extrapolation for wind turbines has been widely considered in the wind turbine industry. Loads on wind turbines during operations are normally dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. All these parameters...... must be taken into account when characteristic load effects during operation are determined. In the wind turbine standard IEC 61400-1 a method for load extrapolation using the peak over threshold method is recommended. In this paper this method is considered and some of the assumptions are examined...

  14. Extrapolation Method for System Reliability Assessment

    DEFF Research Database (Denmark)

    Qin, Jianjun; Nishijima, Kazuyoshi; Faber, Michael Havbro

    2012-01-01

    of integrals with scaled domains. The performance of this class of approximation depends on the approach applied for the scaling and the functional form utilized for the extrapolation. A scheme for this task is derived here taking basis in the theory of asymptotic solutions to multinormal probability integrals......The present paper presents a new scheme for probability integral solution for system reliability analysis, which takes basis in the approaches by Naess et al. (2009) and Bucher (2009). The idea is to evaluate the probability integral by extrapolation, based on a sequence of MC approximations...... that the proposed scheme is efficient and adds to generality for this class of approximations for probability integrals....

  15. Efficient and stable extrapolation of prestack wavefields

    KAUST Repository

    Wu, Zedong

    2013-09-22

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers and the image point, or in other words, prestack wavefields. Extrapolating such wavefields in time, nevertheless, is a big challenge because the radicand can be negative, thus reduce to a complex phase velocity, which will make the rank of the mixed domain matrix very high. Using the vertical offset between the sources and receivers, we introduce a method for deriving the DSR formulation, which gives us the opportunity to derive approximations for the mixed domain operator. The method extrapolates prestack wavefields by combining all data into one wave extrapolation procedure, allowing both upgoing and downgoing wavefields since the extrapolation is done in time, and doesn’t have the v(z) assumption in the offset axis of the media. Thus, the imaging condition is imposed by taking the zero-time and zero-offset slice from the multi-dimensional prestack wavefield. Unlike reverse time migration (RTM), no crosscorrelation is needed and we also have access to the subsurface offset information, which is important for migration velocity analysis. Numerical examples show the capability of this approach in dealing with complex velocity models and can provide a better quality image compared to RTM more efficiently.

  16. Cosmogony as an extrapolation of magnetospheric research

    International Nuclear Information System (INIS)

    Alfven, H.

    1984-03-01

    A theory of the origin and evolution of the Solar System (Alfven and Arrhenius, 1975: 1976) which considered electromagnetic forces and plasma effects is revised in the light of new information supplied by space research. In situ measurements in the magnetospheres and solar wind have changed our views of basic properties of cosmic plasmas. These results can be extrapolated both outwards in space, to interstellar clouds, backwards in time, to the formation of the solar system. The first extrapolation leads to a revision of some cloud properties which are essential for the early phases in the formation of stars and solar nebule. The latter extrapolation makes possible to approach the cosmogonic processes by extrapolation of (rather) well-known magnetospheric phenomena. Pioneer-Voyager observations of the Saturnian rings indicate that essential parts of their structure are fossils from cosmogonic times. By using detailed information from these space missions, it seems possible to reconstruct certain events 4-5 billion years ago with an accuracy of a few percent. This will cause a change in our views of the evolution of the solar system.(author)

  17. The optimizied expansion method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong

    2013-01-01

    Spectral methods are fast becoming an indispensable tool for wave-field extrapolation, especially in anisotropic media, because of its dispersion and artifact free, as well as highly accurate, solutions of the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain operator.In this abstract, we propose an optimized expansion method that can approximate this operator with its low rank representation. The rank defines the number of inverse FFT required per time extrapolation step, and thus, a lower rank admits faster extrapolations. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its low rank representation.Thus,we obtain more accurate wave-fields using lower rank representation, and thus cheaper extrapolations. The optimization operation to define the low rank representation depends only on the velocity model, and this is done only once, and valid for a full reverse time migration (many shots) or one iteration of full waveform inversion. Applications on the BP model yielded superior results than those obtained using the decomposition approach. For transversely isotopic media, the solutions were free of the shear wave artifacts, and does not require that eta>0.

  18. Efficient and stable extrapolation of prestack wavefields

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2013-01-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers and the image point, or in other words, prestack wavefields. Extrapolating such wavefields in time, nevertheless, is a big challenge because the radicand can be negative, thus reduce to a complex phase velocity, which will make the rank of the mixed domain matrix very high. Using the vertical offset between the sources and receivers, we introduce a method for deriving the DSR formulation, which gives us the opportunity to derive approximations for the mixed domain operator. The method extrapolates prestack wavefields by combining all data into one wave extrapolation procedure, allowing both upgoing and downgoing wavefields since the extrapolation is done in time, and doesn’t have the v(z) assumption in the offset axis of the media. Thus, the imaging condition is imposed by taking the zero-time and zero-offset slice from the multi-dimensional prestack wavefield. Unlike reverse time migration (RTM), no crosscorrelation is needed and we also have access to the subsurface offset information, which is important for migration velocity analysis. Numerical examples show the capability of this approach in dealing with complex velocity models and can provide a better quality image compared to RTM more efficiently.

  19. Probabilistic Durability Analysis in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    A. Kudzys

    2000-01-01

    Full Text Available Expedience of probabilistic durability concepts and approaches in advanced engineering design of building materials, structural members and systems is considered. Target margin values of structural safety and serviceability indices are analyzed and their draft values are presented. Analytical methods of the cumulative coefficient of correlation and the limit transient action effect for calculation of reliability indices are given. Analysis can be used for probabilistic durability assessment of carrying and enclosure metal, reinforced concrete, wood, plastic, masonry both homogeneous and sandwich or composite structures and some kinds of equipments. Analysis models can be applied in other engineering fields.

  20. Durability analysis of gneiss using wear resistance

    Directory of Open Access Journals (Sweden)

    José Luiz Ernandes Dias Filho

    2014-01-01

    Full Text Available This paper presents a study conducted in gneiss in Santo Antonio de Pádua, RJ, BR, including durability analysis of the rock using slake durability test. Rocks in the region of Pádua are mostly used for ornamental purposes. A lab equipment was developed to evaluate the influence of rotation in the test, allowing for the speed variation of 7 RPM to 238 RPM. This study could be implemented in a wide variety of rock materials, targeting them according to their lifetime in the project. With variation of the wear levels, increasing weight loss was observed until the inertia moment in which the sample holds to the machine wall. The results indicate an increase in linear mass loss. These procedures allow a more precise analysis of durability than can be applied in different different regions of the world.

  1. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  2. Decoration and durability

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Munch, Anders V.

    2015-01-01

    Throughout the scales of design there has been an exploding interest in the ornament that seems to be fuelled by different kinds of digital technology and media from CAD to digital printing in both 2D and 3D. In architecture and industrial design, it is discussed as a “return of ornament” because...... from fashion and tableware to archi- tecture and link ornamentation to the aesthetics of durability....

  3. Durability of critical infrastructures

    OpenAIRE

    Raluca Pascu; Ramiro Sofronie

    2011-01-01

    The paper deals with those infrastructures by which world society, under the pressure ofdemographic explosion, self-survives. The main threatening comes not from terrorist attacks, but fromthe great natural catastrophes and global climate change. It’s not for the first time in history when suchmeasures of self-protection are built up. First objective of this paper is to present the background fordurability analysis. Then, with the aid of these mathematical tools the absolute durability of thr...

  4. Seismic wave extrapolation using lowrank symbol approximation

    KAUST Repository

    Fomel, Sergey

    2012-04-30

    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  5. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.

    2014-07-18

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  6. Statistical modeling and extrapolation of carcinogenesis data

    International Nuclear Information System (INIS)

    Krewski, D.; Murdoch, D.; Dewanji, A.

    1986-01-01

    Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis

  7. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.; Alkhalifah, Tariq Ali; Waheed, Umair bin

    2014-01-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth's subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  8. Radiographic film: surface dose extrapolation techniques

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW; Currie, M.

    2004-01-01

    Full text: Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate 2 dimensional map of surface dose if required. Results have shown that surface % dose can be estimated within ±3% of parallel plate ionisation chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10cm, 20cmand 30cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. Corresponding parallel plate ionisation chamber measurement are 16%, 27% and 37% respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  9. Surface dose extrapolation measurements with radiographic film

    International Nuclear Information System (INIS)

    Butson, Martin J; Cheung Tsang; Yu, Peter K N; Currie, Michael

    2004-01-01

    Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)

  10. Residual extrapolation operators for efficient wavefield construction

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-02-27

    Solving the wave equation using finite-difference approximations allows for fast extrapolation of the wavefield for modelling, imaging and inversion in complex media. It, however, suffers from dispersion and stability-related limitations that might hamper its efficient or proper application to high frequencies. Spectral-based time extrapolation methods tend to mitigate these problems, but at an additional cost to the extrapolation. I investigate the prospective of using a residual formulation of the spectral approach, along with utilizing Shanks transform-based expansions, that adheres to the residual requirements, to improve accuracy and reduce the cost. Utilizing the fact that spectral methods excel (time steps are allowed to be large) in homogeneous and smooth media, the residual implementation based on velocity perturbation optimizes the use of this feature. Most of the other implementations based on the spectral approach are focussed on reducing cost by reducing the number of inverse Fourier transforms required in every step of the spectral-based implementation. The approach here fixes that by improving the accuracy of each, potentially longer, time step.

  11. Microcracking and durability of high strength concretes

    International Nuclear Information System (INIS)

    Yssorche, M.P.

    1995-07-01

    Durability of 28 days compressive strength concrete of 20 to 120 MPa has been studied. The ability of concrete to transport aggressive agents has been determined for four properties: the air permeability, the chloride diffusivity, the water absorption and the carbonation. A chloride migration test for high and very high strength concrete (HSC and VHSC) has been built. The relationship between transport properties and the compressive strength after one and 28 days of humid curing has always the same shape: transport decreases when strength increases. However, transport properties often vary in the ordinary concrete field. Beyond, the domain is much more limited. The relationship between transport properties and strength valid for ordinary concrete can not be simply extrapolated for HSC and VHSC. To determine the part of microcracking of HSC and VHSC, concrete behaviour stored in two mediums has been studied: the ones shaming the storing condition of concrete in auto-desiccation, the others reproducing the storing conditions of concrete in desiccation. Auto-desiccation (measuring relative humidity at balance) and desiccation (measuring mass losses) have been showed. Microcracks and shrinkage strains have been measured. It has been showed that auto-desiccation microcracks proving in HSC or VHSC don't question the durability. Microcracks, as for permeability, do not develop between 28 days and one year. On the contrary, desiccation microcracks observed in HSC and VHSC, increase with transport properties between 28 days and 1.5 year. Thus, a bulk concrete is always more durable than a cover concrete. At last, the good influence of increase of curing of 1 to 28 days on the transport of all concretes has been emphasized. (author)

  12. Biosimilars: From Extrapolation into Off Label Use.

    Science.gov (United States)

    Zhao, Sizheng; Nair, Jagdish R; Moots, Robert J

    2017-01-01

    Biologic drugs have revolutionised the management of many inflammatory conditions. Patent expirations have stimulated development of highly similar but non-identical molecules, the biosimilars. Extrapolation of indications is a key concept in the development of biosimilars. However, this has been met with concerns around mechanisms of action, equivalence in efficacy and immunogenicity, which are reviewed in this article. Narrative overview composed from literature search and the authors' experience. Literature search included Pubmed, Web of Science, and online document archives of the Food and Drug Administration and European Medicines Agency. The concepts of biosimilarity and extrapolation of indications are revisited. Concerns around extrapolation are exemplified using the biosimilar infliximab, CT-P13, focusing on mechanisms of action, immunogenicity and trial design. The opportunities and cautions for using biologics and biosimilars in unlicensed inflammatory conditions are reviewed. Biosimilars offer many potential opportunities in improving treatment access and increasing treatment options. The high cost associated with marketing approval means that many bio-originators may never become licenced for rarer inflammatory conditions, despite clinical efficacy. Biosimilars, with lower acquisition cost, may improve access for off-label use of biologics in the management of these patients. They may also provide opportunities to explore off-label treatment of conditions where biologic therapy is less established. However, this potential advantage must be balanced with the awareness that off-label prescribing can potentially expose patients to risky and ineffective treatments. Post-marketing surveillance is critical to developing long-term evidence to provide assurances on efficacy as well as safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...

  14. Durability 2007. Injection grout investigations. Background description

    International Nuclear Information System (INIS)

    Orantie, K.; Kuosa, H.

    2008-12-01

    The aim of this project was to evaluate the durability risks of injection grouts. The investigations were done with respect to the application conditions, materials and service life requirements at the ONKALO underground research facility. The study encompassed injection grout mixtures made of ultrafine cement with and without silica fume. Some of the mixtures hade a low pH and thus a high silica fume content. The project includes a background description on durability literature, laboratory testing programme, detailed analysis of results and recommendations for selecting of ideal grout mixtures. The background description was made for the experimental study of low-pH and reference rock injection grouts as regards pore- and microstructure, strength, shrinkage/swelling and thus versatile durability properties. A summary of test methods is presented as well as examples, i.e. literature information or former test results, of expected range of results from the tests. Also background information about how the test results correlate to other material properties and mix designs is presented. Besides the report provides basic information on the pore structure of cement based materials. Also the correlation between the pore structure of cement based materials and permeability is shortly discussed. The test methods included in the background description are compressive strength, measurement of bulk drying, autogenous and chemical shrinkage and swelling, hydraulic conductivity / permeability, capillary water uptake test, mercury intrusion porosimetry (MIP) and thin section analysis. Three main mixtures with water-binder ratio of 0.8, 1.0 and 1.4 and silica fume content of 0, 15 and 40% were studied in the laboratory. Besides two extra mixtures were studied to provide additional information about the effect of varying water-dry-material ratio and silica fume content on durability. The evaluation of water tightness based on water permeability coefficient and micro cracking was

  15. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad

    2013-01-01

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented

  16. Experiences and extrapolations from Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Harwell, C.C.

    1985-01-01

    This paper examines the events following the atomic bombings of Hiroshima and Nagasaki in 1945 and extrapolates from these experiences to further understand the possible consequences of detonations on a local area from weapons in the current world nuclear arsenal. The first section deals with a report of the events that occurred in Hiroshima and Nagasaki just after the 1945 bombings with respect to the physical conditions of the affected areas, the immediate effects on humans, the psychological response of the victims, and the nature of outside assistance. Because there can be no experimental data to validate the effects on cities and their populations of detonations from current weapons, the data from the actual explosions on Hiroshima and Nagasaki provide a point of departure. The second section examines possible extrapolations from and comparisons with the Hiroshima and Nagasaki experiences. The limitations of drawing upon the Hiroshima and Nagasaki experiences are discussed. A comparison is made of the scale of effects from other major disasters for urban systems, such as damages from the conventional bombings of cities during World War II, the consequences of major earthquakes, the historical effects of the Black Plague and widespread famines, and other extreme natural events. The potential effects of detonating a modern 1 MT warhead on the city of Hiroshima as it exists today are simulated. This is extended to the local effects on a targeted city from a global nuclear war, and attention is directed to problems of estimating the societal effects from such a war

  17. π π scattering by pole extrapolation methods

    International Nuclear Information System (INIS)

    Lott, F.W. III.

    1978-01-01

    A 25-inch hydrogen bubble chamber was used at the Lawrence Berkeley Laboratory Bevatron to produce 300,000 pictures of π + p interactions at an incident momentum of the π + of 2.67 GeV/c. The 2-prong events were processed using the FSD and the FOG-CLOUDY-FAIR data reduction system. Events of the nature π + p→π + pπ 0 and π + p→π + π + n with values of momentum transfer to the proton of -t less than or equal to 0.238 GeV 2 were selected. These events were used to extrapolate to the pion pole (t = m/sub π/ 2 ) in order to investigate the π π interaction with isospins of both T=1 and T=2. Two methods were used to do the extrapolation: the original Chew-Low method developed in 1959 and the Durr-Pilkuhn method developed in 1965, which takes into account centrifugal barrier penetration factors. At first it seemed that, while the Durr-Pilkuhn method gave better values for the total π π cross section, the Chew-Low method gave better values for the angular distribution. Further analysis, however, showed that, if the requirement of total OPE (one-pion-exchange) was dropped, then the Durr-Pilkuhn method gave more reasonable values of the angular distribution as well as for the total π π cross section

  18. π π scattering by pole extrapolation methods

    International Nuclear Information System (INIS)

    Lott, F.W. III.

    1977-01-01

    A 25-inch hydrogen bubble chamber was used at the Lawrence Berkeley Laboratory Bevatron to produce 300,000 pictures of π + p interactions at an incident momentum of the π + of 2.67 GeV/c. The 2-prong events were processed using the FSD and the FOG-CLOUDY-FAIR data reduction system. Events of the nature π + p → π + pπ 0 and π + p → π + π + n with values of momentum transfer to the proton of -t less than or equal to 0.238 GeV 2 were selected. These events were used to extrapolate to the pion pole (t = m/sub π/ 2 ) in order to investigate the π π interaction with isospins of both T = 1 and T = 2. Two methods were used to do the extrapolation: the original Chew-Low method developed in 1959 and the Durr-Pilkuhn method developed in 1965 which takes into account centrifugal barrier penetration factors. At first it seemed that, while the Durr-Pilkuhn method gave better values for the total π π cross section, the Chew-Low method gave better values for the angular distribution. Further analysis, however, showed that if the requirement of total OPE (one-pion-exchange) were dropped, then the Durr-Pilkuhn method gave more reasonable values of the angular distribution as well as for the total π π cross section

  19. Development of durable green concrete exposed to deicing chemicals via synergistic use of locally available recycled materials and multi-scale modifiers

    Science.gov (United States)

    2018-02-02

    From the economic and social perspectives, the use of waste materials would not be attractive until their costs and quality can satisfy the construction requirements. In this study, a pure fly ash paste (PFAP) was developed in place of ordinary Portl...

  20. Guided wave tomography in anisotropic media using recursive extrapolation operators

    Science.gov (United States)

    Volker, Arno

    2018-04-01

    Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.

  1. Edge database analysis for extrapolation to ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Janeschitz, G.; Stambaugh, R.D.

    1999-01-01

    An edge database has been archived to facilitate cross-machine comparisons of SOL and edge pedestal characteristics, and to enable comparison with theoretical models with an aim to extrapolate to ITER. The SOL decay lengths of power, density and temperature become broader for increasing density and q 95 . The power decay length is predicted to be 1.4-3.5 cm (L-mode) and 1.4-2.7 cm (H-mode) at the midplane in ITER. Analysis of Type I ELMs suggests that each giant ELM on ITER would exceed the ablation threshold of the divertor plates. Theoretical models are proposed for the H-mode transition, for Type I and Type III ELMs and are compared with the edge pedestal database. (author)

  2. Scintillation counting: an extrapolation into the future

    International Nuclear Information System (INIS)

    Ross, H.H.

    1983-01-01

    Progress in scintillation counting is intimately related to advances in a variety of other disciplines such as photochemistry, photophysics, and instrumentation. And while there is steady progress in the understanding of luminescent phenomena, there is a virtual explosion in the application of semiconductor technology to detectors, counting systems, and data processing. The exponential growth of this technology has had, and will continue to have, a profound effect on the art of scintillation spectroscopy. This paper will review key events in technology that have had an impact on the development of scintillation science (solid and liquid) and will attempt to extrapolate future directions based on existing and projected capability in associated fields. Along the way there have been occasional pitfalls and several false starts; these too will be discussed as a reminder that if you want the future to be different than the past, study the past

  3. Irradiated food: validity of extrapolating wholesomeness data

    International Nuclear Information System (INIS)

    Taub, I.A.; Angelini, P.; Merritt, C. Jr.

    1976-01-01

    Criteria are considered for validly extrapolating the conclusions reached on the wholesomeness of an irradiated food receiving high doses to the same food receiving a lower dose. A consideration first is made of the possible chemical mechanisms that could give rise to different functional dependences of radiolytic products on dose. It is shown that such products should increase linearly with dose and the ratio of products should be constant throughout the dose range considered. The assumption, generally accepted in pharmacology, then is made that if any adverse effects related to the food are discerned in the test animals, then the intensity of these effects would increase with the concentration of radiolytic products in the food. Lastly, the need to compare data from animal studies with foods irradiated to several doses against chemical evidence obtained over a comparable dose range is considered. It is concluded that if the products depend linearly on dose and if feeding studies indicate no adverse effects, then an extrapolation to lower doses is clearly valid. This approach is illustrated for irradiated codfish. The formation of selected volatile products in samples receiving between 0.1 and 3 Mrads was examined, and their concentrations were found to increase linearly at least up to 1 Mrad. These data were compared with results from animal feeding studies establishing the wholesomeness of codfish and haddock irradiated to 0.2, 0.6 and 2.8 Mrads. It is stated, therefore, that if ocean fish, currently under consideration for onboard processing, were irradiated to 0.1 Mrad, it would be correspondingly wholesome

  4. Extrapolated stabilized explicit Runge-Kutta methods

    Science.gov (United States)

    Martín-Vaquero, J.; Kleefeld, B.

    2016-12-01

    Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.

  5. Durability evaluation of reversible solid oxide cells

    Science.gov (United States)

    Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.

    2013-11-01

    An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.

  6. Study of the Durability of Doped Lanthanum Manganite and Cobaltite Cathode Materials under ''Real World'' Air Exposure Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prabhakar [Univ. of Connecticut, Storrs, CT (United States); Mahapatra, Manoj [Univ. of Connecticut, Storrs, CT (United States); Ramprasad, Rampi [Univ. of Connecticut, Storrs, CT (United States); Minh, Nguyen [Univ. of California, San Diego, CA (United States); Misture, Scott [Alfred Univ., NY (United States)

    2014-11-30

    The overall objective of the program is to develop and validate mechanisms responsible for the overall structural and chemical degradation of lanthanum manganite as well as lanthanum ferrite cobaltite based cathode when exposed to “real world” air atmosphere exposure conditions during SOFC systems operation. Of particular interest are the evaluation and analysis of degradation phenomena related to and responsible for (a) products formation and interactions with air contaminants, (b) dopant segregation and oxide exolution at free surfaces, (c) cation interdiffusion and reaction products formation at the buried interfaces, (d) interface morphology changes, lattice transformation and the development of interfacial porosity and (e) micro-cracking and delamination from the stack repeat units. Reaction processes have been studied using electrochemical and high temperature materials compatibility tests followed by structural and chemical characterization. Degradation hypothesis has been proposed and validated through further experimentation and computational simulation.

  7. Development of Innovating Materials for Distributing Mixtures of Hydrogen and Natural Gas. Study of the Barrier Properties and Durability of Polymer Pipes

    Directory of Open Access Journals (Sweden)

    Klopffer Marie-Hélène

    2015-02-01

    Full Text Available With the growing place taken by hydrogen, a question still remains about its delivery and transport from the production site to the end user by employing the existing extensive natural gas pipelines. Indeed, the key challenge is the significant H2 permeation through polymer infrastructures (PolyEthylene (PE pipes, components such as connecting parts. This high flow rate of H2 through PE has to be taken into account for safety and economic requirements. A 3-year project was launched, the aim of which was to develop and assess material solutions to cope with present problems for hydrogen gas distribution and to sustain higher pressure compared to classical high density polyethylene pipe. This project investigated pure hydrogen gas and mixtures with natural gas (20% of CH4 and 80% of H2 in pipelines with the aim to select engineering polymers which are more innovative than polyethylene and show outstanding properties, in terms of permeation, basic mechanical tests but also more specific characterizations such as long term ageing and behaviour. The adequate benches, equipments and scientific approach for materials testing had been developed and validated. In this context, the paper will focus on the evaluation of the barrier properties of 3 polymers (PE, PA11 and PAHM. Experiments were performed for pure H2 and CH4 and also in the presence of mixtures of hydrogen and natural gas in order to study the possible mixing effects of gases. It will report some round-robin tests that have been carried out. Secondly, by comparing data obtained on film, polymer membrane and on pipe section, the influence of the polymer processing will be studied. Innovative multilayers systems will be proposed and compared on the basis of the results obtained on monolayer systems. Finally, the evolution of the transport properties of the studied polymers with an ageing under representative service conditions will be discussed.

  8. Durability and service life design of concrete structures. Experiences and the way to prove in The Netherlands

    NARCIS (Netherlands)

    Siemes, A.J.M.; Vrouwenvelder, A.C.W.M.

    2002-01-01

    After the introduction of reinforced concrete it was believed that the material was extremely durable. Soon it was found however, that reinforced concrete could have serious durability problems and that special care should be taken to avoid them. Durability became an issue.

  9. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  10. Thermodynamic model of natural, medieval and nuclear waste glass durability

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10 6 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table

  11. Nanocomposites for Improved Physical Durability of Porous PVDF Membranes

    Science.gov (United States)

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-01-01

    Current commercial polymer membranes have shown high performance and durability in water treatment, converting poor quality waters to higher quality suitable for drinking, agriculture and recycling. However, to extend the treatment into more challenging water sources containing abrasive particles, micro and ultrafiltration membranes with enhanced physical durability are highly desirable. This review summarises the current limits of the existing polymeric membranes to treat harsh water sources, followed by the development of nanocomposite poly(vinylidene fluoride) (PVDF) membranes for improved physical durability. Various types of nanofillers including nanoparticles, carbon nanotubes (CNT) and nanoclays were evaluated for their effect on flux, fouling resistance, mechanical strength and abrasion resistance on PVDF membranes. The mechanisms of abrasive wear and how the more durable materials provide resistance was also explored. PMID:24957121

  12. Iso-Oriented NaTi2(PO4)3 Mesocrystals as Anode Material for High-Energy and Long-Durability Sodium-Ion Capacitor.

    Science.gov (United States)

    Wei, Tongye; Yang, Gongzheng; Wang, Chengxin

    2017-09-20

    Sodium-ion capacitors (SIC) combine the merits of both high-energy batteries and high-power electrochemical capacitors as well as the low cost and high safety. However, they are also known to suffer from the severe deficiency of suitable electrode materials with high initial Coulombic efficiency (ICE) and kinetic balance between both electrodes. Herein, we report a facile solvothermal synthesis of NaTi 2 (PO 4 ) 3 nanocages constructed by iso-oriented tiny nanocrystals with a mesoporous architecture. It is notable that the NaTi 2 (PO 4 ) 3 mesocrystals exhibit a large ICE of 94%, outstanding rate capability (98 mA h g -1 at 10 C), and long cycling life (over 77% capacity retention after 10 000 cycles) in half cells, all of which are in favor to be utilized into a full cell. When assembled with commercial activated carbon to an SIC, the system delivers an energy density of 56 Wh kg -1 at a power density of 39 W kg -1 . Even at a high current rate of 5 A g -1 (corresponds to finish a full charge/discharge process in 2 min), the SIC still works well after 20 000 cycles without obvious capacity degradation. With the merits of impressive energy/power densities and longevity, the obtained hybrid capacitor should be a promising device for highly efficient energy storage systems.

  13. Durability Evaluation of Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-06-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application.

  14. Durability Evaluation of Superconducting Magnets

    International Nuclear Information System (INIS)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-01-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application

  15. Durable bistable auxetics made of rigid solids

    Science.gov (United States)

    Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano

    2018-02-01

    Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.

  16. Durability of heavyweight concrete containing barite

    International Nuclear Information System (INIS)

    Binici, Hanifi

    2010-01-01

    The supplementary waste barite aggregates deposit in Osmaniye, southern Turkey, has been estimated at around 500 000 000 tons based on 2007 records. The aim of the present study is to investigate the durability of concrete incorporating waste barite as coarse and river sand (RS), granule blast furnace slag (GBFS), granule basaltic pumice (GBP) and ≤ 4 mm granule barite (B) as fine aggregates. The properties of the fresh concrete determined included the air content, slump, slump loss and setting time. They also included the compressive strength, flexural and splitting tensile strengths and Young's modulus of elasticity, resistance to abrasion and sulphate resistance of hardened concrete. Besides these, control mortars were prepared with crushed limestone aggregates. The influence of waste barite as coarse aggregates and RS, GBFS, GBP and B as fine aggregates on the durability of the concretes was evaluated. The mass attenuation coefficients were calculated at photon energies of 1 keV to 100 GeV using XCOM and the obtained results were compared with the measurements at 0.66 and 1.25 MeV. The results showed the possibility of using these waste barite aggregates in the production of heavy concretes. In several cases, some of these properties have been improved. Durability of the concrete made with these waste aggregates was improved. Thus, these materials should be preferably used as aggregates in heavyweight concrete production. (orig.)

  17. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  18. Durability of cement and geopolimer composites

    Science.gov (United States)

    Błaszczyński, T.; Król, M.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. This main feature depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used a highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in a chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcium ash from the burning of lignite.

  19. Durability of coconut shell powder (CSP) concrete

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.

    2017-11-01

    The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.

  20. Ancient analogues concerning stability and durability of cementitious wasteform

    International Nuclear Information System (INIS)

    Jiang, W.; Roy, D.M.

    1994-01-01

    The history of cementitious materials goes back to ancient times. The Greeks and Romans used calcined limestone and later developed pozzolanic cement by grinding together lime and volcanic ash called open-quotes pozzolanclose quotes which was first found near Port Pozzuoli, Italy. The ancient Chinese used lime-pozzolanic mixes to build the Great Wall. The ancient Egyptians used calcined impure gypsum to build the Great Pyramid of Cheops. The extraordinary stability and durability of these materials has impressed us, when so much dramatically damaged infrastructure restored by using modern portland cement now requires rebuilding. Stability and durability of cementitious materials have attracted intensive research interest and contractors' concerns, as does immobilization of radioactive and hazardous industrial waste in cementitious materials. Nuclear waste pollution of the environment and an acceptable solution for waste management and disposal constitute among the most important public concerns. The analogy of ancient cementitious materials to modern Portland cement could give us some clues to study their stability and durability. This present study examines selected results of studies of ancient building materials from France, Italy, China, and Egypt, combined with knowledge obtained from the behavior of modern portland cement to evaluate the potential for stability and durability of such materials in nuclear waste forms

  1. Lightweight, durable lead-acid batteries

    Science.gov (United States)

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  2. Durability of Building Materials Vol 4

    DEFF Research Database (Denmark)

    Howard, Rob

    1999-01-01

    Facility management has become another business management discipline and the transfer of building data from design and construction into management has been neglected. The needs of building managers need to be specified and standardised to aallow designers to provide data in the form required....

  3. On the material durability under irradiation conditions

    International Nuclear Information System (INIS)

    Kiselevskij, V.N.; Kosov, B.D.

    1977-01-01

    The initial principle adopted for the construction of a phenomenological model of the failure of irradiated steel, as proposed in the paper of V.A. Tsykanov and coworkers, is analized and some critical remarks made

  4. 40 CFR 86.435-78 - Extrapolated emission values.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Extrapolated emission values. 86.435-78 Section 86.435-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.435-78 Extrapolated emission values...

  5. Review of durability of cementitious engineered barriers in repository environments

    International Nuclear Information System (INIS)

    Parrott, L.J.; Lawrence, C.D.

    1992-01-01

    This report is concerned with the durability of cementitious engineered barriers in a repository for low and intermediate level nuclear waste. Following the introduction the second section of the review identifies the environmental conditions associated with a deep, hard rock repository for ILW and LLW that are relevant to the durability of cementitious barriers. Section three examines the microstructure and macrostructure of cementitious materials and considers the physical and chemical processes of radionuclide immobilization. Potential repository applications and compositions of cementitious materials are reviewed in Section four. The main analysis of durability is dealt with in Section five. The different types of cementitious barrier are considered separately and their most probable modes of degradation are analysed. Concluding remarks that highlight critical technical matters are given in Section six. (author)

  6. Dose rates from a C-14 source using extrapolation chamber and MC calculations

    International Nuclear Information System (INIS)

    Borg, J.

    1996-05-01

    The extrapolation chamber technique and the Monte Carlo (MC) calculation technique based on the EGS4 system have been studied for application for determination of dose rates in a low-energy β radiation field e.g., that from a 14 C source. The extrapolation chamber measurement method is the basic method for determination of dose rates in β radiation fields. Applying a number of correction factors and the stopping power ratio, tissue to air, the measured dose rate in an air volume surrounded by tissue equivalent material is converted into dose to tissue. Various details of the extrapolation chamber measurement method and evaluation procedure have been studied and further developed, and a complete procedure for the experimental determination of dose rates from a 14 C source is presented. A number of correction factors and other parameters used in the evaluation procedure for the measured data have been obtained by MC calculations. The whole extrapolation chamber measurement procedure was simulated using the MC method. The measured dose rates showed an increasing deviation from the MC calculated dose rates as the absorber thickness increased. This indicates that the EGS4 code may have some limitations for transport of very low-energy electrons. i.e., electrons with estimated energies less than 10 - 20 keV. MC calculations of dose to tissue were performed using two models: a cylindrical tissue phantom and a computer model of the extrapolation chamber. The dose to tissue in the extrapolation chamber model showed an additional buildup dose compared to the dose in the tissue model. (au) 10 tabs., 11 ills., 18 refs

  7. Multiparameter extrapolation and deflation methods for solving equation systems

    Directory of Open Access Journals (Sweden)

    A. J. Hughes Hallett

    1984-01-01

    Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.

  8. Durability of building joint sealants

    Science.gov (United States)

    Christopher C. White; Kar Tean Tan; Donald L. Hunston; R. Sam Williams

    2009-01-01

    Predicting the service life of building joint sealants exposed to service environments in less than real time has been a need of the sealant community for many decades. Despite extensive research efforts to design laboratory accelerated tests to duplicate the failure modes occurring in field exposures, little success has been achieved using conventional durability...

  9. Enhancing durability of wood-based composites with nanotechnology

    Science.gov (United States)

    Carol Clausen

    2012-01-01

    Wood protection systems are needed for engineered composite products that are susceptible to moisture and biodeterioration. Protection systems using nano-materials are being developed to enhance the durability of wood-based composites through improved resistance to biodeterioration, reduced environmental impact from chemical leaching, and improved resistance to...

  10. Durability Issues and Status of PBI-Based Fuel Cells

    DEFF Research Database (Denmark)

    Jakobsen, Mark Tonny Dalsgaard; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2016-01-01

    This chapter briefly reviews durability and stability issues with key materials and components for HT-PEMFCs, including the polymer membrane, the doping acid, the electrocatalyst, the catalyst support and bipolar plates. Degradation mechanisms and their dependence on fuel cell operating condition...

  11. Framework for a procedure for design for durability

    NARCIS (Netherlands)

    Siemes, A.J.M.

    1996-01-01

    The design for durability of structures and building components is in general based on implicit requirements with respect to the quality and dimensions of the composing building materials and components. These requirements are based on long term experience. This approach has disadvantages. It is

  12. Durability evaluation method on rebar corrosion of reinforced concrete

    International Nuclear Information System (INIS)

    Kitsutaka, Yoshinori

    2013-01-01

    In this paper, method on the durability evaluation in nuclear power plant concrete structures was investigated. In view of the importance of evaluating the degree of deterioration of reinforced concrete structures, relationships should be formulated among the number of years elapsed, t, the amount of action of a deteriorative factor, F, the degree of material deterioration, D, and the performance of the structure, P. Evaluation by PDFt diagrams combining these relationships may be effective. A detailed procedure of durability evaluation for a reinforced concrete structure using PDFt concept is presented for the deterioration of rebar corrosion caused by neutralization and penetration of salinity by referring to the recent papers. (author)

  13. Problems in the extrapolation of laboratory rheological data

    Science.gov (United States)

    Paterson, M. S.

    1987-02-01

    The many types of variables and deformation regimes that need to be taken into account in extrapolating rheological behaviour from the laboratory to the earth are reviewed. The problems of extrapolation are then illustrated with two particular cases. In the case of divine-rich rocks, recent experimental work indicates that, within present uncertainties of extrapolation, the flow in the upper mantle could be either grain size dependent and near-Newtonian or grain size independent and distinctly non-Newtonian. Both types of behaviour would be influenced by the present of trace amounts of water. In the case of quartz-rich rocks, the uncertainties are even greater and it is still premature to attempt any extrapolation to geological conditions except as an upper bound; the fugacity and the scale of dispersion of the water are probably two important variables but the quantitative laws governing their influence are not yet clear.

  14. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  15. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  16. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied

  17. Effect of manufactured sand on the durability characteristics of concrete

    Directory of Open Access Journals (Sweden)

    S. S. SARAVANAN

    2016-12-01

    Full Text Available Concrete is the most sought after material due to increase in construction activities and infrastructural developments. Availability of natural sand is decreasing thereby increase in the cost of construction. In the present work undertaken, an attempt has been made to give an alternative to natural sand. Optimization of replacement of natural sand with manufactured sand in concrete, durability studies such as water absorption, rapid chloride permeability test, sorptivity, acid resistance, alkaline resistance, impact resistance and abrasion resistance of M40 and M50 grades of concrete have been studied with manufactured sand as fine aggregate and compared the results with the conventional sand concrete. The results shows that there is an increase in the durability properties up to 70 % level of replacements of sand with manufactured sand as fine aggregate and for 100 % use of manufactured sand also gives the better durability than the conventional sand concrete.

  18. Durability of thin-walled concrete structures

    International Nuclear Information System (INIS)

    Salomon, M.; Gallias, J.L.

    1991-01-01

    The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr

  19. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  20. The identification and treatment of poor durability Karoo dolerite base course aggregate – evidence from case studies

    CSIR Research Space (South Africa)

    Leyland, RC

    2016-03-01

    Full Text Available that the poor performance of the case study materials was likely due to the poor durability of the materials, manifesting as a reduction in resistance to abrasion and attrition. The identification of the observed poor durability could not have been performed...

  1. Chemical durability of silicoborate glasses

    International Nuclear Information System (INIS)

    Nieto, M.I.; Rodriguez, M.A.; Rubio, J.; Fernandez, A.; Oteo, J.L.

    1987-01-01

    A general view of the durability in silicoborate glasses is presented with more emphasis on the etching factors (chemical composition, lattice structure, pH...) the techniques used for this study and the experimental results. Likewise, the research presently developed in this area at the Instituto de Ceramica y Vidrio, CSIC, is related to the applications. Future research in this field is also mentioned. (author) 15 figs

  2. Evaluation of extrapolation methods for actual state expenditures on health care in Russian Federation

    Directory of Open Access Journals (Sweden)

    S. A. Banin

    2016-01-01

    Full Text Available Forecasting methods, extrapolation ones in particular, are used in health care for medical, biological and clinical research. The author, using accessible internet space, has not met a single publication devoted to extrapolation of financial parameters of health care activities. This determined the relevance of the material presented in the article: based on health care financing dynamics in Russia in 2000–2010 the author examined possibility of application of basic perspective extrapolation methods - moving average, exponential smoothing and least squares. It is hypothesized that all three methods can equally forecast actual public expenditures on health care in medium term in Russia’s current financial and economic conditions. The study result was evaluated in two time periods: within the studied interval and a five-year period. It was found that within the study period all methods have an average relative extrapolation error of 3–5%, which means high precision of the forecast. The study shown a specific feature of the least squares method which were gradually accumulating results so their economic interpretation became possible only in the end of the studied period. That is why the extrapolating results obtained by least squares method are not applicable in an entire study period and rather have a theoretical value. Beyond the study period, however, this feature was found to be the most corresponding to the real situation. It was the least squares method that proved to be the most appropriate for economic interpretation of the forecast results of actual public expenditures on health care. The hypothesis was not confirmed, the author received three differently directed results, while each method had independent significance and its application depended on evaluation study objectives and real social, economic and financial situation in Russian health care system.

  3. Durability and Reliability of Large Diameter HDPE Pipe for Water Main Applications (Web Report 4485)

    Science.gov (United States)

    Research validates HDPE as a suitable material for use in municipal piping systems, and more research may help users maximize their understanding of its durability and reliability. Overall, corrosion resistance, hydraulic efficiency, flexibility, abrasion resistance, toughness, f...

  4. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang; Fomel, Sergey; Du, Qizhen; Hu, Jingwei

    2014-01-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  5. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  6. Properties of an extrapolation chamber for beta radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    The properties of a commercial extrapolation chamber were studied, and the possibility is shown of its use in beta radiation dosimetry. The chamber calibration factors were determined for several sources ( 90 Sr, 90 Y- 204 Tl and 147 Pm) making known the dependence of its response on the energy of the incident radiation. Extrapolation curves allow to obtain independence on energy for each source. One of such curves, shown for the 90 Sr- 90 Y source at 50 cm from the detector, is obtained through the variation of the chamber window thickness and the extrapolation to the null distance (determined graphically). Different curves shown also: 1) the dependence of the calibration factor on the average energy of beta radiation; 2) the variation of ionization current with the distance between the chamber and the sources; 3) the effect of the collecting electrode area on the value of calibration factors for the different sources. (I.C.R.) [pt

  7. Durability of an inorganic polymer concrete coating

    Science.gov (United States)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  8. Functional differential equations with unbounded delay in extrapolation spaces

    Directory of Open Access Journals (Sweden)

    Mostafa Adimy

    2014-08-01

    Full Text Available We study the existence, regularity and stability of solutions for nonlinear partial neutral functional differential equations with unbounded delay and a Hille-Yosida operator on a Banach space X. We consider two nonlinear perturbations: the first one is a function taking its values in X and the second one is a function belonging to a space larger than X, an extrapolated space. We use the extrapolation techniques to prove the existence and regularity of solutions and we establish a linearization principle for the stability of the equilibria of our equation.

  9. Comparison among creep rupture strength extrapolation methods with application to data for AISI 316 SS from Italy, France, U.K. and F.R.G

    International Nuclear Information System (INIS)

    Brunori, G.; Cappellato, S.; Vacchiano, S.; Guglielmi, F.

    1982-01-01

    Inside Activity 3 ''Materials'' of WGCS, the member states UK and FRG have developed a work regarding extrapolation methods for creep data. This work has been done by comparising extrapolation methods in use in their countries by applying them to creep rupture strength data on AISI 316 SS obtained in UK and FRG. This work has been issued on April 1978 and the Community has dealed it to all Activity 3 Members. Italy, in the figure of NIRA S.p.A., has received, from the European Community a contract to extend the work to Italian and French data, using extrapolation methods currently in use in Italy. The work should deal with the following points: - Collect of Italian experimental data; - Chemical analysis on Italian Specimen; - Comparison among Italian experimental data with French, FRG and UK data; - Description of extrapolation methods in use in Italy; - Application of these extrapolation methods to Italian, French, British and Germany data; - Extensions of a Final Report

  10. ICP experiments more durable pavements

    International Nuclear Information System (INIS)

    Carta Petrolera

    1994-01-01

    A new asphalts technology that will make more durable the pavement in the highways and roads of the cities of Colombia investigates the Colombian Institute of the Petroleum ICP. The project that will have important incidence in the solution of one of the main problems in the roads of cities like Bogota, is only one of the 35 investigation programs and application of new technologies that with relationship to the sector of the hydrocarbons and its influence branches the ICP advances. The investigation looks for to elevate the current average of useful life of the pavements, with that it would be reached a standard that has the developed countries in this field

  11. Estimating Durability of Reinforced Concrete

    Science.gov (United States)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  12. Hygrothermal Behavior, Building Pathology and Durability

    CERN Document Server

    Delgado, JMPQ

    2013-01-01

    The main purpose of this book, Hygrothermal, Building Pathology and Durability, is to provide a collection of recent research works to contribute to the systematization and dissemination of knowledge related to construction pathology, hygrothermal behaviour of buildings, durability and diagnostic techniques and, simultaneously, to show the most recent advances in this domain. It includes a set of new developments in the field of building physics and hygrothermal behaviour, durability approach for historical and old buildings and building pathology vs. durability. The book is divided in several chapters that are a resume of the current state of knowledge for benefit of professional colleagues, scientists, students, practitioners, lecturers and other interested parties to network.

  13. Outlier robustness for wind turbine extrapolated extreme loads

    DEFF Research Database (Denmark)

    Natarajan, Anand; Verelst, David Robert

    2012-01-01

    . Stochastic identification of numerical artifacts in simulated loads is demonstrated using the method of principal component analysis. The extrapolation methodology is made robust to outliers through a weighted loads approach, whereby the eigenvalues of the correlation matrix obtained using the loads with its...

  14. Assessment of load extrapolation methods for wind turbines

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard; Veldkamp, D.

    2010-01-01

    an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima and the peak over...

  15. Assessment of Load Extrapolation Methods for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Veldkamp, Dick

    2011-01-01

    , an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper, three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima, and the peak over...

  16. Extrapolations of nuclear binding energies from new linear mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Jensen, A. S.; Riisager, K.

    2013-01-01

    We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...

  17. On extrapolation blowups in the $L_p$ scale

    Czech Academy of Sciences Publication Activity Database

    Capone, C.; Fiorenza, A.; Krbec, Miroslav

    2006-01-01

    Roč. 9, č. 4 (2006), s. 1-15 ISSN 1025-5834 R&D Projects: GA ČR(CZ) GA201/01/1201 Institutional research plan: CEZ:AV0Z10190503 Keywords : extrapolation * Lebesgue spaces * small Lebesgue spaces Subject RIV: BA - General Mathematics Impact factor: 0.349, year: 2004

  18. Extrapolation of ZPR sodium void measurements to the power reactor

    International Nuclear Information System (INIS)

    Beck, C.L.; Collins, P.J.; Lineberry, M.J.; Grasseschi, G.L.

    1976-01-01

    Sodium-voiding measurements of ZPPR assemblies 2 and 5 are analyzed with ENDF/B Version IV data. Computations include directional diffusion coefficients to account for streaming effects resulting from the plate structure of the critical assembly. Bias factors for extrapolating critical assembly data to the CRBR design are derived from the results of this analysis

  19. Experimental Study on Durability Improvement of Fly Ash Concrete with Durability Improving Admixture

    OpenAIRE

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete,...

  20. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  1. Proposition of Improved Methodology in Creep Life Extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10{sup 5} h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10{sup 5} ∼ 2x10{sup 5} h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  2. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  3. Proposition of Improved Methodology in Creep Life Extrapolation

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung

    2016-01-01

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10"5 h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10"5 ∼ 2x10"5 h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  4. Evaluation of functioning of an extrapolation chamber using Monte Carlo method

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Alfonso Laguardia, R.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm 2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)

  5. Durability of fired clay bricks containing granite powder

    OpenAIRE

    Xavier, G. C.; Saboya, F.; Maia, P. C.; Alexandre, J.

    2012-01-01

    Over the past few decades, hundreds of papers have been published on the benefits of including rock powder as a raw material in fired clay brick manufacture. Very little has been written, however, about the durability and long-term behaviour of the final product. As a rule, the ceramic bricks used in construction in developing countries are fired at low temperatures, which detracts from their mechanical performance. This is particularly visible in harsh environmental conditions, where weather...

  6. Lightweight, Durable Army Antennas Using Carbon Nanotube Technology

    Science.gov (United States)

    2013-01-01

    may be adjusted by collecting the sheet on a revolving substrate conveyor belt (e.g., Teflon belt ), as shown in figure 15 (12). SEM images of the... designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use...CNT) materials to produce lightweight, flexible, and durable alternatives to existing and future Army antenna designs is explored through fabrication

  7. Research and development of system to utilize photovoltaic energy. Survey on the high-durability and low-cost materials for constructing the solar-cell module and its structure; Taiyoko hatsuden riyo system no kenkyu. Taiyo denchi module yo kotaikyusei tei cost zairyo, kozo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the results obtained during fiscal 1994 on a survey on the high-durability and low-cost materials for constructing the solar-cell module and on its structure. With respect to forms and materials used in the present solar-cell modules, identification was made on the current status of products commercially available and developed inside and outside Japan. Main types of solar cells used for electric power are of crystal-based silicon. Amorphous silicon and CdS-CdTe are used for consumer applications of indoor and outdoor use. As regards transparent resin materials, fluorine resin, PET, acryl, and polyimide are used as surface materials, and EVA, silicon and PVB are often used as fillers. Developments inside and outside Japan are limited to systems of polycarbonate, methacryl, fluorine, polyurethane, acryl and polyester. Butyl rubber and polyurethane are used as sealing materials. Developments are being performed on silicon rubber, polychloroprene rubber and EPT rubber for shaped materials, and silicon systems, urethane systems and polysulfide systems for non-shaped materials. 3 figs., 8 tabs.

  8. Reliability and durability in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-10-01

    The reliability and durability in solar energy systems for residential buildings is discussed. It is concluded that although strides have been made in design and manufacturing over the past years, the reliability and durability of the equipment depends on the proper installation. (MJF)

  9. General extrapolation model for an important chemical dose-rate effect

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.

    1984-12-01

    In order to extrapolate material accelerated aging data, methodologies must be developed based on sufficient understanding of the processes leading to material degradation. One of the most important mechanisms leading to chemical dose-rate effects in polymers involves the breakdown of intermediate hydroperoxide species. A general model for this mechanism is derived based on the underlying chemical steps. The results lead to a general formalism for understanding dose rate and sequential aging effects when hydroperoxide breakdown is important. We apply the model to combined radiation/temperature aging data for a PVC material and show that this data is consistent with the model and that model extrapolations are in excellent agreement with 12-year real-time aging results from an actual nuclear plant. This model and other techniques discussed in this report can aid in the selection of appropriate accelerated aging methods and can also be used to compare and select materials for use in safety-related components. This will result in increased assurance that equipment qualification procedures are adequate

  10. Ceramics: Durability and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  11. Evolution of Durable High-Strength Flowable Mortar Reinforced with Hybrid Fibers

    OpenAIRE

    Dawood, Eethar Thanon; Ramli, Mahyuddin

    2012-01-01

    The production and use of durable materials in construction are considered as one of the most challenging things for the professional engineers. Therefore, this research was conducted to investigate the mechanical properties and the durability by using of different percentages of steel fiber with high-strength flowable mortar (HSFM) and also the use of the hybridization of steel fibers, palm fibers, and synthetic fiber (Barchip). Different experimental tests (compressive strength, splitting t...

  12. Medical extrapolation chamber dosimeter model XW6012A

    International Nuclear Information System (INIS)

    Jin Tao; Wang Mi; Wu Jinzheng; Guo Qi

    1992-01-01

    An extrapolation chamber dosimeter has been developed for clinical dosimetry of electron beams and X-rays from medical linear accelerators. It consists of a new type extrapolation chamber, a water phantom and an intelligent portable instrument. With a thin entrance window and a φ20 mm collecting electrode made of polystyrene, the electrode spacing can be varied from 0.2 to 6 mm. The dosimeter can accomplish dose measurement automatically, and has functions of error self-diagnosis and dose self-recording. The energy range applicable is 0.5-20 MeV, and the dose-rate range 0.02-40 Gy/min. The total uncertainty is 2.7%

  13. SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

    Science.gov (United States)

    Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

    2018-05-01

    SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

  14. A regularization method for extrapolation of solar potential magnetic fields

    Science.gov (United States)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  15. Teeth: Among Nature's Most Durable Biocomposites

    Science.gov (United States)

    Lawn, Brian R.; Lee, James J.-W.; Chai, Herzl

    2010-08-01

    This paper addresses the durability of natural teeth from a materials perspective. Teeth are depicted as smart biocomposites, highly resistant to cumulative deformation and fracture. Favorable morphological features of teeth at both macroscopic and microscopic levels contribute to an innate damage tolerance. Damage modes are activated readily within the brittle enamel coat but are contained from spreading catastrophically into the vulnerable tooth interior in sustained occlusal loading. Although tooth enamel contains a multitude of microstructural defects that can act as sources of fracture, substantial overloads are required to drive any developing cracks to ultimate failure—nature's strategy is to contain damage rather than avoid it. Tests on model glass-shell systems simulating the basic elements of the tooth enamel/dentin layer structure help to identify important damage modes. Fracture and deformation mechanics provide a basis for analyzing critical conditions for each mode, in terms of characteristic tooth dimensions and materials properties. Comparative tests on extracted human and animal teeth confirm the validity of the model test approach and point to new research directions. Implications in biomechanics, especially as they relate to dentistry and anthropology, are outlined.

  16. Line-of-sight extrapolation noise in dust polarization

    Energy Technology Data Exchange (ETDEWEB)

    Poh, Jason; Dodelson, Scott

    2017-05-19

    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r < 0.0015 .

  17. Biosimilars in Inflammatory Bowel Disease: Facts and Fears of Extrapolation.

    Science.gov (United States)

    Ben-Horin, Shomron; Vande Casteele, Niels; Schreiber, Stefan; Lakatos, Peter Laszlo

    2016-12-01

    Biologic drugs such as infliximab and other anti-tumor necrosis factor monoclonal antibodies have transformed the treatment of immune-mediated inflammatory conditions such as Crohn's disease and ulcerative colitis (collectively known as inflammatory bowel disease [IBD]). However, the complex manufacturing processes involved in producing these drugs mean their use in clinical practice is expensive. Recent or impending expiration of patents for several biologics has led to development of biosimilar versions of these drugs, with the aim of providing substantial cost savings and increased accessibility to treatment. Biosimilars undergo an expedited regulatory process. This involves proving structural, functional, and biological biosimilarity to the reference product (RP). It is also expected that clinical equivalency/comparability will be demonstrated in a clinical trial in one (or more) sensitive population. Once these requirements are fulfilled, extrapolation of biosimilar approval to other indications for which the RP is approved is permitted without the need for further clinical trials, as long as this is scientifically justifiable. However, such justification requires that the mechanism(s) of action of the RP in question should be similar across indications and also comparable between the RP and the biosimilar in the clinically tested population(s). Likewise, the pharmacokinetics, immunogenicity, and safety of the RP should be similar across indications and comparable between the RP and biosimilar in the clinically tested population(s). To date, most anti-tumor necrosis factor biosimilars have been tested in trials recruiting patients with rheumatoid arthritis. Concerns have been raised regarding extrapolation of clinical data obtained in rheumatologic populations to IBD indications. In this review, we discuss the issues surrounding indication extrapolation, with a focus on extrapolation to IBD. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All

  18. Effective Orthorhombic Anisotropic Models for Wave field Extrapolation

    KAUST Repository

    Ibanez Jacome, Wilson

    2013-05-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the

  19. Durability of reinforced concrete beams strengthened with fiber reinforced polymers under varying environmental conditions

    International Nuclear Information System (INIS)

    El-Sadani, R.A.M.G

    2008-01-01

    Fiber reinforced polymers (FRP) materials were adopted by the aerospace and marine industries, not only for their lightweight and high strength characteristics but also due to their tough and durable nature . As the engineering community has become more familiar with the performance advantages of these materials, new applications have been investigated and implemented. Researches and design guidelines concluded that externally bonded FRP to concrete elements could efficiently increase the capacity of RC elements. Long-term exposure to harsh environments deteriorates concrete and the need for repair and rehabilitation is evident. In order to accept these FRP materials, they must be evaluated for durability in harsh environments. An experimental program was conducted at the materials laboratory- faculty of engineering-Ain Shams university to study the durability of RC beams strengthened with FRP sheets and to compare them with un strengthened beams.The effect of gamma rays on FRP materials and concrete specimens bonded to FRP sheets were also investigated.

  20. Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps

    Science.gov (United States)

    Chen, Min; Bica, Benedikt; Tüchler, Lukas; Kann, Alexander; Wang, Yong

    2017-07-01

    This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.

  1. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin

    2015-03-23

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  2. A simple extrapolation of thermodynamic perturbation theory to infinite order

    International Nuclear Information System (INIS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2015-01-01

    Recent analyses of the third and fourth order perturbation contributions to the equations of state for square well spheres and Lennard-Jones chains show trends that persist across orders and molecular models. In particular, the ratio between orders (e.g., A 3 /A 2 , where A i is the ith order perturbation contribution) exhibits a peak when plotted with respect to density. The trend resembles a Gaussian curve with the peak near the critical density. This observation can form the basis for a simple recursion and extrapolation from the highest available order to infinite order. The resulting extrapolation is analytic and therefore cannot fully characterize the critical region, but it remarkably improves accuracy, especially for the binodal curve. Whereas a second order theory is typically accurate for the binodal at temperatures within 90% of the critical temperature, the extrapolated result is accurate to within 99% of the critical temperature. In addition to square well spheres and Lennard-Jones chains, we demonstrate how the method can be applied semi-empirically to the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT)

  3. Effective ellipsoidal models for wavefield extrapolation in tilted orthorhombic media

    KAUST Repository

    Waheed, Umair Bin

    2016-04-22

    Wavefield computations using the ellipsoidally anisotropic extrapolation operator offer significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate wavefield representation or imaging for media of orthorhombic symmetry. Therefore, we propose the use of ‘effective ellipsoidally anisotropic’ models that correctly capture the kinematic behaviour of wavefields for tilted orthorhombic (TOR) media. We compute effective velocities for the ellipsoidally anisotropic medium using kinematic high-frequency representation of the TOR wavefield, obtained by solving the TOR eikonal equation. The effective model allows us to use the cheaper ellipsoidally anisotropic wave extrapolation operators. Although the effective models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The proposed methodology offers a much better cost versus accuracy trade-off for wavefield computations in TOR media, particularly for media of low to moderate anisotropic strength. Furthermore, the computed wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference based TOR wave extrapolation scheme. We demonstrate applicability and usefulness of our formulation through numerical tests on synthetic TOR models. © 2016 Institute of Geophysics of the ASCR, v.v.i

  4. Predicting structural properties of fluids by thermodynamic extrapolation

    Science.gov (United States)

    Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.

    2018-05-01

    We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.

  5. Extrapolation of zircon fission-track annealing models

    International Nuclear Information System (INIS)

    Palissari, R.; Guedes, S.; Curvo, E.A.C.; Moreira, P.A.F.P.; Tello, C.A.; Hadler, J.C.

    2013-01-01

    One of the purposes of this study is to give further constraints on the temperature range of the zircon partial annealing zone over a geological time scale using data from borehole zircon samples, which have experienced stable temperatures for ∼1 Ma. In this way, the extrapolation problem is explicitly addressed by fitting the zircon annealing models with geological timescale data. Several empirical model formulations have been proposed to perform these calibrations and have been compared in this work. The basic form proposed for annealing models is the Arrhenius-type model. There are other annealing models, that are based on the same general formulation. These empirical model equations have been preferred due to the great number of phenomena from track formation to chemical etching that are not well understood. However, there are two other models, which try to establish a direct correlation between their parameters and the related phenomena. To compare the response of the different annealing models, thermal indexes, such as closure temperature, total annealing temperature and the partial annealing zone, have been calculated and compared with field evidence. After comparing the different models, it was concluded that the fanning curvilinear models yield the best agreement between predicted index temperatures and field evidence. - Highlights: ► Geological data were used along with lab data for improving model extrapolation. ► Index temperatures were simulated for testing model extrapolation. ► Curvilinear Arrhenius models produced better geological temperature predictions

  6. Extrapolated HPGe efficiency estimates based on a single calibration measurement

    International Nuclear Information System (INIS)

    Winn, W.G.

    1994-01-01

    Gamma spectroscopists often must analyze samples with geometries for which their detectors are not calibrated. The effort to experimentally recalibrate a detector for a new geometry can be quite time consuming, causing delay in reporting useful results. Such concerns have motivated development of a method for extrapolating HPGe efficiency estimates from an existing single measured efficiency. Overall, the method provides useful preliminary results for analyses that do not require exceptional accuracy, while reliably bracketing the credible range. The estimated efficiency element-of for a uniform sample in a geometry with volume V is extrapolated from the measured element-of 0 of the base sample of volume V 0 . Assuming all samples are centered atop the detector for maximum efficiency, element-of decreases monotonically as V increases about V 0 , and vice versa. Extrapolation of high and low efficiency estimates element-of h and element-of L provides an average estimate of element-of = 1/2 [element-of h + element-of L ] ± 1/2 [element-of h - element-of L ] (general) where an uncertainty D element-of = 1/2 (element-of h - element-of L ] brackets limits for a maximum possible error. The element-of h and element-of L both diverge from element-of 0 as V deviates from V 0 , causing D element-of to increase accordingly. The above concepts guided development of both conservative and refined estimates for element-of

  7. An efficient wave extrapolation method for anisotropic media with tilt

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2015-01-01

    Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.

  8. Study of an extrapolation chamber in a standard diagnostic radiology beam by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Vedovato, Uly Pita; Silva, Rayre Janaina Vieira; Neves, Lucio Pereira; Santos, William S.; Perini, Ana Paula; Belinato, Walmir

    2016-01-01

    In this work, we studied the influence of the components of an extrapolation ionization chamber in its response. This study was undertaken using the MCNP-5 Monte Carlo code, and the standard diagnostic radiology quality for direct beams (RQR5). Using tally F6 and 2.1 x 10"9 simulated histories, the results showed that the chamber design and material not alter significantly the energy deposited in its sensitive volume. The collecting electrode and support board were the components with more influence on the chamber response. (author)

  9. Use of recycled fine aggregate in concretes with durable requirements.

    Science.gov (United States)

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Integrated durability process in product development

    International Nuclear Information System (INIS)

    Pompetzki, M.; Saadetian, H.

    2002-01-01

    This presentation describes the integrated durability process in product development. Each of the major components of the integrated process are described along with a number of examples of how integrated durability assessment has been used in the ground vehicle industry. The durability process starts with the acquisition of loading information, either physically through loads measurement or virtually through multibody dynamics. The loading information is then processed and characterized for further analysis. Durability assessment was historically test based and completed through field or laboratory evaluation. Today, it is common that both the test and CAE environments are used together in durability assessment. Test based durability assessment is used for final design sign-off but is also critically important for correlating CAE models, in order to investigate design alternatives. There is also a major initiative today to integrate the individual components into a process, by linking applications and providing a framework to communicate information as well as manage all the data involved in the entire process. Although a single process is presented, the details of the process can vary significantly for different products and applications. Recent applications that highlight different parts of the durability process are given. As well as an example of how integration of software tools between different disciplines (MBD, FE and fatigue) not only simplifies the process, but also significantly improves it. (author)

  11. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    Science.gov (United States)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  12. Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants

    Science.gov (United States)

    Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi

    2018-02-01

    Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.

  13. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  14. Smooth extrapolation of unknown anatomy via statistical shape models

    Science.gov (United States)

    Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.

    2015-03-01

    Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.

  15. Extrapolation of vertical target motion through a brief visual occlusion.

    Science.gov (United States)

    Zago, Myrka; Iosa, Marco; Maffei, Vincenzo; Lacquaniti, Francesco

    2010-03-01

    It is known that arbitrary target accelerations along the horizontal generally are extrapolated much less accurately than target speed through a visual occlusion. The extent to which vertical accelerations can be extrapolated through an occlusion is much less understood. Here, we presented a virtual target rapidly descending on a blank screen with different motion laws. The target accelerated under gravity (1g), decelerated under reversed gravity (-1g), or moved at constant speed (0g). Probability of each type of acceleration differed across experiments: one acceleration at a time, or two to three different accelerations randomly intermingled could be presented. After a given viewing period, the target disappeared for a brief, variable period until arrival (occluded trials) or it remained visible throughout (visible trials). Subjects were asked to press a button when the target arrived at destination. We found that, in visible trials, the average performance with 1g targets could be better or worse than that with 0g targets depending on the acceleration probability, and both were always superior to the performance with -1g targets. By contrast, the average performance with 1g targets was always superior to that with 0g and -1g targets in occluded trials. Moreover, the response times of 1g trials tended to approach the ideal value with practice in occluded protocols. To gain insight into the mechanisms of extrapolation, we modeled the response timing based on different types of threshold models. We found that occlusion was accompanied by an adaptation of model parameters (threshold time and central processing time) in a direction that suggests a strategy oriented to the interception of 1g targets at the expense of the interception of the other types of tested targets. We argue that the prediction of occluded vertical motion may incorporate an expectation of gravity effects.

  16. The use of natural analogues in the long-term extrapolation of glass corrosion processes

    International Nuclear Information System (INIS)

    Lutze, W.; Grambow, B.; Ewing, R.C.; Jercinovic, M.J.

    1987-01-01

    One of the most critical aspects of nuclear waste management is the extrapolation of materials and systems behavior from short term experiments, typically on the order of one year, over comparatively very long periods of time. Safety and risk analyses have to rely on extrapolations and the respective findings have to be evaluated in the frame of licensing procedures. In this unique situation, any source of information that can lend support to the credibility of predicted behavior, should be exploited and investigated with great care. There are natural systems, e.g. the Oklo reactor, which can provide evidence of radionuclide migration over very long periods of time and thus help to answer specific questions of interest. Natural glasses and minerals can serve as analogues for both glass and crystalline nuclear waste forms, and the alteration of the natural materials can be studied to infer information on the behavior of the man-made products in geologic environments. This paper reviews most of the work performed by the authors and their colleagues in this field together with information available from literature and discusses the extent to which natural glasses can be used to validate or verify predictions. (author)

  17. Mass extrapolation of quarks and leptons to higher generations

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1981-05-01

    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e, ..mu.., tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2).

  18. Mass extrapolation of quarks and leptons to higher generations

    International Nuclear Information System (INIS)

    Barik, N.

    1981-01-01

    An empirical mass formula is tested for the basic fermion sequences of charged quarks and leptons. This relation is a generalization of Barut's mass formula for the lepton sequence (e, μ, tau ....). It is found that successful mass extrapolation to the third and possibly to other higher generations (N > 2) can be obtained with the first and second generation masses as inputs, which predicts the top quark mass msub(t) to be around 20 GeV. This also leads to the mass ratios between members of two different sequences (i) and (i') corresponding to the same higher generations (N > 2). (author)

  19. Testing an extrapolation chamber in computed tomography standard beams

    Science.gov (United States)

    Castro, M. C.; Silva, N. F.; Caldas, L. V. E.

    2018-03-01

    The computed tomography (CT) is responsible for the highest dose values to the patients. Therefore, the radiation doses in this procedure must be accurate. However, there is no primary standard system for this kind of radiation beam yet. In order to search for a CT primary standard, an extrapolation ionization chamber built at the Calibration Laboratory (LCI) of the Instituto de Pesquisas Energéticas e Nucleares (IPEN), was tested in this work. The results showed to be within the international recommended limits.

  20. Chiral and continuum extrapolation of partially-quenched hadron masses

    International Nuclear Information System (INIS)

    Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young

    2005-01-01

    Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement (∼1%) with the experimental value of M ρ from the former approach. These results are extended to the case of the nucleon mass

  1. Novel extrapolation method in the Monte Carlo shell model

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio

    2010-01-01

    We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pf-shell calculation of 56 Ni, and the applicability of the method to a system beyond the current limit of exact diagonalization is shown for the pf+g 9/2 -shell calculation of 64 Ge.

  2. Chiral and continuum extrapolation of partially-quenched hadron masses

    Energy Technology Data Exchange (ETDEWEB)

    Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young

    2005-09-29

    Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement ({approx}1%) with the experimental value of M{sub {rho}} from the former approach. These results are extended to the case of the nucleon mass.

  3. Quick test for durability factor estimation.

    Science.gov (United States)

    2010-03-01

    The Missouri Department of Transportation (MoDOT) is considering the use of the AASHTO T 161 Durability Factor (DF) as an endresult : performance specification criterion for evaluation of paving concrete. However, the test method duration can exceed ...

  4. The morphology of durability issues in PEM fuel cells

    International Nuclear Information System (INIS)

    Kundu, S.; Fowler, M.; Simon, L.; Grot, S.

    2004-01-01

    'Full text:' The work presented here examines durability issues in PEM fuel cell materials by examining material morphology and linking morphological features to performance. Scanning electron microscope (SEM) techniques have been able to identify a variety of features on the catalyst layer, each with their own implication to the overall performance and durability of the membrane electrode assembly (MEA). These features include cracking, delamination of the catalyst layer, catalyst clustering, electrolyte clustering, and thickness variations. Links between several of these features and catalyst dispersion conditions was also examined, showing that how the material was manufactured influences the type of morphological features present. The SEM has also been used with accelerated aging techniques to closely examine aging of the gas diffusion layer (GDL). It can be shown that over time the GDL will loose its hydrophobic character and hence become more susceptible to flooding in a fuel cell. The impact of morphological changes were determined using fuel cell models and experimental work. The ultimate aim of this work is to provide material developers with the tools and knowledge necessary to design better materials and therefore bring fuel cells closer to commercialization. (author)

  5. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  6. Durability of low-pH injection grout. A literature survey

    International Nuclear Information System (INIS)

    Holt, E.

    2008-01-01

    This publication provides an overview of the durability of injection grouts. It is intended for use during planning and construction at the ONKALO underground research facility. The review has been done with respect to the application conditions, materials and service life requirements expressed by Posiva Oy. The publication describes all types of cement-based material durability, with an emphasis on the key issues of shrinkage cracking, leaching and sulphate attack. The second part of the report provides information on how durability expectations have changed with the history of injection grout development. The report gives information specific to low-pH injection grouts containing high amounts of silica fume performance and how their durability is expected to differ from traditional normal cement-based mixtures. The final part of the report provides suggestions for future research needs for ensuring the service life of injection grouts. The key finding from this study is that the low-pH grout material is not expected to have worse durability performance compared to the standard injection grout. Combining high amounts of silica fume with the cement to produce low-pH grout should result in a material having lower permeability and thus greater resistance to leaching and chemical attack. Further laboratory testing is needed to quantitatively verify these findings and to provide inputs for future service life modeling. (orig.)

  7. Natural analogue studies of engineered barrier materials at PNC Tokai, Japan

    International Nuclear Information System (INIS)

    Kamei, G.; Yusa, Y.; Yamagata, J.; Inoue, K.

    1991-01-01

    Long-term extrapolations concerning the safety of a nuclear waste repository cannot be satisfactorily made on the sole basis of short-term laboratory tests. Natural analogues, which are the only means by which very slow mechanisms can be identified and by which long-term predictions of models can be tested for pertinence. Our natural analogue studies for the assessment of long-term durability of engineered barrier materials are outlined. Materials of young age and with simple history are the most suitable for the studies as: 1) properties of the materials tend to deteriorate over the longer term; and 2) detailed quantitative data on the term and on the environmental conditions can be obtained. The framework of our studies includes: 1) clarification of alteration phenomena, 2) examination of the environmental conditions, and 3) support experiments. (author)

  8. The central role of wood biology in understanding the durability of wood-coating interactions

    Science.gov (United States)

    Alex C. Wiedenhoeft

    2007-01-01

    To design effectively for durability, one must actively and honestly assess the material properties and limitations of each of the components in the design system; wood or wood composite, and the coating. Inasmuch as wood coatings are manufactured to specified tolerances from known materials, we have control of that component of the system. Compared to manmade...

  9. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin

    2014-05-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  10. Assessing ecological effects of radionuclides: data gaps and extrapolation issues

    International Nuclear Information System (INIS)

    Garnier-Laplace, Jacqueline; Gilek, Michael; Sundell-Bergman, Synnoeve; Larsson, Carl-Magnus

    2004-01-01

    By inspection of the FASSET database on radiation effects on non-human biota, one of the major difficulties in the implementation of ecological risk assessments for radioactive pollutants is found to be the lack of data for chronic low-level exposure. A critical review is provided of a number of extrapolation issues that arise in undertaking an ecological risk assessment: acute versus chronic exposure regime; radiation quality including relative biological effectiveness and radiation weighting factors; biological effects from an individual to a population level, including radiosensitivity and lifestyle variations throughout the life cycle; single radionuclide versus multi-contaminants. The specificities of the environmental situations of interest (mainly chronic low-level exposure regimes) emphasise the importance of reproductive parameters governing the demography of the population within a given ecosystem and, as a consequence, the structure and functioning of that ecosystem. As an operational conclusion to keep in mind for any site-specific risk assessment, the present state-of-the-art on extrapolation issues allows us to grade the magnitude of the uncertainties as follows: one species to another > acute to chronic = external to internal = mixture of stressors> individual to population> ecosystem structure to function

  11. Dead time corrections using the backward extrapolation method

    Energy Technology Data Exchange (ETDEWEB)

    Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Dubi, C. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel); Geslot, B.; Blaise, P. [DEN/CAD/DER/SPEx/LPE, CEA Cadarache, Saint-Paul-les-Durance 13108 (France); Kolin, A. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel)

    2017-05-11

    Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly complicated task due to the different nature of the dead time in the different components of the monitoring system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study, a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data, back to zero. The method has been implemented on actual neutron noise measurements carried out in the MINERVE zero power reactor, demonstrating high accuracy (of 1–2%) in restoring the corrected count rate. - Highlights: • A new method for dead time corrections is introduced and experimentally validated. • The method does not depend on any prior calibration nor assumes any specific model. • Different dead times are imposed on the signal and the losses are extrapolated to zero. • The method is implemented and validated using neutron measurements from the MINERVE. • Result show very good correspondence to empirical results.

  12. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  13. An Extrapolation of a Radical Equation More Accurately Predicts Shelf Life of Frozen Biological Matrices.

    Science.gov (United States)

    De Vore, Karl W; Fatahi, Nadia M; Sass, John E

    2016-08-01

    Arrhenius modeling of analyte recovery at increased temperatures to predict long-term colder storage stability of biological raw materials, reagents, calibrators, and controls is standard practice in the diagnostics industry. Predicting subzero temperature stability using the same practice is frequently criticized but nevertheless heavily relied upon. We compared the ability to predict analyte recovery during frozen storage using 3 separate strategies: traditional accelerated studies with Arrhenius modeling, and extrapolation of recovery at 20% of shelf life using either ordinary least squares or a radical equation y = B1x(0.5) + B0. Computer simulations were performed to establish equivalence of statistical power to discern the expected changes during frozen storage or accelerated stress. This was followed by actual predictive and follow-up confirmatory testing of 12 chemistry and immunoassay analytes. Linear extrapolations tended to be the most conservative in the predicted percent recovery, reducing customer and patient risk. However, the majority of analytes followed a rate of change that slowed over time, which was fit best to a radical equation of the form y = B1x(0.5) + B0. Other evidence strongly suggested that the slowing of the rate was not due to higher-order kinetics, but to changes in the matrix during storage. Predicting shelf life of frozen products through extrapolation of early initial real-time storage analyte recovery should be considered the most accurate method. Although in this study the time required for a prediction was longer than a typical accelerated testing protocol, there are less potential sources of error, reduced costs, and a lower expenditure of resources. © 2016 American Association for Clinical Chemistry.

  14. Higher Order Aitken Extrapolation with Application to Converging and Diverging Gauss-Seidel Iterations

    OpenAIRE

    Tiruneh, Ababu Teklemariam

    2013-01-01

    Aitken extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown in this paper that the same formula can be used to ...

  15. Contribution to the study of cementitious and clayey materials behaviour in the context of deep geological disposal: transport aspect, durability and thermo-hydro-mechanical behaviour; Contribution a l'etude du comportement des materiaux cimentaires et argileux en vue de leur utilisation dans le contexte du stockage geologique profond: aspect transport, durabilite et comportement thermo-hydro-mecanique

    Energy Technology Data Exchange (ETDEWEB)

    Galle, C.

    2011-07-15

    Deep geological formation disposal is the reference solution in France for the management of medium and high activities radioactive waste. In this context, to demonstrate the feasibility of such a disposal, it is necessary to evaluate the long-term performances and the behaviour of the materials engaged in the elaboration of engineered barrier systems (EBS) and waste package elements. The studies mentioned and synthesized in this HDR thesis focused mainly on the convective transport of gas (under pressure gradient) in cementitious matrices, by coupling microstructure aspect (porosity/pores sizes distribution) and hydric environment (water saturation). Works on physico-chemical durability allowed the description of the chemical degradation of cement-based materials in extreme conditions using ammonium nitrate, to increase the materials damaging processes in order to identify functional margins. In relationship with the interim storage management phase, studies related to the behaviour and characterization of concrete submitted to high temperatures (up to 400 C) were also described. Finally, results concerning the gas (H{sub 2}) overpressure resistance of engineered barriers made of compacted clays were summarized. (author)

  16. Polylactic Acid-Based Polymer Blends for Durable Applications

    Science.gov (United States)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  17. Why does the Aitken extrapolation often help to attain convergence in self-consistent field calculations?

    International Nuclear Information System (INIS)

    Cioslowski, J.

    1988-01-01

    The Aitken (three-point) extrapolation is one of the most popular convergence accelerators in the SCF calculations. The conditions that guarantee the Aitken extrapolation to bring about an unconditional convergence in the SCF process are examined. Classification of the SCF divergences is presented and it is shown that the extrapolation can be expected to work properly only in the case of oscillatory divergence

  18. Application of the cementitious grouts on stability and durability of semi flexible bituminous mixtures

    Science.gov (United States)

    Karami, Muhammad

    2017-11-01

    This paper describes the results of laboratory test for a high durability semi flexible bituminous mixtures (SFBM). The SFBM consists of an open asphalt structure where a high strength mortar is penetrated into the air voids of the bituminous mixtures. The SFBM combines the cement concrete's strength and the asphalt material flexibility. The objective of this study is to involve in the determination of stability and durability of SFBM by located the position of the specimen on an exposed area for 7, 90, 180 and 240 days. The performance of the SFBM was assessed using Marshall and wheel tracking apparatus. Total 18 specimens were prepared and examined for both of test. The Marshall specimens were cylindrical with dimension of 10.16 cm in diameter and 6.35 cm in high. For wheel tracking test, the specimens consisted of slabs with dimension of 30 cm in length, 30 cm in width and 5 cm in height. The results indicated that the first durability index and second durability index increased significantly. For Marshall test, the first and second durability index increased about 0.9% per day and 52.3%, respectively. However, for wheel tracking test, the first and second durability index increased about 1.9% per day and 119%, respectively.

  19. Towards Materials Sustainability through Materials Stewardship

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2016-10-01

    Full Text Available Materials sustainability requires a concerted change in philosophy across the entire materials lifecycle, orienting around the theme of materials stewardship. In this paper, we address the opportunities for improved materials conservation through dematerialization, durability, design for second life, and diversion of waste streams through industrial symbiosis.

  20. Flexible, durable proton energy degraders for the GE PETtrace

    DEFF Research Database (Denmark)

    Engle, J. W.; Gagnon, K.; Severin, Gregory

    2012-01-01

    In order to limit the formation of radioisotopic impurities during proton bombardments of solid targets, two methods of introducing degrader foils into the beam upstream of the target were tested. The first design uses a 445 μm thick fixed degrader machined from a single piece of aluminum....... The second design permits introduction of foils made of any material and was tested with foils as thick as 635 μm (also aluminium). In both cases, the foils are cooled with by water flowing through an annular channel outside the radius of the beam. Both designs proved durable and tolerated proton beam...

  1. Deformable and durable phantoms with controlled density of scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Bisaillon, Charles-Etienne; Lamouche, Guy; Dufour, Marc; Monchalin, Jean-Pierre [Industrial Materials Institute, National Research Council Canada, 75 de Mortagne, Boucherville, Quebec J4B 6Y4 (Canada); Maciejko, Romain [Optoelectronics Laboratory, Engineering Physics, Ecole Polytechnique de Montreal, PO Box 6079, Station ' Centre-ville' Montreal, Quebec H3C 3A7 (Canada)], E-mail: charles-etienne.bisaillon@cnrc-nrc.gc.ca, E-mail: guy.lamouche@cnrc-nrc.gc.ca, E-mail: marc.dufour@cnrc-nrc.gc.ca, E-mail: jean-pierre.monchalin@cnrc-nrc.gc.ca, E-mail: romain.maciejko@polytml.ca

    2008-07-07

    We have developed deformable and durable optical tissue phantoms with a simple and well-defined microstructure including a novel combination of scatterers and a matrix material. These were developed for speckle and elastography investigations in optical coherence tomography, but should prove useful in many other fields. We present in detail the fabrication process which involves embedding silica microspheres in a silicone matrix. We also characterize the resulting phantoms with scanning electron microscopy and optical measurements. To our knowledge, no such phantoms were proposed in the literature before. Our technique has a wide range of applicability and could also be adapted to fabricate phantoms with various optical and mechanical properties. (note)

  2. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  3. Flexible, durable proton energy degraders for the GE PETtrace

    Energy Technology Data Exchange (ETDEWEB)

    Engle, J. W.; Gagnon, K.; Severin, G. W.; Valdovinos, H. F.; Nickles, R. J.; Barnhart, T. E. [Chemistry Division - Isotopes, Inorganics and Actinides, Los Alamos National Laboratory, Los Alamos, NM (United States); Department of Radiation Oncology, University of Washington, Seattle, WA (United States); Hevesy Laboratory, Danish Technical University, Risoe (Denmark); Department of Medical Physics, University of Wisconsin, WI, Madison (United States)

    2012-12-19

    In order to limit the formation of radioisotopic impurities during proton bombardments of solid targets, two methods of introducing degrader foils into the beam upstream of the target were tested. The first design uses a 445 {mu}m thick fixed degrader machined from a single piece of aluminum. The second design permits introduction of foils made of any material and was tested with foils as thick as 635 {mu}m (also aluminium). In both cases, the foils are cooled with by water flowing through an annular channel outside the radius of the beam. Both designs proved durable and tolerated proton beam currents in excess of 80 {mu}A.

  4. Nuclear lattice simulations using symmetry-sign extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Laehde, Timo A.; Luu, Thomas [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany); Epelbaum, Evgeny; Krebs, Hermann [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Rupak, Gautam [Mississippi State University, Department of Physics and Astronomy, Mississippi State, MS (United States)

    2015-07-15

    Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the ''symmetry-sign extrapolation'' method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the {sup 12}C, {sup 6}He and {sup 6}Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter. (orig.)

  5. Performance of an extrapolation chamber in computed tomography standard beams

    International Nuclear Information System (INIS)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E.

    2017-01-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  6. UFOs in the LHC: Observations, studies and extrapolations

    CERN Document Server

    Baer, T; Cerutti, F; Ferrari, A; Garrel, N; Goddard, B; Holzer, EB; Jackson, S; Lechner, A; Mertens, V; Misiowiec, M; Nebot del Busto, E; Nordt, A; Uythoven, J; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zimmermann, F; Fuster, N

    2012-01-01

    Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented

  7. Performance of an extrapolation chamber in computed tomography standard beams

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E., E-mail: mcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)

  8. A generalized sound extrapolation method for turbulent flows

    Science.gov (United States)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  9. Erectile Function Durability Following Permanent Prostate Brachytherapy

    International Nuclear Information System (INIS)

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Kurko, Brian S.; Anderson, Richard; Lief, Jonathan H.

    2009-01-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 ≥ 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  10. Bonding Durability of Four Adhesive Systems

    Directory of Open Access Journals (Sweden)

    Leila Atash Biz Yeganeh

    2016-04-01

    Full Text Available Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS and microleakage during six months of water storage.Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP, Single Bond (SB, Clearfil-SE bond (CSEB, and All-Bond SE (ABSE. After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05.Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage.Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. 

  11. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    Science.gov (United States)

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.

  12. Fatigue behaviour analysis for the durability prequalification of strengthening mortars

    International Nuclear Information System (INIS)

    Bocca, P; Grazzini, A; Masera, D

    2011-01-01

    An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).

  13. N.590 National assembly. Law project of program relative to the sustainable management of radioactive materials and wastes; N. 590 Assemblee Nationale. Projet de loi de programme relatif a la gestion durable des matieres et des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document presents the different articles of the law text n. 590 on the management of the radioactive wastes and materials. It concerns the obligations and the liabilities of producers and users of radioactive spent fuels and wastes. (A.L.B.)

  14. A generalized definition for waste form durability

    International Nuclear Information System (INIS)

    Fanning, T. H.; Bauer, T. H.; Morris, E. E.; Wigeland, R. A.

    2002-01-01

    When evaluating waste form performance, the term ''durability'' often appears in casual discourse, but in the technical literature, the focus is often on waste form ''degradation'' in terms of mass lost per unit area per unit time. Waste form degradation plays a key role in developing models of the long-term performance in a repository environment, but other factors also influence waste form performance. These include waste form geometry; density, porosity, and cracking; the presence of cladding; in-package chemistry feedback; etc. The paper proposes a formal definition of waste form ''durability'' which accounts for these effects. Examples from simple systems as well as from complex models used in the Total System Performance Assessment of Yucca Mountain are provided. The application of ''durability'' in the selection of bounding models is also discussed

  15. Pyramiding for Resistance Durability: Theory and Practice.

    Science.gov (United States)

    Mundt, Chris

    2018-04-12

    Durable disease resistance is a key component of global food security, and combining resistance genes into "pyramids" is an important way to increase durability of resistance. The mechanisms by which pyramids impact durability are not well known. The traditional view of resistance pyramids considers the use of major resistance gene (R-gene) combinations deployed against pathogens that are primarily asexual. Interestingly, published examples of the successful use of pyramids in the traditional sense are rare. In contrast, most published descriptions of durable pyramids in practice are for cereal rusts, and tend to indicate an association between durability and cultivars combining major R-genes with incompletely expressed, adult plant resistance genes. Pyramids have been investigated experimentally for a diversity of pathogens, and many reduce disease levels below that of the single best gene. Resistance gene combinations have been identified through phenotypic reactions, molecular markers, and challenge against effector genes. As resistance genes do not express equally in all genetic backgrounds, however, a combination of genetic information and phenotypic analyses provide the ideal scenario for testing of putative pyramids. Not all resistance genes contribute equally to pyramids, and approaches have been suggested to identify the best genes and combinations of genes for inclusion. Combining multiple resistance genes into a single plant genotype quickly is a challenge that is being addressed through alternative breeding approaches, as well as through genomics tools such as resistance gene cassettes and gene editing. Experimental and modeling tests of pyramid durability are in their infancy, but have promise to help direct future studies of pyramids. Several areas for further work on resistance gene pyramids are suggested.

  16. Beta cloth durability assessment for Space Station Freedom (SSF) Multi-Layer Insulation (MLI) blanket covers

    International Nuclear Information System (INIS)

    Koontz, S.L.; Jacobs, S.; Le, J.

    1993-03-01

    MLI blankets for the Space Station Freedom (SSF) must comply with general program requirements and recommendations for long life and durability in the low-Earth orbit (LEO) environment. Atomic oxygen and solar ultraviolet/vacuum ultraviolet are the most important factors in the SSF natural environment which affect materials life. Two types of Beta cloth (Teflon coated woven glass fabric), which had been proposed as MLI blanket covers, were tested for long-term durability in the LEO environment. General resistance to atomic oxygen attack and permeation were evaluated in the high velocity atomic oxygen beam system at Los Alamos National Laboratories. Long-term exposure to the LEO environment was simulated in the laboratory using a radio frequency oxygen plasma asher. The plasma asher treated Beta cloth specimens were tested for thermo-optical properties and mechanical durability. Space exposure data from the Long Duration Exposure Facility and the Intelsat Solar Array Coupon were also used in the durability assessment. Beta cloth fabricated to Rockwell specification MBO 135-027 (Chemglas 250) was shown to have acceptable durability for general use as an MLI blanket cover material in the LEO environment while Sheldahl G414500 should be used only in locations which are protected from direct Ram atomic oxygen

  17. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Nielsen, Laila

    1997-01-01

    (capillary water uptake) is used, involving an in-situ method and a laboratory method. Three different concrete qualities as well as steel fibres (ZP) and polypropylene fibres (PP) are used. Results of the durability tests on cracked FRC-beams are compared to results for uncracked FRC-beams and beams without......Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by exposing beams to il-point bending until a predefined crack width is reached, using a newly developed test setup. As environmental load, exposure to water...

  18. Durability of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hauch, Anne; Hjelm, Johan

    2011-01-01

    In recent years extended focus has been placed on monitoring and understanding degradation mechanisms in both solid oxide fuel cells and solid oxide electrolysis cells. The time-consuming nature of degradation experiments and the disparate conclusions from experiment reproductions indicates...... that not all degradation mechanisms are fully understood. Traditionally, cell degradation has been attributed to the materials, processing and cell operating conditions. More recently, focus has been placed on the effect of raw material and gas impurities and their long-term effect on cell degradation. Minor...... impurities have been found to play a significant role in degradation and in some cases can overshadow the cell operation condition related degradation phenomenon. In this review, several degradation diagnostic tools are discussed, a benchmark for a desirable degradation rate is proposed and degradation...

  19. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties; Durabilite des materiaux cimentaires: modelisation de l'influence des equilibres physico-chimiques sur la microstructure et les proprietes mecaniques residuelles

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E

    2004-09-15

    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  20. Extrapolation of lattice gauge theories to the continuum limit

    International Nuclear Information System (INIS)

    Duncan, A.; Vaidya, H.

    1978-01-01

    The problem of extrapolating lattice gauge theories from the strong-coupling phase to the continuum critical point is studied for the Abelian (U(1)) and non-Abelian (SU(2)) theories in three (space--time) dimensions. A method is described for obtaining the asymptotic behavior, for large β, of such thermodynamic quantities and correlation functions as the free energy and Wilson loop function. Certain general analyticity and positivity properties (in the complex β-plane) are shown to lead, after appropriate analytic remappings, to a Stieltjes property of these functions. Rigorous theorems then guarantee uniform and monotone convergence of the Pade approximants, with exact pointwise upper and lower bounds. The first three Pade's are computed for both the free energy and the Wilson function. For the free energy, satisfactory agreement is with the asymptotic behavior computed by an explicit lattice calculation. The strong-coupling series for the Wilson function is found to be considerably more unstable in the lower order terms - correspondingly, convergence of the Pade's is found to be slower than in the free-energy case. It is suggested that higher-order calculations may allow a reasonably accurate determination of the string constant for the SU(2) theory. 14 references

  1. Dynamic Aperture Extrapolation in Presence of Tune Modulation

    CERN Document Server

    Giovannozzi, Massimo; Todesco, Ezio

    1998-01-01

    In hadron colliders, such as the Large Hadron Collider (LHC) to be built at CERN, the long-term stability of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets. The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by synchro-betatron coupling (via the residual uncorrected chromaticity), or by unavoidable power supply ripple. This harmful effect is investigated in a simple dynamical system model, the Henon map with modulated linear frequencies. Then, a realistic accelerator model describing the injection optics of the LHC lattice is analyzed. Orbital data obtained with long-term tracking simulations ($10^5$-$10^7$ turns) are post-processed to obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple mpirical formula, and it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore, the extrapolation of tracking data at $10^5$ t...

  2. Multivariable extrapolation of grand canonical free energy landscapes

    Science.gov (United States)

    Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.

    2017-12-01

    We derive an approach for extrapolating the free energy landscape of multicomponent systems in the grand canonical ensemble, obtained from flat-histogram Monte Carlo simulations, from one set of temperature and chemical potentials to another. This is accomplished by expanding the landscape in a Taylor series at each value of the order parameter which defines its macrostate phase space. The coefficients in each Taylor polynomial are known exactly from fluctuation formulas, which may be computed by measuring the appropriate moments of extensive variables that fluctuate in this ensemble. Here we derive the expressions necessary to define these coefficients up to arbitrary order. In principle, this enables a single flat-histogram simulation to provide complete thermodynamic information over a broad range of temperatures and chemical potentials. Using this, we also show how to combine a small number of simulations, each performed at different conditions, in a thermodynamically consistent fashion to accurately compute properties at arbitrary temperatures and chemical potentials. This method may significantly increase the computational efficiency of biased grand canonical Monte Carlo simulations, especially for multicomponent mixtures. Although approximate, this approach is amenable to high-throughput and data-intensive investigations where it is preferable to have a large quantity of reasonably accurate simulation data, rather than a smaller amount with a higher accuracy.

  3. The prospective buyer of consumer durables

    NARCIS (Netherlands)

    Jonge, Leendert de; Oppedijk van Veen, Walle Melis

    1982-01-01

    In this book, an empirical investigation is reported wich aims at the specification of models of individual households’ purchase behaviour for particular consumer durable goods, such as private passenger cars and television sets. In particular, the focus is on models wich can be used for predicting

  4. Durable Glass For Thousands Of Years

    International Nuclear Information System (INIS)

    Jantzen, C.

    2009-01-01

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al 3+ rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  5. Advantage from Funding Durable Centers Leasing

    Directory of Open Access Journals (Sweden)

    Alina Zając

    2009-09-01

    Full Text Available In present market conditions huge number of businessmen has problems from gain over from banks capital on purchase of durable centers not only, but also on develop - ment and operating activity Individual can use with different forms funding investment, it which is between different leasing.

  6. 40 CFR 610.33 - Durability tests.

    Science.gov (United States)

    2010-07-01

    ....33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY... problems, deterioration in spark plug life, increase in carburetor or combustion chamber deposits, or..., then a durability run may be made as described in subpart E, in which fuel economy and exhaust...

  7. DURABLE GLASS FOR THOUSANDS OF YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  8. Durability of wood-plastic composite lumber

    Science.gov (United States)

    Rebecca E. Ibach

    2010-01-01

    Wood-plastic composite (WPC) lumber has been marketed as a low-maintenance, high-durability product. Retail sales in the United States were slightly less than $1 billion in 2008. Applications include docking, railing, windows, doors, fencing, siding, moldings, landscape timbers, car interior parts, and furniture. The majority of these products are used outdoors and...

  9. DURABILITY OF FLEXIBLE PAVEMENTS: A CASE STUDY OF ...

    African Journals Online (AJOL)

    user

    years, ranking, predominant factors affecting pavement durability and the estimate of durability. In this regard .... subgrade soil into the base course and provide the drainage of ..... [3] Oguara T. M. “A management model for road infrastructure ...

  10. Well materials durability in case of carbon dioxide and hydrogen sulphide geological sequestration; Durabilite des materiaux de puits petroliers dans le cadre d'une sequestration geologique de dioxyde de carbone et d'hydrogene sulfure

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemet, N

    2006-01-15

    The geological sequestration of carbon dioxide (CO{sub 2}) and hydrogen sulphide (H{sub 2}S) is a promising solution for the long-term storage of these undesirable gases. It consists in injecting them via wells into deep geological reservoirs. The steel and cement employed in the well casing can be altered and provide pathways for leakage with subsequent human and environmental consequences. The materials ageing was investigated by laboratory experiments in geologically relevant P-T conditions. A new experimental and analysis procedure was designed for this purpose. A numerical approach was also done. The cement and steel were altered in various fluid phases at 500 bar-120 C and 500 bar-200 C: a brine, a brine saturated with H{sub 2}S-CO{sub 2}, a mixture of brine saturated with H{sub 2}S-CO{sub 2} and of supercritical H{sub 2}S-CO{sub 2} phase, a dry supercritical H{sub 2}S-CO{sub 2} phase without liquid water. In all cases, two distinct reactions are observed: the cement carbonation by the CO{sub 2} and the steel sulfidation by the H{sub 2}S. The carbonation and sulfidation are respectively maximal and minimal when they occur within the dry supercritical phase without liquid water. The textural and porosity properties of the cement are weakly affected by all the treatments at 120 C. The porosity even decreases in presence of H{sub 2}S-CO{sub 2}. But these properties are affected at 200 C when liquid water is present in the system. At this temperature, the initial properties are only preserved or improved by the treatments within the dry supercritical phase. The steel is corroded in all cases and thus is the vulnerable material of the wells. (author)

  11. Soy adhesives that can form durable bonds for plywood, laminated wood flooring, and particleboard

    Science.gov (United States)

    Charles R. Frihart; Michael J. Birkeland; Anthony J. Allen; James M. Wescott

    2010-01-01

    Synthetic adhesives, including urea-formaldehyde (UF) and phenol-formaldehyde (PF), have generally replaced biobased adhesives over the past 70 years because of their durability, low cost, and ease of use. However, in the past few years, concern about formaldehyde emissions, cost, and interest in biobased materials have renewed interest in soy adhesives. The use of soy...

  12. Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization.

    Science.gov (United States)

    Shen, Lijuan; Lei, Ganchang; Fang, Yuanxing; Cao, Yanning; Wang, Xinchen; Jiang, Lilong

    2018-03-06

    We report the first use of polymeric carbon nitride (CN) for the catalytic selective oxidation of H 2 S. The as-prepared CN with unique ultrathin "nanomeshes" structure exhibits excellent H 2 S conversion and high S selectivity. In particular, the CN nanomesh also displays better durability in the desulfurization reaction than traditional catalysts, such as carbon- and iron-based materials.

  13. Modeling of asphalt durability and self-healing with discrete particles method

    NARCIS (Netherlands)

    Magnanimo, Vanessa; ter Huerne, Henderikus L.; Luding, Stefan; Beuving, E.; Dewez, P.; Malkoc, G.; Southern, M.

    2012-01-01

    Asphalt is an important road paving material. Besides an acceptable price, durability, surface conditions (like roughening and evenness), age-, weather- and traffic-induced failures and degradation are relevant aspects. In the professional road-engineering branch empirical models are used to

  14. Asphalt durability and self-healing modelling with discrete particles approach

    NARCIS (Netherlands)

    Magnanimo, V.; ter Huerne, H.L.; Luding, S.; Scarpas, A.; Kringos, N.; Al-Qadi, I.; Loizos, A.

    2012-01-01

    Asphalt is an important road paving material, where besides an acceptable price, durability, surface conditions (like roughening and evenness), age-, weather- and traffic-induced failures and degradation are relevant aspects. In the professional road engineering branch empirical models are used to

  15. Influence of curing conditions on durability of alkali-resistant glass ...

    Indian Academy of Sciences (India)

    Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in ...

  16. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    Science.gov (United States)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  17. Composition models for the viscosity and chemical durability of West Valley related nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Saad, E.E.; Freeborn, W.P.; Macedo, P.B.; Pegg, I.L.; Sassoon, R.E.; Barkatt, A.; Finger, S.M.

    1988-01-01

    There are two important criteria that must be satisfied by a nuclear waste glass durability and processability. The chemical composition of the glass must be such that it does not dissolve or erode appreciably faster than the decay of the radioactive materials embedded in it. The second criterion, processability, means that the glass must melt with ease, must be easily pourable, and must not crystallize appreciably. This paper summarizes the development of simple models for predicting the durability and viscosity of nuclear waste glasses from their composition

  18. Estimation of metallic structure durability for a known law of stress variation

    Science.gov (United States)

    Mironov, V. I.; Lukashuk, O. A.; Ogorelkov, D. A.

    2017-12-01

    Overload of machines working in transient operational modes leads to such stresses in their bearing metallic structures that considerably exceed the endurance limit. The estimation of fatigue damages based on linear summation offers a more accurate prediction in terms of machine durability. The paper presents an alternative approach to the estimation of the factors of the cyclic degradation of a material. Free damped vibrations of the bridge girder of an overhead crane, which follow a known logarithmical decrement, are studied. It is shown that taking into account cyclic degradation substantially decreases the durability estimated for a product.

  19. A visual basic program to generate sediment grain-size statistics and to extrapolate particle distributions

    Science.gov (United States)

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2004-01-01

    Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft

  20. Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications

    International Nuclear Information System (INIS)

    Singh, R. Arvind; Siyuan, L.; Satyanarayana, N.; Kustandi, T.S.; Sinha, Sujeet K.

    2011-01-01

    At micro/nano-scale, friction force dominates at the interface between bodies moving in relative motion and severely affects their smooth operation. This effect limits the performance of microsystem devices such as micro-electro-mechanical systems (MEMS). In addition, friction force also leads to material removal or wear and thereby reduces the durability i.e. the useful operating life of the devices. In this work, we fabricated bio-inspired polymeric patterns for tribological applications. Inspired by the surface features on lotus leaves namely, the protuberances and wax, SU-8 polymeric films spin-coated on silicon wafers were topographically and chemically modified. For topographical modification, micro-scale patterns were fabricated using nanoimprint lithography and for chemical modification, the micro-patterns were coated with perfluoropolyether nanolubricant. Tribological investigation of the bio-inspired patterns revealed that the friction coefficients reduced significantly and the wear durability increased by several orders. In order to enhance the wear durability much further, the micro-patterns were exposed to argon/oxygen plasma and were subsequently coated with the perfluoropolyether nanolubricant. Bio-inspired patterns with enhanced wear durability, such as the ones investigated in the current work, have potential tribological applications in MEMS/Bio-MEMS actuator-based devices. Highlights: →Bio-inspired polymeric patterns for tribological applications in microsystems. →Novel surface modification for the patterns to enhance tribological properties. →Patterns show low friction properties and extremely high wear durability.

  1. The influence of humidity on strengths and durability of light guides fibers

    International Nuclear Information System (INIS)

    Karimov, S.N.; Kuksenko, V.S.; Sultonov, U.; Abdumanonov, A.; Shamsidinov, M.I.

    1993-01-01

    Humidity influence on durability and light water durability fibres is studied are studied in this article. Humidity energy under influence of process destruction decreases activity, durability and durability decreases is shown

  2. Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics.

    Science.gov (United States)

    Wambaugh, John F; Hughes, Michael F; Ring, Caroline L; MacMillan, Denise K; Ford, Jermaine; Fennell, Timothy R; Black, Sherry R; Snyder, Rodney W; Sipes, Nisha S; Wetmore, Barbara A; Westerhout, Joost; Setzer, R Woodrow; Pearce, Robert G; Simmons, Jane Ellen; Thomas, Russell S

    2018-05-01

    Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure, toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for 26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals, predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were predicted with reasonable accuracy. The plasma concentration predictions improved when experimental measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based on human health risks.

  3. Durability of conventional concretes containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Progressive Damage Modeling of Durable Bonded Joint Technology

    Science.gov (United States)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  5. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  6. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  7. The chemical durability of alkali aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.

    1983-09-01

    The aqueous durabilities of a series of glasses based on the sodium aluminosilicate system (Na 2 O-Al 2 O 3 -SiO 2 ) have been studied. The effects of molecular substitution of K 2 O or CaO for Na 2 O, and B 2 O 3 for Al 2 O 3 have been investigated. The temperature dependence of leaching in the Na 2 O-B 2 O 3 -Al 2 O 3 -SiO 2 system was studied with glasses containing 2 wt percent simulated UO 2 fuel recycle waste. The results confirm that aluminosilicate glasses are more durable than their borosilicate counterparts. The leaching results are explained in terms of glass structure and bonding, and a general leaching mechanism for aluminosilicate glasses is presented

  8. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  9. Fuel cycle design for ITER and its extrapolation to DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto 611-0011 (Japan)], E-mail: s-konishi@iae.kyoto-u.ac.jp; Glugla, Manfred [Forschungszentrum Karlsruhe, P.O. Box 3640, D 76021 Karlsruhe (Germany); Hayashi, Takumi [Apan Atomic Energy AgencyTokai, Ibaraki 319-0015 Japan (Japan)

    2008-12-15

    future energy source. Some of the subjects cannot be expected to be within the extrapolation of ITER technology and require long term efforts paralleling ITER.

  10. Fuel cycle design for ITER and its extrapolation to DEMO

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Glugla, Manfred; Hayashi, Takumi

    2008-01-01

    future energy source. Some of the subjects cannot be expected to be within the extrapolation of ITER technology and require long term efforts paralleling ITER

  11. Mankiw's Puzzle on Consumer Durables: A Misspecification

    OpenAIRE

    Tam Bang Vu

    2005-01-01

    Mankiw (1982) shows that consumer durables expenditures should follow a linear ARMA(1,1) process, but the data analyzed supports an AR(1) process instead; thus, a puzzle. In this paper, we employ a more general utility function than Mankiw's quadratic one. Further, the disturbance and depreciation rate are respecified, respectively, as multiplicative and stochastic. The analytical consequence is a nonlinear ARMA(infinity,1) process, which implies that the linear ARMA(1,1) is a misspecificatio...

  12. OPTIONS D'INTENSIFICATION DURABLE DES CULTURES ...

    African Journals Online (AJOL)

    (Received 14 August, 2001 ; accepted 10 May, 2002) RÉSUMÉ Pour intensifier de manière durable les cultures vivrières dans les zones de terres de barre dégradées au sud du Togo, plusieurs options ont été évaluées avec les paysans. Grâce à des entretiens collectifs de type participatif, sept différents groupes ...

  13. Amenagements sportifs et developpement durable : Des enjeux ...

    African Journals Online (AJOL)

    ... contredite » éprouvée par (Jeu, 1977), comme l'apanage d'une double hybridation culturelle des pays en développement. Derrière l'apparence de la dislocation des héritages, doit émerger une définition nouvelle sur les rapports que les sports devraient entretenir avec l'environnement pour un développement durable.

  14. Oral-to-inhalation route extrapolation in occupational health risk assessment: A critical assessment

    NARCIS (Netherlands)

    Rennen, M.A.J.; Bouwman, T.; Wilschut, A.; Bessems, J.G.M.; Heer, C.de

    2004-01-01

    Due to a lack of route-specific toxicity data, the health risks resulting from occupational exposure are frequently assessed by route-to-route (RtR) extrapolation based on oral toxicity data. Insight into the conditions for and the uncertainties connected with the application of RtR extrapolation

  15. Hydrologic nonstationarity and extrapolating models to predict the future: overview of session and proceeding

    Directory of Open Access Journals (Sweden)

    F. H. S. Chiew

    2015-06-01

    Full Text Available This paper provides an overview of this IAHS symposium and PIAHS proceeding on "hydrologic nonstationarity and extrapolating models to predict the future". The paper provides a brief review of research on this topic, presents approaches used to account for nonstationarity when extrapolating models to predict the future, and summarises the papers in this session and proceeding.

  16. On the existence of the optimal order for wavefunction extrapolation in Born-Oppenheimer molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun; Wang, Han, E-mail: wang-han@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing (China); CAEP Software Center for High Performance Numerical Simulation, Beijing (China); Gao, Xingyu; Song, Haifeng [Institute of Applied Physics and Computational Mathematics, Beijing (China); CAEP Software Center for High Performance Numerical Simulation, Beijing (China); Laboratory of Computational Physics, Beijing (China)

    2016-06-28

    Wavefunction extrapolation greatly reduces the number of self-consistent field (SCF) iterations and thus the overall computational cost of Born-Oppenheimer molecular dynamics (BOMD) that is based on the Kohn–Sham density functional theory. Going against the intuition that the higher order of extrapolation possesses a better accuracy, we demonstrate, from both theoretical and numerical perspectives, that the extrapolation accuracy firstly increases and then decreases with respect to the order, and an optimal extrapolation order in terms of minimal number of SCF iterations always exists. We also prove that the optimal order tends to be larger when using larger MD time steps or more strict SCF convergence criteria. By example BOMD simulations of a solid copper system, we show that the optimal extrapolation order covers a broad range when varying the MD time step or the SCF convergence criterion. Therefore, we suggest the necessity for BOMD simulation packages to open the user interface and to provide more choices on the extrapolation order. Another factor that may influence the extrapolation accuracy is the alignment scheme that eliminates the discontinuity in the wavefunctions with respect to the atomic or cell variables. We prove the equivalence between the two existing schemes, thus the implementation of either of them does not lead to essential difference in the extrapolation accuracy.

  17. Extrapolation bias and the predictability of stock returns by price-scaled variables

    NARCIS (Netherlands)

    Cassella, Stefano; Gulen, H.

    Using survey data on expectations of future stock returns, we recursively estimate the degree of extrapolative weighting in investors' beliefs (DOX). In an extrapolation framework, DOX determines the relative weight investors place on recent-versus-distant past returns. DOX varies considerably over

  18. Creep Behavior and Durability of Cracked CMC

    Science.gov (United States)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  19. Effects of Irradiation on Albite's Chemical Durability.

    Science.gov (United States)

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-19

    Albite (NaAlSi 3 O 8 ), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar + -implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  20. Effect Of Climatic Conditions On Durability

    Directory of Open Access Journals (Sweden)

    Ibrahem M. Al Kiki

    2013-04-01

    Full Text Available Durability is one of the most important subjects in the soil stabilization. Since there is no specifications concerned the durability of lime stabilized soils, several factors were selected to show their effects on the durability, namely: wetting, drying, freezing, thawing and slaking.The effect of each one of the above factors as well as the combined effect of two or more factors, were studied on the volume change and soil strength and weight loss of soil samples stabilized with optimum lime content except the slaking test at which soil samples stabilized with different lime content.Tests results showed that the higher the lime content the lower the slaking effect, also its found the soil strength decreased when the period of immersion or freezing increased. The strength of the lime stabilized soils decreased when subjected to the cycles of wetting and drying or to the cycles freezing and thawing. However, the  combined effect of wetting, drying, freezing and thawing has a pronounced effect on reduction of the lime stabilized clayey soil. The worst condition recorded when lime stabilized soil undergo to freezing then drying then wetting which should be avoided in the field

  1. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power utilizing system and peripheral technologies (Research and development of novel type solar cell module integratable with building materials - Highly durable roof module); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (shinkenzai ittaigata taiyo denchi module no kenkyu kaihatsu - kotaikyusei yane module)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A thin-film solar array, a large roof panel, and an interconnecting power conditioner are integrated into one and single structural member for the development of a residential photovoltaic power system in which a unit AC (alternating current) output is collected from each panel. In fiscal 1999, in the study of highly durable materials for solar cell modules and of their structure, a thin film compound solar cell module was enlarged to 82cm times 71cm, evaluated for performance, and installed on the third test house. In the study of collecting AC power from the solar cell module, a compact power conditioner for a roof panel which had been in test operation on the roof of the laboratory since 1998 was checked for practical performance, improved, and evaluated for system generation efficiency. In the study of a highly durable roof module structure, problems pertaining to heat radiation from the rear side steel sheet, the burning of the junction box, etc., were solved, and the module passed a verification test under the Building Standard Law. In the validation of the roof module for which power generation performance and meteorological conditions had already been continuously measured for 19 months, it was found that the roof module suffered no troubles such as water leak or deformation. (NEDO)

  2. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

    Science.gov (United States)

    Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.

    2016-02-01

    It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

  3. Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Tamayo Garcia, J. A.

    2015-01-01

    The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90 Sr/ 90 Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)

  4. Experimental study on durability improvement of fly ash concrete with durability improving admixture.

    Science.gov (United States)

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.

  5. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Science.gov (United States)

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  7. THE EFFECT OF HEAT TREATMENT ON THE DURABILITY OF BAMBOO Gigantochloa scortechinii

    Directory of Open Access Journals (Sweden)

    Norashikin Kamarudin

    2012-07-01

    Full Text Available Bamboo signifies as one of the fastest growing plants and it can be used for various products. In tropical countries such as Indonesia and Malaysia, bamboo is abundantly available at reasonable prices, therefore it is used for numerous purposes. However, as lignocellulosic material, bamboo is susceptible to fungal and insect attacks. Heat treatment is an option to improve bamboo's durability. The objective of this study was to improve the durability of bamboo using hot oil palm treatment. A Malaysian grown bamboo species, Buluh Semantan (Gigantochloa scortechinii, as a study material was soaked in hot oil palm for various temperatures and soaking time, before being inoculated with the basidiomycete Coriolus versicolor in an agar block test. The results demonstrated that the longer the heating time, the more improved the durability of bamboo. Altering the temperature in the palm oil treatment produced varying results. Bamboo blocks that heated in hot oil palm at 100°C for 60 minutes shows considerably less weight eduction that indicates less fungal attack. Overall, the higher the temperature, the better the durability of bamboo. Please indicates what the meaning of heat treatment in this experiment, it is not clear.

  8. Experimental Investigation on the Durability of Glass Fiber-Reinforced Polymer Composites Containing Nanocomposite

    Directory of Open Access Journals (Sweden)

    Weiwen Li

    2013-01-01

    Full Text Available Nanoclay layers incorporated into polymer/clay nanocomposites can inhibit the harmful penetration of water and chemicals into the material, and thus the durability of glass fiber-reinforced polymer (GFRP composites should be enhanced by using polymer/clay nanocomposite as the matrix material. In this study, 1.5 wt% vinyl ester (VE/organoclay and 2 wt% epoxy (EP/organoclay nanocomposites were prepared by an in situ polymerization method. The dispersion states of clay in the nanocomposites were studied by performing XRD analysis. GFRP composites were then fabricated with the prepared 1.5 wt% VE/clay and 2.0 wt% EP/clay nanocomposites to investigate the effects of a nanocomposite matrix on the durability of GFRP composites. The durability of the two kinds of GFRP composites was characterized by monitoring tensile properties following degradation of GFRP specimens aged in water and alkaline solution at 60°C, and SEM was employed to study fracture behaviors of aged GFRP composites under tension. The results show that tensile properties of the two types of GFRP composites with and without clay degrade significantly with aging time. However, the GFRP composites with nanoclay show a lower degradation rate compared with those without nanoclay, supporting the aforementioned hypothesis. And the modification of EP/GFRP enhanced the durability more effectively.

  9. Am/Cm target glass durability dependence on pH (U). Revision 1

    International Nuclear Information System (INIS)

    Daniel, W.E.; Best, D.R.

    1996-03-01

    At the Westinghouse Savannah River Company near Aiken, South Carolina, a process is being developed to safely vitrify all of the highly radioactive americium/curium (Am/Cm) material and a portion of the other fissile actinide materials stored on site. One goal of this campaign is to provide Oak Ridge National Laboratory with the excess Am/Cm so it can be recycled as opposed to simply disposing of it as waste. The vitrification will allow safe transportation of the Am/Cm to Oak Ridge as well as safe storage once it arrives. The Am/Cm Target glass being used in this project has been specifically designed to be extremely durable in aqueous environments while it can be selectively attacked by nitric acid to recover the valuable Am and Cm isotopes. Similar glass compositions could be used for storage and retrieval of other actinides on the WSRC site. Previous reports have presented the time, temperature, and compositional dependence of the Am/Cm glass durability. This paper will show results from a pH study on the Am/Cm Target glass durability. The data indicate that the Am/Cm Target Glass durability decreases as pH decreases from a neutral reading. These findings support the extraction of the valuable isotopes from the glass using nitric acid

  10. Influence of ceria on the thermally durability of Pt/Rh automotive catalyst

    International Nuclear Information System (INIS)

    Muraki, H.; Zhang, G.

    1998-01-01

    Full text: The use of cerium oxide as an oxygen storage component in automotive three-way catalysts has been well established. More recently the requirement of the three-way catalysts against the increase of the severity in emission standards has focused attention on the development of more active, durable catalysts. The thermally durability of Pt/Rh catalyst can be achieved by the utilization of thermally stable ceria as well as optimization of washcoat composition and structure in order to control the extent of interaction between PGM and ceria. In the present paper, we describe the influence of newly developed washcoat components and PGM interaction with ceria on catalytic performance. First, to clear that the interaction between PGM and ceria contributes to catalytic performance, several kinds of catalysts which have the varied interactions between PGM and ceria were prepared using engineered washcoat techniques and evaluated in the model gas reactor. It was obvious that the difference in performance among them after aging derived from a diversity of interactions between Pt, Rh, and ceria. Second, for the purpose of determining the thermally durability of the developed Pt/Rh catalyst, the catalysts including the current catalyst were aged under three different temperatures and evaluated on engine dynamometer. Result of engine dynamometer evaluation revealed that significant improvement in the thermal durability can be achieved by optimizing the PGM-ceria interaction. In conclusion, we recognize that a thermal durability of a three-way catalyst can be improved by the stabilization of proper PGM-ceria interaction after aging as well as the utilization of thermally durable ceria material

  11. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  12. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  13. Durability of Mortar Made with Fine Glass Powdered Particles

    Directory of Open Access Journals (Sweden)

    Rosemary Bom Conselho Sales

    2017-01-01

    Full Text Available Different studies investigate the use of waste glass in Portland cement compounds, either as aggregates or as supplementary cementitious materials. Nevertheless, it seems that there is no consensus about the influence of particle color and size on the behavior of the compounds. This study addresses the influence of cement replacement by 10 and 20% of the colorless and amber soda-lime glass particles sized around 9.5 μm on the performance of Portland cement mortars. Results revealed that the partial replacement of cement could contribute to the production of durable mortars in relation to the inhibition of the alkali-aggregate reaction. This effect was more marked with 20% replacement using amber glass. Samples containing glass microparticles were more resistant to corrosion, in particular those made of colorless glass. The use of colorless and amber glass microparticles promoted a reduction in wear resistance.

  14. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    Dexter, H.B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  15. Durability of commercial aircraft and helicopter composite structures

    Science.gov (United States)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  16. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.

    Science.gov (United States)

    Wang, Jianyun; Ersan, Yusuf Cagatay; Boon, Nico; De Belie, Nele

    2016-04-01

    The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.

  17. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boudreaux, Philip R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions. In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.

  18. Application of Chemistry in Materials Research at NASA GRC

    Science.gov (United States)

    Kavandi, Janet L.

    2016-01-01

    Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.

  19. A high precision extrapolation method in multiphase-field model for simulating dendrite growth

    Science.gov (United States)

    Yang, Cong; Xu, Qingyan; Liu, Baicheng

    2018-05-01

    The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.

  20. Design and construction of an interface system for the extrapolation chamber from the beta secondary standard

    International Nuclear Information System (INIS)

    Jimenez C, L.F.

    1995-01-01

    The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: a) Measures the ionization current or charge stored in the extrapolation chamber. b) Adjusts the distance between the plates of the extrapolation chamber automatically. c) Adjust the bias voltage of the extrapolation chamber automatically. d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 μm. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3 % with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author)

  1. Empirical models of the Solar Wind : Extrapolations from the Helios & Ulysses observations back to the corona

    Science.gov (United States)

    Maksimovic, M.; Zaslavsky, A.

    2017-12-01

    We will present extrapolation of the HELIOS & Ulysses proton density, temperature & bulk velocities back to the corona. Using simple mass flux conservations we show a very good agreement between these extrapolations and the current state knowledge of these parameters in the corona, based on SOHO mesurements. These simple extrapolations could potentially be very useful for the science planning of both the Parker Solar Probe and Solar Orbiter missions. Finally will also present some modelling considerations, based on simple energy balance equations which arise from these empirical observationnal models.

  2. Effect of extrapolation length on the phase transformation of epitaxial ferroelectric thin films

    International Nuclear Information System (INIS)

    Hu, Z.S.; Tang, M.H.; Wang, J.B.; Zheng, X.J.; Zhou, Y.C.

    2008-01-01

    Effects of extrapolation length on the phase transformation of epitaxial ferroelectric thin films on dissimilar cubic substrates have been studied on the basis of the mean-field Landau-Ginzburg-Devonshire (LGD) thermodynamic theory by taking an uneven distribution of the interior stress with thickness into account. It was found that the polarization of epitaxial ferroelectric thin films is strongly dependent on the extrapolation length of films. The physical origin of the extrapolation length during the phase transformation from paraelectric to ferroelectric was revealed in the case of ferroelectric thin films

  3. Aitken extrapolation and epsilon algorithm for an accelerated solution of weakly singular nonlinear Volterra integral equations

    International Nuclear Information System (INIS)

    Mesgarani, H; Parmour, P; Aghazadeh, N

    2010-01-01

    In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.

  4. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  5. Durable fear memories require PSD-95

    Science.gov (United States)

    Fitzgerald, Paul J.; Pinard, Courtney R.; Camp, Marguerite C.; Feyder, Michael; Sah, Anupam; Bergstrom, Hadley; Graybeal, Carolyn; Liu, Yan; Schlüter, Oliver; Grant, Seth G.N.; Singewald, Nicolas; Xu, Weifeng; Holmes, Andrew

    2014-01-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. While overly persistent fear memories underlie anxiety disorders such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Post-synaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Employing a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95GK), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95GK mice to retrieve remote cued fear memories was associated with hypoactivation of the infralimbic cortex (IL) (not anterior cingulate (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated PSD-95 virus-mediated knockdown in the IL, not ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories. PMID:25510511

  6. Durability Testing of Idlers for Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Andrzej Pytlik

    2013-01-01

    On the basis of the durability tests carried out on both of these idlers it can be concluded that the applied research methodology describes the test conditions of idlers, in a manner as close as possible to their actual operational conditions, which were subject to a variety of factors for a total time of 116 hours, they included: dust, water, loads and variable rotational speed. This methodology allowed us to determine, even at the stage of laboratory tests, the suitability of a particular idler to certain operational conditions.

  7. Advanced Face Gear Surface Durability Evaluations

    Science.gov (United States)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  8. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  9. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  10. Assessing the representativeness of durability tests for wood pellets by DEM Simulation - Comparing conditions in a durability test with transfer chutes

    Science.gov (United States)

    Mahajan, Aditya; Dafnomilis, Ioannis; Hancock, Victoria; Lodewijks, Gabriel; Schott, Dingena

    2017-06-01

    Dust generation when handling wood pellets is related to the durability of the product, in other words the wear rate of particles subject to forces. During transport, storage and handling wood pellets undergo different forces when interacting with different pieces of equipment. This paper assesses the representativeness of the tumbling can test in relation to transfer chutes, by comparing forces acting on wood pellets in durability tests and in transfer chutes using DEM. The study also incorporates effects such as shape and size variations. The results showed that the tumbling can test underestimates compressive and tangential forces. Since the tested material is subject to milder conditions than in reality, it can be concluded that this test is not representative for the conditions in the supply chain of wood pellets.

  11. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  12. Durability of capital goods: taxes and market structure

    Energy Technology Data Exchange (ETDEWEB)

    Raviv, A [Carnegie-Mellon Univ., Pittsburgh; Zemel, E

    1977-04-01

    This paper examines the durability of capital goods produced under different market structures when tax considerations are included. Since investment tax credit and depreciation allowances are realized by the owner of the durable good, the durability of products produced by an industry which sells its output differs from that of an industry which rents. For each of these two commercial forms, both monopolistic and competitive market structure are considered. Potential gains from different forms of regulation are discussed.

  13. The household decision making process in replacement of durable goods

    OpenAIRE

    Marell Molander, Agneta

    1998-01-01

    As durables are essential in many households, the level of ownership is high and, due to the high degree of penetration, a vast proportion of the current sales are replacement purchases. Even though a lot of research attention has been paid to decision making and decision processes many models are oriented towards non-durable goods and although a majority of purchases of many durable goods are replacements, few studies seem to make a distinction between a replacement purchase decision and a d...

  14. Intrahousehold Bargaining and the Demand for Consumer Durables in Brazil

    OpenAIRE

    Polato e Fava, Ana Claudia; Arends-Kuenning, Mary P.

    2013-01-01

    In Brazil, wives do most of the household work. About sixty percent of them also work outside the household, working a total of about 10 hours more per week than men. Because of this unequal distribution of household work, husbands and wives might have different priorities regarding the purchase of durable goods. Although both husbands and wives enjoy entertainment durable goods, wives might have a relative preference for household-production durable goods such as washing machines over entert...

  15. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  16. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  17. Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

    1995-07-01

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

  18. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.

  19. Design for low dose extrapolation of carcinogenicity data. Technical report No. 24

    International Nuclear Information System (INIS)

    Wong, S.C.

    1979-06-01

    Parameters for modelling dose-response relationships in carcinogenesis models were found to be very complicated, especially for distinguishing low dose effects. The author concluded that extrapolation always bears the danger of providing misleading information

  20. Calibration of the 90Sr+90Y ophthalmic and dermatological applicators with an extrapolation ionization minichamber

    International Nuclear Information System (INIS)

    Antonio, Patrícia L.; Oliveira, Mércia L.; Caldas, Linda V.E.

    2014-01-01

    90 Sr+ 90 Y clinical applicators are used for brachytherapy in Brazilian clinics even though they are not manufactured anymore. Such sources must be calibrated periodically, and one of the calibration methods in use is ionometry with extrapolation ionization chambers. 90 Sr+ 90 Y clinical applicators were calibrated using an extrapolation minichamber developed at the Calibration Laboratory at IPEN. The obtained results agree satisfactorily with the data provided in calibration certificates of the sources. - Highlights: • 90 Sr+ 90 Y clinical applicators were calibrated using a mini-extrapolation chamber. • An extrapolation curve was obtained for each applicator during its calibration. • The results were compared with those provided by the calibration certificates. • All results of the dermatological applicators presented lower differences than 5%

  1. The extrapolation of creep rupture data by PD6605 - An independent case study

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65 Fisher Avenue, Rugby, Warks CV22 5HW (United Kingdom)

    2011-04-15

    The worked example presented in BSI document PD6605-1:1998, to illustrate the selection, validation and extrapolation of a creep rupture model using statistical analysis, was independently examined. Alternative rupture models were formulated and analysed by the same statistical methods, and were shown to represent the test data more accurately than the original model. Median rupture lives extrapolated from the original and alternative models were found to diverge widely under some conditions of practical interest. The tests prescribed in PD6605 and employed to validate the original model were applied to the better of the alternative models. But the tests were unable to discriminate between the two, demonstrating that these tests fail to ensure reliability in extrapolation. The difficulties of determining when a model is sufficiently reliable for use in extrapolation are discussed and some proposals are made.

  2. Response Load Extrapolation for Wind Turbines during Operation Based on Average Conditional Exceedance Rates

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan

    2011-01-01

    to cases where the Gumbel distribution is the appropriate asymptotic extreme value distribution. However, two extra parameters are introduced by which a more general and flexible class of extreme value distributions is obtained with the Gumbel distribution as a subclass. The general method is implemented...... within a hierarchical model where the variables that influence the loading are divided into ergodic variables and time-invariant non-ergodic variables. The presented method for statistical response load extrapolation was compared with the existing methods based on peak extrapolation for the blade out......The paper explores a recently developed method for statistical response load (load effect) extrapolation for application to extreme response of wind turbines during operation. The extrapolation method is based on average conditional exceedance rates and is in the present implementation restricted...

  3. Melting of “non-magic” argon clusters and extrapolation to the bulk limit

    International Nuclear Information System (INIS)

    Senn, Florian; Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-01

    The melting of argon clusters Ar N is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, “Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations,” Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes

  4. NLT and extrapolated DLT:3-D cinematography alternatives for enlarging the volume of calibration.

    Science.gov (United States)

    Hinrichs, R N; McLean, S P

    1995-10-01

    This study investigated the accuracy of the direct linear transformation (DLT) and non-linear transformation (NLT) methods of 3-D cinematography/videography. A comparison of standard DLT, extrapolated DLT, and NLT calibrations showed the standard (non-extrapolated) DLT to be the most accurate, especially when a large number of control points (40-60) were used. The NLT was more accurate than the extrapolated DLT when the level of extrapolation exceeded 100%. The results indicated that when possible one should use the DLT with a control object, sufficiently large as to encompass the entire activity being studied. However, in situations where the activity volume exceeds the size of one's DLT control object, the NLT method should be considered.

  5. Evaluation of models of waste glass durability

    International Nuclear Information System (INIS)

    Ellison, A.

    1995-01-01

    The main variable under the control of the waste glass producer is the composition of the glass; thus a need exists to establish functional relationships between the composition of a waste glass and measures of processability, product consistency, and durability. Many years of research show that the structure and properties of a glass depend on its composition, so it seems reasonable to assume that there also is relationship between the composition of a waste glass and its resistance to attack by an aqueous solution. Several models have been developed to describe this dependence, and an evaluation their predictive capabilities is the subject of this paper. The objective is to determine whether any of these models describe the ''correct'' functional relationship between composition and corrosion rate. A more thorough treatment of the relationships between glass composition and durability has been presented elsewhere, and the reader is encouraged to consult it for a more detailed discussion. The models examined in this study are the free energy of hydration model, developed at the Savannah River Laboratory, the structural bond strength model, developed at the Vitreous State Laboratory at the Catholic University of America, and the Composition Variation Study, developed at Pacific Northwest Laboratory

  6. Durability of composites in a marine environment

    CERN Document Server

    Rajapakse, Yapa

    2014-01-01

    Composites are widely used in marine applications. There is considerable experience of glass reinforced resins in boats and ships but these are usually not highly loaded. However, for new areas such as offshore and ocean energy there is a need for highly loaded structures to survive harsh conditions for 20 years or more. High performance composites are therefore being proposed. This book provides an overview of the state of the art in predicting the long term durability of composite marine structures. The following points are covered: •       Modelling water diffusion •       Damage induced by water •       Accelerated testing •       Including durability in design •       In-service experience. This is essential reading for all those involved with composites in the marine industry, from initial design and calculation through to manufacture and service exploitation. It also provides information unavailable elsewhere on the mechanisms involved in degradation and how to t...

  7. Durable and Robust Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Knibbe, Ruth; Hauch, Anne

    project had as one of its’ overarching goals to improve durability and robustness of the Danish solid oxide fuel cells. The project focus was on cells and cell components suitable for SOFC operation in the temperature range 600 – 750 °C. The cells developed and/or studied in this project are intended......The solid oxide fuel cell (SOFC) is an attractive technology for the generation of electricity with high efficiency and low emissions. Risø DTU (now DTU Energy Conversion) works closely together with Topsoe Fuel Cell A/S in their effort to bring competitive SOFC systems to the market. This 2-year...... for use within the CHP (Combined Heat and Power) market segment with stationary power plants in the range 1 – 250 kWe in mind. Lowered operation temperature is considered a good way to improve the stack durability since corrosion of the interconnect plates in a stack is lifetime limiting at T > 750 °C...

  8. The Extrapolation-Accelerated Multilevel Aggregation Method in PageRank Computation

    Directory of Open Access Journals (Sweden)

    Bing-Yuan Pu

    2013-01-01

    Full Text Available An accelerated multilevel aggregation method is presented for calculating the stationary probability vector of an irreducible stochastic matrix in PageRank computation, where the vector extrapolation method is its accelerator. We show how to periodically combine the extrapolation method together with the multilevel aggregation method on the finest level for speeding up the PageRank computation. Detailed numerical results are given to illustrate the behavior of this method, and comparisons with the typical methods are also made.

  9. Extrapolation of π-meson form factor, zeros in the analyticity domain

    International Nuclear Information System (INIS)

    Morozov, P.T.

    1978-01-01

    The problem of a stable extrapolation from the cut to an arbitrary interior of the analyticity domain for the pion form factor is formulated and solved. As it is shown a stable solution can be derived if module representations with the Karleman weight function are used as the analyticity conditions. The case when the form factor has zeros is discussed. If there are zeros in the complex plane they must be taken into account when determining the extrapolation function

  10. Loop integration results using numerical extrapolation for a non-scalar integral

    International Nuclear Information System (INIS)

    Doncker, E. de; Shimizu, Y.; Fujimoto, J.; Yuasa, F.; Kaugars, K.; Cucos, L.; Van Voorst, J.

    2004-01-01

    Loop integration results have been obtained using numerical integration and extrapolation. An extrapolation to the limit is performed with respect to a parameter in the integrand which tends to zero. Results are given for a non-scalar four-point diagram. Extensions to accommodate loop integration by existing integration packages are also discussed. These include: using previously generated partitions of the domain and roundoff error guards

  11. Extrapolation method in the Monte Carlo Shell Model and its applications

    International Nuclear Information System (INIS)

    Shimizu, Noritaka; Abe, Takashi; Utsuno, Yutaka; Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio

    2011-01-01

    We demonstrate how the energy-variance extrapolation method works using the sequence of the approximated wave functions obtained by the Monte Carlo Shell Model (MCSM), taking 56 Ni with pf-shell as an example. The extrapolation method is shown to work well even in the case that the MCSM shows slow convergence, such as 72 Ge with f5pg9-shell. The structure of 72 Se is also studied including the discussion of the shape-coexistence phenomenon.

  12. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue. Separate abstracts have been indexed for articles from this report.

  13. Study on determination of durability analysis process and fatigue damage parameter for rubber component

    International Nuclear Information System (INIS)

    Moon, Seong In; Cho, Il Je; Woo, Chang Su; Kim, Wan Doo

    2011-01-01

    Rubber components, which have been widely used in the automotive industry as anti-vibration components for many years, are subjected to fluctuating loads, often failing due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop a durability analysis process for vulcanized rubber components, that can predict fatigue life at the initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. Also, to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and normal and shear strain was proposed as the fatigue damage parameter for rubber components. Fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed

  14. Space environment durability of beta cloth in LDEF thermal blankets

    Science.gov (United States)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  15. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Raman P. Singh

    2010-01-01

    Full Text Available This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  16. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    International Nuclear Information System (INIS)

    Singh, R.P.; Zunjarrao, S.C.; Pandey, G.; Khait, M.; Korach, C.S.

    2010-01-01

    This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  17. In situ LTE exposure of the general public: Characterization and extrapolation.

    Science.gov (United States)

    Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc

    2012-09-01

    In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields. Copyright © 2012 Wiley Periodicals, Inc.

  18. Study of energy dependence of a extrapolation chamber in low energy X-rays beams

    International Nuclear Information System (INIS)

    Bastos, Fernanda M.; Silva, Teogenes A. da

    2014-01-01

    This work was with the main objective to study the energy dependence of extrapolation chamber in low energy X-rays to determine the value of the uncertainty associated with the variation of the incident radiation energy in the measures in which it is used. For studying the dependence of energy, were conducted comparative ionization current measurements between the extrapolation chamber and two ionization chambers: a chamber mammography, RC6M model, Radcal with energy dependence less than 5% and a 2575 model radioprotection chamber NE Technology; both chambers have very thin windows, allowing its application in low power beams. Measurements were made at four different depths of 1.0 to 4.0 mm extrapolation chamber, 1.0 mm interval, for each reference radiation. The study showed that there is a variable energy dependence on the volume of the extrapolation chamber. In other analysis, it is concluded that the energy dependence of extrapolation chamber becomes smaller when using the slope of the ionization current versus depth for the different radiation reference; this shows that the extrapolation technique, used for the absorbed dose calculation, reduces the uncertainty associated with the influence of the response variation with energy radiation

  19. Obtaining of coffee varieties with durable resistance to illnesses, using the genetic diversity as improvement strategy

    International Nuclear Information System (INIS)

    Moreno Ruiz, German

    2004-01-01

    With the purpose of producing improved coffee varieties with resistance to the leaf rust (Hemileia vastatrix), the national federation of coffee growers of Colombia initiated in 1970 a research program, whose first results achieved in 1982 were the abstention of the Colombia coffee variety. The use of genetic variability as a strategy in plant breeding for a durable resistance is discussed. In addition, the breeding outline is described and the main features of the developed materials are presented

  20. Geochemical and petrographic studies and the relationships to durability and leach resistance of vitrified products from the in situ vitrification process

    International Nuclear Information System (INIS)

    Timmons, D.M.; Thompson, L.E.

    1996-01-01

    Soil and sludge contaminated with hazardous and radioactive materials from sites in the United States and Australia were vitrified using in situ vitrification. Some of the resulting products were subjected to detailed geochemical, leach and durability testing using a variety of analytical techniques. The leach resistance and durability performance was compared to that of vitrified high level waste with borosilicate composition. Particular attention was given to crystallization behavior, the effects of crystallization on residual melt chemistry and how crystallization influences the behavior of contaminant ions. The results of this work show that the vitrified material studied has superior chemical durability and leach resistance relative to typical borosilicate waste glasses. Crystallization behavior was variable depending upon melt chemistry and cooling history. Crystallization was not observed to adversely affect chemical durability or leach resistance

  1. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering.

    Science.gov (United States)

    Lebental, B; Chainais, P; Chenevier, P; Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  2. Influence Of Density On The Durabilities Of Three Ghanaian Timbers ...

    African Journals Online (AJOL)

    Review of factors influencing wood durability shows although density varies depending on trunk position, its role appears controversial for many timber species. Thus, for the first time, the influence of density on the durability of three Ghanaian timbers (Nauclea diderrichii (de Wild.) Merr., Nesogordonia papaverifera (A. Chev ...

  3. Adhesives for Achieving Durable Bonds with Acetylated Wood

    Science.gov (United States)

    Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach

    2017-01-01

    Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...

  4. Effect of Unprofessional Supervision on Durability of Buildings.

    Science.gov (United States)

    Yahaghi, Javad

    2018-02-01

    The durability of buildings which depends on the nature of the supervisory system used in their construction is an important feature of the construction industry. This article tries to draw the readers' attention to the effect of untrained and unprofessional building supervisors and their unethical performance on the durability of buildings.

  5. Durable solid oxide electrolysis cells and stacks

    Energy Technology Data Exchange (ETDEWEB)

    Ming Chen

    2010-08-15

    The purpose of this project was to make a substantial contribution to development of a cost competitive electrolysis technology based on solid oxide cells. The strategy was to address what had been identified as the key issues in previous research projects. Accordingly five lines of work were carried out in the here reported project: 1) Cell and stack element testing and post test characterization to identify major degradation mechanisms under electrolysis operation. 2) Development of interconnects and coatings to allow stable electrolysis operation at approx850 deg. C or above. 3) Development of seals with reduced Si emission. 4) Development of durable SOEC cathodes. 5) Modeling. Good progress has been made on several of the planned activities. The outcome and most important achievements of the current project are listed for the five lines of the work. (LN)

  6. Durability of Silicate Glasses: An Historical Approach

    International Nuclear Information System (INIS)

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E. Jr.

    2007-01-01

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context

  7. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  8. Durability of Silicate Glasses: An Historical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Farges, Francois; /Museum Natl. Hist. Natur. /Stanford U., Geo. Environ. Sci.; Etcheverry, Marie-Pierre; /Marne la Vallee U.; Haddi, Amine; /Marne la Valle U.; Trocellier,; /Saclay; Curti, Enzo; /PSI, Villigen; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  9. Durable fiber reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Corinaldesi, V.; Moriconi, G.

    2004-01-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture

  10. Sustainability and durability analysis of reinforced concrete structures

    Science.gov (United States)

    Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.

    2017-09-01

    The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.

  11. Extrapolation of Nitrogen Fertiliser Recommendation Zones for Maize in Kisii District Using Geographical Information Systems

    International Nuclear Information System (INIS)

    Okoth, P.F.; Wamae, D.K.

    1999-01-01

    A GIS database was established for fertiliser recommendation domains in Kisii District by using FURP fertiliser trial results, KSS soils data and MDBP climatic data. These are manipulated in ESRI's (Personal Computer Environmental Systems Research Institute) ARCINFO and ARCVIEW softwares. The extrapolations were only done for the long rains season (March- August) with three to four years data. GIS technology was used to cluster fertiliser recommendation domains as a geographical area expressed in terms of variation over space and not limited to the site of experiment where a certain agronomic or economic fertiliser recommendation was made. The extrapolation over space was found to be more representative for any recommendation, the result being digital maps describing each area in the geographical space. From the results of the extrapolations, approximately 38,255 ha of the district require zero Nitrogen (N) fertilisation while 94,330 ha requires 75 kg ha -1 Nitrogen fertilisation during the (March-August) long rains. The extrapolation was made difficult since no direct relationships could be established to occur between the available-N, % Carbon (C) or any of the other soil properties with the obtained yields. Decision rules were however developed based on % C which was the soil variable with values closest to the obtained yields. 3% organic carbon was found to be the boundary between 0 application and 75 kg-N application. GIS techniques made it possible to model and extrapolates the results using the available data. The extrapolations still need to be verified with more ground data from fertiliser trials. Data gaps in the soil map left some soil mapping units with no recommendations. Elevation was observed to influence yields and it should be included in future extrapolation by clustering digital elevation models with rainfall data in a spatial model at the district scale

  12. 75 FR 51245 - Agency Information Collection Activities; Proposed Collection; Comment Request; Durable Nursery...

    Science.gov (United States)

    2010-08-19

    ... CONSUMER PRODUCT SAFETY COMMISSION [Docket No. CPSC-2010-0088] Agency Information Collection Activities; Proposed Collection; Comment Request; Durable Nursery Products Exposure Survey AGENCY: Consumer... efforts on durable infant and toddler products. The draft Durable Nursery Products Exposure Survey...

  13. Thinking-about-the-Box; A Holistic Approach to Sustainable Design Engineering of Packaging for Durable Consumer Goods

    NARCIS (Netherlands)

    Wever, R.

    2009-01-01

    So far, the sustainability focus on packaging has been strongly on resource conservation and material recycling. However, as this thesis demonstrates based on LCA studies, for typical cases of packed consumer durables, the transportation of the packed product has a higher environmental impact than

  14. Addressing Infrastructure Durability and Sustainability by Self Healing Mechanisms : Recent Advances in Self Healing Concrete and Asphalt

    NARCIS (Netherlands)

    Schlangen, H.E.J.G.; Sangadji, S.

    2013-01-01

    Infrastructures cover a very broad spectrum of different materials. This paper focuses on civil engineering structures, concrete and asphalt in particular. The public demand for such infrastructures is high level of service and performance, high durability and minimum negative ecological impact. New

  15. extrap: Software to assist the selection of extrapolation methods for moving-boat ADCP streamflow measurements

    Science.gov (United States)

    Mueller, David S.

    2013-04-01

    Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.

  16. Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1989-05-01

    Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M 23 C 6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs

  17. UV Ink-Jet printability and durability of stone and foil

    Directory of Open Access Journals (Sweden)

    Tadeja Muck

    2014-07-01

    Full Text Available he use of ultraviolet (UV printing technology has impacted printing industry in last years due to its applicability on many different »absorptive« as well as »non-absorptive« printing materials. The printability of building materials and recycled foils is relatively unknown. For primary building materials like stones, functionality can be explored with the use of UV printing technology; increased visual, informative effect or even “creative printing” of buildings. Also several aspects of recycled foils reusability as a printing material could be find (printed packaging material or also like secondary building materials. In the present study, printability of the stone and recycled foil and durability of UV prints was explored by means of macroscopically and microscopically characterization. Results indicate that higher print quality can be achieved on polished stone and on coated foil, which surfaces have higher smoothness. Durability of UV prints at freezing is higher at unpolished stone and coated foil that is at materials with the higher surface energy.

  18. Durability of fired clay bricks containing granite powder

    Directory of Open Access Journals (Sweden)

    Xavier, G. C.

    2012-06-01

    Full Text Available Over the past few decades, hundreds of papers have been published on the benefits of including rock powder as a raw material in fired clay brick manufacture. Very little has been written, however, about the durability and long-term behaviour of the final product. As a rule, the ceramic bricks used in construction in developing countries are fired at low temperatures, which detracts from their mechanical performance. This is particularly visible in harsh environmental conditions, where weathering causes severe deterioration. The present paper describes the impact of weathering on clay bricks containing from 0 to 10% granite powder, an industrial by-product. The specimens were fired at 500, 700 or 900 ºC and subsequently exposed to natural environmental conditions or accelerated laboratory weathering. Their physical and mechanical properties were evaluated to determine the effect of the composition of raw materials on fired clay product durability.

    En las últimas décadas se han publicado cientos de artículos sobre las ventajas de incluir polvo de roca como materia prima en la fabricación de los ladrillos cerámicos. Sin embargo, la durabilidad y el comportamiento a largo plazo del producto final han sido objeto de pocas investigaciones. Por lo general, los ladrillos cerámicos empleados en la construcción en los países en vías de desarrollo se cuecen a temperaturas bajas, lo que impide el desarrollo de sus propiedades mecánicas. Esto queda especialmente patente cuando las condiciones ambientales son severas, en cuyo caso la meteorización puede provocar un deterioro importante. En este artículo se describe el efecto de la meteorización en ladrillos cerámicos que incorporaban entre un 0 y un 10% de polvo de granito, que es un derivado industrial. Las probetas se cocieron a 500, 700 o 900 °C y luego se sometieron a condiciones ambientales naturales o a un proceso de laboratorio de meteorización acelerada. Se evaluaron sus

  19. Effects of crystallization on thermal properties and chemical durability of the glasses containing simulated high level radioactive wastes

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Terai, Ryohei; Hara, Shigeo

    1978-01-01

    In order to improve the thermodynamic stability of the glasses containing high level radioactive wastes, the conversion to glass-ceramics by the heat-treatment was carried out with two kinds of glasses, and the change of thermal properties and chemical durability by crystallization was investigated. One of the glasses has a composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 system, and another one has a composition which could grow the nephelite crystals from Na 2 O in wastes and Al 2 O 3 and SiO 2 added as glass-forming materials. Transition and yield points shifted to higher temperatures by the conversion and the glass-ceramics were found to be more stable than the original glasses. The glass-ceramics of the composition of SiO 2 -Al 2 O 3 -ZnO-TiO 2 showed poor durability, whereas the chemical durability of the glass-ceramics containing nephelite crystals was considerably improved. In the latter case, improvement of the durability is attributable to that some parts of glass are converted to nephelite crystals and the crystals are more durable than glass under most conditions. (auth.)

  20. Materials 2014: a great success for materials sector

    International Nuclear Information System (INIS)

    Isnard, Olivier; Crepin, Jerome

    2014-01-01

    In this work are presented the summaries of the 19 symposiums presented at the conference: 'Materials 2014' and whose topics were: eco-materials, materials for energy storage and conversion, strategic materials, rare elements and recycling, surfaces functionalization and physico-chemical characterization, interfaces and coatings, corrosion, aging, durability, damage mechanical behaviours, disordered materials, glasses and their functionalization, materials and health, functional materials, porous, granular and with a high surface area materials, nano-materials, nano-structured systems, assembling processes, carbonaceous materials, great instruments and studies of materials, materials in severe conditions, powder forming processes, metallic materials and structures lightening. (O.M.)

  1. Fatigue Durability Analysis of Collecting Rapping System in Electrostatic Precipitators under Impact Loading

    Directory of Open Access Journals (Sweden)

    Ali Akbar Lotfi Neyestanak

    2014-01-01

    Full Text Available Due to the importance of collecting rapping system in electrostatic precipitators (ESP and controlling the relevant damage under impact loading, fatigue durability of this system is analyzed in the present study based on the numerical and experimental results considering fatigue damage growth and vibration acceleration in the collecting system because of the successive impact of rapping hammers. By microscopic examination of the fracture surface of rapping hammer, beach marks obviously show typical fatigue failure in the rapping hammer arm. In addition, the microscopic examination of the cross section of the collecting plates indicates the corrosion voids which cause crack and eventually fatigue failure. The finite element method is applied to determine both the stress and concentration positions of dynamic stress on the rapping system under impact loading. The paper results can be utilized in system optimization and new material selection for the system by evaluating rapping system durability.

  2. Towards a durability test for washing-machines.

    Science.gov (United States)

    Stamminger, Rainer; Tecchio, Paolo; Ardente, Fulvio; Mathieux, Fabrice; Niestrath, Phoebe

    2018-04-01

    Durability plays a key role in enhancing resource conservation and contributing to waste minimization. The washing-machine product group represents a relevant case study for the development of a durability test and as a potential trigger to systematically address durability in the design of products. We developed a procedure to test the durability performance of washing-machines as a main objective of this research. The research method consisted of an analysis of available durability standards and procedures to test products and components, followed by an analysis of relevant references related to frequent failures. Finally, we defined the criteria and the conditions for a repeatable, relatively fast and relevant endurance test. The durability test considered the whole product tested under conditions of stress. A series of spinning cycles with fixed imbalanced loads was run on two washing-machines to observe failures and performance changes during the test. Even though no hard failures occurred, results clearly showed that not all washing-machines can sustain such a test without abrasion or performance deterioration. However, the attempt to reproduce the stress induced on a washing-machine by carrying out a high number of pure spinning cycles with fixed loads did not allow equal testing conditions: the actions of the control procedure regarding imbalanced loads differ from machine to machine. The outcomes of this research can be used as grounds to develop standardised durability tests and to, hence, contribute to the development of future product policy measures.

  3. A special mini-extrapolation chamber for calibration of 90Sr+90Y sources

    International Nuclear Information System (INIS)

    Oliveira, Mercia L; Caldas, Linda V E

    2005-01-01

    90 Sr+ 90 Y applicators are commonly utilized in brachytherapy, including ophthalmic procedures. The recommended instruments for the calibration of these applicators are extrapolation chambers, which are ionization chambers that allow the variation of their sensitive volume. Using the extrapolation method, the absorbed dose rate at the applicator surface can be determined. The aim of the present work was to develop a mini-extrapolation chamber for the calibration of 90 Sr+ 90 Y beta ray applicators. The developed mini-chamber has a 3.0 cm outer diameter and is 11.3 cm in length. An aluminized polyester foil is used as the entrance window while the collecting electrode is made of graphited polymethylmethacrylate. This mini-chamber was tested in 90 Sr+ 90 Y radiation beams from a beta particle check source and with a plane ophthalmic applicator, showing adequate results

  4. Technique of Critical Current Density Measurement of Bulk Superconductor with Linear Extrapolation Method

    International Nuclear Information System (INIS)

    Adi, Wisnu Ari; Sukirman, Engkir; Winatapura, Didin S.

    2000-01-01

    Technique of critical current density measurement (Jc) of HTc bulk ceramic superconductor has been performed by using linear extrapolation with four-point probes method. The measurement of critical current density HTc bulk ceramic superconductor usually causes damage in contact resistance. In order to decrease this damage factor, we introduce extrapolation method. The extrapolating data show that the critical current density Jc for YBCO (123) and BSCCO (2212) at 77 K are 10,85(6) Amp.cm - 2 and 14,46(6) Amp.cm - 2, respectively. This technique is easier, simpler, and the use of the current flow is low, so it will not damage the contact resistance of the sample. We expect that the method can give a better solution for bulk superconductor application. Key words. : superconductor, critical temperature, and critical current density

  5. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Tanuri de F, M. T.; Da Silva, T. A., E-mail: mttf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  6. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    International Nuclear Information System (INIS)

    Tanuri de F, M. T.; Da Silva, T. A.

    2016-10-01

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  7. The optimized expansion based low-rank method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong

    2014-03-01

    Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.

  8. Prediction of fracture toughness and durability of adhesively bonded composite joints with undesirable bonding conditions

    Science.gov (United States)

    Musaramthota, Vishal

    Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe

  9. Characterization of low energy X-rays beams with an extrapolation chamber

    International Nuclear Information System (INIS)

    Bastos, Fernanda Martins

    2015-01-01

    In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally, the first

  10. Windtunnel Rebuilding And Extrapolation To Flight At Transsonic Speed For ExoMars

    Science.gov (United States)

    Fertig, Markus; Neeb, Dominik; Gulhan, Ali

    2011-05-01

    The static as well as the dynamic behaviour of the EXOMARS vehicle in the transonic velocity regime has been investigated experimentally by the Supersonic and Hypersonic Technology Department of DLR in order to investigate the behaviour prior to parachute opening. Since the experimental work was performed in air, a numerical extrapolation to flight by means of CFD is necessary. At low supersonic speed this extrapolation to flight was performed by the Spacecraft Department of the Institute of Flow Technology of DLR employing the CFD code TAU. Numerical as well as experimental results for the wind tunnel test at Mach 1.2 will be compared and discussed for three different angles of attack.

  11. Testing the durability of concrete with neutron radiography

    International Nuclear Information System (INIS)

    Beer, F.C. de; Le Roux, J.J.; Kearsley, E.P.

    2005-01-01

    The ability of concrete to withstand the penetration of liquid and oxygen can be described as the durability of concrete. The durability of concrete, can in turn, be quantified by certain characteristics of the concrete such as the porosity, sorptivity and permeability. The quantification of neutron radiography images of concrete structures and, therefore, the determination of concrete characteristics validate conventional measurements. This study compares the neutron radiography capability to obtain quantitative data for porosity and sorptivity in concrete to laboratory or conventional measurements. The effects that water to cement ratio and curing time have on the durability of concrete are investigated

  12. Influence of chloride admixtures on cement matrix durability

    International Nuclear Information System (INIS)

    Sheikh, I.A.; Zamorani, E.; Serrini, G.

    1989-01-01

    The influence of various inorganic salts, as chloride admixtures to Portland cement, on the mechanical properties and the durability of the matrix has been studied. The salts used in this study are chromium, nickel and cadmium chlorides. Improved compressive strength values are obtained which have been correlated to the stable metal hydroxide formation in high pH environment. Under static water conditions at 50 0 C, hydrolyzed chloride ions exhibit adverse effects on the matrix durability through rapid release of calcium as calcium chloride in the initial period of leaching. On the contrary, enhanced matrix durability is obtained on long term leaching in the case of cement containing chromium chloride

  13. Factors influencing chemical durability of nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions

  14. ACCELERATED METHODS FOR ESTIMATING THE DURABILITY OF PLAIN BEARINGS

    Directory of Open Access Journals (Sweden)

    Myron Czerniec

    2014-09-01

    Full Text Available The paper presents methods for determining the durability of slide bearings. The developed methods enhance the calculation process by even 100000 times, compared to the accurate solution obtained with the generalized cumulative model of wear. The paper determines the accuracy of results for estimating the durability of bearings depending on the size of blocks of constant conditions of contact interaction between the shaft with small out-of-roundedness and the bush with a circular contour. The paper gives an approximate dependence for determining accurate durability using either a more accurate or an additional method.

  15. Mechanically durable underwater superoleophobic surfaces based on hydrophilic bulk metals for oil/water separation

    Science.gov (United States)

    Yu, Huadong; Lian, Zhongxu; Xu, Jinkai; Wan, Yanling; Wang, Zuobin; Li, Yiquan; Yu, Zhanjiang; Weng, Zhankun

    2018-04-01

    Despite the success of previous methods for fabricating underwater superoleophobic surfaces, most of the surfaces based on soft materials are prone to collapse and deformation due to their mechanically fragile nature, and they fail to perform their designed functions after the surface materials are damaged in water. In this work, the nanosecond laser-induced oxide coatings on hydrophilic bulk metals are reported which overcomes the limitation and shows the robust underwater superoleophobicity to a mechanical challenge encountered by surfaces deployed in water environment. The results show that the surface materials have the advantage that the underwater superoleophobicity is still preserved after the surfaces are scratched by knife or sandpaper and even completely destroyed because of the hydrophilic property of damaged materials in water. It is important that the results provide a guide for the design of durable underwater superoleophobic surfaces, and the development of superoleophobic materials in many potential applications such as the oil-repellent and the oil/water separation. Additionally, the nanosecond laser technology is simple, cost-effective and suitable for the large-area and mass fabrication of mechanically durable underwater superoleophobic metal materials.

  16. Comparison of enamel bond fatigue durability between universal adhesives and two-step self-etch adhesives: Effect of phosphoric acid pre-etching.

    Science.gov (United States)

    Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-03-30

    The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.

  17. High gain durable anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze' ev R.

    2017-06-27

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  18. Surface chemistry and durability of borosilicate glass

    International Nuclear Information System (INIS)

    Carroll, S.A.; Bourcier, W.L.; Phillips, B.L.

    1994-01-01

    Important glass-water interactions are poorly understood for borosilicate glass radioactive waste forms. Preliminary results show that glass durability is dependent on reactions occurring at the glass-solution interface. CSG glass (18.2 wt. % Na 2 O, 5.97 wt. % CaO, 11.68 wt. % Al 2 O 3 , 8.43 wt. % B 2 O 3 , and 55.73 wt. % SiO 2 ) dissolution and net surface H + and OH - adsorption are minimal at near neutral pH. In the acid and alkaline pH regions, CSG glass dissolution rates are proportional to [H + ] adsorbed 2 and [OH - ] adsorbed 0.8 , respectively. In contrast, silica gel dissolution and net H + and OH - adsorption are minimal and independent of pH in acid to neutral solutions. In the alkaline pH region, silica gel dissolution is proportional to [OH - ] adsorbed 0.9 adsorbed . Although Na adsorption is significant for CSG glass and silica gel in the alkaline pH regions, it is not clear if it enhances dissolution, or is an artifact of depolymerization of the framework bonds

  19. Electro-active paper for a durable biomimetic actuator

    International Nuclear Information System (INIS)

    Yun, Sung-Ryul; Yun, Gyu Young; Kim, Jung Hwan; Chen, Yi; Kim, Jaehwan

    2009-01-01

    Cellulose electro-active paper (EAPap), known as a smart material, has merits in terms of low voltage operation, light weight, dryness, low power consumption, biodegradability, abundance and low price. Since EAPap requires low power consumption, a remotely driven actuator has been proposed using microwave power transmission. This concept is attractive for many biomimetic systems such as crawling micro-insect robots, flying objects like dragon flies and smart wallpapers. However, the actuation performance of EAPap is sensitive to humidity and degrades with time. Thus, in this paper, a durable EAPap is studied. The fabrication of EAPap is explained and the actuation performance is shown with applied electric field, frequency, humidity level and time. The fabrication process includes dissolving cellulose fibers, eliminating solvent and Li ions with a mixture of deionized water and isopropyl alcohol, washing with water, drying and coating with gold. The morphology of the fabricated EAPap is analyzed by taking scanning electron microscope images and x-ray diffractograms. The actuation performance is tested in terms of bending displacement with frequency, time and humidity level

  20. Durability of incinerator ash waste encapsulated in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs

  1. The durability of examination gloves used on intensive care units.

    Science.gov (United States)

    Hübner, Nils-Olaf; Goerdt, Anna-Maria; Mannerow, Axel; Pohrt, Ute; Heidecke, Claus-Dieter; Kramer, Axel; Partecke, Lars Ivo

    2013-05-20

    The use of examination gloves is part of the standard precautions to prevent medical staff from transmission of infectious agents between patients. Gloves also protect the staff from infectious agents originating from patients. Adequate protection, however, depends on intact gloves. The risk of perforation of examination gloves is thought to correlate with duration of wearing, yet, only very few prospective studies have been performed on this issue. A total number of 1500 consecutively used pairs of examination gloves of two different brands and materials (latex and nitrile) were collected over a period of two months on two ICU's. Used gloves were examined for micro perforations using the "water-proof-test" according to EN 455-1. Cox-regression for both glove types was used to estimate optimal changing intervals. Only 26% of gloves were worn longer than 15 min. The total perforation rate was 10.3% with significant differences and deterioration of integrity of gloves between brands (pgloves show marked differences in their durability that cannot be predicted based on the technical data routinely provided by the manufacturer. Based on the increase of micro perforations over time and the wearing behavior, recommendations for maximum wearing time of gloves should be given. Changing of gloves after 15 min could be a good compromise between feasibility and safety. HCWs should be aware of the benefits and limitations of medical gloves. To improve personal hygiene hand disinfection should be further encouraged.

  2. Electrochemical migration technique to accelerate ageing of cementitious materials

    Directory of Open Access Journals (Sweden)

    Abbas Z.

    2013-07-01

    Full Text Available Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen’s micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  3. Electrochemical migration technique to accelerate ageing of cementitious materials

    Science.gov (United States)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  4. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  5. Durability of spent nuclear fuels and facility components in wet storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  6. Durability of spent nuclear fuels and facility components in wet storage

    International Nuclear Information System (INIS)

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  7. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria; FINAL

    International Nuclear Information System (INIS)

    Ren, W

    2001-01-01

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria

  8. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W

    2001-08-24

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria.

  9. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W

    2001-08-24

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications.

  10. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria; FINAL

    International Nuclear Information System (INIS)

    Ren, W

    2001-01-01

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications

  11. Durability of cemented waste in repository and under simulated conditions

    International Nuclear Information System (INIS)

    Dragolici, F.; Nicu, M.; Lungu, L.; Turcanu, C.; Rotarescu, Gh.

    2000-01-01

    The Romanian Radioactive Waste National Repository for low level and intermediate level radioactive waste was built in Baita - Bihor county, in an extinct uranium exploitation. The site is at 840 m above sea level and the host rock is crystalline with a low porosity, a good chemical homogeneity and impermeability, keeping these qualities over a considerable horizontal and vertical spans. To obtain the experimental data necessary for the waste form and package characterization together with the back-filling material behaviour in the repository environment, a medium term research programme (1996 - 2010) was implemented. The purpose of this experimental programme is to obtain a part of the data base necessary for the approach of medium and long term assessment of the safety and performance of Baita - Bihor Repository. The programme will provide: a deeper knowledge of the chemical species and reaction mechanisms, the structure, properties and performances of the final products. For safety reasons the behaviour of waste package, which is a main barrier, must be properly known in terms of long term durability in real repository conditions. Characterization of the behaviour includes many interactions between the waste package itself and the surrounding near field conditions such as mineralogy, hydrogeology and groundwater chemistry. To obtain a more deeper knowledge of the species and physical-chemical reactions participating in the matrix formation, as well as their future behaviour during the disposal period, a thorough XRD study started in 1998. For Romanian Radioactive Waste National Repository (DNDR) Baita - Bihor the following steps are planned for the conditioned waste matrix characterization in simulated and real conditions: - preparation and characterization of normal reference matrices based on different cement formulations; - preparation of reference simulated sludge cemented matrices containing iron hydroxide and iron phosphate; - selection of real and

  12. Development of a CB Resistant Durable, Flexible Hydration System

    National Research Council Canada - National Science Library

    Hall, Peyton W; Zeller, Frank T; Bulluck, John W; Dingus, Michael L

    2002-01-01

    A durable, flexible hydration system resistant to contamination by contact with VX, GD, and HD chemical agents, as well as damage by the decontaminants sodium hypochlorite and DS-2 is being developed for aviator use...

  13. Durability studies on the high calcium flyash based GPC

    African Journals Online (AJOL)

    Keywords: Geopolymer concrete, high calcium flyash, durability, corrosion resistance, polarisation test. ... Reddy, et al (2011) reported that excellent resistance to chloride .... being the metal on the higher electro potential range, to the negative ...

  14. Durability of Bricks Coated with Red mud Based Geopolymer Paste

    Science.gov (United States)

    Singh, Smita; Basavanagowda, S. N.; Aswath, M. U.; Ranganath, R. V.

    2016-09-01

    The present study is undertaken to assess the durability of concrete blocks coated with red mud - fly ash based geopolymer paste. Concrete blocks of size 200 x 200 x 100mm were coated with geopolymer paste synthesized by varying the percentages of red mud and fly ash. Uncoated concrete blocks were also tested for the durability for comparison. In thermal resistance test, the blocks were subjected to 600°C for an hour whereas in acid resistance test, they were kept in 5% sulphuric acid solution for 4 weeks. The specimens were thereafter studied for surface degradation, strength loss and weight loss. Pastes with red mud percentage greater than 50% developed lot of shrinkage cracks. The blocks coated with 30% and 50% red mud paste showed better durability than the other blocks. The use of blocks coated with red mud - fly ash geopolymer paste improves the aesthetics, eliminates the use of plaster and improves the durability of the structure.

  15. The Overjustification Effect in Retarded Children: Durability and Generalizability.

    Science.gov (United States)

    Ogilvie, Lee; Prior, Margot

    1982-01-01

    Generalizability and durability of the overjustification effect (on decline in intrinsic motivation due to the lack of rewards in behavior modification programs) were examined in 35 normal preschool children and 17 mental age-matched retarded children. (Author/SW)

  16. Durability of filament-wound composite flywheel rotors

    Science.gov (United States)

    Koyanagi, Jun

    2012-02-01

    This paper predicts the durability of two types of flywheels, one assumes to fail in the radial direction and the other assumes to fail in the circumferential direction. The flywheel failing in the radial direction is a conventional filament-wound composite flywheel and the one failing in the circumferential direction is a tailor-made type. The durability of the former is predicted by Micromechanics of Failure (MMF) (Ha et al. in J. Compos. Mater. 42:1873-1875, 2008), employing time-dependent matrix strength, and that of the latter is predicted by Simultaneous Fiber Failure (SFF) (Koyanagi et al. in J. Compos. Mater. 43:1901-1914, 2009), employing identical time-dependent matrix strength. The predicted durability of the latter is much greater than that of the former, depending on the interface strength. This study suggests that a relatively weak interface is necessary for high-durability composite flywheel fabrication.

  17. Research notes : durability of composite repairs on bridges.

    Science.gov (United States)

    2009-08-01

    The research showed that conditions that allow moisture to get under the carbon fiber reinforced polymer composites (CFRP) combined with freeze-thaw were detrimental to durability. In addition, the results showed that the American Concrete Institute ...

  18. Accurate Conformational Energy Differences of Carbohydrates: A Complete Basis Set Extrapolation

    Czech Academy of Sciences Publication Activity Database

    Csonka, G. I.; Kaminský, Jakub

    2011-01-01

    Roč. 7, č. 4 (2011), s. 988-997 ISSN 1549-9618 Institutional research plan: CEZ:AV0Z40550506 Keywords : MP2 * basis set extrapolation * saccharides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.215, year: 2011

  19. A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA

    International Nuclear Information System (INIS)

    Jiang Chaowei; Feng Xueshang; Xiang Changqing

    2012-01-01

    Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.

  20. Corrosion allowances for sodium heated steam generators: evaluation of effects and extrapolation to component life time

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, E E; Menken, G

    1975-07-01

    Steam generator tubes are subjected to two categories of corrosion; metal/sodium reactions and metal/water-steam interactions. Referring to these environmental conditions the relevant parameters are discussed. The influences of these parameters on the sodium corrosion and water/steam-reactions are evaluated. Extrapolations of corrosion values to steam generator design conditions are performed and discussed in detail. (author)

  1. Extrapolation of model tests measurements of whipping to identify the dimensioning sea states for container ships

    DEFF Research Database (Denmark)

    Storhaug, Gaute; Andersen, Ingrid Marie Vincent

    2015-01-01

    to small storms. Model tests of three container ships have been carried out in different sea states under realistic assumptions. Preliminary extrapolation of the measured data suggested that moderate storms are dimensioning when whipping is included due to higher maximum speed in moderate storms...

  2. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, R.

    1992-06-01

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ( 90 Sr/ 90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  3. Comparison of precipitation nowcasting by extrapolation and statistical-advection methods

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Kitzmiller, D.; Pešice, Petr; Mejsnar, Jan

    2013-01-01

    Roč. 123, 1 April (2013), s. 17-30 ISSN 0169-8095 R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : Precipitation forecast * Statistical models * Regression * Quantitative precipitation forecast * Extrapolation forecast Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.421, year: 2013 http://www.sciencedirect.com/science/article/pii/S0169809512003390

  4. Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk; Zacharov, Petr, jr.

    2012-01-01

    Roč. 138, č. 665 (2012), s. 1072-1082 ISSN 0035-9009 Institutional support: RVO:68378289 Keywords : precipitation forecast * radar extrapolation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.327, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/qj.970/abstract

  5. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    Science.gov (United States)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  6. Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow

    International Nuclear Information System (INIS)

    Shadday, Martin A. Jr.

    1997-01-01

    The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated

  7. Extrapolation for exposure duration in oral toxicity: A quantitative analysis of historical toxicity data

    NARCIS (Netherlands)

    Groeneveld, C.N.; Hakkert, B.C.; Bos, P.M.J.; Heer, C.de

    2004-01-01

    For human risk assessment, experimental data often have to be extrapolated for exposure duration, which is generally done by means of default values. The purpose of the present study was twofold. First, to derive a statistical distribution for differences in exposure duration that can be used in a

  8. Hazard characterisation of chemicals in food and diet : dose response, mechanisms and extrapolation issues

    NARCIS (Netherlands)

    Dybing, E.; Doe, J.; Groten, J.; Kleiner, J.; O'Brien, J.; Renwick, A.G.; Schlatter, J.; Steinberg, P.; Tritscher, A.; Walker, R.; Younes, M.

    2002-01-01

    Hazard characterisation of low molecular weight chemicals in food and diet generally use a no-observed-adverse-effect level (NOAEL) or a benchmark dose as the starting point. For hazards that are considered not to have thresholds for their mode of action, low-dose extrapolation and other modelling

  9. Source-receiver two-way wave extrapolation for prestack exploding-reflector modelling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-10-08

    Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high-order partial differential equations in the source-receiver time domain. The fourth-order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P-waves and reduce to the zero-offset exploding-reflector solutions when the source coincides with the receiver. A challenge for implementing two-way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral-based extrapolation. Using spectral methods based on the low-rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach.

  10. Corrosion allowances for sodium heated steam generators: evaluation of effects and extrapolation to component life time

    International Nuclear Information System (INIS)

    Grosser, E.E.; Menken, G.

    1975-01-01

    Steam generator tubes are subjected to two categories of corrosion; metal/sodium reactions and metal/water-steam interactions. Referring to these environmental conditions the relevant parameters are discussed. The influences of these parameters on the sodium corrosion and water/steam-reactions are evaluated. Extrapolations of corrosion values to steam generator design conditions are performed and discussed in detail. (author)

  11. The Dynamic Pricing of Next Generation Consumer Durables

    OpenAIRE

    Barry L. Bayus

    1992-01-01

    Learning curve effects, aspects of consumer demand models (e.g., reservation price distributions, intertemporal utility maximizing behavior), and competitive activity are reasons which have been offered to explain why prices of new durables decline over time. This paper presents an alternative rationale based on the buying behavior for products with overlapping replacement cycles (i.e., next generation products). A model for consumer sales of a new durable is developed by incorporating the re...

  12. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide.

    Science.gov (United States)

    Kissling, Wilm Daniel; Dalby, Lars; Fløjgaard, Camilla; Lenoir, Jonathan; Sandel, Brody; Sandom, Christopher; Trøjelsgaard, Kristian; Svenning, Jens-Christian

    2014-07-01

    Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species' evolutionary adaptations, ecological and functional roles, and trophic interactions. However, the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals ("MammalDIET"). Diet information was digitized from two global and cladewide data sources and errors of data entry by multiple data recorders were assessed. We then developed a hierarchical extrapolation procedure to fill-in diet information for species with missing information. Missing data were extrapolated with information from other taxonomic levels (genus, other species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally, we grouped mammal species into trophic levels and dietary guilds, and their species richness as well as their proportion of total richness were mapped at a global scale for those diet categories with good validation results. The success rate of correctly digitizing data was 94%, indicating that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external

  13. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2007-02-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.

  14. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    Science.gov (United States)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  15. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.

    Science.gov (United States)

    Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-23

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.

  16. Open-source FCPEM-Performance & Durability Model Consideration of Membrane Properties on Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Knights, Shanna [Ballard Fuel Cell Systems, Bend, OR (United States); Harvey, David [Ballard Fuel Cell Systems, Bend, OR (United States)

    2017-01-20

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.

  17. Mechanical and Durability Properties of Concrete Made with Used Foundry Sand as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    G. Ganesh Prabhu

    2015-01-01

    Full Text Available In recent years, the construction industry has been faced with a decline in the availability of natural sand due to the growth of the industry. On the other hand, the metal casting industries are being forced to find ways to safely dispose of waste foundry sand (FS. With the aim of resolving both of these issues, an investigation was carried out on the reuse of waste FS as an alternative material to natural sand in concrete production, satisfied with relevant international standards. The physical and chemical properties of the FS were addressed. The influence of FS on the behaviour of concrete was evaluated through strength and durability properties. The test results revealed that compared to the concrete mixtures with a substitution rate of 30%, the control mixture had a strength value that was only 6.3% higher, and this enhancement is not particularly high. In a similar manner, the durability properties of the concrete mixtures containing FS up to 30% were relatively close to those of control mixture. From the test results, it is suggested that FS with a substitution rate of up to 30% can be effectively used in concrete production without affecting the strength and durability properties of the concrete.

  18. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  19. Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests

    International Nuclear Information System (INIS)

    Molina, E; Cultrone, G; Sebastián, E; Alonso, F J

    2013-01-01

    The durability of a rock when exposed to decay agents is an important criterion when assessing its quality as a building material. Our study focuses on six varieties of natural stone (two limestones, one dolostone, one travertine and two sandstones) that are widely used in both new and historical buildings. In order to assess their quality, we measured and characterized their dynamic elastic properties using ultrasounds, we measured their compressive strength using the uniaxial compression test and we evaluated their durability by means of accelerated aging tests (freeze-thaw and salt crystallization). In order to get a full picture of the decay suffered by the different stones, we determined the composition and amount of the clay fraction of the six stones. We also observed small fragments subjected to the salt crystallization test under an environmental scanning electron microscope to study any textural change and measured the changes of colour on the surface with a spectrophotometer. Finally, we analysed the pore system of the stones before and after their deterioration using mercury injection porosimetry. We then compared the results for the different stones and found that dolostone obtained the best results, while the two limestones proved to be the least durable and had the lowest compressive strength. (paper)

  20. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2007-01-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program

  1. SU-D-204-02: BED Consistent Extrapolation of Mean Dose Tolerances

    Energy Technology Data Exchange (ETDEWEB)

    Perko, Z; Bortfeld, T; Hong, T; Wolfgang, J; Unkelbach, J [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot

  2. Projecting species' vulnerability to climate change: Which uncertainty sources matter most and extrapolate best?

    Science.gov (United States)

    Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R

    2017-11-01

    Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water

  3. SU-F-T-579: Extrapolation Techniques for Small Field Dosimetry Using Gafchromic EBT3 Film

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J [Chris OBrien Lifehouse, Camperdown, NSW (Australia)

    2016-06-15

    Purpose: The purpose of this project is to test an experimental approach using an extrapolation technique for Gafchromic EBT3 film for small field x-ray dosimetry. Methods: Small fields from a Novalis Tx linear accelerator with HD Multileaf Collimators with 6 MV was used. The field sizes ranged from 5 × 5 to 50 × 50 mm2 MLC fields and a range of circular cones of 4 to 30 mm2 diameters. All measurements were performed in water at an SSD of 100 cm and at a depth of 10 cm. The relative output factors (ROFs) were determined from an extrapolation technique developed to eliminate the effects of partial volume averaging in film scan by scanning films with high resolution (1200 DPI). The size of the regions of interest (ROI) was varied to produce a plot of ROFs versus ROI which was then extrapolated to zero ROI to determine the relative output factor. The results were compared with other solid state detectors with proper correction, namely, IBA SFD diode, PTW 60008 and PTW 60012 diode. Results: For the 4 mm cone, the extrapolated ROF had a value of 0.658 ± 0.014 as compared to 0.642 and 0.636 for 0.5 mm and 1 mm2 ROI analysis, respectively. This showed a change in output factor of 2.4% and 3.3% at this comparative ROI sizes. In comparison, the 25 mm cone had a difference in measured output factor of 0.3% and 0.5% between 0.5 and 1.0 mm, respectively compared to zero volume. For the fields defined by MLCs a difference of up to 2% for 5×5 mm2 was observed. Conclusion: A measureable difference can be seen in ROF based on the ROI when radiochromic film is used. Using extrapolation technique from high resolution scanning a good agreement can be achieved.

  4. Durability of compressed soil-cement bricks

    Directory of Open Access Journals (Sweden)

    Acosta Valle, A.

    2001-06-01

    Full Text Available This papers shows the evaluation process of the durability of compressed soil-cement bricks. A great number of tests were made to determine the behavior of bricks when they are compression loaded and under the influence of moisture. Two different types of soils were used to produce the bricks, a lime-clay soil and a sand one. The sand soil is very resistant. The other one has a limited use. An experimental design was used to test the bricks. It is a rotational and quadratic method with a hexagonal figure which contains replicas at the central point. This method ensures the reliability of test results. Otherwise, it would reduce the amount of specimens necessary for the tests. The optimun moisture content is obtained by using a press machine. It is more rational than the standard Proctor compactation test, because it applies the same type and amount of energy used to produce the bricks. The obtained results show the behavior differences between the two compressed soil-cement bricks subjected to the compression test, water absorption and wetting and drying tests. The durability tests results are very important in the possible use of the bricks produced.

    En el trabajo se evalúa la durabilidad de elementos aglomerados de suelo estabilizado. Se realiza un amplio número de ensayos encaminados a determinar el comportamiento frente a la acción de las cargas y la humedad de dos suelos con características diferentes: uno limo-arcilloso y el otro arenoso. Este último presenta resultados muy favorables en ambas direcciones. El otro, con un posible uso más limitado. Se emplea un método de diseño experimental del tipo rotacional cuadrático en hexágono, con réplicas en el punto central, el que garantiza la confiabilidad de los resultados de los ensayos, a la vez que disminuye la cantidad de especímenes a ensayar. Se determina la humedad óptima a utilizar en las diferentes dosificaciones empleando la máquina compactadora, que resulta m

  5. Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method

    International Nuclear Information System (INIS)

    Du, Chuan; Wang, Jiadao; Chen, Zhifu; Chen, Darong

    2014-01-01

    Graphical abstract: - Highlights: • A method for fabricating durable superhydrophobic filter paper was developed. • Oil–water separation efficiency exceeds 99% using the as-prepared filter paper. • The as-prepared filter paper has good recyclability and durability. • The method is easy, low cost and can be industrialized. - Abstract: A method for manufacturing durable superhydrophobic and superoleophilic filter paper for oil–water separation was developed via colloidal deposition. A porous film composed of PTFE nanoparticles was formed on filter paper, which was superhydrophobic with a water contact angle of 155.5° and superoleophilic with an oil contact angle of 0°. The obtained filter paper could separate a series of oil–water mixtures effectively with high separation efficiencies over 99%. Besides, the as-prepared filter paper kept stable superhydrophobicity and high separation efficiency even after 30 cycle times and could also work well under harsh environmental conditions like strong acidic or alkaline solutions, high temperature and ultraviolet irradiation. Compared with other approaches for fabricating oil–water materials, this approach is able to fabricate full-scale durable and practical oil–water materials easily and economically. The as-prepared filter paper is a promising candidate for oil–water separation

  6. Extrapolation of rate constants of reactions producing H2 and O2 in radiolysis of water at high temperatures

    International Nuclear Information System (INIS)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G.

    2014-01-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10 10 mol -1 s -1 at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  7. Assessment of cement durability in repository environment

    International Nuclear Information System (INIS)

    Ferreira, E.G.A.; Vicente, R.; Isiko, V.L.K.; Miyamoto, H.; Marumo, J.T.; Gobbo, L.A.

    2015-01-01

    The present research aimed at investigating the durability of cement paste under nuclear waste repository conditions using accelerated tests. Cement paste samples are examined after being exposed to the environmental conditions that are expected to prevail in the repository environment and the results are compared with those obtained with unexposed specimens or specimens exposed to reference conditions. The following exposure conditions were selected: a) Immersion in salt solution, distilled water, or kept in dry storage; b) Room temperature (20 C. degrees) or high temperature (60 C. degrees); c) Immersion time of 30 days or 60 days (not for dry storage); d) Irradiation to a dose of (400 kGy) or background radiation (0 kGy). After exposure to the stressing conditions, the effects of each factor on the cement paste samples were observed by changes in their characteristics. Compressive strength tests were performed on all samples and some of them were investigated in terms of changes in mineralogy by X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). With the results obtained so far it was possible to point out the following conclusions. First, after a period of immersion in water, cement paste samples further hydrated and presented higher mechanical resistance, as expected. Secondly, dry storage did not allow a complete hydration as a consequence of pore water evaporation. High temperatures intensified this process and led to the ettringite decomposition to meta-ettringite. Thirdly, higher temperature accelerated hydration kinetics and promoted higher mechanical resistance in samples kept under immersion. Fourthly, the irradiation dose applied was unable to change the mineralogy of cement paste samples and fifthly, no statistically significant differences were observed between 30 or 60 days exposure time, for the test conditions

  8. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering.

    Directory of Open Access Journals (Sweden)

    Paula M Carmona-Quiroga

    Full Text Available Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering.

  9. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering.

    Science.gov (United States)

    Carmona-Quiroga, Paula M; Jacobs, Robert M J; Martínez-Ramírez, Sagrario; Viles, Heather A

    2017-01-01

    Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax) on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering.

  10. Durable diamond-like carbon templates for UV nanoimprint lithography

    International Nuclear Information System (INIS)

    Tao, L; Ramachandran, S; Nelson, C T; Overzet, L J; Goeckner, M; Lee, G; Hu, W; Lin, M; Willson, C G; Wu, W

    2008-01-01

    The interaction between resist and template during the separation process after nanoimprint lithography (NIL) can cause the formation of defects and damage to the templates and resist patterns. To alleviate these problems, fluorinated self-assembled monolayers (F-SAMs, i.e. tridecafluoro-1,1,2,2,tetrahydrooctyl trichlorosilane or FDTS) have been employed as template release coatings. However, we find that the FDTS coating undergoes irreversible degradation after only 10 cycles of UV nanoimprint processes with SU-8 resist. The degradation includes a 28% reduction in surface F atoms and significant increases in the surface roughness. In this paper, diamond-like carbon (DLC) films were investigated as an alternative material not only for coating but also for direct fabrication of nanoimprint templates. DLC films deposited on quartz templates in a plasma enhanced chemical vapor deposition system are shown to have better chemical and physical stability than FDTS. After the same 10 cycles of UV nanoimprints, the surface composition as well as the roughness of DLC films were found to be unchanged. The adhesion energy between the DLC surface and SU-8 is found to be smaller than that of FDTS despite the slightly higher total surface energy of DLC. DLC templates with 40 nm features were fabricated using e-beam lithography followed by Cr lift-off and reactive ion etching. UV nanoimprinting using the directly patterned DLC templates in SU-8 resist demonstrates good pattern transfer fidelity and easy template-resist separation. These results indicate that DLC is a promising material for fabricating durable templates for UV nanoimprint lithography

  11. Improving the durability of the optical fiber sensor based on strain transfer analysis

    Science.gov (United States)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-05-01

    To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.

  12. New materials for next-generation commercial transports

    National Research Council Canada - National Science Library

    Committee on New Materials for Advanced Civil Aircraft, Commission on Engineering and Technical Systems, National Research Council

    The major objective of this book was to identify issues related to the introduction of new materials and the effects that advanced materials will have on the durability and technical risk of future...

  13. Making the most of what we have: application of extrapolation approaches in radioecological wildlife transfer models

    International Nuclear Information System (INIS)

    Beresford, Nicholas A.; Wood, Michael D.; Vives i Batlle, Jordi; Yankovich, Tamara L.; Bradshaw, Clare; Willey, Neil

    2016-01-01

    We will never have data to populate all of the potential radioecological modelling parameters required for wildlife assessments. Therefore, we need robust extrapolation approaches which allow us to make best use of our available knowledge. This paper reviews and, in some cases, develops, tests and validates some of the suggested extrapolation approaches. The concentration ratio (CR_p_r_o_d_u_c_t_-_d_i_e_t or CR_w_o_-_d_i_e_t) is shown to be a generic (trans-species) parameter which should enable the more abundant data for farm animals to be applied to wild species. An allometric model for predicting the biological half-life of radionuclides in vertebrates is further tested and generally shown to perform acceptably. However, to fully exploit allometry we need to understand why some elements do not scale to expected values. For aquatic ecosystems, the relationship between log_1_0(a) (a parameter from the allometric relationship for the organism-water concentration ratio) and log(K_d) presents a potential opportunity to estimate concentration ratios using K_d values. An alternative approach to the CR_w_o_-_m_e_d_i_a model proposed for estimating the transfer of radionuclides to freshwater fish is used to satisfactorily predict activity concentrations in fish of different species from three lakes. We recommend that this approach (REML modelling) be further investigated and developed for other radionuclides and across a wider range of organisms and ecosystems. Ecological stoichiometry shows potential as an extrapolation method in radioecology, either from one element to another or from one species to another. Although some of the approaches considered require further development and testing, we demonstrate the potential to significantly improve predictions of radionuclide transfer to wildlife by making better use of available data. - Highlights: • Robust extrapolation approaches allowing best use of available knowledge are needed. • Extrapolation approaches are

  14. Durability of wood-plastic composites

    Science.gov (United States)

    J.J. Morrell; Nicole M. Stark; David E. Pendleton; Armando G. McDonald

    2006-01-01

    Deterioration is broadly defined as any negative effect on the properties of a material. The effects can be due to biological attack or to various non-living agents (sunlight, moisture, temperature), but often, deterioration results from a combination of factors. Nowhere is this more evident than with WPCs, owing to the marriage of dissimilar materials. This article...

  15. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    Science.gov (United States)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  16. An Efficient Method of Reweighting and Reconstructing Monte Carlo Molecular Simulation Data for Extrapolation to Different Temperature and Density Conditions

    KAUST Repository

    Sun, Shuyu

    2013-06-01

    This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.

  17. An Efficient Method of Reweighting and Reconstructing Monte Carlo Molecular Simulation Data for Extrapolation to Different Temperature and Density Conditions

    KAUST Repository

    Sun, Shuyu; Kadoura, Ahmad Salim; Salama, Amgad

    2013-01-01

    This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.

  18. Leaching of concrete : the leaching process : extrapolation of deterioration : effect on the structural stability

    OpenAIRE

    Fagerlund, Göran

    2000-01-01

    The leaching process when water attacks concrete, and the effect of leaching on the strength and durability of a concrete structure, is analysed theoretically. Technique for prediction of the future leaching and structural stability is outlined. The analysis is to a certain extent supported by data from literature. The leaching process is divided in five different types: 1: Pure surface leaching 2: Surface leaching involving erosion 3: Homogeneous leaching over the entire structure 4...

  19. Technical Note: Updated durability/composition relationships for Hanford high-level waste glasses

    International Nuclear Information System (INIS)

    Piepel, G.F.; Hartley, S.A.; Redgate, P.E.

    1996-03-01

    This technical note presents empirical models developed in FYI 995 to predict durability as functions of glass composition. Models are presented for normalized releases of B, Li, Na, and Si from the 7-day Product Consistency Test (PCT) applied to quenched and canister centerline cooled (CCC) glasses as well as from the 28-day Materials Characterization Center-1 (MCC-1) test applied to quenched glasses. Models are presented for Composition Variation Study (CVS) data from low temperature melter (LTM) studies (Hrma, Piepel, et al. 1994) and high temperature melter (HTM) studies (Vienna et al. 1995). The data used for modeling in this technical note are listed in Appendix A

  20. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  1. Performance of a prototype of an extrapolation minichamber in various radiation beams

    International Nuclear Information System (INIS)

    Oliveira, M.L.; Caldas, L.V.E.

    2007-01-01

    An extrapolation minichamber was developed for measuring doses from weakly penetrating types of radiation. The chamber was tested at the radiotherapeutic dose level in a beam from a 90 Sr+ 90 Y check source, in a beam from a plane 90 Sr+ 90 Y ophthalmic applicator, and in several reference beams from an X-ray tube. Saturation, ion collection efficiency, stabilization time, extrapolation curves, linearity of chamber response vs. air kerma rate, and dependences of the response on the energy and irradiation angle were characterized. The results are satisfactory; they show that the chamber can be used in the dosimetry of 90 Sr+ 90 Y beta particles and low-energy X-ray beams

  2. Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, Sergey

    2010-01-01

    While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.

  3. Linear extrapolation distance for a black cylindrical control rod with the pulsed neutron method

    International Nuclear Information System (INIS)

    Loewenhielm, G.

    1978-03-01

    The objective of this experiment was to measure the linear extrapolation distance for a central black cylindrical control rod in a cylindrical water moderator. The radius for both the control rod and the moderator was varied. The pulsed neutron technique was used and the decay constant was measured for both a homogeneous and a heterogeneous system. From the difference in the decay constants the extrapolation distance could be calculated. The conclusion is that within experimental error it is safe to use the approximate formula given by Pellaud or the more exact one given by Kavenoky. We can also conclude that linear anisotropic scattering is accounted for in a correct way in the approximate formula given by Pellaud and Prinja and Williams

  4. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide

    DEFF Research Database (Denmark)

    Kissling, W. Daniel; Dalby, Lars; Fløjgaard, Camilla

    2014-01-01

    , the importance of diet for macroevolutionary and macroecological dynamics remains little explored, partly because of the lack of comprehensive trait datasets. We compiled and evaluated a comprehensive global dataset of diet preferences of mammals (“MammalDIET”). Diet information was digitized from two global...... species within the same genus, or family) and this extrapolation was subsequently validated both internally (with a jack-knife approach applied to the compiled species-level diet data) and externally (using independent species-level diet information from a comprehensive continentwide data source). Finally...... information (48% of all terrestrial mammal species), and only rarely from other species within the same genus (6%) or from family level (8%). Internal and external validation showed that: (1) extrapolations were most reliable for primary food items; (2) several diet categories (“Animal”, “Mammal...

  5. Communication: Predicting virial coefficients and alchemical transformations by extrapolating Mayer-sampling Monte Carlo simulations

    Science.gov (United States)

    Hatch, Harold W.; Jiao, Sally; Mahynski, Nathan A.; Blanco, Marco A.; Shen, Vincent K.

    2017-12-01

    Virial coefficients are predicted over a large range of both temperatures and model parameter values (i.e., alchemical transformation) from an individual Mayer-sampling Monte Carlo simulation by statistical mechanical extrapolation with minimal increase in computational cost. With this extrapolation method, a Mayer-sampling Monte Carlo simulation of the SPC/E (extended simple point charge) water model quantitatively predicted the second virial coefficient as a continuous function spanning over four orders of magnitude in value and over three orders of magnitude in temperature with less than a 2% deviation. In addition, the same simulation predicted the second virial coefficient if the site charges were scaled by a constant factor, from an increase of 40% down to zero charge. This method is also shown to perform well for the third virial coefficient and the exponential parameter for a Lennard-Jones fluid.

  6. 131I-SPGP internal dosimetry: animal model and human extrapolation

    International Nuclear Information System (INIS)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos; Figueiredo, Suely Gomes de

    2009-01-01

    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's 125 ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the 131 I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131 I were considered. (author)

  7. {sup 131}I-CRTX internal dosimetry: animal model and human extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br

    2009-07-01

    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. {sup 125}I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, {sup 125}I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for {sup 131}I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I in the tissue were considered in dose calculations. (author)

  8. {sup 131}I-SPGP internal dosimetry: animal model and human extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br; Figueiredo, Suely Gomes de [Universidade Federal do Espirito Santo, (UFES), Vitoria, ES (Brazil). Dept. de Ciencias Fisiologicas. Lab. de Quimica de Proteinas

    2009-07-01

    Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's {sup 125}ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the {sup 131}I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I were considered. (author)

  9. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    International Nuclear Information System (INIS)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.

    2014-03-01

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q 2 in the range 0.2-1.3 GeV 2 . The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ p G E p /G M p . This quantity decreases with Q 2 in a way qualitatively consistent with recent experimental results.

  10. Extrapolation of Extreme Response for Wind Turbines based on FieldMeasurements

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    extrapolation are presented. The first method is based on the same assumptions as the existing method but the statistical extrapolation is only performed for a limited number of mean wind speeds where the extreme load is likely to occur. For the second method the mean wind speeds are divided into storms which......The characteristic loads on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. These parameters must be taken into account in the assessment of the characteristic load. The characteristic load...... are assumed independent and the characteristic loads are determined from the extreme load in each storm....

  11. 131I-CRTX internal dosimetry: animal model and human extrapolation

    International Nuclear Information System (INIS)

    Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos

    2009-01-01

    Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. 125 I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, 125 I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for 131 I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131 I in the tissue were considered in dose calculations. (author)

  12. Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-10-17

    While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.

  13. Forests and methane - at the intersection of science and politics, experimentation and extrapolation, objectivity and subjectivity

    International Nuclear Information System (INIS)

    Peyron, Jean-Luc

    2005-01-01

    According to recent information, vegetation is thought to be a major source of methane. This phenomenon had not been contemplated until now and still remains to be explained. According to the authors and on the basis of rough extrapolations, it may cast light on some missing pieces in the global methane balance. The initial reaction by commentators following this discovery was to discuss its consequences on the strategy to fight the greenhouse effect considering methane's considerable impact on global warming. However, a preliminary analysis based on opinions from a range of experts underscores three aspects - the experimental discovery needs to be confirmed and explained before drawing any hasty conclusions; extrapolations performed so far on a global scale are highly inadequate and probably overestimated; implications for fighting the greenhouse effect are limited because the phenomenon in question is a natural one and not extensive enough to offset the benefits of forests as a sink for carbon dioxide. (authors)

  14. Functionalized silica materials for electrocatalysis

    Indian Academy of Sciences (India)

    To increase the efficiency of the electrocatalytic process and to increase the electrochemical accessibility of the immobilized electrocatalysts, functionalized and non-functionalized mesoporous organo-silica (MCM41-type-materials) are used in this study. These materials possess several suitable properties to be durable ...

  15. Exploring demand reduction through design, durability and 'usership' of fashion clothes.

    Science.gov (United States)

    Fletcher, Kate

    2017-06-13

    Global planetary boundaries confer limits to production and consumption of material goods. They also confer an obligation to experiment, as individuals and collectively as society, with less-materially-intensive, but no less exuberant, ways of living. This paper takes up this mantle and explores materials demand reduction through a focus on design, fashion garments and the universal, everyday activity of wearing clothes. It takes as its starting point the design of longer-lasting products, a widely favoured strategy for increasing materials efficiency and reducing materials demand in many sectors, including fashion. Drawing on scholarship in the field of design for sustainability and ethnographic research conducted in 16 locations in nine countries about already-existing practices of intensive use and maintenance of clothing, this paper critiques the effectiveness of durability strategies to reduce the amount of materials used. It argues for an update in the familiar preference within sustainability debates for the 'techno-fix' to explore instead resourceful use of materials as emerging from human actions and relationships with material goods. It suggests that, while facilitated by design, technology and engineering, opportunities to reduce materials demand begin in individual and collective practices, which, in turn, have dynamic implications for use of materials.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  16. Temperature induced effects on the durability of MR fluids

    International Nuclear Information System (INIS)

    Wiehe, A; Maas, J; Kieburg, C

    2013-01-01

    Although commercial MR fluids exist for quite some time now and the feasibility as well as the advantages of the MR technology have been demonstrated for several applications by a variety of MR actuator prototypes, a sustainable market break-through of brake and clutch applications utilizing the shear mode is still missing. Essential impediments are the marginal knowledge about the durability of the MR technology. To overcome this situation, a long-term measurement system was developed for the durability analysis of MR fluid formulations within a technical relevant scale with respect to the volume of MR fluid and the transmitted torque. The focus of the presented series of measurements is given to the analysis of temperature induced effects on the durability. In this context four different failure indicators can be distinguished, namely an apparent negative viscosity, deviations in torque data obtained from different measurements as well as a pressure increase and a drop in the on-state torque. The measurement data of the present durability experiments indicate a significant dependency of the attainable energy intake density on the temperature. The aim of such durability tests is to establish a reliable data base for the industry to estimate the life-time of MR devices.

  17. A structural bond strength model for glass durability

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Metzger, T.B.

    1996-01-01

    A glass durability model, structural bond strength (SBS) model was developed to correlate glass durability with its composition. This model assumes that the strengths of the bonds between cations and oxygens and the structural roles of the individual elements in the glass arc the predominant factors controlling the composition dependence of the chemical durability of glasses. The structural roles of oxides in glass are classified as network formers, network breakers, and intermediates. The structural roles of the oxides depend upon glass composition and the redox state of oxides. Al 2 O 3 , ZrO 2 , Fe 2 O 3 , and B 2 O 3 are assigned as network formers only when there are sufficient alkalis to bind with these oxides. CaO can also improve durability by sharing non-bridging oxygen with alkalis, relieving SiO 2 from alkalis. The percolation phenomenon in glass is also taken into account. The SBS model is applied to correlate the 7-day product consistency test durability of 42 low-level waste glasses with their composition with an R 2 of 0.87, which is better than 0.81 obtained with an eight-coefficient empirical first-order mixture model on the same data set

  18. Experimental Study on Color Durability of Color Asphalt Pavement

    Science.gov (United States)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  19. Calibration of a scintillation dosemeter for beta rays using an extrapolation ionization chamber

    International Nuclear Information System (INIS)

    Hakanen, A.T.; Sipilae, P.M.; Kosunen, A.

    2004-01-01

    A scintillation dosemeter is calibrated for 90 Sr/ 90 Y beta rays from an ophthalmic applicator, using an extrapolation ionization chamber as a reference instrument. The calibration factor for the scintillation dosemeter agrees with that given by the manufacturer of the dosemeter within ca. 2%. The estimated overall uncertainty of the present calibration is ca. 6% (2 sd). A calibrated beta-ray ophthalmic applicator can be used as a reference source for further calibrations performed in the laboratory or in the hospital

  20. Emotional experience is subject to social and technological change: extrapolating to the future

    OpenAIRE

    Scherer, Klaus R.

    2001-01-01

    While the emotion mechanism is generally considered to be evolutionarily continuous, suggesting a certain degree of universality of emotional responding, there is evidence that emotional experience may differ across cultures and historical periods. This article extrapolates potential changes in future emotional experiences that can be expected to be caused by rapid social and technological change. Specifically, four issues are discussed: (1) the effect of social change on emotions that are st...